Nothing Special   »   [go: up one dir, main page]

WO2024189877A1 - Information processing device, information processing method, information processing program, and storage medium - Google Patents

Information processing device, information processing method, information processing program, and storage medium Download PDF

Info

Publication number
WO2024189877A1
WO2024189877A1 PCT/JP2023/010266 JP2023010266W WO2024189877A1 WO 2024189877 A1 WO2024189877 A1 WO 2024189877A1 JP 2023010266 W JP2023010266 W JP 2023010266W WO 2024189877 A1 WO2024189877 A1 WO 2024189877A1
Authority
WO
WIPO (PCT)
Prior art keywords
knowledge
post
information
posted
information processing
Prior art date
Application number
PCT/JP2023/010266
Other languages
French (fr)
Japanese (ja)
Inventor
秦 松崎
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2023/010266 priority Critical patent/WO2024189877A1/en
Publication of WO2024189877A1 publication Critical patent/WO2024189877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/907Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/909Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location

Definitions

  • the present invention relates to an information processing device, an information processing method, an information processing program, and a storage medium, and, for example, to an information processing device, an information processing method, an information processing program, and a storage medium that processes information posted on a network.
  • Patent Document 1 discloses a post providing system that corrects location information based on the content of the post and extracts and provides posts that match search criteria.
  • the present invention has been made in consideration of the above points, and one of its objectives is to provide an information processing device, an information processing method, an information processing program, and a storage medium that can provide a large amount of posted information from general users in an easy-to-handle form, or that can generate easy-to-handle information based on the posted information.
  • the invention described in claim 1 is an information processing device that includes a post group acquisition unit that acquires one or more post groups in which multiple pieces of post information, including post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content, and a knowledge generation unit that generates knowledge for each post group based on the post location and the type of post content, and the knowledge generation unit generates the knowledge in the form of a point, area, or line based on the type of post content.
  • the invention described in claim 10 is an information processing method executed by an information processing device, comprising: a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information, including post content posted from a mobile body and a post location where the post was made, are divided based on the post location for each type of the post content; and a knowledge generation step of generating knowledge for each post group based on the post location and the type of the post content, wherein in the knowledge generation step, the knowledge is generated in the form of a point, an area, or a line based on the type of the post content.
  • the invention described in claim 11 is an information processing program executed by an information processing device having a computer, which causes the computer to execute a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information, including post content posted from a mobile body and a post location where the post was made, are divided for each type of post content based on the post location, and a knowledge generation step of generating knowledge for each post group based on the post location and the type of post content, and in the knowledge generation step, generating the knowledge in the form of a point, area, or line based on the type of post content.
  • the invention described in claim 12 is a computer-readable storage medium that stores an information processing program for causing an information processing device equipped with a computer to execute a post group acquisition step of acquiring one or more post groups in which multiple pieces of post information, including post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content, and a knowledge generation step of generating knowledge for each post group based on the post location and the type of post content, and generating the knowledge in the form of a point, area, or line based on the type of post content in the knowledge generation step.
  • FIG. 1 is a schematic diagram illustrating an overview of an information processing system according to an embodiment of the present invention.
  • 1 is a diagram showing a configuration of a front seat portion of an automobile according to a first embodiment
  • 1 is a block diagram showing an example of a configuration of an in-vehicle device according to a first embodiment
  • FIG. 4 is a diagram illustrating an example of posted information according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of a configuration of a server device according to the first embodiment.
  • FIG. 11 is an explanatory diagram of a distance threshold in clustering according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of cluster information according to the first embodiment;
  • FIG. 11 is an explanatory diagram of correction of a distance threshold in the clustering according to the first embodiment.
  • FIG. 11 is an explanatory diagram of correction of a distance threshold in the clustering according to the first embodiment.
  • 5 is a flowchart illustrating an example of a routine executed by the server device according to the first embodiment.
  • FIG. 13 is a diagram showing an example of a knowledge mode setting for each content type according to the second embodiment;
  • FIG. 11 is a diagram illustrating an example of knowledge information according to the second embodiment.
  • FIG. 11 is a diagram illustrating an example of knowledge information according to the second embodiment.
  • FIG. 11 is a diagram illustrating an example of knowledge information according to the second embodiment.
  • FIG. 11 is a diagram showing an example in which point knowledge according to the second embodiment is displayed superimposed on a map.
  • FIG. 11 is a diagram showing an example in which range knowledge according to the second embodiment is displayed superimposed on a map.
  • FIG. 11 is a diagram showing an example in which line knowledge according to the second embodiment is displayed superimposed on a map.
  • 5 is a flowchart illustrating an example of a routine executed by the server device according to the embodiment.
  • 5 is a flowchart illustrating an example of a routine executed by the server device according to the embodiment.
  • FIG. 1 shows an overview of the configuration of the information processing system 100.
  • the information processing system 100 includes a server 10 as an information processing device, and an in-vehicle device 30.
  • the in-vehicle device 30 is a terminal device equipped with a communication function, such as a car navigation device or a drive recorder, mounted on a moving body. Note that FIG. 1 shows a case in which the in-vehicle device 30 is mounted on an automobile M, which is an example of a moving body.
  • the server 10 and the in-vehicle device 30 can transmit and receive data to and from each other via the network NW using communication protocols such as TCP/IP and UDP/IP.
  • the network NW can be constructed, for example, by a mobile communication network, wireless communication such as Wi-Fi (registered trademark), and Internet communication including wired communication.
  • the information processing system 100 is an information processing system that collects and performs statistical processing on posted information posted from multiple terminal devices, including the in-vehicle device 30.
  • each of the multiple terminal devices receives a post input from a user, it generates posted information including the posted content and a posted position indicating the position of the terminal device at the time of posting, and transmits the information to the server 10.
  • the server 10 performs clustering on the posted information posted from each of the terminal devices using the distance between the posted positions, and generates one or more clusters (post groups) of posted information.
  • each piece of posted information used for clustering is assigned a type of posted content (hereinafter also referred to as a content type) that classifies the posted content into one of a number of predetermined types, or the type of posted content is assigned by the server 10.
  • the server 10 performs the above-mentioned clustering for each type of posted content.
  • the posted information includes information indicating a type of content, such as "tourist spot” for a place where monuments suitable for tourism are installed, “rain” for the weather, "patrol car” for a sighting of a police car on patrol, and "stop line” and "road construction” for roads.
  • the server 10 can generate knowledge based on the type of post content and the posting position for each cluster generated by the above clustering.
  • the knowledge includes, for example, for the cluster on which the knowledge is based, information on the position indicated by a point, line, or area based on the type of post content of posts included in the cluster and the posting position of posts included in the cluster.
  • the position indicated by this point, line, or area is also referred to below as the position of the knowledge.
  • the server 10 can transmit knowledge that can be displayed superimposed on a map image to a terminal device such as an in-vehicle device 30.
  • the in-vehicle device 30 can display the knowledge on a display screen inside the vehicle, and notify the user of information based on the knowledge by screen display or voice.
  • the in-vehicle device 30 can detect when it is approaching the location of the knowledge or when it has entered the area of the knowledge, and notify the user of information according to the content of the knowledge.
  • the posted information collected by the server 10 includes posted information posted from a moving object.
  • posted information posted from a moving object includes posted information posted from a terminal device mounted on the moving object such as the in-vehicle device 30, as well as posted information posted from a portable terminal device such as a smartphone, tablet, or wearable device used by a user riding in a moving object such as an automobile, motorcycle, or bicycle. It may also include posted information posted from a terminal device used by a pedestrian.
  • an in-vehicle device 30 is taken as an example of a terminal device that transmits posted information to the server 10 or receives knowledge information generated from the posted information.
  • the in-vehicle device 30 is a car navigation device.
  • the in-vehicle device 30 is a terminal device of a so-called cloud-type car navigation device that receives, from a user, a destination to which the user wishes to be guided, transmits the destination to the server 10, and the server 10 generates a route to the destination.
  • FIG. 2 is a perspective view showing the vicinity of the front seat of an automobile M equipped with an in-vehicle device 30.
  • FIG. 2 shows a case where the in-vehicle device 30 is installed in the dashboard DB of the front seat of the automobile M.
  • the GPS receiver 11 is a device that receives signals (GPS signals) from GPS (Global Positioning System) satellites.
  • GPS Global Positioning System
  • the GPS receiver 11 is arranged, for example, on a dashboard DB.
  • the GPS receiver 11 may be arranged anywhere as long as it can receive GPS signals.
  • the GPS receiver 11 is capable of transmitting the received GPS signals to the in-vehicle device 30.
  • the in-vehicle device 30 obtains current position information of the automobile M using the GPS signals.
  • the touch panel 13 is, for example, a touch panel monitor that combines a display, such as a liquid crystal display capable of displaying images, with a touch pad.
  • the touch panel 13 is disposed, for example, in the center console of the dashboard DB.
  • the touch panel 13 may be disposed in a location that is visible to the driver and within the driver's reach.
  • the touch panel 13 may be attached to the dashboard DB.
  • the touch panel 13 is capable of displaying a screen based on the control of the in-vehicle device 30.
  • the touch panel 13 is also capable of transmitting a signal representing an input operation to the touch panel 13 received from a user to the in-vehicle device 30.
  • the touch panel 13 may display car navigation guidance.
  • it may be possible to perform operations related to the car navigation function, such as setting a destination, via the touch panel 13.
  • the touch panel 13 also displays screens such as a screen for accepting input of the message to be posted and the type of post content, and a screen for displaying map knowledge in which knowledge sent from the server 10 is superimposed on a map.
  • the speaker 15 is provided, for example, on the interior side of the A-pillar AP.
  • the speaker 15 is capable of emitting sounds such as music and voice based on the control of the in-vehicle device 30.
  • the speaker 15 emits the voice of the navigation system.
  • a voice notification regarding map knowledge transmitted from the server 10 is emitted from the speaker 15.
  • a voice explaining the knowledge displayed on the touch panel or a voice notifying that the automobile M is approaching the knowledge is emitted from the speaker 15.
  • the microphone 17 is a microphone device that picks up sounds inside the vehicle, and is located, for example, on the dashboard DB.
  • the microphone 17 may be located anywhere, such as the rear-view mirror RM or the steering wheel, as long as it can pick up sounds inside the vehicle.
  • posts by an occupant of the automobile M, who is the user of the in-vehicle device 30, are made by voice via the microphone 17.
  • the voice picked up by the microphone 17 may be converted into text information and used as the content of the posted information, or a voice file may be included in the posted information.
  • the exterior camera 18 is an imaging device that captures images of the surroundings of the automobile M.
  • the exterior camera 18 is attached to the inside of the windshield FG near the rearview mirror RM so that the imaging direction is toward the front.
  • the exterior camera 18 can capture images of the front of the automobile M through the windshield.
  • the exterior camera 18 may be disposed on the dashboard DB, for example.
  • the automobile M may be equipped with a camera that can capture images of the sides or rear of the automobile M.
  • the in-vehicle camera 19 is an imaging device that captures images of the interior of the automobile M.
  • the in-vehicle camera 19 is configured integrally with the exterior camera 18.
  • the in-vehicle camera 19 is configured to be able to capture images of the interior of the automobile M, including the driver's seat, passenger seat, and rear seats of the automobile M.
  • an image captured by the exterior camera 18 or the in-vehicle camera 19 may be attached to the posted information.
  • FIG. 3 is a block diagram showing the configuration of the in-vehicle device 30.
  • the in-vehicle device 30 is a device in which a storage unit 23, a control unit 25, and a communication unit 27 work together via a system bus.
  • the automobile M is also equipped with an acceleration sensor 21.
  • the acceleration sensor 21 is capable of measuring the acceleration of the automobile M and outputting a signal indicating the measured acceleration.
  • the acceleration sensor 21 is a sensor capable of detecting the acceleration in the direction of travel of the automobile M when viewed from above the automobile M, that is, the forward/backward direction.
  • the acceleration sensor can also detect, for example, the acceleration in the lateral direction (width direction) perpendicular to the direction of travel of the automobile M.
  • the storage unit 23 is a storage device configured, for example, by a hard disk drive, a solid state drive (SSD), a flash memory, etc.
  • the storage unit 23 stores various programs executed in the in-vehicle device 30, such as an operating system and software for the terminal.
  • the memory unit 23 also stores map information including road maps.
  • the map information is used, for example, to display guidance and knowledge for car navigation.
  • the control unit 25 is composed of a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and functions as a computer.
  • the control unit 25 realizes various functions by the CPU reading and executing various programs stored in the ROM and the storage unit 23.
  • the control unit 25 performs functions such as generating post information in response to input from the user and transmitting it to the server 10, and car navigation functions.
  • the control unit 25 acquires signals representing input operations performed on the touch panel 13.
  • the control unit 25 also supplies image data to be displayed on the touch panel 13.
  • the control unit 25 also supplies audio data to the speaker 15.
  • the control unit 25 also acquires audio in the automobile M picked up by the microphone 17.
  • the control unit 25 acquires images captured by the exterior camera 18 and the interior camera 19.
  • control unit 25 when text input of the post content is made via the touch panel 13 instead of voice input of the post content via the microphone 17, the control unit 25 generates post information including the text data of the post content and the posting position. In addition, the control unit 25 accepts the selection of the type of post content via the microphone 17 or the touch panel 13.
  • the communication unit 27 is a communication device that transmits and receives data to and from external devices in accordance with instructions from the control unit 25.
  • the communication unit 27 is, for example, a NIC (Network Interface Card) for connecting to the network NW.
  • the communication unit 27 is connected to the above-mentioned network NW, and transmits and receives various data to and from the server 10.
  • the control unit 25 transmits the generated post information to the server 10 via the communication unit 27. Also, for example, the control unit 25 can transmit information including a destination input by a user of the in-vehicle device 30 to the server 10 via the communication unit 27, and receive route information or navigation information to the destination from the server 10.
  • the control unit 25 receives knowledge information generated by the server 10, for example, via the communication unit 27, and displays the received knowledge on the touch panel 13 by superimposing it on the map image.
  • FIG. 4 is a diagram showing an example of posted information generated by the control unit 25 and transmitted to the server 10 as PD1.
  • the posted information is information in which the posting time and ID are associated with the posting location indicating the position of the in-vehicle device 30 at the time of posting, i.e., the position of the automobile M in this embodiment, and the posted content.
  • the posted information is information that includes the posted content posted from the terminal device and the posting location, which is the location where the post was made.
  • the posted content may be, for example, text data input by the poster via a touch panel, text data converted from speech uttered by the poster, or audio data of the speech.
  • the posted content may include information generated by speech uttered by the poster.
  • the post information includes information indicating the type of post content, which classifies the post content into one of the specified types.
  • the type of post content is a type into which post content related to the location indicated by the posting position is classified.
  • the type of post content is selected by the user, for example, when inputting the post content.
  • the control unit 25 may obtain the type of post content based on keywords included in the voice data or text data converted from the voice when the post content is input by voice, and generate the post information.
  • the posted information may also include information indicating the moving state of the automobile M, such as information indicating whether the automobile M was moving or stopped at the time of posting, information indicating the moving direction and speed, and information indicating the moving trajectory.
  • the posted information can be said to include the posting content posted from the moving body, the posting location where the posting was made, and moving state information indicating the moving state of the moving body at the time the posting was made.
  • the posted information is categorized as "rain” and includes information indicating that the information was posted while moving (movement type), and movement status information indicating the speed and direction.
  • the movement type may be determined from the speed.
  • the posted information may include, for example, an image captured by the exterior camera 18 or the interior camera 19 at the time of posting.
  • FIG. 5 is a block diagram showing the configuration of the server 10.
  • the server 10 is a device in which a large-capacity storage device 31, a communication unit 33, and a control unit 35 work together via a system bus.
  • the server 10 has a function to perform clustering of the posted information posted from each terminal device into one or more post groups according to the type of posted content, and generate one or more clusters (post groups).
  • the server 10 also has a function to generate knowledge for each cluster.
  • the server 10 also has the function of receiving current location information of the automobile M from the in-vehicle device 30 and information on a destination set by a user who is an occupant of the automobile M, and generating a route to the destination based on the current location information and the destination information.
  • the large-capacity storage device 31 is composed of, for example, a hard disk device and an SSD (Solid State Drive), and stores various programs such as an operating system and software for the server 10.
  • the various programs may be obtained, for example, from other server devices, etc., via a network, or may be recorded on a recording medium and read via various drive devices.
  • the various programs stored in the large-capacity storage device 31 can be transmitted via a network, and can also be recorded on a computer-readable recording medium and transferred.
  • the large-capacity storage device 31 stores, for example, an information processing program that allows the server 10 to execute clustering.
  • the large-capacity storage device 31 also stores, for example, an information processing program that allows the server 10 to execute knowledge generation for each cluster.
  • the large-capacity storage device 45 also includes various databases used for clustering and knowledge generation.
  • the map information database (map information DB in the figure) 31A is a map information database in which map information including road maps is stored.
  • the map information in the map information DB is used by the server 10 to generate map knowledge, which is image information in which knowledge is superimposed on a map.
  • the map information in the map information DB is also used by the server 10 when generating routes for car navigation.
  • the post DB31B stores the posted information posted from each of the terminal devices. As described above, the posted information posted from each of the terminal devices includes posted information posted from a mobile object.
  • the cluster DB 31C stores information indicating the clusters generated as a result of the clustering performed by the server 10. Specifically, the cluster DB 31C stores information in which the posted information ID of the posted information included in each cluster is associated with a cluster ID that identifies each cluster.
  • the knowledge DB 31D stores knowledge information indicating the knowledge generated by the server 10 for each cluster.
  • the knowledge information includes the type of posted content of the posted information included in the original cluster, and the location information of the knowledge indicating the location of the original cluster as a whole.
  • each of the various databases described above may be stored in an external server separate from server 10, and server 10 may read the necessary information from the external server.
  • the communication unit 33 is connected to the network NW described above, and transmits and receives various data to and from terminal devices such as the in-vehicle device 30.
  • the control unit 35 is composed of a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and functions as a computer.
  • the CPU realizes various functions by reading and executing various programs stored in the ROM and the large-capacity storage device 31.
  • the control unit 35 performs functions such as a function of performing clustering on a large number of posted information, a function of generating knowledge for each cluster generated by clustering, and a car navigation function.
  • control unit 35 When the control unit 35 receives posted information from a terminal device via the communication unit, it stores the received posted information in the posting DB.
  • the control unit 35 has, as a functional unit, a clustering unit 37 as a post group generation unit that acquires posted information from the post DB and performs clustering on the acquired posted information.
  • the control unit 35 also has, as a functional unit, a knowledge generation unit 39 that generates knowledge for each cluster generated by the clustering unit 37. The clustering performed by the clustering unit 37 in this embodiment will be described in detail below.
  • the clustering unit 37 acquires posted information to be used for clustering from the posted information DB. For example, the clustering unit 37 acquires posted information whose posting positions are within a predetermined area from the posted information DB, and performs clustering for each predetermined area.
  • posted information from a mobile object may include movement status information.
  • the clustering unit 37 functions as a posting information acquisition unit that executes a step of acquiring posting information posted from a moving object as posting information to be used for clustering, and acquiring posting information including the posting content posted from the moving object, the posting location where the posting was made, and movement state information indicating the movement state of the moving object at the time the posting was made (posting information acquisition step).
  • the clustering unit 37 When the clustering unit 37 acquires the posted information, it performs clustering for each type of posted content. In this clustering, the clustering unit 37 groups posted information having the same type of posted content and in which the distance between the posted positions is equal to or less than a threshold into the same cluster, thereby dividing one or more pieces of posted information of the same type into one or more clusters.
  • the clustering unit 37 generates clusters of posted information by, for example, Euclidean clustering using the Euclidean distance between posting positions. Specifically, a cluster including one or more pieces of posted information is generated by assigning the same cluster ID to posted information whose posting positions are within a threshold distance.
  • the distance threshold is determined at least according to the type of post content.
  • a relatively long distance threshold e.g., several hundred meters
  • a relatively short distance threshold e.g., a dozen meters
  • clusters By setting the distance threshold in this way, posted information about the same object even within the same category can be grouped into the same cluster, while posted information about different objects (for example, different monuments at the same tourist spot) can be separated into different clusters. This makes it possible to use clusters as data that is easier to handle compared to simply displaying posted information, for example, by displaying posted information by cluster. Furthermore, clusters can be used to generate knowledge based on clusters, making it possible to provide users with more useful information.
  • FIG. 6A is a diagram that shows, together with a map, a schematic diagram of how multiple pieces of posted information P1 to P7, which were posted with points in a certain area (area MP1) as the posting location, are clustered by type of posted content.
  • icons representing posted information P1 to P7 are shown at the positions indicated by the posting locations included in each piece of posted information.
  • “Stop” stop line
  • "Patrol” police car
  • “Rain” indicate the types of posted content.
  • posted information P1 to P7 are divided into five clusters with cluster IDs (cluster numbers) 1 to 5.
  • the distance threshold is set to TH1. Because the distance between the posting location of posted information P1 and the posting location of adjacent posted information P2 of the same type is longer than the distance threshold TH1, posted information P1 and posted information P2 are divided into separate clusters and assigned different cluster numbers "1, 2.”
  • the distance threshold is set to TH2 in the clustering of posted information P3 to P5, whose content type is "Patrol.” As shown in FIG. 6A, the distance between the posting location of posted information P3 and the posting location of adjacent posted information P4 of the same type is less than or equal to the distance threshold TH2, so posted information P3 and posted information P4 are in the same cluster and are assigned the same cluster number "3.”
  • posted information P5 is classified into a different cluster from posted information P3 and P4 and is assigned the cluster number "4." In other words, posted information P5 is clustered into a cluster that includes only posted information P5 because the distance to the nearest posting location of the same content type exceeds the distance threshold TH2.
  • the distance threshold is set to TH3 in the clustering of posted information P6 to P7 of the content type "Rain.” As shown in FIG. 6A, the distance between the posting positions of posted information P6 and posted information P7 of the same type is less than or equal to the distance threshold TH3, so they are assigned the same cluster number "5" as they are in the same cluster.
  • the clustering distance threshold TH1 for the type "pause” where the posted content has a local target can be set relatively short
  • the clustering distance threshold TH3 for the type "rain” where the posted content has a wide range of target can be set relatively long.
  • control unit 35 When the control unit 35 generates a cluster, it generates cluster information that associates a cluster ID, which is an identifier that identifies each cluster, with the post ID of the post information included in the cluster indicated by the cluster ID, and stores the cluster information in the cluster DB 31C.
  • cluster ID which is an identifier that identifies each cluster
  • FIG. 6B is a diagram showing cluster information for clusters with cluster IDs 1 to 5 in FIG. 6A as CD1, as an example of cluster information.
  • each cluster ID is associated with the post ID of the post information included in the cluster.
  • the cluster information is used when knowledge is generated for each cluster.
  • each posting location is converted from a geographic coordinate system to a planar coordinate system before clustering. For example, after clustering and knowledge generation, when the knowledge is displayed superimposed on a map, the knowledge location is converted back to a geographic coordinate system.
  • the posting position and clusters are displayed together with a map, but in this embodiment, clustering is processed independently of map information.
  • clustering is performed without correcting the position to match a map, for example, using map matching.
  • map matching it is possible to support various types of maps. Specifically, as one example, it is possible to prevent a problem in which information that is incompatible with a terminal having a map different from the specific map information is generated by correcting the position using specific map information.
  • the processing will be tailored to the type of map used for clustering or knowledge generation, so it is expected that the position will shift when the data is displayed superimposed on another type of map.
  • position corrections to suit a specific map are not performed during clustering or knowledge generation, so the above-mentioned position shifts can be prevented.
  • there are roads whose positions have changed depending on whether the map is new or old so by not making corrections based on a specific map, it becomes possible to generate knowledge regardless of whether the map is new or old.
  • the clustering unit 37 can correct the distance threshold for the posted information posted while moving, based on the movement state information included in the posted information.
  • FIG. 7 is a diagram showing an example of setting the distance threshold in the clustering of posted information P3 and posted information P4 described in FIG. 6A, in which posted information P3 is posted while moving.
  • posted information P3 is assumed to have been posted from a moving object moving in the direction of the arrow.
  • posted information P3 includes information indicating that it was posted while moving.
  • the clustering unit 37 sets the distance threshold for the posted information posted while moving to a distance threshold TH4 that is longer than the distance threshold TH2 based on the content type.
  • the distance between the posting locations of posted information P3 and posted information P4 exceeds TH2 but is within the distance threshold TH4. Therefore, by clustering using the corrected distance threshold TH4, posted information P3 and posted information P4 are included in the same cluster.
  • the distance between the posting locations for the same subject may be longer than the distance between the posting locations for posts posted while stationary. In such cases, the distance between the posting locations for the same subject may exceed the distance threshold, and posts about the same subject may be separated into different clusters.
  • the control unit 35 as a post group generation unit may correct the distance threshold to a length according to the speed information. For example, the faster the speed indicated by the speed information is, the longer the distance threshold may be corrected, and when the speed exceeds a predetermined speed (e.g., 40 km/h), the distance threshold may be corrected to a longer value.
  • a predetermined speed e.g. 40 km/h
  • the posted information may include, as the posted content, information generated by the voice spoken by the poster.
  • the control unit 35 which serves as a post group generating unit, may correct the distance threshold based on the time taken to speak when posting the posted information and on speed information indicating the speed of the moving object at the time the post was made.
  • posted information about the same subject may be divided into different clusters.
  • posted information about the same subject can be more likely to be included in the same cluster.
  • FIG 8 is a diagram showing an example of distance threshold correction for posted information posted while moving.
  • posted information P8 and P9 are posted information of a tourist spot type ("Tour" in the figure) that targets monument 40.
  • Posted information P8 is posted from mobile body M1 equipped with in-vehicle device 30 while moving, and the arrow in Figure 8 indicates the traveling direction of mobile body M1.
  • Posted information P9 is posted from, for example, a portable terminal while stopped.
  • the posted information P8 includes, as movement state information, movement direction information that indicates the direction of movement of the moving object at the time of posting.
  • the distance threshold for the content type "Tour" is TH5
  • the range within the distance threshold TH5 from the posting location of the posted information P8 is shown as AR5 in FIG. 8.
  • the clustering unit 37 may generate clusters based on the movement direction information included in the posted information P8 by setting a distance threshold in the direction opposite to the movement direction from the posting position of the posted information P8 to a longer distance than the distance threshold in the movement direction indicated by the movement direction information.
  • the distance threshold in the direction indicated by the movement direction information i.e., the traveling direction of the moving body M1
  • a distance threshold TH6 longer than the distance threshold TH5 is set, and clustering is performed.
  • the clustering unit 37 sets an elliptical range AR6 as a range in which the distance from the posting position of the posted information P8 in the traveling direction of the moving body M1 is within the distance threshold TH5 and the distance in the direction opposite to the traveling direction is within the distance threshold TH6, and posts whose posting position is within AR6 are placed in the same cluster as the posted information P8.
  • the posting location of posted information P9 is not within the distance threshold TH5 (within range AR5) from the posting location of posted information P8.
  • the posting location of posted information P9 is within range AR6, which takes into account the distance threshold TH6 in the direction opposite to the direction of travel, so posted information P9 is considered to be in the same cluster as posted information P8 and is assigned the same cluster ID "7".
  • the range AR6 in which the distance from the posting position of the posted information P8 in the direction of travel of the moving body M1 is within the distance threshold TH5 and the distance in the direction opposite the direction of travel is within the distance threshold TH6 is not limited to the elliptical range described above.
  • the range AR6 may be of any shape as long as it extends longer in the direction opposite the direction of travel than the direction of travel of the moving body M1.
  • the clustering unit may set the range AR6 to, for example, a rectangle, a rounded rectangle, an egg shape, etc.
  • the clustering unit 37 may correct the posting position of the posted information posted while moving based on the moving speed or moving direction, and then perform clustering.
  • the clustering unit 37 may generate clusters by performing clustering for each piece of posted information whose moving direction information indicates the same direction, based on the moving direction information included in the posted information. For example, whether the moving directions are the same or not may be determined, for example, by setting a reference direction and judging the angle with respect to the reference direction. For example, even if the directions are not exactly the same, a predetermined tolerance may be set and posted information within the tolerance may be clustered together. For example, when map information is used, whether the moving directions are the same or not may be determined by distinguishing between uphill and downhill directions on a road.
  • the clustering unit 37 sets a distance threshold between posting locations and groups posts that are equal to or less than the distance threshold into the same post group, thereby performing clustering to separate multiple posted information into one or more post groups (clusters).
  • the distance threshold is set for each type of posted content, and is set according to information regarding the movement state of the moving object, such as whether the posted information was posted while moving, the speed, the direction of movement, etc.
  • the clustering unit 37 functions as a post group generation unit that executes a step of dividing a plurality of pieces of posted information into one or more post groups (post group generation step) using the distance between the posting positions for each type of posted information.
  • the clustering unit 37 which serves as a post group generating unit, classifies post information whose distance between posting locations is equal to or less than a distance threshold determined according to the type of post content and movement state information into the same post group when generating the post group.
  • the control unit 35 can also receive, for example, posted information posted from a terminal device, including the posted content and the posted location, and is not limited to information posted from a mobile object.
  • the clustering unit 37 as a posted information acquisition unit can function as a posted information acquisition unit that acquires posted information including the posted content posted from a terminal device and the posted location, which is the location where the post was made.
  • clustering which classifies multiple pieces of posted information posted from a terminal device into one or more groups (clusters) of posts by grouping posts that are equal to or smaller than a distance threshold into the same group, the distance threshold is set for each type of post content.
  • the clustering unit 37 which functions as a post group generation unit, generates post groups by grouping posts whose distance between posting positions is equal to or less than a distance threshold determined according to the type of post content.
  • Clustering Control Routine 9 is a flowchart showing a cluster generation routine RT1, which is an example of a control routine executed by the control unit 35 of the server 10. For example, when the server 10 is powered on, the control unit 35 causes the clustering unit 37 to repeatedly execute the cluster generation routine RT1.
  • step S101 the clustering unit 37 determines whether new posted information is stored in the posting DB 31B (step S101). In step S101, for example, the clustering unit 37 determines whether a predetermined number or more pieces of new posted information that have not been clustered have been received.
  • step S101 If it is determined in step S101 that no new post information is stored in the post DB 31B (step S101: NO), the clustering unit 37 ends the cluster generation routine RT1 and starts a new cluster generation routine RT1.
  • step S101 if it is determined that new posted information is stored in the posting DB 31B (step S101: YES), the clustering unit 37 acquires posted information to be used for clustering from the posting DB 31B (step S102). In step S102, the clustering unit 37 acquires posted information posted from a moving object, for example, as shown in FIG. 4A.
  • the posted information includes, for example, the posted content, the posted location which is the location of the moving object when the post was made, and movement state information which indicates the movement state of the moving object when the post was made.
  • step S102 for example, all of the posted information stored in the post DB 31B that has not been clustered is read out.
  • the clustering unit 37 functions as a posted information acquisition unit.
  • the clustering unit 37 converts the posting location of each piece of posted information acquired in step S102 from the geographic coordinate system to the planar coordinate system (step S103).
  • the clustering unit 37 determines a distance threshold for each type of posted content based on the posted information, and performs correction according to the movement state information as necessary (step S104).
  • the clustering unit 37 sets the distance threshold from the posting position of posted information posted while moving to a longer distance than the distance threshold from the posting position of posted information posted while stopped.
  • step S104 the clustering unit 37 executes clustering for each type of post content using the distance threshold set in step S104 (step S105).
  • step S105 post information whose posting positions are separated by the distance equal to or less than the threshold is classified as being in the same cluster, and one or more post information of the same type is divided into one or more clusters.
  • the clustering unit 37 functions as a post group generation unit that divides a plurality of pieces of posted information into one or more post groups using the distance between the posting positions for each type of posted content.
  • the clustering unit 37 as the post group generation unit groups posted information whose distance between the posting positions is equal to or less than a distance threshold determined according to the type of posted content and the movement state information into the same post group.
  • the clustering unit 37 After executing step S105, the clustering unit 37 generates cluster information including the correspondence between each cluster and the posted information contained in each cluster, and stores the cluster information in the cluster DB 31C (step S106). After executing step S106, the clustering unit 37 ends the cluster generation routine RT1, and starts a new cluster generation routine RT1.
  • the information processing device of this embodiment has a post information acquisition unit that acquires post information including post content posted from a moving object, a post location where the post was made, and movement state information indicating the movement state of the moving object when the post was made, and a post group generation unit that divides the multiple pieces of post information into one or multiple post groups (clusters) using the distance between the post locations for each type of post content.
  • the post group generating unit classifies post information whose distance between post locations is equal to or less than a distance threshold determined according to the type of post content and movement state information into the same post group.
  • an information processing device an information processing method, an information processing program, and a storage medium that can provide a large amount of posted information posted by general users in an easy-to-handle form, or generate easy-to-handle information based on the posted information.
  • the configuration and functions of an information processing system 100 including a server 10 as an information processing device of Example 2 will be described with reference to Figures 10 to 16.
  • the information processing system 100 of Example 2 is configured similarly to the information processing system 100 of Example 1.
  • the control unit 35 of the server 10 has a knowledge generation unit 39 as a functional unit.
  • the knowledge generation unit 39 is capable of generating knowledge for each cluster.
  • knowledge is, for example, information that includes the characteristics of the cluster that is the source of the knowledge, such as the location of the cluster as a whole and the type of post content.
  • the clusters used to generate knowledge in Example 2 include one or more clusters (post groups) in which multiple pieces of post information posted from a mobile body, including the post content and the post location where the post was made, are divided by type of post content based on the post location.
  • the knowledge generation unit 39 generates knowledge for each cluster based on the posting position and the type of posting content of the posting information included in the cluster. In generating the knowledge, the knowledge generation unit 39 generates the knowledge in the form of a point, an area, or a line based on the type of posting content for each cluster.
  • the knowledge generating unit 39 When generating knowledge, the knowledge generating unit 39 first acquires a cluster to be used for knowledge generation. For example, the knowledge generating unit 39 refers to the cluster information stored in the cluster DB 31C, identifies the posting ID of the posting information included in the cluster, and acquires the posting information corresponding to the posting ID from the posting DB 31B. Alternatively, the knowledge generating unit 39 receives the cluster information and the posting information from the clustering unit 37.
  • the knowledge generation unit 39 functions as a post group acquisition unit that executes a step of acquiring one or more clusters (post groups) in which multiple pieces of post information posted from a mobile body, the post contents and the post positions where the posts were made, are divided based on the post positions for each type of post contents (post group acquisition step).
  • FIG. 10 shows an example of a knowledge mode setting table, TB2, used when generating knowledge.
  • TB2 is stored, for example, in the mass storage device 31.
  • recommended knowledge modes are associated with each type of post content (content type).
  • the knowledge generation unit 39 uses clusters that are clustered by type, so the types of post content included in the clusters are consistent. After identifying the content type for each cluster, the knowledge generation unit 39 determines the form of knowledge to be generated, for example, by referring to TB2.
  • knowledge types for each content type shown in TB2 are just examples, and knowledge types that are considered appropriate can be set appropriately depending on the characteristics and distribution trends of the content type.
  • FIGS. 11A to 11C are diagrams showing examples of knowledge generated by the knowledge generation unit 39 as knowledge information ND1 to ND3.
  • the knowledge information ND1 to ND3 is information in which a knowledge ID that identifies each piece of knowledge is associated with the state of the knowledge, the location of the knowledge, and the type of posted content. As shown in the knowledge information ND1 to ND3, the knowledge may also include an expiration date for the knowledge.
  • Expiration dates are set for each type of post content. For example, for content types “Police cars,” “Frozen roads,” and “Weather,” the situation is likely to change in a relatively short period of time, so a relatively short expiration date of, for example, a few hours to a day is set. For content types “Road construction” and “Theft,” the situation is likely to change in a certain period of time, so an expiration date of, for example, a few days to a few weeks is set.
  • tourism-related content types such as “tourist spots” and “tree-lined streets” are thought to remain unchanged for a relatively long period of time, so an expiration date of, for example, six months to several years may be set.
  • a relatively short expiration date of, for example, a few hours to a few days may be set.
  • Knowledge information ND1 shows an example of point knowledge in the form of a point for the content type "pause line."
  • the point knowledge is generated, for example, as a point located at the center of gravity of the posting positions of one or more pieces of posted information included in a cluster.
  • the position of the point knowledge is represented by the position of the center of gravity.
  • the knowledge may be assigned a movement direction. For example, if the movement state information of the posted information included in a cluster includes a movement direction and the movement directions are consistent, the consistent movement direction may be assigned to the knowledge. Also, as described above, even if clustering is performed for each movement direction, the movement direction of the posted information included in the cluster is common, so the common movement direction may be assigned to the knowledge.
  • the knowledge is of a content type that only pertains to one lane of a road, such as a stop line or road construction
  • the knowledge will be unnecessary information for a user of a terminal device traveling in the opposite direction to the direction of movement of the knowledge. Therefore, it is preferable not to transmit the knowledge to such a terminal device.
  • Knowledge information ND2 shows an example of range knowledge in the form of a range for the content type "rain".
  • the range knowledge is generated, for example, as a range that surrounds all of the posting positions of the posted information included in the cluster, for example, a range of any shape, such as a rectangle, a circle, an ellipse, etc.
  • the position of the range knowledge is represented by the coordinates of two points on a diagonal line in the case of a rectangular range, for example.
  • Knowledge information ND3 shows an example of line knowledge of the line pattern for the content type "frozen road surface".
  • the line knowledge is generated, for example, as a line connecting the posting positions of multiple posted information included in a cluster, or an interpolation straight line or curve of multiple posting positions.
  • the position of the line knowledge is represented, for example, by the coordinates of multiple points indicating the line knowledge.
  • the multiple points may be connected by a straight line, and smoothing may be performed on the terminal device that displays the line connecting the multiple points by straight lines.
  • the knowledge generation unit 39 stores the generated knowledge information in the knowledge DB 31D. For example, the knowledge generation unit 39 generates map knowledge that can be displayed by being superimposed on a map. For example, when knowledge is generated by the knowledge generation unit 39, the control unit 35 transmits the knowledge information of the knowledge or the map knowledge to the terminal device.
  • Figures 12 to 14 show an example of a display screen in which knowledge of each aspect of points, areas, and lines is transmitted to an in-vehicle device 30, which is an example of a terminal device, and is displayed superimposed on a map on the touch panel 13.
  • FIG. 12 shows an example in which point knowledge N1 to N3 are displayed on the touch panel 13.
  • FIG. 12 also shows posted information P11 to P16 contained in the original clusters 1 to 3 of each of the point knowledge N1 to N3, but when the point knowledge N1 to N3 are actually displayed, the posted information P11 to P16 is not displayed.
  • point knowledge is generated as one piece of knowledge even when the original cluster contains only one piece of posted information. Also, as described above, point knowledge is generated as a point located at the center of gravity of the posting positions of one or more pieces of posted information contained in the cluster. For example, point knowledge N2 is generated in the form of a point located at the midpoint between two posting positions, and point knowledge N3 is generated in the form of a point located at the center of gravity of three posting positions.
  • FIG. 13 shows an example in which range knowledge N4 to N6 are displayed on the touch panel 13.
  • the range knowledge is generated as a range that encloses the posting positions of one or more pieces of posted information included in the original cluster, extending far enough outward from the extreme posting positions.
  • FIG. 14 shows an example in which line knowledge N7-N8 and point knowledge N9 are displayed on the touch panel 13.
  • the line knowledge is generated as a line connecting the posting positions of multiple pieces of posted information included in a cluster, or as an interpolation straight line or curve between multiple posting positions.
  • the line knowledge N7 is generated in the form of a line connecting two posting positions.
  • the line knowledge N8 is generated as an interpolation curve between three posting positions.
  • the clustering unit 37 generates point knowledge if the cluster contains only one piece of posted information.
  • the posted information posted from the moving object includes information indicating the moving direction and speed of the moving object at the time the posting was made, or moving status information indicating the moving trajectory of the moving object.
  • the knowledge generation unit 39 may perform correction processing based on the movement state information of the moving object at the time the posted information was posted. For example, the knowledge generation unit 39 performs pre-generation correction processing to generate knowledge by correcting the position of each piece of posted information included in a group of posts (cluster) based on the movement state information. Also, for example, the knowledge generation unit 39 performs post-generation correction processing to correct the position of the generated knowledge based on the movement state information. Thereby, for example, it is possible to reduce the influence of the movement state on the distance from the position where the poster viewed the object of the post to the posting position, and to improve the accuracy of the final position of the knowledge.
  • the posted information included in a cluster is considered to include information posted while moving in various directions at various speeds, as well as information posted while stopped. For example, if a cluster contains a large number of posted information, it is considered that the influence of posted information posted while moving on the distance from the position where the poster viewed the posted object to the posted position will be small, for example, due to cancellation. In other words, the smaller the number of posted information, the more likely it is that the posting position of posted information posted while moving will affect the position of the knowledge.
  • the knowledge generation unit 39 may perform the above-mentioned correction process, i.e., pre-generation correction process or post-generation correction process.
  • the knowledge generation unit 39 may also generate knowledge according to the distribution state of the posting positions of the posting information included in the cluster, in addition to the type of posting content. For example, for a cluster of a content type for which point knowledge is recommended, if the posting positions are distributed linearly, line knowledge may be generated in addition to point knowledge. Also, for a cluster of a content type for which point knowledge is recommended, if the posting positions are distributed over a wide range, range knowledge may be generated in addition to point knowledge.
  • the knowledge generating unit 39 stores knowledge information including the location and content type of the knowledge in a knowledge DB.
  • the knowledge generating unit 39 can also generate image information in which the knowledge is superimposed on a map as map knowledge.
  • the control unit 35 of the server 10 transmits the knowledge to the in-vehicle device 30.
  • the control unit 35 transmits map knowledge to the in-vehicle device 30.
  • the control unit 35 may transmit only knowledge information that does not include map information to the in-vehicle device 30.
  • the knowledge superimposed on the map may be displayed on the in-vehicle device 30 based on the map information held by the in-vehicle device 30.
  • the map knowledge or knowledge information is transmitted to an in-vehicle device 30 located in an area close to the location of the knowledge.
  • the control unit 35 can, for example, notify the contents of the knowledge to a terminal device approaching the location of the knowledge.
  • the server 10 acquires current location information of the in-vehicle device 30 while moving, and judges whether the terminal device T has approached the location of the knowledge using criteria according to the type of knowledge.
  • the shortest distance from the current location of the in-vehicle device 30 to the line knowledge can be used as the criterion, and it can be determined that the in-vehicle device 30 has approached the location of the knowledge when the shortest distance falls within a predetermined distance.
  • the terminal device T may determine that it is approaching the position of the line knowledge. Also, when the in-vehicle device 30 is moving in a direction that intersects with the line knowledge, even if the shortest distance from the current position of the in-vehicle device 30 to the line knowledge falls within a predetermined distance, the terminal device T may determine that it is not approaching the position of the line knowledge, and may not notify the in-vehicle device 30 of the contents of the knowledge.
  • the in-vehicle device 30 is considered to be less affected by the content of the post about the line knowledge, and the line knowledge is considered to be unnecessary information for the user of the in-vehicle device 30.
  • the in-vehicle device 30 may determine that it is approaching the position of the line knowledge. Furthermore, if the line knowledge does not follow a road, the contents of the knowledge may be notified even if the route of the in-vehicle device 30 does not follow the line knowledge.
  • the determination is based on the distance from the current position of the in-vehicle device 30 to the position of the point knowledge.
  • the determination may be based on, for example, the shortest distance from the current position of the in-vehicle device 30 to the range knowledge, or the distance to the center or center of gravity of the range knowledge.
  • the control unit 35 determines whether a moving user is approaching the location of the knowledge using criteria that correspond to the state of the knowledge, and when it determines that the user is approaching the location of the knowledge, it functions as a notification unit that notifies the terminal device used by the user.
  • the control unit 35 adds the new posted information, performs clustering again, and generates knowledge for each of the newly generated clusters, thereby updating the knowledge.
  • the clustering unit 37 acquires the posted information included in the original cluster of the knowledge from the posting DB 31B based on the cluster information, and adds the new posted information to the acquired information to perform reclustering.
  • the knowledge generating unit 39 generates knowledge for each cluster generated by the reclustering.
  • the knowledge generating unit 39 may set the reliability of the knowledge. For example, the knowledge generating unit 39 may set the reliability of the knowledge based on the expiration date of the knowledge described above. For example, the knowledge generating unit 39 may set the reliability of the knowledge based on the number of posted information included in the cluster used to generate the knowledge. For example, in calculating the reliability by weighted average, the reliability may be calculated by weighting the number of posted information and the remaining time until the expiration date.
  • [Knowledge Generation Control Routine] 15 is a flowchart showing a knowledge generation routine RT2, which is an example of a control routine executed by the control unit 35 of the server 10. For example, when the server 10 is powered on, the control unit 35 causes the knowledge generation unit 39 to repeatedly execute the knowledge generation routine RT2.
  • step S201 determines whether or not new cluster information has been saved in the cluster DB 31C.
  • step S101 If it is determined that there are no clusters that have not been converted into knowledge (step S101: NO), the knowledge generation unit 39 ends the knowledge generation routine RT2 and starts a new knowledge generation routine RT2.
  • step S101 If it is determined that there is a cluster that has not been converted into knowledge (step S101: YES), the knowledge generation unit 39 acquires the post information included in that cluster from the post DB 31B (step S202). In step S202, for example, the knowledge generation unit 39 acquires the post information corresponding to the post ID associated with the cluster ID based on the cluster information in the cluster DB 31C.
  • the knowledge generation unit 39 may obtain the clusters by receiving the cluster information and the posting information from the clustering unit 37.
  • the knowledge generation unit 39 functions as a post group acquisition unit that acquires one or more post groups in which multiple pieces of post information, including the post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content.
  • step S203 the knowledge generation unit 39 identifies the type of post content for each cluster.
  • the knowledge generation unit 39 determines the knowledge aspect for each cluster based on the type of post content identified in step S203 (step S204).
  • the knowledge generation unit 39 refers to a setting table such as the one illustrated in FIG. 10, and identifies the knowledge aspect recommended for each content type.
  • the knowledge mode may be determined according to the type of post content as well as the distribution state of the posting positions of one or more pieces of post information included in the cluster.
  • the knowledge generation unit 39 converts the posting location of each piece of posted information acquired in step S202 from the geographic coordinate system to the planar coordinate system (step S205).
  • step S202 if the knowledge generation unit 39 receives posted information in which the posting position has been converted into a planar coordinate system from the clustering unit, it is not necessary to execute step S205.
  • step S206 the knowledge generation unit 39 converts the posting position of the posting information included in the cluster into position information of the type determined in step S204, and sets it as the position of the knowledge.
  • step S206 the knowledge generation unit 39 generates knowledge in the form of a point, an area, or a line based on the type of the posted content.
  • step S206 knowledge information including information indicating the position of the knowledge and the type of the posted content is generated for each cluster.
  • the knowledge generation unit 39 converts the position of the knowledge from the planar coordinate system to the geographic coordinate system.
  • knowledge information such as that shown in Figures 11A to 11C is generated and stored in the knowledge DB.
  • the knowledge generation unit 39 functions as a knowledge generation unit that generates knowledge for each post group (cluster) based on the posting location and the type of posting content.
  • step S207 the knowledge generation unit 39 generates map knowledge, which is image data for displaying the knowledge generated in step S206 and subjected to coordinate conversion in step S207, superimposed on a map (step S208).
  • step S208 for example, the knowledge generation unit 39 uses the map information in the map information DB 31A to generate a display image of the knowledge, such as those illustrated in Figures 12 to 14.
  • [Update Control Routine] 16 is a flowchart showing a reclustering routine RT3 which is an example of a control routine executed by the control unit 35 of the server 10. For example, when knowledge is generated, the control unit 35 causes the clustering unit 37 to repeatedly execute the reclustering routine RT3.
  • step S301 determines whether or not a new post has been received by the server 10 (step S301). If it is determined in step S301 that there is no new post (step S301: NO), the clustering unit 37 ends the reclustering routine RT3 and starts a new reclustering routine RT3.
  • step S301 when it is determined that there is a new post (step S301: YES), the clustering unit 37 searches the knowledge DB 31D (step S302) and determines whether there is knowledge that has the same content type as the new post and is located close to the posting position of the new post (within a specified distance) (step S303).
  • the specified distance is set to be longer than the distance threshold for clustering.
  • step S303 if it is determined that there is knowledge of the same type and in a nearby location as the new post (step S303: YES), the clustering unit 37 refers to the cluster DB 31C and obtains the post ID of the post information included in the original cluster of the knowledge (step S304).
  • the clustering unit 37 After executing step S304, the clustering unit 37 acquires the post information corresponding to the post ID acquired in step S303 from the post DB 31B (step S305).
  • step S305 the clustering unit 37 executes clustering using the posted information acquired in step S305 and the new information acquired in step S301 (step S306).
  • step S306 for example, steps S103 to S106 of the cluster generation routine RT1 are executed to generate clusters.
  • step S306 the clustering unit 37 ends the reclustering routine RT3 and starts a new reclustering routine RT3.
  • the knowledge generation unit 39 executes the knowledge generation routine RT2, and knowledge is generated for each cluster generated by the reclustering. In this way, the knowledge is updated.
  • the information processing device of Example 2 has a post group acquisition unit that acquires one or more post groups in which a plurality of pieces of post information, including post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content, and a knowledge generation unit that generates knowledge for each post group based on the post location and the type of post content.
  • the knowledge generation unit generates knowledge in the form of a point, area, or line based on the type of post content.
  • knowledge can be generated in a form appropriate for the type of post content. For example, by presenting the generated knowledge to the user, it is possible to provide the user with more useful information than if the posted information were simply displayed.
  • an information processing device an information processing method, an information processing program, and a storage medium that can provide a large amount of posted information posted by general users in an easy-to-handle form, or generate easy-to-handle information based on the posted information.
  • the configurations, routines, etc. of the server 10 and the in-vehicle device 30 in the above-described embodiment are merely examples and can be appropriately selected or modified depending on the application, etc.
  • the in-vehicle device 30 has been described as an example of a terminal device that generates posted information and transmits it to the server 10, but terminal devices that are not mounted on a moving body can also generate posted information and transmit it to the server 10.
  • a portable terminal device has sensors such as a GPS sensor and an acceleration sensor, and can obtain movement status information and include it in the posted information.
  • posted information posted from a terminal device that does not move, such as a fixed PC does not need to include movement status information.
  • the in-vehicle device 30 is an in-vehicle navigation device, but the in-vehicle device 30 does not need to have a navigation function.
  • the in-vehicle device 30 may be configured to be able to include information on the current position and speed of the automobile M in the posted information and transmit it to the server 10.
  • the in-vehicle device 30 may be configured by integrating a terminal device having a similar configuration to the in-vehicle device 30 with the exterior camera 18, the interior camera 19, and the touch panel 13.
  • the in-vehicle device 30 may be a terminal device such as a camera-equipped smartphone, tablet, or PC equipped with an application that performs the same functions as the in-vehicle device 30.
  • the in-vehicle device 30 may be mounted on the dashboard DB, for example, by a cradle, etc., so that the built-in camera can capture images of the area in front of the automobile M through the windshield of the automobile M.
  • the in-vehicle device 30 may be configured not to display a screen to be presented to the driver of the automobile M.
  • the in-vehicle device 30 may have a configuration similar to that of a drive recorder, and may be a device integrated with the exterior camera 18 and the interior camera 19. In this case, the in-vehicle device 30 may not perform the various display outputs as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Library & Information Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

One objective of the present invention is to provide an information processing device, an information processing method, an information processing program, and a storage medium that make it possible to provide many pieces of submission information submitted from general users in an easy-to-handle form or to generate easy-to-handle information on the basis of submission information. The present invention is characterized by comprising: a submission group acquisition unit that acquires one or more submission groups into which a plurality of pieces of submission information each including submission content submitted from a mobile body and a submission location that is the location at which the submission was made are divided by submission content type on the basis of the submission location; and a knowledge generation unit that, for each submission group, generates knowledge that is based on the submission location and the submission content type, wherein the knowledge generation unit generates the knowledge in the form of points, areas, or lines on the basis of the submission content type.

Description

情報処理装置、情報処理方法、情報処理プログラム及び記憶媒体Information processing device, information processing method, information processing program, and storage medium
 本発明は、情報処理装置、情報処理方法、情報処理プログラム及び記憶媒体に関し、例えば、ネットワーク上に投稿された情報に関する情報処理を行う情報処理装置、情報処理方法、情報処理プログラム及び記憶媒体に関する。 The present invention relates to an information processing device, an information processing method, an information processing program, and a storage medium, and, for example, to an information processing device, an information processing method, an information processing program, and a storage medium that processes information posted on a network.
 ネットワーク上に投稿文が投稿された際の投稿者の位置を示す位置情報を投稿文に関連付けてサーバに記憶する技術が知られている。例えば、特許文献1には、投稿文の内容に基づいて位置情報を補正し、検索条件に該当する投稿文を抽出して提供する投稿文提供システムが開示されている。 There is a known technology that associates location information, which indicates the location of the poster when the post was posted on a network, with the post and stores it in a server. For example, Patent Document 1 discloses a post providing system that corrects location information based on the content of the post and extracts and provides posts that match search criteria.
特開2013-50917号公報JP 2013-50917 A
 上記のような投稿文提供システムにおいて、検索条件に該当する個別の投稿文を提供しても、ユーザにとって有益な情報や信頼性の高い情報を提供することが困難な場合があることが課題の1つとして挙げられる。 One of the issues with the above-mentioned systems for providing posted messages is that even if individual posted messages that match the search criteria are provided, it can be difficult to provide useful or reliable information to users.
 本発明は上記した点に鑑みてなされたものであり、一般のユーザから投稿された多数の投稿情報を扱いやすい形で提供する、または、投稿情報に基づき扱いやすい情報を生成することを可能にする情報処理装置、情報処理方法、情報処理プログラム及び記憶媒体を提供することを目的の1つとしている。 The present invention has been made in consideration of the above points, and one of its objectives is to provide an information processing device, an information processing method, an information processing program, and a storage medium that can provide a large amount of posted information from general users in an easy-to-handle form, or that can generate easy-to-handle information based on the posted information.
 請求項1に記載の発明は、移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得部と、前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成部と、を有し、前記ナレッジ生成部は、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを特徴とする情報処理装置である。 The invention described in claim 1 is an information processing device that includes a post group acquisition unit that acquires one or more post groups in which multiple pieces of post information, including post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content, and a knowledge generation unit that generates knowledge for each post group based on the post location and the type of post content, and the knowledge generation unit generates the knowledge in the form of a point, area, or line based on the type of post content.
 請求項10に記載の発明は、情報処理装置によって実行される情報処理方法であって、移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得ステップと、前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成ステップと、を含み、前記ナレッジ生成ステップにおいて、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを特徴とする情報処理方法である。 The invention described in claim 10 is an information processing method executed by an information processing device, comprising: a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information, including post content posted from a mobile body and a post location where the post was made, are divided based on the post location for each type of the post content; and a knowledge generation step of generating knowledge for each post group based on the post location and the type of the post content, wherein in the knowledge generation step, the knowledge is generated in the form of a point, an area, or a line based on the type of the post content.
 請求項11に記載の発明は、コンピュータを備える情報処理装置によって実行される情報処理プログラムであって、前記コンピュータに、移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得ステップと、前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成ステップと、を実行させ、前記ナレッジ生成ステップにおいて、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを実行させるための情報処理プログラムである。 The invention described in claim 11 is an information processing program executed by an information processing device having a computer, which causes the computer to execute a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information, including post content posted from a mobile body and a post location where the post was made, are divided for each type of post content based on the post location, and a knowledge generation step of generating knowledge for each post group based on the post location and the type of post content, and in the knowledge generation step, generating the knowledge in the form of a point, area, or line based on the type of post content.
 請求項12に記載の発明は、コンピュータを備える情報処理装置に、移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得ステップと、前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成ステップと、を実行させ、前記ナレッジ生成ステップにおいて、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを実行させるための情報処理プログラムを記憶するコンピュータが読み取り可能な記憶媒体である。 The invention described in claim 12 is a computer-readable storage medium that stores an information processing program for causing an information processing device equipped with a computer to execute a post group acquisition step of acquiring one or more post groups in which multiple pieces of post information, including post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content, and a knowledge generation step of generating knowledge for each post group based on the post location and the type of post content, and generating the knowledge in the form of a point, area, or line based on the type of post content in the knowledge generation step.
本発明の実施例に係る情報処理システムの概略を示す模式図である。1 is a schematic diagram illustrating an overview of an information processing system according to an embodiment of the present invention. 実施例1に係る自動車の前席部分の構成を示す図である。1 is a diagram showing a configuration of a front seat portion of an automobile according to a first embodiment; 実施例1に係る車載装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of a configuration of an in-vehicle device according to a first embodiment; 実施例1に係る投稿情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of posted information according to the first embodiment. 実施例1に係るサーバ装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a configuration of a server device according to the first embodiment. 実施例1に係るクラスタリングにおける距離閾値の説明図である。FIG. 11 is an explanatory diagram of a distance threshold in clustering according to the first embodiment. 実施例1に係るクラスタ情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of cluster information according to the first embodiment; 実施例1に係るクラスタリングにおける距離閾値の補正の説明図である。FIG. 11 is an explanatory diagram of correction of a distance threshold in the clustering according to the first embodiment. 実施例1に係るクラスタリングにおける距離閾値の補正の説明図である。FIG. 11 is an explanatory diagram of correction of a distance threshold in the clustering according to the first embodiment. 実施例1に係るサーバ装置によって実行されるルーチンの一例を示すフローチャートである。5 is a flowchart illustrating an example of a routine executed by the server device according to the first embodiment. 実施例2に係る内容種別毎のナレッジ態様の設定の一例を示す図である。FIG. 13 is a diagram showing an example of a knowledge mode setting for each content type according to the second embodiment; 実施例2に係るナレッジ情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of knowledge information according to the second embodiment. 実施例2に係るナレッジ情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of knowledge information according to the second embodiment. 実施例2に係るナレッジ情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of knowledge information according to the second embodiment. 実施例2に係る点ナレッジが地図に重畳して表示された例を示す図である。FIG. 11 is a diagram showing an example in which point knowledge according to the second embodiment is displayed superimposed on a map. 実施例2に係る範囲ナレッジが地図に重畳して表示された例を示す図である。FIG. 11 is a diagram showing an example in which range knowledge according to the second embodiment is displayed superimposed on a map. 実施例2に係る線ナレッジが地図に重畳して表示された例を示す図である。FIG. 11 is a diagram showing an example in which line knowledge according to the second embodiment is displayed superimposed on a map. 実施例に係るサーバ装置によって実行されるルーチンの一例を示すフローチャートである。5 is a flowchart illustrating an example of a routine executed by the server device according to the embodiment. 実施例に係るサーバ装置によって実行されるルーチンの一例を示すフローチャートである。5 is a flowchart illustrating an example of a routine executed by the server device according to the embodiment.
 以下に本発明の実施例について詳細に説明する。なお、以下の説明及び添付図面においては、実質的に同一又は等価な部分には同一の参照符号を付している。 The following describes in detail an embodiment of the present invention. In the following description and accompanying drawings, the same reference symbols are used for substantially the same or equivalent parts.
 実施例1に係る情報処理装置を含む情報処理システム100の構成について添付図面を参照しつつ説明する。 The configuration of an information processing system 100 including an information processing device according to the first embodiment will be described with reference to the attached drawings.
 図1は、情報処理システム100の構成の概要を示している。図1に示すように、情報処理システム100は、情報処理装置としてのサーバ10と、車載装置30とを含んで構成されている。 FIG. 1 shows an overview of the configuration of the information processing system 100. As shown in FIG. 1, the information processing system 100 includes a server 10 as an information processing device, and an in-vehicle device 30.
 車載装置30は、移動体に搭載されたカーナビゲーション装置又はドライブレコーダ等の通信機能を有する端末装置である。なお、図1においては、車載装置30が移動体の一例としての自動車Mに搭載されている場合を示している。 The in-vehicle device 30 is a terminal device equipped with a communication function, such as a car navigation device or a drive recorder, mounted on a moving body. Note that FIG. 1 shows a case in which the in-vehicle device 30 is mounted on an automobile M, which is an example of a moving body.
 サーバ10と、車載装置30とは、ネットワークNWを介して、例えば、TCP/IPや、UDP/IP等の通信プロトコルを用いて相互にデータの送受信が可能になっている。なお、ネットワークNWは、例えば、移動体通信網、Wi-Fi(登録商標)等の無線通信及び有線通信を含むインターネット通信により構築され得る。 The server 10 and the in-vehicle device 30 can transmit and receive data to and from each other via the network NW using communication protocols such as TCP/IP and UDP/IP. The network NW can be constructed, for example, by a mobile communication network, wireless communication such as Wi-Fi (registered trademark), and Internet communication including wired communication.
 情報処理システム100は、車載装置30を含む複数の端末装置から投稿された投稿情報を収集して統計処理を行う情報処理システムである。当該複数の端末装置の各々は、ユーザからの投稿の入力を受け付けると、投稿内容及び投稿時の端末装置の位置を示す投稿位置を含む投稿情報を生成してサーバ10に送信する。サーバ10は、端末装置の各々から投稿された投稿情報について、投稿位置間の距離を用いてクラスタリングを行って、1又は複数の投稿情報のクラスタ(投稿群)を生成する。 The information processing system 100 is an information processing system that collects and performs statistical processing on posted information posted from multiple terminal devices, including the in-vehicle device 30. When each of the multiple terminal devices receives a post input from a user, it generates posted information including the posted content and a posted position indicating the position of the terminal device at the time of posting, and transmits the information to the server 10. The server 10 performs clustering on the posted information posted from each of the terminal devices using the distance between the posted positions, and generates one or more clusters (post groups) of posted information.
 本実施例では、投稿が示す内容の投稿情報毎にクラスタリングを行う。そのため、本実施例においてクラスタリングに用いる投稿情報の各々には、投稿内容を所定の種別のいずれかに分類した投稿内容の種別(以下、内容種別とも称する)が付されているかまたは投稿内容の種別がサーバ10によって付される。サーバ10は、上記クラスタリングを投稿内容の種別毎に行う。例えば、内容種別として、観光に適したモニュメント等が設置されている場所に関して「観光スポット」、天気に関して「雨」、巡回中のパトカーの目撃情報として「パトカー」、道路に関して「一時停止線」、「道路工事中」等の種別を示す情報が投稿情報に含まれる。 In this embodiment, clustering is performed for each piece of posted information indicating the content of the post. Therefore, in this embodiment, each piece of posted information used for clustering is assigned a type of posted content (hereinafter also referred to as a content type) that classifies the posted content into one of a number of predetermined types, or the type of posted content is assigned by the server 10. The server 10 performs the above-mentioned clustering for each type of posted content. For example, the posted information includes information indicating a type of content, such as "tourist spot" for a place where monuments suitable for tourism are installed, "rain" for the weather, "patrol car" for a sighting of a police car on patrol, and "stop line" and "road construction" for roads.
 また、サーバ10は、上記クラスタリングによって生成したクラスタ毎に、投稿内容の種別及び投稿位置に基づくナレッジを生成することが可能である。当該ナレッジは、例えば、ナレッジの元になったクラスタについて、当該クラスタに含まれる投稿の投稿内容の種別及び当該クラスタに含まれる投稿の投稿位置に基づく、点、線または領域で示される位置の情報を含むものである。この点、線または領域で示される位置を、以下ナレッジの位置とも称する。 Furthermore, the server 10 can generate knowledge based on the type of post content and the posting position for each cluster generated by the above clustering. The knowledge includes, for example, for the cluster on which the knowledge is based, information on the position indicated by a point, line, or area based on the type of post content of posts included in the cluster and the posting position of posts included in the cluster. The position indicated by this point, line, or area is also referred to below as the position of the knowledge.
 本実施例では、サーバ10は、地図画像に重畳して表示可能なナレッジを車載装置30などの端末装置に送信可能である。車載装置30は、ナレッジを車内の表示画面に表示させたり、ナレッジに基づく情報をユーザに画面表示や音声によって通知したりすることができる。例えば、車載装置30において、ナレッジの位置に近づいたこと、ナレッジの領域内に入ったことを検出して、ナレッジの内容に応じた情報をユーザに通知してもよい。 In this embodiment, the server 10 can transmit knowledge that can be displayed superimposed on a map image to a terminal device such as an in-vehicle device 30. The in-vehicle device 30 can display the knowledge on a display screen inside the vehicle, and notify the user of information based on the knowledge by screen display or voice. For example, the in-vehicle device 30 can detect when it is approaching the location of the knowledge or when it has entered the area of the knowledge, and notify the user of information according to the content of the knowledge.
 サーバ10が収集する投稿情報には、移動体から投稿された投稿情報が含まれる。本明細書において、移動体から投稿された投稿情報とは、車載装置30のように移動体に搭載された端末装置から投稿された投稿情報に加えて、自動車やオートバイ、自転車等の移動体に搭乗するユーザが使用するスマートフォン、タブレット、ウェアラブル端末等の携帯型の端末装置から投稿された投稿情報を含む。また、歩行者が使用する端末装置から投稿された投稿情報を含んでも良い。 The posted information collected by the server 10 includes posted information posted from a moving object. In this specification, posted information posted from a moving object includes posted information posted from a terminal device mounted on the moving object such as the in-vehicle device 30, as well as posted information posted from a portable terminal device such as a smartphone, tablet, or wearable device used by a user riding in a moving object such as an automobile, motorcycle, or bicycle. It may also include posted information posted from a terminal device used by a pedestrian.
 本実施例では、サーバ10に投稿情報を送信する、又は投稿情報によって生成されたナレッジ情報を受信する端末装置として、車載装置30を例に説明する。また、本実施例においては、車載装置30がカーナビゲーション装置である場合を例に説明する。また、本実施例においては、車載装置30が、ユーザが案内を希望する目的地をユーザから受け付け、当該目的地をサーバ10に送信し、サーバ10が目的地への経路を生成する、いわゆるクラウド型のカーナビゲーション装置の端末装置である場合を例に説明する。 In this embodiment, an in-vehicle device 30 is taken as an example of a terminal device that transmits posted information to the server 10 or receives knowledge information generated from the posted information. In addition, in this embodiment, an example is described in which the in-vehicle device 30 is a car navigation device. In addition, in this embodiment, an example is described in which the in-vehicle device 30 is a terminal device of a so-called cloud-type car navigation device that receives, from a user, a destination to which the user wishes to be guided, transmits the destination to the server 10, and the server 10 generates a route to the destination.
 図2は、車載装置30を搭載している自動車Mの前席付近を示す斜視図である。図2では、取り付け例として、自動車Mの前席のダッシュボードDB内に車載装置30が取り付けられている場合を示す。 FIG. 2 is a perspective view showing the vicinity of the front seat of an automobile M equipped with an in-vehicle device 30. As an example of an installation, FIG. 2 shows a case where the in-vehicle device 30 is installed in the dashboard DB of the front seat of the automobile M.
 GPS受信機11は、GPS(Global Positioning System)衛星からの信号(GPS信号)を受信する装置である。GPS受信機11は、例えば、ダッシュボードDB上に配されている。なお、GPS受信機11は、GPS信号が受信できればどこに配されていてもよい。GPS受信機11は、受信したGPS信号を車載装置30に送信することが可能である。車載装置30は、GPS信号を用いて自動車Mの現在位置情報を取得する。 The GPS receiver 11 is a device that receives signals (GPS signals) from GPS (Global Positioning System) satellites. The GPS receiver 11 is arranged, for example, on a dashboard DB. The GPS receiver 11 may be arranged anywhere as long as it can receive GPS signals. The GPS receiver 11 is capable of transmitting the received GPS signals to the in-vehicle device 30. The in-vehicle device 30 obtains current position information of the automobile M using the GPS signals.
 タッチパネル13は、例えば、映像を表示可能な液晶ディスプレイ等のディスプレイとタッチパッドとが組み合わされたタッチパネルモニターである。タッチパネル13は、例えば、ダッシュボードDBのセンターコンソールに配されている。タッチパネル13は、運転者から視認できかつ運転者の手が届く場所に配されていればよい。例えば、タッチパネル13は、ダッシュボードDB上に取り付けられていてもよい。 The touch panel 13 is, for example, a touch panel monitor that combines a display, such as a liquid crystal display capable of displaying images, with a touch pad. The touch panel 13 is disposed, for example, in the center console of the dashboard DB. The touch panel 13 may be disposed in a location that is visible to the driver and within the driver's reach. For example, the touch panel 13 may be attached to the dashboard DB.
 タッチパネル13は、車載装置30の制御に基づいて画面表示を行うことが可能である。また、タッチパネル13は、ユーザから受け付けたタッチパネル13への入力操作を表す信号を車載装置30に送信することが可能である。例えば、タッチパネル13には、カーナビゲーションの案内表示がなされても良い。また、タッチパネル13を介して、目的地を設定する等、カーナビゲーション機能に関する操作が可能であってもよい。 The touch panel 13 is capable of displaying a screen based on the control of the in-vehicle device 30. The touch panel 13 is also capable of transmitting a signal representing an input operation to the touch panel 13 received from a user to the in-vehicle device 30. For example, the touch panel 13 may display car navigation guidance. Furthermore, it may be possible to perform operations related to the car navigation function, such as setting a destination, via the touch panel 13.
 また、タッチパネル13には、例えば、投稿の際の投稿文や投稿内容の種別の入力操作の受付画面や、サーバ10から送信されたナレッジを地図上に重畳した地図ナレッジの表示画面等の画面が表示される。 The touch panel 13 also displays screens such as a screen for accepting input of the message to be posted and the type of post content, and a screen for displaying map knowledge in which knowledge sent from the server 10 is superimposed on a map.
 スピーカ15は、例えば、AピラーAPの室内側に設けられている。スピーカ15は、車載装置30の制御に基づいて音楽や音声等の音を発することが可能である。例えば、スピーカ15からは、ナビゲーションの音声が発せられる。 The speaker 15 is provided, for example, on the interior side of the A-pillar AP. The speaker 15 is capable of emitting sounds such as music and voice based on the control of the in-vehicle device 30. For example, the speaker 15 emits the voice of the navigation system.
 また、本実施例において、例えば、サーバ10から送信される地図ナレッジに関する通知の音声がスピーカ15から発せられる。例えば、タッチパネルに表示されたナレッジに関する説明の音声や自動車Mがナレッジに近づいたことを通知する音声がスピーカ15から発せられる。 In addition, in this embodiment, for example, a voice notification regarding map knowledge transmitted from the server 10 is emitted from the speaker 15. For example, a voice explaining the knowledge displayed on the touch panel or a voice notifying that the automobile M is approaching the knowledge is emitted from the speaker 15.
 マイク17は、車内の音を受音するマイク装置であり、例えば、ダッシュボードDB上に配されている。マイク17は、車内の音を受音可能であれば、ルームミラーRMまたはハンドル等、どこに設けられていてもよい。 The microphone 17 is a microphone device that picks up sounds inside the vehicle, and is located, for example, on the dashboard DB. The microphone 17 may be located anywhere, such as the rear-view mirror RM or the steering wheel, as long as it can pick up sounds inside the vehicle.
 本実施例において、例えば、車載装置30のユーザである自動車Mの乗員による投稿がマイク17を介して音声によって行われる。例えば、マイク17に収音された音声が文字情報に変換されて投稿情報の内容となってもよく、音声ファイルが投稿情報に含まれてもよい。 In this embodiment, for example, posts by an occupant of the automobile M, who is the user of the in-vehicle device 30, are made by voice via the microphone 17. For example, the voice picked up by the microphone 17 may be converted into text information and used as the content of the posted information, or a voice file may be included in the posted information.
 車外カメラ18は、自動車Mの周囲を撮影する撮像装置である。例えば、車外カメラ18は、前方が撮影方向となる様にルームミラーRMの近傍のフロントガラスFGの内側に取り付けられている。例えば、車外カメラ18は、フロントガラスを介して自動車Mの前方を撮影可能である。なお、車外カメラ18は、例えばダッシュボードDBに配されていてもよい。なお、自動車Mには、自動車Mの側方又は後方を撮影可能なカメラが備えられていてもよい。 The exterior camera 18 is an imaging device that captures images of the surroundings of the automobile M. For example, the exterior camera 18 is attached to the inside of the windshield FG near the rearview mirror RM so that the imaging direction is toward the front. For example, the exterior camera 18 can capture images of the front of the automobile M through the windshield. The exterior camera 18 may be disposed on the dashboard DB, for example. The automobile M may be equipped with a camera that can capture images of the sides or rear of the automobile M.
 車内カメラ19は、自動車Mの内部を撮影する撮像装置である。本実施例において、車内カメラ19は、車外カメラ18と一体に構成されている。例えば、車内カメラ19は、自動車Mの運転席、助手席及び後部座席を含めた自動車Mの内部を撮影可能に設けられている。例えば、車外カメラ18又は車内カメラ19によって撮影された画像が投稿情報に添付されてもよい。 The in-vehicle camera 19 is an imaging device that captures images of the interior of the automobile M. In this embodiment, the in-vehicle camera 19 is configured integrally with the exterior camera 18. For example, the in-vehicle camera 19 is configured to be able to capture images of the interior of the automobile M, including the driver's seat, passenger seat, and rear seats of the automobile M. For example, an image captured by the exterior camera 18 or the in-vehicle camera 19 may be attached to the posted information.
 図3は、車載装置30の構成を示すブロック図である。例えば、車載装置30は、システムバスを介して、記憶部23と、制御部25と、通信部27と、が協働する装置である。 FIG. 3 is a block diagram showing the configuration of the in-vehicle device 30. For example, the in-vehicle device 30 is a device in which a storage unit 23, a control unit 25, and a communication unit 27 work together via a system bus.
 また、自動車Mには加速度センサ21が搭載されている。加速度センサ21は、自動車Mの加速度を測定可能であり、当該測定された加速度を示す信号を出力可能である。加速度センサ21は、自動車Mの上方から見て自動車Mの進行方向、すなわち前後方向の加速度を検出可能なセンサである。また、加速度センサは、例えば、自動車Mの進行方向と垂直な横方向(幅方向)の加速度を検出可能である。 The automobile M is also equipped with an acceleration sensor 21. The acceleration sensor 21 is capable of measuring the acceleration of the automobile M and outputting a signal indicating the measured acceleration. The acceleration sensor 21 is a sensor capable of detecting the acceleration in the direction of travel of the automobile M when viewed from above the automobile M, that is, the forward/backward direction. The acceleration sensor can also detect, for example, the acceleration in the lateral direction (width direction) perpendicular to the direction of travel of the automobile M.
 記憶部23は、例えば、ハードディスク装置、SSD(Solid State Drive)、フラッシュメモリ等により構成される記憶デバイスである。記憶部23は、オペレーティングシステムや、端末用のソフトウェア等の、車載装置30において実行される各種プログラムを記憶する。 The storage unit 23 is a storage device configured, for example, by a hard disk drive, a solid state drive (SSD), a flash memory, etc. The storage unit 23 stores various programs executed in the in-vehicle device 30, such as an operating system and software for the terminal.
 各種プログラムは、例えば、他のサーバ装置等からネットワークを介して取得されるようにしてもよいし、記録媒体に記録されて各種ドライブ装置を介して読み込まれるようにしてもよい。すなわち、記憶部23に記憶される各種プログラムは、ネットワークを介して伝送可能であるし、また、コンピュータ読み取り可能な記録媒体に記録して譲渡することが可能である。 The various programs may be obtained, for example, from another server device or the like via a network, or may be recorded on a recording medium and read via various drive devices. In other words, the various programs stored in the storage unit 23 can be transmitted via a network, and can also be recorded on a computer-readable recording medium and transferred.
 また、記憶部23は、道路地図を含む地図情報を記憶している。当該地図情報は、例えば、カーナビゲーションの案内表示やナレッジの表示に使用される。 The memory unit 23 also stores map information including road maps. The map information is used, for example, to display guidance and knowledge for car navigation.
 制御部25は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成され、コンピュータとして機能する。制御部25は、CPUがROMや記憶部23に記憶された各種プログラムを読み出し実行することにより各種機能を実現する。本実施例においては、制御部25によって、ユーザからの入力に応じて投稿情報を生成してサーバ10に送信する機能、及びカーナビゲーション機能等が発揮される。 The control unit 25 is composed of a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and functions as a computer. The control unit 25 realizes various functions by the CPU reading and executing various programs stored in the ROM and the storage unit 23. In this embodiment, the control unit 25 performs functions such as generating post information in response to input from the user and transmitting it to the server 10, and car navigation functions.
 制御部25は、自動車Mに備えられている各種機器、すなわち、GPS受信機11、タッチパネル13、スピーカ15、マイク17、車外カメラ18、車内カメラ19、及び加速度センサ21と通信可能に接続されている。制御部25は、自動車Mに備えられている各種機器からデータを取得する。また、制御部25は、自動車Mに備えられている各種機器にデータを供給する。 The control unit 25 is connected to be able to communicate with various devices provided in the automobile M, namely, the GPS receiver 11, the touch panel 13, the speaker 15, the microphone 17, the exterior camera 18, the interior camera 19, and the acceleration sensor 21. The control unit 25 acquires data from the various devices provided in the automobile M. The control unit 25 also supplies data to the various devices provided in the automobile M.
 具体的には、制御部25は、GPS受信機11からのGPS信号を逐次取得する。また、制御部25は、加速度センサ21によって計測された加速度を示す信号を逐次取得する。制御部25は、例えば、GPS信号及び加速度センサからの信号に基づいて自動車Mの現在位置情報及び移動方向を示す情報を取得する。また、制御部25は、自動車Mの現在位置に基づいて、自動車Mの移動軌跡を取得可能である。 Specifically, the control unit 25 sequentially acquires GPS signals from the GPS receiver 11. The control unit 25 also sequentially acquires signals indicating acceleration measured by the acceleration sensor 21. The control unit 25 acquires, for example, information indicating the current position information and moving direction of the automobile M based on the GPS signals and signals from the acceleration sensor. The control unit 25 can also acquire the moving trajectory of the automobile M based on the current position of the automobile M.
 制御部25は、タッチパネル13になされた入力操作を表す信号を取得する。また、制御部25は、タッチパネル13に表示する画像データを供給する。制御部25は、スピーカ15に音声データを供給する。また、制御部25は、マイク17によって収音された自動車Mにおける音声を取得する。制御部25は、車外カメラ18及び車内カメラ19によって撮像された画像を取得する。 The control unit 25 acquires signals representing input operations performed on the touch panel 13. The control unit 25 also supplies image data to be displayed on the touch panel 13. The control unit 25 also supplies audio data to the speaker 15. The control unit 25 also acquires audio in the automobile M picked up by the microphone 17. The control unit 25 acquires images captured by the exterior camera 18 and the interior camera 19.
 制御部25は、車載装置30のユーザによってなされた入力操作に応じて、投稿情報を生成する。例えば、当該ユーザによって車載装置30における投稿用のアプリケーションが起動され、マイク17を介して投稿内容の音声入力がなされると、制御部25は、当該投稿内容の音声データ又は当該音声データを変換したテキストデータと、投稿時点の車載装置30の位置を示す情報である投稿位置を含む投稿情報を生成する。 The control unit 25 generates post information in response to an input operation performed by a user of the in-vehicle device 30. For example, when the user starts a posting application on the in-vehicle device 30 and inputs the content to be posted by voice via the microphone 17, the control unit 25 generates post information including the voice data of the content to be posted or text data converted from the voice data, and a posting location, which is information indicating the location of the in-vehicle device 30 at the time of posting.
 また、制御部25は、マイク17を介した投稿内容の音声入力の代わりに、タッチパネル13を介した投稿内容の文字入力がなされると、当該投稿内容のテキストデータ及び投稿位置を含む投稿情報を生成する。また、制御部25は、マイク17またはタッチパネル13を介して、投稿内容の種別の選択を受付ける。 In addition, when text input of the post content is made via the touch panel 13 instead of voice input of the post content via the microphone 17, the control unit 25 generates post information including the text data of the post content and the posting position. In addition, the control unit 25 accepts the selection of the type of post content via the microphone 17 or the touch panel 13.
 通信部27は、制御部25の指示に従って外部機器とのデータの送受信を行う通信装置である。通信部27は、例えば、ネットワークNWに接続するためのNIC(Network Interface Card)である。通信部27は、上記したネットワークNWに接続されており、種々のデータをサーバ10との間で送受信する。 The communication unit 27 is a communication device that transmits and receives data to and from external devices in accordance with instructions from the control unit 25. The communication unit 27 is, for example, a NIC (Network Interface Card) for connecting to the network NW. The communication unit 27 is connected to the above-mentioned network NW, and transmits and receives various data to and from the server 10.
 制御部25は、通信部27を介して、生成した投稿情報をサーバ10に送信する。また、例えば、制御部25は、通信部27を介して、車載装置30のユーザによって入力された目的地を含む情報をサーバ10に送信し、サーバ10から、当該目的地への経路情報またはナビゲーション情報を受信可能である。 The control unit 25 transmits the generated post information to the server 10 via the communication unit 27. Also, for example, the control unit 25 can transmit information including a destination input by a user of the in-vehicle device 30 to the server 10 via the communication unit 27, and receive route information or navigation information to the destination from the server 10.
 制御部25は、例えば、通信部27を介して、サーバ10によって生成されたナレッジ情報を受信して、当該受信したナレッジを地図の画像に重畳してタッチパネル13に表示させる。 The control unit 25 receives knowledge information generated by the server 10, for example, via the communication unit 27, and displays the received knowledge on the touch panel 13 by superimposing it on the map image.
 図4は、制御部25によって生成されてサーバ10に送信される投稿情報の一例をPD1として示す図である。例えば、投稿情報は、投稿時刻及びIDに、投稿時の車載装置30の位置すなわち本実施例においては自動車Mの位置を示す投稿位置及び投稿内容が対応付けられた情報である。言い換えれば、投稿情報は、端末装置から投稿された投稿内容と、当該投稿がなされた位置である投稿位置とを含む情報である。 FIG. 4 is a diagram showing an example of posted information generated by the control unit 25 and transmitted to the server 10 as PD1. For example, the posted information is information in which the posting time and ID are associated with the posting location indicating the position of the in-vehicle device 30 at the time of posting, i.e., the position of the automobile M in this embodiment, and the posted content. In other words, the posted information is information that includes the posted content posted from the terminal device and the posting location, which is the location where the post was made.
 上述したように、投稿内容は、例えば、投稿者によってタッチパネルから入力されたテキストデータ、投稿者によって発話された音声が変換されたテキストデータ、又は当該音声の音声データである。言い換えれば、投稿内容は、投稿者によって発話された音声によって生成された情報を含み得る。 As described above, the posted content may be, for example, text data input by the poster via a touch panel, text data converted from speech uttered by the poster, or audio data of the speech. In other words, the posted content may include information generated by speech uttered by the poster.
 また、本実施例において、投稿情報は、投稿内容を所定の種別のいずれかに分類した投稿内容の種別を示す情報を含んでいる。投稿内容の種別は、投稿位置が示す場所に関連する投稿内容を分類した種別である。投稿内容の種別は、例えば、投稿内容の入力時にユーザによって選択される。また、例えば投稿内容に種別が付いていない場合、または投稿内容に付された種別が適当でない場合、制御部25は、投稿内容の音声入力の際に、音声データ又は当該音声が変換されたテキストデータに含まれるキーワードに基づいて、投稿内容の種別を取得して投稿情報を生成してもよい。 In addition, in this embodiment, the post information includes information indicating the type of post content, which classifies the post content into one of the specified types. The type of post content is a type into which post content related to the location indicated by the posting position is classified. The type of post content is selected by the user, for example, when inputting the post content. Also, for example, if the post content is not assigned a type or the type assigned to the post content is inappropriate, the control unit 25 may obtain the type of post content based on keywords included in the voice data or text data converted from the voice when the post content is input by voice, and generate the post information.
 また、投稿情報は、投稿時における自動車Mが移動中であったか又は停止中であったかを示す情報、移動方位及び速度を示す情報、移動軌跡を示す情報等の、自動車Mの移動状態を示す情報を含んでいてもよい。この場合、投稿情報は、移動体から投稿された投稿内容と、当該投稿がなされた位置である投稿位置と、当該投稿がなされた際の移動体の移動状態を示す移動状態情報とを含む情報であるといえる。 The posted information may also include information indicating the moving state of the automobile M, such as information indicating whether the automobile M was moving or stopped at the time of posting, information indicating the moving direction and speed, and information indicating the moving trajectory. In this case, the posted information can be said to include the posting content posted from the moving body, the posting location where the posting was made, and moving state information indicating the moving state of the moving body at the time the posting was made.
 図4に示す例においては、投稿情報の種別「雨」が付されており、移動中に投稿されたことを示す情報(移動種別)、速度及び方位を示す移動状態情報が含まれている。なお、移動種別は、速度から判定されてもよい。なお、投稿情報には、例えば、投稿時に車外カメラ18又は車内カメラ19によって撮影された画像が含まれてもよい。 In the example shown in FIG. 4, the posted information is categorized as "rain" and includes information indicating that the information was posted while moving (movement type), and movement status information indicating the speed and direction. The movement type may be determined from the speed. The posted information may include, for example, an image captured by the exterior camera 18 or the interior camera 19 at the time of posting.
 図5は、サーバ10の構成を示すブロック図である。例えば、サーバ10はシステムバスを介して、大容量記憶装置31と、通信部33と、制御部35とが協働している装置である。 FIG. 5 is a block diagram showing the configuration of the server 10. For example, the server 10 is a device in which a large-capacity storage device 31, a communication unit 33, and a control unit 35 work together via a system bus.
 上述のように、サーバ10は、端末装置の各々から投稿された投稿情報について、投稿内容の種別ごとに1または複数の投稿群に分けるクラスタリングを行って、1又は複数のクラスタ(投稿群)を生成する機能を有する。また、サーバ10は、クラスタ毎にナレッジを生成する機能を有する。 As described above, the server 10 has a function to perform clustering of the posted information posted from each terminal device into one or more post groups according to the type of posted content, and generate one or more clusters (post groups). The server 10 also has a function to generate knowledge for each cluster.
 また、サーバ10は、車載装置30から自動車Mの現在位置情報及び自動車Mの乗員であるユーザが設定した目的地の情報を受信し、当該現在位置情報及び目的地の情報に基づいて当該目的地への経路を生成する機能を有する。 The server 10 also has the function of receiving current location information of the automobile M from the in-vehicle device 30 and information on a destination set by a user who is an occupant of the automobile M, and generating a route to the destination based on the current location information and the destination information.
 大容量記憶装置31は、例えば、ハードディスク装置及びSSD(Solid State Drive)等により構成されており、オペレーティングシステムや、サーバ10用のソフトウェア等の各種プログラムを記憶する。各種プログラムは、例えば、他のサーバ装置等からネットワークを介して取得されるようにしてもよいし、記録媒体に記録されて各種ドライブ装置を介して読み込まれるようにしてもよい。すなわち、大容量記憶装置31に記憶される各種プログラムは、ネットワークを介して伝送可能であるし、また、コンピュータ読み取り可能な記録媒体に記録して譲渡することが可能である。 The large-capacity storage device 31 is composed of, for example, a hard disk device and an SSD (Solid State Drive), and stores various programs such as an operating system and software for the server 10. The various programs may be obtained, for example, from other server devices, etc., via a network, or may be recorded on a recording medium and read via various drive devices. In other words, the various programs stored in the large-capacity storage device 31 can be transmitted via a network, and can also be recorded on a computer-readable recording medium and transferred.
 大容量記憶装置31は、例えば、サーバ10がクラスタリングを実行するための情報処理プログラムを記憶している。また、大容量記憶装置31は、例えば、サーバ10がクラスタ毎のナレッジの生成を実行するための情報処理プログラムを記憶している。 The large-capacity storage device 31 stores, for example, an information processing program that allows the server 10 to execute clustering. The large-capacity storage device 31 also stores, for example, an information processing program that allows the server 10 to execute knowledge generation for each cluster.
 また、大容量記憶装置45は、クラスタリング及びナレッジ生成に用いる各種データベースを含んでいる。地図情報データベース(図中、地図情報DB)31Aは、道路地図を含む地図情報が保存されている地図情報データベースである。例えば、地図情報DB内の地図情報は、サーバ10において、地図にナレッジを重畳表示した画像情報である地図ナレッジの生成に用いられる。また、地図情報DB内の地図情報は、サーバ10がカーナビゲーションのための経路を生成する際に使用される。 The large-capacity storage device 45 also includes various databases used for clustering and knowledge generation. The map information database (map information DB in the figure) 31A is a map information database in which map information including road maps is stored. For example, the map information in the map information DB is used by the server 10 to generate map knowledge, which is image information in which knowledge is superimposed on a map. The map information in the map information DB is also used by the server 10 when generating routes for car navigation.
 投稿DB31Bは、端末装置の各々から投稿された投稿情報を記憶している。上述のように、端末装置の各々から投稿された投稿情報は、移動体から投稿された投稿情報を含む。 The post DB31B stores the posted information posted from each of the terminal devices. As described above, the posted information posted from each of the terminal devices includes posted information posted from a mobile object.
 クラスタDB31Cは、サーバ10がクラスタリングを行った結果生成したクラスタを示す情報を記憶している。具体的には、クラスタDB31Cは、各クラスタに含まれる投稿情報の投稿情報IDと、クラスタの各々を識別するクラスタIDとが対応付けられた情報を記憶している。 The cluster DB 31C stores information indicating the clusters generated as a result of the clustering performed by the server 10. Specifically, the cluster DB 31C stores information in which the posted information ID of the posted information included in each cluster is associated with a cluster ID that identifies each cluster.
 ナレッジDB31Dは、サーバ10がクラスタ毎に生成したナレッジを示すナレッジ情報を記憶している。ナレッジ情報には、元のクラスタに含まれる投稿情報の投稿内容の種別と、元のクラスタの全体としての位置を示すナレッジの位置情報が含まれる。 The knowledge DB 31D stores knowledge information indicating the knowledge generated by the server 10 for each cluster. The knowledge information includes the type of posted content of the posted information included in the original cluster, and the location information of the knowledge indicating the location of the original cluster as a whole.
 なお、上記の各種データベースの各々は、サーバ10とは別の外部のサーバに記憶されていて、サーバ10が当該外部のサーバから必要な情報を読み出してもよい。 In addition, each of the various databases described above may be stored in an external server separate from server 10, and server 10 may read the necessary information from the external server.
 通信部33は、上記したネットワークNWに接続されており、種々のデータを車載装置30等の端末装置との間で送受信する。 The communication unit 33 is connected to the network NW described above, and transmits and receives various data to and from terminal devices such as the in-vehicle device 30.
 制御部35は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成され、コンピュータとして機能する。制御部35において、CPUが、ROMや大容量記憶装置31に記憶された各種プログラムを読み出し実行することにより各種機能を実現する。本実施例においては、制御部35によって、多数の投稿情報についてクラスタリングを実行する機能、クラスタリングによって生成されたクラスタ毎にナレッジを生成する機能及びカーナビゲーション機能等が発揮される。 The control unit 35 is composed of a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and functions as a computer. In the control unit 35, the CPU realizes various functions by reading and executing various programs stored in the ROM and the large-capacity storage device 31. In this embodiment, the control unit 35 performs functions such as a function of performing clustering on a large number of posted information, a function of generating knowledge for each cluster generated by clustering, and a car navigation function.
 制御部35は、通信部を介して、端末装置から投稿された投稿情報を受信すると、受信した投稿情報を投稿DBに記憶する。 When the control unit 35 receives posted information from a terminal device via the communication unit, it stores the received posted information in the posting DB.
 制御部35は、機能部として、投稿情報を投稿DBから取得し、取得した投稿情報についてクラスタリングを行う投稿群生成部としてのクラスタリング部37を有している。また、制御部35は、機能部として、クラスタリング部37によって生成されたクラスタ毎のナレッジを生成するナレッジ生成部39を有している。以下、本実施例においてクラスタリング部37によって実行されるクラスタリングについて詳細に説明する。 The control unit 35 has, as a functional unit, a clustering unit 37 as a post group generation unit that acquires posted information from the post DB and performs clustering on the acquired posted information. The control unit 35 also has, as a functional unit, a knowledge generation unit 39 that generates knowledge for each cluster generated by the clustering unit 37. The clustering performed by the clustering unit 37 in this embodiment will be described in detail below.
 [クラスタリング]
 まず、クラスタリング部37は、クラスタリングに用いる投稿情報を投稿情報DBから取得する。例えば、クラスタリング部37は、投稿位置が所定のエリア内にある投稿情報を投稿情報DBから取得し、所定のエリアごとにクラスタリングを行う。
[Clustering]
First, the clustering unit 37 acquires posted information to be used for clustering from the posted information DB. For example, the clustering unit 37 acquires posted information whose posting positions are within a predetermined area from the posted information DB, and performs clustering for each predetermined area.
 上述したように、端末装置から投稿された投稿情報のうち、移動体から投稿された投稿情報は、移動状態情報を含み得る。 As described above, among the posted information posted from terminal devices, posted information from a mobile object may include movement status information.
 クラスタリング部37は、クラスタリングに用いる投稿情報として、移動体から投稿された投稿情報を取得し、移動体から投稿された投稿内容と、当該投稿がなされた位置である投稿位置と、当該投稿がなされた際の移動体の移動状態を示す移動状態情報とを含む投稿情報を取得するステップ(投稿情報取得ステップ)を実行する投稿情報取得部として機能する。 The clustering unit 37 functions as a posting information acquisition unit that executes a step of acquiring posting information posted from a moving object as posting information to be used for clustering, and acquiring posting information including the posting content posted from the moving object, the posting location where the posting was made, and movement state information indicating the movement state of the moving object at the time the posting was made (posting information acquisition step).
 クラスタリング部37は、投稿情報を取得すると、投稿内容の種別毎にクラスタリングを行う。当該クラスタリングにおいて、クラスタリング部37は、投稿内容の種別が同じでありかつ、投稿位置間の距離が閾値以下である投稿情報を同じクラスタにすることで、同じ種別の1又は複数の投稿情報を1又は複数のクラスタに分ける。 When the clustering unit 37 acquires the posted information, it performs clustering for each type of posted content. In this clustering, the clustering unit 37 groups posted information having the same type of posted content and in which the distance between the posted positions is equal to or less than a threshold into the same cluster, thereby dividing one or more pieces of posted information of the same type into one or more clusters.
 クラスタリング部37は、例えば、投稿位置間のユークリッド距離を用いたユークリッドクラスタリングによって投稿情報のクラスタを生成する。具体的には、投稿位置間の距離が閾値以内の投稿情報に同じクラスタIDを付することで、1又は複数の投稿情報を含むクラスタを生成する。 The clustering unit 37 generates clusters of posted information by, for example, Euclidean clustering using the Euclidean distance between posting positions. Specifically, a cluster including one or more pieces of posted information is generated by assigning the same cluster ID to posted information whose posting positions are within a threshold distance.
 本実施例において、距離閾値は、少なくとも投稿内容の種別に応じて決まる。例えば、天気に関する投稿内容の種別の場合は、広範囲にわたって、例えば同じ地域の雨を対象とする等の同じ対象についての投稿がなされる傾向があり、比較的長い距離閾値(例えば、数百メートル)が設定される。例えば、一時停止線等の道路標示に関する種別やモニュメント等が設置されている観光スポット等の種別については、同じ対象についての投稿が比較的狭い範囲内で行われることが想定され、比較的短い距離閾値(例えば、十数メートル)が設定される。 In this embodiment, the distance threshold is determined at least according to the type of post content. For example, in the case of a type of post content related to weather, posts tend to be made over a wide range about the same subject, such as rain in the same area, and a relatively long distance threshold (e.g., several hundred meters) is set. For example, in the case of a type related to road markings such as stop lines or tourist spots where monuments are installed, it is expected that posts about the same subject will be made within a relatively narrow range, and a relatively short distance threshold (e.g., a dozen meters) is set.
 このように距離閾値を設定することで、同じ種別の中でも同じ対象についての投稿情報を同じクラスタにして、異なる対象(例えば、同じ観光スポットでも異なるモニュメント)についての投稿情報を異なるクラスタに分けることができる。それによって、例えば、投稿情報をクラスタ毎に表示するなどして、単に投稿情報を表示する場合と比較して扱い易いデータとしてクラスタを活用することができる。さらに、クラスタに基づくナレッジの生成にクラスタを活用することができ、ユーザにとってより有益な情報の提供を可能とする。 By setting the distance threshold in this way, posted information about the same object even within the same category can be grouped into the same cluster, while posted information about different objects (for example, different monuments at the same tourist spot) can be separated into different clusters. This makes it possible to use clusters as data that is easier to handle compared to simply displaying posted information, for example, by displaying posted information by cluster. Furthermore, clusters can be used to generate knowledge based on clusters, making it possible to provide users with more useful information.
 図6Aは、あるエリア(エリアMP1)内の地点を投稿位置として投稿された複数の投稿情報P1~P7について、投稿内容の種別毎にクラスタリングがなされた様子を模式的に地図ともに示す図である。図6Aでは、投稿情報P1~P7を示すアイコンが各々の投稿情報に含まれる投稿位置が示す位置に示されている。図6A中、「Stop」(一時停止線)、「Patrol」(パトカー)、及び「Rain」(雨)は、投稿内容の種別を示している。図6Aに示す例において、投稿情報P1~P7は、クラスタID(クラスタ番号)1~5の5つのクラスタに分けられている。 FIG. 6A is a diagram that shows, together with a map, a schematic diagram of how multiple pieces of posted information P1 to P7, which were posted with points in a certain area (area MP1) as the posting location, are clustered by type of posted content. In FIG. 6A, icons representing posted information P1 to P7 are shown at the positions indicated by the posting locations included in each piece of posted information. In FIG. 6A, "Stop" (stop line), "Patrol" (police car), and "Rain" (rain) indicate the types of posted content. In the example shown in FIG. 6A, posted information P1 to P7 are divided into five clusters with cluster IDs (cluster numbers) 1 to 5.
 図6Aにおいて、投稿内容の種別(内容種別)が「Stop」である投稿情報P1及びP2についてのクラスタリングにおいて、距離閾値がTH1に設定されている。投稿情報P1の投稿位置と、これに隣接する同じ種別の投稿情報P2の投稿位置との間の距離は、距離閾値TH1よりも長いため、投稿情報P1と投稿情報P2とは別々のクラスタに分けられ、異なるクラスタ番号「1,2」が付されている。 In FIG. 6A, in clustering of posted information P1 and P2, whose posted content type (content type) is "Stop," the distance threshold is set to TH1. Because the distance between the posting location of posted information P1 and the posting location of adjacent posted information P2 of the same type is longer than the distance threshold TH1, posted information P1 and posted information P2 are divided into separate clusters and assigned different cluster numbers "1, 2."
 また、図6A中、内容種別が「Patrol」である投稿情報P3~P5についてのクラスタリングにおいて、距離閾値がTH2に設定されている。図6Aに示すように、投稿情報P3の投稿位置と、これに隣接する同じ種別の投稿情報P4の投稿位置との間の距離は、距離閾値TH2以下であるため、投稿情報P3と投稿情報P4とは同じクラスタとして同じクラスタ番号「3」が付されている。 In addition, in FIG. 6A, the distance threshold is set to TH2 in the clustering of posted information P3 to P5, whose content type is "Patrol." As shown in FIG. 6A, the distance between the posting location of posted information P3 and the posting location of adjacent posted information P4 of the same type is less than or equal to the distance threshold TH2, so posted information P3 and posted information P4 are in the same cluster and are assigned the same cluster number "3."
 投稿情報P5の投稿位置は、投稿情報P3及び投稿情報P4の投稿位置からの距離が距離閾値TH2よりも長いため、投稿情報P5は投稿情報P3及びP4とは異なるクラスタに分けられて、クラスタ番号「4」が付されている。言い換えれば、投稿情報P5は、一番近い同じ内容種別の投稿位置までの距離が距離閾値TH2を超えているので、投稿情報P5のみを含むクラスタにクラスタリングされている。 Because the posting location of posted information P5 is farther away from the posting locations of posted information P3 and posted information P4 than the distance threshold TH2, posted information P5 is classified into a different cluster from posted information P3 and P4 and is assigned the cluster number "4." In other words, posted information P5 is clustered into a cluster that includes only posted information P5 because the distance to the nearest posting location of the same content type exceeds the distance threshold TH2.
 また、図6A中、内容種別「Rain」の投稿情報P6~P7についてのクラスタリングにおいて、距離閾値がTH3に設定されている。図6Aに示すように、投稿情報P6と、同じ種別の投稿情報P7との投稿位置間の距離は、距離閾値TH3以下であるため、同じクラスタとして同じクラスタ番号「5」が付されている。 In addition, in FIG. 6A, the distance threshold is set to TH3 in the clustering of posted information P6 to P7 of the content type "Rain." As shown in FIG. 6A, the distance between the posting positions of posted information P6 and posted information P7 of the same type is less than or equal to the distance threshold TH3, so they are assigned the same cluster number "5" as they are in the same cluster.
 上述したように、投稿内容の対象が局所的なものである種別「一時停止」についてのクラスタリングの距離閾値TH1は比較的短く、投稿内容の対象が広範囲なものである種別「雨」についてのクラスタリングの距離閾値TH3は比較的長く設定され得る。図6Aに示す例においては、TH1<TH2<TH3となっている。このように、投稿内容の種別に応じて決まる距離閾値を用いてクラスタリングが実行されることで、同じ対象についての投稿情報が同じクラスタに含まれ易く、異なる対象についての投稿情報は異なるクラスタに分かれ易くなる。 As described above, the clustering distance threshold TH1 for the type "pause" where the posted content has a local target can be set relatively short, and the clustering distance threshold TH3 for the type "rain" where the posted content has a wide range of target can be set relatively long. In the example shown in FIG. 6A, TH1 < TH2 < TH3. In this way, by performing clustering using a distance threshold determined according to the type of posted content, posted information about the same target is more likely to be included in the same cluster, and posted information about different targets is more likely to be separated into different clusters.
 制御部35は、クラスタを生成すると、クラスタの各々を識別する識別子であるクラスタIDと、クラスタIDが示すクラスタに含まれる投稿情報の投稿IDとを対応付けたクラスタ情報を生成してクラスタDB31Cに保存する。 When the control unit 35 generates a cluster, it generates cluster information that associates a cluster ID, which is an identifier that identifies each cluster, with the post ID of the post information included in the cluster indicated by the cluster ID, and stores the cluster information in the cluster DB 31C.
 図6Bは、クラスタ情報の一例として、図6A中のクラスタID1~5のクラスタについてのクラスタ情報をCD1として示す図である。図6Bに示すように、各クラスタIDに、各クラスタに含まれる投稿情報の投稿IDが対応付けられている。例えば、クラスタ情報は、クラスタ毎のナレッジが生成される際に用いられる。 FIG. 6B is a diagram showing cluster information for clusters with cluster IDs 1 to 5 in FIG. 6A as CD1, as an example of cluster information. As shown in FIG. 6B, each cluster ID is associated with the post ID of the post information included in the cluster. For example, the cluster information is used when knowledge is generated for each cluster.
 なお、本実施例においては、ユークリッドクラスタリングの処理において投稿位置間の距離を算出し易くするため、クラスタリングを行う前に、投稿位置の各々を地理座標系から平面座標系に変換する。例えば、クラスタリング及びナレッジ生成後に、ナレッジを地図に重畳して表示する際に、ナレッジの位置を地理座標系に再度変換する。 In this embodiment, in order to make it easier to calculate the distance between posting locations in the Euclidean clustering process, each posting location is converted from a geographic coordinate system to a planar coordinate system before clustering. For example, after clustering and knowledge generation, when the knowledge is displayed superimposed on a map, the knowledge location is converted back to a geographic coordinate system.
 また、図6Aにおいては、説明のため、投稿位置やクラスタを地図と共に表示しているが、本実施例において、クラスタリングは、地図の情報とは無関係に処理される。本実施例においては、例えばマップマッチング等の地図に合わせて位置補正を行うことはせずに、クラスタリングを実行する。そのようにすることで、様々な形式の地図に対応することができる。具体的には、一例として、特定の地図情報を用いて位置修正をする等により当該特定の地図情報とは異なる地図をもつ端末に親和性が悪い情報が生成される、という問題を防止することができる。 In addition, in FIG. 6A, for the sake of explanation, the posting position and clusters are displayed together with a map, but in this embodiment, clustering is processed independently of map information. In this embodiment, clustering is performed without correcting the position to match a map, for example, using map matching. In this way, it is possible to support various types of maps. Specifically, as one example, it is possible to prevent a problem in which information that is incompatible with a terminal having a map different from the specific map information is generated by correcting the position using specific map information.
 例えば、特定の地図に合わせた補正を行いながらクラスタリングやナレッジ化を行うと、クラスタリングやナレッジ化に使用した地図の種類に合わせた処理となるため、他の種類の地図に重畳して表示する際に、位置がずれることが想定される。本実施例では、クラスタリングやナレッジ化の際に特定の地図に合わせた位置補正を行わないため、上記のような位置のずれを防止することができる。このような位置ズレに加えて、地図の新旧によって位置が変わった道路や存在しない道路があったりするため、特定の地図による補正を行わないことで、地図の新旧に関わらないナレッジ生成が可能になる。 For example, if clustering or knowledge generation is performed while making corrections to suit a specific map, the processing will be tailored to the type of map used for clustering or knowledge generation, so it is expected that the position will shift when the data is displayed superimposed on another type of map. In this embodiment, position corrections to suit a specific map are not performed during clustering or knowledge generation, so the above-mentioned position shifts can be prevented. In addition to such position shifts, there are roads whose positions have changed depending on whether the map is new or old, so by not making corrections based on a specific map, it becomes possible to generate knowledge regardless of whether the map is new or old.
 [距離閾値の補正]
 クラスタリング部37は、クラスタリングを実行する際に、投稿情報に含まれる移動状態情報に基づいて、移動中に投稿された投稿情報について、距離閾値を補正することができる。
[Distance Threshold Correction]
When performing clustering, the clustering unit 37 can correct the distance threshold for the posted information posted while moving, based on the movement state information included in the posted information.
 図7は、図6Aにおいて説明した投稿情報P3及び投稿情報P4のクラスタリングにおいて、投稿情報P3が移動中に投稿された場合の距離閾値の設定の一例を示す図である。図7において、投稿情報P3は、矢印の方向に移動中の移動体から投稿されたものとする。この場合、投稿情報P3には、移動中に投稿されたことを示す情報が含まれる。 FIG. 7 is a diagram showing an example of setting the distance threshold in the clustering of posted information P3 and posted information P4 described in FIG. 6A, in which posted information P3 is posted while moving. In FIG. 7, posted information P3 is assumed to have been posted from a moving object moving in the direction of the arrow. In this case, posted information P3 includes information indicating that it was posted while moving.
 このように、投稿情報P3が移動中に投稿されたことを示す場合、クラスタリング部37は、移動中に投稿された投稿情報について、距離閾値を、内容種別に基づく距離閾値TH2よりも長い距離閾値TH4に設定する。 In this way, when the posted information P3 indicates that it was posted while moving, the clustering unit 37 sets the distance threshold for the posted information posted while moving to a distance threshold TH4 that is longer than the distance threshold TH2 based on the content type.
 図7に示すように、投稿情報P3及び投稿情報P4の投稿位置間の距離は、TH2を超えているが、距離閾値TH4以内となっている。従って、補正後の距離閾値TH4を用いたクラスタリングによって、投稿情報P3と投稿情報P4とが同じクラスタに含まれる。 As shown in FIG. 7, the distance between the posting locations of posted information P3 and posted information P4 exceeds TH2 but is within the distance threshold TH4. Therefore, by clustering using the corrected distance threshold TH4, posted information P3 and posted information P4 are included in the same cluster.
 例えば、移動中に投稿された投稿情報も、停止中に投稿された投稿情報も、投稿者がパトカー等の対象物を見た時点から、当該対象物に関する投稿をするまでの時間のずれが同程度生じると考える。そうすると、対象物が存在する地点から移動中に投稿された投稿情報の投稿位置までの距離は、対象物が存在する地点から停止中に投稿された投稿情報の投稿位置までの距離よりも大きくなる傾向があると考えられる。具体的には、移動中の投稿は対象物から離れながらする投稿であるため、移動中の投稿の投稿位置は、投稿の内容の対象となる物からの距離が停止中の投稿の投稿位置よりも大きくなる場合が多い。 For example, it is believed that there is a similar time lag between the time the poster sees an object, such as a police car, and the time the poster posts about that object, whether the information is posted while moving or while stopped. This means that the distance from the location where the object is located to the posting location of information posted while moving tends to be greater than the distance from the location where the object is located to the posting location of information posted while stopped. Specifically, because posts made while moving are made while moving away from the object, the posting location of a post made while moving is often farther from the object that is the subject of the post than the posting location of a post made while stopped.
 従って、移動中に投稿された投稿情報については、同じ対象についての投稿位置間の距離が、停止中に投稿された投稿情報についての投稿位置間の距離よりも長くなる場合もある。その場合、同じ対象についての投稿位置間の距離が距離閾値を超えて、同じ対象についての投稿情報が異なるクラスタに分けられることがあり得る。 Therefore, for posts posted while moving, the distance between the posting locations for the same subject may be longer than the distance between the posting locations for posts posted while stationary. In such cases, the distance between the posting locations for the same subject may exceed the distance threshold, and posts about the same subject may be separated into different clusters.
 上記のように、移動中に投稿された投稿情報について、クラスタリングの距離閾値を補正することで、例えば、同じ対象についての投稿情報を同じクラスタに含まれ易くすることができる。 As described above, by adjusting the distance threshold for clustering for posted information posted while moving, it is possible to make it easier for posted information about the same subject to be included in the same cluster, for example.
 また、投稿群生成部としての制御部35は、投稿情報に投稿がなされた際の移動体の速度を示す速度情報が含まれる場合に、当該速度情報に応じた長さに距離閾値を補正してもよい。例えば、速度情報が示す速度が速い程長い距離閾値に補正してもよく、当該速度が所定の速度(例えば、40km/h)を超えた場合に長い距離閾値に補正してもよい。 Furthermore, when the posted information includes speed information indicating the speed of the moving object at the time the post was made, the control unit 35 as a post group generation unit may correct the distance threshold to a length according to the speed information. For example, the faster the speed indicated by the speed information is, the longer the distance threshold may be corrected, and when the speed exceeds a predetermined speed (e.g., 40 km/h), the distance threshold may be corrected to a longer value.
 上記したように、投稿情報は、投稿内容として、投稿者によって発話された音声によって生成された情報を含み得る。投稿群生成部としての制御部35は、投稿情報の投稿時に発話に要した時間及び投稿がなされた際の移動体の速度を示す速度情報に基づいて、距離閾値を補正してもよい。 As described above, the posted information may include, as the posted content, information generated by the voice spoken by the poster. The control unit 35, which serves as a post group generating unit, may correct the distance threshold based on the time taken to speak when posting the posted information and on speed information indicating the speed of the moving object at the time the post was made.
 例えば、投稿者が移動中に発話による投稿を行った場合、発話に要した時間分、対象物が存在する地点と投稿位置とのずれが生じる。従って、例えば、速度が大きい程、発話に要した時間によって生じる、対象物が存在する地点から投稿位置までの距離が大きくなると考えられる。 For example, if a poster posts by speaking while moving, there will be a difference between the location where the target object is located and the posting location by the time it took to speak. Therefore, for example, the faster the speed, the greater the distance between the location where the target object is located and the posting location due to the time it took to speak.
 それによって、同じ対象についての投稿情報が異なるクラスタに分けられる可能性がある。上記のように、発話に要した時間及び速度情報に基づいて距離閾値の補正を行うことで、同じ対象についての投稿情報を同じクラスタに含まれ易くすることができる。 As a result, posted information about the same subject may be divided into different clusters. As described above, by correcting the distance threshold based on the time and speed information required for utterance, posted information about the same subject can be more likely to be included in the same cluster.
 図8は、移動中に投稿された投稿情報についての距離閾値の補正の一例を示す図である。図8中、投稿情報P8及びP9は、モニュメント40を対象とする、内容種別が観光スポット(図中、「Tour」)の投稿情報である。投稿情報P8は車載装置30を搭載している移動体M1から移動中に投稿された投稿情報であり、図8中の矢印は、移動体M1の進行方向を示している。投稿情報P9は、例えば携帯型の端末から停止中に投稿された投稿情報である。 Figure 8 is a diagram showing an example of distance threshold correction for posted information posted while moving. In Figure 8, posted information P8 and P9 are posted information of a tourist spot type ("Tour" in the figure) that targets monument 40. Posted information P8 is posted from mobile body M1 equipped with in-vehicle device 30 while moving, and the arrow in Figure 8 indicates the traveling direction of mobile body M1. Posted information P9 is posted from, for example, a portable terminal while stopped.
 投稿情報P8は、移動状態情報として、投稿時の移動体の移動方向を示す移動方向情報を含んでいる。また、内容種別「Tour」についての距離閾値はTH5であり、投稿情報P8の投稿位置からの距離が距離閾値TH5以内の範囲を図8中のAR5として示している。 The posted information P8 includes, as movement state information, movement direction information that indicates the direction of movement of the moving object at the time of posting. In addition, the distance threshold for the content type "Tour" is TH5, and the range within the distance threshold TH5 from the posting location of the posted information P8 is shown as AR5 in FIG. 8.
 クラスタリング部37は、投稿情報P8に含まれる移動方向情報に基づいて、投稿情報P8の投稿位置から移動方向情報が示す移動方向における距離閾値よりも、当該移動方向と反対の方向における距離閾値を長い距離に設定してクラスタを生成してもよい。 The clustering unit 37 may generate clusters based on the movement direction information included in the posted information P8 by setting a distance threshold in the direction opposite to the movement direction from the posting position of the posted information P8 to a longer distance than the distance threshold in the movement direction indicated by the movement direction information.
 具体的には、例えば、移動方向情報が示す方向即ち移動体M1の進行方向における距離閾値をTH5に設定し、当該進行方向と反対の方向については、距離閾値TH5よりも長い距離閾値TH6に設定して、クラスタリングが実行される。例えば、クラスタリング部37は、投稿情報P8の投稿位置からの移動体M1の進行方向における距離が距離閾値TH5以内でありかつ進行方向と反対の方向における距離が距離閾値TH6以内の範囲として、楕円形の範囲AR6を設定し、AR6内を投稿位置とする投稿情報を投稿情報P8と同じクラスタとする。 Specifically, for example, the distance threshold in the direction indicated by the movement direction information, i.e., the traveling direction of the moving body M1, is set to TH5, and for the direction opposite to the traveling direction, a distance threshold TH6 longer than the distance threshold TH5 is set, and clustering is performed. For example, the clustering unit 37 sets an elliptical range AR6 as a range in which the distance from the posting position of the posted information P8 in the traveling direction of the moving body M1 is within the distance threshold TH5 and the distance in the direction opposite to the traveling direction is within the distance threshold TH6, and posts whose posting position is within AR6 are placed in the same cluster as the posted information P8.
 図8に示す例において、投稿情報P9の投稿位置は、投稿情報P8の投稿位置からの距離が距離閾値TH5以内(範囲AR5内)ではない。しかし、投稿情報P9の投稿位置は、進行方向と反対の方向における距離閾値TH6も考慮した範囲AR6内にあるため、投稿情報P9は投稿情報P8と同じクラスタとされて、同じクラスタID「7」が付されている。 In the example shown in FIG. 8, the posting location of posted information P9 is not within the distance threshold TH5 (within range AR5) from the posting location of posted information P8. However, the posting location of posted information P9 is within range AR6, which takes into account the distance threshold TH6 in the direction opposite to the direction of travel, so posted information P9 is considered to be in the same cluster as posted information P8 and is assigned the same cluster ID "7".
 例えば、移動中に投稿された投稿情報について、対象物が進行方向と反対方向にあり、同じ対象物についての投稿も進行方向と反対側に多いと考えることができる。上記のように、移動中に投稿された投稿情報について、移動方向も考慮して距離閾値の補正を行うことで、同じ対象についての投稿情報を同じクラスタに含まれ易くすることができる。 For example, when posting information while moving, it is possible that the object is in the opposite direction to the direction of travel, and that there are also more posts about the same object on the opposite side of the direction of travel. As described above, by correcting the distance threshold for information posted while moving, taking into account the direction of travel, it is possible to make it easier for posted information about the same object to be included in the same cluster.
 なお、投稿情報P8の投稿位置からの移動体M1の進行方向における距離が距離閾値TH5以内でありかつ進行方向と反対の方向における距離が距離閾値TH6以内の範囲AR6は、上記した楕円形の範囲に限られない。範囲AR6は、移動体M1の進行方向よりも当該進行方向と反対の方向に長く延びていればいかなる形状でもよい。クラスタリング部は、例えば、矩形、各丸長方形、卵型等の範囲AR6を設定してもよい。 The range AR6 in which the distance from the posting position of the posted information P8 in the direction of travel of the moving body M1 is within the distance threshold TH5 and the distance in the direction opposite the direction of travel is within the distance threshold TH6 is not limited to the elliptical range described above. The range AR6 may be of any shape as long as it extends longer in the direction opposite the direction of travel than the direction of travel of the moving body M1. The clustering unit may set the range AR6 to, for example, a rectangle, a rounded rectangle, an egg shape, etc.
 なお、クラスタリング部37は、上述の移動中に投稿された投稿情報についての距離閾値の補正の代わりに、移動中に投稿された投稿情報の投稿位置を、移動速度や移動方向に基づいて補正してクラスタリングしてもよい。 In addition, instead of correcting the distance threshold for the posted information posted while moving as described above, the clustering unit 37 may correct the posting position of the posted information posted while moving based on the moving speed or moving direction, and then perform clustering.
 なお、クラスタリング部37は、投稿情報に含まれる移動方向情報に基づいて、移動方向情報が同じ方向を示す投稿情報毎にクラスタリングを実行して、クラスタを生成してもよい。例えば、移動方向が同じか否かは、例えば、基準になる方向を設定し、基準になる方向に対する角度によって判定してもよい。例えば、全く同一の方向ではなくても、所定の許容値を設けて、許容値内の投稿情報を一緒にクラスタリングしてもよい。例えば、地図情報を使用する場合は、道路の上り方向と下り方向の区別によって、移動方向が同じか否かを判定してもよい。 The clustering unit 37 may generate clusters by performing clustering for each piece of posted information whose moving direction information indicates the same direction, based on the moving direction information included in the posted information. For example, whether the moving directions are the same or not may be determined, for example, by setting a reference direction and judging the angle with respect to the reference direction. For example, even if the directions are not exactly the same, a predetermined tolerance may be set and posted information within the tolerance may be clustered together. For example, when map information is used, whether the moving directions are the same or not may be determined by distinguishing between uphill and downhill directions on a road.
 例えば、一時停止線や道路工事等の道路に関する内容種別については、同じ対象についての投稿情報の移動方向が揃っている可能性が高く、同じ方位同士でクラスタリングを行うことで、同じ対象についての投稿情報が同じクラスタに含まれ易くなる。 For example, when it comes to content types related to roads, such as stop lines and road construction, there is a high possibility that posted information about the same subject will move in the same direction, and by clustering posts in the same direction, posted information about the same subject will be more likely to be included in the same cluster.
 以上のように、クラスタリング部37は、投稿位置間の距離閾値を設定して、距離閾値以下である投稿を同一の投稿群とすることで複数の投稿情報を1又は複数の投稿群(クラスタ)に分けるクラスタリングを実行する。 As described above, the clustering unit 37 sets a distance threshold between posting locations and groups posts that are equal to or less than the distance threshold into the same post group, thereby performing clustering to separate multiple posted information into one or more post groups (clusters).
 移動体から投稿されて移動状態情報を含む投稿情報について、当該距離閾値は、投稿内容の種別毎に設定され、かつ、投稿情報が、移動中に投稿されたか否か、速度、移動方向等の移動体の移動状態に関する情報に応じて設定される。 For posted information posted from a moving object and including movement state information, the distance threshold is set for each type of posted content, and is set according to information regarding the movement state of the moving object, such as whether the posted information was posted while moving, the speed, the direction of movement, etc.
 言い換えれば、クラスタリング部37は、複数の投稿情報について、投稿内容の種別ごとに投稿位置間の距離を用いて複数の投稿情報を1または複数の投稿群に分けるステップ(投稿群生成ステップ)を実行する投稿群生成部として機能する。 In other words, the clustering unit 37 functions as a post group generation unit that executes a step of dividing a plurality of pieces of posted information into one or more post groups (post group generation step) using the distance between the posting positions for each type of posted information.
 投稿群生成部としてのクラスタリング部37は、当該投稿群の生成において、投稿位置間の距離が投稿内容の種別及び移動状態情報に応じて決まる距離閾値以下である投稿情報を同一の投稿群とする。 The clustering unit 37, which serves as a post group generating unit, classifies post information whose distance between posting locations is equal to or less than a distance threshold determined according to the type of post content and movement state information into the same post group when generating the post group.
 また、制御部35は、例えば、移動体から投稿された情報に限られず、投稿内容と投稿位置とを含む、端末装置から投稿された投稿情報を受信可能である。言い換えれば、投稿情報取得部としてのクラスタリング部37は、端末装置から投稿された投稿内容と、当該投稿がなされた位置である投稿位置と、を含む投稿情報を取得する投稿情報取得部として機能し得る。 The control unit 35 can also receive, for example, posted information posted from a terminal device, including the posted content and the posted location, and is not limited to information posted from a mobile object. In other words, the clustering unit 37 as a posted information acquisition unit can function as a posted information acquisition unit that acquires posted information including the posted content posted from a terminal device and the posted location, which is the location where the post was made.
 また、端末装置から投稿された投稿情報について、距離閾値以下である投稿を同一の投稿群とすることで複数の投稿情報を1又は複数の投稿群(クラスタ)に分けるクラスタリングにおいて、当該距離閾値は、投稿内容の種別毎に設定される。 In addition, in clustering, which classifies multiple pieces of posted information posted from a terminal device into one or more groups (clusters) of posts by grouping posts that are equal to or smaller than a distance threshold into the same group, the distance threshold is set for each type of post content.
 言い換えれば、投稿群生成部としてのクラスタリング部37は、投稿群の生成において、投稿位置間の距離が投稿内容の種別に応じて決まる距離閾値以下である投稿を同一の投稿群とする。 In other words, the clustering unit 37, which functions as a post group generation unit, generates post groups by grouping posts whose distance between posting positions is equal to or less than a distance threshold determined according to the type of post content.
 [クラスタリングの制御ルーチン]
 図9は、サーバ10の制御部35が実行する制御ルーチンの一例であるクラスタ生成ルーチンRT1を示すフローチャートである。例えば、制御部35は、サーバ10に電源が投入されると、クラスタ生成ルーチンRT1をクラスタリング部37に繰り返し実行させる。
Clustering Control Routine
9 is a flowchart showing a cluster generation routine RT1, which is an example of a control routine executed by the control unit 35 of the server 10. For example, when the server 10 is powered on, the control unit 35 causes the clustering unit 37 to repeatedly execute the cluster generation routine RT1.
 クラスタリング部37は、クラスタ生成ルーチンRT1を開始すると、投稿DB31Bに新たな投稿情報が記憶されているか否かを判定する(ステップS101)。ステップS101において、例えば、クラスタリング部37は、クラスタリングされていない新たな投稿情報が所定数以上受信されたか否かを判定する。 When the cluster generation routine RT1 starts, the clustering unit 37 determines whether new posted information is stored in the posting DB 31B (step S101). In step S101, for example, the clustering unit 37 determines whether a predetermined number or more pieces of new posted information that have not been clustered have been received.
 ステップS101において、投稿DB31Bに新たな投稿情報が記憶されていないと判定する(ステップS101:NO)と、クラスタリング部37は、クラスタ生成ルーチンRT1を終了し、新たにクラスタ生成ルーチンRT1を開始する。 If it is determined in step S101 that no new post information is stored in the post DB 31B (step S101: NO), the clustering unit 37 ends the cluster generation routine RT1 and starts a new cluster generation routine RT1.
 ステップS101において、投稿DB31Bに新たな投稿情報が記憶されていると判定する(ステップS101:YES)と、クラスタリング部37は、クラスタリングに用いる投稿情報を投稿DB31Bから取得する(ステップS102)。ステップS102において、クラスタリング部37は、例えば図4Aに示したような、移動体から投稿された投稿情報を取得する。 In step S101, if it is determined that new posted information is stored in the posting DB 31B (step S101: YES), the clustering unit 37 acquires posted information to be used for clustering from the posting DB 31B (step S102). In step S102, the clustering unit 37 acquires posted information posted from a moving object, for example, as shown in FIG. 4A.
 当該投稿情報は、例えば、投稿内容と、投稿がなされた際の移動体の位置である投稿位置と、当該投稿がなされた際の移動体の移動状態を示す移動状態情報とを含む。ステップS102において、例えば、投稿DB31Bに記憶されている投稿情報のうち、クラスタリングされていない投稿情報が全て読み出される。ステップS102において、クラスタリング部37は、投稿情報取得部として機能する。 The posted information includes, for example, the posted content, the posted location which is the location of the moving object when the post was made, and movement state information which indicates the movement state of the moving object when the post was made. In step S102, for example, all of the posted information stored in the post DB 31B that has not been clustered is read out. In step S102, the clustering unit 37 functions as a posted information acquisition unit.
 ステップS102の実行後、クラスタリング部37は、ステップS102において取得した投稿情報の各々の投稿位置を、地理座標系から平面座標系に変換する(ステップS103)。 After executing step S102, the clustering unit 37 converts the posting location of each piece of posted information acquired in step S102 from the geographic coordinate system to the planar coordinate system (step S103).
 ステップS103の実行後、クラスタリング部37は、投稿情報に基づいて、投稿内容の種別毎の距離閾値を決定し、必要に応じて、移動状態情報に応じた補正を行う(ステップS104)。ステップS104において、例えば、クラスタリング部37は、移動中に投稿された投稿情報の投稿位置からの距離閾値を、停止中に投稿された投稿情報の投稿位置からの距離閾値よりも長い距離に設定する。 After executing step S103, the clustering unit 37 determines a distance threshold for each type of posted content based on the posted information, and performs correction according to the movement state information as necessary (step S104). In step S104, for example, the clustering unit 37 sets the distance threshold from the posting position of posted information posted while moving to a longer distance than the distance threshold from the posting position of posted information posted while stopped.
 ステップS104の実行後、クラスタリング部37は、ステップ104において設定した距離閾値を用いて、投稿内容の種別毎にクラスタリングを実行する(ステップS105)。ステップS105において、投稿位置間の距離が閾値以下である投稿情報が同じクラスタとされ、同じ種別の1又は複数の投稿情報が1又は複数のクラスタに分けられる。 After step S104 is executed, the clustering unit 37 executes clustering for each type of post content using the distance threshold set in step S104 (step S105). In step S105, post information whose posting positions are separated by the distance equal to or less than the threshold is classified as being in the same cluster, and one or more post information of the same type is divided into one or more clusters.
 ステップS104及びステップS105において、クラスタリング部37は、複数の投稿情報について、投稿内容の種別ごとに投稿位置間の距離を用いて複数の投稿情報を1または複数の投稿群に分ける投稿群生成部として機能する。当該投稿群生成部としてのクラスタリング部37は、投稿群の生成において、投稿位置間の距離が投稿内容の種別及び移動状態情報に応じて決まる距離閾値以下である投稿情報を同一の投稿群とする。 In steps S104 and S105, the clustering unit 37 functions as a post group generation unit that divides a plurality of pieces of posted information into one or more post groups using the distance between the posting positions for each type of posted content. In generating post groups, the clustering unit 37 as the post group generation unit groups posted information whose distance between the posting positions is equal to or less than a distance threshold determined according to the type of posted content and the movement state information into the same post group.
 ステップS105の実行後、クラスタリング部37は、各クラスタと、各クラスタに含まれる投稿情報との対応を含むクラスタ情報を生成してクラスタDB31Cに保存する(ステップS106)。ステップS106の実行後、クラスタリング部37は、クラスタ生成ルーチンRT1を終了し、新たにクラスタ生成ルーチンRT1を開始する。 After executing step S105, the clustering unit 37 generates cluster information including the correspondence between each cluster and the posted information contained in each cluster, and stores the cluster information in the cluster DB 31C (step S106). After executing step S106, the clustering unit 37 ends the cluster generation routine RT1, and starts a new cluster generation routine RT1.
 本ルーチンのステップS106において、例えば、クラスタ情報に加えて、クラスタに含まれる投稿情報(例えば、ステップS103において投稿位置の座標変換がなされた投稿情報)がクラスタDB31Cに保存されてもよい。また、当該クラスタ情報及び投稿情報がナレッジ生成部39に送信されてもよい。その場合、ナレッジ生成部39において、本ルーチンにおいて生成したクラスタ毎のナレッジ生成がなされる。 In step S106 of this routine, for example, in addition to the cluster information, the posted information included in the cluster (for example, the posted information whose posting position has been subjected to coordinate conversion in step S103) may be stored in the cluster DB 31C. Furthermore, the cluster information and the posted information may be transmitted to the knowledge generation unit 39. In this case, the knowledge generation unit 39 generates knowledge for each cluster generated in this routine.
 以上、説明したように、本実施例の情報処理装置は、移動体から投稿された投稿内容と、当該投稿がなされた位置である投稿位置と、当該投稿がなされた際の移動体の移動状態を示す移動状態情報とを含む投稿情報を取得する投稿情報取得部と、複数の投稿情報について、投稿内容の種別ごとに投稿位置間の距離を用いて複数の投稿情報を1または複数の投稿群(クラスタ)に分ける投稿群生成部と、を有している。 As described above, the information processing device of this embodiment has a post information acquisition unit that acquires post information including post content posted from a moving object, a post location where the post was made, and movement state information indicating the movement state of the moving object when the post was made, and a post group generation unit that divides the multiple pieces of post information into one or multiple post groups (clusters) using the distance between the post locations for each type of post content.
 投稿群生成部は、投稿群の生成(クラスタリング)において、投稿位置間の距離が投稿内容の種別及び移動状態情報に応じて決まる距離閾値以下である投稿情報を同一の投稿群とする。 In generating post groups (clustering), the post group generating unit classifies post information whose distance between post locations is equal to or less than a distance threshold determined according to the type of post content and movement state information into the same post group.
 上記のような構成により、例えば、投稿内容の種別毎に適した距離閾値が設定され得る。それによって、例えば、投稿内容の種別が同じであっても、異なる対象に関する投稿である蓋然性が高い投稿については異なる投稿群に分けられ、同じ対象に関する投稿である蓋然性が高い投稿については同じ投稿群に含められるようにすることが可能である。 With the above configuration, for example, an appropriate distance threshold can be set for each type of post content. As a result, even if the type of post content is the same, posts that are likely to be about different subjects can be separated into different post groups, and posts that are likely to be about the same subject can be included in the same post group.
 また、移動中に投稿された投稿情報の場合、その投稿位置と、対象物又は対象となる事象が生じている場所とのずれが大きくなる懸念がある。本実施例においては、上記のように移動状態情報に応じて距離閾値が設定されることによって、移動中に投稿された投稿情報であっても、同じ対象に関する投稿である蓋然性が高い投稿については同じ投稿群に含められるようにすることができる。 Furthermore, in the case of posted information while moving, there is a concern that there may be a large discrepancy between the posted location and the location where the target object or event of interest is occurring. In this embodiment, by setting a distance threshold according to the movement state information as described above, even if posted information is posted while moving, posts that are highly likely to be about the same target can be included in the same post group.
 従って、例えば、本実施例の情報処理装置によって生成されたクラスタは、クラスタ毎にひとまとまりのデータとして扱うことができ、様々な用途に活用することができる。例えば、複数の投稿情報について、投稿位置をクラスタ毎に囲んで地図上に表示するなど、単に個別の情報を表示するよりもわかりやすい情報を生成することができる。また、上述したように、ナレッジ生成部38によって、クラスタ毎のナレッジを生成することができる。 Therefore, for example, the clusters generated by the information processing device of this embodiment can be treated as a single set of data for each cluster, and can be used for various purposes. For example, for multiple posted information, it is possible to generate information that is easier to understand than simply displaying individual pieces of information, such as by displaying the posting locations for each cluster on a map. Also, as described above, knowledge can be generated for each cluster by the knowledge generation unit 38.
 よって、本実施例によれば、一般のユーザから投稿された多数の投稿情報を扱いやすい形で提供する、または、投稿情報に基づき扱いやすい情報を生成することを可能にする情報処理装置、情報処理方法、情報処理プログラム及び記憶媒体を提供することができる。 Therefore, according to this embodiment, it is possible to provide an information processing device, an information processing method, an information processing program, and a storage medium that can provide a large amount of posted information posted by general users in an easy-to-handle form, or generate easy-to-handle information based on the posted information.
 図10~図16を参照しつつ、実施例2の情報処理装置としてのサーバ10を含む情報処理システム100の構成及び機能について説明する。実施例2の情報処理システム100は、実施例1の情報処理システム100と同様に構成されている。上述したように、サーバ10の制御部35は、機能部としてナレッジ生成部39を有している。ナレッジ生成部39は、クラスタ毎のナレッジを生成することが可能である。 The configuration and functions of an information processing system 100 including a server 10 as an information processing device of Example 2 will be described with reference to Figures 10 to 16. The information processing system 100 of Example 2 is configured similarly to the information processing system 100 of Example 1. As described above, the control unit 35 of the server 10 has a knowledge generation unit 39 as a functional unit. The knowledge generation unit 39 is capable of generating knowledge for each cluster.
 上述したように、ナレッジとは、例えば、ナレッジの元になったクラスタの特徴を含む情報であり、例えばクラスタ全体としての位置及び投稿内容の種別を含む情報である。 As described above, knowledge is, for example, information that includes the characteristics of the cluster that is the source of the knowledge, such as the location of the cluster as a whole and the type of post content.
 実施例2においてナレッジの生成に用いるクラスタには、移動体から投稿された投稿情報であって投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が投稿内容の種別毎に投稿位置に基づいて分けられた1又は複数のクラスタ(投稿群)が含まれる。 The clusters used to generate knowledge in Example 2 include one or more clusters (post groups) in which multiple pieces of post information posted from a mobile body, including the post content and the post location where the post was made, are divided by type of post content based on the post location.
 実施例2において、ナレッジ生成部39は、クラスタ毎に、クラスタに含まれる投稿情報の投稿位置及び投稿内容の種別に基づくナレッジを生成する。当該ナレッジの生成において、ナレッジ生成部39は、クラスタ毎の投稿内容の種別に基づいて、点、領域又は線のいずれかの態様でナレッジを生成する。 In Example 2, the knowledge generation unit 39 generates knowledge for each cluster based on the posting position and the type of posting content of the posting information included in the cluster. In generating the knowledge, the knowledge generation unit 39 generates the knowledge in the form of a point, an area, or a line based on the type of posting content for each cluster.
 [ナレッジ生成]
 ナレッジ生成部39は、ナレッジを生成する際に、まず、ナレッジ生成に用いるクラスタを取得する。例えば、ナレッジ生成部39は、クラスタDB31Cに保存されているクラスタ情報を参照して、クラスタに含まれる投稿情報の投稿IDを特定し、当該投稿IDに該当する投稿情報を投稿DB31Bから取得する。又は、ナレッジ生成部39は、クラスタリング部37からクラスタ情報及び投稿情報を受信する。
[Knowledge Generation]
When generating knowledge, the knowledge generating unit 39 first acquires a cluster to be used for knowledge generation. For example, the knowledge generating unit 39 refers to the cluster information stored in the cluster DB 31C, identifies the posting ID of the posting information included in the cluster, and acquires the posting information corresponding to the posting ID from the posting DB 31B. Alternatively, the knowledge generating unit 39 receives the cluster information and the posting information from the clustering unit 37.
 ナレッジ生成部39は、移動体から投稿された投稿情報であって投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が投稿内容の種別毎に投稿位置に基づいて分けられた1又は複数のクラスタ(投稿群)を取得するステップ(投稿群取得ステップ)を実行する投稿群取得部として機能する。 The knowledge generation unit 39 functions as a post group acquisition unit that executes a step of acquiring one or more clusters (post groups) in which multiple pieces of post information posted from a mobile body, the post contents and the post positions where the posts were made, are divided based on the post positions for each type of post contents (post group acquisition step).
 図10は、ナレッジが生成される際に用いられるナレッジ態様の設定表の一例をTB2として示す図である。TB2は、例えば、大容量記憶装置31に記憶されている。TB2において、投稿内容の種別(内容種別)毎に、推奨されるナレッジの態様が対応付けられている。 FIG. 10 shows an example of a knowledge mode setting table, TB2, used when generating knowledge. TB2 is stored, for example, in the mass storage device 31. In TB2, recommended knowledge modes are associated with each type of post content (content type).
 上述の通り、ナレッジ生成部39は、ナレッジ生成の際に、種別毎にクラスタリングされたクラスタを用いるので、クラスタに含まれる投稿内容の種別は揃っている。ナレッジ生成部39は、クラスタ毎の内容種別を特定すると、例えばTB2を参照して、生成するナレッジの態様を決定する。 As described above, when generating knowledge, the knowledge generation unit 39 uses clusters that are clustered by type, so the types of post content included in the clusters are consistent. After identifying the content type for each cluster, the knowledge generation unit 39 determines the form of knowledge to be generated, for example, by referring to TB2.
 TB2において、内容種別が「観光スポット」、「一時停止線」、及び「交通事故」である場合は、点の態様のナレッジが推奨されている。これらの内容種別については、クラスタに複数の投稿情報が含まれていたとしても、比較的狭い範囲内に集中する傾向があり、複数の投稿位置を1つの地点で表すことが適しているとして、点のナレッジ態様が推奨されている。 In TB2, when the content types are "tourist attractions," "stop lines," and "traffic accidents," point knowledge is recommended. For these content types, even if a cluster contains multiple posted information, they tend to be concentrated in a relatively small area, and it is appropriate to represent the locations of multiple posts as a single point, so the point knowledge mode is recommended.
 また、TB2において、内容種別が「パトカー」、「道路工事」、「路面凍結」及び「並木」である場合は、線の態様のナレッジが推奨されている。これらの内容種別については、クラスタに複数の投稿情報が含まれる場合、当該投稿情報は、例えば道に沿って投稿されるなどの傾向が想定され、複数の投稿位置を線で表すことが適しているとして、線のナレッジ態様が推奨されている。 In addition, in TB2, when the content types are "Police car," "Road construction," "Frozen road," and "Tree-lined street," line-like knowledge is recommended. For these content types, when a cluster contains multiple posted information, it is assumed that the posted information tends to be posted along roads, for example, and it is appropriate to represent the multiple posting positions with lines, so a line-like knowledge mode is recommended.
 また、TB2において、内容種別が「雨」、「風」、「盗難」及び「イベント会場」である場合は、範囲の態様のナレッジが推奨されている。これらの内容種別については、クラスタに複数の投稿情報が含まれる場合、広範囲にわたって分布する傾向が想定され、複数の投稿位置を含む範囲で表すことが適しているとして、範囲のナレッジ態様が推奨されている。 In addition, in TB2, when the content types are "rain," "wind," "theft," and "event venue," knowledge of the range aspect is recommended. For these content types, when multiple posted information is included in a cluster, it is assumed that there is a tendency for them to be distributed over a wide area, and it is appropriate to express them as a range that includes multiple posting locations, so the knowledge of the range aspect is recommended.
 なお、TB2に示した内容種別毎のナレッジ態様は一例であり、内容種別の特徴や分布の傾向に応じて、適していると考えられるナレッジの態様を適宜設定することができる。 Note that the knowledge types for each content type shown in TB2 are just examples, and knowledge types that are considered appropriate can be set appropriately depending on the characteristics and distribution trends of the content type.
 図11A~図11Cは、ナレッジ生成部39によって生成されたナレッジの一例をナレッジ情報ND1~ND3として示す図である。ナレッジ情報ND1~ND3は、ナレッジの各々を識別するナレッジIDに、ナレッジの態様、ナレッジの位置及び投稿内容の種別が対応付けられた情報である。また、ナレッジ情報ND1~ND3に示すように、ナレッジには、ナレッジの有効期限が含まれてもよい。 FIGS. 11A to 11C are diagrams showing examples of knowledge generated by the knowledge generation unit 39 as knowledge information ND1 to ND3. The knowledge information ND1 to ND3 is information in which a knowledge ID that identifies each piece of knowledge is associated with the state of the knowledge, the location of the knowledge, and the type of posted content. As shown in the knowledge information ND1 to ND3, the knowledge may also include an expiration date for the knowledge.
 有効期限は、例えば、投稿内容の種別毎に設定される。例えば、内容種別「パトカー」、「路面凍結」、及び「天気」に関しては、比較的短時間で状況が変わる可能性が高いため、例えば数時間から1日程度の比較的短い有効期限が設定される。例えば、内容種別「道路工事」や「盗難」に関しては、一定の期間で状況が変わる可能性があるため、例えば数日~数週間程度の有効期限が設定される。 Expiration dates are set for each type of post content. For example, for content types "Police cars," "Frozen roads," and "Weather," the situation is likely to change in a relatively short period of time, so a relatively short expiration date of, for example, a few hours to a day is set. For content types "Road construction" and "Theft," the situation is likely to change in a certain period of time, so an expiration date of, for example, a few days to a few weeks is set.
 例えば、観光に関連する内容種別である「観光スポット」「並木」等は比較的長期間にわたって状況が変わらないと考えられるため、例えば半年~数年程度の有効期限が設定されてもよい。例えば同じ観光に関連する内容種別でもお祭り等の「イベント会場」のように短期間で状況が変わる内容要種別の場合は、数時間~数日程度の比較的短い有効期限が設定されてもよい。 For example, tourism-related content types such as "tourist spots" and "tree-lined streets" are thought to remain unchanged for a relatively long period of time, so an expiration date of, for example, six months to several years may be set. For example, in the case of a content type that is also tourism-related but whose status changes in a short period of time, such as an "event venue" for a festival, a relatively short expiration date of, for example, a few hours to a few days may be set.
 ナレッジ情報ND1は、内容種別「一時停止線」についての点の態様の点ナレッジの例を示している。点ナレッジは、例えば、クラスタに含まれる1又は複数の投稿情報の投稿位置の重心に位置する点として生成される。点ナレッジの位置は、当該重心の位置によって表される。 Knowledge information ND1 shows an example of point knowledge in the form of a point for the content type "pause line." The point knowledge is generated, for example, as a point located at the center of gravity of the posting positions of one or more pieces of posted information included in a cluster. The position of the point knowledge is represented by the position of the center of gravity.
 また、ND1に示すように、ナレッジには、移動方向が付されていてもよい。例えば、クラスタに含まれる投稿情報の移動状態情報に移動方向が含まれており、その移動方向が揃っている場合、当該揃っている移動方向がナレッジに付されてもよい。また、上述のように、クラスタリングが移動方向毎に行われた場合にも、クラスタに含まれる投稿情報の移動方向が共通しているので、当該共通の移動方向がナレッジに付されてもよい。 Also, as shown in ND1, the knowledge may be assigned a movement direction. For example, if the movement state information of the posted information included in a cluster includes a movement direction and the movement directions are consistent, the consistent movement direction may be assigned to the knowledge. Also, as described above, even if clustering is performed for each movement direction, the movement direction of the posted information included in the cluster is common, so the common movement direction may be assigned to the knowledge.
 例えば、一時停止線や道路工事など、道路の片側の車線にのみ関係する内容種別のナレッジの場合、ナレッジの移動方向とは反対方向に移動中の端末装置のユーザにとっては、当該ナレッジは不要な情報となる。従って、そのような端末装置には当該ナレッジを送信しないことが好ましい。 For example, if the knowledge is of a content type that only pertains to one lane of a road, such as a stop line or road construction, the knowledge will be unnecessary information for a user of a terminal device traveling in the opposite direction to the direction of movement of the knowledge. Therefore, it is preferable not to transmit the knowledge to such a terminal device.
 ナレッジに移動方向が付されることで、当該ナレッジの移動方向と同じ方向に移動中の端末装置にのみナレッジを送信し、反対方向に移動中のユーザには送信しないように制御することができる。それによって、ユーザに必要な情報を適切に送信することでより良いユーザエクスペリエンスを提供できる。 By assigning a direction of movement to knowledge, it is possible to control the sending of knowledge only to terminal devices moving in the same direction as the direction of movement of the knowledge, and not to users moving in the opposite direction. This makes it possible to provide a better user experience by appropriately sending the necessary information to the user.
 ナレッジ情報ND2は、内容種別「雨」についての範囲の態様の範囲ナレッジの例を示している。範囲ナレッジは、例えば、クラスタに含まれる投稿情報の投稿位置のすべてを囲む範囲、例えば、矩形、円形、楕円形等、任意の形状の範囲として生成される。範囲ナレッジの位置は、例えば矩形の範囲の場合は対角線上の2点の座標で表される。 Knowledge information ND2 shows an example of range knowledge in the form of a range for the content type "rain". The range knowledge is generated, for example, as a range that surrounds all of the posting positions of the posted information included in the cluster, for example, a range of any shape, such as a rectangle, a circle, an ellipse, etc. The position of the range knowledge is represented by the coordinates of two points on a diagonal line in the case of a rectangular range, for example.
 ナレッジ情報ND3は、内容種別「路面凍結」についての線の態様の線ナレッジの例を示している。線ナレッジは、例えば、クラスタに含まれる複数の投稿情報の投稿位置同士を結んだ線、又は、複数の投稿位置の補間直線若しくは補間曲線として生成される。線ナレッジの位置は、例えば、当該線ナレッジを示す複数の点の座標によって表される。例えば、当該複数の点を直線で結んだものを線ナレッジとしてもよく、例えば、当該複数の点を直線で結んだ線に対して表示する端末装置側でスムージングがなされてもよい。 Knowledge information ND3 shows an example of line knowledge of the line pattern for the content type "frozen road surface". The line knowledge is generated, for example, as a line connecting the posting positions of multiple posted information included in a cluster, or an interpolation straight line or curve of multiple posting positions. The position of the line knowledge is represented, for example, by the coordinates of multiple points indicating the line knowledge. For example, the multiple points may be connected by a straight line, and smoothing may be performed on the terminal device that displays the line connecting the multiple points by straight lines.
 ナレッジ生成部39は、生成したナレッジ情報をナレッジDB31Dに保存する。ナレッジ生成部39は、例えば、地図に重畳して表示可能な地図ナレッジを生成する。制御部35は、例えば、ナレッジ生成部39によってナレッジが生成されると、当該ナレッジのナレッジ情報又は地図ナレッジを、端末装置に送信する。 The knowledge generation unit 39 stores the generated knowledge information in the knowledge DB 31D. For example, the knowledge generation unit 39 generates map knowledge that can be displayed by being superimposed on a map. For example, when knowledge is generated by the knowledge generation unit 39, the control unit 35 transmits the knowledge information of the knowledge or the map knowledge to the terminal device.
 図12~図14は、点、範囲及び線の各態様のナレッジが、端末装置の一例としての車載装置30に送信され、タッチパネル13において地図に重畳して表示された表示画面の一例を示す図である。 Figures 12 to 14 show an example of a display screen in which knowledge of each aspect of points, areas, and lines is transmitted to an in-vehicle device 30, which is an example of a terminal device, and is displayed superimposed on a map on the touch panel 13.
 図12は、点ナレッジN1~N3がタッチパネル13に表示されている例を示す。説明のため、図12において、点ナレッジN1~N3の各々の元のクラスタ1~3に含まれる投稿情報P11~P16も併せて示しているが、点ナレッジN1~N3が実際に表示される際には、投稿情報P11~P16は表示されない。 FIG. 12 shows an example in which point knowledge N1 to N3 are displayed on the touch panel 13. For the sake of explanation, FIG. 12 also shows posted information P11 to P16 contained in the original clusters 1 to 3 of each of the point knowledge N1 to N3, but when the point knowledge N1 to N3 are actually displayed, the posted information P11 to P16 is not displayed.
 図12中の点ナレッジN1のように、点ナレッジは、元のクラスタに含まれる投稿情報が1つのみの場合も、1つのナレッジとして生成される。また、上述したように点ナレッジは、クラスタに含まれる1又は複数の投稿情報の投稿位置の重心に位置する点として生成される。例えば、点ナレッジN2は、2つの投稿位置の中間地点に位置する点の態様で生成され、点ナレッジN3は、3つの投稿位置の重心に位置する点の態様で生成されている。 As in point knowledge N1 in FIG. 12, point knowledge is generated as one piece of knowledge even when the original cluster contains only one piece of posted information. Also, as described above, point knowledge is generated as a point located at the center of gravity of the posting positions of one or more pieces of posted information contained in the cluster. For example, point knowledge N2 is generated in the form of a point located at the midpoint between two posting positions, and point knowledge N3 is generated in the form of a point located at the center of gravity of three posting positions.
 図13は、範囲ナレッジN4~N6がタッチパネル13に表示されている例を示す。例えば、範囲ナレッジは、元のクラスタに含まれる1又は複数の投稿情報の投稿位置を、一番端の投稿位置よりも十分に外側まで囲む範囲として生成される。 FIG. 13 shows an example in which range knowledge N4 to N6 are displayed on the touch panel 13. For example, the range knowledge is generated as a range that encloses the posting positions of one or more pieces of posted information included in the original cluster, extending far enough outward from the extreme posting positions.
 図14は、線ナレッジN7~N8及び点ナレッジN9がタッチパネル13に表示されている例を示す。上述したように、線ナレッジは、クラスタに含まれる複数の投稿情報の投稿位置同士を結んだ線、又は、複数の投稿位置の補間直線若しくは補間曲線として生成される。例えば、線ナレッジN7は、2つの投稿位置同士を結んだ線の態様で生成されている。線ナレッジN8は、3つの投稿位置の補間曲線として生成されている。 FIG. 14 shows an example in which line knowledge N7-N8 and point knowledge N9 are displayed on the touch panel 13. As described above, the line knowledge is generated as a line connecting the posting positions of multiple pieces of posted information included in a cluster, or as an interpolation straight line or curve between multiple posting positions. For example, the line knowledge N7 is generated in the form of a line connecting two posting positions. The line knowledge N8 is generated as an interpolation curve between three posting positions.
 なお、例えば、クラスタリング部37は、図14に示すように、線ナレッジが推奨されている内容種別であっても、クラスタに含まれる投稿情報が1つのみである場合には、点ナレッジを生成する。 For example, as shown in FIG. 14, even if a content type is one for which line knowledge is recommended, the clustering unit 37 generates point knowledge if the cluster contains only one piece of posted information.
 [補正処理]
 実施例1の場合と同様に、移動体から投稿された投稿情報には、投稿がなされた際の移動体の移動方向及び速度を示す情報又は移動体の移動軌跡を示す移動状態情報が含まれる。
[Correction process]
As in the first embodiment, the posted information posted from the moving object includes information indicating the moving direction and speed of the moving object at the time the posting was made, or moving status information indicating the moving trajectory of the moving object.
 ナレッジ生成部39は、ナレッジを生成する際に、投稿情報が投稿された際の移動体の移動状態情報に基づいて、補正処理を行ってもよい。例えば、ナレッジ生成部39は、移動状態情報に基づいて、投稿群(クラスタ)に含まれる各々の投稿情報の位置を補正してナレッジを生成する生成前補正処理を行う。また、例えば、ナレッジ生成部39は、移動状態情報に基づいて、生成したナレッジの位置を補正する生成後補正処理を行う。それによって、例えば、投稿者が投稿の対象物を見た位置から投稿位置までの距離に対する移動状態の影響を低減することができ、最終的なナレッジの位置の精度を高めることができる。 When generating knowledge, the knowledge generation unit 39 may perform correction processing based on the movement state information of the moving object at the time the posted information was posted. For example, the knowledge generation unit 39 performs pre-generation correction processing to generate knowledge by correcting the position of each piece of posted information included in a group of posts (cluster) based on the movement state information. Also, for example, the knowledge generation unit 39 performs post-generation correction processing to correct the position of the generated knowledge based on the movement state information. Thereby, for example, it is possible to reduce the influence of the movement state on the distance from the position where the poster viewed the object of the post to the posting position, and to improve the accuracy of the final position of the knowledge.
 例えば、ナレッジ生成の際に、クラスタに含まれる投稿情報には、様々な移動方向に様々な速度で移動中に投稿された情報及び停止中に投稿された情報が含まれると考えられる。例えば、クラスタに含まれる投稿情報の数が多ければ、投稿者が投稿の対象物を見た位置から投稿位置までの距離について、移動中に投稿された投稿情報の影響は、例えば相殺されるなどして小さくなると考えられる。言い換えれば、投稿情報の数が少ない方が、移動中に投稿された投稿情報の投稿位置がナレッジの位置に影響しやすいといえる。 For example, when knowledge is generated, the posted information included in a cluster is considered to include information posted while moving in various directions at various speeds, as well as information posted while stopped. For example, if a cluster contains a large number of posted information, it is considered that the influence of posted information posted while moving on the distance from the position where the poster viewed the posted object to the posted position will be small, for example, due to cancellation. In other words, the smaller the number of posted information, the more likely it is that the posting position of posted information posted while moving will affect the position of the knowledge.
 そこで、ナレッジ生成部39は、クラスタの各々に含まれる投稿情報の数が所定の数に満たない場合に、上記の補正処理、すなわち生成前補正処理又は生成後補正処理を行ってもよい。 Then, when the number of posted information pieces included in each cluster does not reach a predetermined number, the knowledge generation unit 39 may perform the above-mentioned correction process, i.e., pre-generation correction process or post-generation correction process.
 また、ナレッジ生成部39は、投稿内容の種別ごとに加えて、クラスタに含まれる投稿情報の投稿位置の分布状態にも応じた態様のナレッジを生成してもよい。例えば、点ナレッジが推奨される内容種別のクラスタについて、投稿位置が線状に分布している場合に、点ナレッジに加えて線ナレッジを生成してもよい。また、点ナレッジが推奨される内容種別のクラスタについて、投稿位置が広範囲に分布している場合に、点ナレッジに加えて、範囲ナレッジを生成してもよい。 The knowledge generation unit 39 may also generate knowledge according to the distribution state of the posting positions of the posting information included in the cluster, in addition to the type of posting content. For example, for a cluster of a content type for which point knowledge is recommended, if the posting positions are distributed linearly, line knowledge may be generated in addition to point knowledge. Also, for a cluster of a content type for which point knowledge is recommended, if the posting positions are distributed over a wide range, range knowledge may be generated in addition to point knowledge.
 [ナレッジの端末装置への送信]
 例えば、ナレッジ生成部39は、ナレッジを生成すると、ナレッジの位置及び内容種別を含むナレッジ情報をナレッジDBに保存する。また、ナレッジ生成部39は、地図にナレッジを重畳した画像情報を地図ナレッジとして生成可能である。
[Transmission of knowledge to terminal device]
For example, when the knowledge generating unit 39 generates knowledge, the knowledge generating unit 39 stores knowledge information including the location and content type of the knowledge in a knowledge DB. The knowledge generating unit 39 can also generate image information in which the knowledge is superimposed on a map as map knowledge.
 サーバ10の制御部35は、ナレッジが生成されると、ナレッジを車載装置30に送信する。例えば、制御部35は、地図ナレッジを車載装置30に送信する。また、例えば、制御部35は、地図情報を含まないナレッジ情報のみを車載装置30に送信してもよい。その場合、例えば、車載装置30が有する地図情報に基づいて、地図に重畳されたナレッジが車載装置30において表示されるようにしてもよい。例えば、ナレッジの位置に近いエリアにある車載装置30に、地図ナレッジ又はナレッジ情報が送信される。 When the knowledge is generated, the control unit 35 of the server 10 transmits the knowledge to the in-vehicle device 30. For example, the control unit 35 transmits map knowledge to the in-vehicle device 30. Also, for example, the control unit 35 may transmit only knowledge information that does not include map information to the in-vehicle device 30. In that case, for example, the knowledge superimposed on the map may be displayed on the in-vehicle device 30 based on the map information held by the in-vehicle device 30. For example, the map knowledge or knowledge information is transmitted to an in-vehicle device 30 located in an area close to the location of the knowledge.
 制御部35は、例えば、ナレッジの位置に近づく端末装置にナレッジの内容を通知することができる。例えばサーバ10は、移動中の車載装置30の現在位置情報を取得し、当該端末装置Tがナレッジの位置に近づいたか否かを、ナレッジの態様に応じた判断基準で判定する。例えば、線ナレッジの場合、車載装置30の現在位置から当該線ナレッジまでの最短距離を基準とし、当該最短距離が所定距離内となった場合に、車載装置30がナレッジの位置に近づいたと判定してもよい。 The control unit 35 can, for example, notify the contents of the knowledge to a terminal device approaching the location of the knowledge. For example, the server 10 acquires current location information of the in-vehicle device 30 while moving, and judges whether the terminal device T has approached the location of the knowledge using criteria according to the type of knowledge. For example, in the case of line knowledge, the shortest distance from the current location of the in-vehicle device 30 to the line knowledge can be used as the criterion, and it can be determined that the in-vehicle device 30 has approached the location of the knowledge when the shortest distance falls within a predetermined distance.
 または、例えば、線ナレッジの場合、車載装置30が線ナレッジに沿って移動可能な方向に移動中である場合に、車載装置30の現在位置から当該線ナレッジまでの最短距離が所定距離内となると、端末装置Tが当該線ナレッジの位置に近づいたと判定してもよい。また、車載装置30が線ナレッジと交わる方向に移動中である場合には、車載装置30の現在位置から当該線ナレッジまでの最短距離が所定距離内となっても、端末装置Tが当該線ナレッジの位置に近づいていないと判定し、当該車載装置30にはナレッジの内容を通知しないようにしてもよい。 Or, for example, in the case of line knowledge, when the in-vehicle device 30 is moving in a direction along the line knowledge, if the shortest distance from the current position of the in-vehicle device 30 to the line knowledge falls within a predetermined distance, the terminal device T may determine that it is approaching the position of the line knowledge. Also, when the in-vehicle device 30 is moving in a direction that intersects with the line knowledge, even if the shortest distance from the current position of the in-vehicle device 30 to the line knowledge falls within a predetermined distance, the terminal device T may determine that it is not approaching the position of the line knowledge, and may not notify the in-vehicle device 30 of the contents of the knowledge.
 例えば、車載装置30の経路が線ナレッジと交わるのみである場合には、当該車載装置30は線ナレッジについての投稿の内容から受ける影響が少ないと考えられ、当該線ナレッジは、車載装置30のユーザにとって不要な情報であると考えられる。線ナレッジの態様については上記のように判定することで、ユーザに不要なナレッジを送信しないように制御することが可能となる。 For example, if the route of the in-vehicle device 30 only intersects with line knowledge, the in-vehicle device 30 is considered to be less affected by the content of the post about the line knowledge, and the line knowledge is considered to be unnecessary information for the user of the in-vehicle device 30. By determining the state of the line knowledge as described above, it is possible to control so as not to send unnecessary knowledge to the user.
 なお、例えば、車載装置30が移動予定の経路が、線ナレッジと複数回交わる場合には、車載装置30が当該線ナレッジの位置に近づいたと判定してもよい。さらに、線ナレッジが道路に沿っていない場合には、車載装置30の経路が線ナレッジに沿っていない場合でも、ナレッジの内容を通知するようにしてもよい。 For example, if the route along which the in-vehicle device 30 plans to travel intersects with the line knowledge multiple times, the in-vehicle device 30 may determine that it is approaching the position of the line knowledge. Furthermore, if the line knowledge does not follow a road, the contents of the knowledge may be notified even if the route of the in-vehicle device 30 does not follow the line knowledge.
 点ナレッジの場合は、車載装置30の現在位置から当該点ナレッジの位置までの距離を基準に判定する。範囲ナレッジの場合は、例えば、車載装置30の現在位置から、当該範囲ナレッジに到達するまでの最短距離か又は当該範囲ナレッジの範囲の中心又は重心までの距離を基準に判定してもよい。 In the case of point knowledge, the determination is based on the distance from the current position of the in-vehicle device 30 to the position of the point knowledge. In the case of range knowledge, the determination may be based on, for example, the shortest distance from the current position of the in-vehicle device 30 to the range knowledge, or the distance to the center or center of gravity of the range knowledge.
 制御部35は、移動中のユーザがナレッジの位置に近づいたか否かをナレッジの態様に応じた判断基準で判定し、ユーザがナレッジの位置に接近したと判定すると、ユーザが使用する端末装置に通知する通知部として機能する。 The control unit 35 determines whether a moving user is approaching the location of the knowledge using criteria that correspond to the state of the knowledge, and when it determines that the user is approaching the location of the knowledge, it functions as a notification unit that notifies the terminal device used by the user.
 [ナレッジの更新]
 制御部35は、新たな投稿がなされた場合に、新たな投稿情報を加えて再度クラスタリングを行って、生成された新たなクラスタ毎にナレッジを生成することで、ナレッジの更新を行うことができる。例えば、クラスタリング部37は、内容種別が同じであり、かつ、ナレッジの位置が新たな投稿情報の投稿位置に近いナレッジが存在する場合、当該ナレッジの元のクラスタに含まれる投稿情報を、クラスタ情報に基づいて投稿DB31Bから取得し、これに新たな投稿情報を加えて再クラスタリングを行う。ナレッジ生成部39は、当該再クラスタリングによって生成されたクラスタ毎に、ナレッジを生成する。
[Knowledge Update]
When a new post is made, the control unit 35 adds the new posted information, performs clustering again, and generates knowledge for each of the newly generated clusters, thereby updating the knowledge. For example, when there is knowledge that has the same content type and is located close to the posting location of the new posted information, the clustering unit 37 acquires the posted information included in the original cluster of the knowledge from the posting DB 31B based on the cluster information, and adds the new posted information to the acquired information to perform reclustering. The knowledge generating unit 39 generates knowledge for each cluster generated by the reclustering.
 [ナレッジの信頼度]
 また、ナレッジ生成部39は、ナレッジの信頼度を設定してもよい。例えば、ナレッジ生成部39は、上述したナレッジの有効期限に基づいて、ナレッジの信頼度を設定してもよい。また、例えば、ナレッジ生成部39は、ナレッジの生成に用いたクラスタに含まれる投稿情報の数に基づいて、ナレッジの信頼度を設定してもよい。例えば、加重平均による信頼度の算出において、投稿情報の数及び有効期限までの残り時間による重み付けを行って、信頼度を算出してもよい。
[Knowledge reliability]
Furthermore, the knowledge generating unit 39 may set the reliability of the knowledge. For example, the knowledge generating unit 39 may set the reliability of the knowledge based on the expiration date of the knowledge described above. For example, the knowledge generating unit 39 may set the reliability of the knowledge based on the number of posted information included in the cluster used to generate the knowledge. For example, in calculating the reliability by weighted average, the reliability may be calculated by weighting the number of posted information and the remaining time until the expiration date.
 [ナレッジ生成の制御ルーチン]
 図15は、サーバ10の制御部35が実行する制御ルーチンの一例であるナレッジ生成ルーチンRT2を示すフローチャートである。例えば、制御部35は、サーバ10に電源が投入されると、ナレッジ生成ルーチンRT2をナレッジ生成部39に繰り返し実行させる。
[Knowledge Generation Control Routine]
15 is a flowchart showing a knowledge generation routine RT2, which is an example of a control routine executed by the control unit 35 of the server 10. For example, when the server 10 is powered on, the control unit 35 causes the knowledge generation unit 39 to repeatedly execute the knowledge generation routine RT2.
 ナレッジ生成部39は、ナレッジ生成ルーチンRT2を開始すると、ナレッジ化されていない新たなクラスタが存在するか否かを判定する(ステップS201)。ステップS201において、例えば、クラスタDB31Cに新たなクラスタ情報が保存されたか否かが判定される。 When the knowledge generation unit 39 starts the knowledge generation routine RT2, it determines whether or not there is a new cluster that has not been converted into knowledge (step S201). In step S201, for example, it is determined whether or not new cluster information has been saved in the cluster DB 31C.
 ナレッジ化されていないクラスタが無いと判定する(ステップS101:NO)と、ナレッジ生成部39は、ナレッジ生成ルーチンRT2を終了し、新たにナレッジ生成ルーチンRT2を開始する。 If it is determined that there are no clusters that have not been converted into knowledge (step S101: NO), the knowledge generation unit 39 ends the knowledge generation routine RT2 and starts a new knowledge generation routine RT2.
 ナレッジ化されていないクラスタがあると判定する(ステップS101:YES)と、ナレッジ生成部39は、当該クラスタに含まれる投稿情報を投稿DB31Bから取得する(ステップS202)。ステップS202において、例えば、ナレッジ生成部39は、クラスタDB31C内のクラスタ情報に基づいて、クラスタIDに対応付けられた投稿IDに該当する投稿情報を取得する。 If it is determined that there is a cluster that has not been converted into knowledge (step S101: YES), the knowledge generation unit 39 acquires the post information included in that cluster from the post DB 31B (step S202). In step S202, for example, the knowledge generation unit 39 acquires the post information corresponding to the post ID associated with the cluster ID based on the cluster information in the cluster DB 31C.
 なお、ナレッジ生成部39は、ステップS201及びS202において、クラスタリング部37からクラスタ情報及び投稿情報を受信することでクラスタを取得してもよい。 In addition, in steps S201 and S202, the knowledge generation unit 39 may obtain the clusters by receiving the cluster information and the posting information from the clustering unit 37.
 ステップS202において、ナレッジ生成部39は、移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が投稿内容の種別毎に投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得部として機能する。 In step S202, the knowledge generation unit 39 functions as a post group acquisition unit that acquires one or more post groups in which multiple pieces of post information, including the post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content.
 ステップS202の実行後、ナレッジ生成部39は、クラスタ毎の投稿内容の種別を特定する(ステップS203)。 After executing step S202, the knowledge generation unit 39 identifies the type of post content for each cluster (step S203).
 ステップS203の実行後、ナレッジ生成部39は、ステップS203において特定した投稿内容の種別に基づいて、クラスタ毎のナレッジ態様を決定する(ステップS204)。ステップS204において、例えば、ナレッジ生成部39は、例えば図10に例示したような設定表を参照し、内容種別毎に推奨されるナレッジ態様を特定する。 After executing step S203, the knowledge generation unit 39 determines the knowledge aspect for each cluster based on the type of post content identified in step S203 (step S204). In step S204, for example, the knowledge generation unit 39 refers to a setting table such as the one illustrated in FIG. 10, and identifies the knowledge aspect recommended for each content type.
 ステップS204において、例えば、投稿内容の種別毎に加えて、クラスタに含まれる1又は複数の投稿情報の投稿位置の分布状態にも応じた態様のナレッジ態様に決定されてもよい。 In step S204, for example, the knowledge mode may be determined according to the type of post content as well as the distribution state of the posting positions of one or more pieces of post information included in the cluster.
 ステップS204の実行後、ナレッジ生成部39は、ステップS202において取得した投稿情報の各々の投稿位置を、地理座標系から平面座標系に変換する(ステップS205)。 After executing step S204, the knowledge generation unit 39 converts the posting location of each piece of posted information acquired in step S202 from the geographic coordinate system to the planar coordinate system (step S205).
 なお、ナレッジ生成部39は、ステップS202において、投稿位置が平面座標系に変換された投稿情報をクラスタリング部から受信する場合には、ステップS205を実行しなくともよい。 Note that, in step S202, if the knowledge generation unit 39 receives posted information in which the posting position has been converted into a planar coordinate system from the clustering unit, it is not necessary to execute step S205.
 ステップS205の実行後、ナレッジ生成部39は、クラスタ毎のナレッジを生成する(ステップS206)。ステップS206において、例えば、ナレッジ生成部39は、クラスタに含まれる投稿情報の投稿位置を、ステップS204において決定した態様の位置情報に変換してナレッジの位置とする。 After executing step S205, the knowledge generation unit 39 generates knowledge for each cluster (step S206). In step S206, for example, the knowledge generation unit 39 converts the posting position of the posting information included in the cluster into position information of the type determined in step S204, and sets it as the position of the knowledge.
 ステップS206において、ナレッジ生成部39は、投稿内容の種別に基づいて、点、領域又は線のいずれかの態様でナレッジを生成する。ステップS206において、ナレッジの位置を示す情報及び投稿内容の種別を含むナレッジ情報がクラスタ毎に生成される。 In step S206, the knowledge generation unit 39 generates knowledge in the form of a point, an area, or a line based on the type of the posted content. In step S206, knowledge information including information indicating the position of the knowledge and the type of the posted content is generated for each cluster.
 ステップS206の実行後、ナレッジ生成部39は、ナレッジの位置を、平面座標系から地理座標系に変換する。ステップS206及びステップS207によって、例えば図11A~Cに示したような、ナレッジ情報が生成されてナレッジDBに保存される。 After executing step S206, the knowledge generation unit 39 converts the position of the knowledge from the planar coordinate system to the geographic coordinate system. Through steps S206 and S207, knowledge information such as that shown in Figures 11A to 11C is generated and stored in the knowledge DB.
 ステップS203~ステップS207において、ナレッジ生成部39は、投稿群(クラスタ)ごとに、投稿位置及び投稿内容の種別に基づくナレッジを生成するナレッジ生成部として機能する。 In steps S203 to S207, the knowledge generation unit 39 functions as a knowledge generation unit that generates knowledge for each post group (cluster) based on the posting location and the type of posting content.
 ステップS207の実行後、ナレッジ生成部39は、ステップS206において生成されてステップS207において座標変換されたナレッジを地図に重畳して表示する画像データである地図ナレッジを生成する(ステップS208)。ステップS208において、例えば、ナレッジ生成部39は、地図情報DB31A内の地図情報を用いて、図12~14に例示したような、ナレッジの表示画像が生成される。 After execution of step S207, the knowledge generation unit 39 generates map knowledge, which is image data for displaying the knowledge generated in step S206 and subjected to coordinate conversion in step S207, superimposed on a map (step S208). In step S208, for example, the knowledge generation unit 39 uses the map information in the map information DB 31A to generate a display image of the knowledge, such as those illustrated in Figures 12 to 14.
 ステップS208の実行後、ナレッジ生成部39は、地図ナレッジをナレッジDB31Dに保存し(ステップS209)、その後、ナレッジ生成ルーチンRT2を終了する。 After executing step S208, the knowledge generation unit 39 stores the map knowledge in the knowledge DB 31D (step S209), and then ends the knowledge generation routine RT2.
 [更新の制御ルーチン]
 図16は、サーバ10の制御部35が実行する制御ルーチンの一例である再クラスタリングルーチンRT3を示すフローチャートである。例えば、制御部35は、ナレッジが生成されると、再クラスタリングルーチンRT3をクラスタリング部37に繰り返し実行させる。
[Update Control Routine]
16 is a flowchart showing a reclustering routine RT3 which is an example of a control routine executed by the control unit 35 of the server 10. For example, when knowledge is generated, the control unit 35 causes the clustering unit 37 to repeatedly execute the reclustering routine RT3.
 クラスタリング部37は、再クラスタリングルーチンRT3を開始すると、新たな投稿がサーバ10において受信されたか否かを判定する(ステップS301)。ステップS301において、新たな投稿がないと判定する(ステップS301:NO)と、クラスタリング部37は、再クラスタリングルーチンRT3を終了し、新たに再クラスタリングルーチンRT3を開始する。 When the clustering unit 37 starts the reclustering routine RT3, it determines whether or not a new post has been received by the server 10 (step S301). If it is determined in step S301 that there is no new post (step S301: NO), the clustering unit 37 ends the reclustering routine RT3 and starts a new reclustering routine RT3.
 ステップS301において、新たな投稿があると判定する(ステップS301:YES)と、クラスタリング部37は、ナレッジDB31Dを検索し(ステップS302)、新たな投稿と内容種別が同じでありかつナレッジの位置が新たな投稿の投稿位置から近い(所定の距離内である)ナレッジが存在するが否かを判定する(ステップS303)。例えば、当該所定の距離は、クラスタリングの距離閾値よりも長く設定される。 In step S301, when it is determined that there is a new post (step S301: YES), the clustering unit 37 searches the knowledge DB 31D (step S302) and determines whether there is knowledge that has the same content type as the new post and is located close to the posting position of the new post (within a specified distance) (step S303). For example, the specified distance is set to be longer than the distance threshold for clustering.
 ステップS303において、新たな投稿と同種別かつ位置が近いナレッジが存在すると判定する(ステップS303:YES)と、クラスタリング部37は、クラスタDB31Cを参照し、当該ナレッジの元のクラスタに含まれる投稿情報の投稿IDを取得する(ステップS304)。 In step S303, if it is determined that there is knowledge of the same type and in a nearby location as the new post (step S303: YES), the clustering unit 37 refers to the cluster DB 31C and obtains the post ID of the post information included in the original cluster of the knowledge (step S304).
 ステップS304の実行後、クラスタリング部37は、ステップS303において取得した投稿IDに対応する投稿情報を投稿DB31Bから取得する(ステップS305)。 After executing step S304, the clustering unit 37 acquires the post information corresponding to the post ID acquired in step S303 from the post DB 31B (step S305).
 ステップS305の実行後、クラスタリング部37は、ステップS305において取得した投稿情報及びステップS301において取得した新たな情報を用いて、クラスタリングを実行する(ステップS306)。ステップS306において、例えば、クラスタ生成ルーチンRT1のステップS103~ステップS106が実行されて、クラスタが生成される。 After executing step S305, the clustering unit 37 executes clustering using the posted information acquired in step S305 and the new information acquired in step S301 (step S306). In step S306, for example, steps S103 to S106 of the cluster generation routine RT1 are executed to generate clusters.
 ステップS306の実行後、クラスタリング部37は、再クラスタリングルーチンRT3を終了し、新たに再クラスタリングルーチンRT3を開始する。 After executing step S306, the clustering unit 37 ends the reclustering routine RT3 and starts a new reclustering routine RT3.
 例えば、再クラスタリングルーチンRT3が実行されると、ナレッジ生成部39によってナレッジ生成ルーチンRT2が実行されて、再クラスタリングによって生成されたクラスタ毎にナレッジが生成される。このようにして、ナレッジが更新される。 For example, when the reclustering routine RT3 is executed, the knowledge generation unit 39 executes the knowledge generation routine RT2, and knowledge is generated for each cluster generated by the reclustering. In this way, the knowledge is updated.
 以上、説明したように、実施例2の情報処理装置は、移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が投稿内容の種別毎に投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得部と、当該投稿群毎に、投稿位置及び投稿内容の種別に基づくナレッジを生成するナレッジ生成部と、を有する。ナレッジ生成部は、投稿内容の種別に基づいて点、領域又は線のいずれかの態様でナレッジを生成する。 As described above, the information processing device of Example 2 has a post group acquisition unit that acquires one or more post groups in which a plurality of pieces of post information, including post content posted from a mobile body and the post location where the post was made, are divided based on the post location for each type of post content, and a knowledge generation unit that generates knowledge for each post group based on the post location and the type of post content. The knowledge generation unit generates knowledge in the form of a point, area, or line based on the type of post content.
 本実施例によれば、例えば、投稿内容の種別に応じて適した態様のナレッジを生成することができる。例えば、生成したナレッジをユーザに提示することで、単に投稿情報を表示する場合と比較してユーザにとってより有益な情報の提供が可能となる。 According to this embodiment, for example, knowledge can be generated in a form appropriate for the type of post content. For example, by presenting the generated knowledge to the user, it is possible to provide the user with more useful information than if the posted information were simply displayed.
 よって、本実施例によれば、一般のユーザから投稿された多数の投稿情報を扱いやすい形で提供する、または、投稿情報に基づき扱いやすい情報を生成することを可能にする情報処理装置、情報処理方法、情報処理プログラム及び記憶媒体を提供することができる。 Therefore, according to this embodiment, it is possible to provide an information processing device, an information processing method, an information processing program, and a storage medium that can provide a large amount of posted information posted by general users in an easy-to-handle form, or generate easy-to-handle information based on the posted information.
 上述した実施例におけるサーバ10及び車載装置30の構成、ルーチン等は、例示に過ぎず、用途等に応じて、適宜選択または変更することができる。 The configurations, routines, etc. of the server 10 and the in-vehicle device 30 in the above-described embodiment are merely examples and can be appropriately selected or modified depending on the application, etc.
 上記の実施例において、投稿情報を生成してサーバ10への送信する端末装置として、車載装置30を例に説明したが、移動体に搭載されていない端末装置も同様に投稿情報を生成してサーバ10に送信可能である。例えば、携帯型の端末装置は、GPSセンサや加速度センサ等のセンサを有しており、移動状態情報を取得して投稿情報に含めることが可能である。なお、固定されているPC等の移動しない端末装置から投稿される投稿情報については、移動状態情報を含まなくともよい。 In the above embodiment, the in-vehicle device 30 has been described as an example of a terminal device that generates posted information and transmits it to the server 10, but terminal devices that are not mounted on a moving body can also generate posted information and transmit it to the server 10. For example, a portable terminal device has sensors such as a GPS sensor and an acceleration sensor, and can obtain movement status information and include it in the posted information. Note that posted information posted from a terminal device that does not move, such as a fixed PC, does not need to include movement status information.
 上記実施例において、車載装置30は、車載ナビゲーション装置であるとしたが、車載装置30は、ナビゲーション機能を有していなくともよい。その場合、例えば、車載装置30が自動車Mの現在位置情報や速度等の移動状態情報を投稿情報に含めてサーバ10に送信可能に構成されていればよい。 In the above embodiment, the in-vehicle device 30 is an in-vehicle navigation device, but the in-vehicle device 30 does not need to have a navigation function. In that case, for example, the in-vehicle device 30 may be configured to be able to include information on the current position and speed of the automobile M in the posted information and transmit it to the server 10.
 例えば、車載装置30は、車載装置30と同様の構成を有する端末装置と車外カメラ18及び車内カメラ19とタッチパネル13とが一体化された構成であってもよい。具体的には、例えば、車載装置30は、上記車載装置30と同様の機能を発揮するアプリケーションを搭載したカメラ付きのスマートフォン、タブレットまたはPC等の端末装置であってもよい。この場合、車載装置30は、内蔵カメラが自動車Mのフロントガラスを通して自動車Mの前方を撮影可能なように、例えばクレードル等でダッシュボードDB上に取り付けられ得る。 For example, the in-vehicle device 30 may be configured by integrating a terminal device having a similar configuration to the in-vehicle device 30 with the exterior camera 18, the interior camera 19, and the touch panel 13. Specifically, for example, the in-vehicle device 30 may be a terminal device such as a camera-equipped smartphone, tablet, or PC equipped with an application that performs the same functions as the in-vehicle device 30. In this case, the in-vehicle device 30 may be mounted on the dashboard DB, for example, by a cradle, etc., so that the built-in camera can capture images of the area in front of the automobile M through the windshield of the automobile M.
 また、車載装置30は、自動車Mの運転者に提示する画面を表示しない構成であってもよい。例えば、車載装置30は、ドライブレコーダのような構成を有していてもよく、例えば、車外カメラ18及び車内カメラ19と一体となった装置であってもよい。この場合、車載装置30は、上記において説明したような種々の表示出力を行わないこととしてもよい。 Furthermore, the in-vehicle device 30 may be configured not to display a screen to be presented to the driver of the automobile M. For example, the in-vehicle device 30 may have a configuration similar to that of a drive recorder, and may be a device integrated with the exterior camera 18 and the interior camera 19. In this case, the in-vehicle device 30 may not perform the various display outputs as described above.
10 サーバ
30 車載装置
11 GPS受信機
13 タッチパネル
15 スピーカ
17 マイク
18 車外カメラ
19 車内カメラ     
21 加速度センサ
31 大容量記憶装置
31A 地図情報DB
31B 投稿DB
31C クラスタDB
31D ナレッジDB
33 通信部
35 制御部
37 クラスタリング部
38 ナレッジ生成部
10 Server 30 Vehicle-mounted device 11 GPS receiver 13 Touch panel 15 Speaker 17 Microphone 18 Vehicle exterior camera 19 Vehicle interior camera
21 Acceleration sensor 31 Large-capacity storage device 31A Map information DB
31B Post DB
31C Cluster DB
31D Knowledge DB
33 Communication unit 35 Control unit 37 Clustering unit 38 Knowledge generation unit

Claims (12)

  1.  移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得部と、
     前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成部と、を有し、
     前記ナレッジ生成部は、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを特徴とする情報処理装置。
    a post group acquisition unit that acquires one or more post groups in which a plurality of pieces of post information including post content posted from a mobile object and a post location where the post was made are classified based on the post location for each type of the post content;
    a knowledge generating unit configured to generate knowledge for each of the post groups based on the post position and the type of the post content,
    The information processing apparatus, wherein the knowledge generating unit generates the knowledge in the form of any one of a point, an area, and a line based on a type of the posted content.
  2.  前記投稿情報は、前記投稿がなされた際の前記移動体の移動方向及び速度を示す情報又は前記投稿がなされた際の前記移動体の移動軌跡を示す情報である移動状態情報を含み、
     前記ナレッジ生成部は、前記移動状態情報に基づいて、前記投稿群に含まれる各々の前記投稿情報の位置を補正して前記ナレッジを生成するか又は生成した前記ナレッジの位置を補正する補正処理を行うことを特徴とする請求項1に記載の情報処理装置。
    the posted information includes movement state information that is information indicating a moving direction and a speed of the moving object when the post was made or information indicating a moving trajectory of the moving object when the post was made,
    The information processing device according to claim 1, characterized in that the knowledge generation unit generates the knowledge by correcting the position of each piece of posted information included in the post group based on the movement status information, or performs a correction process to correct the position of the generated knowledge.
  3.  前記ナレッジ生成部は、前記投稿群の各々に含まれる前記投稿情報の数が所定の数に満たない場合に、前記補正処理を行うことを特徴とする請求項2に記載の情報処理装置。 The information processing device according to claim 2, characterized in that the knowledge generation unit performs the correction process when the number of pieces of posted information included in each of the post groups does not reach a predetermined number.
  4.  前記ナレッジ生成部は、前記投稿内容の種別毎に加えて、前記投稿群に含まれる1又は複数の前記投稿情報の前記投稿位置の分布状態にも応じた態様のナレッジを生成することを特徴とする請求項1に記載の情報処理装置。 The information processing device according to claim 1, characterized in that the knowledge generation unit generates knowledge according to the distribution state of the posting positions of one or more of the posted information included in the post group in addition to the type of the posted content.
  5.  移動中のユーザが前記ナレッジの位置に近づいたか否かを前記ナレッジの態様に応じた判断基準で判定し、前記ユーザが前記ナレッジの位置に接近したと判定すると、前記ユーザが使用する端末装置に通知する通知部をさらに有することを特徴とする請求項1に記載の情報処理装置。 The information processing device according to claim 1, further comprising a notification unit that determines whether a moving user is approaching the location of the knowledge using a determination criterion according to the state of the knowledge, and notifies a terminal device used by the user when it is determined that the user is approaching the location of the knowledge.
  6.  前記投稿群取得部は、前記ナレッジが生成された後に投稿された新たな投稿情報が含まれた複数の投稿情報について生成された新たな投稿群を取得し、
     前記ナレッジ生成部は、前記新たな投稿群についての前記投稿位置及び前記投稿内容の種別に基づくナレッジを新たに生成することを特徴とする請求項1に記載の情報処理装置。
    The post group acquisition unit acquires a new post group generated for a plurality of pieces of posted information including new posted information posted after the knowledge is generated;
    The information processing apparatus according to claim 1 , wherein the knowledge generating unit generates new knowledge for the new post group based on the posting position and the type of the posting content.
  7.  前記ナレッジ生成部は、前記投稿内容の種別に基づいて前記ナレッジ毎に有効期限を設定することを特徴とする請求項1に記載の情報処理装置。 The information processing device according to claim 1, characterized in that the knowledge generation unit sets an expiration date for each piece of knowledge based on the type of the posted content.
  8.  前記ナレッジ生成部は、前記有効期限に基づいて、前記ナレッジの信頼度を設定することを特徴とする請求項7に記載の情報処理装置。 The information processing device according to claim 7, characterized in that the knowledge generation unit sets the reliability of the knowledge based on the expiration date.
  9.  前記ナレッジ生成部は、前記ナレッジの生成に用いた前記投稿群に含まれる前記投稿情報の数に基づいて、前記ナレッジの信頼度を設定することを特徴とする請求項1に記載の情報処理装置。 The information processing device according to claim 1, characterized in that the knowledge generation unit sets the reliability of the knowledge based on the number of pieces of posted information included in the post group used to generate the knowledge.
  10.  情報処理装置によって実行される情報処理方法であって、
     移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得ステップと、
     前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成ステップと、を含み、
     前記ナレッジ生成ステップにおいて、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを特徴とする情報処理方法。
    An information processing method executed by an information processing device,
    a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information including post contents posted from a mobile object and a post location where the post was made are classified based on the post location for each type of the post contents;
    a knowledge generating step of generating knowledge for each of the post groups based on the posting positions and the types of the posting contents,
    The information processing method, wherein in the knowledge generating step, the knowledge is generated in the form of any one of a point, an area, and a line based on the type of the posted content.
  11.  コンピュータを備える情報処理装置によって実行される情報処理プログラムであって、前記コンピュータに、
     移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得ステップと、
     前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成ステップと、
     を実行させ、
     前記ナレッジ生成ステップにおいて、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを実行させるための情報処理プログラム。
    An information processing program executed by an information processing device having a computer, the information processing program comprising:
    a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information including post contents posted from a mobile object and a post location where the post was made are classified based on the post location for each type of the post contents;
    a knowledge generating step of generating knowledge for each of the posts based on the posting position and the type of the posting content;
    Run the command,
    An information processing program for causing the step of generating the knowledge in the form of any one of a point, an area, or a line based on the type of the posted content in the knowledge generating step.
  12.  コンピュータを備える情報処理装置に、
     移動体から投稿された投稿内容及び当該投稿がなされた位置である投稿位置を含む複数の投稿情報が前記投稿内容の種別毎に前記投稿位置に基づいて分けられた1又は複数の投稿群を取得する投稿群取得ステップと、
     前記投稿群毎に、前記投稿位置及び前記投稿内容の種別に基づくナレッジを生成するナレッジ生成ステップと、
     を実行させ、
     前記ナレッジ生成ステップにおいて、前記投稿内容の種別に基づいて点、領域又は線のいずれかの態様で前記ナレッジを生成することを実行させるための情報処理プログラムを記憶するコンピュータが読み取り可能な記憶媒体。
     
    An information processing device including a computer,
    a post group acquisition step of acquiring one or more post groups in which a plurality of pieces of post information including post contents posted from a mobile object and a post location where the post was made are classified based on the post location for each type of the post contents;
    a knowledge generating step of generating knowledge for each of the posts based on the posting position and the type of the posting content;
    Run the command,
    A computer-readable storage medium that stores an information processing program for executing, in the knowledge generation step, generating the knowledge in the form of any one of a point, an area, or a line based on the type of the posted content.
PCT/JP2023/010266 2023-03-16 2023-03-16 Information processing device, information processing method, information processing program, and storage medium WO2024189877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010266 WO2024189877A1 (en) 2023-03-16 2023-03-16 Information processing device, information processing method, information processing program, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010266 WO2024189877A1 (en) 2023-03-16 2023-03-16 Information processing device, information processing method, information processing program, and storage medium

Publications (1)

Publication Number Publication Date
WO2024189877A1 true WO2024189877A1 (en) 2024-09-19

Family

ID=92754804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010266 WO2024189877A1 (en) 2023-03-16 2023-03-16 Information processing device, information processing method, information processing program, and storage medium

Country Status (1)

Country Link
WO (1) WO2024189877A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054484A (en) * 2008-08-29 2010-03-11 Dainippon Printing Co Ltd Navigation system, navigation device, navigation method, and navigation program
JP2014203437A (en) * 2013-04-10 2014-10-27 富士通株式会社 Case example information processing method, case example information processing program, and information processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054484A (en) * 2008-08-29 2010-03-11 Dainippon Printing Co Ltd Navigation system, navigation device, navigation method, and navigation program
JP2014203437A (en) * 2013-04-10 2014-10-27 富士通株式会社 Case example information processing method, case example information processing program, and information processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SASATANI YASUYUKI, KUEIYAMA TAKEHISA, WATANABE KOJI, SATO YUKI, YAKUSIJIN YUKI: "Project of "Make Bicycle Safety Map Together"", vol. 25, 16 October 2016 (2016-10-16), XP093210287 *

Similar Documents

Publication Publication Date Title
US10867510B2 (en) Real-time traffic monitoring with connected cars
US10586118B2 (en) Localizing traffic situation using multi-vehicle collaboration
US10262234B2 (en) Automatically collecting training data for object recognition with 3D lidar and localization
CN107228676B (en) Map updates from connected vehicle queues
US8885039B2 (en) Providing vehicle information
JP6468062B2 (en) Object recognition system
WO2017110002A1 (en) Forecasting device, forecasting system, forecasting method, and forecasting program
WO2008020517A1 (en) Navigation device, navigation server, and navigation system
EP3708961A1 (en) System and method and map for determining a driving route of a vehicle
CN111462519B (en) Guidance device, guidance method, and storage medium
US9374803B2 (en) Message notification system, message transmitting and receiving apparatus, program, and recording medium
CN102646333A (en) Detection information management system, vehicle terminal, and detection information management device
JP2019079454A (en) Vehicle control system, function notification apparatus, function notification method, and computer program
CN111033596A (en) Vehicle control system, vehicle control method, and program
JP2020008436A (en) Route information assistance device and route information assistance system
US20070115433A1 (en) Communication device to be mounted on automotive vehicle
JP2009252164A (en) Server apparatus, navigation apparatus, traffic information providing system and method
JP4619442B2 (en) Image display device, display control method, display control program, and recording medium
TW202315773A (en) Method and system for adaptively prompting auxiliary driving information
WO2024189877A1 (en) Information processing device, information processing method, information processing program, and storage medium
JP2019121233A (en) On-vehicle information processing device
JP2007263755A (en) Communication device, communication relay installation, communication method, communication program and recording medium
JP2017182418A (en) Driving assisting device and driving support system
JP2024131360A (en) Information processing device, information processing method, information processing program, and storage medium
US12119873B2 (en) System and method for determining actions of a vehicle by visible light communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23927496

Country of ref document: EP

Kind code of ref document: A1