WO2024183285A1 - 一种动力电池荷电状态确定方法及相关设备 - Google Patents
一种动力电池荷电状态确定方法及相关设备 Download PDFInfo
- Publication number
- WO2024183285A1 WO2024183285A1 PCT/CN2023/125191 CN2023125191W WO2024183285A1 WO 2024183285 A1 WO2024183285 A1 WO 2024183285A1 CN 2023125191 W CN2023125191 W CN 2023125191W WO 2024183285 A1 WO2024183285 A1 WO 2024183285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- power battery
- scenario
- charge
- charge information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000004891 communication Methods 0.000 claims description 8
- 230000002159 abnormal effect Effects 0.000 abstract description 2
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
- G01R31/388—Determining ampere-hour charge capacity or SoC involving voltage measurements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to the field of automobiles, and in particular to a method for determining a state of charge of a power battery and related equipment.
- the core power source of current pure electric vehicles is the power battery. Therefore, the super capacitor state of charge (SOC) of the power battery determines the mileage of the pure electric vehicle.
- SOC super capacitor state of charge
- the SOC of the power battery determines the mileage of the pure electric vehicle.
- the current power battery is often a lithium battery. Since the voltage of the lithium battery is relatively stable, the remaining SOC of the power battery is calculated by obtaining the current and voltage value output by the power battery in the prior art.
- a current acquisition module that is sensitive to large currents is often used.
- an embodiment of the present invention provides a method for determining the state of charge of a power battery and related devices, which can improve the accuracy of calculating the SOC of the power battery.
- an embodiment of the present invention provides a method for determining a state of charge of a power battery, comprising:
- the state of charge of the power battery is determined according to the second state of charge information.
- the first scenario is a low-current power consumption scenario in which the operating currents of currently turned-on onboard electrical devices are all less than a first threshold.
- determining whether the power usage scenario of the target vehicle is the first scenario includes:
- calculating the second state of charge information of the power battery based on the first state of charge information, the output voltage, and the output current includes:
- the second state of charge information is determined according to the first state of charge information and the low-voltage power consumption.
- calculating the low-voltage power consumption of the target vehicle according to the output voltage and the output current includes:
- the output voltage and the output current are integrated and calculated to obtain the low-voltage power consumption.
- the power usage scenario further includes a second scenario; the second scenario is a high current power usage scenario in which the working current of the currently turned-on vehicle-mounted electrical equipment is greater than or equal to the first threshold, and the method further includes:
- the state of charge of the power battery is determined based on the output voltage and output current of the power battery.
- the method further includes:
- the second state of charge information is displayed correspondingly as the state of charge of the power battery.
- an embodiment of the present invention provides a device for determining a state of charge of a power battery, comprising:
- a judgment module used to judge whether the power usage scenario of the target vehicle is the first scenario
- An acquisition module used to acquire the first state of charge information of the power battery currently collected
- the acquisition module is also used to acquire the output voltage and output current of the DC converter
- a processing module configured to calculate second state of charge information of the power battery based on the first state of charge information, the output voltage, and the output current;
- the processing module is further configured to determine the state of charge of the power battery according to the second state of charge information.
- an embodiment of the present invention provides an electronic device, including:
- At least one memory in communication with the processor, wherein:
- the memory stores program instructions executable by the processor, and the processor calls the program instructions to execute the method described in the first aspect.
- an embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the computer instructions enable the computer to execute the method described in the first aspect.
- the state of charge of the power battery is calculated according to the output voltage and output current of the DC converter, thereby improving the accuracy of the state of charge information.
- the problem of abnormal jump in the displayed power during the remaining power calibration in the prior art is solved.
- FIG1 is a flow chart of a method for determining a state of charge of a power battery provided by an embodiment of the present invention
- FIG2 is a schematic diagram of the structure of a target vehicle provided by an embodiment of the present invention.
- FIG3 is a schematic diagram of the structure of a device for determining the state of charge of a power battery provided by an embodiment of the present invention
- FIG4 is a schematic structural diagram of another device for determining the state of charge of a power battery provided by an embodiment of the present invention.
- FIG5 is a schematic structural diagram of another device for determining the state of charge of a power battery provided by an embodiment of the present invention.
- FIG6 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present invention.
- the power consumption is calculated by acquiring the output voltage and output current of the DC converter, thereby determining the accuracy of the charge state display of the power battery.
- FIG1 is a flow chart of a method for determining the state of charge of a power battery provided by an embodiment of the present invention.
- the execution subject of the method for determining the state of charge of a power battery provided by the present invention may be a vehicle-mounted device with computing capabilities such as a vehicle controller. As shown in FIG1 , the method includes:
- Step 101 determine whether the power usage scenario of the target vehicle is the first scenario. If yes, execute step 102.
- the first scenario is a low current power usage scenario in which the working current of the currently turned-on vehicle-mounted electrical devices is less than a first threshold.
- the vehicle controller obtains the enable signal of each on-board electrical device from the vehicle bus.
- the vehicle bus can be specifically a CAN bus or a K bus, etc.
- the vehicle controller determines the on-board electrical devices that are currently turned on according to the enable signal. Determine whether there are on-board electrical devices whose working current is greater than or equal to the first threshold among the on-board electrical devices that are currently turned on. If not, it is determined that the power usage scenario of the target vehicle is the first scenario.
- the first threshold can be determined according to the parameters of the current acquisition module described in the background technology. For example, when the current acquisition module is insensitive to small currents below 0.3A, the first threshold can be set to 0.3.
- Step 102 obtain the first state of charge information of the power battery currently collected. Specifically, when it is determined that the power usage scenario of the target vehicle is converted to the first scenario, the current power battery SOC value can be obtained as the initial SOC value. Optionally, since the current acquisition module cannot detect small currents, the current acquisition module can be turned off after obtaining the current power battery SOC value. After the target vehicle exits the first scenario, the current acquisition module is restarted to reduce the power consumption of the entire vehicle.
- Step 103 obtain the output voltage and output current of the DC converter.
- DCDC converts the high voltage electricity output by the power battery into low voltage electricity, thereby powering the low-power on-board electrical equipment. It can be seen that in the first scenario, all on-board electrical equipment of the whole vehicle is essentially powered by DCDC, so the SOC for display on the instrument panel can be calculated by obtaining the current and voltage output by DCDC and the initial SOC value (i.e., the first state of charge information) obtained in step 102.
- Step 104 based on the first state of charge information, the output voltage and the output current, calculate the second state of charge information of the power battery.
- the low-voltage power consumption of the target vehicle can be calculated first according to the output voltage and the output current.
- the vehicle controller can obtain the output voltage and output current of the DCDC from the vehicle bus, and then integrate the output voltage and the output current to obtain the low-voltage power consumption.
- the second state of charge information can be determined according to the first state of charge information and the low-voltage power consumption.
- the initial SOC first state of charge information
- Step 105 determine the state of charge of the power battery according to the second state of charge information. For example, if the first state of charge information is 75% and the low voltage power consumption is 30%, then the second state of charge information is 45%. Therefore, it can be determined that the state of charge of the power battery is 45%.
- the second state of charge information can be displayed as the state of charge of the power battery. Specifically, it can be displayed on a display device such as a digital integrated instrument of the target vehicle.
- the above power usage scenario also includes a second scenario.
- the second scenario is the current on-board power consumption device A high-current power consumption scenario where the working current is greater than or equal to the first threshold.
- the current power consumption scenario can be determined to be the second scenario.
- the current acquisition module is reopened to collect the output voltage and output current of the power battery. Then, the state of charge of the power battery is determined based on the output voltage and output current of the power battery.
- the current is relatively large at this time, so it can be accurately identified by the current acquisition module.
- the power consumption of the power battery can be calculated based on the collected output voltage and output current of the power battery.
- the state of charge of the power battery is determined based on the initial SOC when entering the second scenario and the power consumption of the power battery.
- FIG2 is a schematic diagram of the structure of a target vehicle provided by an embodiment of the present invention.
- the energy management system includes a voltage acquisition module and a current acquisition module.
- the voltage acquisition module is used to acquire the voltage of the power battery.
- the current acquisition module is used to acquire the current of the power battery.
- the high-voltage input end of the DCDC is connected to the power battery, and is used to obtain the power output of the power battery and convert it into a low-voltage power supply.
- the low-voltage output end of the DCDC is connected to the low-voltage battery and the low-voltage electrical appliance, and is used to supply the low-voltage battery and the low-voltage electrical appliance with the converted low-voltage power supply.
- the DCDC sends its own output current and output voltage to the CAN bus, so that the vehicle controller obtains the output voltage and output current of the DCDC from the CAN.
- the vehicle controller calculates the low-voltage power consumption according to the output voltage and output current of the DCDC, and calculates the current SOC of the power battery based on the initial SOC.
- the vehicle controller sends the calculated current SOC of the power battery to the digital instrument cluster through the CAN bus, and the digital instrument cluster displays the SOC as the SOC of the power battery.
- the voltage acquisition module and the current acquisition module in the energy management system shown in FIG2 collect the voltage and current of the power battery and send them to the vehicle controller through the CAN bus.
- the vehicle controller calculates the power consumption of the power battery based on the voltage and current collected by the energy management system.
- the vehicle controller calculates the current SOC of the power battery based on the initial SOC and the power consumption of the power battery.
- the vehicle controller sends the calculated current SOC of the power battery to the digital instrument cluster through the CAN bus, and the digital instrument cluster displays the SOC as the SOC of the power battery.
- FIG3 is a device for determining the state of charge of a power battery provided by an embodiment of the present invention. As shown in FIG3 , the device includes: a determination module 301 , an acquisition module 302 , and a processing module 303 .
- the judgment module 301 is used to judge whether the power usage scenario of the target vehicle is the first scenario.
- the acquisition module 302 is used to acquire the first state of charge information of the power battery currently collected.
- the acquisition module 302 is further used to acquire the output voltage and output current of the DC converter.
- the processing module 303 is used to calculate the second state of charge information of the power battery based on the first state of charge information, the output voltage and the output current.
- the processing module 303 is further configured to determine the state of charge of the power battery according to the second state of charge information.
- the determination module 301 is specifically used to:
- the processing module 303 is specifically used to:
- the low-voltage power consumption of the target vehicle is calculated according to the output voltage and the output current.
- the second state of charge information is determined according to the first state of charge information and the low-voltage power consumption.
- the processing module 303 is specifically used to:
- the output voltage and output current are integrated to obtain the low-voltage power consumption.
- the power battery charge state determination device provided in the embodiment shown in FIG3 can be used to execute the technical solution of the method embodiments shown in FIG1-FIG2 of this specification. Its implementation principle and technical effects can be further referred to the relevant description in the method embodiments.
- FIG4 is a schematic diagram of the structure of another device for determining the state of charge of a power battery provided by an embodiment of the present invention.
- the battery charge state determination device further includes a collection module 304 .
- the power usage scenario further includes a second scenario.
- the second scenario is a high current power usage scenario in which the working current of the currently turned-on vehicle-mounted power-consuming device is greater than or equal to the first threshold.
- the collection module 304 is used to collect the output voltage and output current of the power battery when it is determined that the power usage scenario of the target vehicle is the second scenario.
- the processing module 303 is further configured to determine the state of charge of the power battery based on the output voltage and output current of the power battery.
- the power battery charge state determination device provided in the embodiment shown in FIG4 can be used to execute the technical solution of the method embodiments shown in FIG1-2 of this specification. Its implementation principle and technical effects can be further referred to the relevant description in the method embodiments.
- Fig. 5 is a schematic diagram of the structure of another power battery charge state determination device provided by an embodiment of the present invention. As shown in Fig. 5 , the power battery charge state determination device further includes a display module 305 .
- the display module 305 is used to display the second state of charge information as the state of charge of the power battery.
- the power battery charge state determination device provided in the embodiment shown in FIG5 can be used to execute the technical solutions of the method embodiments shown in FIG1-2 of this specification. Its implementation principle and technical effects can be further referred to the relevant description in the method embodiments.
- Figure 6 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present invention.
- the electronic device may include at least one processor and at least one memory communicatively connected to the processor, wherein the memory stores program instructions executable by the processor, and the processor calls the program instructions to execute the method for determining the power battery charge state provided in the embodiments shown in Figures 1 and 2 of this specification.
- the electronic device is presented in the form of a general computing device.
- the components of the electronic device may include but are not limited to: one or more processors 610, a communication interface 620 and a memory 630, and a communication bus 640 connecting different system components (including the memory 630, the communication interface 620 and the processor 610).
- the communication bus 640 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor or a local bus using any of a variety of bus structures.
- these architectures include but are not limited to Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus and Peripheral Component Interconnection (PCI) bus.
- Electronic devices typically include a variety of computer system readable media. These media can be any available media that can be accessed by the electronic device, including volatile and non-volatile media, removable and non-removable media.
- the memory 630 may include a computer system readable medium in the form of a volatile memory, such as a random access memory (RAM) and/or a cache memory.
- the electronic device may further include other removable/non-removable, volatile/non-volatile computer system storage media.
- the memory 630 may include at least one program product having a set (e.g., at least one) of program modules that are configured to perform the functions of the various embodiments of the present specification.
- a program/utility having a set (at least one) of program modules may be stored in memory 630, such program modules including, but not limited to, an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
- the program modules generally perform the functions and/or methods of the embodiments described in this specification.
- the processor 610 executes various functional applications and data processing by running the programs stored in the memory 630, for example, implementing the method for determining the state of charge of a power battery provided in the embodiments shown in FIGS. 1 and 2 of this specification.
- An embodiment of the present specification provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the computer instructions enable the computer to execute the method for determining the state of charge of a power battery provided in the embodiments shown in FIGS. 1 and 2 of the present specification.
- the computer-readable storage medium may be any combination of one or more computer-readable media. It is a computer-readable signal medium or a computer-readable storage medium.
- a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
- Computer-readable storage media include: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM) or flash memory, an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination thereof.
- a computer-readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, device, or device.
- first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this specification, the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
- Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a custom logical function or process, and the scope of the preferred embodiments of this specification includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in reverse order depending on the functions involved, which should be understood by technicians in the technical field to which the embodiments of this specification belong.
- the devices involved in the embodiments of this specification may include but are not limited to personal computers (Personal Computer; hereinafter referred to as: PC), personal digital assistants (Personal Digital Assistant; hereinafter referred to as: PDA), wireless handheld devices, tablet computers (Tablet Computer), mobile phones, MP3 displays, MP4 displays, etc.
- PC Personal Computer
- PDA Personal Digital Assistant
- Tablet Computer Tablet Computer
- mobile phones MP3 displays, MP4 displays, etc.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the units is only a logical function division. There may be other division methods in actual implementation.
- multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- each functional unit in each embodiment of this specification may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit may be implemented in the form of hardware or in the form of hardware plus software functional units.
- the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer-readable storage medium.
- the above-mentioned software functional unit is stored in a storage medium, including a number of instructions for enabling a computer device (which can be a personal computer, connected to
- the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (hereinafter referred to as ROM), a random access memory (hereinafter referred to as RAM), a magnetic disk or an optical disk, and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种动力电池荷电状态确定方法及相关设备,其中,该方法包括:判断目标车辆的用电场景是否为第一场景(步骤101);若是,则获取当前采集到的动力电池的第一荷电状态信息(步骤102);获取直流变换器的输出电压以及输出电流(步骤103);基于第一荷电状态信息、输出电压以及输出电流,计算动力电池的第二荷电状态信息(步骤104);根据第二荷电状态信息确定动力电池的荷电状态(步骤105)。当判断目标车辆为第一场景时,根据直流变换器的输出电压以及输出电流来计算动力电池的荷电状态,进而提高了荷电状态信息的准确性。在不提高硬件成本的前提下,解决了现有技术中进行剩余电量校准时,显示电量异常跳变的情况。
Description
本发明要求于2023年03月09日提交中国专利局、申请号为202310224747.4、申请名称为“一种动力电池荷电状态确定方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及汽车领域,尤其涉及一种动力电池荷电状态确定方法及相关设备。
当前的纯电动汽车的核心动力源为动力电池。因此,动力电池的荷电状态(super capacitor state of charge,SOC)决定了纯电动汽车的里程数。在确定动力电池的SOC时,往往通过采集动力电池的电压来进行计算。然而,目前的动力电池往往为锂电池,由于锂电池的电压较为稳定,因此现有技术中通过获取动力电池输出的电流以及电压值来计算动力电池的剩余SOC。具体的,为了确保对动力电池输出电流的采集准确度,往往采用对大电流敏感的电流采集模块。然而,随着汽车功能的不断拓展,纯电动汽车还经常存在不同的静态用车场景(例如车载影院、露营模式哨兵模式以及智能补电功能等)往往只有低功率用电器工作。这些用低功率电器的电流较低,并且采集模块只对大电流敏感,无法精确的采集到小电流,进而导致动力电池的soc计算不准确。
发明内容
为了解决上述问题,本发明实施例提供了一种动力电池荷电状态确定方法及相关设备,可以提高动力电池SOC计算的准确性。
第一方面,本发明实施例提供一种动力电池荷电状态确定方法,包括:
判断目标车辆的用电场景是否为第一场景;
若是,则获取当前采集到的动力电池的第一荷电状态信息;
获取直流变换器的输出电压以及输出电流;
基于所述第一荷电状态信息、所述输出电压以及所述输出电流,计算所述动力电池的第二荷电状态信息;
根据所述第二荷电状态信息确定所述动力电池的荷电状态。
在一种可能的实现方式中,所述第一场景为当前开启的车载用电设备的工作电流均小于第一阈值的小电流用电场景。
在一种可能的实现方式中,判断目标车辆的用电场景是否为第一场景,包括:
从车辆总线获取各个车载用电设备的使能信号;
根据所述使能信号确定当前开启的车载用电设备;
确定所述当前开启的车载用电设备中是否有工作电流大于或等于所述第一阈值的车载用电设备;
若没有,则确定所述目标车辆的用电场景为第一场景。
在一种可能的实现方式中,基于所述第一荷电状态信息、所述输出电压以及所述输出电流,计算所述动力电池的第二荷电状态信息,包括:
根据所述输出电压以及输出电流计算所述目标车辆的低压耗电量;
根据所述第一荷电状态信息以及所述低压耗电量确定所述第二荷电状态信息。
在一种可能的实现方式中,根据所述输出电压以及输出电流计算所述目标车辆的低压耗电量,包括:
对所述输出电压以及所述输出电流进行积分计算,得到所述低压耗电量。
在一种可能的实现方式中,所述用电场景还包括第二场景;所述第二场景为当前开启的车载用电设备的工作电流大于或等于第一阈值的大电流用电场景,所述方法还包括:
当判断所述目标车辆的用电场景为第二场景时,对所述动力电池的输出电压以及输出电流进行采集;
基于所述动力电池的输出电压以及输出电流确定所述动力电池的荷电状态。
在一种可能的实现方式中,所述方法还包括:
将所述第二荷电状态信息作为所述动力电池的荷电状态进行对应显示。
第二方面,本发明实施例提供一种动力电池荷电状态确定装置,包括:
判断模块,用于判断目标车辆的用电场景是否为第一场景;
获取模块,用于获取当前采集到的动力电池的第一荷电状态信息;
所述获取模块,还用于获取直流变换器的输出电压以及输出电流;
处理模块,用于基于所述第一荷电状态信息、所述输出电压以及所述输出电流,计算所述动力电池的第二荷电状态信息;
所述处理模块,还用于根据所述第二荷电状态信息确定所述动力电池的荷电状态。
第三方面,本发明实施例提供一种电子设备,包括:
至少一个处理器;以及
与所述处理器通信连接的至少一个存储器,其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行第一方面所述的方法。
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行第一方面所述的方法。
应当理解的是,本发明实施例的第二~四方面与本发明实施例的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
本发明实施例中,当判断目标车辆为第一场景时,根据直流变换器的输出电压以及输出电流来计算动力电池的荷电状态,进而提高了荷电状态信息的准确性。并且,无需对目标车辆当前的采集模块进行升级,在不提高硬件成本的前提下,解决了现有技术中进行剩余电量校准时,显示电量异常跳变的情况。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种动力电池荷电状态确定方法的流程图;
图2为本发明实施例提供的一种目标车辆的结构示意图;
图3为本发明实施例提供的一种动力电池荷电状态确定装置的结构示意图;
图4为本发明实施例提供的另一种动力电池荷电状态确定装置的结构示意图;
图5为本发明实施例提供的另一种动力电池荷电状态确定装置的结构示意图;
图6为本发明实施例提供的一种电子设备的结构示意图。
为了更好的理解本说明书的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本发明实施例中,在小电流用电场景下,通过获取直流变换器的输出电压以及输出电流来计算消耗电量,进而确定动力电池的荷电状态显示的准确性。
图1为本发明实施例提供的一种动力电池荷电状态确定方法的流程图。本发明提供的动力电池荷电状态确定方法的执行主体可以为整车控制器等拥有计算能力的车载设备。如图1所示,该方法包括:
步骤101,判断目标车辆的用电场景是否为第一场景。若是,则执行步骤102。其中,第一场景为当前开启的车载用电设备的工作电流均小于第一阈值的小电流用电场景。
以整车控制器为例,判断目标车辆的用电场景是否为第一场景具体为:整车控制器从车辆总线获取各个车载用电设备的使能信号。其中,车辆总线可以具体为CAN总线或K总线等。之后,整车控制器根据使能信号确定当前开启的车载用电设备。确定当前开启的车载用电设备中是否有工作电流大于或等于第一阈值的车载用电设备。若没有,则确定目标车辆的用电场景为第一场景。其中,第一阈值可以根据背景技术中所述的电流采集模块的参数确定。例如,电流采集模块对0.3A以下的小电流不敏感时,第一阈值即可设置为0.3。
步骤102,获取当前采集到的动力电池的第一荷电状态信息。具体的,当判断出目标车辆的用电场景转换为第一场景后,可以获取当前的动力电池SOC值作为初始SOC值。可选的,由于电流采集模块无法检测到小电流,因此可以在获取当前的动力电池SOC值之后关闭电流采集模块。待目标车辆退出第一场景后,再重新启动电流采集模块,以降低整车电量的消耗。
步骤103,获取直流变换器的输出电压以及输出电流。在第一场景下,低功率的车载用电设备均依赖于直流变换器DCDC。DCDC将动力电池输出的高压电转换为低压电,从而为低功率的车载用电设备进行供电。由此可见,在第一场景下,整车的所有车载用电设备实质上均由DCDC进行供电,因此可以通过获取DCDC输出的电流和电压以及步骤102中获取到的初始SOC值(即第一荷电状态信息)来计算用于显示在仪表盘上的SOC。
步骤104,基于第一荷电状态信息、输出电压以及输出电流,计算动力电池的第二荷电状态信息。其中,可以先根据输出电压以及输出电流计算目标车辆的低压耗电量。具体的,整车控制器可以从车辆总线获取DCDC的输出电压和输出电流,之后对输出电压以及输出电流进行积分计算,从而得到低压耗电量。之后,可以根据第一荷电状态信息以及低压耗电量确定第二荷电状态信息。具体的,可以用初始SOC(第一荷电状态信息)减去低压耗电量,进而得到第二荷电状态信息。
步骤105,根据第二荷电状态信息确定动力电池的荷电状态。例如,第一荷电状态信息为75%,低压耗电量为30%,则第二荷电状态信息为45%。因此,可以确定动力电池的荷电状态为45%。可选的,可以将第二荷电状态信息作为动力电池的荷电状态进行对应显示。具体的,可以显示在目标车辆的数字综合仪表等显示设备上。
在一些实施例中,上述用电场景还包括第二场景。具体的,第二场景为当前开启的车载用电设备的
工作电流大于或等于第一阈值的大电流用电场景。其中,只要存在一个车载用电设备的工作电流大于或等于第一阈值即可确定当前的用电场景为第二场景。当判断目标车辆的用电场景为第二场景时,重新开启电流采集模块,以对动力电池的输出电压以及输出电流进行采集。之后基于动力电池的输出电压以及输出电流确定动力电池的荷电状态。由于在第二场景下,整车处于大电流用电场景,此时电流较大,因此可以被电流采集模块准确的识别到,此时,可以根据采集到的动力电池的输出电压以及输出电流来计算动力电池的耗电量。之后,基于进入第二场景时的初始SOC以及动力电池的耗电量来确定动力电池的荷电状态。
图2本发明实施例提供一种目标车辆的结构示意图。如图2所示,能源管理系统、整车控制器、DCDC以及数字组合仪表均与CAN总线连接。能源管理系统中包含电压采集模块以及电流采集模块。电压采集模块用于对动力电池的电压进行采集。电流采集模块用于对动力电池的电流进行采集。DCDC高压输入端与动力电池连接,用于获取动力电池输出的电源并转换为低压电源。DCDC的低压输出端与低压蓄电池以及低压用电器连接,用于将转换后的低压电源对低压蓄电池以及低压用电器供电。具体的,在第一场景下,DCDC将自身的输出电流和输出电压发送到CAN总线,以使整车控制器从CAN上获取到DCDC的输出电压和输出电流。之后整车控制器根据DCDC的输出电压和输出电流计算低压耗电量,并基于初始SOC计算动力电池的当前SOC。之后,整车控制器通过CAN总线将计算出的动力电池的当前SOC发送给数字组合仪表,数字组合仪表对该SOC作为动力电池的SOC进行对应显示。
在第二场景下,图2中所示的能源管理系统中的电压采集模块和电流采集模块对动力电池的电压和电流进行采集,并通过CAN总线发送给整车控制器,整车控制器根据能源管理系统采集到的电压和电流后计算动力电池的耗电量。整车控制器基于初始SOC和动力电池的耗电量来计算动力电池的当前SOC。之后,整车控制器通过CAN总线将计算出的动力电池的当前SOC发送给数字组合仪表,数字组合仪表对该SOC作为动力电池的SOC进行对应显示。
图3为本发明实施例提供的一种动力电池荷电状态确定装置。如图3所示,该装置包括:判断模块301、获取模块302以及处理模块303。
判断模块301,用于判断目标车辆的用电场景是否为第一场景。
获取模块302,用于获取当前采集到的动力电池的第一荷电状态信息。
获取模块302,还用于获取直流变换器的输出电压以及输出电流。
处理模块303,用于基于第一荷电状态信息、输出电压以及输出电流,计算动力电池的第二荷电状态信息。
处理模块303,还用于根据第二荷电状态信息确定动力电池的荷电状态。
在一些实施例中,判断模块301具体用于:
从车辆总线获取各个车载用电设备的使能信号。根据使能信号确定当前开启的车载用电设备。确定当前开启的车载用电设备中是否有工作电流大于或等于第一阈值的车载用电设备。若没有,则确定目标车辆的用电场景为第一场景。
在一些实施例中,处理模块303具体用于:
根据输出电压以及输出电流计算目标车辆的低压耗电量。根据第一荷电状态信息以及低压耗电量确定第二荷电状态信息。
在一些实施例中,处理模块303具体用于:
对输出电压以及输出电流进行积分计算,得到低压耗电量。
图3所示实施例提供的动力电池荷电状态确定装置可用于执行本说明书图1-图2所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
图4为本发明实施例提供的另一种动力电池荷电状态确定装置的结构示意图。如图4所示,动力电
池荷电状态确定装置还包括采集模块304。
在一些实施例中,用电场景还包括第二场景。第二场景为当前开启的车载用电设备的工作电流大于或等于第一阈值的大电流用电场景。
采集模块304,用于:当判断目标车辆的用电场景为第二场景时,对动力电池的输出电压以及输出电流进行采集。
处理模块303,还用于基于动力电池的输出电压以及输出电流确定动力电池的荷电状态。
图4所示实施例提供的动力电池荷电状态确定装置可用于执行本说明书图1-图2所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
图5为本发明实施例提供的另一种动力电池荷电状态确定装置的结构示意图。如图5所示,动力电池荷电状态确定装置还包括显示模块305。
显示模块305,用于将第二荷电状态信息作为动力电池的荷电状态进行对应显示。
图5所示实施例提供的动力电池荷电状态确定装置可用于执行本说明书图1-图2所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
图6为本发明实施例提供的一种电子设备的结构示意图,如图6所示,上述电子设备可以包括至少一个处理器,以及与上述处理器通信连接的至少一个存储器,其中:存储器存储有可被处理器执行的程序指令,上述处理器调用上述程序指令能够执行本说明书图1-图2所示实施例提供的动力电池荷电状态确定方法。
如图6所示,电子设备以通用计算设备的形式表现。电子设备的组件可以包括但不限于:一个或者多个处理器610、通信接口620和存储器630,连接不同系统组件(包括存储器630、通信接口620和处理器610)的通信总线640。
通信总线640表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture;以下简称:ISA)总线,微通道体系结构(Micro Channel Architecture;以下简称:MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association;以下简称:VESA)局域总线以及外围组件互连(Peripheral Component Interconnection;以下简称:PCI)总线。
电子设备典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器630可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory;以下简称:RAM)和/或高速缓存存储器。电子设备可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。存储器630可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本说明书各实施例的功能。
具有一组(至少一个)程序模块的程序/实用工具,可以存储在存储器630中,这样的程序模块包括——但不限于——操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块通常执行本说明书所描述的实施例中的功能和/或方法。
处理器610通过运行存储在存储器630中的程序,从而执行各种功能应用以及数据处理,例如实现本说明书图1-图2所示实施例提供的动力电池荷电状态确定方法。
本说明书实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行本说明书图1-图2所示实施例提供的动力电池荷电状态确定方法。
上述计算机可读存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以
是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(Read Only Memory;以下简称:ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory;以下简称:EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本说明书的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本说明书的实施例所属技术领域的技术人员所理解。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,本说明书实施例中所涉及的设备可以包括但不限于个人计算机(Personal Computer;以下简称:PC)、个人数字助理(Personal Digital Assistant;以下简称:PDA)、无线手持设备、平板电脑(Tablet Computer)、手机、MP3显示器、MP4显示器等。
在本说明书所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本说明书各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,连接
器,或者网络装置等)或处理器(Processor)执行本说明书各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory;以下简称:ROM)、随机存取存储器(Random Access Memory;以下简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本说明书的较佳实施例而已,并不用以限制本说明书,凡在本说明书的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本说明书保护的范围之内。
Claims (10)
- 一种动力电池荷电状态确定方法,其特征在于,包括:判断目标车辆的用电场景是否为第一场景;若是,则获取当前采集到的动力电池的第一荷电状态信息;获取直流变换器的输出电压以及输出电流;基于所述第一荷电状态信息、所述输出电压以及所述输出电流,计算所述动力电池的第二荷电状态信息;根据所述第二荷电状态信息确定所述动力电池的荷电状态。
- 根据权利要求1所述的方法,其特征在于,所述第一场景为当前开启的车载用电设备的工作电流均小于第一阈值的小电流用电场景。
- 根据权利要求2所述的方法,其特征在于,判断目标车辆的用电场景是否为第一场景,包括:从车辆总线获取各个车载用电设备的使能信号;根据所述使能信号确定当前开启的车载用电设备;确定所述当前开启的车载用电设备中是否有工作电流大于或等于所述第一阈值的车载用电设备;若没有,则确定所述目标车辆的用电场景为第一场景。
- 根据权利要求1所述的方法,其特征在于,基于所述第一荷电状态信息、所述输出电压以及所述输出电流,计算所述动力电池的第二荷电状态信息,包括:根据所述输出电压以及输出电流计算所述目标车辆的低压耗电量;根据所述第一荷电状态信息以及所述低压耗电量确定所述第二荷电状态信息。
- 根据权利要求4所述的方法,其特征在于,根据所述输出电压以及输出电流计算所述目标车辆的低压耗电量,包括:对所述输出电压以及所述输出电流进行积分计算,得到所述低压耗电量。
- 根据权利要求1所述的方法,其特征在于,所述用电场景还包括第二场景;所述第二场景为当前开启的车载用电设备的工作电流大于或等于第一阈值的大电流用电场景,所述方法还包括:当判断所述目标车辆的用电场景为第二场景时,对所述动力电池的输出电压以及输出电流进行采集;基于所述动力电池的输出电压以及输出电流确定所述动力电池的荷电状态。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:将所述第二荷电状态信息作为所述动力电池的荷电状态进行对应显示。
- 一种动力电池荷电状态确定装置,其特征在于,包括:判断模块,用于判断目标车辆的用电场景是否为第一场景;获取模块,用于获取当前采集到的动力电池的第一荷电状态信息;所述获取模块,还用于获取直流变换器的输出电压以及输出电流;处理模块,用于基于所述第一荷电状态信息、所述输出电压以及所述输出电流,计算所述动力电池的第二荷电状态信息;所述处理模块,还用于根据所述第二荷电状态信息确定所述动力电池的荷电状态。
- 一种电子设备,其特征在于,包括:至少一个处理器;以及与所述处理器通信连接的至少一个存储器,其中:所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1至7任一所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如权利要求1至7任一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310224747.4 | 2023-03-09 | ||
CN202310224747.4A CN116338492A (zh) | 2023-03-09 | 2023-03-09 | 一种动力电池荷电状态确定方法及相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024183285A1 true WO2024183285A1 (zh) | 2024-09-12 |
Family
ID=86892243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/125191 WO2024183285A1 (zh) | 2023-03-09 | 2023-10-18 | 一种动力电池荷电状态确定方法及相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116338492A (zh) |
WO (1) | WO2024183285A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116338492A (zh) * | 2023-03-09 | 2023-06-27 | 上汽通用五菱汽车股份有限公司 | 一种动力电池荷电状态确定方法及相关设备 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006149070A (ja) * | 2004-11-18 | 2006-06-08 | Denso Corp | 車両用バッテリー残存容量演算装置 |
CN102347517A (zh) * | 2011-06-29 | 2012-02-08 | 重庆长安汽车股份有限公司 | 一种寿命状态自适应型soc估算方法及系统 |
CN102756661A (zh) * | 2011-04-27 | 2012-10-31 | 北京八恺电气科技有限公司 | 车用电池荷电状态的确定方法及装置 |
CN103439664A (zh) * | 2013-08-22 | 2013-12-11 | 安徽安凯汽车股份有限公司 | 一种基于电流的纯电动汽车动力电池组容量标定方法 |
CN104569833A (zh) * | 2014-12-12 | 2015-04-29 | 北京新能源汽车股份有限公司 | 放电过程中动力电池的荷电状态计算方法和装置 |
CN105891729A (zh) * | 2016-06-23 | 2016-08-24 | 矽力杰半导体技术(杭州)有限公司 | 电池及电池组的状态检测方法及装置 |
WO2017016385A1 (zh) * | 2015-07-27 | 2017-02-02 | 中兴通讯股份有限公司 | 电池荷电状态值的估算方法及装置 |
CN212872820U (zh) * | 2020-08-27 | 2021-04-02 | 北京牛电科技有限责任公司 | 一种电流检测装置及电动车 |
CN114387705A (zh) * | 2020-10-16 | 2022-04-22 | 比亚迪股份有限公司 | 车辆智能监控方法、系统、车载控制器和加速度传感器 |
CN114814604A (zh) * | 2022-05-12 | 2022-07-29 | 苏州精控能源科技有限公司 | 一种电池soc估算方法及装置 |
CN115476721A (zh) * | 2022-09-14 | 2022-12-16 | 重庆长安汽车股份有限公司 | 车辆的电源管理方法、装置、电子设备及存储介质 |
CN115524622A (zh) * | 2022-09-29 | 2022-12-27 | 广东博力威科技股份有限公司 | 电车电池容量监控方法、装置以及电车监控系统 |
CN116338492A (zh) * | 2023-03-09 | 2023-06-27 | 上汽通用五菱汽车股份有限公司 | 一种动力电池荷电状态确定方法及相关设备 |
-
2023
- 2023-03-09 CN CN202310224747.4A patent/CN116338492A/zh active Pending
- 2023-10-18 WO PCT/CN2023/125191 patent/WO2024183285A1/zh unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006149070A (ja) * | 2004-11-18 | 2006-06-08 | Denso Corp | 車両用バッテリー残存容量演算装置 |
CN102756661A (zh) * | 2011-04-27 | 2012-10-31 | 北京八恺电气科技有限公司 | 车用电池荷电状态的确定方法及装置 |
CN102347517A (zh) * | 2011-06-29 | 2012-02-08 | 重庆长安汽车股份有限公司 | 一种寿命状态自适应型soc估算方法及系统 |
CN103439664A (zh) * | 2013-08-22 | 2013-12-11 | 安徽安凯汽车股份有限公司 | 一种基于电流的纯电动汽车动力电池组容量标定方法 |
CN104569833A (zh) * | 2014-12-12 | 2015-04-29 | 北京新能源汽车股份有限公司 | 放电过程中动力电池的荷电状态计算方法和装置 |
WO2017016385A1 (zh) * | 2015-07-27 | 2017-02-02 | 中兴通讯股份有限公司 | 电池荷电状态值的估算方法及装置 |
CN105891729A (zh) * | 2016-06-23 | 2016-08-24 | 矽力杰半导体技术(杭州)有限公司 | 电池及电池组的状态检测方法及装置 |
CN212872820U (zh) * | 2020-08-27 | 2021-04-02 | 北京牛电科技有限责任公司 | 一种电流检测装置及电动车 |
CN114387705A (zh) * | 2020-10-16 | 2022-04-22 | 比亚迪股份有限公司 | 车辆智能监控方法、系统、车载控制器和加速度传感器 |
CN114814604A (zh) * | 2022-05-12 | 2022-07-29 | 苏州精控能源科技有限公司 | 一种电池soc估算方法及装置 |
CN115476721A (zh) * | 2022-09-14 | 2022-12-16 | 重庆长安汽车股份有限公司 | 车辆的电源管理方法、装置、电子设备及存储介质 |
CN115524622A (zh) * | 2022-09-29 | 2022-12-27 | 广东博力威科技股份有限公司 | 电车电池容量监控方法、装置以及电车监控系统 |
CN116338492A (zh) * | 2023-03-09 | 2023-06-27 | 上汽通用五菱汽车股份有限公司 | 一种动力电池荷电状态确定方法及相关设备 |
Also Published As
Publication number | Publication date |
---|---|
CN116338492A (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106772091B (zh) | 电池容量值的更新方法、装置及终端 | |
WO2022262583A1 (zh) | 电池健康状态测算方法以及相关设备 | |
CN113147631B (zh) | 一种低压电压变换器的输出功率确定方法及相关设备 | |
CN104104124A (zh) | 用于一电子装置的充电电路及其相关充电方法 | |
WO2024183285A1 (zh) | 一种动力电池荷电状态确定方法及相关设备 | |
CN108061863A (zh) | 检测电池的方法及装置、计算机可读存储介质、电池管理系统 | |
EP2993757A1 (en) | Method of managing the charging of battery and electronic device adapted thereto | |
CN114454766B (zh) | 动力电池充电方法、系统和设备 | |
CN112946482A (zh) | 一种基于模型的电池电压估算方法、装置、设备及存储介质 | |
CN113954639A (zh) | 电机轮端扭矩能力确定方法、装置、电子设备及存储介质 | |
CN113437375A (zh) | 一种快速充电的方法、装置、电子设备及存储介质 | |
CN106772092B (zh) | 基于移动终端获取电池电压的充电电流设置系统及方法 | |
JP4827457B2 (ja) | 電子機器およびバッテリ装置 | |
CN113954842B (zh) | 混合轮端扭矩能力确定方法、装置、电子设备及存储介质 | |
CN111157907B (zh) | 检测方法及装置、充电方法及装置、电子设备、存储介质 | |
CN116345627A (zh) | 一种车载太阳能充电方法及相关设备 | |
CN113013935B (zh) | 供电装置的控制方法及系统、终端设备、存储介质 | |
CN114013337A (zh) | 增程器发电控制方法、装置和电子设备 | |
CN116736124A (zh) | 电池放电能力的评估方法、装置、电子设备及存储介质 | |
WO2020024800A1 (zh) | 双电池显示电量的方法和装置 | |
CN111596248A (zh) | 分流器电流采集故障判断方法、装置、设备及存储介质 | |
US20120074910A1 (en) | Battery charge management | |
CN114435273B (zh) | 发动机起动能力确定方法、装置、电子设备以及存储介质 | |
CN117849639A (zh) | 一种检测电池电量的方法和装置 | |
CN110970950B (zh) | 充电控制方法、装置、存储介质及分体式电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23925983 Country of ref document: EP Kind code of ref document: A1 |