Nothing Special   »   [go: up one dir, main page]

WO2024185660A1 - Multilayer electronic component and method for producing same - Google Patents

Multilayer electronic component and method for producing same Download PDF

Info

Publication number
WO2024185660A1
WO2024185660A1 PCT/JP2024/007665 JP2024007665W WO2024185660A1 WO 2024185660 A1 WO2024185660 A1 WO 2024185660A1 JP 2024007665 W JP2024007665 W JP 2024007665W WO 2024185660 A1 WO2024185660 A1 WO 2024185660A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
site
ratio
side margin
amount
Prior art date
Application number
PCT/JP2024/007665
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 福田
祐太 岡▲崎▼
夢香 妹尾
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024185660A1 publication Critical patent/WO2024185660A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the multilayer electronic component is, for example, a multilayer ceramic capacitor.
  • Patent Document 1 A multilayer ceramic capacitor having a plurality of dielectric layers and a plurality of internal electrodes alternately stacked is known (for example, see Patent Document 1 below).
  • the dielectric layers are mainly composed of BaTiO 3 crystal particles (hereinafter, sometimes referred to as "BT particles”) and (Ba 1-x Ca x )TiO 3 crystal particles (hereinafter, sometimes referred to as "BCT particles”) in which part of the Ba in BaTiO 3 is replaced with Ca.
  • BT particles BaTiO 3 crystal particles
  • BCT particles Ba 1-x Ca x
  • Patent Document 1 proposes that when the total amount of Ba and Ca is A moles and the total amount of Ti is B moles, A/B ⁇ 1.003.
  • the contents of Patent Document 1 may be incorporated by reference in this disclosure.
  • a multilayer electronic component includes a laminate and a side margin portion.
  • the laminate includes effective portions and internal electrodes that are alternately stacked.
  • the side margin portion overlaps a side surface of the laminate along the stacking direction.
  • the effective portion and the side margin portion are both made of polycrystalline ceramics.
  • the polycrystalline ceramics include barium titanate-based BT-based particles having a perovskite structure represented by a composition formula ABO3 .
  • the A site of the BT-based particles includes Ba.
  • the B site of the BT-based particles includes Ti.
  • the value obtained by dividing the amount of substance of the element at the A site in the BT-based particles by the amount of substance of the element at the B site is referred to as the A/B ratio. In this case, the A/B ratio of the side margin portion is smaller than the A/B ratio of the effective portion.
  • a method for manufacturing a multilayer electronic component includes a molding step of obtaining a molded body and a firing step of firing the molded body.
  • the molded body includes a laminate and a second ceramic green sheet.
  • the laminate includes first ceramic green sheets and a conductive paste that are alternately stacked.
  • the second ceramic green sheet overlaps a side of the laminate along the stacking direction.
  • the first ceramic green sheet and the second ceramic green sheet both include a barium titanate-based BT-based powder having a perovskite structure represented by a composition formula ABO3 .
  • the A site of the BT-based powder includes Ba.
  • the B site of the BT-based powder includes Ti.
  • the value obtained by dividing the amount of substance of the element at the A site in the BT-based powder by the amount of substance of the element at the B site is referred to as the A/B ratio.
  • the A/B ratio of the second ceramic green sheet is smaller than the A/B ratio of the first ceramic green sheet.
  • FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 2 is a cross-sectional view taken along line III-III in FIG. 2 is a flowchart showing the steps of a method for manufacturing the capacitor of FIG. 1 .
  • 1 is a table showing specifications of capacitors according to examples and comparative examples.
  • 13 is a table showing specifications of a capacitor according to another embodiment.
  • Fig. 1 is a perspective view showing a capacitor 1 (an example of a multilayer electronic component) according to an embodiment.
  • a Cartesian coordinate system xyz is attached to Fig. 1 and other figures described later.
  • the capacitor 1 may be used with either side being the upper or lower.
  • the +z side may be regarded as the upper side, and terms such as the upper surface and the lower surface may be used.
  • the capacitor 1 has, for example, a roughly rectangular parallelepiped body 3 and a pair of external electrodes 5 located at both ends of the body 3.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1.
  • the main body 3 has effective portions 7 and internal electrodes 9 that overlap each other. More specifically, in the illustrated example, an internal electrode 9 connected to one external electrode 5 faces an internal electrode 9 connected to the other external electrode 5 via the effective portion 7.
  • the effective portion 7 is a dielectric.
  • the dielectric is made of polycrystalline ceramics. With this configuration, a multilayer ceramic capacitor is realized.
  • the portion made up of the multiple effective portions 7 and multiple internal electrodes 9 is referred to as the laminate 11.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1.
  • FIG. 3 also shows an enlarged view of a portion of the dielectric that constitutes the main body 3.
  • the main body 3 has a side margin 13 that overlaps the side surface of the laminate 11 along the stacking direction.
  • the side margin 13 is made of polycrystalline ceramics (dielectric).
  • the side margin 13 contributes, for example, to insulating the internal electrode 9 from the outside and/or improving the strength of the main body 3.
  • the dielectric has, for example, crystal grains (17) and grain boundary layers 19 between the crystal grains.
  • the crystal grains are composed of barium titanate (BaTiO 3 )-based crystal grains (hereinafter sometimes referred to as "BT-based grains 17").
  • the BT-based particles 17 have a perovskite structure and are represented by the composition formula ABO3 .
  • the main element in the A site is Ba.
  • Ba occupies 70 mol % or more of the A site.
  • the main element in the B site is Ti.
  • Ti occupies 90 mol % or more of the B site.
  • the BT-based particles 17 are a material in which part of Ba is not substituted or is substituted with other elements in BaTiO3 , and part of Ti is not substituted or is substituted with other elements.
  • the O in ABO3 is oxygen. However, a part of the O may be substituted. From this, the O in ABO3 may be regarded as indicating an O site, not oxygen. However, in the description of the embodiment, unless otherwise specified, or unless a contradiction occurs, the O may be regarded as indicating oxygen.
  • Elements used to partially replace Ba include, for example, elements that belong to Group 2 like Ba (e.g., Ca, Sr, and Mg).
  • Elements used to partially replace Ti include, for example, elements that belong to Group 4 like Ti (e.g., Zr and Hf).
  • the amount of substance of an element contained in the A site is A moles.
  • the amount of substance of an element contained in the B site is B moles.
  • the value (A/B) obtained by dividing the former by the latter is called the A/B ratio. From the composition formula ABO3 , the A/B ratio is 1, but the BT-based particles 17 can have an A/B ratio other than 1. From another perspective, for example, in a part of the BT-based particles 17, a perovskite structure strictly conforming to theory is not formed.
  • the A/B ratio of the side margin portion 13 is smaller than the A/B ratio of the effective portion 7.
  • the reasons for this are, for example, as follows.
  • a ceramic green sheet that will become the active portion 7 and a conductive paste that will become the internal electrode 9 are laminated to create the laminate 11 before firing.
  • a ceramic green sheet that will become the side margin portion 13 is attached to the side surface of the laminate 11 before firing to form a molded body. The molded body is then fired.
  • the effective portion 7 is easier to sinter than the side margin portion 13 during firing. Therefore, for example, if firing conditions are set to match the effective portion 7, the side margin portion 13 may not sinter sufficiently, resulting in a decrease in the strength of the side margin portion 13.
  • the reason why the effective portion 7 is easier to sinter than the side margin portion 13 is, for example, that the conductive paste that becomes the internal electrode 9 shrinks, causing stress to be applied to the effective portion 7.
  • the ceramic material before firing becomes easier to sinter. Therefore, when the A/B ratio of the side margin portion 13 is made small compared to the A/B ratio of the effective portion 7, the degree of sintering of the side margin portion 13 and the effective portion 7 becomes closer. As a result, for example, even under firing conditions that are suited to the effective portion 7, the side margin portion 13 is sufficiently sintered, and the strength of the side margin portion 13 is improved.
  • the above means that the firing conditions for the effective portion 7 can be made suitable for the effective portion 7. As a result, for example, it is possible to improve the characteristics related to the temperature dependency of capacitance and improve the insulation of the effective portion 7 while maintaining the thermal shock resistance of the side margin portion 13.
  • thermal shock resistance of the side margin portion 13 is improved, for example, it is possible to make the side margin portion 13 thinner while still maintaining a certain level of thermal shock resistance of the main body portion 3. As a result, it becomes easier to miniaturize the capacitor 1. From another perspective, it is possible to increase the volume of the laminate 11 relative to the size of the capacitor 1, thereby increasing the capacitance.
  • Capacitor Structure (FIGS. 1 to 3) 1.1. Structure of the illustrated example 1.2. Structure of examples other than the illustrated example 2.
  • Manufacturing method (Fig. 4) 3.1. Manufacturing procedure 3.2. Manufacturing method of dielectric 3.3. Setting method of A/B ratio 4.
  • the first embodiment in Chapter A and the other embodiments in Chapter B differ from each other in the specific composition of the barium titanate-based BT particles 17. All other matters are basically similar to each other. Therefore, for the embodiments described later, basically only the differences from the previously described embodiments will be described. Matters that are not specifically mentioned may be considered to be the same as the previously described embodiments or may be inferred from the previously described embodiments.
  • the capacitor 1 has a pair of cover portions 15 (reference numbers in Figs. 2 and 3) that overlap the upper and lower surfaces of the laminate 11.
  • the cover portions 15 are made of, for example, BT-based polycrystalline ceramics, similar to the active portion 7 and side margin portion 13.
  • the cover portions 15 contribute to insulating the internal electrode 9 from the outside and/or improving the strength of the main body portion 3.
  • the shape of the main body 3 (or the entire capacitor 1; the same applies hereinafter in this paragraph) is roughly rectangular.
  • the height (length in the z direction) of this rectangular parallelepiped may be equal to (as in the illustrated example) or smaller than the width (length in the y direction).
  • the length (x direction) of the rectangular parallelepiped is, for example, greater than the width.
  • the dimensions of the main body 3 are arbitrary. Examples of relatively small dimensions include a length of 0.4 mm or more and 3.2 mm or less, and a width and height of 0.2 mm or more and 2.5 mm or less.
  • the effective portion 7 is basically a layer having a constant thickness (at least between the internal electrodes 9).
  • the thickness of the effective portion 7 may be set appropriately depending on the characteristics required of the capacitor 1. Examples of relatively thin thicknesses include a thickness of 3 ⁇ m or less or 1 ⁇ m or less.
  • the planar shape of the effective portion 7 is arbitrary, and is rectangular in the illustrated example.
  • the multiple effective portions 7 have, for example, the same shape, size, and material as each other.
  • the number of layers of the effective portions 7 (internal electrodes 9) is arbitrary.
  • the internal electrode 9 is a layer having a certain thickness.
  • the thickness of the internal electrode 9 is arbitrary, and is, for example, thinner than the thickness of the effective portion 7.
  • the internal electrode 9 overlaps the entire surface of the effective portion 7, except for the external electrode 5 side (-x side or +x side) to which it is not connected. Therefore, the outer edge of the internal electrode 9 is exposed to the side of the laminate 11 from three sides (three sides) excluding the -x side or +x side.
  • the planar shape of the internal electrode 9 is a rectangular shape obtained by excluding the area on the -x side or +x side in the planar shape of the effective portion 7.
  • the width (length in the x direction) of the above-mentioned area on the -x side or +x side is arbitrary.
  • the material of the internal electrode 9 is, for example, a base metal. Examples of base metals include Ni and Cu.
  • the multiple internal electrodes 9 have, for example, the same shape, size, and material as each other.
  • the side margin portion 13 is generally a layer having a constant thickness. However, the corners on the outside of the main body portion 3 may be rounded.
  • the thickness of the side margin portion 13 is arbitrary, and may be thicker (as in the illustrated example), equal to, or thinner than the thickness of the effective portion 7.
  • An example of a relatively thin thickness is 30 ⁇ m or less.
  • the side margin portion 13 covers not only the -y or +y side of the laminate 11, but also the side of the upper and lower cover portions 15. In other words, the side margin portion 13 constitutes the entire -y or +y side of the main body portion 3.
  • a pair of side margin portions 13 have, for example, the same shape, size, and material as each other.
  • the cover portion 15 is generally in the form of a layer having a constant thickness.
  • the thickness of the cover portion 15 is arbitrary, and may be, for example, thicker (in the illustrated example), equal to, or thinner than the thickness of the active portion 7, or thicker (in the illustrated example), equal to, or thinner than the thickness of the side margin portion 13.
  • An example of a relatively thin thickness is 30 ⁇ m or less.
  • the cover portion 15 covers the entire upper or lower surface of the laminate 11.
  • a pair of cover portions 15 have, for example, the same shape, size, and material as each other.
  • the top or bottom layer of the laminate 11 may be the internal electrode 9 (in the illustrated example) or the active portion 7.
  • the cover portion 15 may overlap the internal electrode 9 (in the illustrated example) or the active portion 7.
  • the external electrode 5 is generally a layer covering the longitudinal end of the main body 3 across five faces of the rectangular parallelepiped.
  • the external electrode 5 is connected to the edge of the internal electrode 9 that is exposed from the side surface on the -x side or +x side of the laminate 11.
  • the thickness of the external electrode 5 is arbitrary.
  • the external electrode 5 may be formed, for example, by stacking layers made of different materials.
  • the external electrode 5 is joined to a pad on a circuit board or the like, for example, by a conductive bonding material such as solder. In this way, the capacitor 1 is mounted on the circuit board or the like.
  • the capacitor 1 may have an exterior resin that covers the entire structure shown in the figure, and a lead wire that is connected to the external electrode 5 and extends from the exterior resin. Also, a groove extending in the z direction may be formed on the side surface of the main body 3 in the y direction and/or x direction, and a part or all of the external electrode may be formed by a metal filled or deposited in this groove. As described above, the configuration for mounting the capacitor 1 is arbitrary. Also, as can be understood from the above, the side surface of the laminate 11 covered by the side margin portion 13 does not have to be a side surface along the longitudinal direction of the laminate 11, and does not have to be a side surface on which an external electrode is not provided.
  • the capacitor 1 does not have to have a cover portion 15.
  • the top or bottom internal electrode 9 may be covered by the effective portion 7.
  • the effective portion 7 covering the top or bottom internal electrode 9 may be considered to be a cover portion 15 made of the same material as the effective portion 7 between the internal electrodes 9.
  • the internal electrodes 9 connected to different external electrodes 5 do not have to face each other. That is, the capacitor 1 does not have to have a plurality of parallel plate capacitors connected in parallel to each other.
  • an internal electrode 9 connected to one external electrode 5 and an internal electrode 9 connected to the other external electrode 5 may be provided in different regions of the same layer. Then, an internal electrode 9 may be provided that faces both of these internal electrodes 9 and is not connected to either external electrode 5.
  • the capacitor 1 may include two parallel plate capacitors connected in series. In the above example, the number of parallel plate capacitors connected in series is two, but three or more parallel plate capacitors may be connected in series.
  • the internal electrodes 9 connected to different external electrodes 5 may be arranged to face each other in alternating pairs, rather than one at a time.
  • the thickness of the effective portion 7 between the internal electrodes 9 that are connected to the same external electrode 5 and face each other may be thinner than the thickness of the effective portion 7 between the internal electrodes 9 that are connected to different external electrodes 5 and face each other.
  • the multiple effective portions 7 do not have to have the same shape and size.
  • the internal electrode 9 does not have to be exposed from the side surface (the -y side or the +y side side) over the entire length (the entire length in the x direction) of the side surface covered by the side margin portion 13 of the laminate 11. For example, only a portion of the internal electrode 9 may be exposed from the side surface. Also, as can be understood from the various aspects of the external electrode 5 described above, the entire internal electrode 9 does not have to be exposed from the side surface.
  • the crystal grains of the dielectric material constituting the effective portion 7, the side margin portion 13, and the cover portion 15 are BT-based grains 17.
  • the BT-based grains 17 are composed of the following two types of crystal grains.
  • BaTiO3 crystal particles hereinafter sometimes referred to as "BT particles”
  • Ba1 - xCaxTiO3 crystal particles hereinafter sometimes referred to as "BCT particles”
  • Ba, Ca, Ti and O may be referred to as "major component elements”.
  • BT particles have a higher dielectric constant than, for example, BCT particles.
  • BCT particles are advantageous in reducing the temperature dependency of the dielectric constant and/or reducing the DC bias characteristics (change (reduction) in effective capacitance due to application of a direct current voltage) compared to, for example, BT particles. Therefore, by combining the two, it is possible to obtain the advantages of both.
  • the dielectric may contain appropriate elements in addition to the main component elements.
  • the dielectric may contain Mg, rare earth elements (hereinafter sometimes referred to as "RE"), Mn, Cr and/or V.
  • the RE contained in the dielectric may be, for example, one or more selected from La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb, Lu and Sc.
  • Mg, RE, Mn, Cr and V may be referred to as the "first minor component element" for convenience.
  • the elements of the first minor component are added, for example, as a mixed powder of dielectrics to the powder that will become the BT-based particles 17.
  • Mg and RE for example, contribute to the formation of a core-shell structure.
  • the core-shell structure is a structure in which the above elements (Mg and RE) are unevenly distributed on the surface side of the crystal particles (here, BT particles and BCT particles) rather than the center.
  • the core-shell structure for example, reduces the temperature dependence of the relative dielectric constant and/or reduces the DC bias characteristics.
  • Mn, Cr, and V for example, compensate for oxygen defects in the crystal particles and contribute to improving the insulation properties and high-temperature load life.
  • a portion of the elements of the first subcomponent is dissolved in the BT-based particles 17, and the other portion is located in the grain boundary layer 19.
  • these elements exist, for example, as amorphous matter.
  • the amount dissolved in the BT-based particles 17 or the amount located in the grain boundary layer 19 may be greater, and for example, the former may be greater.
  • each particle may contain elements of the subcomponent (first subcomponent or other subcomponent) in solid solution.
  • the subcomponent first subcomponent or other subcomponent
  • it is acceptable that a part of the crystal structure is formed as if Ba or Ti is replaced by the element of the subcomponent.
  • the amount of the subcomponent element is relatively small. Therefore, for example, even if Ba or Ti is replaced by the subcomponent element, the effect of the subcomponent may be ignored in the explanation (described later) of the amount (mass % and mol % etc.) of the BT-based particles 17 (BT particles or BCT particles).
  • the mass % or mol % of the BT-based particles 17 (for example, the % of the element in the BT-based particles 17 or the % of the BT-based particles 17 in the dielectric) may be the value before the subcomponent element is solid-dissolved in the BT-based particles 17.
  • the mass % or mol % of the BT-based particles 17 may be considered to be the value after solid solution.
  • crystal particles in which the main component element is largely replaced by the subcomponent element may be regarded as a type of BT-based particle 17 (or a non-BT-based crystal particle) different from BT particles and BCT particles.
  • the amount of replacement (not simply the amount of solid solution) is 1.0 mol % or more or 0.5 mol % or more, it may be regarded as another type of BT-based particle 17.
  • the amount of Ba replacement and the amount of Ti replacement of BT particles may be less than 0.5 mol %. Note that, for convenience, in the explanation of the first embodiment, the explanation may be made on the assumption that the crystal particles of the dielectric constituting the effective portion 7, the side margin portion 13, and the cover portion 15 are only BT particles and BCT particles, unless otherwise specified.
  • the dielectric may contain minor components (hereinafter sometimes referred to as "impurities") other than the main component element and the first minor component element.
  • Impurities may include, for example, those derived from glass powder mixed in during the manufacturing process of the dielectric (e.g., aluminum).
  • the dielectrics constituting the effective portion 7, the side margin portion 13, and the cover portion 15 may be the same or different in terms of properties other than the A/B ratio. However, for the sake of convenience, in the description of the embodiment, unless otherwise specified, properties other than the A/B ratio are assumed to be the same for each portion.
  • the BT-based particles 17 are as follows. (a1) Amount of BT-based particles 17 (a1-1) 90% by mass or more, 95% by mass or more, or 98% by mass or more of the dielectric (a1-2) 95% by mass or more, 98% by mass or more, or 100% by mass (excluding minor errors) of all crystal particles (not necessarily BT-based) contained in the dielectric, and/or 95 mol % or more, 98 mol % or more, or 100 mol % or more (excluding minor errors) (a2) Total amount of BT particles and BCT particles: 95% by mass or more, 98% by mass or more, or 100% by mass (minor errors excluded) of the BT-based particles 17, and/or 95 mol % or more, 98 mol % or more, or 100 mol % or more (minor errors excluded) (a3) Relationship between the amount of BT particles and the amount of BCT particles (a3-1) Area ratio of BT particles to BCT particles in a cross section or surface of a
  • the particle size is relatively small, so that it is easy to make the dielectric layer (e.g., the effective portion 7) thin.
  • the dielectric layer e.g., the effective portion 7
  • the particle size is relatively small, so that it is easy to make the dielectric layer (e.g., the effective portion 7) thin.
  • the relative dielectric constant since a certain degree of particle size is ensured, it is easy to ensure the relative dielectric constant.
  • the elements of the first subcomponent are as follows. In the following, the parts by mass are shown when the BT-based particles 17 are taken as 100 parts by mass. The above 100 parts by mass does not include the amount of the elements of the subcomponents (e.g., the first subcomponent) dissolved in the BT-based particles 17. However, as can be seen from the ranges below, the amount of the elements of the first subcomponent dissolved in the BT-based particles 17 is relatively small, so the amount of the elements of the first subcomponent dissolved in the BT-based particles 17 may be included in the 100 parts by mass. In the following, the amount of oxide corresponding to the amount of each element is shown, assuming that each element constitutes an oxide.
  • the temperature dependence of the dielectric constant can be reduced, and/or the likelihood of dielectric breakdown occurring when a voltage is applied at high temperatures can be reduced.
  • the amount of the first subcomponent element dissolved in the BT-based particles 17 may be the same for the BT particles and the BCT particles, or may be different.
  • the mass percentage of the first subcomponent element contained in the BCT particles may be greater than the mass percentage of the first subcomponent element contained in the BT particles.
  • the effects of increasing the relative dielectric constant, reducing the temperature dependency of the relative dielectric constant, improving insulation when a high voltage is applied at high temperatures, and improving thermal shock resistance are achieved.
  • the amount of impurities may be, for example, less than 2 parts by mass or less than 1 part by mass per 100 parts by mass of the BT-based particles 17. Furthermore, when aluminum is present as an impurity, the amount of aluminum may be less than 1% by mass of the dielectric.
  • the A/B ratio is a value obtained by dividing the amount of substance of the element in the A site by the amount of substance of the element in the B site in the BT-based particle 17.
  • the element refers to the element of the main component.
  • it refers to Ba and Ti of the BT particles, and Ba, Ca, and Ti of the BCT particles. Even though an element may be substituted for either the A site or the B site element, it is not used in calculating the A/B ratio.
  • the main component element can be expressed as follows.
  • the main component element in the A site is Ba or an element substituted for Ba in a significant amount in the BT-based particles 17 (Ca in the first embodiment). Examples of a significant amount include 1.0 mol% or more, or 0.5 mol% or more (the same applies below).
  • the main component element in the B site is Ti or an element substituted for Ti in a significant amount in the BT-based particles 17.
  • the amount of substance A (mol) of an element at the A site is the sum of the amount of substance Ba in the BT particles and the amounts of substance Ba and Ca in the BCT particles.
  • the amount of substance B (mol) of an element at the B site is the sum of the amount of substance Ti in the BT particles and the amount of substance Ti in the BCT particles.
  • the A/B ratio is a value in the BT-based particles 17, and the amounts of elements at the A site and B site in the grain boundary layer 19 are not taken into consideration.
  • the A/B ratio may be the same for the BT particles and the BCT particles, or may be different. Also, whether it is the former or the latter may be the same for the sites (7, 13, and 15) or may be different. In any case, what is compared is the A/B ratio for the entire BT-based particles 17, which includes the BT particles and the BCT particles.
  • the average A/B ratio averaged by volume may be compared with the A/B ratios of other portions. If the A/B ratios differ depending on the portion within the side margin portion 13, the average A/B ratio averaged by volume may be used. The same applies to the cover portion 15. However, in any case, portions that occupy a relatively small volume and show a unique A/B ratio value may be excluded from consideration.
  • the A/B ratio may be determined, for example, from the weighing of the raw material of the BT-based particles 17 before the powder that will become the BT-based particles 17 is produced. However, the A/B ratio may also be determined by analysis after production. Furthermore, whether or not the technology disclosed herein has been used can be determined if the A/B ratio can be compared between the effective portion 7 and the side margin portion 13. Therefore, the value of the A/B ratio itself does not need to be strictly identifiable.
  • A/B ratio of the effective portion 7 A/B_E A/B ratio of the side margin portion 13: A/B_S A/B ratio of the cover portion 15: A/B_C ⁇ A/B_E-A/B_S (difference in A/B ratio): ⁇ R_S ⁇ A/B_E-A/B_C (difference in A/B ratio): ⁇ R_C
  • A/B_S is smaller than A/B_E.
  • A/B_C may be smaller than, equal to, or larger than A/B_E.
  • the case where A/B_C ⁇ A/B_E may be taken as an example unless otherwise specified.
  • the thermal shock resistance of the cover portion 15 is improved, similar to the side margin portion 13.
  • A/B_S may be larger than, equal to, or smaller than A/B_C.
  • ⁇ R_S (2.3.2. A/B ratio of side margin)
  • ⁇ R_S may be set to 0.010 or less.
  • ⁇ R_S it is sufficient to specify the value to a degree necessary and sufficient to determine whether it is within a specified range. For example, it is sufficient to obtain a significant value in the least significant digit (three decimal places in the above case). Conversely speaking, it is not necessary to specify a value with a digit smaller than the least significant digit, such as 0.0104. Furthermore, if a value with a digit smaller than the least significant digit is specified, that value may be rounded off. For example, if ⁇ R_S is 0.010 or less, the range includes 0.0104 and does not include 0.0105. The same applies to other parameters other than ⁇ R_S.
  • A/B_S ⁇ A/B_E the magnitudes of these values are arbitrary.
  • any of (i) to (iii) may be selected.
  • A/B_S can be smaller than 0.997.
  • A/B_E can be larger than 1.007.
  • the boundary between A/B_S and A/B_E can be smaller or larger than 1.003.
  • the magnitude relationship between A/B_S and A/B_C is arbitrary.
  • the two may be the same.
  • the raw materials for both are the same, improving productivity.
  • the difference between the two may be, for example, 0.010 or less, similar to ⁇ R_S and ⁇ R_C. In this range, for example, sintering tends to proceed in the same way in the side margin portion 13 and the cover portion 15.
  • the method for manufacturing the capacitor 1 may be various methods, and may be the same as a known method, for example, except that the A/B ratio is set depending on the portion. An example is shown below.
  • FIG. 4 is a flowchart showing an example of the steps in the manufacturing method for the capacitor 1.
  • a first laminate is produced.
  • the first laminate is made up of a plurality of parts that will become laminates 11 arranged along a plane and connected to each other.
  • the first laminate is made up of alternating layers of ceramic green sheets, including parts that will become a plurality of effective portions 7, and conductive paste that will become a plurality of internal electrodes 9.
  • step ST2 a ceramic green sheet including portions that will become multiple cover portions 15 (in other words, a ceramic green sheet that overlaps almost the entire first laminate) is placed on the top and bottom surfaces of the first laminate to produce a second laminate.
  • step ST3 the second laminate is singulated (divided) into portions that will become a plurality of capacitors 1 (more precisely, laminate 11 and cover portion 15). Singulation is achieved, for example, by cutting (dicing) using a blade or laser.
  • the division surface (cut surface) along the zx plane is the surface that will become the side surface of laminate 11 that will be covered by side margin portion 13.
  • the conductive paste that will become a plurality of internal electrodes 9 is exposed from this cut surface.
  • the division surface (cut surface) along the yz plane is the surface that will become the side surface (end surface) of laminate 11 that will be covered by external electrode 5.
  • the conductive paste that will become a plurality of internal electrodes 9 is exposed from this cut surface every other layer.
  • either side may simply be cut.
  • polishing, grinding, or other processing may also be performed.
  • the conductive paste may be exposed by cutting alone, or may be exposed by the above processing without being exposed by cutting.
  • the cut surface along the yz plane may be polished or ground after firing, which will be described later, thereby exposing the internal electrode 9 to the outside.
  • step ST4 the ceramic green sheet that will become the side margin portion 13 is attached to the side along the zx plane of the piece (the molded body that will become the laminate 11 and cover portion 15) obtained in step ST3.
  • the ceramic material may be disposed on the side of the molded body by spraying and/or dipping. It may be considered that the ceramic green sheet that will become the side margin portion 13 is formed by this spraying and/or dipping.
  • step ST5 the molded body that will become the main body 3 (laminated body 11, cover 15, and side margin 13) is fired. This produces the main body 3.
  • step ST6 the external electrode 5 is formed. That is, a metal layer is formed on the side surfaces along the yz plane of the main body 3.
  • step ST4 is omitted and the side margin portion 13 is formed by the outer edge portion of the ceramic green sheet that will become the effective portion 7.
  • the molded body that is singulated in step ST3 has a portion that will become the laminate 11, the cover portion 15, and the side margin portion 13. From another perspective, the conductive paste that will become the internal electrode 9 is not exposed from the side surface (cut surface) along the zx plane.
  • the width (length in the y direction) of the side margin portion 13 includes a margin that takes into account the above-mentioned errors so that the conductive paste that will become the internal electrodes 9 is not exposed from the side surface (cut surface) along the zx plane.
  • the procedure that includes step ST4 there is no need to take such a margin into account. As a result, it is easy to make the side margin portion 13 thinner.
  • the effective portion 7 and the side margin portion 13 are fabricated separately from each other. Therefore, to make the A/B ratio different between the effective portion 7 and the side margin portion 13, the A/B ratio of the ceramic material prepared for the effective portion 7 and the side margin portion 13 may be made different from each other.
  • A-site elements may be injected into the outer edge region of the ceramic green sheet (the portion that will become the side margin portion 13), and conversely, B-site elements may be injected into the central region (the portion that will become the effective portion 7).
  • the method for manufacturing a dielectric includes a step of producing a ceramic green sheet and a step of firing a molded body produced using the ceramic green sheet.
  • the ceramic green sheet includes a step of producing a ceramic slurry and a step of forming the ceramic slurry into a sheet shape by an appropriate sheet forming method (e.g., a doctor blade method or a die coater method).
  • the ceramic slurry is produced, for example, by mixing a BT-based powder, which is the material of the BT-based particles 17, an additive (e.g., a sintering aid) containing an element of a minor component (e.g., a first minor component), and a binder and/or a solvent.
  • the BT-based powder is the material of the BT-based particles 17, so the description of the composition of the BT-based particles 17 may be appropriately applied to the BT-based powder.
  • the BT-based powder has a barium titanate-based crystal having a perovskite structure represented by the composition formula ABO 3.
  • the BT-based powder includes a BT powder that is the material of the BT particles and a BCT powder that is the material of the BCT particles.
  • the BT particles have a crystal represented by BaTiO 3.
  • the BCT powder has a crystal represented by (Ba 1-x Ca x ) TiO 3.
  • the BT-based powder does not have a solid solution of the element of the first subcomponent.
  • the BT-based powder is produced by mixing and synthesizing compounds containing A-site and B-site elements. At this time, the amount of the compound is set so that a desired composition is obtained. For example, in the production of BCT particles, the ratio of the amount of the compound containing Ba to the amount of the compound containing Ca is set so that x in Ba 1-x Ca x has a desired value.
  • the BT-based powder may be obtained by a synthesis method selected from a solid-phase method, a liquid-phase method (including a method of producing via oxalate), a hydrothermal synthesis method, and the like. In addition, when the hydrothermal synthesis method is used, it is easy to narrow the particle size distribution of the powder and increase the crystallinity.
  • the diameter of the BT-based powder is arbitrary as long as it is equal to or smaller than the diameter of the BT-based particles 17. For example, it may be 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the crystallinity of the BT-based powder may be, for example, when evaluated using X-ray diffraction, such that the ratio of the peak of index (001) P AA indicating a tetragonal crystal to the peak of index (100) P BB indicating a cubic crystal, P AA /P BB , is 1.1 or more.
  • the amount of the additive containing an element of the first minor component may be set, for example, so as to realize the parts by mass of each element relative to the parts by mass of the BT-based particles 17 described in Section 2.2.
  • the additive containing an element of the first minor component may be, for example, an oxide or a carbonate.
  • glass powder As an additive other than the additive containing the element of the first subcomponent, for example, glass powder may be used.
  • the glass powder may be composed of, for example, Li 2 O, SiO 2 , BaO, and CaO.
  • the amount of glass powder added may be, for example, 0.7 parts by mass or more and 2.0 parts by mass or less when the mass of the BT-based powder is 100 parts by mass.
  • the composition may be, in mol%, Li 2 O is 5 to 15, SiO 2 is 40 to 60, BaO is 10 to 30, and CaO is 10 to 30.
  • the content of alumina contained in the glass powder may be 0.1 mass% or less.
  • binder and/or solvent examples include organic resins (e.g., polyvinyl butyral resins), toluene, and alcohol.
  • organic resins e.g., polyvinyl butyral resins
  • toluene e.g., polyvinyl butyral resins
  • alcohol e.g., ethanol
  • the binder and/or solvent essentially disappears upon firing.
  • the A/B ratio is realized by adjusting the mixing ratio between the amount of the compound containing the A site element and the amount of the compound containing the B site element according to the desired A/B ratio when preparing the BT-based particles.
  • the mixing ratio depending on the site (7, 13, and 15)
  • different A/B ratios are realized for the sites.
  • EXAMPLES 5 and 6 are diagrams showing the specifications of the capacitors according to the examples and the comparative examples.
  • FIG. 5 mainly shows examples and comparative examples in which the values of A/B_E and A/B_S are different from each other. It is shown that A/B_S ⁇ A/B_E improves the thermal shock resistance and the like in the side margin portion 13.
  • FIG. 6 mainly shows examples in which the values of A/B_E and A/B_C are different from each other. It is shown that A/B_C ⁇ A/B_E improves the thermal shock resistance and the like in the cover portion 15. Specifically, it is as follows.
  • the "A/B_E”, “A/B_S”, “ ⁇ R_S” and “A/B_C” columns indicate the values of each parameter.
  • the "W ( ⁇ m)” column indicates the value ( ⁇ m) of the width of the side margin portion 13 (the length in the y direction as shown in FIG. 3).
  • the “t ( ⁇ m)” column indicates the value ( ⁇ m) of the thickness of the cover portion 15 (the length in the z direction as shown in FIG. 3).
  • the "X5R" column indicates whether or not the product meets the EIA (Electronic Industries Alliance) X5R standard. X5R requires that the temperature change rate of capacitance from -55°C to 85°C be within ⁇ 15%, with 25°C as the reference temperature.
  • the "TEST1" column shows the results of the high-temperature load test. More specifically, in this test, a voltage of 9.45V was applied to the capacitors for 1000 hours in an environment of 125°C, and the capacitors that developed short circuits were judged as NG. Note that 9.45V is more than 1 time the rated voltage of the target capacitor. In Figure 5, the number of samples judged as NG out of 100 samples is shown in fractional form.
  • the "TEST2" column shows the results of the thermal shock test. More specifically, in this test, the temperature of the capacitor was raised to 350°C, and capacitors that had cracks in the side margin portion 13 were judged as NG. In Figure 5, the number of samples judged as NG out of 500 samples is shown in fractional form.
  • Fig. 5 the shapes, dimensions and materials of the capacitors according to the embodiment and the comparative example are the same as each other except for the differences in the values of the parameters shown in the figure.
  • the ranges of the values of the parameters shown in Fig. 5 are as follows: A/B_E: 1.002-1.008 A/B_S: 0.996-1.008 ⁇ R_S: -0.001 to 0.011 A/B_C: 1.000 ( ⁇ R_C: 0.002 to 0.008) W: 20 ⁇ m t: 20 ⁇ m
  • E1 to E11 are examples because they satisfy A/B_S ⁇ A/B_E.
  • E10 has a ⁇ R_S of 0.011, which does not satisfy the condition ⁇ R_S ⁇ 0.010.
  • the other examples satisfy the above condition.
  • the number of NGs is 1/500 for E10, whereas the number of NGs is 0/500 for the other examples. This confirms that thermal shock resistance is improved by ⁇ R_S ⁇ 0.010.
  • FIG. 6 is a chart similar to FIG. 5. However, in FIG. 6, the value of " ⁇ R_S” is not shown, and instead the value of " ⁇ R_C” is shown. Also, “TEST3” is shown instead of “TEST2". In “TEST3”, like “TEST2", the temperature of the capacitor is raised to 350°C, and capacitors in which cracks have occurred are judged as NG. However, while “TEST2" judged whether there were cracks in the side margin portion 13, “TEST3” judged whether there were cracks in the cover portion 15.
  • Fig. 6 (and Fig. 5), the shapes, dimensions and materials of the capacitors according to the examples are the same as each other, except for the different values of the parameters shown in the figures.
  • the ranges of the values of the parameters shown in Fig. 6 are as follows: A/B_E: 1.002-1.008 A/B_S: 1.000 ( ⁇ R_S: 0.002 to 0.008) A/B_C: 0.996-1.008 ⁇ R_C: -0.001 to 0.011 W: 20 ⁇ m t: 20 ⁇ m or 25 ⁇ m
  • FIG. 6 shows that the same results as for the side margin portion 13 are obtained for the cover portion 15 with respect to the setting of the A/B ratio. That is, the examples (E12-E21 and E23) that satisfy the condition A/B_C ⁇ A/B_E have improved thermal shock resistance (evaluation in TEST3) of the cover portion 15 compared to the examples (E22 and E24) that do not satisfy the above condition. Also, among the former examples, the examples (E12-E20 and E23) that satisfy the condition ⁇ R_C ⁇ 0.010 have improved thermal shock resistance compared to the example (E21) that does not satisfy the above condition. Furthermore, because A/B_C ⁇ A/B_E, favorable evaluations are obtained for X5R and TEST1 as well.
  • the multilayer electronic component (capacitor 1) has a laminate 11 and a side margin portion 13.
  • the laminate 11 has (a plurality of) effective portions 7 and (a plurality of) internal electrodes 9 that are alternately stacked.
  • the side margin portion 13 overlaps the side surface of the laminate 11 along the stacking direction (z direction).
  • Both the effective portion 7 and the side margin portion 13 are made of polycrystalline ceramics.
  • the polycrystalline ceramics include barium titanate-based BT-based particles 17 having a perovskite structure represented by the composition formula ABO3 .
  • the A site of the BT-based particles 17 includes Ba.
  • the B site of the BT-based particles 17 includes Ti.
  • the A/B ratio (A/B_S) of the side margin portion 13 is smaller than the A/B ratio (A/B_E) of the effective portion 7.
  • the manufacturing method of the laminated electronic component (capacitor 1) includes a compact step (steps ST1 to ST4) and a firing step (step ST5).
  • a compact step a compact (see main body 3) is obtained.
  • a second ceramic green sheet (see side margin 13) is overlapped on a side surface along the lamination direction (z direction) of the laminate (see laminate 11).
  • the laminate (11) has (a plurality of) first ceramic green sheets (see effective portion 7) and (a plurality of) conductive pastes (see internal electrodes 9) that are alternately laminated.
  • the compact (3) is fired.
  • Both the first ceramic green sheet (7) and the second ceramic green sheet (13) contain BT-based powder (see BT-based particles 17) of barium titanate having a perovskite structure represented by the composition formula ABO3 .
  • the A site of the BT-based powder contains Ba.
  • the B site of the BT-based powder contains Ti.
  • the difference ( ⁇ R_S) between the A/B ratio of the side margin portion 13 and the A/B ratio of the effective portion 7 may be 0.010 or less.
  • the likelihood of the inconvenience of the thermal shock resistance of the side margin portion 13 being reduced by making A/B_S smaller than A/B_E can be reduced.
  • the capacitor 1 may have a cover portion 15.
  • the cover portion 15 may overlap the surface (upper or lower surface) of the laminate 11 facing the stacking direction, and may be made of the polycrystalline ceramics described above with respect to the active portion 7 and the side margin portion 13.
  • the A/B ratio of the cover portion 15 may be smaller than the A/B ratio of the active portion 7.
  • the difference ( ⁇ R_C) between the A/B ratio of the cover portion 15 and the A/B ratio of the effective portion 7 may be 0.010 or less.
  • the likelihood of the disadvantage of the thermal shock resistance of the cover portion 15 being reduced by making A/B_C smaller than A/B_E can be reduced.
  • the BT-based particles 17 may include BT particles and BCT particles.
  • the BT particles have Ba at the A site and Ti at the B site.
  • the BCT particles have Ba1-xCax at the A site and Ti at the B site.
  • the A/B ratio of the effective portion 7 may be 1.003 or more and 1.007 or less.
  • the A/B ratio of the side margin portion 13 may be 0.997 or more and less than 1.003.
  • the above A/B ratio is roughly the range of the A/B ratio shown in Figure 5. If it is within this range, there is a high probability that the effects of improving thermal shock resistance, reducing temperature dependency, and improving high-temperature load reliability will be achieved, for example.
  • BT particles and BCT particles are shown as the BT-based particles 17.
  • Other BT-based particles 17 include, for example, the following. BST particles with Ba 1-x Sr x at the A site and Ti at the B site BCST particles with Ba 1-x-y Ca x Sr y at the A site and Ti at the B site
  • the BT-based particles 17 are a combination of BT particles and BCT particles.
  • the BT-based particles 17 may be composed of one or more types of particles selected from four types of particles, for example, BT particles , BCT particles, BST particles, and BCST particles.
  • the following may be adopted as an embodiment other than the first embodiment.
  • the component ratios and the like shown in Section 2.2 may be used as appropriate. For example, they are as follows.
  • the total amount of BT particles and BCT particles may be read as the total amount of one or more selected types of particles.
  • (a3) is applicable in an embodiment in which two types of particles are selected as the BT-based particles 17. It is also clear that (a3) does not need to be taken into consideration in an embodiment in which one type of particle is selected. In an embodiment in which three or more types of particles are selected, for example, (a3) may be established regardless of which two types of particles are selected from the above three or more types of particles. Of course, (a3) does not necessarily have to be established when two, three, or four types are selected.
  • (a4) may be incorporated in BST.
  • x in (a4-1) may be x in Ba 1-x Sr x .
  • (a4-1) may be incorporated (or may not be incorporated) for the range of x in Ba 1-x-y Ca x Sr y .
  • (a4-2) can be incorporated (or may not be incorporated) when the A site contains three or more elements, as in BCST.
  • the value of y in BCST may be, for example, 0.01 to 0.20, or 0.02 to 0.07, similar to x in (a4-1).
  • x+y may be 0.30 or less or 0.20 or less so that (a4-2) is satisfied, or may not be so.
  • the amount of substance in the A site is the sum of the amounts of substance of Ba, Sr, and Ca in the BST particles and the BCST particles.
  • the amount of substance in the B site is the same as in the first embodiment.
  • the amount of substance in the A site is the sum of the amounts of substance of Ba and Sr in the BT particles and the BST particles.
  • the amount of substance in the B site is the same as in the first embodiment.
  • the amount of substance in the A site is the sum of the amounts of substance of Ba, Ca, and Sr in the BT particles and the BCST particles.
  • the amount of substance in the B site is the same as in the first embodiment.
  • the multilayer electronic component is not limited to a capacitor.
  • some of the internal electrodes may form a capacitor, and other parts of the internal electrodes may form an inductor or resistor.
  • the multilayer electronic component may form an appropriate circuit (for example, a resonant circuit) as a whole.
  • it is sufficient that at least a part of the multilayer electronic component is formed of a laminate in which active parts (two or more) and internal electrodes (two or more) are stacked, and the majority of the multilayer electronic component does not necessarily have to be formed of a laminate.
  • a concept may be extracted that does not require that the A/B ratio of the side margin portion be smaller than the A/B ratio of the effective portion.
  • a technical idea may be extracted that is characterized in that the A/B ratio of the cover portion is smaller than the A/B ratio of the effective portion, or a technical idea that the difference between the A/B ratio of the side margin portion and the A/B ratio of the cover portion falls within a predetermined range.
  • the A/B ratio of the side margin portion may be equal to or greater than the A/B ratio of the effective portion.
  • a side margin portion need not be provided.
  • 1 capacitor (multilayer electronic component), 7...active part, 9...internal electrode, 11...laminated body, 13...side margin part, 15...cover part, 17...BT-based particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Disclosed is a multilayer electronic component wherein a multilayer element comprises effective parts and internal electrodes, which are alternately stacked upon each other. A side margin part is superposed on the side surface of the multilayer element, the side surface extending along the stacking direction. The effective parts and the side margin part are both configured from a polycrystalline ceramic. The polycrystalline ceramic contains BT-based particles that are formed of a barium titanate having a perovskite structure represented by composition formula ABO3. The A site of the BT-based particles contains Ba. The B site of the BT-based particles contains Ti. With respect to the BT-based particles, if the value obtained by dividing the amount of substance of the elements in the A site by the amount of substance of the elements in the B site is defined as an A/B ratio, the A/B ratio of the side margin part is smaller than the A/B ratio of the effective parts.

Description

積層型電子部品及びその製造方法Multilayer electronic component and its manufacturing method
 本開示は、積層型電子部品及びその製造方法に関する。積層型電子部品は、例えば、積層セラミックコンデンサである。 This disclosure relates to a multilayer electronic component and a manufacturing method thereof. The multilayer electronic component is, for example, a multilayer ceramic capacitor.
 交互に積層された複数の誘電体層と複数の内部電極とを有する積層セラミックコンデンサが知られている(例えば下記特許文献1)。特許文献1において、誘電体層は、主として、BaTiOの結晶粒子(以下、「BT粒子」ということがある。)と、BaTiOのBaの一部をCaに置換した(Ba1-xCa)TiOの結晶粒子(以下、「BCT粒子」ということがある。)と、によって構成されている。特許文献1では、Ba及びCaの合計量をAモルとし、Tiの合計量をBモルとしたとき、A/B≧1.003とすることを提案している。なお、特許文献1の内容は、本開示において、参照による援用がなされてよい。 A multilayer ceramic capacitor having a plurality of dielectric layers and a plurality of internal electrodes alternately stacked is known (for example, see Patent Document 1 below). In Patent Document 1, the dielectric layers are mainly composed of BaTiO 3 crystal particles (hereinafter, sometimes referred to as "BT particles") and (Ba 1-x Ca x )TiO 3 crystal particles (hereinafter, sometimes referred to as "BCT particles") in which part of the Ba in BaTiO 3 is replaced with Ca. Patent Document 1 proposes that when the total amount of Ba and Ca is A moles and the total amount of Ti is B moles, A/B≧1.003. The contents of Patent Document 1 may be incorporated by reference in this disclosure.
特開2006-156450号公報JP 2006-156450 A
 本開示の一態様に係る積層型電子部品は、積層体と、サイドマージン部とを有している。前記積層体は、交互に重なっている有効部及び内部電極を有している。前記サイドマージン部は、前記積層体の、積層方向に沿う側面に重なっている。前記有効部及び前記サイドマージン部は、いずれも、多結晶セラミックスによって構成されている。前記多結晶セラミックスは、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系のBT系粒子を含んでいる。前記BT系粒子のAサイトは、Baを含んでいる。前記BT系粒子のBサイトは、Tiを含んでいる。前記BT系粒子においてAサイトの元素の物質量をBサイトの元素の物質量で割った値をA/B比と称するものとする。このとき、前記サイドマージン部のA/B比が前記有効部のA/B比よりも小さい。 A multilayer electronic component according to an embodiment of the present disclosure includes a laminate and a side margin portion. The laminate includes effective portions and internal electrodes that are alternately stacked. The side margin portion overlaps a side surface of the laminate along the stacking direction. The effective portion and the side margin portion are both made of polycrystalline ceramics. The polycrystalline ceramics include barium titanate-based BT-based particles having a perovskite structure represented by a composition formula ABO3 . The A site of the BT-based particles includes Ba. The B site of the BT-based particles includes Ti. The value obtained by dividing the amount of substance of the element at the A site in the BT-based particles by the amount of substance of the element at the B site is referred to as the A/B ratio. In this case, the A/B ratio of the side margin portion is smaller than the A/B ratio of the effective portion.
 本開示の一態様に係る積層型電子部品の製造方法は、成形体を得る成形体ステップと、前記成形体を焼成する焼成ステップと、を有している。前記成形体は、積層体と、第2セラミックグリーンシートとを有する。前記積層体は、交互に積層されている第1セラミックグリーンシートと導電ペーストとを有する。前記第2セラミックグリーンシートは、前記積層体の、積層方向に沿う側面に重なっている。前記第1セラミックグリーンシート及び前記第2セラミックグリーンシートは、いずれも、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系のBT系粉末を含んでいる。前記BT系粉末のAサイトは、Baを含んでいる。前記BT系粉末のBサイトは、Tiを含んでいる。前記BT系粉末においてAサイトの元素の物質量をBサイトの元素の物質量で割った値をA/B比と称するものとする。このとき、前記第2セラミックグリーンシートのA/B比が前記第1セラミックグリーンシートのA/B比よりも小さい。 A method for manufacturing a multilayer electronic component according to an aspect of the present disclosure includes a molding step of obtaining a molded body and a firing step of firing the molded body. The molded body includes a laminate and a second ceramic green sheet. The laminate includes first ceramic green sheets and a conductive paste that are alternately stacked. The second ceramic green sheet overlaps a side of the laminate along the stacking direction. The first ceramic green sheet and the second ceramic green sheet both include a barium titanate-based BT-based powder having a perovskite structure represented by a composition formula ABO3 . The A site of the BT-based powder includes Ba. The B site of the BT-based powder includes Ti. The value obtained by dividing the amount of substance of the element at the A site in the BT-based powder by the amount of substance of the element at the B site is referred to as the A/B ratio. In this case, the A/B ratio of the second ceramic green sheet is smaller than the A/B ratio of the first ceramic green sheet.
実施形態に係る積層型セラミックコンデンサを示す斜視図。1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment; 図1のII-II線における断面図。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図1のIII-III線における断面図。FIG. 2 is a cross-sectional view taken along line III-III in FIG. 図1のコンデンサの製造方法の手順を示すフローチャート。2 is a flowchart showing the steps of a method for manufacturing the capacitor of FIG. 1 . 実施例及び比較例に係るコンデンサの諸元を示す図表。1 is a table showing specifications of capacitors according to examples and comparative examples. 他の実施例に係るコンデンサの諸元を示す図表。13 is a table showing specifications of a capacitor according to another embodiment.
 以下、本開示に係る実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものである。従って、例えば、図面上の寸法比率等は現実のものとは必ずしも一致していない。また、寸法比率等が図面同士で一致しないこともある。特定の形状及び/又は寸法等が誇張されたり、細部が省略されたりすることがある。ただし、上記は、実際の形状及び/又は寸法が図面の通りとされたり、図面から形状及び/又は寸法の特徴が抽出されたりしてもよいことを否定するものではない。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the drawings used in the following description are schematic. Therefore, for example, the dimensional ratios in the drawings do not necessarily match those in reality. Furthermore, the dimensional ratios may not match between drawings. Certain shapes and/or dimensions may be exaggerated, and details may be omitted. However, the above does not deny that the actual shapes and/or dimensions may be as shown in the drawings, or that features of shapes and/or dimensions may be extracted from the drawings.
(実施形態の概要)
 図1は、実施形態に係るコンデンサ1(積層型電子部品の一例)を示す斜視図である。図1及び後述する他の図には、便宜上、直交座標系xyzが付されている。コンデンサ1は、いずれが上方又は下方とされて用いられてもよいものである。ただし、実施形態の説明では、便宜上、+z側を上方として、上面及び下面等の語を用いることがある。
(Overview of the embodiment)
Fig. 1 is a perspective view showing a capacitor 1 (an example of a multilayer electronic component) according to an embodiment. For convenience, a Cartesian coordinate system xyz is attached to Fig. 1 and other figures described later. The capacitor 1 may be used with either side being the upper or lower. However, in the description of the embodiment, for convenience, the +z side may be regarded as the upper side, and terms such as the upper surface and the lower surface may be used.
 コンデンサ1は、例えば、概略直方体状の本体部3と、本体部3の両端に位置している1対の外部電極5とを有している。 The capacitor 1 has, for example, a roughly rectangular parallelepiped body 3 and a pair of external electrodes 5 located at both ends of the body 3.
 図2は、図1のII-II線における断面図である。本体部3は、交互に重なっている有効部7及び内部電極9を有している。より詳細には、図示の例では、一方の外部電極5に接続されている内部電極9と、他方の外部電極5に接続されている内部電極9とが有効部7を介して対向している。有効部7は誘電体である。誘電体は、多結晶セラミックスによって構成されている。このような構成によって、積層型セラミックコンデンサが実現されている。複数の有効部7及び複数の内部電極9によって構成される部分を積層体11と称するものとする。 FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1. The main body 3 has effective portions 7 and internal electrodes 9 that overlap each other. More specifically, in the illustrated example, an internal electrode 9 connected to one external electrode 5 faces an internal electrode 9 connected to the other external electrode 5 via the effective portion 7. The effective portion 7 is a dielectric. The dielectric is made of polycrystalline ceramics. With this configuration, a multilayer ceramic capacitor is realized. The portion made up of the multiple effective portions 7 and multiple internal electrodes 9 is referred to as the laminate 11.
 図3は、図1のIII-III線における断面図である。なお、図3では、本体部3を構成する誘電体の一部拡大図も示されている。本体部3は、積層体11のうちの積層方向に沿う側面に重なっているサイドマージン部13を有している。サイドマージン部13は、多結晶セラミックス(誘電体)によって構成されている。サイドマージン部13は、例えば、内部電極9の外部からの絶縁、及び/又は本体部3の強度向上に寄与する。 FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1. FIG. 3 also shows an enlarged view of a portion of the dielectric that constitutes the main body 3. The main body 3 has a side margin 13 that overlaps the side surface of the laminate 11 along the stacking direction. The side margin 13 is made of polycrystalline ceramics (dielectric). The side margin 13 contributes, for example, to insulating the internal electrode 9 from the outside and/or improving the strength of the main body 3.
 図3の一部拡大図に示すように、誘電体は、例えば、結晶粒子(17)と、結晶粒子間の粒界層19とを有している。有効部7及びサイドマージン部13のいずれにおいても、結晶粒子は、チタン酸バリウム(BaTiO)系の結晶粒子(以下、「BT系粒子17」ということがある。)によって構成されている。 3, the dielectric has, for example, crystal grains (17) and grain boundary layers 19 between the crystal grains. In both the effective portion 7 and the side margin portion 13, the crystal grains are composed of barium titanate (BaTiO 3 )-based crystal grains (hereinafter sometimes referred to as "BT-based grains 17").
 BT系粒子17は、ペロブスカイト構造を有しており、組成式ABOで表される。Aサイトの主たる元素はBaである。例えば、Baは、Aサイトの70モル%以上を占める。Bサイトの主たる元素はTiである。例えば、Tiは、Bサイトの90モル%以上を占める。BT系粒子17は、換言すれば、BaTiOにおいて、Baの一部が、他の元素に置換されておらず、又は置換されており、かつTiの一部が、他の元素に置換されておらず、又は置換されている材料である。 The BT-based particles 17 have a perovskite structure and are represented by the composition formula ABO3 . The main element in the A site is Ba. For example, Ba occupies 70 mol % or more of the A site. The main element in the B site is Ti. For example, Ti occupies 90 mol % or more of the B site. In other words, the BT-based particles 17 are a material in which part of Ba is not substituted or is substituted with other elements in BaTiO3 , and part of Ti is not substituted or is substituted with other elements.
 ABOのOは酸素である。ただし、Oの一部は置換されてもよい。なお、このことから、ABOのOは、酸素ではなく、Oサイトを示すと捉えられてもよい。ただし、実施形態の説明では、特に断りが無い限り、また、矛盾等が生じない限り、Oは酸素を示すと捉えられてよい。 The O in ABO3 is oxygen. However, a part of the O may be substituted. From this, the O in ABO3 may be regarded as indicating an O site, not oxygen. However, in the description of the embodiment, unless otherwise specified, or unless a contradiction occurs, the O may be regarded as indicating oxygen.
 Baの一部の置換に利用される元素としては、例えば、Baと同様に第2族に属する元素(例えばCa、Sr及びMg)が挙げられる。Tiの一部の置換に利用される元素としては、例えば、Tiと同様に第4族に属する元素(Zr及びHf)が挙げられる。 Elements used to partially replace Ba include, for example, elements that belong to Group 2 like Ba (e.g., Ca, Sr, and Mg). Elements used to partially replace Ti include, for example, elements that belong to Group 4 like Ti (e.g., Zr and Hf).
 BT系粒子17において、Aサイトに含まれる元素の物質量をAモルとする。Bサイトに含まれる元素の物質量をBモルとする。前者を後者で割った値(A/B)をA/B比と称するものとする。組成式ABOからすれば、A/B比は1であるが、BT系粒子17は、A/B比が1以外の値を取り得る。別の観点では、例えば、BT系粒子17の一部においては、理論に厳密に即したペロブスカイト構造は構成されていない。そして、サイドマージン部13のA/B比は、有効部7のA/B比よりも小さい。 In the BT-based particles 17, the amount of substance of an element contained in the A site is A moles. The amount of substance of an element contained in the B site is B moles. The value (A/B) obtained by dividing the former by the latter is called the A/B ratio. From the composition formula ABO3 , the A/B ratio is 1, but the BT-based particles 17 can have an A/B ratio other than 1. From another perspective, for example, in a part of the BT-based particles 17, a perovskite structure strictly conforming to theory is not formed. The A/B ratio of the side margin portion 13 is smaller than the A/B ratio of the effective portion 7.
 これにより、例えば、サイドマージン部13の耐熱衝撃性が向上する。例えば、コンデンサ1の温度が上昇したときに、サイドマージン部13においてクラック生じる蓋然性が低減される。その理由は、例えば、以下のとおりである。 This improves, for example, the thermal shock resistance of the side margin portion 13. For example, when the temperature of the capacitor 1 rises, the likelihood of cracks occurring in the side margin portion 13 is reduced. The reasons for this are, for example, as follows.
 本体部3の製造においては、例えば、有効部7となるセラミックグリーンシートと、内部電極9となる導電ペーストとが積層され、焼成前の積層体11が作製される。次に、焼成前の積層体11の側面にサイドマージン部13となるセラミックグリーンシートが貼り付けられて成形体が構成される。その後、上記成形体が焼成される。 In manufacturing the main body 3, for example, a ceramic green sheet that will become the active portion 7 and a conductive paste that will become the internal electrode 9 are laminated to create the laminate 11 before firing. Next, a ceramic green sheet that will become the side margin portion 13 is attached to the side surface of the laminate 11 before firing to form a molded body. The molded body is then fired.
 比較例に係る技術においては、焼成のとき、有効部7の方がサイドマージン部13よりも焼結しやすい。従って、例えば、有効部7に合わせた焼成条件にすると、サイドマージン部13が十分に焼結せずに、サイドマージン部13の強度が低下する可能性が生じる。なお、有効部7の方がサイドマージン部13よりも焼結しやすい理由としては、例えば、内部電極9となる導電ペーストが収縮して有効部7に応力が加えられることが挙げられる。 In the technology of the comparative example, the effective portion 7 is easier to sinter than the side margin portion 13 during firing. Therefore, for example, if firing conditions are set to match the effective portion 7, the side margin portion 13 may not sinter sufficiently, resulting in a decrease in the strength of the side margin portion 13. The reason why the effective portion 7 is easier to sinter than the side margin portion 13 is, for example, that the conductive paste that becomes the internal electrode 9 shrinks, causing stress to be applied to the effective portion 7.
 ここで、A/B比が小さくされると、焼成前のセラミック材料が焼結しやすくなる。従って、サイドマージン部13のA/B比が有効部7のA/B比に比較して小さくされると、サイドマージン部13と有効部7とで焼結度合いが近づく。その結果、例えば、有効部7に合わせた焼成条件でも、サイドマージン部13が十分に焼結し、サイドマージン部13の強度が向上する。 Here, when the A/B ratio is made small, the ceramic material before firing becomes easier to sinter. Therefore, when the A/B ratio of the side margin portion 13 is made small compared to the A/B ratio of the effective portion 7, the degree of sintering of the side margin portion 13 and the effective portion 7 becomes closer. As a result, for example, even under firing conditions that are suited to the effective portion 7, the side margin portion 13 is sufficiently sintered, and the strength of the side margin portion 13 is improved.
 また、上記は、別の観点では、有効部7の焼成条件を有効部7に適したものにできるということである。その結果、例えば、サイドマージン部13の耐熱衝撃性を維持しつつ、静電容量の温度依存性に係る特性を向上させたり、有効部7の絶縁性を向上させたりすることができる。 In addition, from another perspective, the above means that the firing conditions for the effective portion 7 can be made suitable for the effective portion 7. As a result, for example, it is possible to improve the characteristics related to the temperature dependency of capacitance and improve the insulation of the effective portion 7 while maintaining the thermal shock resistance of the side margin portion 13.
 サイドマージン部13の耐熱衝撃性が向上すると、例えば、本体部3の耐熱衝撃性を一定程度確保しつつ、サイドマージン部13を薄くすることができる。その結果、コンデンサ1の小型化が容易化される。別の観点では、コンデンサ1のサイズに対して、積層体11の体積を大きくして、容量を大きくすることができる。 If the thermal shock resistance of the side margin portion 13 is improved, for example, it is possible to make the side margin portion 13 thinner while still maintaining a certain level of thermal shock resistance of the main body portion 3. As a result, it becomes easier to miniaturize the capacitor 1. From another perspective, it is possible to increase the volume of the laminate 11 relative to the size of the capacitor 1, thereby increasing the capacitance.
 以上が実施形態に係るコンデンサ1の概要である。以下では、概略、下記の順で実施形態の説明を行う。
 第A章 第1実施形態
  1.コンデンサの構造(図1~図3)
   1.1.図示の例の構造
   1.2.図示の例以外の例の構造
  2.誘電体
   2.1.誘電体全般
   2.2.成分比等の例
   2.3.A/B比
    2.3.1.A/B比全般
    2.3.2.サイドマージン部のA/B比
    2.3.3.カバー部のA/B比
  3.製造方法(図4)
   3.1.製造手順
   3.2.誘電体の製造方法
   3.3.A/B比の設定方法
  4.実施例(図5及び図6)
  5.第1実施形態のまとめ
 第B章 他の実施形態
The above is an overview of the capacitor 1 according to the embodiment. The embodiment will be described below in the following order.
Chapter A First Embodiment 1. Capacitor Structure (FIGS. 1 to 3)
1.1. Structure of the illustrated example 1.2. Structure of examples other than the illustrated example 2. Dielectric 2.1. Dielectrics in general 2.2. Examples of component ratios, etc. 2.3. A/B ratio 2.3.1. A/B ratio in general 2.3.2. A/B ratio of side margin portion 2.3.3. A/B ratio of cover portion 3. Manufacturing method (Fig. 4)
3.1. Manufacturing procedure 3.2. Manufacturing method of dielectric 3.3. Setting method of A/B ratio 4. Example (FIGS. 5 and 6)
5. Summary of the First Embodiment Chapter B. Other Embodiments
 第A章の第1実施形態と第B章の他の実施形態とは、チタン酸バリウム系のBT系粒子17の具体的な組成が互いに相違する。その他の事項については、基本的に互いに同様である。従って、後に説明する実施形態については、基本的に、先に説明された実施形態との相違点についてのみ述べる。特に言及が無い事項については、先に説明された実施形態と同様とされたり、先に説明された実施形態から類推されたりしてよい。 The first embodiment in Chapter A and the other embodiments in Chapter B differ from each other in the specific composition of the barium titanate-based BT particles 17. All other matters are basically similar to each other. Therefore, for the embodiments described later, basically only the differences from the previously described embodiments will be described. Matters that are not specifically mentioned may be considered to be the same as the previously described embodiments or may be inferred from the previously described embodiments.
<第A章 第1実施形態>
(1.コンデンサの構造)
(1.1.図示の例の構造)
 コンデンサ1の構造は、上述の実施形態の概要から理解されるように、積層体11とサイドマージン部13とを有している限り、種々の構成とされてよい。ただし、実施形態の説明では、便宜上、特に断りなく、図1~図3に例示された構成を前提とした説明を行うことがある。図1~図3に例示されたコンデンサ1の構造は、以下のとおりである。
<Chapter A First Embodiment>
(1. Capacitor Structure)
(1.1. Structure of the illustrated example)
As can be understood from the outline of the embodiment described above, the structure of the capacitor 1 may have various configurations as long as it has the laminate 11 and the side margin portion 13. However, in explaining the embodiment, for convenience, the explanation may be given on the premise of the configuration illustrated in Figures 1 to 3 unless otherwise specified. The structure of the capacitor 1 illustrated in Figures 1 to 3 is as follows.
 コンデンサ1は、既述の構成(積層体11、サイドマージン部13及び外部電極5)に加えて、積層体11の上面及び下面に重なる1対のカバー部15(符号は図2及び図3)を有している。カバー部15は、例えば、有効部7及びサイドマージン部13と同様に、BT系の多結晶セラミックスによって構成されている。カバー部15は、内部電極9の外部からの絶縁、及び/又は本体部3の強度向上に寄与する。 In addition to the configuration already described (laminated body 11, side margin portion 13, and external electrode 5), the capacitor 1 has a pair of cover portions 15 (reference numbers in Figs. 2 and 3) that overlap the upper and lower surfaces of the laminate 11. The cover portions 15 are made of, for example, BT-based polycrystalline ceramics, similar to the active portion 7 and side margin portion 13. The cover portions 15 contribute to insulating the internal electrode 9 from the outside and/or improving the strength of the main body portion 3.
 本体部3の形状(又はコンデンサ1の全体。以下、本段落において同様。)は、既述のとおり、概略直方体状である。この直方体は、例えば、高さ(z方向の長さ)が、幅(y方向の長さ)に対して同等であってもよいし(図示の例)、小さくてもよい。直方体の長さ(x方向)の長さは、例えば、幅よりも大きい。本体部3の寸法は任意である。比較的小さい寸法の例を挙げると、長さは0.4mm以上3.2mm以下であり、幅及び高さは0.2mm以上2.5mm以下である。 As already mentioned, the shape of the main body 3 (or the entire capacitor 1; the same applies hereinafter in this paragraph) is roughly rectangular. For example, the height (length in the z direction) of this rectangular parallelepiped may be equal to (as in the illustrated example) or smaller than the width (length in the y direction). The length (x direction) of the rectangular parallelepiped is, for example, greater than the width. The dimensions of the main body 3 are arbitrary. Examples of relatively small dimensions include a length of 0.4 mm or more and 3.2 mm or less, and a width and height of 0.2 mm or more and 2.5 mm or less.
 有効部7は、基本的に(少なくとも内部電極9間において)一定の厚さを有している層状である。有効部7の厚さは、コンデンサ1に要求される特性等に応じて適宜に設定されてよい。比較的薄い厚さの例を挙げると、当該厚さは、3μm以下又は1μm以下である。有効部7の平面形状は任意であり、図示の例では矩形状である。複数の有効部7は、例えば、互いに同じ形状、大きさ及び材料を有している。有効部7(内部電極9)の積層数は任意である。 The effective portion 7 is basically a layer having a constant thickness (at least between the internal electrodes 9). The thickness of the effective portion 7 may be set appropriately depending on the characteristics required of the capacitor 1. Examples of relatively thin thicknesses include a thickness of 3 μm or less or 1 μm or less. The planar shape of the effective portion 7 is arbitrary, and is rectangular in the illustrated example. The multiple effective portions 7 have, for example, the same shape, size, and material as each other. The number of layers of the effective portions 7 (internal electrodes 9) is arbitrary.
 内部電極9は、一定の厚さを有している層状である。内部電極9の厚さは任意であり、例えば、有効部7の厚さよりも薄い。内部電極9は、例えば、自己が接続されていない外部電極5側(-x側又は+x側)を除いて、有効部7の全面に重なっている。従って、内部電極9の外縁は、-x側又は+x側を除く3方(3辺)から積層体11の側面に露出している。換言すれば、内部電極9の平面形状は、有効部7の平面形状において、-x側又は+x側の領域を除外したもの(矩形状)である。上記の-x側又は+x側の領域の幅(x方向の長さ)は任意である。内部電極9の材料は、例えば、卑金属である。卑金属としては、Ni及びCuが挙げられる。複数の内部電極9は、例えば、互いに同じ形状、大きさ及び材料を有している。 The internal electrode 9 is a layer having a certain thickness. The thickness of the internal electrode 9 is arbitrary, and is, for example, thinner than the thickness of the effective portion 7. The internal electrode 9 overlaps the entire surface of the effective portion 7, except for the external electrode 5 side (-x side or +x side) to which it is not connected. Therefore, the outer edge of the internal electrode 9 is exposed to the side of the laminate 11 from three sides (three sides) excluding the -x side or +x side. In other words, the planar shape of the internal electrode 9 is a rectangular shape obtained by excluding the area on the -x side or +x side in the planar shape of the effective portion 7. The width (length in the x direction) of the above-mentioned area on the -x side or +x side is arbitrary. The material of the internal electrode 9 is, for example, a base metal. Examples of base metals include Ni and Cu. The multiple internal electrodes 9 have, for example, the same shape, size, and material as each other.
 サイドマージン部13は、概略、一定の厚さを有している層状である。ただし、本体部3の外側となる角部が丸みを有していてもよい。サイドマージン部13の厚さは任意であり、例えば、有効部7の厚さに対して、厚くてもよいし(図示の例)、同等でもよいし、薄くてもよい。比較的薄い厚さの例を挙げると、当該厚さは、30μm以下である。サイドマージン部13は、積層体11の-y側又は+y側の側面に加えて、上下のカバー部15の側面も覆っている。換言すれば、サイドマージン部13は、本体部3の-y側又は+y側の側面の全体を構成している。1対のサイドマージン部13は、例えば、互いに同じ形状、大きさ及び材料を有している。 The side margin portion 13 is generally a layer having a constant thickness. However, the corners on the outside of the main body portion 3 may be rounded. The thickness of the side margin portion 13 is arbitrary, and may be thicker (as in the illustrated example), equal to, or thinner than the thickness of the effective portion 7. An example of a relatively thin thickness is 30 μm or less. The side margin portion 13 covers not only the -y or +y side of the laminate 11, but also the side of the upper and lower cover portions 15. In other words, the side margin portion 13 constitutes the entire -y or +y side of the main body portion 3. A pair of side margin portions 13 have, for example, the same shape, size, and material as each other.
 カバー部15は、概略、一定の厚さを有している層状である。カバー部15の厚さは任意であり、例えば、有効部7の厚さに対して、厚くてもよいし(図示の例)、同等でもよいし、薄くてもよいし、サイドマージン部13の厚さに対して、厚くてもよいし(図示の例)、同等でもよいし、薄くてもよい。また、比較的薄い厚さの例を挙げると、当該厚さは、30μm以下である。カバー部15は、積層体11の上面又は下面の全体を覆っている。1対のカバー部15は、例えば、互いに同じ形状、大きさ及び材料を有している。 The cover portion 15 is generally in the form of a layer having a constant thickness. The thickness of the cover portion 15 is arbitrary, and may be, for example, thicker (in the illustrated example), equal to, or thinner than the thickness of the active portion 7, or thicker (in the illustrated example), equal to, or thinner than the thickness of the side margin portion 13. An example of a relatively thin thickness is 30 μm or less. The cover portion 15 covers the entire upper or lower surface of the laminate 11. A pair of cover portions 15 have, for example, the same shape, size, and material as each other.
 なお、積層体11の最上層又は最下層は、内部電極9であってもよいし(図示の例)、有効部7であってもよい。換言すれば、カバー部15は、内部電極9に重なっていてもよいし(図示の例)、有効部7に重なっていてもよい。 The top or bottom layer of the laminate 11 may be the internal electrode 9 (in the illustrated example) or the active portion 7. In other words, the cover portion 15 may overlap the internal electrode 9 (in the illustrated example) or the active portion 7.
 外部電極5は、概略、本体部3の長手方向の端部を直方体の5面に亘って覆っている層状である。そして、外部電極5は、内部電極9のうち、積層体11の-x側又は+x側の側面から露出している縁部に接続されている。外部電極5の厚さは任意である。外部電極5は、例えば、互いに異なる材料からなる層が重ねられて構成されていてよい。外部電極5は、例えば、はんだ等の導電性の接合材によって回路基板等のパッドに接合される。これにより、コンデンサ1は回路基板等に実装される。 The external electrode 5 is generally a layer covering the longitudinal end of the main body 3 across five faces of the rectangular parallelepiped. The external electrode 5 is connected to the edge of the internal electrode 9 that is exposed from the side surface on the -x side or +x side of the laminate 11. The thickness of the external electrode 5 is arbitrary. The external electrode 5 may be formed, for example, by stacking layers made of different materials. The external electrode 5 is joined to a pad on a circuit board or the like, for example, by a conductive bonding material such as solder. In this way, the capacitor 1 is mounted on the circuit board or the like.
(1.2.図示の例以外の例の構造)
 コンデンサ1の構造について、図示の例以外の例を挙げる。
(1.2. Structure of Examples Other Than the Examples Shown)
An example of the structure of the capacitor 1 other than the example shown in the drawing will be given.
 コンデンサ1は、図示された構造の全体を覆う外装樹脂と、外部電極5に接続されているとともに外装樹脂から延び出るリード線とを有するものであってもよい。また、本体部3のy方向及び/又はx方向の側面にz方向に延びる凹溝が形成され、この凹溝に充填又は成膜された金属によって外部電極の一部又は全部が構成されてもよい。上記のように、コンデンサ1を実装するための構成は任意である。また、上記から理解されるように、サイドマージン部13が覆う積層体11の側面は、積層体11の長手方向に沿う側面でなくてもよいし、外部電極が設けられない側面でなくてもよい。 The capacitor 1 may have an exterior resin that covers the entire structure shown in the figure, and a lead wire that is connected to the external electrode 5 and extends from the exterior resin. Also, a groove extending in the z direction may be formed on the side surface of the main body 3 in the y direction and/or x direction, and a part or all of the external electrode may be formed by a metal filled or deposited in this groove. As described above, the configuration for mounting the capacitor 1 is arbitrary. Also, as can be understood from the above, the side surface of the laminate 11 covered by the side margin portion 13 does not have to be a side surface along the longitudinal direction of the laminate 11, and does not have to be a side surface on which an external electrode is not provided.
 コンデンサ1は、カバー部15を有していなくてもよい。例えば、最上層又は最下層の内部電極9は、有効部7によって覆われていてもよい。ただし、この場合は、最上層又は最下層の内部電極9を覆う有効部7は、内部電極9間の有効部7と同じ材料からなるカバー部15と捉えられても構わない。 The capacitor 1 does not have to have a cover portion 15. For example, the top or bottom internal electrode 9 may be covered by the effective portion 7. In this case, however, the effective portion 7 covering the top or bottom internal electrode 9 may be considered to be a cover portion 15 made of the same material as the effective portion 7 between the internal electrodes 9.
 互いに異なる外部電極5に接続された内部電極9は互いに対向していなくてもよい。すなわち、コンデンサ1は、互いに並列接続された複数の平行平板コンデンサを有するものでなくてもよい。例えば、一方の外部電極5に接続された内部電極9と、他方の外部電極5に接続された内部電極9とが同じ層の互いに異なる領域に設けられてよい。そして、これらの内部電極9の双方に対向するとともに、いずれの外部電極5にも接続されていない内部電極9が設けられてよい。これにより、コンデンサ1は、直列接続された2つの平行平板コンデンサを含んでいてよい。上記の例では、直列接続される平行平板コンデンサの数は2つであるが、3つ以上の平行平板コンデンサが直列接続されてもよい。 The internal electrodes 9 connected to different external electrodes 5 do not have to face each other. That is, the capacitor 1 does not have to have a plurality of parallel plate capacitors connected in parallel to each other. For example, an internal electrode 9 connected to one external electrode 5 and an internal electrode 9 connected to the other external electrode 5 may be provided in different regions of the same layer. Then, an internal electrode 9 may be provided that faces both of these internal electrodes 9 and is not connected to either external electrode 5. In this way, the capacitor 1 may include two parallel plate capacitors connected in series. In the above example, the number of parallel plate capacitors connected in series is two, but three or more parallel plate capacitors may be connected in series.
 また、互いに異なる外部電極5に接続された内部電極9は、1枚ずつ交互に対向するのではなく、2枚ずつ交互に対向してもよい。この場合、例えば、同一の外部電極5に接続され、互いに対向する内部電極9間の有効部7の厚さは、互いに異なる外部電極5に接続され、互いに対向する内部電極9間の有効部7の厚さよりも薄くされてよい。このことから理解されるように、複数の有効部7は、互いに同じ形状及び大きさを有していなくてもよい。 Furthermore, the internal electrodes 9 connected to different external electrodes 5 may be arranged to face each other in alternating pairs, rather than one at a time. In this case, for example, the thickness of the effective portion 7 between the internal electrodes 9 that are connected to the same external electrode 5 and face each other may be thinner than the thickness of the effective portion 7 between the internal electrodes 9 that are connected to different external electrodes 5 and face each other. As can be understood from this, the multiple effective portions 7 do not have to have the same shape and size.
 内部電極9は、積層体11のサイドマージン部13に覆われる側面(-y側又は+y側の側面)の全長(x方向の長さの全体)に亘って上記側面から露出していなくてもよい。例えば、内部電極9の一部のみが上記側面から露出していてもよい。また、既述の種々の外部電極5の態様から理解されるように、内部電極9の全体が上記側面から露出していなくてもよい。 The internal electrode 9 does not have to be exposed from the side surface (the -y side or the +y side side) over the entire length (the entire length in the x direction) of the side surface covered by the side margin portion 13 of the laminate 11. For example, only a portion of the internal electrode 9 may be exposed from the side surface. Also, as can be understood from the various aspects of the external electrode 5 described above, the entire internal electrode 9 does not have to be exposed from the side surface.
(2.誘電体)
(2.1.誘電体全般)
 有効部7、サイドマージン部13及びカバー部15を構成する誘電体の結晶粒子は、BT系粒子17とされている。第1実施形態では、BT系粒子17は、以下の2種類の結晶粒子によって構成されている。
 ・BaTiOの結晶粒子(以下、「BT粒子」ということがある。)
 ・Ba1-xCaTiOの結晶粒子(以下、「BCT粒子」ということがある。)
 なお、Ba、Ca、Ti及びOを「主成分の元素」ということがある。
(2. Dielectrics)
(2.1. Dielectrics in General)
The crystal grains of the dielectric material constituting the effective portion 7, the side margin portion 13, and the cover portion 15 are BT-based grains 17. In the first embodiment, the BT-based grains 17 are composed of the following two types of crystal grains.
BaTiO3 crystal particles (hereinafter sometimes referred to as "BT particles")
Ba1 - xCaxTiO3 crystal particles (hereinafter sometimes referred to as "BCT particles")
Incidentally, Ba, Ca, Ti and O may be referred to as "major component elements".
 BT粒子は、例えば、BCT粒子に比較して比誘電率が高い。BCT粒子は、例えば、BT粒子に比較して、比誘電率の温度依存性の低減、及び/又はDCバイアス特性(直流電圧の印加による実効的な静電容量の変化(減少))の低減に有利である。従って、両者を組み合わせることによって、両者の長所を得ることができる。 BT particles have a higher dielectric constant than, for example, BCT particles. BCT particles are advantageous in reducing the temperature dependency of the dielectric constant and/or reducing the DC bias characteristics (change (reduction) in effective capacitance due to application of a direct current voltage) compared to, for example, BT particles. Therefore, by combining the two, it is possible to obtain the advantages of both.
 誘電体は、主成分の元素の他、適宜な元素を含んでいてよい。例えば、誘電体は、Mg、希土類元素(以下、「RE」と称することがある。)、Mn、Cr及び/又はVを有していてよい。誘電体が含むREは、例えば、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Y、Er、Tm、Yb、Lu及びScから選択される1種以上のものとされてよい。なお、以下では、Mg、RE、Mn、Cr及びVを便宜上、「第1副成分の元素」ということがある。 The dielectric may contain appropriate elements in addition to the main component elements. For example, the dielectric may contain Mg, rare earth elements (hereinafter sometimes referred to as "RE"), Mn, Cr and/or V. The RE contained in the dielectric may be, for example, one or more selected from La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb, Lu and Sc. In the following, Mg, RE, Mn, Cr and V may be referred to as the "first minor component element" for convenience.
 第1副成分の元素は、例えば、誘電体の混合粉末として、BT系粒子17となる粉末に添加される。そして、Mg及びREは、例えば、コアシェル構造の形成に寄与する。コアシェル構造は、上記元素(Mg及びRE)が結晶粒子(ここではBT粒子及びBCT粒子)の中心よりも表面側に偏在した構造である。コアシェル構造によって、例えば、比誘電率の温度依存性が低減され、及び/又はDCバイアス特性が低減される。Mn、Cr及びVは、例えば、結晶粒子中の酸素欠陥を補償し、絶縁性及び高温負荷寿命を高めることに寄与する。 The elements of the first minor component are added, for example, as a mixed powder of dielectrics to the powder that will become the BT-based particles 17. And, Mg and RE, for example, contribute to the formation of a core-shell structure. The core-shell structure is a structure in which the above elements (Mg and RE) are unevenly distributed on the surface side of the crystal particles (here, BT particles and BCT particles) rather than the center. The core-shell structure, for example, reduces the temperature dependence of the relative dielectric constant and/or reduces the DC bias characteristics. Mn, Cr, and V, for example, compensate for oxygen defects in the crystal particles and contribute to improving the insulation properties and high-temperature load life.
 第1副成分の元素は、例えば、一部がBT系粒子17に固溶しているとともに、他部が粒界層19に位置している。これらの元素は、粒界に存在する場合は、例えば、非晶質として存在している。なお、第1副成分に係る各元素は、BT系粒子17に固溶する量と粒界層19に位置する量とのいずれが多くてもよく、例えば、前者の方が多い。 For example, a portion of the elements of the first subcomponent is dissolved in the BT-based particles 17, and the other portion is located in the grain boundary layer 19. When these elements are present in the grain boundary, they exist, for example, as amorphous matter. Note that, for each element related to the first subcomponent, either the amount dissolved in the BT-based particles 17 or the amount located in the grain boundary layer 19 may be greater, and for example, the former may be greater.
 上記から理解されるように、例えば、BaTiOからなるBT粒子又はBa1-xCaTiOからなるBCT粒子のように表現しても、各粒子は、副成分(第1副成分又は他の副成分)の元素が固溶しているものを含んでよい。この場合において、Ba又はTiが副成分の元素によって置換されたかのように一部の結晶構造が形成されていても構わない。 As can be understood from the above, for example, even if expressed as BT particles made of BaTiO 3 or BCT particles made of Ba 1-x Ca x TiO 3 , each particle may contain elements of the subcomponent (first subcomponent or other subcomponent) in solid solution. In this case, it is acceptable that a part of the crystal structure is formed as if Ba or Ti is replaced by the element of the subcomponent.
 後述するように、副成分の元素は、比較的少量である。従って、例えば、Ba又はTiが副成分の元素によって置換されていても、BT系粒子17(BT粒子又はBCT粒子)の量(質量%及びモル%等)の説明(後述)において、副成分の影響は無視されてよい。例えば、BT系粒子17に係る質量%又はモル%(例えばBT系粒子17内における元素の%又は誘電体内におけるBT系粒子17の%)は、副成分の元素がBT系粒子17に固溶する前の値であってよい。ただし、副成分の元素は、比較的少量であるから、BT系粒子17に係る質量%又はモル%は、固溶後の値であると捉えられても構わない。 As described later, the amount of the subcomponent element is relatively small. Therefore, for example, even if Ba or Ti is replaced by the subcomponent element, the effect of the subcomponent may be ignored in the explanation (described later) of the amount (mass % and mol % etc.) of the BT-based particles 17 (BT particles or BCT particles). For example, the mass % or mol % of the BT-based particles 17 (for example, the % of the element in the BT-based particles 17 or the % of the BT-based particles 17 in the dielectric) may be the value before the subcomponent element is solid-dissolved in the BT-based particles 17. However, since the amount of the subcomponent element is relatively small, the mass % or mol % of the BT-based particles 17 may be considered to be the value after solid solution.
 また、主成分の元素が副成分の元素によって置換されている量が多い結晶粒子は、BT粒子及びBCT粒子とは異なる種類のBT系粒子17(又はBT系でない結晶粒子)と捉えられても構わない。例えば、置換された量(単に固溶されている量ではない)が1.0モル%以上若しくは0.5モル%以上の場合は、他の種類のBT系粒子17であると捉えられてよい。逆にいえば、例えば、BT粒子は、Baの置換量及びTiの置換量がそれぞれ0.5モル%未満のものとされてよい。なお、第1実施形態の説明では、便宜上、特に断りなく、有効部7、サイドマージン部13及びカバー部15を構成する誘電体の結晶粒子は、BT粒子及びBCT粒子のみであることを前提とした説明を行うことがある。 Also, crystal particles in which the main component element is largely replaced by the subcomponent element may be regarded as a type of BT-based particle 17 (or a non-BT-based crystal particle) different from BT particles and BCT particles. For example, when the amount of replacement (not simply the amount of solid solution) is 1.0 mol % or more or 0.5 mol % or more, it may be regarded as another type of BT-based particle 17. Conversely, for example, the amount of Ba replacement and the amount of Ti replacement of BT particles may be less than 0.5 mol %. Note that, for convenience, in the explanation of the first embodiment, the explanation may be made on the assumption that the crystal particles of the dielectric constituting the effective portion 7, the side margin portion 13, and the cover portion 15 are only BT particles and BCT particles, unless otherwise specified.
 誘電体は、主成分の元素及び第1副成分の元素以外の副成分(以下、「不純物」ということがある。)を含んでいてもよい。不純物としては、例えば、誘電体の製造過程で混ぜたガラス粉末に由来するもの(例えばアルミニウム)を挙げることができる。 The dielectric may contain minor components (hereinafter sometimes referred to as "impurities") other than the main component element and the first minor component element. Impurities may include, for example, those derived from glass powder mixed in during the manufacturing process of the dielectric (e.g., aluminum).
 有効部7、サイドマージン部13及びカバー部15を構成する誘電体は、A/B比以外の事項が、互いに同じであってもよいし、互いに異なっていてもよい。ただし、実施形態の説明では、便宜上、特に断りがない限り、A/B比以外の事項は、部位同士で互いに同じであるものとする。 The dielectrics constituting the effective portion 7, the side margin portion 13, and the cover portion 15 may be the same or different in terms of properties other than the A/B ratio. However, for the sake of convenience, in the description of the embodiment, unless otherwise specified, properties other than the A/B ratio are assumed to be the same for each portion.
(2.2.成分比等の例)
 各成分の質量%及びモル%等の種々の値は適宜に設定されてよく、例えば、特許文献1等で開示されている公知の値が参照されて構わない。以下に値の範囲の例を示す。なお、念のために記載すると、以下に例示される範囲に係る条件が満たされなくても構わない。以下に示す値は、例えば、製造過程における原料の秤量から特定される値である。ただし、以下の値は、製造後の分析値であっても構わない。
(2.2. Examples of component ratios, etc.)
Various values such as mass % and mol % of each component may be set appropriately, and known values disclosed in, for example, Patent Document 1 may be referred to. Examples of value ranges are shown below. Just to be sure, the conditions related to the ranges exemplified below do not have to be satisfied. The values shown below are, for example, values determined from the weighing of raw materials in the manufacturing process. However, the values below may be analytical values after manufacturing.
 BT系粒子17については、以下のとおりである。
 (a1) BT系粒子17の量
   (a1-1) 誘電体の90質量%以上、95質量%以上又は98質量%以上
   (a1-2) 誘電体が含む全結晶粒子(BT系とは限らない)の95質量%以上、98質量%以上若しくは100質量%(微量な誤差を除く)、及び/又は95モル%以上、98モル%以上若しくは100モル%以上(微量な誤差を除く)
 (a2) BT粒子及びBCT粒子の総量: BT系粒子17の95質量%以上、98質量%以上若しくは100質量%(微量な誤差を除く)、及び/又は95モル%以上、98モル%以上若しくは100モル%以上(微量な誤差を除く)
 (a3) BT粒子の量とBCT粒子の量との関係
  (a3-1) 誘電体の断面又は表面におけるBT粒子とBCT粒子との面積比(BT/BCT): 0.1以上3.0以下、又は0.3以上2.0以下
  (a3-2) BCT粒子とBT粒子とのモル比又は質量比(BCT/BT): 0.05以上20.00以下、0.25以上4.00以下、又は0.95以上1.05以下
 (a4) BCT粒子におけるBaの量とCaの量との関係
   (a4-1) Ba1-xCaのx: 0.01以上0.20以下、又は0.02以上0.07以下
   (a4-2) BaはAサイトの70モル%以上又は80モル%以上
 (a5) BT系粒子17(BT及びBCT)におけるTiの量: Bサイトの90モル%以上、95モル%以上、又は100モル%(微量な誤差を除く)
 (a6) BT系粒子17(BT及びBCT)におけるO(酸素)の量:Oサイトの90モル%以上、95モル%以上、又は100モル%(微量な誤差を除く)
 (a7) BT系粒子17(BT及びBCT)の径: 平均粒径:0.10μm以上0.80μm以下、又は0.15μm以上0.40μm以下
The BT-based particles 17 are as follows.
(a1) Amount of BT-based particles 17 (a1-1) 90% by mass or more, 95% by mass or more, or 98% by mass or more of the dielectric (a1-2) 95% by mass or more, 98% by mass or more, or 100% by mass (excluding minor errors) of all crystal particles (not necessarily BT-based) contained in the dielectric, and/or 95 mol % or more, 98 mol % or more, or 100 mol % or more (excluding minor errors)
(a2) Total amount of BT particles and BCT particles: 95% by mass or more, 98% by mass or more, or 100% by mass (minor errors excluded) of the BT-based particles 17, and/or 95 mol % or more, 98 mol % or more, or 100 mol % or more (minor errors excluded)
(a3) Relationship between the amount of BT particles and the amount of BCT particles (a3-1) Area ratio of BT particles to BCT particles in a cross section or surface of a dielectric (BT/BCT): 0.1 or more and 3.0 or less, or 0.3 or more and 2.0 or less (a3-2) Molar ratio or mass ratio of BCT particles to BT particles (BCT/BT): 0.05 or more and 20.00 or less, 0.25 or more and 4.00 or less, or 0.95 or more and 1.05 or less (a4) Relationship between the amount of Ba and the amount of Ca in BCT particles (a4-1) x in Ba1 -xCax : 0.01 or more and 0.20 or less, or 0.02 or more and 0.07 or less (a4-2) Ba is 70 mol % or more or 80 mol % or more of A site (a5) Amount of Ti in BT-based particles 17 (BT and BCT): 90 mol % or more, 95 mol % or more, or 100 mol % of the B site (minor errors excluded)
(a6) Amount of O (oxygen) in BT-based particles 17 (BT and BCT): 90 mol % or more, 95 mol % or more, or 100 mol % of O sites (minor errors excluded)
(a7) Diameter of BT-based particles 17 (BT and BCT): Average particle size: 0.10 μm or more and 0.80 μm or less, or 0.15 μm or more and 0.40 μm or less
 上記(a1)の条件が満たされると、例えば、チタン酸バリウム系の結晶の特性が発揮されやすい。その結果、例えば、実施形態の概要で述べたA/B比をコンデンサ1の部位によって異ならせることによる効果が奏されやすい。また、例えば、BT粒子及びBCT粒子を併用することによる効果(比誘電率を確保しつつ、比誘電率の温度依存性及びDCバイアス特性を低減する。)も奏されやすい。 When the above condition (a1) is satisfied, for example, the properties of barium titanate-based crystals are easily exhibited. As a result, for example, the effect of varying the A/B ratio according to the portion of the capacitor 1, as described in the outline of the embodiment, is easily exhibited. In addition, for example, the effect of using BT particles and BCT particles in combination (reducing the temperature dependence of the dielectric constant and the DC bias characteristics while maintaining the dielectric constant) is easily exhibited.
 上記(a2)及び(a3)の条件が満たされると、例えば、BCT粒子の量が一定程度確保され、比誘電率の温度依存性及びDCバイアス特性を低減する効果が得られやすい。また、(a4-1)の条件が満たされると、室温付近の相転移点が十分低温側にシフトする。その結果、例えば、比誘電率の温度依存性及びDCバイアス特性を低減する効果が得られやすい。 When the above conditions (a2) and (a3) are met, for example, a certain amount of BCT particles is ensured, and the effect of reducing the temperature dependency of the dielectric constant and the DC bias characteristics is easily achieved. Furthermore, when the condition (a4-1) is met, the phase transition point near room temperature shifts to a sufficiently low temperature side. As a result, for example, the effect of reducing the temperature dependency of the dielectric constant and the DC bias characteristics is easily achieved.
 上記(a4-2)、(a5)及び(a6)の条件が満たされると、例えば、チタン酸バリウム(BT)の特性が維持されやすい。その結果、例えば、比誘電率を高くすることが容易である。 When the above conditions (a4-2), (a5), and (a6) are satisfied, the properties of barium titanate (BT), for example, are easily maintained. As a result, for example, it is easy to increase the relative dielectric constant.
 上記(a7)の条件が満たされると、例えば、粒径が比較的小さいことによって、誘電体層(例えば有効部7)を薄くすることが容易である。また、ある程度の大きさの粒径が確保されることから、比誘電率を確保しやすい。 When the above condition (a7) is satisfied, for example, the particle size is relatively small, so that it is easy to make the dielectric layer (e.g., the effective portion 7) thin. In addition, since a certain degree of particle size is ensured, it is easy to ensure the relative dielectric constant.
 第1副成分の元素については以下のとおりである。なお、以下では、BT系粒子17を100質量部としたときの質量部を示している。上記100質量部には、BT系粒子17に固溶した副成分(例えば第1副成分)の元素の量は含まれない。ただし、下記範囲からも理解されるように、第1副成分の元素は比較的少量であるから、100質量部にBT系粒子17に固溶した第1副成分の元素の量が含まれても構わない。また、以下では、各元素が酸化物を構成していると仮定した場合の、各元素の量に応じた酸化物の量を示している。 The elements of the first subcomponent are as follows. In the following, the parts by mass are shown when the BT-based particles 17 are taken as 100 parts by mass. The above 100 parts by mass does not include the amount of the elements of the subcomponents (e.g., the first subcomponent) dissolved in the BT-based particles 17. However, as can be seen from the ranges below, the amount of the elements of the first subcomponent dissolved in the BT-based particles 17 is relatively small, so the amount of the elements of the first subcomponent dissolved in the BT-based particles 17 may be included in the 100 parts by mass. In the following, the amount of oxide corresponding to the amount of each element is shown, assuming that each element constitutes an oxide.
 (b1) Mg: 0.04以上0.25以下(MgO換算)
 (b2) RE: 0.2以上2.5以下(RE換算)
 (b3) Mn: 0.04以上0.15以下(MnO換算)
(b1) Mg: 0.04 or more and 0.25 or less (MgO conversion)
(b2) RE: 0.2 or more and 2.5 or less (RE 2 O 3 conversion)
(b3) Mn: 0.04 or more and 0.15 or less (MnO conversion)
 上記(b1)、(b2)及び/又は(b3)の条件が満たされると、例えば、比誘電率の温度依存性を低減することができ、及び/又は高温で電圧が印加されたときに絶縁破壊が生じる蓋然性を低減できる。 When the above conditions (b1), (b2) and/or (b3) are satisfied, for example, the temperature dependence of the dielectric constant can be reduced, and/or the likelihood of dielectric breakdown occurring when a voltage is applied at high temperatures can be reduced.
 BT系粒子17に固溶している第1副成分の元素の量は、BT粒子とBCT粒子とで同じであってもよいし、異なっていてもよい。例えば、BCT粒子に含まれる第1副成分の元素の質量%は、BT粒子に含まれる第1副成分の元素の質量%よりも大きくされてよい。この場合、例えば、比誘電率の増加、比誘電率の温度依存性の低減、高温で高電圧が印加されたときの絶縁性の向上、及び耐熱衝撃性の向上の効果が奏される。 The amount of the first subcomponent element dissolved in the BT-based particles 17 may be the same for the BT particles and the BCT particles, or may be different. For example, the mass percentage of the first subcomponent element contained in the BCT particles may be greater than the mass percentage of the first subcomponent element contained in the BT particles. In this case, for example, the effects of increasing the relative dielectric constant, reducing the temperature dependency of the relative dielectric constant, improving insulation when a high voltage is applied at high temperatures, and improving thermal shock resistance are achieved.
 不純物の量は、例えば、BT系粒子17の100質量部に対して2質量部未満又は1質量部未満とされてよい。また、不純物としてアルミニウムが存在する場合、アルミニウムは誘電体の1質量%未満とされてよい。 The amount of impurities may be, for example, less than 2 parts by mass or less than 1 part by mass per 100 parts by mass of the BT-based particles 17. Furthermore, when aluminum is present as an impurity, the amount of aluminum may be less than 1% by mass of the dielectric.
(2.3.A/B比)
(2.3.1.A/B比全般)
 A/B比は、既述のとおり、BT系粒子17において、Aサイトの元素の物質量をBサイトの元素の物質量で割った値である。ただし、ここでいうAサイト又はBサイトの元素は、主成分の元素を指す。例えば、第1実施形態では、BT粒子のBa及びTiを指し、BCT粒子のBa、Ca及びTiを指す。これらの粒子に固溶している副成分の元素は、Aサイト又はBサイトの元素に置換され得るものであっても、A/B比の算出には用いない。
(2.3.A/B ratio)
(2.3.1. A/B ratio in general)
As described above, the A/B ratio is a value obtained by dividing the amount of substance of the element in the A site by the amount of substance of the element in the B site in the BT-based particle 17. The element refers to the element of the main component. For example, in the first embodiment, it refers to Ba and Ti of the BT particles, and Ba, Ca, and Ti of the BCT particles. Even though an element may be substituted for either the A site or the B site element, it is not used in calculating the A/B ratio.
 主成分の元素は、以下のように表現することができる。Aサイトの主成分の元素は、BT系粒子17において、Ba、又はBaに有意な量で置換された元素(第1実施形態ではCa)である。有意な量としては、例えば、1.0モル%以上又は0.5モル%以上が挙げられる(以下、同様。)。Bサイトの主成分の元素は、BT系粒子17において、Ti、又はTiに有意な量で置換された元素である。 The main component element can be expressed as follows. The main component element in the A site is Ba or an element substituted for Ba in a significant amount in the BT-based particles 17 (Ca in the first embodiment). Examples of a significant amount include 1.0 mol% or more, or 0.5 mol% or more (the same applies below). The main component element in the B site is Ti or an element substituted for Ti in a significant amount in the BT-based particles 17.
 念のために記載すると、第1実施形態において、Aサイトの元素の物質量Aモルは、BT粒子のBaの物質量、並びにBCT粒子のBa及びCaの物質量の合計である。Bサイトの元素の物質量Bモルは、BT粒子のTiの物質量、及びBCT粒子のTiの物質量の合計である。A/B比は、BT系粒子17における値であり、粒界層19におけるAサイト及びBサイトの元素の量は考慮外である。 Just to be clear, in the first embodiment, the amount of substance A (mol) of an element at the A site is the sum of the amount of substance Ba in the BT particles and the amounts of substance Ba and Ca in the BCT particles. The amount of substance B (mol) of an element at the B site is the sum of the amount of substance Ti in the BT particles and the amount of substance Ti in the BCT particles. The A/B ratio is a value in the BT-based particles 17, and the amounts of elements at the A site and B site in the grain boundary layer 19 are not taken into consideration.
 A/B比は、BT粒子とBCT粒子とで互いに同じであってもよいし、互いに異なっていてもよい。また、前者であるか後者であるかは、部位(7、13及び15)同士で同じであってもよいし、異なっていてもよい。いずれにせよ、比較されるのは、BT粒子及びBCT粒子を含むBT系粒子17全体におけるA/B比である。 The A/B ratio may be the same for the BT particles and the BCT particles, or may be different. Also, whether it is the former or the latter may be the same for the sites (7, 13, and 15) or may be different. In any case, what is compared is the A/B ratio for the entire BT-based particles 17, which includes the BT particles and the BCT particles.
 複数の有効部7のA/B比が互いに異なる場合は、体積で平均化した平均のA/B比が他の部位のA/B比と比較されてよい。サイドマージン部13内の部位によってA/B比が異なる場合も、体積で平均化した平均のA/B比が用いられてよい。カバー部15についても同様である。ただし、いずれにせよ、比較的小さい体積を占めているとともに特異的なA/B比の値を示す部位は、考慮外とされてよい。 If the A/B ratios of multiple effective portions 7 are different from one another, the average A/B ratio averaged by volume may be compared with the A/B ratios of other portions. If the A/B ratios differ depending on the portion within the side margin portion 13, the average A/B ratio averaged by volume may be used. The same applies to the cover portion 15. However, in any case, portions that occupy a relatively small volume and show a unique A/B ratio value may be excluded from consideration.
 本開示に係る技術の利用の有無の判定において、A/B比は、例えば、BT系粒子17となる粉末の作製前における、BT系粒子17の原料の秤量から特定されてよい。ただし、A/B比は、製造後の分析によって特定されても構わない。また、本開示に係る技術の利用の有無は、有効部7とサイドマージン部13とでA/B比を比較できれば判断できる。従って、A/B比の値自体は、厳密に特定可能でなくても構わない。 In determining whether or not the technology disclosed herein has been used, the A/B ratio may be determined, for example, from the weighing of the raw material of the BT-based particles 17 before the powder that will become the BT-based particles 17 is produced. However, the A/B ratio may also be determined by analysis after production. Furthermore, whether or not the technology disclosed herein has been used can be determined if the A/B ratio can be compared between the effective portion 7 and the side margin portion 13. Therefore, the value of the A/B ratio itself does not need to be strictly identifiable.
 以下の説明では、便宜上、以下の記号を用いることがある。
 ・有効部7のA/B比: A/B_E
 ・サイドマージン部13のA/B比: A/B_S
 ・カバー部15のA/B比: A/B_C
 ・A/B_E-A/B_S(A/B比の差): ΔR_S
 ・A/B_E-A/B_C(A/B比の差): ΔR_C
In the following description, the following symbols may be used for convenience.
A/B ratio of the effective portion 7: A/B_E
A/B ratio of the side margin portion 13: A/B_S
A/B ratio of the cover portion 15: A/B_C
・A/B_E-A/B_S (difference in A/B ratio): ΔR_S
・A/B_E-A/B_C (difference in A/B ratio): ΔR_C
 A/B_Sは、既述のとおり、A/B_Eよりも小さい。A/B_Cは、A/B_Eに対して、小さくてもよいし、同等でもよいし、大きくてもよい。実施形態の説明では、特に断りなく、A/B_C<A/B_Eの態様を例に取ることがある。この場合、例えば、サイドマージン部13と同様に、カバー部15の耐熱衝撃性が向上する。A/B_Sは、A/B_Cに対して、大きくてもよいし、同等でもよいし、小さくてもよい。 As mentioned above, A/B_S is smaller than A/B_E. A/B_C may be smaller than, equal to, or larger than A/B_E. In the explanation of the embodiment, the case where A/B_C<A/B_E may be taken as an example unless otherwise specified. In this case, for example, the thermal shock resistance of the cover portion 15 is improved, similar to the side margin portion 13. A/B_S may be larger than, equal to, or smaller than A/B_C.
(2.3.2.サイドマージン部のA/B比)
 ΔR_Sの大きさは任意である。例えば、A/B_SがA/B_Eよりも多少なりとも小さければ、実施形態の概要で述べた効果が多少なりとも奏される。従って、ΔR_Sは有意な大きさ以上であればよい。例えば、0.001≦ΔR_Sである。後述する実施例では、ΔR_S=0.001の場合に、ΔR_S=0.000に比較して、有意な効果が奏されることが確認されている。
(2.3.2. A/B ratio of side margin)
The magnitude of ΔR_S is arbitrary. For example, if A/B_S is smaller than A/B_E to some extent, the effect described in the outline of the embodiment is achieved to some extent. Therefore, ΔR_S may be equal to or greater than a significant magnitude. For example, 0.001≦ΔR_S. In the examples described below, it has been confirmed that when ΔR_S=0.001, a significant effect is achieved compared to when ΔR_S=0.000.
 ただし、A/B_SがA/B_Eに対して大き過ぎると、サイドマージン部13の耐熱衝撃性は却って低下する。その理由としては、焼成条件を有効部7に合わせたときに、サイドマージン部13の焼結が進み過ぎることが挙げられる。従って、例えば、ΔR_S≦0.010とされてよい。後述する実施例では、上記の範囲内であれば、上記のような不都合が生じる蓋然性が低いことが確認されている。 However, if A/B_S is too large relative to A/B_E, the thermal shock resistance of the side margin portion 13 will actually decrease. The reason for this is that when the firing conditions are adjusted to match the effective portion 7, the sintering of the side margin portion 13 will proceed too far. Therefore, for example, ΔR_S may be set to 0.010 or less. In the examples described below, it has been confirmed that within the above range, the likelihood of the above-mentioned inconvenience occurring is low.
 なお、念のために記載すると、ΔR_Sの特定においては、所定の範囲に含まれるか否かを判定するために必要十分な程度で値の特定がなされればよい。例えば、有効数字の最小桁(上記では少数第3位)に有意な値が得られればよい。逆にいえば、0.0104のように最小桁よりも小さい桁の値が特定される必要はない。また、有効数字の最小桁よりも小さい桁の値が特定された場合は、その値は、四捨五入されてよい。例えば、ΔR_Sが0.010以下であるという場合、当該範囲は、0.0104を含み、0.0105を含まない。ΔR_S以外の他のパラメータについても同様である。 Just to be clear, when specifying ΔR_S, it is sufficient to specify the value to a degree necessary and sufficient to determine whether it is within a specified range. For example, it is sufficient to obtain a significant value in the least significant digit (three decimal places in the above case). Conversely speaking, it is not necessary to specify a value with a digit smaller than the least significant digit, such as 0.0104. Furthermore, if a value with a digit smaller than the least significant digit is specified, that value may be rounded off. For example, if ΔR_S is 0.010 or less, the range includes 0.0104 and does not include 0.0105. The same applies to other parameters other than ΔR_S.
 これまでの説明から理解されるように、A/B_S<A/B_Eである限り、これらの値の大きさは任意である。例えば、A/B_S及びA/B_Eの値は、以下のいずれの態様であっても構わない。
 (i) 1.000<A/B_S、かつ1.000<A/B_E
 (ii) 1.000=A/B_S、かつ1.000<A/B_E
 (iii) A/B_S<1.000、かつ1.000<A/B_E
 (iv) A/B_S<1.000、かつ1.000=A/B_E
 (v) A/B_S<1.000、かつA/B_E<1.000
As will be understood from the above description, as long as A/B_S<A/B_E, the magnitudes of these values are arbitrary. For example, the values of A/B_S and A/B_E may be in any of the following forms.
(i) 1.000<A/B_S and 1.000<A/B_E
(ii) 1.000=A/B_S and 1.000<A/B_E
(iii) A/B_S<1.000 and 1.000<A/B_E
(iv) A/B_S<1.000 and 1.000=A/B_E
(v) A/B_S<1.000 and A/B_E<1.000
 例えば、(i)~(v)のうち(i)側ほど、比誘電率の増加、比誘電率の温度依存性の低減、高温で高電圧が印加されたときの絶縁性の向上、及び耐熱衝撃性の向上の効果が奏されやすい。従って、例えば、(i)~(iii)のいずれかが選択されてもよい。 For example, among (i) to (v), the closer to (i), the more likely it is that the effects of increasing the relative dielectric constant, reducing the temperature dependency of the relative dielectric constant, improving insulation when a high voltage is applied at high temperatures, and improving thermal shock resistance will be achieved. Therefore, for example, any of (i) to (iii) may be selected.
 上記の(i)~(v)のいずれかが選択された場合の、A/B_S及びA/B_Eの具体的な値の範囲も任意である。(i)~(iii)が選択された場合における値の範囲の一例を以下に示す。
   0.997≦A/B_S<1.003
   1.003≦A/B_E≦1.007
When any of the above (i) to (v) is selected, the specific ranges of values of A/B_S and A/B_E are also arbitrary. An example of the range of values when (i) to (iii) is selected is shown below.
0.997≦A/B_S<1.003
1.003≦A/B_E≦1.007
 念のために記載すると、A/B_Sは、0.997よりも小さくても構わない。A/B_Eは、1.007よりも大きくても構わない。A/B_SとA/B_Eとの境界は、1.003に対して、小さくても構わないし、大きくても構わない。 Just to be clear, A/B_S can be smaller than 0.997. A/B_E can be larger than 1.007. The boundary between A/B_S and A/B_E can be smaller or larger than 1.003.
(2.3.3.カバー部のA/B比)
 上記の2.3.2節におけるA/B_S及びΔR_Sについての説明は、A/B_S及びΔR_Sの語をA/B_C及びΔR_Cの語に置換して、A/B_C及びΔR_Cに援用されてよい。
(2.3.3. A/B ratio of cover part)
The explanation of A/B_S and ΔR_S in Section 2.3.2 above may be incorporated into A/B_C and ΔR_C by substituting the terms A/B_S and ΔR_S with the terms A/B_C and ΔR_C.
 また、既述のとおり、A/B_SとA/B_Cとの大小関係は任意である。例えば、両者は同じとされてよい。この場合、例えば、両者の原料が同じになるから、生産性が向上する。A/B_SとA/B_Cとが互いに異なる場合においては、両者の差は、例えば、ΔR_S及びΔR_Cと同様に、0.010以下とされてよい。この範囲では、例えば、サイドマージン部13とカバー部15とで焼結が同様に進行しやすくなる。 Also, as mentioned above, the magnitude relationship between A/B_S and A/B_C is arbitrary. For example, the two may be the same. In this case, for example, the raw materials for both are the same, improving productivity. When A/B_S and A/B_C are different from each other, the difference between the two may be, for example, 0.010 or less, similar to ΔR_S and ΔR_C. In this range, for example, sintering tends to proceed in the same way in the side margin portion 13 and the cover portion 15.
(3.コンデンサの製造方法)
(3.1.製造手順)
 コンデンサ1の製造方法は、種々の方法とされてよく、例えば、A/B比を部位に応じて設定する点を除いて、公知の方法と同様とされて構わない。以下に例を示す。
(3. Capacitor Manufacturing Method)
(3.1. Manufacturing Procedure)
The method for manufacturing the capacitor 1 may be various methods, and may be the same as a known method, for example, except that the A/B ratio is set depending on the portion. An example is shown below.
 図4は、コンデンサ1の製造方法の手順の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of the steps in the manufacturing method for the capacitor 1.
 ステップST1では、第1積層体を作製する。第1積層体は、複数の積層体11となる部分が平面に沿って配列されて互いにつながっているものである。第1積層体は、複数の有効部7となる部分を含むセラミックグリーンシートと、複数の内部電極9となる導電ペーストとが交互に積層されて構成されている。 In step ST1, a first laminate is produced. The first laminate is made up of a plurality of parts that will become laminates 11 arranged along a plane and connected to each other. The first laminate is made up of alternating layers of ceramic green sheets, including parts that will become a plurality of effective portions 7, and conductive paste that will become a plurality of internal electrodes 9.
 ステップST2では、第1積層体の上下面に、複数のカバー部15となる部分を含むセラミックグリーンシート(別の観点では第1積層体の概ね全体に重なるセラミックグリーンシート)を重ね、第2積層体を作製する。 In step ST2, a ceramic green sheet including portions that will become multiple cover portions 15 (in other words, a ceramic green sheet that overlaps almost the entire first laminate) is placed on the top and bottom surfaces of the first laminate to produce a second laminate.
 ステップST3では、第2積層体を複数のコンデンサ1(より厳密には積層体11及びカバー部15)となる部分に個片化する(分割する。)。個片化は、例えば、ブレード又はレーザーを用いた切断(ダイシング)によって実現される。このとき、zx面に沿う分割面(切断面)は、積層体11の、サイドマージン部13によって覆われる側面となる面である。当該切断面からは複数の内部電極9となる導電ペーストが露出する。また、yz面に沿う分割面(切断面)は、積層体11の、外部電極5に覆われる側面(端面)となる面である。当該切断面からは複数の内部電極9となる導電ペーストが1層置きに露出する。 In step ST3, the second laminate is singulated (divided) into portions that will become a plurality of capacitors 1 (more precisely, laminate 11 and cover portion 15). Singulation is achieved, for example, by cutting (dicing) using a blade or laser. At this time, the division surface (cut surface) along the zx plane is the surface that will become the side surface of laminate 11 that will be covered by side margin portion 13. The conductive paste that will become a plurality of internal electrodes 9 is exposed from this cut surface. Moreover, the division surface (cut surface) along the yz plane is the surface that will become the side surface (end surface) of laminate 11 that will be covered by external electrode 5. The conductive paste that will become a plurality of internal electrodes 9 is exposed from this cut surface every other layer.
 なお、いずれの側面も、単に切断されただけであってよい。ただし、研磨又は研削等の処理が施されても構わない。この場合において、導電ペーストは、切断のみで露出してもよいし、切断では露出せずに、上記処理によって露出してもよい。また、yz面に沿う切断面は、後述する焼成の後に研磨又は研削等の処理が行われ、これにより、内部電極9が外部に露出してもよい。 It should be noted that either side may simply be cut. However, polishing, grinding, or other processing may also be performed. In this case, the conductive paste may be exposed by cutting alone, or may be exposed by the above processing without being exposed by cutting. Furthermore, the cut surface along the yz plane may be polished or ground after firing, which will be described later, thereby exposing the internal electrode 9 to the outside.
 ステップST4では、サイドマージン部13となるセラミックグリーンシートをステップST3で得られた個片(積層体11及びカバー部15となる成形体)のzx面に沿う側面に貼り付ける。なお、セラミックグリーンシートを貼り付けるのではなく、吹き付け及び/又はディップによってセラミック材料を成形体の側面に配置してもよい。この吹き付け及び/又はディップによって、サイドマージン部13となるセラミックグリーンシートが形成されたと捉えてもよい。 In step ST4, the ceramic green sheet that will become the side margin portion 13 is attached to the side along the zx plane of the piece (the molded body that will become the laminate 11 and cover portion 15) obtained in step ST3. Note that instead of attaching the ceramic green sheet, the ceramic material may be disposed on the side of the molded body by spraying and/or dipping. It may be considered that the ceramic green sheet that will become the side margin portion 13 is formed by this spraying and/or dipping.
 ステップST5では、本体部3(積層体11、カバー部15及びサイドマージン部13)となる成形体を焼成する。これにより、本体部3が作製される。 In step ST5, the molded body that will become the main body 3 (laminated body 11, cover 15, and side margin 13) is fired. This produces the main body 3.
 ステップST6では、外部電極5を形成する。すなわち、本体部3のyz面に沿う側面等に金属層を成膜する。 In step ST6, the external electrode 5 is formed. That is, a metal layer is formed on the side surfaces along the yz plane of the main body 3.
 上記とは異なる手順としては、ステップST4が省略されており、サイドマージン部13が、有効部7となるセラミックグリーンシートの外縁側の部分によって構成される態様が挙げられる。この態様では、ステップST3で個片化された成形体は、積層体11、カバー部15及びサイドマージン部13となる部分を有している。別の観点では、内部電極9となる導電ペーストは、zx平面に沿う側面(切断面)から露出しない。 An example of a procedure that differs from the above is one in which step ST4 is omitted and the side margin portion 13 is formed by the outer edge portion of the ceramic green sheet that will become the effective portion 7. In this embodiment, the molded body that is singulated in step ST3 has a portion that will become the laminate 11, the cover portion 15, and the side margin portion 13. From another perspective, the conductive paste that will become the internal electrode 9 is not exposed from the side surface (cut surface) along the zx plane.
 ステップST4が省略された上記他の手順では、第2積層体内における各部の位置誤差及び/又は個片化の誤差等が生じても、内部電極9となる導電性ペーストがzx平面に沿う側面(切断面)から露出しないように、サイドマージン部13の幅(y方向の長さ)に上記の誤差を考慮した余裕量が含まれる。一方、ステップST4を有する手順では、そのような余裕量を考慮する必要はない。その結果、サイドマージン部13を薄くすることが容易である。 In the other procedures described above in which step ST4 is omitted, even if positional errors and/or singulation errors occur in the various parts of the second laminate, the width (length in the y direction) of the side margin portion 13 includes a margin that takes into account the above-mentioned errors so that the conductive paste that will become the internal electrodes 9 is not exposed from the side surface (cut surface) along the zx plane. On the other hand, in the procedure that includes step ST4, there is no need to take such a margin into account. As a result, it is easy to make the side margin portion 13 thinner.
 図4に例示された手順では、有効部7及びサイドマージン部13は、互いに別個に作製される。従って、有効部7とサイドマージン部13とでA/B比を異ならせるために、有効部7及びサイドマージン部13に対して用意されるセラミック材料のA/B比を互いに異ならせればよい。 In the procedure illustrated in FIG. 4, the effective portion 7 and the side margin portion 13 are fabricated separately from each other. Therefore, to make the A/B ratio different between the effective portion 7 and the side margin portion 13, the A/B ratio of the ceramic material prepared for the effective portion 7 and the side margin portion 13 may be made different from each other.
 なお、ステップST4が省略された手順においても、実施形態に係るA/B比を実現することは可能である。例えば、セラミックグリーンシートの外縁側の領域(サイドマージン部13となる部分)にAサイトの元素を注入したり、逆に、中心側の領域(有効部7となる部分)にBサイトの元素を注入したりしてよい。 It is possible to achieve the A/B ratio according to the embodiment even in a procedure in which step ST4 is omitted. For example, A-site elements may be injected into the outer edge region of the ceramic green sheet (the portion that will become the side margin portion 13), and conversely, B-site elements may be injected into the central region (the portion that will become the effective portion 7).
(3.2.誘電体の製造方法)
 以下、有効部7、サイドマージン部13及びカバー部15を構成する誘電体の製造方法について説明する。
(3.2. Manufacturing method of dielectric)
A method for manufacturing the dielectrics constituting the active portion 7, the side margin portion 13 and the cover portion 15 will be described below.
 誘電体の製造方法は、図4の説明から理解されるように、セラミックグリーンシートを作製するステップと、セラミックグリーンシートを用いて作製した成形体を焼成するステップとを有している。セラミックグリーンシートは、セラミックスラリを作成するステップと、セラミックスラリを適宜なシート成形法(例えばドクターブレード法又はダイコータ法)によってシート状に成形するステップとを有している。セラミックスラリは、例えば、BT系粒子17の材料であるBT系粉末と、副成分(例えば第1副成分)の元素を含む添加物(例えば焼結助剤)と、バインダー及び/又は溶媒とを混合することによって作製される。 As can be understood from the explanation of FIG. 4, the method for manufacturing a dielectric includes a step of producing a ceramic green sheet and a step of firing a molded body produced using the ceramic green sheet. The ceramic green sheet includes a step of producing a ceramic slurry and a step of forming the ceramic slurry into a sheet shape by an appropriate sheet forming method (e.g., a doctor blade method or a die coater method). The ceramic slurry is produced, for example, by mixing a BT-based powder, which is the material of the BT-based particles 17, an additive (e.g., a sintering aid) containing an element of a minor component (e.g., a first minor component), and a binder and/or a solvent.
 第1実施形態では、BT系粉末は、BT系粒子17の材料であるから、BT系粒子17の組成等の説明は、適宜にBT系粉末に援用されてよい。念のために記載すると、例えば、BT系粉末は、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系の結晶を有している。第1実施形態では、BT系粉末は、BT粒子の材料であるBT粉末と、BCT粒子の材料であるBCT粉末とを含む。BT粒子は、BaTiOで表される結晶を有している。BCT粉末は、(Ba1-xCa)TiOで表される結晶を有している。ただし、BT系粉末は、BT系粒子17とは異なり、第1副成分の元素は固溶していない。 In the first embodiment, the BT-based powder is the material of the BT-based particles 17, so the description of the composition of the BT-based particles 17 may be appropriately applied to the BT-based powder. Just to be sure, for example, the BT-based powder has a barium titanate-based crystal having a perovskite structure represented by the composition formula ABO 3. In the first embodiment, the BT-based powder includes a BT powder that is the material of the BT particles and a BCT powder that is the material of the BCT particles. The BT particles have a crystal represented by BaTiO 3. The BCT powder has a crystal represented by (Ba 1-x Ca x ) TiO 3. However, unlike the BT-based particles 17, the BT-based powder does not have a solid solution of the element of the first subcomponent.
 BT系粉末は、Aサイト及びBサイトの元素を含む化合物を混合して合成することによって作製される。このとき、所望の組成が得られるように化合物の量が設定される。例えば、BCT粒子の作製では、Ba1-xCaにおけるxが所望の値になるように、Baを含む化合物の量とCaを含む化合物の量との比が設定される。BT系粉末は、固相法、液相法(蓚酸塩を介して生成する方法を含む)、水熱合成法などから選ばれる合成法により得られてよい。なお、水熱合成法を用いた場合は、粉末の粒度分布を狭くするとともに、結晶性を高くすることが容易である。 The BT-based powder is produced by mixing and synthesizing compounds containing A-site and B-site elements. At this time, the amount of the compound is set so that a desired composition is obtained. For example, in the production of BCT particles, the ratio of the amount of the compound containing Ba to the amount of the compound containing Ca is set so that x in Ba 1-x Ca x has a desired value. The BT-based powder may be obtained by a synthesis method selected from a solid-phase method, a liquid-phase method (including a method of producing via oxalate), a hydrothermal synthesis method, and the like. In addition, when the hydrothermal synthesis method is used, it is easy to narrow the particle size distribution of the powder and increase the crystallinity.
 BT系粉末の径は、BT系粒子17の径以下である限り、任意である。例えば、0.01μm以上0.2μm以下とされてよい。また、BT系粉末の結晶性は、例えば、X線回折を用いて評価したときに、正方晶を示す指数(001)PAAのピークと、立方晶を示す指数(100)PBBのピークとの比がPAA/PBBが1.1以上であってよい。 The diameter of the BT-based powder is arbitrary as long as it is equal to or smaller than the diameter of the BT-based particles 17. For example, it may be 0.01 μm or more and 0.2 μm or less. In addition, the crystallinity of the BT-based powder may be, for example, when evaluated using X-ray diffraction, such that the ratio of the peak of index (001) P AA indicating a tetragonal crystal to the peak of index (100) P BB indicating a cubic crystal, P AA /P BB , is 1.1 or more.
 第1副成分の元素を含む添加物の量は、例えば、2.2節で述べたBT系粒子17の質量部に対する各元素の質量部が実現されるように設定されてよい。第1副成分の元素を含む添加物は、例えば、酸化物又は炭酸塩であってよい。 The amount of the additive containing an element of the first minor component may be set, for example, so as to realize the parts by mass of each element relative to the parts by mass of the BT-based particles 17 described in Section 2.2. The additive containing an element of the first minor component may be, for example, an oxide or a carbonate.
 第1副成分の元素を含む添加物以外の添加物として、例えば、ガラス粉末が用いられてよい。ガラス粉末は、例えば、LiO、SiO、BaO及びCaOにより構成されてよい。ガラス粉末の添加量は、例えば、BT系粉末の質量を100質量部としたときに、0.7質量部以上2.0質量部以下とされてよい。その組成は、モル%で、LiOが5以上15以下、SiOが40以上60以下、BaOが10以上30以下、CaOが10以上30以下とされてよい。また、ガラス粉末が含むアルミナの含有量は0.1質量%以下とされてよい。このようなガラス粉末の添加によって、例えば、焼結性が向上する。 As an additive other than the additive containing the element of the first subcomponent, for example, glass powder may be used. The glass powder may be composed of, for example, Li 2 O, SiO 2 , BaO, and CaO. The amount of glass powder added may be, for example, 0.7 parts by mass or more and 2.0 parts by mass or less when the mass of the BT-based powder is 100 parts by mass. The composition may be, in mol%, Li 2 O is 5 to 15, SiO 2 is 40 to 60, BaO is 10 to 30, and CaO is 10 to 30. The content of alumina contained in the glass powder may be 0.1 mass% or less. By adding such glass powder, for example, sinterability is improved.
 バインダー及び/又は溶媒としては、例えば、有機樹脂(例えばポリビニルブチラール樹脂)、トルエン及びアルコールが挙げられる。バインダー及び/又は溶媒は、基本的に焼成によって消失する。 Examples of the binder and/or solvent include organic resins (e.g., polyvinyl butyral resins), toluene, and alcohol. The binder and/or solvent essentially disappears upon firing.
(3.3.A/B比の設定方法)
 上記の説明から理解されるように、A/B比は、BT系粒子を作製するときに、Aサイトの元素を含む化合物の量と、Bサイトの元素を含む化合物の量との混合比を所望のA/B比に応じたものにすることによって実現される。そして、部位(7、13及び15)によって混合比を異ならせることによって、部位同士で互いに異なるA/B比が実現される。
(3.3. How to set the A/B ratio)
As can be understood from the above explanation, the A/B ratio is realized by adjusting the mixing ratio between the amount of the compound containing the A site element and the amount of the compound containing the B site element according to the desired A/B ratio when preparing the BT-based particles. By varying the mixing ratio depending on the site (7, 13, and 15), different A/B ratios are realized for the sites.
(4.実施例)
 図5及び図6は、実施例及び比較例に係るコンデンサの諸元を示す図表である。図5では、主として、A/B_E及びA/B_Sの値が互いに異なる実施例及び比較例が示されている。そして、A/B_S<A/B_Eによって、サイドマージン部13における耐熱衝撃性等が向上することが示されている。図6では、主として、A/B_E及びA/B_Cの値が互いに異なる実施例が示されている。そして、A/B_C<A/B_Eによって、カバー部15における耐熱衝撃性等が向上することが示されている。具体的には、以下のとおりである。
4. EXAMPLES
5 and 6 are diagrams showing the specifications of the capacitors according to the examples and the comparative examples. FIG. 5 mainly shows examples and comparative examples in which the values of A/B_E and A/B_S are different from each other. It is shown that A/B_S<A/B_E improves the thermal shock resistance and the like in the side margin portion 13. FIG. 6 mainly shows examples in which the values of A/B_E and A/B_C are different from each other. It is shown that A/B_C<A/B_E improves the thermal shock resistance and the like in the cover portion 15. Specifically, it is as follows.
 図5において、「No.」の欄は、実施例及び比較例を識別する番号を示している。Eが付された番号(E1~E11)は、実施例を示している。Cが付された番号(C1及びC2)は、比較例を示している。 In Figure 5, the "No." column shows numbers that identify the examples and comparative examples. Numbers with an E (E1 to E11) indicate examples. Numbers with a C (C1 and C2) indicate comparative examples.
 「A/B_E」、「A/B_S」、「ΔR_S」及び「A/B_C」の欄は、各パラメータの値を示している。「W(μm)」の欄は、サイドマージン部13の幅(図3に示すようにy方向の長さ)の値(μm)を示している。「t(μm)」の欄は、カバー部15の厚さ(図3に示すようにz方向の長さ)の値(μm)を示している。 The "A/B_E", "A/B_S", "ΔR_S" and "A/B_C" columns indicate the values of each parameter. The "W (μm)" column indicates the value (μm) of the width of the side margin portion 13 (the length in the y direction as shown in FIG. 3). The "t (μm)" column indicates the value (μm) of the thickness of the cover portion 15 (the length in the z direction as shown in FIG. 3).
 「X5R」の欄は、EIA(Electronic Industries Alliance)規格のX5Rを満たすか否かを示している。X5Rは、25℃を基準として、-55℃~85℃での静電容量の温度変化率が±15%以内であることを要求する。 The "X5R" column indicates whether or not the product meets the EIA (Electronic Industries Alliance) X5R standard. X5R requires that the temperature change rate of capacitance from -55°C to 85°C be within ±15%, with 25°C as the reference temperature.
 「TEST1」の欄は、高温負荷試験の結果を示している。より詳細には、この試験では、125℃の環境下において9.45Vの電圧を1000時間に亘ってコンデンサに印加し、ショートが生じたコンデンサをNGと判定した。なお、9.45Vは、対象とされたコンデンサの定格電圧の1倍以上である。図5では、100個のサンプルのうち、NGと判定されたサンプルの数を分数の形式で示している。 The "TEST1" column shows the results of the high-temperature load test. More specifically, in this test, a voltage of 9.45V was applied to the capacitors for 1000 hours in an environment of 125°C, and the capacitors that developed short circuits were judged as NG. Note that 9.45V is more than 1 time the rated voltage of the target capacitor. In Figure 5, the number of samples judged as NG out of 100 samples is shown in fractional form.
 「TEST2」の欄は、熱衝撃試験の結果を示している。より詳細には、この試験では、コンデンサの温度を350℃まで上昇させ、サイドマージン部13にクラックが生じたコンデンサをNGと判定した。図5では、500個のサンプルのうち、NGと判定されたサンプルの数を分数の形式で示している。 The "TEST2" column shows the results of the thermal shock test. More specifically, in this test, the temperature of the capacitor was raised to 350°C, and capacitors that had cracks in the side margin portion 13 were judged as NG. In Figure 5, the number of samples judged as NG out of 500 samples is shown in fractional form.
 図5において、実施例及び比較例に係るコンデンサの形状、寸法及び材料は、図に示されたパラメータの値の相違を除いて、互いに同じである。図5に示されたパラメータの値の範囲は、以下のようになっている。
 A/B_E: 1.002~1.008
 A/B_S: 0.996~1.008
 ΔR_S: -0.001~0.011
 A/B_C: 1.000
(ΔR_C:  0.002~0.008)
 W: 20μm
 t: 20μm
In Fig. 5, the shapes, dimensions and materials of the capacitors according to the embodiment and the comparative example are the same as each other except for the differences in the values of the parameters shown in the figure. The ranges of the values of the parameters shown in Fig. 5 are as follows:
A/B_E: 1.002-1.008
A/B_S: 0.996-1.008
ΔR_S: -0.001 to 0.011
A/B_C: 1.000
(ΔR_C: 0.002 to 0.008)
W: 20 μm
t: 20 μm
 E1~E11は、A/B_S<A/B_Eを満たすことから、実施例である。C1及びC2は、A/B_S<A/B_Eを満たさないことから、比較例である。より詳細には、C1では、A/B_S=A/B_Eであり、C2では、A/B_E<A/B_Sである。そして、TEST2に関して、C1及びC2では、NGの数が5/500であるのに対して、E1~E11では、NGの数が0/500又は1/500である。これにより、A/B_S<A/B_Eによって、耐熱衝撃性が向上することが確認された。 E1 to E11 are examples because they satisfy A/B_S<A/B_E. C1 and C2 are comparative examples because they do not satisfy A/B_S<A/B_E. More specifically, in C1, A/B_S=A/B_E, and in C2, A/B_E<A/B_S. And in TEST2, the number of NGs was 5/500 in C1 and C2, whereas the number of NGs was 0/500 or 1/500 in E1 to E11. This confirmed that thermal shock resistance was improved when A/B_S<A/B_E.
 E10は、ΔR_Sが0.011であり、ΔR_S≦0.010という条件を満たさない。一方、他の実施例は、上記条件を満たす。そして、TEST2に関して、E10ではNGの数が1/500であるのに対して、他の実施例では、NGの数が0/500である。これにより、ΔR_S≦0.010によって、耐熱衝撃性が向上することが確認された。 E10 has a ΔR_S of 0.011, which does not satisfy the condition ΔR_S≦0.010. On the other hand, the other examples satisfy the above condition. And for TEST2, the number of NGs is 1/500 for E10, whereas the number of NGs is 0/500 for the other examples. This confirms that thermal shock resistance is improved by ΔR_S≦0.010.
 また、全ての実施例は、比較例に比較して、X5R及びTEST1に関しても、有利な評価が得られた。具体的には、全ての実施例は、X5Rを満たすのに対して、全ての比較例は、X5Rを満たしていない。また、TEST1に関して、全ての実施例では、NGの数が0/100であるのに対して、比較例では、NGの数が3/100又は2/100である。これらの結果から、A/B_S<A/B_Eは、静電容量の温度依存性の低減、及び高温負荷に対する耐性の向上にも寄与し得ることが確認された。その理由としては、サイドマージン部13が有効部7と同様に焼結することによって、意図されていない影響(例えば応力)がサイドマージン部13から有効部7に与えられる蓋然性が低減されることが挙げられる。 Furthermore, all of the examples were favorably evaluated in terms of X5R and TEST1 compared to the comparative examples. Specifically, all of the examples satisfied X5R, whereas all of the comparative examples did not satisfy X5R. Furthermore, with regard to TEST1, the number of NGs was 0/100 in all of the examples, whereas the number of NGs was 3/100 or 2/100 in the comparative examples. From these results, it was confirmed that A/B_S<A/B_E can also contribute to reducing the temperature dependency of capacitance and improving resistance to high-temperature loads. The reason for this is that the side margin portion 13 is sintered in the same way as the effective portion 7, thereby reducing the likelihood of unintended effects (e.g., stress) being applied from the side margin portion 13 to the effective portion 7.
 図6は、図5と同様の図表である。ただし、図6では、「ΔR_S」の値は示されておらず、代わりに、「ΔR_C」の値が示されている。また、「TEST2」に代えて、「TEST3」が示されている。「TEST3」は、「TEST2」と同様に、コンデンサの温度を350℃まで上昇させ、クラックが生じたコンデンサをNGと判定するものである。ただし、「TEST2」では、サイドマージン部13におけるクラックの有無が判定されたのに対して、「TEST3」では、カバー部15におけるクラックの有無が判定されている。 FIG. 6 is a chart similar to FIG. 5. However, in FIG. 6, the value of "ΔR_S" is not shown, and instead the value of "ΔR_C" is shown. Also, "TEST3" is shown instead of "TEST2". In "TEST3", like "TEST2", the temperature of the capacitor is raised to 350°C, and capacitors in which cracks have occurred are judged as NG. However, while "TEST2" judged whether there were cracks in the side margin portion 13, "TEST3" judged whether there were cracks in the cover portion 15.
 図6(及び図5)において、実施例に係るコンデンサの形状、寸法及び材料は、図に示されたパラメータの値の相違を除いて、互いに同じである。図6に示されたパラメータの値の範囲は、以下のようになっている。
 A/B_E: 1.002~1.008
 A/B_S: 1.000
(ΔR_S:  0.002~0.008)
 A/B_C: 0.996~1.008
 ΔR_C: -0.001~0.011
 W: 20μm
 t: 20μm又は25μm
In Fig. 6 (and Fig. 5), the shapes, dimensions and materials of the capacitors according to the examples are the same as each other, except for the different values of the parameters shown in the figures. The ranges of the values of the parameters shown in Fig. 6 are as follows:
A/B_E: 1.002-1.008
A/B_S: 1.000
(ΔR_S: 0.002 to 0.008)
A/B_C: 0.996-1.008
ΔR_C: -0.001 to 0.011
W: 20 μm
t: 20 μm or 25 μm
 図6の全ての例(E12~E24)は、A/B_S<A/B_Eを満たすことから、実施例である。なお、「TEST3」においてNGの数が比較的多い実施例が含まれているが、上記のように、「TEST3」は、サイドマージン部13の耐熱衝撃性の評価ではないことに留意されたい。 All of the examples in Figure 6 (E12 to E24) are working examples because they satisfy A/B_S < A/B_E. Note that although there are working examples with a relatively large number of NGs in "TEST3," as mentioned above, please note that "TEST3" is not an evaluation of the thermal shock resistance of the side margin portion 13.
 図6では、A/B比の設定に関して、カバー部15についても、サイドマージン部13と同様の結果が得られることが示されている。すなわち、A/B_C<A/B_Eの条件を満たす実施例(E12~E21及びE23)は、上記条件を満たさない実施例(E22及びE24)に比較して、カバー部15の耐熱衝撃性(TEST3の評価)が向上している。また、前者の実施例のうち、ΔR_C≦0.010の条件を満たす実施例(E12~E20及びE23)は、上記条件を満たさない実施例(E21)に比較して、耐熱衝撃性が向上している。さらに、A/B_C<A/B_Eであることによって、X5R及びTEST1に関しても、有利な評価が得られている。 FIG. 6 shows that the same results as for the side margin portion 13 are obtained for the cover portion 15 with respect to the setting of the A/B ratio. That is, the examples (E12-E21 and E23) that satisfy the condition A/B_C<A/B_E have improved thermal shock resistance (evaluation in TEST3) of the cover portion 15 compared to the examples (E22 and E24) that do not satisfy the above condition. Also, among the former examples, the examples (E12-E20 and E23) that satisfy the condition ΔR_C≦0.010 have improved thermal shock resistance compared to the example (E21) that does not satisfy the above condition. Furthermore, because A/B_C<A/B_E, favorable evaluations are obtained for X5R and TEST1 as well.
(5.第1実施形態のまとめ)
 以上のとおり、実施形態に係る積層型電子部品(コンデンサ1)は、積層体11と、サイドマージン部13とを有している。積層体11は、交互に重なっている(複数の)有効部7及び(複数の)内部電極9を有している。サイドマージン部13は、積層体11の、積層方向(z方向)に沿う側面に重なっている。有効部7及びサイドマージン部13は、いずれも、多結晶セラミックスによって構成されている。当該多結晶セラミックスは、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系のBT系粒子17を含んでいる。BT系粒子17のAサイトは、Baを含んでいる。BT系粒子17のBサイトは、Tiを含んでいる。BT系粒子17においてAサイトの元素の物質量をBサイトの元素の物質量で割った値をA/B比と称するとき、サイドマージン部13のA/B比(A/B_S)が有効部7のA/B比(A/B_E)よりも小さい。
(5. Summary of the First Embodiment)
As described above, the multilayer electronic component (capacitor 1) according to the embodiment has a laminate 11 and a side margin portion 13. The laminate 11 has (a plurality of) effective portions 7 and (a plurality of) internal electrodes 9 that are alternately stacked. The side margin portion 13 overlaps the side surface of the laminate 11 along the stacking direction (z direction). Both the effective portion 7 and the side margin portion 13 are made of polycrystalline ceramics. The polycrystalline ceramics include barium titanate-based BT-based particles 17 having a perovskite structure represented by the composition formula ABO3 . The A site of the BT-based particles 17 includes Ba. The B site of the BT-based particles 17 includes Ti. When the amount of substance of the element at the A site in the BT-based particles 17 divided by the amount of substance of the element at the B site is referred to as the A/B ratio, the A/B ratio (A/B_S) of the side margin portion 13 is smaller than the A/B ratio (A/B_E) of the effective portion 7.
 別の観点では、実施形態に係る積層型電子部品(コンデンサ1)の製造方法は、成形体ステップ(ステップST1~ST4)と、焼成ステップ(ステップST5)とを有している。成形体ステップでは、成形体(本体部3を参照)を得る。成形体(3)では、積層体(積層体11を参照)の、積層方向(z方向)に沿う側面に第2セラミックグリーンシート(サイドマージン部13を参照)が重なっている。積層体(11)は、交互に積層されている(複数の)第1セラミックグリーンシート(有効部7を参照)と(複数の)導電ペースト(内部電極9を参照)とを有している。焼成ステップでは、上記成形体(3)を焼成する。第1セラミックグリーンシート(7)及び第2セラミックグリーンシート(13)は、いずれも、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系のBT系粉末(BT系粒子17を参照)を含んでいる。BT系粉末のAサイトは、Baを含んでいる。BT系粉末のBサイトは、Tiを含んでいる。BT系粉末においてAサイトの元素の物質量をBサイトの元素の物質量で割った値をA/B比(A/B_S)と称するとき、第2セラミックグリーンシート(13)のA/B比が第1セラミックグリーンシート(7)のA/B比(A/B_E)よりも小さい。 From another point of view, the manufacturing method of the laminated electronic component (capacitor 1) according to the embodiment includes a compact step (steps ST1 to ST4) and a firing step (step ST5). In the compact step, a compact (see main body 3) is obtained. In the compact (3), a second ceramic green sheet (see side margin 13) is overlapped on a side surface along the lamination direction (z direction) of the laminate (see laminate 11). The laminate (11) has (a plurality of) first ceramic green sheets (see effective portion 7) and (a plurality of) conductive pastes (see internal electrodes 9) that are alternately laminated. In the firing step, the compact (3) is fired. Both the first ceramic green sheet (7) and the second ceramic green sheet (13) contain BT-based powder (see BT-based particles 17) of barium titanate having a perovskite structure represented by the composition formula ABO3 . The A site of the BT-based powder contains Ba. The B site of the BT-based powder contains Ti. When the amount of substance of an element at the A site in a BT-based powder divided by the amount of substance of an element at the B site is called the A/B ratio (A/B_S), the A/B ratio of the second ceramic green sheet (13) is smaller than the A/B ratio (A/B_E) of the first ceramic green sheet (7).
 この場合、例えば、実施形態の概要の説明で述べたように、有効部7とサイドマージン部13とを同様に焼結させることが容易化され、耐熱衝撃性を向上させることができる。これにより、例えば、サイドマージン部13の強度を下げずに、サイドマージン部13の幅Wを小さくして、コンデンサ1の平面視における小型化を図ることができる。さらに、実施例に係る図5を参照して示したように、静電容量の温度依存性の低減、及び高熱環境下における電圧印加に対する耐性向上にも有利である。 In this case, for example, as described in the description of the outline of the embodiment, it becomes easier to sinter the effective portion 7 and the side margin portion 13 in a similar manner, and the thermal shock resistance can be improved. This makes it possible to reduce the width W of the side margin portion 13 without reducing the strength of the side margin portion 13, thereby making the capacitor 1 smaller in size in a plan view. Furthermore, as shown with reference to FIG. 5 of the embodiment, this is also advantageous in reducing the temperature dependency of the capacitance and improving resistance to voltage application in a high-heat environment.
 サイドマージン部13のA/B比と有効部7のA/B比との差(ΔR_S)は、0.010以下であってよい。 The difference (ΔR_S) between the A/B ratio of the side margin portion 13 and the A/B ratio of the effective portion 7 may be 0.010 or less.
 この場合、例えば、図5を参照して示したように、A/B_SをA/B_Eに対して小さくしたことによって却ってサイドマージン部13の耐熱衝撃性が低下するという不都合が生じる蓋然性を低減できる。 In this case, for example, as shown with reference to FIG. 5, the likelihood of the inconvenience of the thermal shock resistance of the side margin portion 13 being reduced by making A/B_S smaller than A/B_E can be reduced.
 コンデンサ1は、カバー部15を有していてよい。カバー部15は、積層体11の、積層方向に面する面(上面又は下面)に重なっていてよく、また、有効部7及びサイドマージン部13に関して述べた上記多結晶セラミックスによって構成されていてよい。カバー部15のA/B比は、有効部7のA/B比よりも小さくされてよい。 The capacitor 1 may have a cover portion 15. The cover portion 15 may overlap the surface (upper or lower surface) of the laminate 11 facing the stacking direction, and may be made of the polycrystalline ceramics described above with respect to the active portion 7 and the side margin portion 13. The A/B ratio of the cover portion 15 may be smaller than the A/B ratio of the active portion 7.
 この場合、例えば、サイドマージン部13と同様に、有効部7とカバー部15とを同様に焼結させることが容易化され、耐熱衝撃性を向上させることができる。これにより、例えば、カバー部15の強度を下げずに、カバー部15の厚さtを小さくして、コンデンサ1の側面視における小型化を図ることができる。さらに、実施例に係る図6を参照して示したように、静電容量の温度依存性の低減、及び高熱環境下における電圧印加に対する耐性向上にも有利である。また、サイドマージン部13とカバー部15とを同様に焼結させることも容易化されるから、両者の間の熱応力によってクラックが発生する蓋然性も低減される。これにより、コンデンサ1全体としての耐熱衝撃性が飛躍的に向上する。 In this case, for example, it is easier to sinter the effective portion 7 and the cover portion 15 in the same manner as the side margin portion 13, and the thermal shock resistance can be improved. This makes it possible to reduce the thickness t of the cover portion 15 without reducing the strength of the cover portion 15, thereby making the capacitor 1 smaller in side view. Furthermore, as shown with reference to FIG. 6 of the embodiment, this is also advantageous in reducing the temperature dependency of the capacitance and improving resistance to voltage application in a high-heat environment. In addition, since it is easier to sinter the side margin portion 13 and the cover portion 15 in the same manner, the likelihood of cracks occurring due to thermal stress between the two is also reduced. This dramatically improves the thermal shock resistance of the capacitor 1 as a whole.
 カバー部15のA/B比と有効部7のA/B比との差(ΔR_C)は、0.010以下であってよい。 The difference (ΔR_C) between the A/B ratio of the cover portion 15 and the A/B ratio of the effective portion 7 may be 0.010 or less.
 この場合、例えば、図6を参照して示したように、A/B_CをA/B_Eに対して小さくしたことによって却ってカバー部15の耐熱衝撃性が低下するという不都合が生じる蓋然性を低減できる。 In this case, for example, as shown with reference to FIG. 6, the likelihood of the disadvantage of the thermal shock resistance of the cover portion 15 being reduced by making A/B_C smaller than A/B_E can be reduced.
 BT系粒子17は、BT粒子とBCT粒子とを含んでいてよい。BT粒子は、AサイトがBaであり、BサイトがTiである。BCT粒子は、AサイトがBa1-xCaであり、BサイトがTiである。有効部7のA/B比は、1.003以上1.007以下であってよい。サイドマージン部13のA/B比は、0.997以上1.003未満であってよい。 The BT-based particles 17 may include BT particles and BCT particles. The BT particles have Ba at the A site and Ti at the B site. The BCT particles have Ba1-xCax at the A site and Ti at the B site. The A/B ratio of the effective portion 7 may be 1.003 or more and 1.007 or less. The A/B ratio of the side margin portion 13 may be 0.997 or more and less than 1.003.
 上記のA/B比は、概略、図5に示したA/B比の範囲である。この範囲であれば、例えば、耐熱衝撃性の向上、温度依存性の低減及び高温負荷信頼性の向上の効果が奏される蓋然性が高い。 The above A/B ratio is roughly the range of the A/B ratio shown in Figure 5. If it is within this range, there is a high probability that the effects of improving thermal shock resistance, reducing temperature dependency, and improving high-temperature load reliability will be achieved, for example.
<第B章 他の実施形態>
 第1実施形態では、BT系粒子17として、BT粒子及びBCT粒子が示された。他のBT系粒子17としては、例えば、以下のものが挙げられる。
 ・AサイトがBa1-xSrであり、BサイトがTiであるBST粒子
 ・AサイトがBa1-x-yCaSrであり、BサイトがTiであるBCST粒子
Chapter B. Other Embodiments
In the first embodiment, BT particles and BCT particles are shown as the BT-based particles 17. Other BT-based particles 17 include, for example, the following.
BST particles with Ba 1-x Sr x at the A site and Ti at the B site BCST particles with Ba 1-x-y Ca x Sr y at the A site and Ti at the B site
 第1実施形態では、BT系粒子17は、BT粒子及びBCT粒子の組み合わせとされた。BT系粒子17は、例えば、BT粒子、BCT粒子、BST粒子、BCST粒子の4種の粒子から選択される1種以上の粒子によって構成されていてもよい。この場合、第1実施形態(BT+BCT)を含めて、15(==4+6+4+1)通りの態様がある。このうち、いずれが採用されても構わない。例えば、第1実施形態以外の実施形態として、以下が採用されてもよい。
 ・BST+BCST
 ・BT+BST
 ・BT+BCST
In the first embodiment, the BT-based particles 17 are a combination of BT particles and BCT particles. The BT-based particles 17 may be composed of one or more types of particles selected from four types of particles, for example, BT particles , BCT particles, BST particles, and BCST particles. In this case, including the first embodiment (BT+BCT), there are 15 (= 4C1 + 4C2 + 4C3 + 4C4 = 4 + 6 +4+1) types. Any of these may be adopted. For example, the following may be adopted as an embodiment other than the first embodiment.
・BST+BCST
・BT+BST
・BT+BCST
 上記の4種のBT系粒子17から1種以上の粒子が選択される場合において、2.2節において示した成分比等は、適宜に援用されてよい。例えば、以下のとおりである。 When one or more types of particles are selected from the above four types of BT-based particles 17, the component ratios and the like shown in Section 2.2 may be used as appropriate. For example, they are as follows.
 (a1)が、いずれの実施形態に適用されてもよいことは明らかである。(a2)は、BT粒子及びBCT粒子の総量を、選択された1種以上の粒子の総量に読み替えてよい。 It is clear that (a1) may be applied to any embodiment. In (a2), the total amount of BT particles and BCT particles may be read as the total amount of one or more selected types of particles.
 BT系粒子17として2種の粒子が選択されている実施形態において(a3)が適用可能であることは明らかである。また、1種の粒子が選択されている実施形態において(a3)を考慮しなくてもよいことも明らかである。3種以上の粒子が選択されている実施形態においては、例えば、上記3種以上の粒子から、いずれの2種の粒子を選択しても(a3)が成立するようにされてよい。もちろん、2種、3種又は4種が選択されたときに、必ずしも(a3)は成立しなくてもよい。 It is clear that (a3) is applicable in an embodiment in which two types of particles are selected as the BT-based particles 17. It is also clear that (a3) does not need to be taken into consideration in an embodiment in which one type of particle is selected. In an embodiment in which three or more types of particles are selected, for example, (a3) may be established regardless of which two types of particles are selected from the above three or more types of particles. Of course, (a3) does not necessarily have to be established when two, three, or four types are selected.
 (a4)は、BSTに援用されてよい。このとき、(a4-1)のxは、Ba1-xSrのxとされてよい。BCSTにおいても、Ba1-x-yCaSrのxの範囲について(a4-1)が援用されてよい(援用されなくてもよい。)。また、(a4-2)は、BCSTのように、Aサイトが3種以上の元素を含む場合に援用可能である(援用されなくてもよい。)。BCSTのyの値は、例えば、(a4-1)のxと同様に、0.01以上0.20以下、又は0.02以上0.07以下とされてよい。このとき、x+yは、(a4-2)が満たされるように、0.30以下又は0.20以下とされてもよいし、そのようにされなくてもよい。 (a4) may be incorporated in BST. In this case, x in (a4-1) may be x in Ba 1-x Sr x . In BCST, (a4-1) may be incorporated (or may not be incorporated) for the range of x in Ba 1-x-y Ca x Sr y . In addition, (a4-2) can be incorporated (or may not be incorporated) when the A site contains three or more elements, as in BCST. The value of y in BCST may be, for example, 0.01 to 0.20, or 0.02 to 0.07, similar to x in (a4-1). In this case, x+y may be 0.30 or less or 0.20 or less so that (a4-2) is satisfied, or may not be so.
 (a5)~(a7)及び(b1)~(b3)並びに不純物に係る条件が種々の態様に援用されてよいことは明らかである。 It is clear that (a5) to (a7) and (b1) to (b3) as well as the conditions relating to impurities may be applied to various aspects.
 A/B比の算出方法は、他の実施形態においても、第1実施形態と同様である。念のために例を挙げると、BST+BCSTの態様では、Aサイトの物質量は、BST粒子及びBCST粒子におけるBa、Sr及びCaの物質量の合計量である。Bサイトの物質量は、第1実施形態と同様である。BT+BSTの態様では、Aサイトの物質量は、BT粒子及びBST粒子におけるBa及びSrの物質量の合計量である。Bサイトの物質量は、第1実施形態と同様である。BT+BCSTの態様では、Aサイトの物質量は、BT粒子及びBCST粒子におけるBa、Ca及びSrの物質量の合計量である。Bサイトの物質量は、第1実施形態と同様である。 The method of calculating the A/B ratio is the same as in the first embodiment in other embodiments. To be sure, in the BST+BCST embodiment, the amount of substance in the A site is the sum of the amounts of substance of Ba, Sr, and Ca in the BST particles and the BCST particles. The amount of substance in the B site is the same as in the first embodiment. In the BT+BST embodiment, the amount of substance in the A site is the sum of the amounts of substance of Ba and Sr in the BT particles and the BST particles. The amount of substance in the B site is the same as in the first embodiment. In the BT+BCST embodiment, the amount of substance in the A site is the sum of the amounts of substance of Ba, Ca, and Sr in the BT particles and the BCST particles. The amount of substance in the B site is the same as in the first embodiment.
 本開示に係る技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The technology disclosed herein is not limited to the above embodiments and may be implemented in various forms.
 例えば、積層型電子部品は、コンデンサに限定されない。例えば、積層型電子部品において、内部電極の一部はコンデンサを構成するものとされ、内部電極の他部はインダクタ又は抵抗体を構成するものとされてよい。そして、積層型電子部品は、全体として、適宜な回路(例えば共振回路)を構成してもよい。また、積層型電子部品は、少なくとも一部が、有効部(2以上)と内部電極(2以上)とが積層された積層体によって構成されていればよく、必ずしも大部分が積層体によって構成されていなくてもよい。 For example, the multilayer electronic component is not limited to a capacitor. For example, in a multilayer electronic component, some of the internal electrodes may form a capacitor, and other parts of the internal electrodes may form an inductor or resistor. The multilayer electronic component may form an appropriate circuit (for example, a resonant circuit) as a whole. Furthermore, it is sufficient that at least a part of the multilayer electronic component is formed of a laminate in which active parts (two or more) and internal electrodes (two or more) are stacked, and the majority of the multilayer electronic component does not necessarily have to be formed of a laminate.
 本開示からは、サイドマージン部のA/B比が有効部のA/B比よりも小さいということを要件としない概念が抽出されてよい。例えば、カバー部のA/B比が有効部のA/B比よりも小さいということを特徴とする技術思想が抽出されたり、サイドマージン部のA/B比とカバー部のA/B比との差が所定の範囲に収まるという技術思想が抽出されたりしてよい。この場合、実施形態とは異なり、サイドマージン部のA/B比は、有効部のA/B比と同等以上であってもよい。また、サイドマージン部が設けられなくてもよい。 From this disclosure, a concept may be extracted that does not require that the A/B ratio of the side margin portion be smaller than the A/B ratio of the effective portion. For example, a technical idea may be extracted that is characterized in that the A/B ratio of the cover portion is smaller than the A/B ratio of the effective portion, or a technical idea that the difference between the A/B ratio of the side margin portion and the A/B ratio of the cover portion falls within a predetermined range. In this case, unlike the embodiment, the A/B ratio of the side margin portion may be equal to or greater than the A/B ratio of the effective portion. Also, a side margin portion need not be provided.
 1…コンデンサ(積層型電子部品)、7…有効部、9…内部電極、11…積層体、13…サイドマージン部、15…カバー部、17…BT系粒子。 1...capacitor (multilayer electronic component), 7...active part, 9...internal electrode, 11...laminated body, 13...side margin part, 15...cover part, 17...BT-based particles.

Claims (7)

  1.  交互に重なっている有効部及び内部電極を有する積層体と、
     前記積層体の、積層方向に沿う側面に重なっているサイドマージン部と、
     を有しており、
     前記有効部及び前記サイドマージン部は、いずれも、多結晶セラミックスによって構成されており、
     前記多結晶セラミックスは、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系のBT系粒子を含んでおり、
     前記BT系粒子のAサイトは、Baを含んでおり、
     前記BT系粒子のBサイトは、Tiを含んでおり、
     前記BT系粒子においてAサイトの元素の物質量をBサイトの元素の物質量で割った値をA/B比と称するとき、前記サイドマージン部のA/B比が前記有効部のA/B比よりも小さい
     積層型電子部品。
    a laminate having alternating active portions and internal electrodes;
    A side margin portion overlapping a side surface of the laminate along the stacking direction;
    It has
    the effective portion and the side margin portion are both made of polycrystalline ceramics,
    The polycrystalline ceramic contains barium titanate-based BT-based particles having a perovskite structure represented by the composition formula ABO3 ,
    The A site of the BT-based particles contains Ba,
    The B site of the BT-based particles contains Ti,
    When the amount of substance of an element at the A site in the BT-based particles divided by the amount of substance of an element at the B site is called the A/B ratio, the A/B ratio of the side margin portion is smaller than the A/B ratio of the effective portion.
  2.  前記サイドマージン部のA/B比と前記有効部のA/B比との差が0.010以下である
     請求項1に記載の積層型電子部品。
    2. The multilayer electronic component according to claim 1, wherein a difference between an A/B ratio of said side margin portion and an A/B ratio of said effective portion is 0.010 or less.
  3.  前記積層体の、前記積層方向に面する面に重なっており、前記多結晶セラミックスによって構成されているカバー部を更に有しており、
     前記カバー部のA/B比が前記有効部のA/B比よりも小さい
     請求項1又は2に記載の積層型電子部品。
    a cover portion overlapping a surface of the laminate facing the stacking direction and made of the polycrystalline ceramic;
    The multilayer electronic component according to claim 1 or 2, wherein an A/B ratio of the cover portion is smaller than an A/B ratio of the effective portion.
  4.  前記カバー部のA/B比と前記有効部のA/B比との差が0.010以下である
     請求項3に記載の積層型電子部品。
    4. The multilayer electronic component according to claim 3, wherein a difference between an A/B ratio of said cover portion and an A/B ratio of said effective portion is 0.010 or less.
  5.  前記BT系粒子は、
      AサイトがBaであり、BサイトがTiであるBT粒子、
      AサイトがBa1-xCaであり、BサイトがTiであるBCT粒子、
      AサイトがBa1-xSrであり、BサイトがTiであるBST粒子、及び
      AサイトがBa1-x-yCaSrであり、BサイトがTiであるBCST粒子、の4種の粒子から選択される1種以上の粒子を含んでいる
     請求項1~4のいずれか1項に記載の積層型電子部品。
    The BT-based particles are
    BT particles in which the A site is Ba and the B site is Ti;
    BCT particles in which the A site is Ba 1-x Ca x and the B site is Ti;
    The multilayer electronic component according to any one of claims 1 to 4, comprising one or more types of particles selected from the following four types of particles: BST particles having Ba1- xSrx at the A site and Ti at the B site; and BCST particles having Ba1-x-yCaxSry at the A site and Ti at the B site.
  6.  前記BT系粒子は、前記BT粒子と前記BCT粒子とを含んでおり、
     前記有効部のA/B比が1.003以上1.007以下であり、
     前記サイドマージン部のA/B比が0.997以上1.003未満である
     請求項5に記載の積層型電子部品。
    the BT-based particles include the BT particles and the BCT particles,
    the A/B ratio of the effective portion is 1.003 or more and 1.007 or less,
    The multilayer electronic component according to claim 5 , wherein the A/B ratio of the side margin portion is equal to or greater than 0.997 and less than 1.003.
  7.  交互に積層されている第1セラミックグリーンシートと導電ペーストとを有する積層体の、積層方向に沿う側面に第2セラミックグリーンシートが重なっている成形体を得る成形体ステップと、
     前記成形体を焼成する焼成ステップと、
     を有しており、
     前記第1セラミックグリーンシート及び前記第2セラミックグリーンシートは、いずれも、組成式ABOで表されるペロブスカイト構造を有するチタン酸バリウム系のBT系粉末を含んでおり、
     前記BT系粉末のAサイトは、Baを含んでおり、
     前記BT系粉末のBサイトは、Tiを含んでおり、
     前記BT系粉末においてAサイトの元素の物質量をBサイトの元素の物質量で割った値をA/B比と称するとき、前記第2セラミックグリーンシートのA/B比が前記第1セラミックグリーンシートのA/B比よりも小さい
     積層型電子部品の製造方法。
    a compacting step of obtaining a compact in which a second ceramic green sheet is overlapped on a side surface along a stacking direction of a laminate having first ceramic green sheets and conductive paste alternately stacked;
    A firing step of firing the molded body;
    It has
    The first ceramic green sheet and the second ceramic green sheet each contain a barium titanate-based BT-based powder having a perovskite structure represented by a composition formula ABO3 ,
    The A site of the BT powder contains Ba,
    The B site of the BT-based powder contains Ti,
    When the amount of substance of an element at the A site in the BT-based powder divided by the amount of substance of an element at the B site is called an A/B ratio, the A/B ratio of the second ceramic green sheet is smaller than the A/B ratio of the first ceramic green sheet.
PCT/JP2024/007665 2023-03-09 2024-03-01 Multilayer electronic component and method for producing same WO2024185660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023036987 2023-03-09
JP2023-036987 2023-03-09

Publications (1)

Publication Number Publication Date
WO2024185660A1 true WO2024185660A1 (en) 2024-09-12

Family

ID=92675063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/007665 WO2024185660A1 (en) 2023-03-09 2024-03-01 Multilayer electronic component and method for producing same

Country Status (1)

Country Link
WO (1) WO2024185660A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176186A (en) * 2010-02-25 2011-09-08 Kyocera Corp Multilayer ceramic capacitor
WO2017073621A1 (en) * 2015-10-28 2017-05-04 京セラ株式会社 Capacitor
JP2022057629A (en) * 2020-09-30 2022-04-11 株式会社村田製作所 Multilayer ceramic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176186A (en) * 2010-02-25 2011-09-08 Kyocera Corp Multilayer ceramic capacitor
WO2017073621A1 (en) * 2015-10-28 2017-05-04 京セラ株式会社 Capacitor
JP2022057629A (en) * 2020-09-30 2022-04-11 株式会社村田製作所 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
KR100631995B1 (en) Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same
KR100606548B1 (en) Dielectric ceramic, process for producing the same and laminate ceramic capacitor
KR100888020B1 (en) Dielectric ceramics and multi layer ceramic capacitor
US8164880B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor having the same
US8593038B2 (en) Dielectric composition and ceramic electronic component including the same
US20070142210A1 (en) Dielectric ceramic and monolithic ceramic capacitor
KR100418601B1 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP2007258661A (en) Laminated ceramic capacitor and its manufacturing method
KR20070086440A (en) Dielectric porcelain composition, and method for manufacturing capacitor using the same
US20180090272A1 (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20160111404A (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
US11769632B2 (en) Ceramic capacitor having barium titanate-based dielectric layers including six sub-components
CN114914085A (en) Dielectric composition, electronic component, and laminated electronic component
JP4267438B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP2022145817A (en) ceramic capacitor
JP4697582B2 (en) Dielectric ceramic, dielectric ceramic manufacturing method, and multilayer ceramic capacitor
WO2024185660A1 (en) Multilayer electronic component and method for producing same
JP7262640B2 (en) ceramic capacitor
JP2006036606A (en) Dielectric ceramic, method for manufacturing dielectric ceramic, and laminated ceramic capacitor
JP5534976B2 (en) Multilayer ceramic capacitor
JP2007084353A (en) Sintering aid composition for ceramic, sintering aid for ceramic, low-temperature firing ceramic composition, low-temperature fired ceramic and ceramic electronic component
KR20160095383A (en) Dielectric composition and multilayer ceramic capacitor comprising the same
KR102202462B1 (en) Dielectric composition and multilayer ceramic capacitor comprising the same
WO2024079966A1 (en) Multilayer ceramic electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24767030

Country of ref document: EP

Kind code of ref document: A1