WO2024182926A1 - 功放失配保护电路及电子设备 - Google Patents
功放失配保护电路及电子设备 Download PDFInfo
- Publication number
- WO2024182926A1 WO2024182926A1 PCT/CN2023/079573 CN2023079573W WO2024182926A1 WO 2024182926 A1 WO2024182926 A1 WO 2024182926A1 CN 2023079573 W CN2023079573 W CN 2023079573W WO 2024182926 A1 WO2024182926 A1 WO 2024182926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- electrically connected
- power amplifier
- detection
- unit
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 198
- 239000003990 capacitor Substances 0.000 claims description 44
- 238000001914 filtration Methods 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 10
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
Definitions
- the present disclosure generally relates to the technical field of power amplifier mismatch protection, and more particularly to a power amplifier mismatch protection circuit and an electronic device.
- the present disclosure provides a power amplifier mismatch protection circuit, which includes a power amplifier, a standing wave detection protection module, a power supply module and a current detection control module, wherein the RF output end of the power amplifier is electrically connected to the antenna feeder connection port through a RF link, the input end of the standing wave detection protection module is electrically connected to the RF link coupling, the output end of the standing wave detection protection module is electrically connected to the gate end of the power amplifier, the power supply module is electrically connected to the input end of the current detection control module, the detection end of the current detection control module is electrically connected to the drain end of the power amplifier, and the output end of the current detection control module is electrically connected to the gate end of the power amplifier, wherein:
- the power supply module is configured to provide an operating current to the power amplifier
- the standing wave detection protection module is configured to detect the gain corresponding to the radio frequency link and control the gate voltage of the gate terminal of the power amplifier to adjust the power of the power amplifier when the power amplifier is mismatched;
- the current detection control module is configured to detect the operating current and control the gate voltage of the gate terminal of the power amplifier when the operating current exceeds a threshold current, so as to adjust the power of the power amplifier.
- the current detection control module includes a current detection circuit, a first comparison unit and a clamp switch unit, the input end of the current detection circuit is electrically connected to the power module, and the output end of the current detection circuit is electrically connected to the first comparison unit.
- An input terminal of the first comparison unit is electrically connected to a first reference power supply
- a second input terminal of the first comparison unit is electrically connected to a first reference power supply
- an output terminal of the first comparison unit is electrically connected to the clamp switch unit
- the clamp switch unit is electrically connected to a gate terminal of the power amplifier
- the current detection circuit is configured to detect the operating current and convert the operating current into a corresponding first detection voltage
- the first comparison unit is configured to compare the first detection voltage with a reference voltage provided by the first reference power supply, and generate a corresponding clamp control signal
- the clamp switch unit is configured to clamp the gate voltage of the gate terminal of the power amplifier according to the clamp control signal.
- the current detection circuit includes a current sense amplifier
- the first comparison unit includes an operational amplifier
- the clamping switch unit includes a first switch tube, an input end of the first switch tube is electrically connected to the gate end of the power amplifier, an output end of the first switch tube is grounded, and a control end of the first switch tube is electrically connected to the output end of the first comparison unit.
- the clamping switch unit also includes a first RC circuit and a second RC circuit, the control end of the first switch tube is electrically connected to the output end of the first comparison unit through the first RC circuit, and the input end of the first switch tube is electrically connected to the gate end of the power amplifier through the second RC circuit.
- the first RC circuit includes a first capacitor, a first resistor, a second resistor and a third resistor, the control end of the first switch tube is electrically connected to the first end of the first resistor, the second end of the first resistor is electrically connected to the first end of the second resistor and the first end of the third resistor, the second end of the second resistor is grounded, the second end of the third resistor is electrically connected to the output end of the first comparison unit and the first end of the first capacitor, and the second end of the first capacitor is grounded;
- the second RC circuit includes a second capacitor, a third capacitor, a fourth capacitor, a filtering element, a fourth resistor, a fifth resistor, and a sixth resistor, wherein a first end of the second capacitor is electrically connected to an input end of the first switch control tube and a first end of the filtering element, a second end of the second capacitor is grounded, a second end of the filtering element is electrically connected to a first end of the fourth resistor, a second end of the fourth resistor is electrically connected to a first end of the fifth resistor, a third capacitor, a fourth capacitor, and a sixth resistor, and the fifth resistor, the third capacitor, and the fourth capacitor are electrically connected to a first end of the fifth resistor, a third capacitor, and a fourth capacitor.
- the second ends of the sixth resistors are respectively grounded, and the second ends of the sixth resistors are electrically connected to the gate end of the power amplifier.
- the standing wave detection protection module includes a forward power detection unit, a reverse power detection unit, a second comparison unit and a third comparison unit, the sampling ends of the forward power detection unit and the reverse power detection unit are coupled and electrically connected to the radio frequency link, the output end of the forward power detection unit and the output end of the reverse power detection unit are electrically connected to two input ends of the second comparison unit respectively, the output end of the second comparison unit is electrically connected to one input end of the third comparison unit, the other input end of the third comparison unit is electrically connected to a second reference power supply, and the output end of the third comparison unit is the output end of the standing wave detection protection module, wherein,
- the forward power detection unit is configured to detect the input power outputted from the power amplifier to the radio frequency link and generate a forward power detection voltage
- the reverse power detection unit is configured to detect the output port reverse power reflected by the side where the RF link is electrically connected to the antenna feeder, and generate a reverse power detection voltage;
- the second comparison unit is configured to compare the forward power detection voltage and the reverse power detection voltage, and output a corresponding power voltage comparison signal
- the third comparison unit is configured to compare the voltage corresponding to the power voltage comparison signal with the reference voltage provided by the second reference power supply, and output a control voltage for adjusting the operating current of the power amplifier.
- the forward power detection unit and the reverse power detection unit each include a coupler, a detector and an amplification unit, wherein:
- the coupler corresponding to the forward power detection unit is configured to couple the forward RF power signal corresponding to the input power
- the coupler corresponding to the reverse power detection unit is configured to couple the reverse RF power signal corresponding to the output port reverse power
- the detector corresponding to the forward power detection unit is configured to detect the forward RF power signal to generate a first DC signal, and the detector corresponding to the reverse power detection unit is configured to detect the reverse RF power signal to generate a second DC signal;
- the amplifying unit corresponding to the forward power detection unit is configured to amplify the first DC signal to generate the forward power detection voltage
- the amplifying unit corresponding to the reverse power detection unit is configured to amplify the second DC signal to generate the reverse power detection voltage.
- the second comparison unit and the third comparison unit both include an operational amplifier.
- the present disclosure provides an electronic device, which includes the power amplifier mismatch protection circuit described in the present disclosure.
- a power amplifier mismatch protection circuit in this embodiment, which includes a power amplifier, a standing wave detection protection module, a power supply module and a current detection control module.
- the standing wave detection protection module is used to detect the gain corresponding to the RF link and control the gate voltage of the gate terminal of the power amplifier when the power amplifier is mismatched;
- the current detection control module is used to detect the operating current of the power amplifier and control the gate voltage of the gate terminal of the power amplifier when the operating current exceeds the threshold current, thereby finally adjusting the power of the power amplifier.
- the two modules complement each other and work together to control the generation of large current when the power amplifier is mismatched, thereby effectively limiting and suppressing the large current generated by the power amplifier when it is mismatched, improving the overheating and self-excitation and burning of the power amplifier when it is mismatched, improving the power amplifier mismatch protection effect, and extending the life cycle of the power amplifier.
- FIG1 is a structural block diagram of a power amplifier mismatch protection circuit provided by an embodiment of the present disclosure
- FIG. 2 is a structural block diagram of a current detection control module provided according to an embodiment of the present disclosure
- FIG3 is a topological diagram of a clamp switch unit provided in a preferred embodiment of the present disclosure.
- FIG4 is a structural block diagram of a standing wave detection and protection module provided in an embodiment of the present disclosure.
- FIG5 is a local topological diagram of a standing wave detection and protection module provided in an embodiment of the present disclosure. As well as
- FIG. 6 is an electronic device provided by an embodiment of the present disclosure.
- a standing wave detection protection circuit can be used to protect the power amplifier from overheating caused by mismatch.
- the forward power detection port and the reverse power detection port will have the power superposition of two signals, namely the input power and the output port reverse power.
- the output port reverse power will produce a phase shift due to different transmission paths and operating frequencies, causing a phase change. Due to the superposition of power at different phases, there will be a difference in the power size of the forward power detection port and the reverse power detection port, causing port power detection distortion, which will cause the standing wave detection protection circuit to be unable to suppress the load from pulling large currents and effectively protect the power amplifier.
- embodiments of the present disclosure provide a power amplifier mismatch protection circuit and an electronic device that can effectively limit and suppress the large current generated by the power amplifier when it is mismatched.
- FIG1 is a block diagram of a power amplifier mismatch protection circuit provided by an embodiment of the present disclosure.
- a power amplifier mismatch protection circuit 1 which includes a power amplifier 100, a standing wave detection protection module 200, a power supply module 300, and a current detection control module 400.
- the RF output terminal 101 of the power amplifier 100 is electrically connected to the antenna feeder connection port 600 through the RF link 500, and the input terminal of the standing wave detection protection module 200 is coupled to the RF link 500.
- the output terminal 201 of the standing wave detection protection module 200 is electrically connected to the gate terminal 102 of the power amplifier 100
- the power supply module 300 is electrically connected to the input terminal 401 of the current detection control module 400
- the detection terminal of the current detection control module 400 is electrically connected to the drain terminal 103 of the power amplifier 100
- the output terminal of the current detection control module 400 is electrically connected to the gate terminal 102 of the power amplifier 100.
- the power supply module 300 is configured to provide an operating current to the power amplifier 100.
- the standing wave detection protection module 200 is configured to detect the gain corresponding to the RF link 500, and control the gate voltage of the gate terminal 102 of the power amplifier 100 when the power amplifier is mismatched, so as to adjust the power of the power amplifier 100.
- the standing wave detection protection module 200 obtains a forward power detection voltage and a reverse power detection voltage by coupling the forward RF power signal and the reverse RF power signal corresponding to the RF link 500, and performing detection and amplification.
- the standing wave detection protection module 200 determines the gain of the RF link 500 by comparing the forward power detection voltage and the reverse power detection voltage. At the same time, when the power amplifier 100 is mismatched and it is set that there is no phase shift, the standing wave detection protection module 200 detects that the forward power detection voltage remains unchanged and the reverse power detection voltage increases. Through the comparison of the standing wave detection protection module 200, the reverse power detection voltage is large, and the standing wave detection protection module 200 controls the gate voltage of the gate terminal 102 of the power amplifier 100 to adjust the output power, and then correspondingly controls the RF link 500 to attenuate, thereby reducing the power and operating current of the power amplifier 100, thereby achieving the control of the large current when the power amplifier 100 is mismatched.
- the current detection control module 400 is configured to detect the operating current and control the gate voltage of the gate terminal of the power amplifier 100 when the operating current exceeds a threshold current, so as to adjust the power of the power amplifier 100 .
- the current detection control module 400 detects the operating current when the power amplifier is mismatched, and clamps and controls the gate voltage VCG of the gate terminal 102 of the power amplifier 100 according to the size of the detected operating current, and cooperates with the standing wave detection protection module 200 to control the operating current, so as to control the operating current to be within a safe current range; the current detection control module 400 is connected in series to the circuit in which the power supply module 300 supplies power to the power amplifier 100, and when the power supply module 300 provides power to the power amplifier 100, the operating current provided by the power supply module 300 to the power amplifier 100 is synchronously detected.
- the current detection control module 400 synchronously detects the power amplifier 100 without affecting the power supply module 300 to the power amplifier 100 . Furthermore, the current detection control module 400 converts the detected operating current into a corresponding voltage, and uses the voltage to control the gate voltage VCG of the gate terminal 102 of the power amplifier 100. Specifically, when the power amplifier 100 is mismatched and there is a phase shift, the standing wave detection protection module 200 controls the power amplifier 100 to adjust the output power, and the attenuation degree of the control RF link 500 to attenuate still makes the power amplifier 100 work with a large current. At this time, the current detection control module 400 further controls the gate voltage VCG of the power amplifier 100. In some embodiments, the gate voltage VCG is pulled down to lower the gate voltage VCG. At this time, the power amplifier 100 adjusts the output power, so as to achieve the control of the generation of a large current when the power amplifier 100 is mismatched.
- the power amplifier mismatch protection circuit disclosed in the present invention provides an operating current to the power amplifier 100 through a power module 300, detects the gain corresponding to the radio frequency link 500 through a standing wave detection protection module 200 when the power amplifier is mismatched, and controls and adjusts the operating current of the power amplifier 100 according to the detected gain; detects the operating current through a current detection control module 400 when the power amplifier is mismatched, and clamps and controls the gate voltage VCG of the gate terminal 102 of the power amplifier 100 according to the magnitude of the detected operating current; by introducing the current detection control module 400, the current detection control module 400 complements the standing wave detection protection module 200, and works together to control the generation of a large current when the power amplifier is mismatched, thereby solving the problem that the standing wave detection protection circuit in the related art cannot effectively suppress the load from pulling a large current when the power amplifier is mismatched, and effectively limits and suppresses the large current generated by the power amplifier when it is mismatched, improves the overheating and self-excitation and burning of the power amplifier when it is mismatched, improve
- FIG2 is a block diagram of a current detection control module according to an embodiment of the present disclosure.
- the current detection control module 400 includes a current detection circuit 41, a first comparison unit 42 and a clamp switch unit 43.
- the input end of the current detection circuit 41 is electrically connected to the power module 200, the output end of the current detection circuit 41 is electrically connected to the first input end of the first comparison unit 42, the second input end of the first comparison unit 42 is electrically connected to the first reference power supply (the voltage provided by the first reference power supply is set to APC), the output end of the first comparison unit 42 is electrically connected to the clamp switch unit 43, and the clamp switch unit 43 is also electrically connected to the gate terminal 102 of the power amplifier 100, wherein the current detection circuit 41 is configured to detect the operating current provided by the power module 200 to the power amplifier 100, and convert the detected operating current into a corresponding first detection voltage.
- the current detection circuit 41 includes but is not limited to a current detection amplifier.
- the current detection amplifier is one of the following: a unidirectional current detection amplifier circuit composed of a MAX4080 chip with peripheral resistors and capacitors, and a current detection amplifier circuit composed of a MAX9937 chip with peripheral resistors and capacitors.
- the first comparison unit 42 is configured to compare the first detection voltage with a reference voltage APC provided by a first reference power source, and generate a corresponding clamp control signal (CUR_MEAS).
- the first comparison unit 42 includes but is not limited to an operational amplifier.
- the operational amplifier is a rail-to-rail operational amplifier chip U2 of the AD8566ARMZ model and the first comparison unit 42 is composed of peripheral resistors and capacitors.
- the clamp switch unit 43 is configured to control the on/off between the input terminal and the output terminal of the clamp switch unit 43 according to the clamp control signal received by the control terminal of the clamp switch unit 43 , and correspondingly clamp the gate voltage VCG of the gate terminal 102 of the power amplifier 100 .
- FIG3 is a topological diagram of a clamp switch unit in a preferred embodiment of the present disclosure.
- the clamp switch unit 43 includes a first switch tube Q1, the input end of the first switch tube Q1 is electrically connected to the gate end 102 of the power amplifier 100, the output end of the first switch tube Q1 is grounded, and the control end of the first switch tube Q1 is electrically connected to the output end of the first comparison unit 42.
- the level of the clamp control signal received by the control end of the first switch tube Q1 is a preset high level, the power amplifier 100 generates an unsafe large current, the input end of the first switch tube Q1 is connected to the output end, and the gate end 102 of the power amplifier 100 is equivalently pulled down to the ground.
- the power amplifier 100 reduces or stops outputting power to the RF link 500, and the power amplifier 100 reduces power to suppress its operating current; when the level of the clamp control signal received by the control end of the first switch tube Q1 is a preset low level, the input end of the first switch tube Q1 is disconnected from the output end, and the current detection control module 400 does not need to clamp the gate voltage VCG of the power amplifier 100.
- the first switch tube Q1 in the embodiment of the present disclosure includes but is not limited to a triode, a MOS tube, and a field effect transistor. Moreover, according to the content disclosed in the present disclosure, a person skilled in the art can easily think of modifying the first switch tube Q1 disclosed in the present disclosure into a clamp switch unit 43 adapted to the selection of the switch tube according to the specific selection of the switch tube. Therefore, whether the switch tube is an NPN-type or PNP-type triode, an N-channel or P-channel switch MOS tube, or an N-type or P-type field effect transistor, the present disclosure can be implemented, and is not limited in the embodiment of the present disclosure.
- the clamp switch unit 43 further includes a first RC circuit 431 and a second RC circuit 432, the control end of the first switch tube Q1 is electrically connected to the output end of the first comparison unit 42 through the first RC circuit 431, and the input end of the first switch tube Q1 is electrically connected to the gate end 102 (refer to Gate_1 in FIG3 ) of the power amplifier 100 through the second RC circuit 432, wherein the first RC circuit 431 includes a first capacitor C1, a first resistor R1, a second resistor R2, and a third resistor R3, the control end of the first switch tube Q1 is electrically connected to the first end of the first resistor R1, the second end of the first resistor R1 is electrically connected to the first end of the second resistor R2 and the first end of the third resistor R3, the second end of the second resistor R2 is grounded, the second end of the third resistor R3 is electrically connected to the output end of the first comparison unit 42 and the first
- the second RC circuit 432 includes a second capacitor C2, a third capacitor C3, a fourth capacitor C4, a filtering element F2, a fourth resistor R4, a fifth resistor R5, and a sixth resistor R6.
- the first end of the second capacitor C2 is electrically connected to the input end of the first switch control tube Q1 and the first end of the filtering element F2, the second end of the second capacitor C2 is grounded, the second end of the filtering element F2 is electrically connected to the first end of the fourth resistor R4, the second end of the fourth resistor R4 is electrically connected to the first ends of the fifth resistor R5, the third capacitor C3, the fourth capacitor C4, and the sixth resistor R6, the second ends of the fifth resistor R5, the third capacitor C3, and the fourth capacitor C4 are grounded respectively, and the second end of the sixth resistor R6 is electrically connected to the gate terminal 102 of the power amplifier 100 (refer to Gate_1 in Figure 3).
- FIG 4 is a structural block diagram of a standing wave detection protection module according to an embodiment of the present disclosure.
- the standing wave detection protection module 200 includes a forward power detection unit 21, a reverse power detection unit 22, a second comparison unit 23 and a third comparison unit 24.
- the sampling ends of the forward power detection unit 21 and the reverse power detection unit 22 are coupled and electrically connected to the RF link 500.
- the output end of the forward power detection unit 21 and the output end of the reverse power detection unit 22 are electrically connected to two input ends of the second comparison unit 23, respectively.
- the output end of the second comparison unit 23 is electrically connected to one input end of the third comparison unit 24.
- the other input end of the third comparison unit 24 is electrically connected to a second reference power supply (the voltage provided by the second reference power supply is set to APC).
- the output end of the third comparison unit 24 is the output end of the standing wave detection protection module 200.
- the forward power detection unit 21 is configured to detect the input power output from the power amplifier 100 to the RF link 50 and generate a forward power detection voltage.
- the reverse power detection unit 22 is configured to detect the output reverse power reflected by the side where the RF link 500 is electrically connected to the antenna feeder, and generate a reverse power detection voltage.
- the second comparison unit 23 is configured to compare the magnitudes of the forward power detection voltage and the reverse power detection voltage, and output a corresponding power voltage comparison signal.
- the second comparison unit 23 includes but is not limited to an operational amplifier.
- the operational amplifier can be an LM2902PWR operational amplifier chip.
- the third comparison unit 24 is configured to compare the voltage corresponding to the power voltage comparison signal with the reference voltage APC provided by the second reference power supply, and output a control voltage for adjusting the working current of the power amplifier.
- the second reference power supply can be set according to requirements, for example, it can be the same power supply as the first reference power supply, or it can be a different power supply, and the reference voltages provided can be the same or different.
- the third comparison unit 24 includes but is not limited to an operational amplifier.
- the operational amplifier can be an LM2902PWR operational amplifier chip.
- the input power is converted into a corresponding voltage through forward power detection
- the output reverse power is converted into a corresponding voltage through reverse power detection.
- the forward power detection unit 21 and the reverse power detection unit 22 each include a coupler, a detector, and an amplification unit.
- the coupler includes, but is not limited to, a bidirectional coupler
- the detector includes, but is not limited to, a logarithmic detector
- the coupler corresponding to the forward power detection unit 21 is configured to couple the forward RF power signal corresponding to the input power, and the coupler corresponding to the reverse power detection unit 22 is used to couple the reverse RF power signal corresponding to the output reverse power.
- the detector corresponding to the forward power detection unit 21 is configured to detect the forward RF power signal to generate a first DC signal
- the detector corresponding to the reverse power detection unit 22 is configured to detect the forward RF power signal to generate a first DC signal.
- the device is configured to detect the reverse radio frequency power signal and generate a second direct current signal.
- the amplifying unit corresponding to the forward power detection unit 21 is configured to amplify the first DC signal to generate a forward power detection voltage
- the amplifying unit corresponding to the reverse power detection unit 2 is configured to amplify the second DC signal to generate a reverse power detection voltage.
- FIG5 is a local topological diagram of a standing wave detection protection module of an embodiment of the present disclosure.
- the second comparison unit 23 and the third comparison unit 24 use an operational amplifier chip, and the second comparison unit 23 corresponds to U533A in FIG5, and the third comparison unit 24 corresponds to U533B in FIG5.
- the positive input terminal of U533A corresponding to the second comparison unit 23 is connected to the reverse power detection voltage, and the reverse input terminal is connected to the forward power detection voltage.
- the positive input terminal of U533B corresponding to the third comparison unit 24 is connected to the reference voltage APC provided by the third reference power supply, and its reverse input terminal is connected to the voltage corresponding to the power voltage comparison signal; the third reference power supply can be set according to actual conditions.
- U533A cooperates with peripheral resistors and capacitors to form a proportional integrator corresponding to the second comparison unit 23
- U533B cooperates with corresponding peripheral resistors and capacitors to form a proportional integrator corresponding to the third comparison unit 24.
- test data table of the operating current of the power amplifier when mismatched according to different preset test conditions:
- the power amplifier mismatch protection circuit in this embodiment can effectively protect the power amplifier.
- the embodiment of the present disclosure further provides an electronic device 6, which includes the power amplifier mismatch protection circuit 1 described in the present disclosure.
- the power amplifier mismatch protection circuit and electronic equipment provided by the present disclosure can effectively suppress the problem of load pulling large current when the power amplifier is mismatched.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
公开了功放失配保护电路及电子设备,其包括功率放大器、驻波检测保护模块、电源模块和电流检测控制模块,所述功率放大器的射频输出端通过射频链路与天线馈线连接端口电连接,所述驻波检测保护模块的输入端与所述射频链路耦合电连接,所述驻波检测保护模块的输出端电连接所述功率放大器的栅极端,所述电源模块与所述电流检测控制模块的输入端电连接,所述电流检测控制模块的检测端与所述功率放大器的漏极端电连接,所述电流检测控制模块的输出端与所述功率放大器的栅极端电连接。
Description
领域
本公开大体上涉及功率放大器失配保护技术领域,更具体地涉及功放失配保护电路及电子设备。
背景
功率放大器在阻抗失配时,由于负载牵引的作用,致使功率放大器的工作电流大,输出功率很小,导致功率放大器的热功耗增大,从而引起功率放大器过热和自激而烧毁。
概述
第一方面,本公开提供了功放失配保护电路,其包括功率放大器、驻波检测保护模块、电源模块和电流检测控制模块,所述功率放大器的射频输出端通过射频链路与天线馈线连接端口电连接,所述驻波检测保护模块的输入端与所述射频链路耦合电连接,所述驻波检测保护模块的输出端电连接所述功率放大器的栅极端,所述电源模块与所述电流检测控制模块的输入端电连接,所述电流检测控制模块的检测端与所述功率放大器的漏极端电连接,所述电流检测控制模块的输出端与所述功率放大器的栅极端电连接,其中,
所述电源模块,配置为向所述功率放大器提供工作电流;
所述驻波检测保护模块,配置为检测所述射频链路所对应的增益,并在功放失配时控制所述功率放大器的栅极端的栅压,以调整所述功率放大器的功率;以及
所述电流检测控制模块,配置为检测所述工作电流,并在所述工作电流超过阈值电流时控制所述功率放大器的栅极端的栅压,以调整所述功率放大器的功率。
在某些实施方案中,所述电流检测控制模块包括电流检测电路、第一比较单元和钳位开关单元,所述电流检测电路的输入端与所述电源模块电连接,所述电流检测电路的输出端与所述第一比较单元的第
一输入端电连接,所述第一比较单元的第二输入端电连接第一基准电源,所述第一比较单元的输出端电连接所述钳位开关单元,所述钳位开关单元电连接所述功率放大器的栅极端,其中,
所述电流检测电路,配置为检测所述工作电流,并将所述工作电流转换为对应的第一检测电压;
所述第一比较单元,配置为比较所述第一检测电压和所述第一基准电源提供的基准电压的大小,生成对应的钳位控制信号;以及
所述钳位开关单元,配置为根据所述钳位控制信号钳位所述功率放大器的栅极端的栅压。
在某些实施方案中,所述电流检测电路包括检流放大器,和/或,所述第一比较单元包括运算放大器。
在某些实施方案中,所述钳位开关单元包括第一开关管,所述第一开关管的输入端电连接所述功率放大器的栅极端,所述第一开关管的输出端接地,所述第一开关管的控制端电连接所述第一比较单元的输出端。
在某些实施方案中,所述钳位开关单元还包括第一RC电路、第二RC电路,所述第一开关管的控制端通过所述第一RC电路电连接所述第一比较单元的输出端,所述第一开关管的输入端通过所述第二RC电路电连接所述功率放大器的栅极端。
在某些实施方案中,所述第一RC电路包括第一电容、第一电阻、第二电阻和第三电阻,所述第一开关管的控制端电连接所述第一电阻的第一端,所述第一电阻的第二端电连接所述第二电阻的第一端及所述第三电阻的第一端,所述第二电阻的第二端接地,所述第三电阻的第二端电连接所述第一比较单元的输出端及所述第一电容的第一端,所述第一电容的第二端接地;
和/或,所述第二RC电路包括第二电容、第三电容、第四电容、滤波元件、第四电阻、第五电阻、第六电阻,所述第二电容的第一端电连接所述第一开关控制管的输入端及所述滤波元件的第一端,所述第二电容的第二端接地,所述滤波元件的第二端电连接所述第四电阻的第一端,所述第四电阻的第二端电连接所述第五电阻、第三电容、第四电容、第六电阻的第一端,所述第五电阻、第三电容、第四电容
的第二端分别接地,所述第六电阻的第二端电连接所述功率放大器的栅极端。
在某些实施方案中,所述驻波检测保护模块包括前向功率检测单元、反向功率检测单元、第二比较单元和第三比较单元,所述前向功率检测单元和所述反向功率检测单元的采样端均耦合电连接所述射频链路,所述前向功率检测单元的输出端和所述反向功率检测单元的输出端分别电连接所述第二比较单元的两路输入端,所述第二比较单元的输出端电连接所述第三比较单元的一路输入端,所述第三比较单元的另一路输入端电连接第二基准电源,所述第三比较单元的输出端为所述驻波检测保护模块的输出端,其中,
所述前向功率检测单元,配置为检测所述功率放大器输出至所述射频链路的输入功率,并生成正向功率检测电压;
所述反向功率检测单元,配置为检测所述射频链路与所述天线馈线电连接侧反射的输出口反向功率,并生成反向功率检测电压;
所述第二比较单元,配置为比较所述正向功率检测电压和所述反向功率检测电压的大小,并输出对应的功率电压比较信号;以及
所述第三比较单元,配置为比较所述功率电压比较信号所对应的电压和所述第二基准电源提供的基准电压,输出调整所述功率放大器的工作电流的控制电压。
在某些实施方案中,所述前向功率检测单元和所述反向功率检测单元均包括耦合器、检波器和放大单元,其中,
所述前向功率检测单元对应的耦合器,配置为耦合所述输入功率所对应的正向射频功率信号,所述反向功率检测单元对应的耦合器,配置为耦合所述输出口反向功率所对应的反向射频功率信号;
所述前向功率检测单元对应的检波器,配置为对所述正向射频功率信号进行检波,生成第一直流信号,所述反向功率检测单元对应的检波器,配置为对所述反向射频功率信号进行检波,生成第二直流信号;
所述前向功率检测单元对应的放大单元,配置为对所述第一直流信号进行放大,生成所述正向功率检测电压,所述反向功率检测单元对应的放大单元,配置为对所述第二直流信号进行放大,生成所述反
向功率检测电压。
在某些实施方案中,所述第二比较单元、第三比较单元均包括运算放大器。
第二方面,本公开提供了电子设备,其包括本公开所述的功放失配保护电路。
在某些实施方案中,本实施例中提供了功放失配保护电路,该保护电路包括功率放大器、驻波检测保护模块、电源模块和电流检测控制模块,驻波检测保护模块用于检测射频链路所对应的增益并在功放失配时控制所述功率放大器的栅极端的栅压;电流检测控制模块用于检测功率放大器的工作电流,并在工作电流超过阈值电流时控制功率放大器的栅极端的栅压,最终实现调整功率放大器的功率,通过引入电流检测控制模块与驻波检测保护模块,两个模块互为补充、共同作用而控制功放失配时大电流的产生,实现了有效限制和抑制的功放在失配时产生的大电流,改善了功放失配时过热和自激而烧毁,提高功放失配保护效果,延长功率放大器的生命周期的有益效果。
本公开的一个或多个实施例的细节在以下附图和描述中提出,以使本公开的其他特征、目的和优点更加简明易懂。
附图简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一实施例提供的功放失配保护电路的结构框图;
图2是根据本公开一实施例提供的电流检测控制模块的结构框图
图3为本公开一优选实施例提供的钳位开关单元的拓扑图;
图4为本公开一实施例提供的驻波检测保护模块的结构框图;
图5为本公开一实施例提供的驻波检测保护模块的局部拓扑图;
以及
图6为本公开一实施例提供的电子设备。
详述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在对本公开实施例的技术方案进行描述之前,以下对本公开实施例所解决的技术问题所产生的背景进行说明如下:
在解决功率放大器失配产生的大电流这个问题时,可以通过驻波检测保护电路来对功率放大器在失配时引起的过热进行保护,但因功率放大器失配时,正向功率检测口和反向功率检测口都会有两个信号的功率叠加,即输入功率和输出口反向功率,输出口反向功率会因传输路径和工作频率不同产生相移,引起相位变化,由于不同相位的功率叠加,会导致正向功率检测口和反向功率检测口功率大小产生差异,引起端口功率检测失真,从而导致驻波检测保护电路无法抑制负载牵引大电流,无法有效的保护功率放大器。
在某些实施方案中,本公开实施例提供了功放失配保护电路及电子设备,可以有效限制和抑制的功放在失配时产生的大电流。
下面将结合本公开实施例中的附图,并通过实施例来对本公开的功放失配保护电路进行描述。
图1为本公开实施例提供的功放失配保护电路的结构框图。如图1所示,本公开实施例提供了功放失配保护电路1,其包括功率放大器100、驻波检测保护模块200、电源模块300和电流检测控制模块400,功率放大器100的射频输出端101通过射频链路500与天线馈线连接端口600电连接,驻波检测保护模块200的输入端与射频链路500耦
合电连接,驻波检测保护模块200的输出端201电连接功率放大器100的栅极端102,电源模块300与电流检测控制模块400的输入端401电连接,电流检测控制模块400的检测端与功率放大器100的漏极端103电连接,电流检测控制模块400的输出端与功率放大器100的栅极端102电连接。其中,电源模块300,配置为向功率放大器100提供工作电流。驻波检测保护模块200,配置为检测射频链路500所对应的增益,并在功放失配时控制功率放大器100的栅极端102的栅压,以调整功率放大器100的功率。
在某些实施方案中,驻波检测保护模块200通过耦合射频链路500对应的前向射频功率信号和反向射频功率信号,并经过检波和放大,从而获得正向功率检测电压和反向功率检测电压。
在某些实施方案中,驻波检测保护模块200通过比较正向功率检测电压和反向功率检测电压,进而确定射频链路500的增益。同时,当功率放大器100失配且设定不存在相移时,驻波检测保护模块200检测到正向功率检测电压不变,反向功率检测电压变大,通过驻波检测保护模块200的比较,反向功率检测电压大,驻波检测保护模块200控制功率放大器100的栅极端102的栅压,调整输出功率,进而对应控制射频链路500进行衰减,从而使功率放大器100的功率及工作电流变小,从而实现控制功率放大器100失配时的大电流。
电流检测控制模块400,配置为检测工作电流,并在工作电流超过阈值电流时控制功率放大器100的栅极端的栅压,以调整功率放大器100的功率。
在某些实施方案中,电流检测控制模块400在功放失配时检测工作电流,并根据检测到的工作电流的大小,钳位控制功率放大器100的栅极端102的栅压VCG,以及配合驻波检测保护模块200对工作电流的控制,控制工作电流处于安全的电流范围内;电流检测控制模块400串联在电源模块300向功率放大器100供电的电路上,在电源模块300向功率放大器100提供电源时,同步检测电源模块300向功率放大器100提供的工作电流。
在某些实施方案中,电流检测控制模块400在不影响电源模块300向功率放大器100供电的情况下,同步实现对功率放大器100的检测。
并且,电流检测控制模块400把检测到的工作电流转换成对应的电压,以该电压控制功率放大器100的栅极端102的栅压VCG。具体地,当功率放大器100失配且存在相移时,驻波检测保护模块200控制功率放大器100调整输出功率而控制射频链路500进行衰减的衰减程度依然会使功率放大器100以大电流工作,此时,电流检测控制模块400通过对功率放大器100的栅压VCG进行进一步控制,在某些实施方案中,对栅压VCG进行下拉而拉低栅压VCG,此时功率放大器100调整输出功率的大小,如此,实现控制功率放大器100失配时的大电流产生。
本公开的功放失配保护电路,其通过电源模块300向功率放大器100提供工作电流,通过驻波检测保护模块200在功放失配时检测射频链路500所对应的增益,并根据检测到的增益,控制调整功率放大器100的工作电流;通过电流检测控制模块400在功放失配时检测工作电流,并根据检测到的工作电流的大小,钳位控制功率放大器100的栅极端102的栅压VCG,通过引入电流检测控制模块400,与驻波检测保护模块200互为补充,共同作用而控制功放失陪时大电流的产生,解决相关技术驻波检测保护电路无法有效抑制功率放大器失配时负载牵引大电流的问题,实现了有效限制和抑制的功放在失配时产生的大电流,改善了功放失陪时过热和自激而烧毁,提高功放失配保护效果,延长功率放大器的生命周期的有益效果。
图2是根据本公开一实施例的电流检测控制模块的结构框图,为了实现对功率放大器100的工作电流的检测和钳位功率放大器100的栅压VCG,参考图2,在某些实施方案中,电流检测控制模块400包括电流检测电路41、第一比较单元42和钳位开关单元43,电流检测电路41的输入端与电源模块200电连接,电流检测电路41的输出端与第一比较单元42的第一输入端电连接,第一比较单元42的第二输入端电连接第一基准电源(设定第一基准电源提供的电压为APC),第一比较单元42的输出端电连接钳位开关单元43,钳位开关单元43还电连接功率放大器100的栅极端102,其中,电流检测电路41,配置为检测电源模块200向功率放大器100提供的工作电流,并将检测到的工作电流转换为对应的第一检测电压。
在某些实施方案中,电流检测电路41包括但不限于检流放大器,在某些实施方案中,检流放大器为以下其中一种:MAX4080芯片配合周边电阻、电容所组成的单向电流检测放大器电路、MAX9937芯片配合周边电阻、电容所组成的电流检测放大器电流。
第一比较单元42,配置为比较第一检测电压和第一基准电源提供的基准电压APC的大小,生成对应的钳位控制信号(CUR_MEAS)。
在某些实施方案中,第一比较单元42包括但不限于运算放大器,在某些实施方案中,运算放大器为AD8566ARMZ型号的轨到轨运算放大器芯片U2配合周边电阻、电容所组成的第一比较单元42。
钳位开关单元43,配置为根据钳位开关单元43的控制端所接收到的钳位控制信号,控制钳位开关单元43的输入端与输出端之间的通断,并对应钳位功率放大器100的栅极端102的栅压VCG。
图3为本公开一优选实施例中的钳位开关单元的拓扑图,在某些实施方案中,参考图3,钳位开关单元43包括第一开关管Q1,第一开关管Q1的输入端电连接功率放大器100的栅极端102,第一开关管Q1的输出端接地,第一开关管Q1的控制端电连接第一比较单元42的输出端。其中,第一开关管Q1的控制端接收到的钳位控制信号的电平为预设高电平时,此时功率放大器100为产生不安全的大电流,第一开关管Q1的输入端与输出端连通,功率放大器100的栅极端102等效下拉到地,此时,功率放大器100降低或停止向射频链路500输出功率,功率放大器100减小功率以抑制其工作电流;当第一开关管Q1的控制端接收到的钳位控制信号的电平为预设低电平时,第一开关管Q1的输入端与输出端断开,电流检测控制模块400无需对功率放大器100的栅压VCG进行钳位。
在本公开实施例中的第一开关管Q1包括但不限于三极管、MOS管、场效应晶体管。并且,根据本公开披露的内容,本领域技术人员容易想到根据开关管的具体选型将本公开披露的第一开关管Q1修改为与开关管选型相适应的钳位开关单元43,因此,无论开关管为NPN型或PNP型的三极管,还是N沟道或P沟道的开关MOS管,又或是N型或P型场效应晶体管均可以实现本公开,在本公开实施例中并不作限定。
在某些实施方案中,参考图3,钳位开关单元43还包括第一RC电路431、第二RC电路432,第一开关管Q1的控制端通过第一RC电路431电连接第一比较单元42的输出端,第一开关管Q1的输入端通过第二RC电路432电连接功率放大器100的栅极端102(参考图3中的Gate_1),其中,第一RC电路431包括第一电容C1、第一电阻R1、第二电阻R2和第三电阻R3,第一开关管Q1的控制端电连接第一电阻R1的第一端,第一电阻R1的第二端电连接第二电阻R2的第一端及第三电阻R3的第一端,第二电阻R2的第二端接地,第三电阻R3的第二端电连接第一比较单元42的输出端及第一电容C1的第一端(参考图3中的CUR_MEAS),第一电容C1的第二端接地。
第二RC电路432包括第二电容C2、第三电容C3、第四电容C4、滤波元件F2、第四电阻R4、第五电阻R5、第六电阻R6,第二电容C2的第一端电连接第一开关控制管Q1的输入端及滤波元件F2的第一端,第二电容C2的第二端接地,滤波元件F2的第二端电连接第四电阻R4的第一端,第四电阻R4的第二端电连接第五电阻R5、第三电容C3、第四电容C4、第六电阻R6的第一端,第五电阻R5、第三电容C3、第四电容C4的第二端分别接地,第六电阻R6的第二端电连接功率放大器100的栅极端102(参考图3中的Gate_1)。
图4为本公开一实施例的驻波检测保护模块的结构框图,在某些实施方案中,参考图4,驻波检测保护模块200包括前向功率检测单元21、反向功率检测单元22、第二比较单元23和第三比较单元24,前向功率检测单元21和反向功率检测单元22的采样端均耦合电连接射频链路500,前向功率检测单元21的输出端和反向功率检测单元22的输出端分别电连接第二比较单元23的两路输入端,第二比较单元23的输出端电连接第三比较单元24的一路输入端,第三比较单元24的另一路输入端电连接第二基准电源(第二基准电源提供的电压设定为APC),第三比较单元24的输出端为驻波检测保护模块200的输出端。
前向功率检测单元21,配置为检测功率放大器100输出至射频链路50的输入功率,并生成正向功率检测电压。
反向功率检测单元22,配置为检测射频链路500与天线馈线电连接侧反射的输出口反向功率,并生成反向功率检测电压。
第二比较单元23,配置比较正向功率检测电压和反向功率检测电压的大小,并输出对应的功率电压比较信号。
在某些实施方案中,第二比较单元23包括但不限于运算放大器,在某些实施方案中,运算放大器可以选择LM2902PWR型号的运放放大芯片。
第三比较单元24,配置为比较功率电压比较信号所对应的电压和第二基准电源提供的基准电压APC,输出调整功率放大器的工作电流的控制电压。
在某些实施方案中,第二基准电源可以根据需求设定,例如:可以和第一基准电源为同一电源,也可以为不同电源,提供的基准电压可以相同,也可以不同。
在某些实施方案中,第三比较单元24包括但不限于运算放大器,在某些实施方案中,运算放大器可以选择LM2902PWR型号的运放放大芯片。
在某些实施方案中,输入功率通过正向功率检测把功率转换成相应的电压,输出口反向功率通过反向功率检测转换成相应的电压,通过正向功率检测电压和反向功率检测电压比较,当功放失陪时,正向功率检测电压不变,反向功率检测电压会相应变大,通过第二比较单元23的比较,反向功率检测电压大,第三比较单元24输出控制射频链路500衰减的控制电压,使的功率放大器100输出至射频链路500的输入功率减小,功率放大器100的功率及工作电流变小,从而实现避免失陪时产生大电流的控制。
在某些实施方案中,前向功率检测单元21和反向功率检测单元22均包括耦合器、检波器和放大单元。
在某些实施方案中,耦合器包括但不限于双向耦合器,检波器包括但不限于对数检波器。
前向功率检测单元21对应的耦合器,配置为耦合输入功率所对应的正向射频功率信号,反向功率检测单元22对应的耦合器,用于耦合输出口反向功率所对应的反向射频功率信号。
前向功率检测单元21对应的检波器,配置为对正向射频功率信号进行检波,生成第一直流信号,反向功率检测单元22对应的检波器,
配置为对反向射频功率信号进行检波,生成第二直流信号。
前向功率检测单元21对应的放大单元,配置为对第一直流信号进行放大,生成正向功率检测电压,反向功率检测单元2对应的放大单元,配置为对第二直流信号进行放大,生成反向功率检测电压。
图5为本公开一实施例的驻波检测保护模块的局部拓扑图,参考图5,在某些实施方案中,第二比较单元23和第三比较单元24采用运放放大芯片,且第二比较单元23对应图5中的U533A,第三比较单元24对应图5中的U533B,第二比较单元23对应的U533A的正向输入端接入反向功率检测电压,反向输入端接入正向功率检测电压,第三比较单元24对应的U533B的正向输入端接入第三基准电源提供的基准电压APC,其反向输入端接入功率电压比较信号所对应的电压;第三基准电源可以根据实际情况设定,在某些实施方案中,可以和第一、第二基准电源为同一电源,也可以为不同电源,提供的基准电压可以相同,也可以不同。同时,U533A配合周边电阻电容组成与第二比较单元23对应的比例积分器,U533B配合对应的周边电阻电容组成与第三比较单元24对应的比例积分器。
以下为根据不同预设测试条件,功率放大器在失配时的工作电流的测试数据表:
表1
表2
表3
表4
对比可知,只有驻波检测保护模块时,在一些相位条件下,会有相对比50Ω负载大20%的大电流产生,在驻波检测保护模块和电流检测控制模块都有的情况下,失配时最大电流和50Ω负载时相当,可见,本实施例中的功放失配保护电路能够有效的保护功率放大器。
本公开实施例还提供了电子设备6,其包括本公开所述的功放失配保护电路1。
本公开提供的功放失配保护电路及电子设备,能够有效抑制功率放大器失配时负载牵引大电流的问题。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过
程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 功放失配保护电路,其包括:功率放大器、驻波检测保护模块、电源模块和电流检测控制模块,所述功率放大器的射频输出端通过射频链路与天线馈线连接端口电连接,所述驻波检测保护模块的输入端与所述射频链路耦合电连接,所述驻波检测保护模块的输出端电连接所述功率放大器的栅极端,所述电源模块与所述电流检测控制模块的输入端电连接,所述电流检测控制模块的检测端与所述功率放大器的漏极端电连接,所述电流检测控制模块的输出端与所述功率放大器的栅极端电连接,其中,所述电源模块,配置为向所述功率放大器提供工作电流;所述驻波检测保护模块,配置为检测所述射频链路所对应的增益,并在功放失配时控制所述功率放大器的栅极端的栅压,以调整所述功率放大器的功率;以及所述电流检测控制模块,配置为检测所述工作电流,并在所述工作电流超过阈值电流时控制所述功率放大器的栅极端的栅压,以调整所述功率放大器的功率。
- 如权利要求1所述的功放失配保护电路,其中,所述电流检测控制模块包括电流检测电路、第一比较单元和钳位开关单元,所述电流检测电路的输入端与所述电源模块电连接,所述电流检测电路的输出端与所述第一比较单元的第一输入端电连接,所述第一比较单元的第二输入端电连接第一基准电源,所述第一比较单元的输出端电连接所述钳位开关单元,所述钳位开关单元电连接所述功率放大器的栅极端,其中,所述电流检测电路,配置为检测所述工作电流,并将所述工作电流转换为对应的第一检测电压;所述第一比较单元,配置为比较所述第一检测电压和所述第一基准电源提供的基准电压的大小,生成对应的钳位控制信号;以及所述钳位开关单元,配置为根据所述钳位控制信号钳位所述功率放大器的栅极端的栅压。
- 如权利要求2所述的功放失配保护电路,其中,所述电流检测电路包括检流放大器,和/或,所述第一比较单元包括运算放大器。
- 如权利要求2或3所述的功放失配保护电路,其中,所述钳位开关单元包括第一开关管,所述第一开关管的输入端电连接所述功率放大器的栅极端,所述第一开关管的输出端接地,所述第一开关管的控制端电连接所述第一比较单元的输出端。
- 如权利要求2至4中任一权利要求所述的功放失配保护电路,其中,所述钳位开关单元还包括第一RC电路、第二RC电路,所述第一开关管的控制端通过所述第一RC电路电连接所述第一比较单元的输出端,所述第一开关管的输入端通过所述第二RC电路电连接所述功率放大器的栅极端。
- 如权利要求5所述的功放失配保护电路,其中,所述第一RC电路包括第一电容、第一电阻、第二电阻和第三电阻,所述第一开关管的控制端电连接所述第一电阻的第一端,所述第一电阻的第二端电连接所述第二电阻的第一端及所述第三电阻的第一端,所述第二电阻的第二端接地,所述第三电阻的第二端电连接所述第一比较单元的输出端及所述第一电容的第一端,所述第一电容的第二端接地;和/或,所述第二RC电路包括第二电容、第三电容、第四电容、滤波元件、第四电阻、第五电阻、第六电阻,所述第二电容的第一端电连接所述第一开关控制管的输入端及所述滤波元件的第一端,所述第二电容的第二端接地,所述滤波元件的第二端电连接所述第四电阻的第一端,所述第四电阻的第二端电连接所述第五电阻、第三电容、第四电容、第六电阻的第一端,所述第五电阻、第三电容、第四电容的第二端分别接地,所述第六电阻的第二端电连接所述功率放大器的 栅极端。
- 如权利要求1至6中任一权利要求所述的功放失配保护电路,其中,所述驻波检测保护模块包括前向功率检测单元、反向功率检测单元、第二比较单元和第三比较单元,所述前向功率检测单元和所述反向功率检测单元的采样端均耦合电连接所述射频链路,所述前向功率检测单元的输出端和所述反向功率检测单元的输出端分别电连接所述第二比较单元的两路输入端,所述第二比较单元的输出端电连接所述第三比较单元的一路输入端,所述第三比较单元的另一路输入端电连接第二基准电源,所述第三比较单元的输出端为所述驻波检测保护模块的输出端,其中,所述前向功率检测单元,配置为检测所述功率放大器输出至所述射频链路的输入功率,并生成正向功率检测电压;所述反向功率检测单元,配置为检测所述射频链路与所述天线馈线电连接侧反射的输出口反向功率,并生成反向功率检测电压;所述第二比较单元,配置为比较所述正向功率检测电压和所述反向功率检测电压的大小,并输出对应的功率电压比较信号;以及所述第三比较单元,配置为比较所述功率电压比较信号所对应的电压和所述第二基准电源提供的基准电压,输出调整所述功率放大器的工作电流的控制电压。
- 如权利要求7所述的功放失配保护电路,其中,所述前向功率检测单元和所述反向功率检测单元均包括耦合器、检波器和放大单元,其中,所述前向功率检测单元对应的耦合器,配置为耦合所述输入功率所对应的正向射频功率信号,所述反向功率检测单元对应的耦合器,用于耦合所述输出口反向功率所对应的反向射频功率信号;所述前向功率检测单元对应的检波器,配置为对所述正向射频功率信号进行检波,生成第一直流信号,所述反向功率检测单元对应的检波器,用于对所述反向射频功率信号进行检波,生成第二直流信号; 以及所述前向功率检测单元对应的放大单元,配置为对所述第一直流信号进行放大,生成所述正向功率检测电压,所述反向功率检测单元对应的放大单元,配置为对所述第二直流信号进行放大,生成所述反向功率检测电压。
- 如权利要求7或8所述的功放失配保护电路,其中,所述第二比较单元、第三比较单元均包括运算放大器。
- 电子设备,其包括如权利要求1至9任一权利要求所述的功放失配保护电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/079573 WO2024182926A1 (zh) | 2023-03-03 | 2023-03-03 | 功放失配保护电路及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/079573 WO2024182926A1 (zh) | 2023-03-03 | 2023-03-03 | 功放失配保护电路及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024182926A1 true WO2024182926A1 (zh) | 2024-09-12 |
Family
ID=92674032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079573 WO2024182926A1 (zh) | 2023-03-03 | 2023-03-03 | 功放失配保护电路及电子设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024182926A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010010483A1 (en) * | 2000-02-02 | 2001-08-02 | Makoto Akiya | Radio frequency transmitting circuit |
CN109698676A (zh) * | 2017-10-24 | 2019-04-30 | 包改欣 | 基于ptt技术的超宽带小型功率放大器 |
CN208924199U (zh) * | 2018-08-30 | 2019-05-31 | 成都华力创通科技有限公司 | 功率放大器的驻波保护电路 |
CN112596573A (zh) * | 2020-12-14 | 2021-04-02 | 成都沃特塞恩电子技术有限公司 | 一种功率源控制方法、装置、电子设备及存储介质 |
CN216356646U (zh) * | 2021-12-07 | 2022-04-19 | 成都广众科技有限公司 | 一种功放模块的监控和保护装置 |
WO2022257775A1 (zh) * | 2021-06-08 | 2022-12-15 | 中兴通讯股份有限公司 | 一种驻波检测方法及装置 |
-
2023
- 2023-03-03 WO PCT/CN2023/079573 patent/WO2024182926A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010010483A1 (en) * | 2000-02-02 | 2001-08-02 | Makoto Akiya | Radio frequency transmitting circuit |
CN109698676A (zh) * | 2017-10-24 | 2019-04-30 | 包改欣 | 基于ptt技术的超宽带小型功率放大器 |
CN208924199U (zh) * | 2018-08-30 | 2019-05-31 | 成都华力创通科技有限公司 | 功率放大器的驻波保护电路 |
CN112596573A (zh) * | 2020-12-14 | 2021-04-02 | 成都沃特塞恩电子技术有限公司 | 一种功率源控制方法、装置、电子设备及存储介质 |
WO2022257775A1 (zh) * | 2021-06-08 | 2022-12-15 | 中兴通讯股份有限公司 | 一种驻波检测方法及装置 |
CN216356646U (zh) * | 2021-12-07 | 2022-04-19 | 成都广众科技有限公司 | 一种功放模块的监控和保护装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2089981B1 (en) | Lossless transmit path antenna switch circuit | |
CN1871745B (zh) | 采用自适应功率放大器补偿提供集成负载匹配的方法及设备 | |
EP0458071B2 (en) | VSWR adaptive power amplifier system | |
CN102468809B (zh) | 一种高功率线性功率放大器 | |
WO2008109268A1 (en) | Rf power amplifier protection | |
TW201914210A (zh) | 功率放大器和用於射頻主動電路之保護電路 | |
CN204408280U (zh) | 一种音频功率放大器过载保护电路 | |
CN112039447A (zh) | 一种音频功放集成电路及一种音频设备 | |
WO2024182926A1 (zh) | 功放失配保护电路及电子设备 | |
CN118631189A (zh) | 功放失配保护电路及电子设备 | |
WO2020168993A1 (zh) | 信号处理电路及音频功率放大电路 | |
CN107222174B (zh) | 一种低损耗自适应偏置电路及无线发射系统 | |
JP4718175B2 (ja) | 電力増幅用回路 | |
CN115033048B (zh) | 具有共模锁定功能的检测电路、系统及方法 | |
CN107360503B (zh) | 定阻定压输出装置及定阻定压功放机 | |
CN204408284U (zh) | 一种音频功率放大器电路 | |
WO2023093835A1 (zh) | 一种用于保护放大器的电路和方法 | |
CN214228236U (zh) | 一种基于相位检测的自动带宽补偿电路 | |
WO2023093775A1 (zh) | 一种功率放大器的保护电路和保护方法 | |
CN212543734U (zh) | 一种功率放大模块以及功率放大器的保护电路 | |
CN118449472B (zh) | 功率放大器和限定功率放大器增益的方法 | |
CN100578421C (zh) | 电流模式接收装置 | |
CN101521490B (zh) | 提供偏压信号至输入端的功率放大电路及其方法 | |
CN105929883B (zh) | 发射电流控制方法及装置 | |
CN220874595U (zh) | 一种发射机输出功率限制电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23925654 Country of ref document: EP Kind code of ref document: A1 |