Nothing Special   »   [go: up one dir, main page]

WO2024181301A1 - Base station - Google Patents

Base station Download PDF

Info

Publication number
WO2024181301A1
WO2024181301A1 PCT/JP2024/006524 JP2024006524W WO2024181301A1 WO 2024181301 A1 WO2024181301 A1 WO 2024181301A1 JP 2024006524 W JP2024006524 W JP 2024006524W WO 2024181301 A1 WO2024181301 A1 WO 2024181301A1
Authority
WO
WIPO (PCT)
Prior art keywords
cli
reference signal
resource
information
gnb100
Prior art date
Application number
PCT/JP2024/006524
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
浩樹 原田
チーピン ピ
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024181301A1 publication Critical patent/WO2024181301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This disclosure relates to a base station that measures CLI when SBFD is applied.
  • the 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • CLI crosslink interference
  • DL downlink
  • UL uplink
  • UE User Equipment
  • SBFD subband non-overlapping full duplex
  • TDD time division duplex
  • the present disclosure has been made in light of these circumstances, and aims to provide a base station that can transmit information related to appropriate measurement resources/settings according to the CLI measurement period when measuring the CLI.
  • a base station that includes a transmitter (radio signal transmitter/receiver 110) that transmits information related to measurement resources/settings for measuring crosslink interference to another base station (gNB100A) in a duplexing scheme that can utilize multiple subbands that make up a time division duplexing band, and a control unit (control signal/reference signal processor 140) that selects the information based on the period at which the other base station (gNB100A) measures the crosslink interference.
  • a transmitter radio signal transmitter/receiver 110
  • gNB100A another base station
  • control unit control signal/reference signal processor 140
  • FIG. 1 is a diagram showing the overall configuration of a wireless communication system.
  • FIG. 2 shows a diagram illustrating frequency ranges used in a wireless communication system.
  • FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, a slot, and a symbol used in a radio communication system.
  • FIG. 4 is a diagram showing the occurrence of CLI between base stations.
  • FIG. 5 is a diagram illustrating an example of the configuration of an SBFD slot.
  • FIG. 6 is a functional block diagram of the base station.
  • FIG. 7 is a functional block diagram of the terminal.
  • FIG. 8 is a diagram illustrating an example of resources for performing CLI measurement.
  • FIG. 9 is a diagram illustrating an example of resources for performing CLI measurement.
  • FIG. 10 is a diagram illustrating an example of resources for performing CLI measurement.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of a base station and a terminal.
  • FIG. 12 is a
  • the wireless communication system 10 shown in Fig. 1 is a wireless communication system conforming to a method called 5G.
  • the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
  • the wireless communication system 10 can support Massive Multiple-Input Multiple-Output (Massive MIMO), which generates more directional beams by controlling the wireless signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which bundles together multiple component carriers (CC), and Dual Connectivity (DC), which communicates with two base stations simultaneously.
  • Massive MIMO Massive Multiple-Input Multiple-Output
  • CA Carrier Aggregation
  • CC component carriers
  • DC Dual Connectivity
  • the wireless communication system 10 includes a Next Generation-Radio Access Network (NG-RAN) 20, a base station (next generation NodeB, gNB) 100 connected to the NG-RAN 20, and a terminal (User Equipment, UE) 200 that performs wireless communication with the gNB 100.
  • the NG-RAN 20 is connected to a core network (CN) not shown.
  • the NG-RAN 20 and the CN may be simply referred to as a "network.” Note that the specific configuration of the wireless communication system 10, for example the number of gNBs 100 and UEs 200, is not limited to the example shown in FIG. 1.
  • the wireless communication system 10 may also support a plurality of frequency ranges (FRs). That is, as shown in FIG. 2, the wireless communication system 10 may support the following FRs: ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2-1: 24.25GHz to 52.6GHz ⁇ FR2-2: Over 52.6GHz to 71GHz
  • a subcarrier spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz may be used.
  • SCS subcarrier spacing
  • BW bandwidth
  • an SCS of 60 or 120 kHz (which may include 240 kHz) and a BW of 50 to 400 MHz may be used.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • one slot in the wireless communication system 10 is composed of 14 symbols. If this configuration is maintained, the larger (wider) the SCS is, the shorter the symbol period (and slot period) will be.
  • the SCS is not limited to the frequencies shown in FIG. 3, and may be, for example, frequencies such as 480 kHz and 960 kHz.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols.
  • the number of slots per subframe may differ depending on the SCS.
  • a CLI that occurs between a gNB100 and another gNB100 will be described.
  • the other gNB100 is, for example, adjacent to the gNB100, but is not limited to this.
  • the gNB100 that receives interference is referred to as gNB100A
  • the gNB100 that causes interference is referred to as gNB100B
  • the UE200 that communicates with gNB100A is referred to as UE200A
  • UE200B the UE200B.
  • gNB100A measures the CLI occurring between gNB100B based on DL transmission transmitted from gNB100B to UE200B, for example, a reference signal. Strictly speaking, it measures values such as Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ), and predicts the occurrence of a CLI when the measured value falls below a predetermined threshold. Examples of reference signals are Demodulation Reference Signal (DMRS) and Channel State Information-Reference Signal (CSI-RS).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the reference signal may include a synchronization signal block (SSB).
  • SSB synchronization signal block
  • SBFD a duplexing method used in the wireless communication system 10
  • a slot that can use multiple subbands that make up the TDD band is referred to as an SBFD slot.
  • SBFD can be said to be a duplexing method in which multiple subbands are specified within the TDD band, or a duplexing method in which UL and DL are assigned non-overlapping in the frequency direction within a specified time based on TDD, or a full duplexing of the subbands.
  • DL or UL is assigned to each subband that constitutes the SBFD slot.
  • a subband to which DL is assigned is also called a DL subband
  • a subband to which UL is assigned is also called a UL subband.
  • slots or subbands marked with "D” are DL slots or DL subbands
  • slots or subbands marked with "U” are UL slots or UL subbands.
  • the gNB 100 comprises a wireless signal transceiver unit 110, an amplifier unit 120, a modulation/demodulation unit 130, a control signal/reference signal processing unit 140, an encoding/decoding unit 150, a data transceiver unit 160, and a control unit 170.
  • the wireless signal transmitting/receiving unit 110 transmits and receives wireless signals to and from the UE 200.
  • the wireless signal transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the UE 200, and a receiving unit that receives wireless signals from the UE 200.
  • the wireless signals include a control signal, a reference signal, and data.
  • the wireless signal transceiver 110 of the embodiment transmits and receives wireless signals to and from other gNBs 100.
  • the wireless signal transceiver 110 may be configured as a transmitter that transmits wireless signals to other gNBs 100, and a receiver that receives wireless signals from other gNBs 100.
  • the wireless signals include control signals, reference signals, and data.
  • the wireless signal transceiver unit 110 of the embodiment transmits information related to measurement resources/settings to the gNB100 when the gNB100 measures the CLI.
  • the measurement resources/settings may also be referred to as CLI measurement resources.
  • the amplifier unit 120 is composed of a power amplifier (PA)/low noise amplifier (LNA) etc.
  • the amplifier unit 120 amplifies the wireless signal output from the wireless signal transmitting/receiving unit 110.
  • the amplifier unit 120 also amplifies the wireless signal output from the modulation/demodulation unit 130.
  • the modem unit 130 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (UE 200 or another UE).
  • CP-OFDM/DFT-S-OFDM may be applied to the modem unit 130.
  • DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal/reference signal processing unit 140 performs processing related to control signals transmitted and received between the UE 200, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the control signal/reference signal processing unit 140 performs processing related to reference signals transmitted and received between the UE 200, such as Demodulation Reference Signal (DMRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS).
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • the channels include control channels and data channels.
  • the control channels include the physical uplink control channel (PUCCH), physical downlink control channel (PDCCH), physical random access channel (PRACH), physical broadcast channel (PBCH), etc.
  • the data channels include the physical uplink shared channel (PUSCH), physical downlink shared channel (PDSCH), etc.
  • the control signal/reference signal processing unit 140 of the embodiment measures CLI occurring between other gNBs 100 based on wireless signals, such as reference signals, transmitted from other gNBs 100. Strictly speaking, it measures values such as RSRP and RSRQ, and predicts the occurrence of CLI when the measured values fall below a predetermined threshold.
  • the other gNBs 100 transmit reference signals periodically (periodic, semi-periodic) or aperiodic (aperiodic), and the control signal/reference signal processor 140 measures the CLI based on a reference signal in a specific resource among these reference signals.
  • the specific resource is also referred to as a CLI measurement resource.
  • the CLI measurement resource is a resource that has the same frequency domain and time domain (or at least a part of the frequency domain and time domain overlaps) as the resource for which the radio signal transceiver 110 transmits a reference signal to the UE 200 (see FIG. 8).
  • the frequency domain may be interpreted as a subband.
  • the left diagram in FIG. 8 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied.
  • RS for UEs is a reference signal transmitted to the UE 200
  • RS for gNB-to-gNB CLI is a reference signal for measuring CLI occurring between other gNBs 100.
  • the CLI measurement resource is a resource that has a different frequency domain and the same time domain (or at least a part of the time domain overlaps) as the resource for which the radio signal transceiver 110 transmits a reference signal to the UE 200 (see FIG. 9).
  • the frequency domain may be interpreted as a subband.
  • the left diagram in FIG. 9 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied.
  • RS for UEs is a reference signal transmitted to the UE 200
  • RS for gNB-to-gNB CLI is a reference signal for measuring CLI occurring between other gNBs 100.
  • the CLI measurement resource is a resource that has the same frequency domain (or at least a part of the frequency domain overlaps) but a different time domain as the resource for transmitting a reference signal to the UE200 by the radio signal transmitting/receiving unit 110 (see FIG. 10).
  • the frequency domain may be interpreted as a subband.
  • the left diagram in FIG. 10 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied.
  • RS for UEs is a reference signal transmitted to the UE200
  • RS for gNB-to-gNB CLI is a reference signal for measuring CLI occurring between other gNBs100.
  • control signal/reference signal processing unit 140 of the embodiment selects information related to the CLI measurement resource to be transmitted by the radio signal transmitting/receiving unit 110 based on the period during which the gNB100 performs CLI measurements.
  • Information related to the CLI measurement resource selected by the control signal and reference signal processing unit 140 may be shared in advance between the gNBs 100, or may be exchanged between the gNBs 100. Furthermore, the information related to the CLI measurement resource may be transmitted to the UE 200. These exchanges and transmissions may be performed by the radio signal transmitting/receiving unit 110.
  • the encoding/decoding unit 150 performs operations such as dividing/concatenating and coding/decoding the data contained in the wireless signal for each predetermined communication destination (UE 200 or another UE).
  • the encoding/decoding unit 150 decodes the data output from the modem unit 130 and concatenates the decoded data.
  • the encoding/decoding unit 150 also divides the data output from the data transmission/reception unit 160 into data of a predetermined size and performs coding on the divided data.
  • the data transmission/reception unit 160 transmits and receives data to and from the UE 200. Specifically, the data transmission/reception unit 160 performs assembly/disassembly of Protocol Data Units (PDUs)/Service Data Units (SDUs) between multiple layers.
  • the multiple layers include a Medium Access Control (MAC) layer, a Radio Link Control (RLC) layer, and a Packet Data Convergence Protocol (PDCP) layer.
  • the data transmission/reception unit 160 also performs data error correction and retransmission control based on Hybrid Automatic Repeat Request (HARQ).
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 170 controls the gNB 100.
  • the control unit 170 controls, for example, the transmission and reception of radio signals by the radio signal transceiver unit 110, the amplification by the amplifier unit 120, the data modulation/demodulation by the modem unit 130, the signal processing by the control signal and reference signal processing unit 140, the coding/decoding by the encoding/decoding unit 150, and the transmission and reception of data by the data transceiver unit 160.
  • the UE 200 includes a radio signal transmitting/receiving unit 210 and a control unit 220.
  • the wireless signal transmitting/receiving unit 210 transmits and receives wireless signals to and from the gNB100.
  • the wireless signal transmitting/receiving unit 210 may be configured as a transmitting unit that transmits wireless signals to the gNB100, and a receiving unit that receives wireless signals from the gNB100.
  • the wireless signals include control signals, reference signals, and data.
  • the control unit 220 controls the UE 200.
  • the control unit 220 controls, for example, the transmission and reception of radio signals by the radio signal transmission and reception unit 210.
  • the subband and time domain are the same means, for example, that the reference signals completely overlap in the frequency direction and the time direction.
  • the subband and time domain overlap at least partially means, for example, that when the reference signal occupies multiple resource blocks in the frequency direction and the time direction, it overlaps with at least one of the resource blocks in the frequency direction and the time direction.
  • the control signal/reference signal processing unit 140 measures the CLI occurring between other gNBs 100 based on reference signals transmitted from other gNBs 100, including reference signals (RS for gNB-to-gNB CLI in the diagram) transmitted in resources having the same subband and time domain (or at least a portion of the subband and time domain overlaps) as the reference signal (RS for UEs in the diagram) transmitted to the UE 200 by the radio signal transceiver unit 110.
  • reference signals RS for gNB-to-gNB CLI in the diagram
  • the resource (CLI measurement resource) for the control signal/reference signal processing unit 140 to measure the CLI may be interpreted as a resource for the radio signal transmitting/receiving unit 110 to receive a reference signal transmitted from another gNB100. Therefore, the gNB100 transmits to the UE200 and receives from the other gNB100 in resources with the same frequency domain and time domain (or where the subband and time domain overlap at least partially). Such transmission and reception is realized by space division multiplexing (SDM), such as beam switching of the gNB100.
  • SDM space division multiplexing
  • part of the UL resource is indicated by a dashed line. This indicates that, as an exception, the reference signal may be transmitted in DL in the UL resource of the SBFD slot.
  • a common reference signal between gNBs 100 is, for example, SSB or DMRS for Type 0 PDCCH.
  • the reference signal configuration may use existing configuration such as a cell-specific signal configuration.
  • the cell-specific signal configuration is, for example, an SSB Transmission Configuration (STC) in the IAB-node.
  • STC SSB Transmission Configuration
  • information related to CLI measurement resources may be exchanged in a limited manner.
  • parameters specific to each gNB100 such as the physical cell ID and the number of SSBs, may be exchanged.
  • Reference signals that are non-common between gNBs 100 include, for example, DMRS for PDSCH, DMRS for PDCCH, and CSI-RS.
  • Reference Signal Configuration For the reference signal configuration, existing configuration such as a configuration for UE 200 may be used.
  • the reference signal for measuring the CLI may be set to be transmitted only in a specific slot or subband.
  • the specific slot or subband may be, for example, a DL slot, a DL subband, a UL slot, or a UL subband.
  • the information related to the CLI measurement resource may include configuration information for UE200 or a part of the configuration information.
  • the part of the configuration information for UE200 is, for example, frequency/time domain resources and periodicity.
  • the information related to the CLI measurement resource may include, for example, the period, duration, and frequency domain resources of the measurement window when a measurement window is set for the CLI measurement resource.
  • having the same time domain means, for example, that the reference signals completely overlap in the time direction. Also, at least a portion of the time domain overlaps means, for example, that when the reference signal occupies multiple resource blocks in the time direction, it overlaps with at least one of the resource blocks in the time direction.
  • the control signal/reference signal processing unit 140 measures the CLI occurring with other gNBs 100 based on reference signals transmitted from other gNBs 100, which are reference signals (RS for gNB-to-gNB CLI in the diagram) transmitted in resources that have a different subband and the same time domain (or at least a portion of the time domain overlaps) as the reference signal (RS for UEs in the diagram) transmitted by the radio signal transceiver unit 110 to the UE 200.
  • reference signals RS for gNB-to-gNB CLI in the diagram
  • the resource (CLI measurement resource) for the control signal/reference signal processing unit 140 to measure the CLI may be interpreted as a resource for the radio signal transmitting/receiving unit 110 to receive a reference signal transmitted from another gNB100. Therefore, the gNB100 transmits to the UE200 and receives from the other gNB100 in resources that have different frequency domains and the same time domain (or at least a portion of the time domains overlap). Such transmission and reception is achieved, for example, by frequency division multiplexing (FDM) or SBFD.
  • FDM frequency division multiplexing
  • part of the UL resource is indicated by a dashed line. This indicates that, as an exception, the reference signal may be transmitted in DL in the UL resource of the SBFD slot.
  • a common reference signal between gNBs 100 is, for example, SSB or DMRS for Type 0 PDCCH.
  • the reference signal configuration may use existing configurations such as cell-specific signal configurations in the time domain.
  • the cell-specific signal configuration is, for example, SSB Transmission Configuration (STC) in the IAB-node.
  • STC SSB Transmission Configuration
  • the configuration of the reference signals needs to be additionally performed for the frequency domain.
  • a gap between the reference signals may be configured, or the reference signals for measuring the CLI may be configured to be transmitted only in specific slots or subbands, such as DL slots, DL subbands, UL slots, and UL subbands.
  • information related to measurement resources may be exchanged in a limited manner.
  • parameters specific to each gNB100 such as physical cell IDs and the number of SSBs, may be exchanged.
  • a non-common reference signal between gNBs 100 is, for example, DMRS for PDSCH.
  • Reference Signal Configuration For the reference signal configuration, existing configuration such as a configuration for UE 200 may be used.
  • the reference signal for measuring the CLI may be set to be transmitted only in a specific slot or subband.
  • the specific slot or subband may be, for example, a DL slot, a DL subband, a UL slot, or a UL subband.
  • the information related to the CLI measurement resource may be configuration information for the gNB100.
  • the information related to the CLI measurement resources may include configuration information for the UE 200 and additional information, such as frequency domain resources.
  • the information related to the CLI measurement resource may include part of the configuration information for the UE 200.
  • the part of the configuration information for the UE 200 may be, for example, frequency/time domain resources and periods.
  • the information related to the CLI measurement resource may include, for example, the period, duration, and frequency domain resources of the measurement window when a measurement window is set for the CLI measurement resource.
  • the subbands being the same means, for example, that the reference signals completely overlap in the frequency direction. Also, that at least a portion of the subbands overlap means, for example, that when the reference signal occupies multiple resource blocks in the frequency direction, it overlaps with at least one of the resource blocks in the frequency direction.
  • the control signal/reference signal processing unit 140 measures the CLI occurring with another gNB100 based on a reference signal (RS for gNB-to-gNB CLI in the diagram) transmitted from another gNB100, which is transmitted in a resource having the same subband (or at least a part of the subband overlaps) and a different time domain as the reference signal (RS for UEs in the diagram) transmitted by the radio signal transmitting/receiving unit 110 to the UE200.
  • RS for gNB-to-gNB CLI in the diagram a reference signal transmitted from another gNB100, which is transmitted in a resource having the same subband (or at least a part of the subband overlaps) and a different time domain as the reference signal (RS for UEs in the diagram) transmitted by the radio signal transmitting/receiving unit 110 to the UE200.
  • the radio signal transmitting/receiving unit 110 can transmit a radio signal to the UE200 in a resource (DL resource for UE in the diagram) having a different frequency domain and the same time domain (or at least a part of the time domain overlaps) as the CLI measurement resource (RS for gNB-to-gNB CLI in the diagram).
  • a resource DL resource for UE in the diagram
  • the CLI measurement resource RS for gNB-to-gNB CLI in the diagram
  • the resource (CLI measurement resource) for the control signal/reference signal processing unit 140 to measure the CLI may be interpreted as a resource for the radio signal transmitting/receiving unit 110 to receive a reference signal transmitted from another gNB100. Therefore, the gNB100 transmits to the UE200 and receives from the other gNB100 in resources that have the same frequency domain (or at least a part of the frequency domain overlaps) but different time domains. Such transmission and reception is realized, for example, by time division multiplexing (TDM) or SBFD.
  • TDM time division multiplexing
  • SBFD time division multiplexing
  • part of the UL resource is indicated by a dashed line. This indicates that, as an exception, the reference signal may be transmitted in DL in the UL resource of the SBFD slot.
  • a common reference signal between gNBs 100 is, for example, SSB or DMRS for Type 0 PDCCH.
  • the reference signal configuration may use existing configurations such as cell-specific signal configurations in the frequency domain.
  • the cell-specific signal configuration is, for example, SSB Transmission Configuration (STC) in the IAB-node.
  • STC SSB Transmission Configuration
  • the frequency domain resources may be set to be the same as the frequency domain resources of the reference signal transmitted to UE 200, or may be set to be different.
  • the reference signal configuration needs to be additionally performed for the time domain.
  • a gap between reference signals may be configured, or the reference signal for measuring CLI may be configured to be transmitted only in a specific slot or subband, such as a DL slot, DL subband, UL slot, or UL subband.
  • the DL/UL resources for UE200 may or may not be frequency division multiplexed with the CLI measurement resources.
  • the gNB100 on the interfered side may require SBFD operation (SBFD operation enables reception of a reference signal for measuring the CLI and transmission to UE200).
  • the gNB100 on the interfered side may receive radio signals from the interfering gNB100 and UE200.
  • information related to measurement resources may be exchanged in a limited manner.
  • parameters specific to each gNB100 such as physical cell IDs and the number of SSBs, may be exchanged.
  • a non-common reference signal between gNBs 100 is, for example, DMRS for PDSCH.
  • Reference Signal Configuration For the reference signal configuration, existing configuration such as a configuration for UE 200 may be used.
  • the reference signal for measuring the CLI may be set to be transmitted only in a specific slot or subband.
  • the specific slot or subband may be, for example, a DL slot, a DL subband, a UL slot, or a UL subband.
  • the information related to the CLI measurement resource may be configuration information for the gNB100.
  • the information related to the CLI measurement resources may include configuration information for the UE 200 and additional information such as time domain resources.
  • the information related to the CLI measurement resource may include part of the configuration information for the UE 200.
  • the part of the configuration information for the UE 200 may be, for example, frequency/time domain resources and periods.
  • the information related to the CLI measurement resource may include, for example, the period, duration, and frequency domain resources of the measurement window when a measurement window is set for the CLI measurement resource.
  • gNB100 is an IAB-node
  • gNB-CU transmits the TDD DL/UL pattern received from other gNBs to each of the related gNB-DUs.
  • gNB-DU transmits the TDD DL/UL pattern of the serving cell to gNB-CU.
  • TDD DL/UL patterns are exchanged between gNB-CU and gNB-DU.
  • information on the above-mentioned CLI measurement resources may be exchanged between gNB-CU and gNB-DU.
  • the interfering gNB100 explicitly notifies the interfered gNB100 of information related to measurement resources/settings.
  • the information may include the following:
  • the information is for (indicates) periodic inter-gNB CLI measurements.
  • Frequency information e.g. center/start/end of frequency, RB/RBG frequency bandwidth/number
  • Time information e.g. SFN, slot number, measurement resource period (e.g. 1/2/5 msec, 1/2/4/8 slots, 1/2/4/7 symbols)
  • measurement resource period e.g. 1/2/5 msec, 1/2/4/8 slots, 1/2/4/7 symbols
  • ⁇ Subcarrier spacing e.g.
  • the gNB100 receiving interference may implicitly determine information related to the measurement resources/settings. For example, if cell-defined SSB (CD-SSB) is used, the gNB100 receiving interference can know the time/frequency resources because it transmits SSB on the same time/frequency resources.
  • CD-SSB cell-defined SSB
  • the gNB100 receiving the interference receives information regarding measurement resources/settings, it can start CLI measurements.
  • the gNB100 receiving interference can request the gNB100 causing the interference to exchange information regarding measurement resources/settings in order to measure the CLI.
  • the interfering gNB100 explicitly notifies the interfered gNB100 of information related to measurement resources/settings.
  • the information may include the following. Note that examples of each piece of information listed below may be the same as (3.5.1).
  • the interfering gNB100 may also notify the interfering gNB100 of the start/stop (activate/deactivate) of CLI measurement.
  • the interfering gNB100 When the interfering gNB100 notifies the start/stop of CLI measurement, it may start/stop transmitting signals/channels for CLI measurement between gNBs. In addition, the interfering gNB100 may notify the timing (e.g. absolute time) of the start/stop of CLI measurement, and this timing may be defined in the standard.
  • the timing e.g. absolute time
  • the gNB100 receiving the interference can request the gNB100 causing the interference to perform the start/stop described above.
  • the interfering gNB100 explicitly notifies the interfered gNB100 of information related to measurement resources/settings.
  • the information may include the following. Note that examples of each piece of information listed below may be the same as (3.5.1).
  • Time information e.g. SFN, slot number, measurement resource period (e.g. 1/2/5 msec, 1/2/4/8 slots, 1/2/4/7 symbols)
  • Absolute time may be taken into consideration.
  • Subcarrier spacing e.g. Transmission timing offset - Resource ID/beam information - Number of measurements
  • Interval between measurements may be notified (e.g. 1 (per slot)/2/4/8 slots, 5/10/20/40/80/160/320/640/1280 msec).
  • the gNB100 receiving interference may notify the gNB100 causing the interference that it wishes to measure the CLI, and the gNB100 causing the interference may notify the gNB100 receiving interference of information related to the measurement resources/settings.
  • the gNB100 of the above-described embodiment can improve the utilization efficiency of resources achieved by SBFD by performing CLI measurement in resources that have the same subband and time domain as the reference signal transmitted to the UE200 (or that have at least a partial overlap of the subband and time domain).
  • the gNB100 of the above-mentioned embodiment can improve the resource utilization efficiency achieved by SBFD by performing CLI measurements on resources that are in a different subband and have the same time domain (or at least a part of the time domain overlaps) as the reference signal transmitted to the UE200.
  • the gNB100 of the above-mentioned embodiment can improve the resource utilization efficiency achieved by SBFD by performing CLI measurements on resources that have the same subband (or at least a portion of the subband overlaps) as the reference signal transmitted to the UE200 but have a different time domain.
  • Information related to CLI measurement resources may be shared in advance with other gNB100. This can improve the efficiency of resource usage.
  • CLI measurement resources may be exchanged between other gNBs 100. This allows for flexible selection of reference signals for measuring CLI.
  • the gNB100 in the above-described embodiment may transmit information related to the CLI measurement resource to the UE200. This makes it possible to avoid UL transmission from the UE200 in the UL resource when the CLI measurement resource exists in the UL resource of the SBFD slot.
  • the gNB100 in the above-described embodiment can transmit information related to appropriate measurement resources/settings depending on the period of the CLI measurement.
  • the CLI is measured based on a reference signal from another gNB100, but this is not limited to the above.
  • the CLI may be measured based on a data channel or a control channel from another gNB100. Strictly speaking, values such as the signal strength of these channels are measured, and the occurrence of CLI is predicted when the measured value falls below a predetermined threshold.
  • the data channel is, for example, a PDSCH
  • the control channel is, for example, a PDCCH.
  • the setting of the reference signal, the exchange of information related to the CLI measurement resource, and the instruction to the terminal may be the same as or different from the above-mentioned (3.1) Operation Example 1 (3.1.2) (3.1.2.1) Setting of the reference signal, (3.1.2.2) Exchange of information related to the CLI measurement resource, and (3.1.2.3) Instruction to the terminal when a non-common reference signal is used between base stations.
  • the concept of including the reference signal, the data channel, and the control channel may be referred to as a radio signal or simply a signal.
  • the DL and UL allocation in the SBFD slot is an example and may be reversed.
  • time domain unit to which SBFD is applied is a slot, but other time domain units such as symbols, subframes, and frames may also be used.
  • information related to measurement resources/settings may be read as measurement resources/settings, and measurement resources/settings may be read as information related to measurement resources/settings.
  • gNB100 and another gNB100 may be read as interchangeable.
  • either gNB100 or another gNB100 may refer to the gNB that is interfering.
  • either gNB100 or another gNB100 may refer to the gNB that is receiving interference.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices.
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
  • apparatus can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • Each functional block of the device (see Figures 6 and 7) is realized by any hardware element of the computer device, or a combination of the hardware elements.
  • each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
  • a specific software program
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
  • the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the programs may be transmitted from a network via a telecommunications line.
  • Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5th generation mobile communication system
  • 5G Future Radio Access
  • FAA New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom.
  • Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
  • certain operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW).
  • the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received over a transmission medium.
  • a transmission medium For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • Base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
  • a base station subsystem e.g., a small indoor base station (Remote Radio Head: RRH)
  • cell refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below).
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the mobile station may be configured to have the functions of a base station.
  • terms such as "uplink” and "downlink” may be interpreted as terms corresponding to communication between terminals (for example, "side”).
  • the uplink channel, downlink channel, etc. may be interpreted as a side channel.
  • the mobile station in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the mobile station.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • SCS Subcarrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • a slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a numerology-based unit of time.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-encoded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one slot or one minislot when called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (RE).
  • RE resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient way of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining something that is deemed to be a “judging” or “determining,” and the like.
  • Determining and “determining” may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like.
  • judgment and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment” can be interpreted as “assuming,” “expecting,” “considering,” etc.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • FIG. 12 shows an example of the configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also called a handle
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on the information service unit 2012 provided in the vehicle.
  • the communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
  • the first feature is a base station that, in a duplexing method that can utilize multiple subbands that make up a time division duplexing band, includes a transmitter that transmits information related to measurement resources/settings for measuring crosslink interference to other base stations, and a controller that selects the information based on the period at which the other base stations measure the crosslink interference.
  • Wireless Communication Systems 20 NG-RAN 100 gNB 110 Radio signal transmitting/receiving unit 120 Amplifying unit 130 Modulation/demodulation unit 140 Control signal/reference signal processing unit 150 Encoding/decoding unit 160 Data transmitting/receiving unit 170 Control unit 200 UE 210 wireless signal transmitting/receiving unit 220 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus 2001 vehicle 2002 drive unit 2003 steering unit 2004 accelerator pedal 2005 brake pedal 2006 shift lever 2007 left and right front wheels 2008 left and right rear wheels 2009 axle 2010 electronic control unit 2012 information service unit 2013 communication module 2021 current sensor 2022 rotation speed sensor 2023 air pressure sensor 2024 vehicle speed sensor 2025 acceleration sensor 2026 brake pedal sensor 2027 shift lever sensor 2028 object detection sensor 2029 accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a base station that can transmit information related to appropriate measurement resources/settings in accordance with the period of CLI measurement when measuring CLI. The base station comprises: a transmission unit that transmits information related to measurement resources/settings for measuring crosslink interference to another base station in a duplexing method that can use a plurality of subbands constituting a time division duplexing band; and a control unit that selects the information on the basis of the period at which the other base station measures the crosslink interference.

Description

基地局Base Station
 本開示は、SBFDが適用される場合において、CLIを測定する基地局に関する。 This disclosure relates to a base station that measures CLI when SBFD is applied.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる。)を仕様化し、さらに、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる次世代の移動通信システムの仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
 基地局(next Generation NodeB、gNB)において、他のgNBの下りリンク(DL)送信が、端末(User Equipment、UE)からの上りリンク(UL)受信に干渉するクロスリンク干渉(CLI)が知られている。干渉を受ける側のgNBは、干渉する側のgNBとの間に生じるCLIを回避するために、CLIを測定することが出来る。 In base stations (next generation NodeB, gNB), crosslink interference (CLI) is known to occur when downlink (DL) transmissions from other gNBs interfere with uplink (UL) reception from terminals (User Equipment, UE). The gNB that is subject to interference can measure CLI to avoid CLI occurring between it and the interfering gNB.
 特に、Subband non-overlapping Full Duplex(SBFD)が適用される場合、CLIの影響が大きくなるおそれがある。SBFDは、時分割複信(TDD)のバンドを構成する複数のサブバンドを利用することにより、DLとULの同時使用を可能にする複信方式である。従って、SBFDが適用される場合、他のgNBからのDL送信がUEからのUL受信に干渉し、CLIの発生頻度が高くなるおそれがある。そのため、SBFDが適用される場合においても、CLIを測定することが検討されている(非特許文献1、2)。 In particular, when subband non-overlapping full duplex (SBFD) is applied, the impact of CLI may be significant. SBFD is a duplexing method that enables simultaneous use of DL and UL by utilizing multiple subbands that make up a time division duplex (TDD) band. Therefore, when SBFD is applied, DL transmissions from other gNBs may interfere with UL reception from the UE, which may increase the frequency of CLI occurrence. For this reason, it is being considered to measure CLI even when SBFD is applied (Non-Patent Documents 1 and 2).
 ところで、CLIを測定するにあたって、干渉する側のgNBと、干渉を受ける側のgNBとの間で、測定リソース/設定に係る情報が交換される必要がある。しかしながら、CLI測定の周期によって、適切な測定リソース/設定に係る情報は異なるという問題があった。 Incidentally, when measuring CLI, information related to measurement resources/settings needs to be exchanged between the interfering gNB and the gNB receiving the interference. However, there is a problem in that the appropriate information related to measurement resources/settings differs depending on the CLI measurement period.
 そこで、本開示は、このような状況に鑑みてなされたものであり、CLIを測定するにあたって、CLI測定の周期に応じて、適切な測定リソース/設定に係る情報を送信することができる基地局の提供を目的とする。 The present disclosure has been made in light of these circumstances, and aims to provide a base station that can transmit information related to appropriate measurement resources/settings according to the CLI measurement period when measuring the CLI.
 開示の一態様は、時分割複信のバンドを構成する複数のサブバンドを利用可能な複信方式において、他の基地局(gNB100A)に対して、クロスリンク干渉を測定するための測定リソース/設定に係る情報を送信する送信部(無線信号送受信部110)と、前記他の基地局(gNB100A)が前記クロスリンク干渉を測定する周期に基づいて、前記情報を選択する制御部(制御信号・参照信号処理部140)と、を備える基地局(gNB100B)である。 One aspect of the disclosure is a base station (gNB100B) that includes a transmitter (radio signal transmitter/receiver 110) that transmits information related to measurement resources/settings for measuring crosslink interference to another base station (gNB100A) in a duplexing scheme that can utilize multiple subbands that make up a time division duplexing band, and a control unit (control signal/reference signal processor 140) that selects the information based on the period at which the other base station (gNB100A) measures the crosslink interference.
図1は、無線通信システムの全体概略構成図である。FIG. 1 is a diagram showing the overall configuration of a wireless communication system. 図2は、無線通信システムにおいて用いられる周波数レンジを示す図である。FIG. 2 shows a diagram illustrating frequency ranges used in a wireless communication system. 図3は、無線通信システムにおいて用いられる無線フレーム、サブフレーム、スロット、シンボルの構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, a slot, and a symbol used in a radio communication system. 図4は、基地局間におけるCLIの発生を示す図である。FIG. 4 is a diagram showing the occurrence of CLI between base stations. 図5は、SBFDスロットの構成例を示す図である。FIG. 5 is a diagram illustrating an example of the configuration of an SBFD slot. 図6は、基地局の機能ブロック図である。FIG. 6 is a functional block diagram of the base station. 図7は、端末の機能ブロック図である。FIG. 7 is a functional block diagram of the terminal. 図8は、CLI測定を行うリソースの一例を示す図である。FIG. 8 is a diagram illustrating an example of resources for performing CLI measurement. 図9は、CLI測定を行うリソースの一例を示す図である。FIG. 9 is a diagram illustrating an example of resources for performing CLI measurement. 図10は、CLI測定を行うリソースの一例を示す図である。FIG. 10 is a diagram illustrating an example of resources for performing CLI measurement. 図11は、基地局及び端末のハードウェア構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a hardware configuration of a base station and a terminal. 図12は、車両の構成例を示す図である。FIG. 12 is a diagram illustrating an example of the configuration of a vehicle.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 The following describes the embodiments with reference to the drawings. Note that identical or similar symbols are used for identical functions and configurations, and descriptions thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1に示す無線通信システム10は、5Gと呼ばれる方式に従った無線通信システムである。一方で、無線通信システム10は、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる方式に従った無線通信システムであってもよい。
(1) Overall Schematic Configuration of Wireless Communication System The wireless communication system 10 shown in Fig. 1 is a wireless communication system conforming to a method called 5G. On the other hand, the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
 無線通信システム10は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive Multiple-Input Multiple-Output(Massive MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、2つの基地局と同時通信を行うデュアルコネクティビティ(DC)などをサポートすることができる。 The wireless communication system 10 can support Massive Multiple-Input Multiple-Output (Massive MIMO), which generates more directional beams by controlling the wireless signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which bundles together multiple component carriers (CC), and Dual Connectivity (DC), which communicates with two base stations simultaneously.
 図1に示すように、無線通信システム10は、Next Generation-Radio Access Network(NG-RAN)20と、NG-RAN20に接続される基地局(next Generation NodeB、gNB)100と、gNB100と無線通信を行う端末(User Equipment、UE)200とを含む。NG-RAN20は、図示しないコアネットワーク(CN)に接続される。NG-RAN20及びCNは、単に「ネットワーク」と表現されてもよい。なお、無線通信システム10の具体的な構成、例えばgNB100及びUE200の数は、図1に示す例に限定されない。 As shown in FIG. 1, the wireless communication system 10 includes a Next Generation-Radio Access Network (NG-RAN) 20, a base station (next generation NodeB, gNB) 100 connected to the NG-RAN 20, and a terminal (User Equipment, UE) 200 that performs wireless communication with the gNB 100. The NG-RAN 20 is connected to a core network (CN) not shown. The NG-RAN 20 and the CN may be simply referred to as a "network." Note that the specific configuration of the wireless communication system 10, for example the number of gNBs 100 and UEs 200, is not limited to the example shown in FIG. 1.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応してもよい。すなわち、図2に示すように、次のようなFRに対応してもよい。
 ・FR1:410MHz~7.125GHz
 ・FR2-1:24.25GHz~52.6GHz
 ・FR2-2: 52.6GHz超~71GHz
The wireless communication system 10 may also support a plurality of frequency ranges (FRs). That is, as shown in FIG. 2, the wireless communication system 10 may support the following FRs:
・FR1: 410MHz to 7.125GHz
・FR2-1: 24.25GHz to 52.6GHz
・FR2-2: Over 52.6GHz to 71GHz
 FR1においては、15、30または60kHzのサブキャリア間隔(SCS)及び5~100MHzの帯域幅(BW)が用いられてもよい。FR2-1においては、60または120kHz(240kHzが含まれてもよい。)のSCS及び50~400MHzのBWが用いられてもよい。 In FR1, a subcarrier spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz may be used. In FR2-1, an SCS of 60 or 120 kHz (which may include 240 kHz) and a BW of 50 to 400 MHz may be used.
 FR2-2においては、位相雑音の増大を避けるために、より大きなSCSを有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)またはDiscrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)を適用してもよい。 In FR2-2, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) or Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) with a larger SCS may be applied to avoid increased phase noise.
 また、図3に示すように、無線通信システム10における1スロットは、14シンボルで構成される。この構成が維持される場合、SCSが大きく(広く)なるほど、シンボル期間(及びスロット期間)は短くなる。なお、SCSは、図3に示す周波数に限定されず、例えば、480kHz、960kHzなどの周波数であってもよい。 Also, as shown in FIG. 3, one slot in the wireless communication system 10 is composed of 14 symbols. If this configuration is maintained, the larger (wider) the SCS is, the shorter the symbol period (and slot period) will be. Note that the SCS is not limited to the frequencies shown in FIG. 3, and may be, for example, frequencies such as 480 kHz and 960 kHz.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよく、例えば、28または56シンボルであってもよい。さらに、サブフレームあたりのスロット数は、SCSによって異なってもよい。 In addition, the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols. Furthermore, the number of slots per subframe may differ depending on the SCS.
 ここで、実施形態の無線通信システム10におけるCLIとSBFDについて、簡単に説明する。 Here, we briefly explain CLI and SBFD in the wireless communication system 10 of the embodiment.
 まず、図4を参照しつつ、gNB100において、他のgNB100との間に生じるCLIについて説明する。なお、他のgNB100は、例えばgNB100に隣接するが、これに限られない。ここでは、干渉を受ける側のgNB100をgNB100Aとし、干渉する側のgNB100をgNB100Bとする。また、gNB100Aと通信するUE200をUE200Aとし、gNB100Bと通信するUE200をUE200Bとする。 First, referring to FIG. 4, a CLI that occurs between a gNB100 and another gNB100 will be described. The other gNB100 is, for example, adjacent to the gNB100, but is not limited to this. Here, the gNB100 that receives interference is referred to as gNB100A, and the gNB100 that causes interference is referred to as gNB100B. Also, the UE200 that communicates with gNB100A is referred to as UE200A, and the UE200 that communicates with gNB100B is referred to as UE200B.
 図4に示すように、gNB100Aにおいて、gNB100BからUE200Bに送信されるDL送信が干渉するCLIが生じると(図中の破線に対応)、UE200AからのUL受信が妨げられるおそれがある。そのため、gNB100Aは、gNB100BからUE200Bに送信されるDL送信、例えば参照信号に基づいて、gNB100Bとの間に生じるCLIを測定する。厳密には、Reference Signal Received Power(RSRP)やReference Signal Received Quality(RSRQ)などの値を測定し、測定した値が所定の閾値を下回る場合などにCLIの発生を予期する。参照信号は、例えば、Demodulation Reference Signal(DMRS)、Channel State Information-Reference Signal(CSI-RS)である。なお、参照信号は、同期信号ブロック(SSB)を含んでもよいものとする。これにより、gNB100Aは、CLIの発生を予期し、UE200Aとの間で、CLIが発生しないように無線信号を送受信するスケジューリングを設定することが出来る。 As shown in FIG. 4, if a CLI occurs in gNB100A that interferes with DL transmission transmitted from gNB100B to UE200B (corresponding to the dashed line in the figure), UL reception from UE200A may be hindered. Therefore, gNB100A measures the CLI occurring between gNB100B based on DL transmission transmitted from gNB100B to UE200B, for example, a reference signal. Strictly speaking, it measures values such as Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ), and predicts the occurrence of a CLI when the measured value falls below a predetermined threshold. Examples of reference signals are Demodulation Reference Signal (DMRS) and Channel State Information-Reference Signal (CSI-RS). Note that the reference signal may include a synchronization signal block (SSB). This allows gNB100A to anticipate the occurrence of a CLI and set up a schedule for transmitting and receiving radio signals between gNB100A and UE200A so that a CLI does not occur.
 次に、図5を参照しつつ、無線通信システム10において用いられる複信方式であるSBFDについて説明する。以下では、TDDのバンドを構成する複数のサブバンドを利用可能なスロットを、SBFDスロットという。なお、SBFDは、TDDのバンド内において複数のサブバンドが規定される複信方式であるともいえるし、TDDを基準とした規定時間内において、周波数方向にUL及びDLが非重複で割り当てられる複信方式であるともいえるし、サブバンドの全二重複信であるともいえる。 Next, SBFD, a duplexing method used in the wireless communication system 10, will be described with reference to FIG. 5. In the following, a slot that can use multiple subbands that make up the TDD band is referred to as an SBFD slot. SBFD can be said to be a duplexing method in which multiple subbands are specified within the TDD band, or a duplexing method in which UL and DL are assigned non-overlapping in the frequency direction within a specified time based on TDD, or a full duplexing of the subbands.
 図5に示すように、SBFDスロットを構成する各サブバンドには、DLまたはULが割り当てられる。以下では、DLが割り当てられるサブバンドをDLサブバンド、ULが割り当てられるサブバンドをULサブバンドともいう。なお、図5において、「D」が付されているスロットまたはサブバンドは、DLスロットまたはDLサブバンドであり、「U」が付されているスロットまたはサブバンドは、ULスロットまたはULサブバンドである。 As shown in Figure 5, DL or UL is assigned to each subband that constitutes the SBFD slot. In the following, a subband to which DL is assigned is also called a DL subband, and a subband to which UL is assigned is also called a UL subband. In Figure 5, slots or subbands marked with "D" are DL slots or DL subbands, and slots or subbands marked with "U" are UL slots or UL subbands.
 (2)無線通信システムの機能ブロック構成
 (2.1)基地局の機能ブロック構成
 図6に示すように、gNB100は、無線信号送受信部110と、アンプ部120と、変復調部130と、制御信号・参照信号処理部140と、符号化/復号部150と、データ送受信部160と、制御部170とを備える。
(2) Functional block configuration of wireless communication system (2.1) Functional block configuration of base station As shown in FIG. 6, the gNB 100 comprises a wireless signal transceiver unit 110, an amplifier unit 120, a modulation/demodulation unit 130, a control signal/reference signal processing unit 140, an encoding/decoding unit 150, a data transceiver unit 160, and a control unit 170.
 無線信号送受信部110は、UE200との間で無線信号を送受信する。無線信号送受信部110は、UE200に無線信号を送信する送信部と、UE200から無線信号を受信する受信部と、を構成してもよい。無線信号には、制御信号、参照信号、データが含まれる。 The wireless signal transmitting/receiving unit 110 transmits and receives wireless signals to and from the UE 200. The wireless signal transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the UE 200, and a receiving unit that receives wireless signals from the UE 200. The wireless signals include a control signal, a reference signal, and data.
 実施形態の無線信号送受信部110は、他のgNB100との間で無線信号を送受信する。無線信号送受信部110は、他のgNB100に無線信号を送信する送信部と、他のgNB100から無線信号を受信する受信部と、を構成してもよい。無線信号には、制御信号、参照信号、データが含まれる。 The wireless signal transceiver 110 of the embodiment transmits and receives wireless signals to and from other gNBs 100. The wireless signal transceiver 110 may be configured as a transmitter that transmits wireless signals to other gNBs 100, and a receiver that receives wireless signals from other gNBs 100. The wireless signals include control signals, reference signals, and data.
 また、他のgNB100において、実施形態の無線信号送受信部110は、gNB100がCLIを測定するにあたって、gNB100に対して、測定リソース/設定に係る情報を送信する。なお、後述するように、測定リソース/設定は、CLI測定リソースとも呼ばれてもよい。 In addition, in another gNB100, the wireless signal transceiver unit 110 of the embodiment transmits information related to measurement resources/settings to the gNB100 when the gNB100 measures the CLI. Note that, as described later, the measurement resources/settings may also be referred to as CLI measurement resources.
 アンプ部120は、Power Amplifier(PA)/Low Noise Amplifier(LNA)などによって構成される。アンプ部120は、無線信号送受信部110から出力された無線信号を増幅する。また、アンプ部120は、変復調部130から出力された無線信号を増幅する。 The amplifier unit 120 is composed of a power amplifier (PA)/low noise amplifier (LNA) etc. The amplifier unit 120 amplifies the wireless signal output from the wireless signal transmitting/receiving unit 110. The amplifier unit 120 also amplifies the wireless signal output from the modulation/demodulation unit 130.
 変復調部130は、所定の通信先(UE200または他のUE)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部130においては、CP-OFDM/DFT-S-OFDMが適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)に用いられてもよい。 The modem unit 130 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (UE 200 or another UE). CP-OFDM/DFT-S-OFDM may be applied to the modem unit 130. Furthermore, DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
 制御信号・参照信号処理部140は、UE200との間で送受信される制御信号、例えば、無線リソース制御(RRC)シグナリングに関する処理を実行する。 The control signal/reference signal processing unit 140 performs processing related to control signals transmitted and received between the UE 200, such as radio resource control (RRC) signaling.
 制御信号・参照信号処理部140は、UE200との間で送受信される参照信号、例えば、Demodulation Reference Signal(DMRS)、Phase Tracking Reference Signal(PTRS)、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、Positioning Reference Signal(PRS)に関する処理を実行する。 The control signal/reference signal processing unit 140 performs processing related to reference signals transmitted and received between the UE 200, such as Demodulation Reference Signal (DMRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS).
 なお、チャネルには、制御チャネルと、データチャネルとが含まれる。制御チャネルには、物理上りリンク制御チャネル(PUCCH)、物理下りリンク制御チャネル(PDCCH)、物理ランダムアクセスチャネル(PRACH)、物理報知チャネル(PBCH)などが含まれる。データチャネルには、物理上りリンク共有チャネル(PUSCH)、物理下りリンク共有チャネル(PDSCH)などが含まれる。 The channels include control channels and data channels. The control channels include the physical uplink control channel (PUCCH), physical downlink control channel (PDCCH), physical random access channel (PRACH), physical broadcast channel (PBCH), etc. The data channels include the physical uplink shared channel (PUSCH), physical downlink shared channel (PDSCH), etc.
 実施形態の制御信号・参照信号処理部140は、他のgNB100から送信される無線信号、例えば参照信号に基づいて、他のgNB100との間に生じるCLIを測定する。厳密には、RSRPやRSRQなどの値を測定し、測定した値が所定の閾値を下回る場合などにCLIの発生を予期する。 The control signal/reference signal processing unit 140 of the embodiment measures CLI occurring between other gNBs 100 based on wireless signals, such as reference signals, transmitted from other gNBs 100. Strictly speaking, it measures values such as RSRP and RSRQ, and predicts the occurrence of CLI when the measured values fall below a predetermined threshold.
 ここで、他のgNB100は、周期的(periodic、semi-periodic)または非周期的(aperiodic)に参照信号を送信するが、制御信号・参照信号処理部140は、これらの参照信号のうち、特定のリソースにおける参照信号に基づいてCLIを測定する。以下においては、特定のリソースをCLI測定リソースともいう。 Here, the other gNBs 100 transmit reference signals periodically (periodic, semi-periodic) or aperiodic (aperiodic), and the control signal/reference signal processor 140 measures the CLI based on a reference signal in a specific resource among these reference signals. Hereinafter, the specific resource is also referred to as a CLI measurement resource.
 CLI測定リソースは、無線信号送受信部110がUE200に参照信号を送信するリソースと、周波数ドメイン及び時間ドメインが同じ(または周波数ドメイン及び時間ドメインの少なくとも一部が重複する)リソースである(図8参照)。なお、SBFDが適用される場合においては、周波数ドメインをサブバンドに読み替えてもよい。また、図8の左図はSBFDが適用されない態様を示し、右図はSBFDが適用される態様を示す。図中のRS for UEsがUE200に送信される参照信号であり、RS for gNB-to-gNB CLIが他のgNB100との間で発生するCLIを測定するための参照信号である。 The CLI measurement resource is a resource that has the same frequency domain and time domain (or at least a part of the frequency domain and time domain overlaps) as the resource for which the radio signal transceiver 110 transmits a reference signal to the UE 200 (see FIG. 8). When SBFD is applied, the frequency domain may be interpreted as a subband. The left diagram in FIG. 8 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied. In the diagram, RS for UEs is a reference signal transmitted to the UE 200, and RS for gNB-to-gNB CLI is a reference signal for measuring CLI occurring between other gNBs 100.
 CLI測定リソースは、無線信号送受信部110がUE200に参照信号を送信するリソースと、周波数ドメインが異なりかつ時間ドメインが同じ(または時間ドメインの少なくとも一部が重複する)リソースである(図9参照)。なお、SBFDが適用される場合においては、周波数ドメインをサブバンドに読み替えてもよい。また、図9の左図はSBFDが適用されない態様を示し、右図はSBFDが適用される態様を示す。図中のRS for UEsがUE200に送信される参照信号であり、RS for gNB-to-gNB CLIが他のgNB100との間で発生するCLIを測定するための参照信号である。 The CLI measurement resource is a resource that has a different frequency domain and the same time domain (or at least a part of the time domain overlaps) as the resource for which the radio signal transceiver 110 transmits a reference signal to the UE 200 (see FIG. 9). When SBFD is applied, the frequency domain may be interpreted as a subband. The left diagram in FIG. 9 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied. In the diagram, RS for UEs is a reference signal transmitted to the UE 200, and RS for gNB-to-gNB CLI is a reference signal for measuring CLI occurring between other gNBs 100.
 CLI測定リソースは、無線信号送受信部110がUE200に参照信号を送信するリソースと、周波数ドメインが同じ(または周波数ドメインの少なくとも一部が重複する)かつ時間ドメインが異なるリソースである(図10参照)。なお、SBFDが適用される場合においては、周波数ドメインをサブバンドに読み替えてもよい。また、図10の左図はSBFDが適用されない態様を示し、右図はSBFDが適用される態様を示す。図中のRS for UEsがUE200に送信される参照信号であり、RS for gNB-to-gNB CLIが他のgNB100との間で発生するCLIを測定するための参照信号である。 The CLI measurement resource is a resource that has the same frequency domain (or at least a part of the frequency domain overlaps) but a different time domain as the resource for transmitting a reference signal to the UE200 by the radio signal transmitting/receiving unit 110 (see FIG. 10). When SBFD is applied, the frequency domain may be interpreted as a subband. The left diagram in FIG. 10 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied. In the diagram, RS for UEs is a reference signal transmitted to the UE200, and RS for gNB-to-gNB CLI is a reference signal for measuring CLI occurring between other gNBs100.
 また、他のgNB100において、実施形態の制御信号・参照信号処理部140は、gNB100がCLI測定を行う周期に基づいて、無線信号送受信部110が送信するCLI測定リソースに係る情報を選択する。 In addition, in another gNB100, the control signal/reference signal processing unit 140 of the embodiment selects information related to the CLI measurement resource to be transmitted by the radio signal transmitting/receiving unit 110 based on the period during which the gNB100 performs CLI measurements.
 制御信号・参照信号処理部140が選択するCLI測定リソースに係る情報(詳細は後述するが、CLIを測定するための参照信号の周波数ドメイン及び/または時間ドメインの情報などを含む。)は、gNB100間で予め共有されてもよいし、gNB100間で交換されてもよい。また、CLI測定リソースに係る情報は、UE200に対して送信されてもよい。これらの交換及び送信は、無線信号送受信部110により行われてもよい。 Information related to the CLI measurement resource selected by the control signal and reference signal processing unit 140 (including frequency domain and/or time domain information of the reference signal for measuring the CLI, as will be described in detail later) may be shared in advance between the gNBs 100, or may be exchanged between the gNBs 100. Furthermore, the information related to the CLI measurement resource may be transmitted to the UE 200. These exchanges and transmissions may be performed by the radio signal transmitting/receiving unit 110.
 符号化/復号部150は、所定の通信先(UE200または他のUE)毎に、無線信号に含まれるデータの分割/連結及びコーディング/復号などを実行する。 The encoding/decoding unit 150 performs operations such as dividing/concatenating and coding/decoding the data contained in the wireless signal for each predetermined communication destination (UE 200 or another UE).
 具体的には、符号化/復号部150は、変復調部130から出力されたデータを復号し、復号したデータを連結する。また、符号化/復号部150は、データ送受信部160から出力されたデータを所定のサイズに分割し、分割されたデータに対してコーディングを実行する。 Specifically, the encoding/decoding unit 150 decodes the data output from the modem unit 130 and concatenates the decoded data. The encoding/decoding unit 150 also divides the data output from the data transmission/reception unit 160 into data of a predetermined size and performs coding on the divided data.
 データ送受信部160は、UE200との間でデータを送受信する。具体的には、データ送受信部160は、複数のレイヤ間においてProtocol Data Unit(PDU)/Service Data Unit(SDU)の組み立て/分解などを実行する。複数のレイヤは、媒体アクセス制御(MAC)レイヤ、無線リンク制御(RLC)レイヤ、Packet Data Convergence Protocol(PDCP)レイヤなどである。また、データ送受信部160は、Hybrid Automatic Repeat Request(HARQ)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 160 transmits and receives data to and from the UE 200. Specifically, the data transmission/reception unit 160 performs assembly/disassembly of Protocol Data Units (PDUs)/Service Data Units (SDUs) between multiple layers. The multiple layers include a Medium Access Control (MAC) layer, a Radio Link Control (RLC) layer, and a Packet Data Convergence Protocol (PDCP) layer. The data transmission/reception unit 160 also performs data error correction and retransmission control based on Hybrid Automatic Repeat Request (HARQ).
 制御部170は、gNB100を制御する。制御部170は、例えば、無線信号送受信部110による無線信号の送受信、アンプ部120による増幅、変復調部130によるデータ変調/復調、制御信号・参照信号処理部140による信号処理、符号化/復号部150によるコーディング/復号、データ送受信部160によるデータの送受信を制御する。 The control unit 170 controls the gNB 100. The control unit 170 controls, for example, the transmission and reception of radio signals by the radio signal transceiver unit 110, the amplification by the amplifier unit 120, the data modulation/demodulation by the modem unit 130, the signal processing by the control signal and reference signal processing unit 140, the coding/decoding by the encoding/decoding unit 150, and the transmission and reception of data by the data transceiver unit 160.
 (2.2)端末の機能ブロック構成
 図7に示すように、UE200は、無線信号送受信部210と、制御部220とを備える。
(2.2) Functional Block Configuration of Terminal As shown in FIG. 7, the UE 200 includes a radio signal transmitting/receiving unit 210 and a control unit 220.
 無線信号送受信部210は、gNB100との間で無線信号を送受信する。無線信号送受信部210は、gNB100に無線信号を送信する送信部と、gNB100から無線信号を受信する受信部と、を構成してもよい。無線信号には、制御信号、参照信号、データが含まれる。 The wireless signal transmitting/receiving unit 210 transmits and receives wireless signals to and from the gNB100. The wireless signal transmitting/receiving unit 210 may be configured as a transmitting unit that transmits wireless signals to the gNB100, and a receiving unit that receives wireless signals from the gNB100. The wireless signals include control signals, reference signals, and data.
 制御部220は、UE200を制御する。制御部220は、例えば、無線信号送受信部210による無線信号の送受信を制御する。 The control unit 220 controls the UE 200. The control unit 220 controls, for example, the transmission and reception of radio signals by the radio signal transmission and reception unit 210.
 (3)無線通信システムの動作
 (3.0)課題
 (3.0.1)課題1
 無線通信システム10においてSBFDが適用される場合、gNB100の制御信号・参照信号処理部140は、他のgNB100との間に生じるCLIを測定するにあたって、SBFDにより高められたリソースの利用効率を損なわないようにCLIを測定するためのリソースを選択する必要がある。
(3) Operation of Wireless Communication System (3.0) Issues (3.0.1) Issue 1
When SBFD is applied in the wireless communication system 10, the control signal/reference signal processing unit 140 of the gNB 100 needs to select resources for measuring the CLI that occurs between the gNB 100 and other gNBs 100 so as not to impair the resource utilization efficiency improved by SBFD.
 (3.0.2)課題2
 CLIを測定するにあたって、干渉する側のgNBと、干渉を受ける側のgNBとの間で、測定リソース/設定に係る情報が交換される必要がある。しかしながら、CLI測定の周期によって、適切な測定リソース/設定に係る情報は異なるという問題があった。
(3.0.2) Issue 2
When measuring CLI, information on measurement resources/settings needs to be exchanged between the interfering gNB and the interfered gNB. However, there is a problem in that the appropriate information on measurement resources/settings differs depending on the CLI measurement period.
 (3.1)動作例1
 図8を参照しつつ、UE200に送信される参照信号とサブバンド及び時間ドメインが同じ(またはサブバンド及び時間ドメインの少なくとも一部が重複する)リソースにおいて他のgNB100から送信される参照信号に基づいて、CLIを測定する態様について説明する。なお、図8の左図はSBFDが適用されない態様を示し、右図はSBFDが適用される態様を示す。また、以下の説明においては、SBFDが適用される時間ドメインの単位をスロットとする。
(3.1) Operation example 1
With reference to Fig. 8, a description will be given of a mode in which CLI is measured based on a reference signal transmitted from another gNB 100 in a resource in which the subband and time domain are the same as those of a reference signal transmitted to a UE 200 (or in which the subband and time domain overlap at least partially). Note that the left diagram in Fig. 8 shows a mode in which SBFD is not applied, and the right diagram shows a mode in which SBFD is applied. In the following description, the unit of the time domain in which SBFD is applied is a slot.
 ここで、サブバンド及び時間ドメインが同じとは、例えば、参照信号が周波数方向及び時間方向において完全に重複するという意味である。また、サブバンド及び時間ドメインの少なくとも一部が重複するとは、例えば、参照信号が周波数方向及び時間方向において複数のリソースブロックを占める場合に、周波数方向及び時間方向において当該リソースブロックの少なくとも1つに重複するという意味である。 Here, the subband and time domain are the same means, for example, that the reference signals completely overlap in the frequency direction and the time direction. Also, the subband and time domain overlap at least partially means, for example, that when the reference signal occupies multiple resource blocks in the frequency direction and the time direction, it overlaps with at least one of the resource blocks in the frequency direction and the time direction.
 図8の右図に示すように、制御信号・参照信号処理部140は、他のgNB100から送信される参照信号のうち、無線信号送受信部110がUE200に送信する参照信号(図中のRS for UEs)とサブバンド及び時間ドメインが同じ(またはサブバンド及び時間ドメインの少なくとも一部が重複する)リソースにおいて送信される参照信号(図中のRS for gNB-to-gNB CLI)に基づいて、他のgNB100との間に生じるCLIを測定する。 As shown in the right diagram of Figure 8, the control signal/reference signal processing unit 140 measures the CLI occurring between other gNBs 100 based on reference signals transmitted from other gNBs 100, including reference signals (RS for gNB-to-gNB CLI in the diagram) transmitted in resources having the same subband and time domain (or at least a portion of the subband and time domain overlaps) as the reference signal (RS for UEs in the diagram) transmitted to the UE 200 by the radio signal transceiver unit 110.
 なお、制御信号・参照信号処理部140がCLIを測定するためのリソース(CLI測定リソース)は、無線信号送受信部110が他のgNB100から送信される参照信号を受信するためのリソースに読み替えられてもよい。従って、gNB100は、周波数ドメイン及び時間ドメインが同じ(またはサブバンド及び時間ドメインの少なくとも一部が重複する)リソースにおいて、UE200に対する送信と他のgNB100からの受信とを行っていることになる。このような送受信は、例えばgNB100のビームの切り替えなどの空間分割多重(SDM)により実現される。 Note that the resource (CLI measurement resource) for the control signal/reference signal processing unit 140 to measure the CLI may be interpreted as a resource for the radio signal transmitting/receiving unit 110 to receive a reference signal transmitted from another gNB100. Therefore, the gNB100 transmits to the UE200 and receives from the other gNB100 in resources with the same frequency domain and time domain (or where the subband and time domain overlap at least partially). Such transmission and reception is realized by space division multiplexing (SDM), such as beam switching of the gNB100.
 なお、図8の右図において、ULリソースの一部が破線で示されている。これは、SBFDスロットのULリソースにおいて、参照信号は例外的にDL送信してもよいことを示している。 In addition, in the right diagram of Figure 8, part of the UL resource is indicated by a dashed line. This indicates that, as an exception, the reference signal may be transmitted in DL in the UL resource of the SBFD slot.
 以下においては、参照信号が他のgNB100との間で共通であるか非共通であるかに応じて、参照信号に係る詳細な設定について説明する。なお、gNB100間で共通とは、gNB100間で周波数ドメイン及び時間ドメインにおいて同じリソースを占める参照信号であるという情報が予め共有されているという意味である。gNB100間で非共通とは、gNB100間で周波数ドメイン及び時間ドメインにおいて同じリソースを占める参照信号であるという情報が予め共有されていないという意味である。 The following describes detailed settings related to reference signals depending on whether the reference signal is common or non-common with other gNBs100. Note that "common between gNBs100" means that information that the reference signals occupy the same resources in the frequency domain and the time domain is shared in advance between gNBs100. "Non-common between gNBs100" means that information that the reference signals occupy the same resources in the frequency domain and the time domain is not shared in advance between gNBs100.
 (3.1.1)基地局間で共通の参照信号を用いる場合
 gNB100間で共通の参照信号は、例えばSSB、DMRS for Type0 PDCCHである。
(3.1.1) When a common reference signal is used between base stations A common reference signal between gNBs 100 is, for example, SSB or DMRS for Type 0 PDCCH.
 (3.1.1.1)参照信号の設定
 参照信号の設定は、セル特有の信号の設定など、既存の設定を流用してもよい。セル特有の信号の設定は、例えば、IAB-nodeにおけるSSB Transmission Configuration(STC)である。
(3.1.1.1) Reference Signal Configuration The reference signal configuration may use existing configuration such as a cell-specific signal configuration. The cell-specific signal configuration is, for example, an SSB Transmission Configuration (STC) in the IAB-node.
 (3.1.1.2)CLI測定リソースに係る情報の交換
 gNB100間で共通の参照信号に基づいてCLIを測定する場合、干渉を受ける側のgNB100は、CLI測定リソース、すなわち干渉する側のgNB100から送信される参照信号のリソースを暗黙的に知っている。従って、CLI測定リソースに係る情報は、干渉する側のgNB100との間で予め共有されているので、交換される必要がない。
(3.1.1.2) Exchange of Information Related to CLI Measurement Resources When measuring a CLI based on a reference signal common between gNBs 100, the gNB 100 receiving interference implicitly knows the CLI measurement resource, i.e., the resource of the reference signal transmitted from the interfering gNB 100. Therefore, information related to the CLI measurement resource does not need to be exchanged because it is shared in advance with the interfering gNB 100.
 なお、CLI測定リソースに係る情報は、限定的に交換されてもよい。例えば、物理セルIDやSSBの数など、各gNB100に特有のパラメータは、交換されてもよい。 In addition, information related to CLI measurement resources may be exchanged in a limited manner. For example, parameters specific to each gNB100, such as the physical cell ID and the number of SSBs, may be exchanged.
 (3.1.2)基地局間で非共通の参照信号を用いる場合
 gNB100間で非共通の参照信号は、例えばDMRS for PDSCH、DMRS for PDCCH、CSI-RSである。
(3.1.2) When a non-common reference signal is used between base stations Reference signals that are non-common between gNBs 100 include, for example, DMRS for PDSCH, DMRS for PDCCH, and CSI-RS.
 (3.1.2.1)参照信号の設定
 参照信号の設定は、UE200向けの設定など、既存の設定を流用してもよい。
(3.1.2.1) Reference Signal Configuration For the reference signal configuration, existing configuration such as a configuration for UE 200 may be used.
 一方で、CLIを測定するための参照信号は、特定のスロットまたはサブバンドにおいてのみ送信されるように設定してもよい。特定のスロットまたはサブバンドは、例えば、DLスロット、DLサブバンド、ULスロット、ULサブバンドである。 On the other hand, the reference signal for measuring the CLI may be set to be transmitted only in a specific slot or subband. The specific slot or subband may be, for example, a DL slot, a DL subband, a UL slot, or a UL subband.
 (3.1.2.2)CLI測定リソースに係る情報の交換
 gNB100間で非共通の参照信号に基づいてCLIを測定する場合、干渉を受ける側のgNB100は、CLI測定リソース、すなわち干渉する側のgNB100から送信される参照信号のリソースを明示的に知る必要がある。従って、CLI測定リソースに係る情報は、干渉する側のgNB100との間で交換される必要がある。
(3.1.2.2) Exchange of Information Related to CLI Measurement Resources When measuring a CLI based on a reference signal that is not common between gNBs 100, the gNB 100 receiving interference needs to explicitly know the CLI measurement resource, i.e., the resource of the reference signal transmitted from the interfering gNB 100. Therefore, information related to the CLI measurement resource needs to be exchanged between the interfering gNB 100.
 CLI測定リソースに係る情報は、UE200に対する設定情報または当該設定情報の一部を含んでもよい。UE200に対する設定情報の一部は、例えば、周波数/時間ドメインのリソース、周期である。 The information related to the CLI measurement resource may include configuration information for UE200 or a part of the configuration information. The part of the configuration information for UE200 is, for example, frequency/time domain resources and periodicity.
 また、CLI測定リソースに係る情報は、例えばCLI測定リソースのために測定窓が設定される場合において、当該測定窓の周期、期間、周波数ドメインのリソースを含んでもよい。 In addition, the information related to the CLI measurement resource may include, for example, the period, duration, and frequency domain resources of the measurement window when a measurement window is set for the CLI measurement resource.
 (3.1.2.3)端末に対する指示
 SBFDが適用される場合において、CLI測定リソースがSBFDスロットのULリソースに存在する場合、CLI測定リソースに係る情報は、無線信号送受信部110により、UE200に送信されてもよい。これにより、UE200は、CLI測定リソースが設定されるULリソースにおいて、UL送信を避けることができる。
(3.1.2.3) Instruction to Terminal When SBFD is applied, if the CLI measurement resource exists in the UL resource of the SBFD slot, information related to the CLI measurement resource may be transmitted to the UE 200 by the radio signal transceiver unit 110. This enables the UE 200 to avoid UL transmission in the UL resource in which the CLI measurement resource is set.
 (3.2)動作例2
 図9を参照しつつ、UE200に送信される参照信号とサブバンドが異なりかつ時間ドメインが同じ(または時間ドメインの少なくとも一部が重複する)リソースにおいて他のgNB100から送信される参照信号に基づいて、CLIを測定する態様について説明する。なお、図9の左図はSBFDが適用されない態様を示し、右図はSBFDが適用される態様を示す。また、以下の説明においては、SBFDが適用される時間ドメインの単位をスロットとする。
(3.2) Operation example 2
With reference to Fig. 9, a description will be given of an aspect of measuring CLI based on a reference signal transmitted from another gNB 100 in a resource in which the subband is different from that of a reference signal transmitted to the UE 200 and the time domain is the same (or at least a part of the time domain overlaps). Note that the left diagram in Fig. 9 shows an aspect in which SBFD is not applied, and the right diagram shows an aspect in which SBFD is applied. In the following description, the unit of the time domain to which SBFD is applied is a slot.
 ここで、時間ドメインが同じとは、例えば、参照信号が時間方向において完全に重複するという意味である。また、時間ドメインの少なくとも一部が重複するとは、例えば、参照信号が時間方向において複数のリソースブロックを占める場合に、時間方向において当該リソースブロックの少なくとも1つに重複するという意味である。 Here, having the same time domain means, for example, that the reference signals completely overlap in the time direction. Also, at least a portion of the time domain overlaps means, for example, that when the reference signal occupies multiple resource blocks in the time direction, it overlaps with at least one of the resource blocks in the time direction.
 図9の右図に示すように、制御信号・参照信号処理部140は、他のgNB100から送信される参照信号のうち、無線信号送受信部110がUE200に送信する参照信号(図中のRS for UEs)とサブバンドが異なりかつ時間ドメインが同じ(または時間ドメインの少なくとも一部が重複する)リソースにおいて送信される参照信号(図中のRS for gNB-to-gNB CLI)に基づいて、他のgNB100との間に生じるCLIを測定する。 As shown in the right diagram of Figure 9, the control signal/reference signal processing unit 140 measures the CLI occurring with other gNBs 100 based on reference signals transmitted from other gNBs 100, which are reference signals (RS for gNB-to-gNB CLI in the diagram) transmitted in resources that have a different subband and the same time domain (or at least a portion of the time domain overlaps) as the reference signal (RS for UEs in the diagram) transmitted by the radio signal transceiver unit 110 to the UE 200.
 なお、制御信号・参照信号処理部140がCLIを測定するためのリソース(CLI測定リソース)は、無線信号送受信部110が他のgNB100から送信される参照信号を受信するためのリソースに読み替えられてもよい。従って、gNB100は、周波数ドメインが異なりかつ時間ドメインが同じ(または時間ドメインの少なくとも一部が重複する)リソースにおいて、UE200に対する送信と他のgNB100からの受信とを行っていることになる。このような送受信は、例えば周波数分割多重(FDM)またはSBFDにより実現される。 Note that the resource (CLI measurement resource) for the control signal/reference signal processing unit 140 to measure the CLI may be interpreted as a resource for the radio signal transmitting/receiving unit 110 to receive a reference signal transmitted from another gNB100. Therefore, the gNB100 transmits to the UE200 and receives from the other gNB100 in resources that have different frequency domains and the same time domain (or at least a portion of the time domains overlap). Such transmission and reception is achieved, for example, by frequency division multiplexing (FDM) or SBFD.
 なお、図9の右図において、ULリソースの一部が破線で示されている。これは、SBFDスロットのULリソースにおいて、参照信号は例外的にDL送信してもよいことを示している。 In addition, in the right diagram of Figure 9, part of the UL resource is indicated by a dashed line. This indicates that, as an exception, the reference signal may be transmitted in DL in the UL resource of the SBFD slot.
 以下においては、参照信号が他のgNB100との間で共通であるか非共通であるかに応じて、参照信号に係る詳細な設定について説明する。なお、gNB100間で共通とは、gNB100間で周波数ドメイン及び時間ドメインにおいて同じリソースを占める参照信号であるという情報が予め共有されているという意味である。gNB100間で非共通とは、gNB100間で周波数ドメイン及び時間ドメインにおいて同じリソースを占める参照信号であるという情報が予め共有されていないという意味である。 The following describes detailed settings related to reference signals depending on whether the reference signal is common or non-common with other gNBs100. Note that "common between gNBs100" means that information that the reference signals occupy the same resources in the frequency domain and the time domain is shared in advance between gNBs100. "Non-common between gNBs100" means that information that the reference signals occupy the same resources in the frequency domain and the time domain is not shared in advance between gNBs100.
 (3.2.1)基地局間で共通の参照信号を用いる場合
 gNB100間で共通の参照信号は、例えばSSB、DMRS for Type0 PDCCHである。
(3.2.1) When a common reference signal is used between base stations A common reference signal between gNBs 100 is, for example, SSB or DMRS for Type 0 PDCCH.
 (3.2.1.1)参照信号の設定
 参照信号の設定は、時間ドメインについては、セル特有の信号の設定など、既存の設定を流用してもよい。セル特有の信号の設定は、例えば、IAB-nodeにおけるSSB Transmission Configuration(STC)である。
(3.2.1.1) Reference Signal Configuration The reference signal configuration may use existing configurations such as cell-specific signal configurations in the time domain. The cell-specific signal configuration is, for example, SSB Transmission Configuration (STC) in the IAB-node.
 参照信号の設定は、周波数ドメインについては、追加的に行われる必要がある。例えば、参照信号間のギャップを設定してもよいし、CLIを測定するための参照信号について、DLスロット、DLサブバンド、ULスロット、ULサブバンドなどの特定のスロットまたはサブバンドにおいてのみ送信されるように設定してもよい。 The configuration of the reference signals needs to be additionally performed for the frequency domain. For example, a gap between the reference signals may be configured, or the reference signals for measuring the CLI may be configured to be transmitted only in specific slots or subbands, such as DL slots, DL subbands, UL slots, and UL subbands.
 (3.2.1.2)CLI測定リソースに係る情報の交換
 gNB100間で共通の参照信号に基づいてCLIを測定する場合、干渉を受ける側のgNB100は、時間ドメインについては、CLI測定リソース、すなわち干渉する側のgNB100から送信される参照信号のリソースを暗黙的に知っている。従って、CLI測定リソースに係る情報は、時間ドメインについては、干渉する側のgNB100との間で予め共有されているので、交換される必要がない。
(3.2.1.2) Exchange of Information Related to CLI Measurement Resources When measuring the CLI based on a reference signal common between gNBs 100, the interfered gNB 100 implicitly knows the CLI measurement resource, i.e., the resource of the reference signal transmitted from the interfering gNB 100, in the time domain. Therefore, information related to the CLI measurement resource does not need to be exchanged because it is shared in advance between the interfering gNB 100 and the interfered gNB 100 in the time domain.
 一方で、測定リソースに係る情報は、周波数ドメインについては、交換されるまたは予め定義される必要がある。 On the other hand, information regarding measurement resources needs to be exchanged or predefined for the frequency domain.
 なお、測定リソースに係る情報は、限定的に交換されてもよい。例えば、物理セルIDやSSBの数など、各gNB100に特有のパラメータは、交換されてもよい。 In addition, information related to measurement resources may be exchanged in a limited manner. For example, parameters specific to each gNB100, such as physical cell IDs and the number of SSBs, may be exchanged.
 (3.2.2)基地局間で非共通の参照信号を用いる場合
 gNB100間で非共通の参照信号は、例えばDMRS for PDSCHである。
(3.2.2) When a non-common reference signal is used between base stations A non-common reference signal between gNBs 100 is, for example, DMRS for PDSCH.
 (3.2.2.1)参照信号の設定
 参照信号の設定は、UE200向けの設定など、既存の設定を流用してもよい。
(3.2.2.1) Reference Signal Configuration For the reference signal configuration, existing configuration such as a configuration for UE 200 may be used.
 一方で、CLIを測定するための参照信号は、特定のスロットまたはサブバンドにおいてのみ送信されるように設定してもよい。特定のスロットまたはサブバンドは、例えば、DLスロット、DLサブバンド、ULスロット、ULサブバンドである。 On the other hand, the reference signal for measuring the CLI may be set to be transmitted only in a specific slot or subband. The specific slot or subband may be, for example, a DL slot, a DL subband, a UL slot, or a UL subband.
 (3.2.2.2)CLI測定リソースに係る情報の交換
 gNB100間で非共通の参照信号に基づいてCLIを測定する場合、干渉を受ける側のgNB100は、CLI測定リソース、すなわち干渉する側のgNB100から送信される参照信号のリソースを明示的に知る必要がある。従って、CLI測定リソースに係る情報は、干渉する側のgNB100との間で交換される必要がある。
(3.2.2.2) Exchange of Information Related to CLI Measurement Resources When measuring a CLI based on a reference signal that is not common between gNBs 100, the gNB 100 receiving interference needs to explicitly know the CLI measurement resource, i.e., the resource of the reference signal transmitted from the interfering gNB 100. Therefore, information related to the CLI measurement resource needs to be exchanged between the interfering gNB 100.
 CLI測定リソースに係る情報は、gNB100に対する設定情報であってもよい。 The information related to the CLI measurement resource may be configuration information for the gNB100.
 また、CLI測定リソースに係る情報は、UE200に対する設定情報と、例えば周波数ドメインのリソースなどの追加情報とを含んでもよい。 In addition, the information related to the CLI measurement resources may include configuration information for the UE 200 and additional information, such as frequency domain resources.
 また、CLI測定リソースに係る情報は、UE200に対する設定情報の一部を含んでもよい。UE200に対する設定情報の一部は、例えば、周波数/時間ドメインのリソース、周期である。 In addition, the information related to the CLI measurement resource may include part of the configuration information for the UE 200. The part of the configuration information for the UE 200 may be, for example, frequency/time domain resources and periods.
 また、CLI測定リソースに係る情報は、例えばCLI測定リソースのために測定窓が設定される場合において、当該測定窓の周期、期間、周波数ドメインのリソースを含んでもよい。 In addition, the information related to the CLI measurement resource may include, for example, the period, duration, and frequency domain resources of the measurement window when a measurement window is set for the CLI measurement resource.
 (3.2.2.3)端末に対する指示
 SBFDが適用される場合において、CLI測定リソースがSBFDスロットのULリソースに存在する場合、CLI測定リソースに係る情報は、無線信号送受信部110により、UE200に送信されてもよい。これにより、UE200は、CLI測定リソースが設定されるULリソースにおいて、UL送信を避けることが出来る。
(3.2.2.3) Instruction to Terminal When SBFD is applied, if the CLI measurement resource exists in the UL resource of the SBFD slot, information related to the CLI measurement resource may be transmitted to the UE 200 by the radio signal transceiver unit 110. This enables the UE 200 to avoid UL transmission in the UL resource in which the CLI measurement resource is set.
 (3.3)動作例3
 図10を参照しつつ、UE200に送信される参照信号とサブバンドが同じ(またはサブバンドの少なくとも一部が重複する)かつ時間ドメインが異なるリソースにおいて他のgNB100から送信される参照信号に基づいて、CLIを測定する態様について説明する。なお、図10の左図はSBFDが適用されない態様を示し、右図はSBFDが適用される態様を示す。また、以下の説明においては、SBFDが適用される時間ドメインの単位をスロットとする。
(3.3) Operation example 3
With reference to Fig. 10, a description will be given of an aspect in which CLI is measured based on a reference signal transmitted from another gNB 100 in a resource having the same subband (or at least a part of the subband overlaps) as a reference signal transmitted to the UE 200 and a different time domain. Note that the left diagram in Fig. 10 shows an aspect in which SBFD is not applied, and the right diagram shows an aspect in which SBFD is applied. In the following description, the unit of the time domain to which SBFD is applied is a slot.
 ここで、サブバンドが同じとは、例えば、参照信号が周波数方向において完全に重複するという意味である。また、サブバンドの少なくとも一部が重複するとは、例えば、参照信号が周波数方向において複数のリソースブロックを占める場合に、周波数方向において当該リソースブロックの少なくとも1つに重複するという意味である。 Here, the subbands being the same means, for example, that the reference signals completely overlap in the frequency direction. Also, that at least a portion of the subbands overlap means, for example, that when the reference signal occupies multiple resource blocks in the frequency direction, it overlaps with at least one of the resource blocks in the frequency direction.
 図10の右図に示すように、制御信号・参照信号処理部140は、他のgNB100から送信される参照信号のうち、無線信号送受信部110がUE200に送信する参照信号(図中のRS for UEs)とサブバンドが同じ(またはサブバンドの少なくとも一部が重複する)かつ時間ドメインが異なるリソースにおいて送信される参照信号(図中のRS for gNB-to-gNB CLI)に基づいて、他のgNB100との間に生じるCLIを測定する。この場合、無線信号送受信部110は、CLI測定リソース(図中のRS for gNB-to-gNB CLI)と周波数ドメインが異なりかつ時間ドメインが同じ(または時間ドメインの少なくとも一部が重複する)リソース(図中のDL resource for UE)において、UE200に対して無線信号を送信することが出来る。 As shown in the right diagram of FIG. 10, the control signal/reference signal processing unit 140 measures the CLI occurring with another gNB100 based on a reference signal (RS for gNB-to-gNB CLI in the diagram) transmitted from another gNB100, which is transmitted in a resource having the same subband (or at least a part of the subband overlaps) and a different time domain as the reference signal (RS for UEs in the diagram) transmitted by the radio signal transmitting/receiving unit 110 to the UE200. In this case, the radio signal transmitting/receiving unit 110 can transmit a radio signal to the UE200 in a resource (DL resource for UE in the diagram) having a different frequency domain and the same time domain (or at least a part of the time domain overlaps) as the CLI measurement resource (RS for gNB-to-gNB CLI in the diagram).
 なお、制御信号・参照信号処理部140がCLIを測定するためのリソース(CLI測定リソース)は、無線信号送受信部110が他のgNB100から送信される参照信号を受信するためのリソースに読み替えられてもよい。従って、gNB100は、周波数ドメインが同じ(または周波数ドメインの少なくとも一部が重複する)かつ時間ドメインが異なるリソースにおいて、UE200に対する送信と他のgNB100からの受信とを行っていることになる。このような送受信は、例えば時分割多重(TDM)またはSBFDにより実現される。 Note that the resource (CLI measurement resource) for the control signal/reference signal processing unit 140 to measure the CLI may be interpreted as a resource for the radio signal transmitting/receiving unit 110 to receive a reference signal transmitted from another gNB100. Therefore, the gNB100 transmits to the UE200 and receives from the other gNB100 in resources that have the same frequency domain (or at least a part of the frequency domain overlaps) but different time domains. Such transmission and reception is realized, for example, by time division multiplexing (TDM) or SBFD.
 なお、図10の右図において、ULリソースの一部が破線で示されている。これは、SBFDスロットのULリソースにおいて、参照信号は例外的にDL送信してもよいことを示している。 In addition, in the right diagram of Figure 10, part of the UL resource is indicated by a dashed line. This indicates that, as an exception, the reference signal may be transmitted in DL in the UL resource of the SBFD slot.
 以下においては、参照信号が他のgNB100との間で共通であるか非共通であるかに応じて、参照信号に係る詳細な設定について説明する。なお、gNB100間で共通とは、gNB100間で周波数ドメイン及び時間ドメインにおいて同じリソースを占める参照信号であるという情報が予め共有されているという意味である。gNB100間で非共通とは、gNB100間で周波数ドメイン及び時間ドメインにおいて同じリソースを占める参照信号であるという情報が予め共有されていないという意味である。 The following describes detailed settings related to reference signals depending on whether the reference signal is common or non-common with other gNBs100. Note that "common between gNBs100" means that information that the reference signals occupy the same resources in the frequency domain and the time domain is shared in advance between gNBs100. "Non-common between gNBs100" means that information that the reference signals occupy the same resources in the frequency domain and the time domain is not shared in advance between gNBs100.
 (3.3.1)基地局間で共通の参照信号を用いる場合
 gNB100間で共通の参照信号は、例えばSSB、DMRS for Type0 PDCCHである。
(3.3.1) When a common reference signal is used between base stations A common reference signal between gNBs 100 is, for example, SSB or DMRS for Type 0 PDCCH.
 (3.3.1.1)参照信号の設定
 参照信号の設定は、周波数ドメインについては、セル特有の信号の設定など、既存の設定を流用してもよい。セル特有の信号の設定は、例えば、IAB-nodeにおけるSSB Transmission Configuration(STC)である。
(3.3.1.1) Reference Signal Configuration The reference signal configuration may use existing configurations such as cell-specific signal configurations in the frequency domain. The cell-specific signal configuration is, for example, SSB Transmission Configuration (STC) in the IAB-node.
 CLIを測定するための参照信号において、周波数ドメインのリソースは、UE200に送信される参照信号の周波数ドメインのリソースと同じになるように設定されてもよいし、異なるように設定されてもよい。 In the reference signal for measuring the CLI, the frequency domain resources may be set to be the same as the frequency domain resources of the reference signal transmitted to UE 200, or may be set to be different.
 参照信号の設定は、時間ドメインについては、追加的に行われる必要がある。例えば、参照信号間のギャップを設定してもよいし、CLIを測定するための参照信号について、DLスロット、DLサブバンド、ULスロット、ULサブバンドなどの特定のスロットまたはサブバンドにおいてのみ送信されるように設定してもよい。 The reference signal configuration needs to be additionally performed for the time domain. For example, a gap between reference signals may be configured, or the reference signal for measuring CLI may be configured to be transmitted only in a specific slot or subband, such as a DL slot, DL subband, UL slot, or UL subband.
 UE200に対するDLリソース/ULリソースは、CLI測定リソースと周波数分割多重されてもよいし、されなくてもよい。UE200に対するDLリソースについて、干渉を受ける側のgNB100は、SBFD operationを必要としてもよい(SBFD operationは、CLIを測定するための参照信号の受信とUE200に対する送信とを可能にする。)。UE200に対するULリソースについて、干渉を受ける側のgNB100は、干渉する側のgNB100とUE200とから無線信号を受信してもよい。 The DL/UL resources for UE200 may or may not be frequency division multiplexed with the CLI measurement resources. For the DL resources for UE200, the gNB100 on the interfered side may require SBFD operation (SBFD operation enables reception of a reference signal for measuring the CLI and transmission to UE200). For the UL resources for UE200, the gNB100 on the interfered side may receive radio signals from the interfering gNB100 and UE200.
 (3.3.1.2)CLI測定リソースに係る情報の交換
 gNB100間で共通の参照信号に基づいてCLIを測定する場合、干渉を受ける側のgNB100は、周波数ドメインについては、CLI測定リソース、すなわち干渉する側のgNB100から送信される参照信号のリソースを暗黙的に知っている。従って、CLI測定リソースに係る情報は、周波数ドメインについては、干渉する側のgNB100との間で予め共有されているので、交換される必要がない。
(3.3.1.2) Exchange of Information Related to CLI Measurement Resources When measuring a CLI based on a reference signal common between gNBs 100, the interfered gNB 100 implicitly knows the CLI measurement resource, i.e., the resource of the reference signal transmitted from the interfering gNB 100, in the frequency domain. Therefore, information related to the CLI measurement resource does not need to be exchanged because it is shared in advance between the interfering gNB 100 and the interferer gNB 100 in the frequency domain.
 一方で、測定リソースに係る情報は、時間ドメインについては、交換されるまたは予め定義される必要がある。 On the other hand, information regarding measurement resources needs to be exchanged or predefined for the time domain.
 なお、測定リソースに係る情報は、限定的に交換されてもよい。例えば、物理セルIDやSSBの数など、各gNB100に特有のパラメータは、交換されてもよい。 In addition, information related to measurement resources may be exchanged in a limited manner. For example, parameters specific to each gNB100, such as physical cell IDs and the number of SSBs, may be exchanged.
 (3.3.2)基地局間で非共通の参照信号を用いる場合
 gNB100間で非共通の参照信号は、例えばDMRS for PDSCHである。
(3.3.2) When a non-common reference signal is used between base stations A non-common reference signal between gNBs 100 is, for example, DMRS for PDSCH.
 (3.3.2.1)参照信号の設定
 参照信号の設定は、UE200向けの設定など、既存の設定を流用してもよい。
(3.3.2.1) Reference Signal Configuration For the reference signal configuration, existing configuration such as a configuration for UE 200 may be used.
 一方で、CLIを測定するための参照信号は、特定のスロットまたはサブバンドにおいてのみ送信されるように設定してもよい。特定のスロットまたはサブバンドは、例えば、DLスロット、DLサブバンド、ULスロット、ULサブバンドである。 On the other hand, the reference signal for measuring the CLI may be set to be transmitted only in a specific slot or subband. The specific slot or subband may be, for example, a DL slot, a DL subband, a UL slot, or a UL subband.
 (3.3.2.2)CLI測定リソースに係る情報の交換
 gNB100間で非共通の参照信号に基づいてCLIを測定する場合、干渉を受ける側のgNB100は、CLI測定リソース、すなわち干渉する側のgNB100から送信される参照信号のリソースを明示的に知る必要がある。従って、CLI測定リソースに係る情報は、干渉する側のgNB100との間で交換される必要がある。
(3.3.2.2) Exchange of Information Related to CLI Measurement Resources When measuring a CLI based on a reference signal that is not common between gNBs 100, the gNB 100 receiving interference needs to explicitly know the CLI measurement resource, i.e., the resource of the reference signal transmitted from the interfering gNB 100. Therefore, information related to the CLI measurement resource needs to be exchanged between the interfering gNB 100.
 CLI測定リソースに係る情報は、gNB100に対する設定情報であってもよい。 The information related to the CLI measurement resource may be configuration information for the gNB100.
 また、CLI測定リソースに係る情報は、UE200に対する設定情報と、例えば時間ドメインのリソースなどの追加情報とを含んでもよい。 In addition, the information related to the CLI measurement resources may include configuration information for the UE 200 and additional information such as time domain resources.
 また、CLI測定リソースに係る情報は、UE200に対する設定情報の一部を含んでもよい。UE200に対する設定情報の一部は、例えば、周波数/時間ドメインのリソース、周期である。 In addition, the information related to the CLI measurement resource may include part of the configuration information for the UE 200. The part of the configuration information for the UE 200 may be, for example, frequency/time domain resources and periods.
 また、CLI測定リソースに係る情報は、例えばCLI測定リソースのために測定窓が設定される場合において、当該測定窓の周期、期間、周波数ドメインのリソースを含んでもよい。 In addition, the information related to the CLI measurement resource may include, for example, the period, duration, and frequency domain resources of the measurement window when a measurement window is set for the CLI measurement resource.
 (3.3.2.3)端末に対する指示
 SBFDが適用される場合において、CLI測定リソースがSBFDスロットのULリソースに存在する場合、CLI測定リソースに係る情報は、無線信号送受信部110により、UE200に送信されてもよい。これにより、UE200は、CLI測定リソースが設定されるULリソースにおいて、UL送信を避けることが出来る。
(3.3.2.3) Instruction to Terminal When SBFD is applied, if the CLI measurement resource exists in the UL resource of the SBFD slot, information related to the CLI measurement resource may be transmitted to the UE 200 by the radio signal transceiver unit 110. This enables the UE 200 to avoid UL transmission in the UL resource in which the CLI measurement resource is set.
 (3.4)IAB-nodeにおけるCLI測定リソースに係る情報
 gNB100がIAB-nodeである場合、すなわちgNB-CUとgNB-DUとから構成される場合、gNB-CUは、他のgNBから受信するTDDのDL/ULパターンを、関係するgNB-DUのそれぞれに送信する。また、gNB-DUは、CLIが検出される場合、サービングセルのTDDのDL/ULパターンを、gNB-CUに送信する。このように、gNB100がIAB-nodeである場合、gNB-CUとgNB-DUとの間で、TDDのDL/ULパターンが交換される。これと同様に、gNB-CUとgNB-DUとの間で、上述したCLI測定リソースに係る情報が交換されてもよい。
(3.4) Information on CLI measurement resources in IAB-node When gNB100 is an IAB-node, i.e., when gNB100 is composed of gNB-CU and gNB-DU, gNB-CU transmits the TDD DL/UL pattern received from other gNBs to each of the related gNB-DUs. Also, when a CLI is detected, gNB-DU transmits the TDD DL/UL pattern of the serving cell to gNB-CU. In this way, when gNB100 is an IAB-node, TDD DL/UL patterns are exchanged between gNB-CU and gNB-DU. Similarly, information on the above-mentioned CLI measurement resources may be exchanged between gNB-CU and gNB-DU.
 (3.5)CLIを測定する周期に応じたCLI測定リソースに係る情報
 (3.5.1)周期がperiodicである場合
 gNB間のCLI測定がperiodicである場合においてgNB間で交換される測定リソース/設定に係る情報について説明する。
(3.5) Information related to CLI measurement resources according to the period for measuring CLI (3.5.1) When the period is periodic This section describes information related to measurement resources/settings exchanged between gNBs when CLI measurement between gNBs is periodic.
 干渉する側のgNB100は、干渉を受ける側のgNB100に対して、測定リソース/設定に係る情報を、明示的に通知する。情報は、以下の内容を含んでもよい。 The interfering gNB100 explicitly notifies the interfered gNB100 of information related to measurement resources/settings. The information may include the following:
 ・情報の種類
 例:情報は、periodicなgNB間のCLI測定のためのものである(ことを示す)。
 ・周波数情報
 例:周波数の中心/始端/終端、RB/RBGの周波数のバンド幅/数
 ・時間情報
 例:SFN、スロットナンバー、測定リソースの期間(例:1/2/5msec、1/2/4/8スロット、1/2/4/7シンボル)
 ・サブキャリアスペーシング
 例:15kHz、30kHz、60kHz、120kHz、240kHz
 ・送信周期
 例:5/10/20/40/80/160/320/640/1280msec
 ・送信タイミングオフセット
 例:cell-defined SSB(CD-SSB)からのオフセット
 ・周波数オフセット
 例:cell-defined SSB(CD-SSB)からのオフセット
 ・リソースID/ビーム情報
 例:SSBインデックス、物理セルID、CSI-RSリソースID
Type of information Example: The information is for (indicates) periodic inter-gNB CLI measurements.
Frequency information e.g. center/start/end of frequency, RB/RBG frequency bandwidth/number Time information e.g. SFN, slot number, measurement resource period (e.g. 1/2/5 msec, 1/2/4/8 slots, 1/2/4/7 symbols)
・Subcarrier spacing e.g. 15kHz, 30kHz, 60kHz, 120kHz, 240kHz
- Transmission period Example: 5/10/20/40/80/160/320/640/1280msec
・Transmission timing offset Example: offset from cell-defined SSB (CD-SSB) ・Frequency offset Example: offset from cell-defined SSB (CD-SSB) ・Resource ID/beam information Example: SSB index, physical cell ID, CSI-RS resource ID
 また、干渉を受ける側のgNB100は、測定リソース/設定に係る情報を、暗黙的に決定してもよい。例えば、cell-defined SSB(CD-SSB)が用いられるのであれば、干渉を受ける側のgNB100は、時間/周波数リソースを知ることが出来る。というのも、干渉を受ける側のgNB100は、同じ時間/周波数リソースでSSBを送信するからである。 Also, the gNB100 receiving interference may implicitly determine information related to the measurement resources/settings. For example, if cell-defined SSB (CD-SSB) is used, the gNB100 receiving interference can know the time/frequency resources because it transmits SSB on the same time/frequency resources.
 干渉を受ける側のgNB100は、測定リソース/設定に係る情報を受信すると、CLI測定を開始することが出来る。 Once the gNB100 receiving the interference receives information regarding measurement resources/settings, it can start CLI measurements.
 干渉を受ける側のgNB100は、干渉する側のgNB100に対して、CLIを測定するために、測定リソース/設定に係る情報を交換するように要求することが出来る。 The gNB100 receiving interference can request the gNB100 causing the interference to exchange information regarding measurement resources/settings in order to measure the CLI.
 (3.5.2)周期がsemi-periodicである場合
 gNB間のCLI測定がsemi-periodicである場合においてgNB間で交換される測定リソース/設定に係る情報について説明する。
(3.5.2) When the periodicity is semi-periodic This section describes information related to measurement resources/settings exchanged between gNBs when CLI measurements between gNBs are semi-periodic.
 干渉する側のgNB100は、干渉を受ける側のgNB100に対して、測定リソース/設定に係る情報を、明示的に通知する。情報は、以下の内容を含んでもよい。なお、以下に列挙する各情報の例は、(3.5.1)と同じであってもよい。 The interfering gNB100 explicitly notifies the interfered gNB100 of information related to measurement resources/settings. The information may include the following. Note that examples of each piece of information listed below may be the same as (3.5.1).
 ・周波数情報
 ・時間情報
 ・サブキャリアスペーシング
 ・送信周期
 ・送信タイミングオフセット
 ・リソースID/ビーム情報
・Frequency information ・Time information ・Subcarrier spacing ・Transmission period ・Transmission timing offset ・Resource ID/beam information
 また、干渉する側のgNB100は、干渉を受ける側のgNB100に対して、CLI測定の開始/停止(アクティベート/ディアクティベート)を通知してもよい。 The interfering gNB100 may also notify the interfering gNB100 of the start/stop (activate/deactivate) of CLI measurement.
 干渉する側のgNB100は、CLI測定の開始/停止を通知する場合、gNB間のCLI測定のための信号/チャネルの送信を開始/停止してもよい。また、干渉する側のgNB100は、CLI測定の開始/停止のタイミング(例:absolute time)を通知してもよく、このタイミングは、規格で定義されてもよい。 When the interfering gNB100 notifies the start/stop of CLI measurement, it may start/stop transmitting signals/channels for CLI measurement between gNBs. In addition, the interfering gNB100 may notify the timing (e.g. absolute time) of the start/stop of CLI measurement, and this timing may be defined in the standard.
 干渉を受ける側のgNB100は、干渉する側のgNB100に対して、上述した開始/停止を行うように要求することが出来る。 The gNB100 receiving the interference can request the gNB100 causing the interference to perform the start/stop described above.
 (3.5.3)周期がaperiodicである場合
 gNB間のCLI測定がaperiodicである場合においてgNB間で交換される測定リソース/設定に係る情報について説明する。
(3.5.3) When the period is aperiodic This section describes information related to measurement resources/settings exchanged between gNBs when CLI measurement between gNBs is aperiodic.
 干渉する側のgNB100は、干渉を受ける側のgNB100に対して、測定リソース/設定に係る情報を、明示的に通知する。情報は、以下の内容を含んでもよい。なお、以下に列挙する各情報の例は、(3.5.1)と同じであってもよい。 The interfering gNB100 explicitly notifies the interfered gNB100 of information related to measurement resources/settings. The information may include the following. Note that examples of each piece of information listed below may be the same as (3.5.1).
 ・周波数情報
 ・時間情報
 例:SFN、スロットナンバー、測定リソースの期間(例:1/2/5msec、1/2/4/8スロット、1/2/4/7シンボル)
 例:absolute timeを考慮してもよい。
 ・サブキャリアスペーシング
 ・送信タイミングオフセット
 ・リソースID/ビーム情報
 ・測定回数
 例:1/2/4/8回
 例:測定間のインターバルが通知されてもよい(例:1(スロット毎)/2/4/8スロット、5/10/20/40/80/160/320/640/1280msec)。
- Frequency information - Time information e.g. SFN, slot number, measurement resource period (e.g. 1/2/5 msec, 1/2/4/8 slots, 1/2/4/7 symbols)
Example: Absolute time may be taken into consideration.
- Subcarrier spacing - Transmission timing offset - Resource ID/beam information - Number of measurements Example: 1/2/4/8 times Example: Interval between measurements may be notified (e.g. 1 (per slot)/2/4/8 slots, 5/10/20/40/80/160/320/640/1280 msec).
 干渉を受ける側のgNB100は、干渉する側のgNB100に対して、CLIを測定したいことを通知し、干渉する側のgNB100は、干渉を受ける側のgNB100に対して、測定リソース/設定に係る情報を通知してもよい。 The gNB100 receiving interference may notify the gNB100 causing the interference that it wishes to measure the CLI, and the gNB100 causing the interference may notify the gNB100 receiving interference of information related to the measurement resources/settings.
 (4)作用・効果
 上述した実施形態のgNB100は、SBFDが適用される場合において、UE200に送信される参照信号とサブバンド及び時間ドメインが同じ(またはサブバンド及び時間ドメインの少なくとも一部が重複する)リソースにおいてCLI測定を行うことにより、SBFDにより実現されるリソースの利用効率を向上させることができる。
(4) Actions and Effects When SBFD is applied, the gNB100 of the above-described embodiment can improve the utilization efficiency of resources achieved by SBFD by performing CLI measurement in resources that have the same subband and time domain as the reference signal transmitted to the UE200 (or that have at least a partial overlap of the subband and time domain).
 上述した実施形態のgNB100は、SBFDが適用される場合において、UE200に送信される参照信号とサブバンドが異なりかつ時間ドメインが同じ(または時間ドメインの少なくとも一部が重複する)リソースにおいてCLI測定を行うことにより、SBFDにより実現されるリソースの利用効率を向上させることができる。 When SBFD is applied, the gNB100 of the above-mentioned embodiment can improve the resource utilization efficiency achieved by SBFD by performing CLI measurements on resources that are in a different subband and have the same time domain (or at least a part of the time domain overlaps) as the reference signal transmitted to the UE200.
 上述した実施形態のgNB100は、SBFDが適用される場合において、UE200に送信される参照信号とサブバンドが同じ(またはサブバンドの少なくとも一部が重複する)かつ時間ドメインが異なるリソースにおいてCLI測定を行うことにより、SBFDにより実現されるリソースの利用効率を向上させることができる。 When SBFD is applied, the gNB100 of the above-mentioned embodiment can improve the resource utilization efficiency achieved by SBFD by performing CLI measurements on resources that have the same subband (or at least a portion of the subband overlaps) as the reference signal transmitted to the UE200 but have a different time domain.
 CLI測定リソースに係る情報は、他のgNB100との間で予め共有されていてもよい。これにより、リソースの利用効率を向上させることができる。  Information related to CLI measurement resources may be shared in advance with other gNB100. This can improve the efficiency of resource usage.
 CLI測定リソースに係る情報は、他のgNB100との間で交換されてもよい。これにより、CLIを測定するための参照信号を柔軟に選択することができる。  Information regarding CLI measurement resources may be exchanged between other gNBs 100. This allows for flexible selection of reference signals for measuring CLI.
 上述した実施形態のgNB100は、UE200に対して、CLI測定リソースに係る情報を送信してもよい。これにより、CLI測定リソースがSBFDスロットのULリソースに存在する場合、当該ULリソースにおいて、UE200からのUL送信を避けることができる。 The gNB100 in the above-described embodiment may transmit information related to the CLI measurement resource to the UE200. This makes it possible to avoid UL transmission from the UE200 in the UL resource when the CLI measurement resource exists in the UL resource of the SBFD slot.
 上述した実施形態のgNB100は、CLI測定の周期に応じて、適切な測定リソース/設定に係る情報を送信することができる。 The gNB100 in the above-described embodiment can transmit information related to appropriate measurement resources/settings depending on the period of the CLI measurement.
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments The contents of the present invention have been described above in accordance with the embodiments. However, the present invention is not limited to these descriptions, and it will be obvious to those skilled in the art that various modifications and improvements are possible.
 上述した開示において、他のgNB100からの参照信号に基づいてCLIを測定したが、これに限られない。例えば、他のgNB100からのデータチャネルまたは制御チャネルに基づいて、CLIを測定してもよい。厳密には、これらのチャネルの信号強度などの値を測定し、測定した値が所定の閾値を下回る場合などにCLIの発生を予期する。データチャネルは、例えばPDSCHであり、制御チャネルは、例えばPDCCHである。この場合における参照信号の設定、CLI測定リソースに係る情報の交換、端末に対する指示は、例えば上述した(3.1)動作例1の(3.1.2)基地局間で非共通の参照信号を用いる場合の(3.1.2.1)参照信号の設定、(3.1.2.2)CLI測定リソースに係る情報の交換、(3.1.2.3)端末に対する指示と同じであってもよいし、異なってもよい。また、参照信号とデータチャネル及び制御チャネルとを包含する概念を、無線信号または単に信号ということもある。 In the above disclosure, the CLI is measured based on a reference signal from another gNB100, but this is not limited to the above. For example, the CLI may be measured based on a data channel or a control channel from another gNB100. Strictly speaking, values such as the signal strength of these channels are measured, and the occurrence of CLI is predicted when the measured value falls below a predetermined threshold. The data channel is, for example, a PDSCH, and the control channel is, for example, a PDCCH. In this case, the setting of the reference signal, the exchange of information related to the CLI measurement resource, and the instruction to the terminal may be the same as or different from the above-mentioned (3.1) Operation Example 1 (3.1.2) (3.1.2.1) Setting of the reference signal, (3.1.2.2) Exchange of information related to the CLI measurement resource, and (3.1.2.3) Instruction to the terminal when a non-common reference signal is used between base stations. In addition, the concept of including the reference signal, the data channel, and the control channel may be referred to as a radio signal or simply a signal.
 上述した開示において、SBFDスロットにおけるDLとULの割り当ては一例であり、逆であってもよい。 In the above disclosure, the DL and UL allocation in the SBFD slot is an example and may be reversed.
 上述した開示において、SBFDが適用される時間ドメインの単位をスロットとしたが、シンボル、サブフレーム、フレームなど、時間ドメインの他の単位としてもよい。 In the above disclosure, the time domain unit to which SBFD is applied is a slot, but other time domain units such as symbols, subframes, and frames may also be used.
 上述した開示において、測定リソース/設定に係る情報は、測定リソース/設定に読み替えられてもよいし、測定リソース/設定は、測定リソース/設定に係る情報に読み替えられてもよい。 In the above disclosure, information related to measurement resources/settings may be read as measurement resources/settings, and measurement resources/settings may be read as information related to measurement resources/settings.
 上述した開示において、gNB100と他のgNB100とは、互いに読み替えられてもよい。また、gNB100と他のgNB100は、いずれが干渉する側のgNBを指してもよい。同様に、gNB100と他のgNB100は、いずれが干渉を受ける側のgNBを指してもよい。 In the above disclosure, gNB100 and another gNB100 may be read as interchangeable. In addition, either gNB100 or another gNB100 may refer to the gNB that is interfering. Similarly, either gNB100 or another gNB100 may refer to the gNB that is receiving interference.
 上述した動作例は、矛盾が生じない限り、組み合わせて複合的に適用されてもよい。 The above operational examples may be combined and applied in a composite manner, provided no contradictions arise.
 上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In the above disclosure, configure, activate, update, indicate, enable, specify, and select may be read as interchangeable. Similarly, link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-individual may be read as interchangeable. Similarly, common, shared, group-common, UE-common, and UE-shared may be read as interchangeable.
 上述した実施形態の説明に用いたブロック構成図(図6及び図7)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block diagrams (FIGS. 6 and 7) used to explain the above-mentioned embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices. The functional blocks may be realized by combining the one device or the multiple devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for any of these.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、当該装置のハードウェア構成の一例を示す図である。図11に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the above-mentioned gNB100 and UE200 (the device) may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 11, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
 当該装置の各機能ブロック(図6及び図7参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see Figures 6 and 7) is realized by any hardware element of the computer device, or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Furthermore, each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments. Furthermore, the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The programs may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. Storage 1003 may also be referred to as an auxiliary storage device. The above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure may be applied to at least one of systems utilizing Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom. Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an example order and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, certain operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network consisting of one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW). Although the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or appended. The output information may be deleted. The input information may be sent to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received over a transmission medium. For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc. The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below). For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the mobile station may be configured to have the functions of a base station. Furthermore, terms such as "uplink" and "downlink" may be interpreted as terms corresponding to communication between terminals (for example, "side"). For example, the uplink channel, downlink channel, etc. may be interpreted as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may be a numerology-based unit of time.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-encoded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 In addition, when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length of 1 ms or more but less than the TTI length of a long TTI.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (RE). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient way of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the noun following these articles is in the plural form.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining something that is deemed to be a "judging" or "determining," and the like. "Determining" and "determining" may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like. Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment" can be interpreted as "assuming," "expecting," "considering," etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 図12は、車両2001の構成例を示す。図12に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 12 shows an example of the configuration of a vehicle 2001. As shown in FIG. 12, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices. The information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices. The driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. The communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on the information service unit 2012 provided in the vehicle. The communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。  Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended to be illustrative and does not have any limiting meaning on the present disclosure.
 (付記)
 上述した開示は、以下のように表現されてもよい。
(Additional Note)
The above disclosure may be expressed as follows:
 第1の特徴は、時分割複信のバンドを構成する複数のサブバンドを利用可能な複信方式において、他の基地局に対して、クロスリンク干渉を測定するための測定リソース/設定に係る情報を送信する送信部と、前記他の基地局が前記クロスリンク干渉を測定する周期に基づいて、前記情報を選択する制御部と、を備える基地局である。 The first feature is a base station that, in a duplexing method that can utilize multiple subbands that make up a time division duplexing band, includes a transmitter that transmits information related to measurement resources/settings for measuring crosslink interference to other base stations, and a controller that selects the information based on the period at which the other base stations measure the crosslink interference.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 無線信号送受信部
 120 アンプ部
 130 変復調部
 140 制御信号・参照信号処理部
 150 符号化/復号部
 160 データ送受信部
 170 制御部
 200 UE
 210 無線信号送受信部
 220 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM、RAM)
 2033 通信ポート
10 Wireless Communication Systems 20 NG-RAN
100 gNB
110 Radio signal transmitting/receiving unit 120 Amplifying unit 130 Modulation/demodulation unit 140 Control signal/reference signal processing unit 150 Encoding/decoding unit 160 Data transmitting/receiving unit 170 Control unit 200 UE
210 wireless signal transmitting/receiving unit 220 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus 2001 vehicle 2002 drive unit 2003 steering unit 2004 accelerator pedal 2005 brake pedal 2006 shift lever 2007 left and right front wheels 2008 left and right rear wheels 2009 axle 2010 electronic control unit 2012 information service unit 2013 communication module 2021 current sensor 2022 rotation speed sensor 2023 air pressure sensor 2024 vehicle speed sensor 2025 acceleration sensor 2026 brake pedal sensor 2027 shift lever sensor 2028 object detection sensor 2029 accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port

Claims (1)

  1.  時分割複信のバンドを構成する複数のサブバンドを利用可能な複信方式において、他の基地局に対して、クロスリンク干渉を測定するための測定リソース/設定に係る情報を送信する送信部と、
     前記他の基地局が前記クロスリンク干渉を測定する周期に基づいて、前記情報を選択する制御部と、
     を備える基地局。
     
    A transmission unit that transmits information related to measurement resources/settings for measuring crosslink interference to other base stations in a duplexing method that can use a plurality of subbands constituting a time division duplexing band;
    A control unit that selects the information based on a period during which the other base station measures the crosslink interference;
    A base station comprising:
PCT/JP2024/006524 2023-03-02 2024-02-22 Base station WO2024181301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-031879 2023-03-02
JP2023031879 2023-03-02

Publications (1)

Publication Number Publication Date
WO2024181301A1 true WO2024181301A1 (en) 2024-09-06

Family

ID=92590632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006524 WO2024181301A1 (en) 2023-03-02 2024-02-22 Base station

Country Status (1)

Country Link
WO (1) WO2024181301A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518780A (en) * 2013-04-09 2016-06-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Inter-device measurement for interference mitigation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518780A (en) * 2013-04-09 2016-06-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Inter-device measurement for interference mitigation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LEI KONG, NEW H3C TECHNOLOGIES CO., LTD.: "Discussion on potential enhancements on dynamic/flexible TDD", 3GPP DRAFT; R1-2300149; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052247301 *
PETER GAAL, QUALCOMM INCORPORATED: "On potential enhancements on dynamic/flexible TDD", 3GPP DRAFT; R1-2301412; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052248544 *
SEUNGHEE HAN, INTEL CORPORATION: "On enhancements for dynamic/flexible TDD", 3GPP DRAFT; R1-2300947; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 18 February 2023 (2023-02-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052248090 *
SHINYA KUMAGAI, NTT DOCOMO, INC.: "Discussion on potential enhancements on dynamic/flexible TDD", 3GPP DRAFT; R1-2301492; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052248624 *
YOUNGBUM KIM, SAMSUNG: "Dynamic and flexible TDD for NR duplex evolution", 3GPP DRAFT; R1-2301263; TYPE DISCUSSION; FS_NR_DUPLEX_EVO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052248398 *

Similar Documents

Publication Publication Date Title
WO2024181301A1 (en) Base station
WO2024100901A1 (en) Base station
WO2024214295A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024209643A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024166368A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024100735A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210006A1 (en) Terminal, wireless base station, and wireless communication method
WO2024166215A1 (en) Terminal, wireless base station, and wireless communication method
WO2024166375A1 (en) User equipment, base station, wireless communication system, and wireless communication method
WO2024171397A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024176453A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024214299A1 (en) Wireless base station and wireless communication method
WO2024166363A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024034083A1 (en) Terminal and wireless communication method
WO2024034029A1 (en) Terminal and wireless communication method
WO2023079713A1 (en) Terminal, wireless communication system, and wireless communication method
WO2024024098A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024096A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023210009A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024100A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024171405A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024095499A1 (en) Terminal, wireless base station, and wireless communication method
WO2024166380A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024209632A1 (en) Terminal and wireless communication method
WO2024095497A1 (en) Terminal, wireless base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763782

Country of ref document: EP

Kind code of ref document: A1