Nothing Special   »   [go: up one dir, main page]

WO2024181261A1 - Chemical-mechanical polishing composition and polishing method - Google Patents

Chemical-mechanical polishing composition and polishing method Download PDF

Info

Publication number
WO2024181261A1
WO2024181261A1 PCT/JP2024/006201 JP2024006201W WO2024181261A1 WO 2024181261 A1 WO2024181261 A1 WO 2024181261A1 JP 2024006201 W JP2024006201 W JP 2024006201W WO 2024181261 A1 WO2024181261 A1 WO 2024181261A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical polishing
chemical mechanical
polishing composition
mass
component
Prior art date
Application number
PCT/JP2024/006201
Other languages
French (fr)
Japanese (ja)
Inventor
康孝 亀井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2024181261A1 publication Critical patent/WO2024181261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a chemical mechanical polishing composition and a polishing method using the same.
  • CMP chemical mechanical polishing
  • tungsten which has excellent embedding properties, is used for contact holes that electrically connect wiring in the vertical and vertical directions.
  • Compositions that contain an oxidizing agent such as hydrogen peroxide, an iron catalyst such as iron nitrate, and abrasive grains such as silica have been proposed as chemical mechanical polishing compositions used to polish away excess tungsten film on insulating films (see, for example, Patent Documents 1 to 3).
  • Chemical mechanical polishing compositions used to polish tungsten films require the tungsten surface to be oxidized to create an oxide film, and so are usually acidic, with a pH of about 2 to 5. As a result, corrosion and defects are likely to occur on the tungsten surface after CMP, and there is a demand for chemical mechanical polishing compositions that can reduce corrosion and the occurrence of defects on the tungsten surface as much as possible.
  • Some aspects of the present invention provide a chemical mechanical polishing composition and a polishing method that can polish tungsten films at a high rate and reduce the occurrence of corrosion and defects on the tungsten surface.
  • the component (B) may be a nitrogen-containing heterocyclic compound.
  • the nitrogen-containing heterocyclic compound may have an isothiazolinone structure or a thiazole structure.
  • the pH may be 2 or more and 7 or less.
  • the component (A) may have a functional group represented by the following general formula (1). -SO 3 - M + ...(1) (M + represents a monovalent cation.)
  • the component (A) may have a functional group represented by the following general formula (2). -COO - M + ...(2) (M + represents a monovalent cation.)
  • the component (A) may have a functional group represented by the following general formula (3) or the following general formula (4). -NR 1 R 2 ...(3) -N + R 1 R 2 R 3 M -... (4) (In the above formulas (3) and (4), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M ⁇ represents an anion.)
  • the amount of the component (A) may be 1 part by mass or more and 20 parts by mass or less based on 100 parts by mass of the chemical mechanical polishing composition.
  • One aspect of the polishing method according to the present invention is to The method includes polishing a semiconductor substrate with the chemical mechanical polishing composition of any one of the above embodiments.
  • the chemical mechanical polishing composition of the present invention can increase the polishing rate of the tungsten film during CMP, which polishes a workpiece provided with a wiring layer containing tungsten, and can reduce corrosion and defects on the tungsten surface.
  • FIG. 1 is a cross-sectional view that shows a schematic diagram of a target object suitable for use in the polishing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view that illustrates the polishing method according to this embodiment.
  • FIG. 3 is a perspective view showing a schematic diagram of a chemical mechanical polishing apparatus.
  • FIG. 4 is a cross-sectional view that typically shows a patterned wafer used in the examples.
  • wiring material refers to conductive metal materials such as aluminum, copper, cobalt, titanium, ruthenium, and tungsten.
  • Insulating film material refers to materials such as silicon dioxide, silicon nitride, and amorphous silicon.
  • Barrier metal material refers to materials such as tantalum nitride and titanium nitride that are used in layers with wiring materials to improve the reliability of the wiring.
  • a numerical range described using "X to Y” means that the numerical range includes the numerical value X as the lower limit and the numerical value Y as the upper limit.
  • the chemical mechanical polishing composition according to this embodiment contains abrasive grains (A).
  • Component (A) is preferably an abrasive grain containing silica as a main component, and more preferably colloidal silica.
  • Component (A) can be produced by applying the method described in, for example, JP-A-2007-153732 or JP-A-2013-121631.
  • component (A) When component (A) is an abrasive grain containing silica as the main component, component (A) may further contain other components in addition to silica. Examples of other components include aluminum compounds, silicon compounds, etc. By further containing an aluminum compound or silicon compound in component (A), the surface hardness of component (A) can be reduced, which may further reduce the occurrence of polishing scratches and dishing on the polished surface.
  • Examples of aluminum compounds include aluminum hydroxide, aluminum oxide (alumina), aluminum chloride, aluminum nitride, aluminum acetate, aluminum phosphate, aluminum sulfate, sodium aluminate, potassium aluminate, etc.
  • examples of silicon compounds include silicon nitride, silicon carbide, silicates, silicone, silicone resins, etc.
  • the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is 10 mV or more.
  • the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is 10 mV or more, the dispersion stability of component (A) is improved due to electrostatic repulsion, and it may be possible to polish the tungsten film at high speed while reducing the occurrence of defects on the tungsten surface.
  • the absolute value of the zeta potential in the chemical mechanical polishing composition is less than 10 mV, the absolute value of the zeta potential in the chemical mechanical polishing composition can be increased by modifying at least a portion of the surface of the abrasive grain with a functional group.
  • the average particle size of component (A) is preferably 10 nm or more and 300 nm or less, and more preferably 20 nm or more and 200 nm or less. When the average particle size of component (A) is within the above range, a sufficient polishing rate for the tungsten film can be obtained, and a chemical mechanical polishing composition with excellent stability that does not cause particle settling or separation can be obtained.
  • the average particle size of component (A) can be calculated from the measured value by measuring the specific surface area by the BET method using, for example, an automatic dynamic adsorption surface area measuring device (Micromeritics FlowSorb II 2300, manufactured by Micromeritics).
  • the (A) component may have multiple protrusions on its surface.
  • the protrusions referred to here have a height and width sufficiently smaller than the particle diameter of the abrasive grain.
  • the number of protrusions is preferably 3 or more on average per abrasive grain, and more preferably 5 or more.
  • the (A) component having multiple protrusions on its surface can be said to be an abrasive grain having a unique shape, such as a confetti-like shape.
  • the unique shape of the (A) component increases the surface area, and enhances the reactivity with a compound having a functional group, which will be described later.
  • This increases the absolute value of the zeta potential of the (A) component in the chemical mechanical polishing composition, and improves the dispersion stability. As a result, it may be possible to polish a tungsten film at high speed while reducing the occurrence of defects on the tungsten surface.
  • the (A) component is preferably an abrasive grain having at least a portion of its surface modified with a functional group.
  • the abrasive grain having at least a portion of its surface modified with a functional group has a larger absolute value of zeta potential and a stronger electrostatic repulsion between the abrasive grains than abrasive grains that are not surface-modified with a functional group.
  • the dispersion stability of the abrasive grains in the chemical mechanical polishing composition is improved, and it may be possible to polish the tungsten film at high speed while reducing the occurrence of defects on the tungsten surface.
  • component (A) is described in detail below.
  • the first embodiment of the component (A) is an abrasive grain having a functional group represented by the following general formula (1) and having a plurality of protrusions on the surface. -SO 3 - M + ...(1) (M + represents a monovalent cation.)
  • the monovalent cation represented by M + includes, but is not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the above general formula (1) can be rephrased as "at least one functional group selected from the group consisting of sulfo groups and their salts".
  • salt of sulfo group refers to a functional group in which the hydrogen ion contained in the sulfo group (-SO 3 H) is replaced with a monovalent cation such as Li + , Na + , K + , and NH 4 + .
  • the component (A) according to the first embodiment is an abrasive grain having a functional group represented by the above general formula (1) fixed to its surface via a covalent bond, and does not include an abrasive grain having a compound having a functional group represented by the above general formula (1) physically or ionically adsorbed to its surface.
  • the component (A) according to the first embodiment can be manufactured by applying the method described in JP-A-2010-269985, for example. Specifically, first, silica having multiple protrusions on its surface is prepared by applying the method described in JP-A-2007-153732 or JP-A-2013-121631. Next, the silica having multiple protrusions on its surface and the mercapto group-containing silane coupling agent are thoroughly stirred in an acidic medium, so that the mercapto group-containing silane coupling agent is covalently bonded to the surface of the silica having multiple protrusions on its surface.
  • Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • an appropriate amount of hydrogen peroxide is further added and the mixture is left to stand for a sufficient period, whereby an abrasive grain having a functional group represented by the above general formula (1) and having multiple protrusions on its surface can be obtained.
  • the content of the component (A) according to the first aspect is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 4 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the component (A) according to the first aspect is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 16 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • polishing scratches may be suppressed.
  • a second embodiment of the component (A) is an abrasive grain having a functional group represented by the following general formula (2) and having a plurality of protrusions on the surface. -COO - M + ...(2) (M + represents a monovalent cation.)
  • the monovalent cation represented by M + includes, but is not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the above general formula (2) can be rephrased as "at least one functional group selected from the group consisting of carboxy groups and their salts".
  • “carboxy salt” refers to a functional group in which the hydrogen ion contained in the carboxy group (-COOH) is replaced with a monovalent cation such as Li + , Na + , K + , and NH 4 + .
  • the component (A) according to the second embodiment is an abrasive grain having a functional group represented by the above general formula (2) fixed to its surface via a covalent bond, and does not include an abrasive grain having a compound having a functional group represented by the above general formula (2) physically or ionically adsorbed to its surface.
  • the component (A) according to the second embodiment can be manufactured by applying the method described in JP-A-2010-105896, for example. Specifically, first, silica having multiple protrusions on its surface is prepared by applying the method described in JP-A-2007-153732 or JP-A-2013-121631. Next, the silica having multiple protrusions on its surface and a carboxylic anhydride-containing silane coupling agent are thoroughly stirred in a basic medium to covalently bond the carboxylic anhydride-silane coupling agent to the surface of the abrasive grain having multiple protrusions on its surface, thereby obtaining an abrasive grain having a functional group represented by the above general formula (2) and having multiple protrusions on its surface.
  • an example of the carboxylic anhydride-containing silane coupling agent is 3-(triethoxysilyl)propylsuccinic anhydride.
  • the content of the component (A) according to the second aspect is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 4 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the component (A) according to the second aspect is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 16 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • polishing scratches may be suppressed.
  • a third aspect of the component (A) is an abrasive grain having a functional group represented by the following general formula (3) or the following general formula (4) and having a plurality of protrusions on the surface.
  • -NR 1 R 2 ...(3) -N + R 1 R 2 R 3 M - (4) (In the above formula (3) and formula (4), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M ⁇ represents an anion.)
  • the functional group represented by the general formula (3) above represents an amino group
  • the functional group represented by the general formula (4) above represents a salt of an amino group. Therefore, the functional group represented by the general formula (3) above and the functional group represented by the general formula (4) above can be rephrased as "at least one functional group selected from the group consisting of amino groups and their salts.”
  • the component (A) according to the third aspect is an abrasive grain having a functional group represented by the general formula (3) or the general formula (4) above fixed to its surface via a covalent bond, and does not include an abrasive grain having a compound having a functional group represented by the general formula (3) or the general formula (4) above physically or ionically adsorbed to its surface.
  • the anion represented by M ⁇ includes, but is not limited to, anions such as OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , and CN ⁇ , as well as anions derived from acidic compounds.
  • R 1 to R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, but two or more of R 1 to R 3 may be bonded to form a ring structure.
  • the hydrocarbon groups represented by R 1 to R 3 may be any of aliphatic hydrocarbon groups, aromatic hydrocarbon groups, araliphatic hydrocarbon groups, and alicyclic hydrocarbon groups.
  • the aliphatic groups in the aliphatic hydrocarbon groups and araliphatic hydrocarbon groups may be saturated or unsaturated, and may be linear or branched. Examples of these hydrocarbon groups include linear, branched, or cyclic alkyl groups, alkenyl groups, aralkyl groups, and aryl groups.
  • alkyl group a lower alkyl group having 1 to 6 carbon atoms is preferred, and a lower alkyl group having 1 to 4 carbon atoms is more preferred.
  • alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, tert-pentyl, neopentyl, n-hexyl, iso-hexyl, sec-hexyl, tert-hexyl, cyclopentyl, and cyclohexyl groups.
  • alkenyl group a lower alkenyl group having 1 to 6 carbon atoms is preferable, and a lower alkenyl group having 1 to 4 carbon atoms is more preferable.
  • alkenyl groups include a vinyl group, an n-propenyl group, an iso-propenyl group, an n-butenyl group, an iso-butenyl group, a sec-butenyl group, and a tert-butenyl group.
  • aralkyl group those having 7 to 12 carbon atoms are preferred.
  • examples of such aralkyl groups include a benzyl group, a phenethyl group, a phenylpropyl group, a phenylbutyl group, a phenylhexyl group, a methylbenzyl group, a methylphenethyl group, and an ethylbenzyl group.
  • Aryl groups having 6 to 14 carbon atoms are preferred.
  • aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,5-xylyl, naphthyl, and anthryl groups.
  • aromatic rings of the above aryl and aralkyl groups may have, as substituents, lower alkyl groups such as methyl and ethyl groups, halogen atoms, nitro groups, amino groups, hydroxyl groups, etc.
  • the component (A) according to the third aspect can be manufactured by applying, for example, the method described in JP-A-2005-162533. Specifically, first, silica having multiple protrusions on its surface is prepared by applying the method described in JP-A-2007-153732 or JP-A-2013-121631. Next, the silica having multiple protrusions on its surface and the amino group-containing silane coupling agent are thoroughly stirred in an acidic medium to covalently bond the amino group-containing silane coupling agent to the surface of the silica having multiple protrusions on its surface, thereby producing abrasive grains having a functional group represented by the above general formula (3) or (4) and having multiple protrusions on its surface.
  • the amino group-containing silane coupling agent include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, etc.
  • the content of the component (A) according to the third aspect is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 4 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the component (A) according to the third aspect is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 16 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • polishing scratches may be suppressed.
  • the chemical mechanical polishing composition according to this embodiment contains a heterocyclic compound (B).
  • a heterocyclic compound (B) By containing the component (B), the surface of the tungsten film is protected, so that the corrosion of the tungsten surface and the occurrence of defects can be reduced.
  • the surface of the tungsten film is protected, so that residues such as particles can be efficiently removed from the tungsten surface.
  • the (B) component is preferably a nitrogen-containing heterocyclic compound.
  • the nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from a five-membered heterocyclic ring and a six-membered heterocyclic ring having at least one nitrogen atom.
  • Specific examples of the heterocyclic ring include five-membered heterocyclic rings such as pyrrole structure, imidazole structure, triazole structure, thiazole structure, and isothiazolin structure; and six-membered heterocyclic rings such as pyridine structure, pyrimidine structure, pyridazine structure, and pyrazine structure.
  • the heterocyclic ring may form a condensed ring.
  • an indole structure an isoindole structure, a benzimidazole structure, a benzotriazole structure, a quinoline structure, an isoquinoline structure, a quinazoline structure, a cinnoline structure, a phthalazine structure, a quinoxaline structure, and an acridine structure.
  • nitrogen-containing heterocyclic compounds having such structures nitrogen-containing heterocyclic compounds having an isothiazolin structure, a thiazole structure, a pyridine structure, a quinoline structure, a benzimidazole structure, or a benzotriazole structure are preferred, and nitrogen-containing heterocyclic compounds having an isothiazolin structure or a thiazole structure are more preferred.
  • nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxybenzotriazole, thiazole, benzothiazole, 4-bromothiazole, 2-chlorothiazole, 2-mercaptobenzothiazole, 2-(methylthio)benzothiazole, 2-chlorobenzothiazole, 2-methylbenzothiazole, 5-methoxy-2-methylbenzothiazole, 2-methyl-4,5,7-trifluorobenzothiazole, 2-aminobenzothiazole, 2-amino-6 -methylbenzothiazole, 2-amino-4-methoxybenzothiazole, 4-methyl-2-mercaptobenzothiazole, 3-
  • the content of the (B) component is preferably 0.0001 parts by mass or more, more preferably 0.0005 parts by mass or more, and particularly preferably 0.001 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the (B) component is preferably 0.5 parts by mass or less, more preferably 0.25 parts by mass or less, and particularly preferably 0.15 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • MA/MB 50 to 10,000.
  • MA/MB is preferably 60 or more, more preferably 75 or more, and particularly preferably 100 or more.
  • MA/MB is preferably 9,000 or less, more preferably 5,000 or less, even more preferably 3,000 or less, and particularly preferably 2,000 or less.
  • the chemical mechanical polishing composition according to this embodiment contains (C) liquid medium.
  • (C) liquid medium include water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent compatible with water, and the like. Among these, it is preferable to use water, a mixed medium of water and alcohol, and it is more preferable to use water. Water is not particularly limited, but pure water is preferable. Water may be blended as the remainder of the constituent materials of the chemical mechanical polishing composition, and there is no particular limit to the content of water.
  • the chemical mechanical polishing composition according to this embodiment may contain, as necessary, an organic acid and a salt thereof (hereinafter, also referred to as an "organic acid (salt)”), a phosphate ester, a water-soluble polymer, a surfactant, an inorganic acid and a salt thereof, a basic compound, or the like.
  • the chemical mechanical polishing composition according to this embodiment may contain at least one selected from the group consisting of organic acids and their salts.
  • the organic acid (salt) has a synergistic effect with the component (A) to increase the polishing rate of the tungsten film.
  • the organic acid (salt) is preferably a compound having a carboxy group or a compound having a sulfo group.
  • compounds having a carboxy group include stearic acid, lauric acid, oleic acid, myristic acid, alkenylsuccinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, acetic acid, oxalic acid, citric acid, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid, propionic acid, and trifluoroacetic acid; amino acids such as glycine, alanine, aspartic acid, glutamic acid, lysine, arginine, tryptophan, dodecylaminoethylaminoethylglycine, aromatic amino acids, and heterocyclic amino acids; imino acids such as
  • Examples of compounds having a sulfo group include alkylbenzenesulfonic acids such as dodecylbenzenesulfonic acid and p-toluenesulfonic acid; alkylnaphthalenesulfonic acids such as butylnaphthalenesulfonic acid; and ⁇ -olefinsulfonic acids such as tetradecenesulfonic acid. These compounds may be used alone or in combination of two or more.
  • the content of the organic acid (salt) is preferably 0.001 parts by mass or more, and more preferably 0.01 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the organic acid (salt) is preferably 5 parts by mass or less, and more preferably 1 part by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the chemical mechanical polishing composition according to this embodiment may contain a phosphate ester, which may enhance the effect of reducing the occurrence of dishing by being adsorbed to the surface of the tungsten film.
  • phosphate esters polyoxyethylene alkyl ether phosphate esters can be preferably used because they are particularly effective in reducing the occurrence of dishing.
  • polyoxyethylene alkyl ether phosphate esters include polyoxyethylene decyl ether phosphate monoester, polyoxyethylene decyl ether phosphate diester, polyoxyethylene isodecyl ether phosphate monoester, polyoxyethylene isodecyl ether phosphate diester, polyoxyethylene lauryl ether phosphate monoester, polyoxyethylene lauryl ether phosphate diester, polyoxyethylene tridecyl ether phosphate monoester, polyoxyethylene tridecyl ether phosphate diester, polyoxyethylene allyl phenyl ether phosphate monoester, polyoxyethylene allyl phenyl ether phosphate diester, etc. These can be used alone or in combination of two or more.
  • these polyoxyethylene alkyl ether phosphate esters include monoesters and diesters, and in the present invention, the monoesters and diesters may be used alone or as a mixture.
  • the content of the phosphate ester is preferably 0.001 parts by mass or more, and more preferably 0.002 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the phosphate ester is preferably 0.1 parts by mass or less, and more preferably 0.01 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer.
  • the water-soluble polymer may be adsorbed to the surface of the surface to be polished to reduce polishing friction, which may reduce the occurrence of dishing on the surface to be polished.
  • water-soluble polymers include polycarboxylic acids, polystyrene sulfonic acids, polyacrylic acids, polymethacrylic acids, polyethers, polyacrylamides, polyvinyl alcohols, polyvinylpyrrolidones, polyethyleneimines, polyallylamines, hydroxyethyl celluloses, etc. These can be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 10,000 or more and 1,500,000 or less, and more preferably 40,000 or more and 1,200,000 or less.
  • weight average molecular weight refers to the weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
  • the content of the water-soluble polymer is preferably 0.001 parts by mass or more, and more preferably 0.002 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the content of the water-soluble polymer is preferably 0.1 parts by mass or less, and more preferably 0.01 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
  • the chemical mechanical polishing composition according to this embodiment may contain a surfactant.
  • the surfactant is not particularly limited, and anionic surfactants, cationic surfactants, nonionic surfactants, etc. may be used.
  • anionic surfactants include sulfates such as alkyl ether sulfates and polyoxyethylene alkylphenyl ether sulfates; fluorine-containing surfactants such as perfluoroalkyl compounds; and the like.
  • Examples of cationic surfactants include aliphatic amine salts and aliphatic ammonium salts.
  • nonionic surfactants include nonionic surfactants having triple bonds such as acetylene glycol, acetylene glycol ethylene oxide adducts, and acetylene alcohol; polyethylene glycol surfactants, etc. These surfactants may be used alone or in combination of two or more.
  • the inorganic acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid.
  • the inorganic acid may form a salt with a base added separately to the chemical mechanical polishing composition.
  • Examples of the basic compound include organic bases and inorganic bases.
  • Examples of the organic base include amines, such as triethylamine, monoethanolamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, benzylamine, methylamine, ethylenediamine, diglycolamine, and isopropylamine.
  • Examples of the inorganic base include ammonia, potassium hydroxide, and sodium hydroxide. Among these basic compounds, ammonia and potassium hydroxide are preferred. These basic compounds may be used alone or in combination of two or more.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably from 2 to 7, more preferably from 2 to 6, and particularly preferably from 2.5 to 5.5.
  • the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition increases, improving dispersibility, and enabling high-speed polishing of a semiconductor substrate containing a tungsten film while reducing the occurrence of polishing scratches and dishing.
  • the pH of the chemical mechanical polishing composition according to this embodiment can be adjusted as necessary by appropriately increasing or decreasing the content of the organic acid and its salt, the inorganic acid and its salt, and the basic compound.
  • pH refers to the hydrogen ion exponent, and its value can be measured using a commercially available pH meter (e.g., a tabletop pH meter manufactured by Horiba, Ltd.) under conditions of 25°C and 1 atmospheric pressure.
  • a commercially available pH meter e.g., a tabletop pH meter manufactured by Horiba, Ltd.
  • the chemical mechanical polishing composition according to this embodiment can be used as an abrasive for polishing a workpiece provided with a wiring layer containing tungsten, among a plurality of substrates constituting a semiconductor device.
  • the composition can be used in a process of polishing the tungsten film on the insulating film to form a tungsten plug (W-plug) embedded in the contact hole in the insulating film.
  • composition for chemical mechanical polishing can be prepared by dissolving or dispersing each of the above-mentioned components in a liquid medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be used as long as it can dissolve or disperse uniformly.
  • the order and method of mixing each of the above-mentioned components are not particularly limited.
  • the chemical mechanical polishing composition according to this embodiment can be used as a POU slurry.
  • the POU slurry may be prepared by using the chemical mechanical polishing composition according to this embodiment as it is, or by adding a liquid medium such as water, the above-mentioned components, and an oxidizing agent such as hydrogen peroxide or a metal ion such as iron to the chemical mechanical polishing composition according to this embodiment and diluting the composition.
  • the method of addition is not particularly limited, and any method may be applied as long as a uniform POU slurry can be prepared.
  • the mixing order and mixing method of the above-mentioned components are not particularly limited.
  • the polishing method according to one embodiment of the present invention includes a step of polishing a processing object provided with a wiring layer containing tungsten using the above-mentioned POU slurry.
  • a POU slurry has a high polishing rate for the tungsten film and can reduce the occurrence of corrosion and defects on the tungsten surface, so that a tungsten plug of good quality can be formed.
  • the polishing method according to this embodiment will be described in detail below with reference to FIGS. 1 to 3.
  • FIG. 1 shows an example of a workpiece 100 to which the polishing method according to this embodiment is applied.
  • the substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, functional devices such as transistors may be formed on the substrate 10.
  • a silicon oxide film 12 which is an insulating film, is formed on the substrate 10 by a CVD method using silane gas and oxygen gas. After that, the silicon oxide film 12 is partially polished by CMP to flatten the surface.
  • a resist pattern is formed on the silicon oxide film 12. Using this as a mask, the silicon oxide film 12 is etched to form contact holes 14. After the contact holes 14 are formed, the resist pattern is removed.
  • a tungsten film 16 is deposited on the surface of the silicon oxide film 12 and in the contact holes 14 using the CVD method.
  • the tungsten film 16 is polished using the above-mentioned POU slurry until the silicon oxide film 12 is exposed.
  • the above-mentioned POU slurry has a high polishing rate for the tungsten film and can reduce corrosion and defects on the tungsten surface, so that a good quality tungsten plug can be formed.
  • the abrasive grains remaining on the polished surface can be removed by a normal cleaning method.
  • the abrasive grains adhering to the polished surface can be removed by cleaning with an alkaline cleaning solution of ammonia: hydrogen peroxide: water in a ratio of about 1:1:5 (by mass).
  • an aqueous solution of citric acid, an aqueous mixture of hydrofluoric acid and citric acid, and an aqueous mixture of hydrofluoric acid and ethylenediaminetetraacetic acid (EDTA) can be used as a cleaning solution for impurity metal species adsorbed on the polished surface.
  • a chemical mechanical polishing apparatus 200 as shown in Fig. 3 can be used.
  • Fig. 3 is a perspective view showing a schematic diagram of the chemical mechanical polishing apparatus 200.
  • the chemical mechanical polishing is performed by supplying a POU slurry 44 from a slurry supply nozzle 42, and contacting a carrier head 52 holding a semiconductor substrate 50 with a turntable 48 to which a polishing pad 46 is attached while rotating the turntable 48.
  • a water supply nozzle 54 and a dresser 56 are also shown in Fig. 3.
  • the polishing load of the carrier head 52 can be selected within the range of 10 to 980 hPa, and is preferably 30 to 490 hPa.
  • the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and is preferably 30 to 150 rpm.
  • the flow rate of the slurry (POU slurry) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL/min, and is preferably 50 to 400 mL/min.
  • Chemical mechanical polishing devices include, for example, models “EPO-112", “EPO-222", and “F-REX300SII” manufactured by Ebara Corporation; models “LGP-510” and “LGP-552” manufactured by Lapmaster SFT; models “Mirra” and “Reflexion” manufactured by Applied Materials; and model “POLI-762” manufactured by G&P Technology.
  • abrasive grain A Colloidal silica (product name: PL-3) manufactured by Fuso Chemical Co., Ltd., spherical colloidal silica having a silica concentration of 20 mass%, pH 7.8, and an average particle size of 70 nm, was purchased and used as is as abrasive grain A.
  • the average particle size of abrasive grain A was calculated from the specific surface area measured by the BET method using an automatic dynamic adsorption surface area measuring device (Micromeritics FlowSorb II 2300 manufactured by Micromeritics).
  • the average particle size of abrasive grain C was determined in the same manner as abrasive grain A.
  • the average particle size of abrasive grain D was determined in the same manner as abrasive grain A.
  • the thickness of the silicon oxide film was calculated by measuring the refractive index using a non-contact optical film thickness measuring device (KLA Tencor, model "F5x”).
  • the thickness of the tungsten film was calculated by measuring the sheet resistance using a sheet resistance measuring device (KLA Tencor, model "RS-100").
  • polishing rate of the tungsten film when the polishing rate of the tungsten film is 150 ⁇ /min or more, it is possible to polish sufficiently for practical use in actual semiconductor polishing, so it is judged to be good and recorded as "A" in the table.
  • the polishing rate of the tungsten film is less than 150 ⁇ /min, it is judged to be poor because the polishing rate is too slow for practical use and recorded as "B" in the table.
  • the silicon oxide film when the polishing rate of the silicon oxide film is 1000 ⁇ /min or more, it is possible to polish sufficiently for practical use in actual semiconductor polishing, so it is judged to be good and recorded as "A” in the table.
  • polishing rate of the silicon oxide film is less than 1000 ⁇ /min, it is judged to be poor because the polishing rate is too slow for practical use and recorded as "B" in the table.
  • a patterned wafer "MASK754 W PTW" with a diameter of 12 inches manufactured by Advanced Materials Technology Co., Ltd. was prepared.
  • 62 represents "300 mm Si”
  • 64 represents "100 nm PE-TEOS (SiO 2 )”
  • 66 represents "10 nm Ti”
  • 68 represents “6 nm TiN”
  • 70 represents "200 nm W”.
  • This patterned wafer 300 was used as the processing object and a first stage chemical mechanical polishing was carried out under the following conditions.
  • the patterned wafer after the second-stage chemical mechanical polishing was observed with an SEM. If there were three or fewer corrosion spots in a 100k field of view, it was determined that sufficient corrosion suppression was possible in actual semiconductor polishing, and was marked as "A” in the table. If there were four or more corrosion spots in a 100k field of view, it was determined that corrosion suppression was poor, and was marked as "B" in the table.
  • the patterned wafer after the polishing rate evaluation was observed with a defect inspection device (KLA2351, manufactured by KLA Tencor Corporation).
  • the number of defects was calculated by measuring the pixel size of the defect inspection device at 0.16 ⁇ m in array mode, and detecting and evaluating defects extracted from the difference caused by superimposing the comparison image and pixel unit.
  • the result was judged to be good and was recorded as "A" in the table.
  • there were 10 defects of 0.16 ⁇ m or more per wafer there was a concern that abnormalities would occur in the electrical characteristics of the wafer, so the result was judged to be bad and was recorded as "B" in the table.
  • Tables 1 and 2 below show the compositions of the chemical mechanical polishing compositions of the Examples and Comparative Examples, as well as the evaluation results.
  • the POU slurries of Comparative Examples 1, 4, and 6 are examples in which the MA/MB ratio is less than 50. In these cases, it was found that corrosion and/or defects are likely to occur in the tungsten wiring on the patterned wafer.
  • the POU slurries of Comparative Examples 2, 3, and 5 are examples in which the MA/MB ratio is 10,000 or more. In these cases, it was found that corrosion of the tungsten wiring on the patterned wafer is likely to occur.
  • the present invention includes configurations that are substantially the same as those described in the embodiments (for example, configurations with the same functions, methods, and results, or configurations with the same purpose and effect).
  • the present invention also includes configurations in which non-essential parts of the configurations described in the embodiments are replaced.
  • the present invention also includes configurations that achieve the same effects as the configurations described in the embodiments, or that can achieve the same purpose.
  • the present invention also includes configurations in which publicly known technology is added to the configurations described in the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention provides a chemical-mechanical polishing composition with which it is possible to increase the polishing rate of a tungsten film and reduce the occurrence of corrosion and defects on the tungsten surface, and also provides a polishing method. This chemical-mechanical polishing composition contains (A) abrasive grains, (B) a heterocyclic compound, and (C) a liquid medium, and MA/MB=50 to 10,000, where MA (parts by mass) is the (A) component content, and MB (parts by mass) is the (B) component content.

Description

化学機械研磨用組成物及び研磨方法Chemical mechanical polishing composition and polishing method
 本発明は、化学機械研磨用組成物及びそれを用いた研磨方法に関する。 The present invention relates to a chemical mechanical polishing composition and a polishing method using the same.
 半導体の製造技術の向上に伴い、半導体素子の高集積化、高速動作が求められている。これに伴い、半導体素子における微細半導体の製造工程において要求される半導体基板表面の平坦性は益々厳しくなってきており、化学機械研磨(Chemical Mechanical Polishing :CMP)が半導体素子の製造工程に不可欠な技術となっている。 As semiconductor manufacturing technology improves, there is a demand for higher integration and faster operation of semiconductor elements. Accordingly, the flatness of the semiconductor substrate surface required in the manufacturing process of fine semiconductors in semiconductor elements is becoming increasingly strict, and chemical mechanical polishing (CMP) has become an essential technology in the manufacturing process of semiconductor elements.
 例えば、配線間を上下縦方向に電気的に接合するコンタクトホールには、埋め込み性に優れたタングステンが使用される。絶縁膜上の余分なタングステン膜を研磨するために使用される化学機械研磨用組成物としては、過酸化水素等の酸化剤、硝酸鉄等の鉄触媒、及びシリカ等の砥粒を含有する組成物が提案されている(例えば、特許文献1~3参照)。 For example, tungsten, which has excellent embedding properties, is used for contact holes that electrically connect wiring in the vertical and vertical directions. Compositions that contain an oxidizing agent such as hydrogen peroxide, an iron catalyst such as iron nitrate, and abrasive grains such as silica have been proposed as chemical mechanical polishing compositions used to polish away excess tungsten film on insulating films (see, for example, Patent Documents 1 to 3).
特表2005-518091号公報Special Publication No. 2005-518091 特開2007-19093号公報JP 2007-19093 A 特表2008-503875号公報Special Publication No. 2008-503875
 タングステン膜を研磨するために使用される化学機械研磨用組成物では、タングステン表面を酸化させて酸化膜を作り出す必要があることから、通常pHが2~5程度の酸性となる。そのため、CMP終了後のタングステン表面には腐食や欠陥が発生しやすく、タングステン表面の腐食や欠陥の発生をできる限り低減できる化学機械研磨用組成物が要求されている。 Chemical mechanical polishing compositions used to polish tungsten films require the tungsten surface to be oxidized to create an oxide film, and so are usually acidic, with a pH of about 2 to 5. As a result, corrosion and defects are likely to occur on the tungsten surface after CMP, and there is a demand for chemical mechanical polishing compositions that can reduce corrosion and the occurrence of defects on the tungsten surface as much as possible.
 本発明に係る幾つかの態様は、タングステン膜の研磨速度が大きく、かつ、タングステン表面の腐食や欠陥の発生を低減することができる化学機械研磨用組成物、及び研磨方法を提供するものである。 Some aspects of the present invention provide a chemical mechanical polishing composition and a polishing method that can polish tungsten films at a high rate and reduce the occurrence of corrosion and defects on the tungsten surface.
 本発明に係る化学機械研磨用組成物の一態様は、
 (A)砥粒と、
 (B)複素環化合物と、
 (C)液状媒体と、
を含有する化学機械研磨用組成物であって、
 前記(A)成分の含有量をMA[質量部]、前記(B)成分の含有量をMB[質量部]としたときに、MA/MB=50~10000である。
One aspect of the chemical mechanical polishing composition of the present invention is
(A) abrasive grains;
(B) a heterocyclic compound;
(C) a liquid medium;
A chemical mechanical polishing composition comprising:
When the content of the component (A) is MA [parts by mass] and the content of the component (B) is MB [parts by mass], MA/MB=50 to 10,000.
 前記化学機械研磨用組成物の一態様において、
 前記(B)成分が、含窒素複素環化合物であってもよい。
In one embodiment of the chemical mechanical polishing composition,
The component (B) may be a nitrogen-containing heterocyclic compound.
 前記化学機械研磨用組成物のいずれかの態様において、
 前記含窒素複素環化合物が、イソチアゾリン構造又はチアゾール構造を有してもよい。
In any one of the embodiments of the chemical mechanical polishing composition,
The nitrogen-containing heterocyclic compound may have an isothiazolinone structure or a thiazole structure.
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが2以上7以下であってもよい。
In any one of the embodiments of the chemical mechanical polishing composition,
The pH may be 2 or more and 7 or less.
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(A)成分が、下記一般式(1)で表される官能基を有してもよい。
 -SO  ・・・・・(1)
 (Mは1価の陽イオンを表す。)
In any one of the embodiments of the chemical mechanical polishing composition,
The component (A) may have a functional group represented by the following general formula (1).
-SO 3 - M + ...(1)
(M + represents a monovalent cation.)
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(A)成分が、下記一般式(2)で表される官能基を有してもよい。
 -COO ・・・・・(2)
 (Mは1価の陽イオンを表す。)
In any one of the embodiments of the chemical mechanical polishing composition,
The component (A) may have a functional group represented by the following general formula (2).
-COO - M + ...(2)
(M + represents a monovalent cation.)
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(A)成分が、下記一般式(3)又は下記一般式(4)で表される官能基を有してもよい。
 -NR ・・・・・(3)
 -N ・・・・・(4)
 (上記式(3)及び(4)中、R、R及びRは各々独立して、水素原子、又は置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
In any one of the embodiments of the chemical mechanical polishing composition,
The component (A) may have a functional group represented by the following general formula (3) or the following general formula (4).
-NR 1 R 2 ...(3)
-N + R 1 R 2 R 3 M -... (4)
(In the above formulas (3) and (4), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M − represents an anion.)
 前記化学機械研磨用組成物のいずれかの態様において、
 前記(A)成分の含有量が、化学機械研磨用組成物100質量部に対して、1質量部以上20質量部以下であってもよい。
In any one of the embodiments of the chemical mechanical polishing composition,
The amount of the component (A) may be 1 part by mass or more and 20 parts by mass or less based on 100 parts by mass of the chemical mechanical polishing composition.
 本発明に係る研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。
One aspect of the polishing method according to the present invention is to
The method includes polishing a semiconductor substrate with the chemical mechanical polishing composition of any one of the above embodiments.
 本発明に係る化学機械研磨用組成物によれば、タングステンを含む配線層が設けられた被処理体を研磨するCMPにおいて、タングステン膜の研磨速度が大きく、かつ、タングステン表面の腐食や欠陥の発生を低減することができる。 The chemical mechanical polishing composition of the present invention can increase the polishing rate of the tungsten film during CMP, which polishes a workpiece provided with a wiring layer containing tungsten, and can reduce corrosion and defects on the tungsten surface.
図1は、本実施形態に係る研磨方法での使用に適した被処理体を模式的に示した断面図である。FIG. 1 is a cross-sectional view that shows a schematic diagram of a target object suitable for use in the polishing method according to the present embodiment. 図2は、本実施形態に係る研磨方法を模式的に示す断面図である。FIG. 2 is a cross-sectional view that illustrates the polishing method according to this embodiment. 図3は、化学機械研磨装置を模式的に示した斜視図である。FIG. 3 is a perspective view showing a schematic diagram of a chemical mechanical polishing apparatus. 図4は、実施例で使用したパターン付きウェハを模式的に示す断面図である。FIG. 4 is a cross-sectional view that typically shows a patterned wafer used in the examples.
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。 Below, a preferred embodiment of the present invention will be described in detail. Note that the present invention is not limited to the following embodiment, and includes various modifications that are implemented within the scope that does not change the gist of the present invention.
 本明細書において、「配線材料」とは、アルミニウム、銅、コバルト、チタン、ルテニウム、タングステン等の導電体金属材料のことをいう。「絶縁膜材料」とは、二酸化ケイ素、窒化ケイ素、アモルファスシリコン等の材料のことをいう。「バリアメタル材料」とは、窒化タンタル、窒化チタン等の配線の信頼性を向上させる目的で配線材料と積層させて用いられる材料のことをいう。 In this specification, "wiring material" refers to conductive metal materials such as aluminum, copper, cobalt, titanium, ruthenium, and tungsten. "Insulating film material" refers to materials such as silicon dioxide, silicon nitride, and amorphous silicon. "Barrier metal material" refers to materials such as tantalum nitride and titanium nitride that are used in layers with wiring materials to improve the reliability of the wiring.
 本明細書において、「X~Y」を用いて記載された数値範囲は、数値Xを下限値として含み、数値Yを上限値として含む意味である。 In this specification, a numerical range described using "X to Y" means that the numerical range includes the numerical value X as the lower limit and the numerical value Y as the upper limit.
 1.化学機械研磨用組成物
 本発明の一実施形態に係る化学機械研磨用組成物は、(A)砥粒(本明細書において、「(A)成分」ともいう。)と、(B)複素環化合物(本明細書において、「(B)成分」ともいう。)と、(C)液状媒体(本明細書において、「(C)成分」ともいう。)と、を含有し、前記(A)成分の含有量をMA[質量部]、前記(B)成分の含有量をMB[質量部]としたときに、MA/MB=50~10000である。以下、本実施形態に係る化学機械研磨用組成物に含まれ得る成分について詳細に説明する。
1. Chemical Mechanical Polishing Composition A chemical mechanical polishing composition according to one embodiment of the present invention contains (A) abrasive grains (also referred to herein as "component (A)"), (B) a heterocyclic compound (also referred to herein as "component (B)"), and (C) a liquid medium (also referred to herein as "component (C)"), in which, when the content of component (A) is MA [parts by mass] and the content of component (B) is MB [parts by mass], MA/MB = 50 to 10,000. Components that may be contained in the chemical mechanical polishing composition according to this embodiment are described in detail below.
 1.1.(A)砥粒
 本実施形態に係る化学機械研磨用組成物は、(A)砥粒を含有する。(A)成分は、シリカを主成分として含有する砥粒であることが好ましく、コロイダルシリカであることがより好ましい。(A)成分は、例えば特開2007-153732号公報や特開2013-121631号公報に記載された方法を適用して製造することができる。
1.1. Abrasive grains (A) The chemical mechanical polishing composition according to this embodiment contains abrasive grains (A). Component (A) is preferably an abrasive grain containing silica as a main component, and more preferably colloidal silica. Component (A) can be produced by applying the method described in, for example, JP-A-2007-153732 or JP-A-2013-121631.
 (A)成分がシリカを主成分として含有する砥粒である場合、(A)成分はシリカ以外の他の成分をさらに含有してもよい。他の成分としては、アルミニウム化合物、ケイ素化合物等が挙げられる。(A)成分がアルミニウム化合物又はケイ素化合物をさらに含有することにより、(A)成分の表面硬度を小さくすることができるため、被研磨面の研磨傷やディッシングの発生をより低減できる場合がある。 When component (A) is an abrasive grain containing silica as the main component, component (A) may further contain other components in addition to silica. Examples of other components include aluminum compounds, silicon compounds, etc. By further containing an aluminum compound or silicon compound in component (A), the surface hardness of component (A) can be reduced, which may further reduce the occurrence of polishing scratches and dishing on the polished surface.
 アルミニウム化合物としては、例えば水酸化アルミニウム、酸化アルミニウム(アルミナ)、塩化アルミニウム、窒化アルミニウム、酢酸アルミニウム、リン酸アルミニウム、硫酸アルミニウム、アルミン酸ナトリウム、アルミン酸カリウム等が挙げられる。一方、ケイ素化合物としては、窒化ケイ素、炭化ケイ素、ケイ酸塩、シリコーン、ケイ素樹脂等が挙げられる。 Examples of aluminum compounds include aluminum hydroxide, aluminum oxide (alumina), aluminum chloride, aluminum nitride, aluminum acetate, aluminum phosphate, aluminum sulfate, sodium aluminate, potassium aluminate, etc. On the other hand, examples of silicon compounds include silicon nitride, silicon carbide, silicates, silicone, silicone resins, etc.
 (A)成分は、化学機械研磨用組成物中におけるゼータ電位の絶対値が10mV以上であることが好ましい。化学機械研磨用組成物中における(A)成分のゼータ電位の絶対値が10mV以上であると、静電反発力により(A)成分の分散安定性が向上するため、タングステン表面の欠陥の発生を低減しながら、タングステン膜を高速研磨することができる場合がある。化学機械研磨用組成物中におけるゼータ電位の絶対値が10mV未満である場合には、砥粒の表面の少なくとも一部を官能基によって修飾することにより、化学機械研磨用組成物中におけるゼータ電位の絶対値を大きくすることができる。 It is preferable that the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is 10 mV or more. When the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition is 10 mV or more, the dispersion stability of component (A) is improved due to electrostatic repulsion, and it may be possible to polish the tungsten film at high speed while reducing the occurrence of defects on the tungsten surface. When the absolute value of the zeta potential in the chemical mechanical polishing composition is less than 10 mV, the absolute value of the zeta potential in the chemical mechanical polishing composition can be increased by modifying at least a portion of the surface of the abrasive grain with a functional group.
 (A)成分の平均粒子径は、好ましくは10nm以上300nm以下であり、より好ましくは20nm以上200nm以下である。(A)成分の平均粒子径が前記範囲内にあると、タングステン膜の十分な研磨速度が得られると共に、粒子の沈降・分離を生ずることのない安定性に優れた化学機械研磨用組成物が得られる場合がある。なお、(A)成分の平均粒子径は、例えば動的吸着表面積自動測定装置(Micromeritics社製、「Micromeritics FlowSorb II 2300」)を用いてBET法による比表面積を測定し、その測定値から算出して求めることができる。 The average particle size of component (A) is preferably 10 nm or more and 300 nm or less, and more preferably 20 nm or more and 200 nm or less. When the average particle size of component (A) is within the above range, a sufficient polishing rate for the tungsten film can be obtained, and a chemical mechanical polishing composition with excellent stability that does not cause particle settling or separation can be obtained. The average particle size of component (A) can be calculated from the measured value by measuring the specific surface area by the BET method using, for example, an automatic dynamic adsorption surface area measuring device (Micromeritics FlowSorb II 2300, manufactured by Micromeritics).
 (A)成分は、表面に複数の突起を有してもよい。ここでいう突起とは、砥粒の粒子径に比べて十分に小さい高さ及び幅を有するものである。(A)成分が表面に複数の突起を有する場合、突起の数は、砥粒1つ当たり平均で3つ以上であることが好ましく、5つ以上であることがより好ましい。すなわち、表面に複数の突起を有する(A)成分は、いわゆる金平糖状(confetti-like)のような特異な形状を有する砥粒であるともいえる。(A)成分がこのような特異な形状であることにより表面積が大きくなり、後述する官能基を有する化合物との反応性が高まる。これにより、化学機械研磨用組成物中の(A)成分のゼータ電位の絶対値が大きくなり、分散安定性が向上する。その結果、タングステン表面の欠陥の発生を低減しながら、タングステン膜を高速研磨することができる場合がある。 The (A) component may have multiple protrusions on its surface. The protrusions referred to here have a height and width sufficiently smaller than the particle diameter of the abrasive grain. When the (A) component has multiple protrusions on its surface, the number of protrusions is preferably 3 or more on average per abrasive grain, and more preferably 5 or more. In other words, the (A) component having multiple protrusions on its surface can be said to be an abrasive grain having a unique shape, such as a confetti-like shape. The unique shape of the (A) component increases the surface area, and enhances the reactivity with a compound having a functional group, which will be described later. This increases the absolute value of the zeta potential of the (A) component in the chemical mechanical polishing composition, and improves the dispersion stability. As a result, it may be possible to polish a tungsten film at high speed while reducing the occurrence of defects on the tungsten surface.
 (A)成分は、その表面の少なくとも一部が官能基によって修飾された砥粒であることが好ましい。表面の少なくとも一部が官能基によって修飾された砥粒は、pHが2以上7以下の範囲において、官能基によって表面修飾されていない砥粒に比べてゼータ電位の絶対値が大きくなり、砥粒同士の静電反発力が増大する。その結果、化学機械研磨用組成物中における砥粒の分散安定性は向上するため、タングステン表面の欠陥の発生を低減しながら、タングステン膜を高速研磨することができる場合がある。 The (A) component is preferably an abrasive grain having at least a portion of its surface modified with a functional group. In the pH range of 2 to 7, the abrasive grain having at least a portion of its surface modified with a functional group has a larger absolute value of zeta potential and a stronger electrostatic repulsion between the abrasive grains than abrasive grains that are not surface-modified with a functional group. As a result, the dispersion stability of the abrasive grains in the chemical mechanical polishing composition is improved, and it may be possible to polish the tungsten film at high speed while reducing the occurrence of defects on the tungsten surface.
 以下、(A)成分の具体的態様について詳細に説明する。 Specific aspects of component (A) are described in detail below.
 1.1.1.第1の態様
 (A)成分の第1の態様としては、下記一般式(1)で表される官能基を有し、かつ、表面に複数の突起を有する砥粒が挙げられる。
 -SO  ・・・・・(1)
 (Mは1価の陽イオンを表す。)
1.1.1. First embodiment The first embodiment of the component (A) is an abrasive grain having a functional group represented by the following general formula (1) and having a plurality of protrusions on the surface.
-SO 3 - M + ...(1)
(M + represents a monovalent cation.)
 上記式(1)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、上記一般式(1)で表される官能基は、「スルホ基及びその塩よりなる群から選択される少なくとも1種の官能基」と言い換えることもできる。ここで、「スルホ基の塩」とは、スルホ基(-SOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。第1の態様に係る(A)成分は、その表面に上記一般式(1)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(1)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。 In the above formula (1), the monovalent cation represented by M + includes, but is not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the above general formula (1) can be rephrased as "at least one functional group selected from the group consisting of sulfo groups and their salts". Here, "salt of sulfo group" refers to a functional group in which the hydrogen ion contained in the sulfo group (-SO 3 H) is replaced with a monovalent cation such as Li + , Na + , K + , and NH 4 + . The component (A) according to the first embodiment is an abrasive grain having a functional group represented by the above general formula (1) fixed to its surface via a covalent bond, and does not include an abrasive grain having a compound having a functional group represented by the above general formula (1) physically or ionically adsorbed to its surface.
 第1の態様に係る(A)成分は、例えば特開2010-269985号公報に記載された方法を適用して製造することができる。具体的には、まず特開2007-153732号公報や特開2013-121631号公報に記載された方法を適用して、表面に複数の突起を有するシリカを作製する。次いで、表面に複数の突起を有するシリカとメルカプト基含有シランカップリング剤を酸性媒体中で十分に攪拌することにより、表面に複数の突起を有するシリカの表面にメルカプト基含有シランカップリング剤を共有結合させる。ここで、メルカプト基含有シランカップリング剤としては、例えば3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。次に、過酸化水素を更に適量添加して十分に放置することにより、上記一般式(1)で表される官能基を有し、かつ、表面に複数の突起を有する砥粒を得ることができる。 The component (A) according to the first embodiment can be manufactured by applying the method described in JP-A-2010-269985, for example. Specifically, first, silica having multiple protrusions on its surface is prepared by applying the method described in JP-A-2007-153732 or JP-A-2013-121631. Next, the silica having multiple protrusions on its surface and the mercapto group-containing silane coupling agent are thoroughly stirred in an acidic medium, so that the mercapto group-containing silane coupling agent is covalently bonded to the surface of the silica having multiple protrusions on its surface. Examples of the mercapto group-containing silane coupling agent include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane. Next, an appropriate amount of hydrogen peroxide is further added and the mixture is left to stand for a sufficient period, whereby an abrasive grain having a functional group represented by the above general formula (1) and having multiple protrusions on its surface can be obtained.
 本実施形態に係る化学機械研磨用組成物が第1の態様に係る(A)成分を含有する場合、第1の態様に係る(A)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは1質量部以上であり、より好ましくは2質量部以上であり、特に好ましくは4質量部以上である。第1の態様に係る(A)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは20質量部以下であり、より好ましくは18質量部以下であり、特に好ましくは16質量部以下である。第1の態様に係る(A)成分の含有量が前記範囲内であると、研磨傷を抑制できる場合がある。 When the chemical mechanical polishing composition according to this embodiment contains the component (A) according to the first aspect, the content of the component (A) according to the first aspect is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 4 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the component (A) according to the first aspect is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 16 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. When the content of the component (A) according to the first aspect is within the above range, polishing scratches may be suppressed.
 1.1.2.第2の態様
 (A)成分の第2の態様としては、下記一般式(2)で表される官能基を有し、かつ、表面に複数の突起を有する砥粒が挙げられる。
 -COO ・・・・・(2)
 (Mは1価の陽イオンを表す。)
1.1.2. Second embodiment A second embodiment of the component (A) is an abrasive grain having a functional group represented by the following general formula (2) and having a plurality of protrusions on the surface.
-COO - M + ...(2)
(M + represents a monovalent cation.)
 上記式(2)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、上記一般式(2)で表される官能基は、「カルボキシ基及びその塩よりなる群から選択される少なくとも1種の官能基」と言い換えることもできる。ここで、「カルボキシ基の塩」とは、カルボキシ基(-COOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。第2の態様に係る(A)成分は、その表面に上記一般式(2)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(2)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。 In the above formula (2), the monovalent cation represented by M + includes, but is not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the above general formula (2) can be rephrased as "at least one functional group selected from the group consisting of carboxy groups and their salts". Here, "carboxy salt" refers to a functional group in which the hydrogen ion contained in the carboxy group (-COOH) is replaced with a monovalent cation such as Li + , Na + , K + , and NH 4 + . The component (A) according to the second embodiment is an abrasive grain having a functional group represented by the above general formula (2) fixed to its surface via a covalent bond, and does not include an abrasive grain having a compound having a functional group represented by the above general formula (2) physically or ionically adsorbed to its surface.
 第2の態様に係る(A)成分は、例えば特開2010-105896号公報に記載された方法を適用して製造することができる。具体的には、まず特開2007-153732号公報や特開2013-121631号公報に記載された方法を適用して、表面に複数の突起を有するシリカを作製する。次いで、表面に複数の突起を有するシリカとカルボン酸無水物含有シランカップリング剤とを塩基性媒体中で十分に攪拌して、表面に複数の突起を有する砥粒の表面にカルボン酸無水物シランカップリング剤を共有結合させることにより、上記一般式(2)で表される官能基を有し、かつ、表面に複数の突起を有する砥粒を得ることができる。ここで、カルボン酸無水物含有シランカップリング剤としては、例えば3-(トリエトキシシリル)プロピルコハク酸無水物等が挙げられる。 The component (A) according to the second embodiment can be manufactured by applying the method described in JP-A-2010-105896, for example. Specifically, first, silica having multiple protrusions on its surface is prepared by applying the method described in JP-A-2007-153732 or JP-A-2013-121631. Next, the silica having multiple protrusions on its surface and a carboxylic anhydride-containing silane coupling agent are thoroughly stirred in a basic medium to covalently bond the carboxylic anhydride-silane coupling agent to the surface of the abrasive grain having multiple protrusions on its surface, thereby obtaining an abrasive grain having a functional group represented by the above general formula (2) and having multiple protrusions on its surface. Here, an example of the carboxylic anhydride-containing silane coupling agent is 3-(triethoxysilyl)propylsuccinic anhydride.
 本実施形態に係る化学機械研磨用組成物が第2の態様に係る(A)成分を含有する場合、第2の態様に係る(A)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは1質量部以上であり、より好ましくは2質量部以上であり、特に好ましくは4質量部以上である。第2の態様に係る(A)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは20質量部以下であり、より好ましくは18質量部以下であり、特に好ましくは16質量部以下である。第2の態様に係る(A)成分の含有量が前記範囲内であると、研磨傷を抑制できる場合がある。 When the chemical mechanical polishing composition according to this embodiment contains the component (A) according to the second aspect, the content of the component (A) according to the second aspect is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 4 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the component (A) according to the second aspect is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 16 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. When the content of the component (A) according to the second aspect is within the above range, polishing scratches may be suppressed.
 1.1.3.第3の態様
 (A)成分の第3の態様としては、下記一般式(3)又は下記一般式(4)で表される官能基を有し、かつ、表面に複数の突起を有する砥粒が挙げられる。
 -NR ・・・・・(3)
 -N ・・・・・(4)
 (上記式(3)及び上記式(4)中、R、R及びRは各々独立して、水素原子、又は置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
1.1.3. Third Aspect A third aspect of the component (A) is an abrasive grain having a functional group represented by the following general formula (3) or the following general formula (4) and having a plurality of protrusions on the surface.
-NR 1 R 2 ...(3)
-N + R 1 R 2 R 3 M - (4)
(In the above formula (3) and formula (4), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M represents an anion.)
 上記一般式(3)で表される官能基はアミノ基を表しており、上記一般式(4)で表される官能基はアミノ基の塩を表している。したがって、上記一般式(3)で表される官能基と上記一般式(4)で表される官能基を纏めて、「アミノ基及びその塩よりなる群から選択される少なくとも1種の官能基」と言い換えることもできる。第3の態様に係る(A)成分は、その表面に上記一般式(3)又は上記一般式(4)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(3)又は上記一般式(4)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。 The functional group represented by the general formula (3) above represents an amino group, and the functional group represented by the general formula (4) above represents a salt of an amino group. Therefore, the functional group represented by the general formula (3) above and the functional group represented by the general formula (4) above can be rephrased as "at least one functional group selected from the group consisting of amino groups and their salts." The component (A) according to the third aspect is an abrasive grain having a functional group represented by the general formula (3) or the general formula (4) above fixed to its surface via a covalent bond, and does not include an abrasive grain having a compound having a functional group represented by the general formula (3) or the general formula (4) above physically or ionically adsorbed to its surface.
 上記式(4)中、Mで表される陰イオンとしては、これらに限定されないが、例えば、OH、F、Cl、Br、I、CN等の陰イオンの他、酸性化合物由来の陰イオンが挙げられる。 In the above formula (4), the anion represented by M includes, but is not limited to, anions such as OH , F , Cl , Br , I , and CN , as well as anions derived from acidic compounds.
 上記式(3)及び上記式(4)中、R~Rは各々独立して、水素原子、又は置換もしくは非置換の炭化水素基を表すが、R~Rのうち2つ以上が結合して環構造を形成していてもよい。 In the above formula (3) and formula (4), R 1 to R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, but two or more of R 1 to R 3 may be bonded to form a ring structure.
 R~Rで表される炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基、芳香脂肪族炭化水素基又は脂環式炭化水素基のいずれでもよい。また、脂肪族炭化水素基及び芳香脂肪族炭化水素基の脂肪族は、飽和でも不飽和でもよく、直鎖状でも分岐状でもよい。これらの炭化水素基としては、例えば直鎖状、分岐状、又は環状の、アルキル基、アルケニル基、アラルキル基、及びアリール基等が挙げられる。 The hydrocarbon groups represented by R 1 to R 3 may be any of aliphatic hydrocarbon groups, aromatic hydrocarbon groups, araliphatic hydrocarbon groups, and alicyclic hydrocarbon groups. The aliphatic groups in the aliphatic hydrocarbon groups and araliphatic hydrocarbon groups may be saturated or unsaturated, and may be linear or branched. Examples of these hydrocarbon groups include linear, branched, or cyclic alkyl groups, alkenyl groups, aralkyl groups, and aryl groups.
 アルキル基としては、炭素数1~6の低級アルキル基が好ましく、炭素数1~4の低級アルキル基がより好ましい。このようなアルキル基としては、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、iso-ヘキシル基、sec-ヘキシル基、tert-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 As the alkyl group, a lower alkyl group having 1 to 6 carbon atoms is preferred, and a lower alkyl group having 1 to 4 carbon atoms is more preferred. Examples of such alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, tert-pentyl, neopentyl, n-hexyl, iso-hexyl, sec-hexyl, tert-hexyl, cyclopentyl, and cyclohexyl groups.
 アルケニル基としては、炭素数1~6の低級アルケニル基が好ましく、炭素数1~4の低級アルケニル基がより好ましい。このようなアルケニル基としては、例えばビニル基、n-プロペニル基、iso-プロペニル基、n-ブテニル基、iso-ブテニル基、sec-ブテニル基、tert-ブテニル基等が挙げられる。 As the alkenyl group, a lower alkenyl group having 1 to 6 carbon atoms is preferable, and a lower alkenyl group having 1 to 4 carbon atoms is more preferable. Examples of such alkenyl groups include a vinyl group, an n-propenyl group, an iso-propenyl group, an n-butenyl group, an iso-butenyl group, a sec-butenyl group, and a tert-butenyl group.
 アラルキル基としては、炭素数7~12のものが好ましい。このようなアラルキル基としては、例えばベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、フェニルヘキシル基、メチルベンジル基、メチルフェネチル基、エチルベンジル基等が挙げられる。 As the aralkyl group, those having 7 to 12 carbon atoms are preferred. Examples of such aralkyl groups include a benzyl group, a phenethyl group, a phenylpropyl group, a phenylbutyl group, a phenylhexyl group, a methylbenzyl group, a methylphenethyl group, and an ethylbenzyl group.
 アリール基としては、炭素数6~14のものが好ましい。このようなアリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,5-キシリル基、ナフチル基、アントリル基等が挙げられる。 Aryl groups having 6 to 14 carbon atoms are preferred. Examples of such aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,5-xylyl, naphthyl, and anthryl groups.
 上記のアリール基及びアラルキル基の芳香環は、例えばメチル基、エチル基等の低級アルキル基や、ハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基等を置換基として有していてもよい。 The aromatic rings of the above aryl and aralkyl groups may have, as substituents, lower alkyl groups such as methyl and ethyl groups, halogen atoms, nitro groups, amino groups, hydroxyl groups, etc.
 第3の態様に係る(A)成分は、例えば特開2005-162533号公報に記載された方法を適用して製造することができる。具体的には、まず特開2007-153732号公報や特開2013-121631号公報に記載された方法を適用して、表面に複数の突起を有するシリカを作製する。次いで、表面に複数の突起を有するシリカとアミノ基含有シランカップリング剤を酸性媒体中で十分に攪拌して、表面に複数の突起を有するシリカの表面にアミノ基含有シランカップリング剤を共有結合させることにより、上記一般式(3)又は上記一般式(4)で表される官能基を有し、かつ、表面に複数の突起を有する砥粒を製造することができる。ここで、アミノ基含有シランカップリング剤としては、例えば3-アミノプロピルトリメトキシシラン、3―アミノプロピルトリエトキシシラン等が挙げられる。 The component (A) according to the third aspect can be manufactured by applying, for example, the method described in JP-A-2005-162533. Specifically, first, silica having multiple protrusions on its surface is prepared by applying the method described in JP-A-2007-153732 or JP-A-2013-121631. Next, the silica having multiple protrusions on its surface and the amino group-containing silane coupling agent are thoroughly stirred in an acidic medium to covalently bond the amino group-containing silane coupling agent to the surface of the silica having multiple protrusions on its surface, thereby producing abrasive grains having a functional group represented by the above general formula (3) or (4) and having multiple protrusions on its surface. Here, examples of the amino group-containing silane coupling agent include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, etc.
 本実施形態に係る化学機械研磨用組成物が第3の態様に係る(A)成分を含有する場合、第3の態様に係る(A)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは1質量部以上であり、より好ましくは2質量部以上であり、特に好ましくは4質量部以上である。第3の態様に係る(A)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは20質量部以下であり、より好ましくは18質量部以下であり、特に好ましくは16質量部以下である。第3の態様に係る(A)成分の含有量が前記範囲内であると、研磨傷を抑制できる場合がある。 When the chemical mechanical polishing composition according to this embodiment contains the component (A) according to the third aspect, the content of the component (A) according to the third aspect is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and particularly preferably 4 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the component (A) according to the third aspect is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 16 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. When the content of the component (A) according to the third aspect is within the above range, polishing scratches may be suppressed.
 1.2.(B)複素環化合物
 本実施形態に係る化学機械研磨用組成物は、(B)複素環化合物を含有する。(B)成分を含有することにより、タングステン膜の表面が保護されるため、タングステン表面の腐食や欠陥の発生を低減することができる。また、(B)成分を含有することにより、タングステン膜の表面が保護されるため、タングステン表面からパーティクル等の残渣を効率的に除去することができる。
1.2. (B) Heterocyclic Compound The chemical mechanical polishing composition according to this embodiment contains a heterocyclic compound (B). By containing the component (B), the surface of the tungsten film is protected, so that the corrosion of the tungsten surface and the occurrence of defects can be reduced. In addition, by containing the component (B), the surface of the tungsten film is protected, so that residues such as particles can be efficiently removed from the tungsten surface.
 (B)成分は、含窒素複素環化合物であることが好ましい。ここで、含窒素複素環化合物は、少なくとも1個の窒素原子を有する、複素五員環及び複素六員環から選択される少なくとも1種の複素環を含む有機化合物である。前記複素環の具体例としては、ピロール構造、イミダゾール構造、トリアゾール構造、チアゾール構造、イソチアゾリン構造等の複素五員環;ピリジン構造、ピリミジン構造、ピリダジン構造、ピラジン構造等の複素六員環が挙げられる。該複素環は縮合環を形成していてもよい。具体的には、インドール構造、イソインドール構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造、キノリン構造、イソキノリン構造、キナゾリン構造、シンノリン構造、フタラジン構造、キノキサリン構造、アクリジン構造等が挙げられる。このような構造を有する含窒素複素環化合物のうち、イソチアゾリン構造、チアゾール構造、ピリジン構造、キノリン構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造を有する含窒素複素環化合物が好ましく、イソチアゾリン構造又はチアゾール構造を有する含窒素複素環化合物がより好ましい。 The (B) component is preferably a nitrogen-containing heterocyclic compound. Here, the nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from a five-membered heterocyclic ring and a six-membered heterocyclic ring having at least one nitrogen atom. Specific examples of the heterocyclic ring include five-membered heterocyclic rings such as pyrrole structure, imidazole structure, triazole structure, thiazole structure, and isothiazolin structure; and six-membered heterocyclic rings such as pyridine structure, pyrimidine structure, pyridazine structure, and pyrazine structure. The heterocyclic ring may form a condensed ring. Specific examples include an indole structure, an isoindole structure, a benzimidazole structure, a benzotriazole structure, a quinoline structure, an isoquinoline structure, a quinazoline structure, a cinnoline structure, a phthalazine structure, a quinoxaline structure, and an acridine structure. Among the nitrogen-containing heterocyclic compounds having such structures, nitrogen-containing heterocyclic compounds having an isothiazolin structure, a thiazole structure, a pyridine structure, a quinoline structure, a benzimidazole structure, or a benzotriazole structure are preferred, and nitrogen-containing heterocyclic compounds having an isothiazolin structure or a thiazole structure are more preferred.
 含窒素複素環化合物の具体例としては、アジリジン、ピリジン、ピリミジン、ピロリジン、ピペリジン、ピラジン、トリアジン、ピロール、イミダゾール、インドール、キノリン、イソキノリン、ベンゾイソキノリン、プリン、プテリジン、トリアゾール、トリアゾリジン、ベンゾトリアゾール、カルボキシベンゾトリアゾール、チアゾール、ベンゾチアゾール、4-ブロモチアゾール、2-クロロチアゾール、2-メルカプトベンゾチアゾール、2-(メチルチオ)ベンゾチアゾール、2-クロロベンゾチアゾール、2-メチルベンゾチアゾール、5-メトキシ-2-メチルベンゾチアゾール、2-メチル-4,5,7-トリフルオロベンゾチアゾール、2-アミノベンゾチアゾール、2-アミノ-6-メチルベンゾチアゾール、2-アミノ-4-メトキシベンゾチアゾール、4-メチル-2-メルカプトベンゾチアゾール、3-クロロ-1,2-ベンゾイソチアゾール、2-(2-ヒドロキシフェニル)ベンゾチアゾール、チアゾリン、クロロチアゾリン、イソチアゾリノン、1,2-ベンゾイソチアゾリン-3-オン、2-メチル-4,5-トリメチレン-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、N-n-ブチル-1,2-ベンゾイソチアゾリン-3-オン、2-n-オクチル-4-イソチアゾリン-3-オン、4,5-ジクロロ-2-n-オクチル-イソチアゾリン-3-オン、2-n-オクチル-4-イソチアゾリン-3-オン等が挙げられる。これらの含窒素複素環化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxybenzotriazole, thiazole, benzothiazole, 4-bromothiazole, 2-chlorothiazole, 2-mercaptobenzothiazole, 2-(methylthio)benzothiazole, 2-chlorobenzothiazole, 2-methylbenzothiazole, 5-methoxy-2-methylbenzothiazole, 2-methyl-4,5,7-trifluorobenzothiazole, 2-aminobenzothiazole, 2-amino-6 -methylbenzothiazole, 2-amino-4-methoxybenzothiazole, 4-methyl-2-mercaptobenzothiazole, 3-chloro-1,2-benzisothiazole, 2-(2-hydroxyphenyl)benzothiazole, thiazoline, chlorothiazoline, isothiazolinone, 1,2-benzisothiazolin-3-one, 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, N-n-butyl-1,2-benzisothiazolin-3-one, 2-n-octyl-4-isothiazolin-3-one, 4,5-dichloro-2-n-octyl-isothiazolin-3-one, 2-n-octyl-4-isothiazolin-3-one, etc. These nitrogen-containing heterocyclic compounds may be used alone or in combination of two or more.
 (B)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.0001質量部以上であり、より好ましくは0.0005質量部以上であり、特に好ましくは0.001質量部以上である。(B)成分の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.5質量部以下であり、より好ましくは0.25質量部以下であり、特に好ましくは0.15質量部以下である。(B)成分の含有量が前記範囲内であると、タングステン膜の表面が保護されるため、タングステン表面の腐食や欠陥の発生を低減することができるとともに、タングステン表面からパーティクル等の残渣を効率的に除去することができる。(B)成分の含有量が前記範囲未満であると、良好な研磨特性を発現するPOU(Point of Use)用スラリーを作製することができない。(B)成分の含有量が前記範囲を超えると、(A)成分の表面に多量の(B)成分が吸着してしまい、(A)成分の機械的研磨特性が低下し、十分な研磨速度が得られ難い。 The content of the (B) component is preferably 0.0001 parts by mass or more, more preferably 0.0005 parts by mass or more, and particularly preferably 0.001 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the (B) component is preferably 0.5 parts by mass or less, more preferably 0.25 parts by mass or less, and particularly preferably 0.15 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. When the content of the (B) component is within the above range, the surface of the tungsten film is protected, so that the corrosion and occurrence of defects on the tungsten surface can be reduced, and residues such as particles can be efficiently removed from the tungsten surface. When the content of the (B) component is less than the above range, it is not possible to prepare a POU (Point of Use) slurry that exhibits good polishing characteristics. If the content of component (B) exceeds the above range, a large amount of component (B) will be adsorbed onto the surface of component (A), the mechanical polishing properties of component (A) will decrease, and it will be difficult to obtain a sufficient polishing rate.
 本実施形態に係る化学機械研磨用組成物は、前記(A)成分の含有量をMA[質量部]、前記(B)成分の含有量をMB[質量部]としたときに、MA/MB=50~10000である。MA/MBは、好ましくは60以上であり、より好ましくは75以上であり、特に好ましくは100以上である。MA/MBは、好ましくは9000以下であり、より好ましくは5000以下であり、さらに好ましくは3000以下であり、特に好ましくは2000以下である。MA/MBが前記範囲内にあると、タングステン膜を高速で研磨する効果とタングステン表面の腐食や欠陥の発生を低減する効果とが相乗的に向上し、良好な研磨特性が得られるようになる。 In the chemical mechanical polishing composition according to this embodiment, when the content of the component (A) is MA [parts by mass] and the content of the component (B) is MB [parts by mass], MA/MB = 50 to 10,000. MA/MB is preferably 60 or more, more preferably 75 or more, and particularly preferably 100 or more. MA/MB is preferably 9,000 or less, more preferably 5,000 or less, even more preferably 3,000 or less, and particularly preferably 2,000 or less. When MA/MB is within the above range, the effect of polishing the tungsten film at high speed and the effect of reducing the occurrence of corrosion and defects on the tungsten surface are synergistically improved, and good polishing characteristics are obtained.
 1.3.(C)液状媒体
 本実施形態に係る化学機械研磨用組成物は、(C)液状媒体を含有する。(C)液状媒体としては、水、水及びアルコールの混合媒体、水及び水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水及びアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。水としては、特に制限されるものではないが、純水が好ましい。水は、化学機械研磨用組成物の構成材料の残部として配合されていればよく、水の含有量については特に制限はない。
1.3. (C) Liquid medium The chemical mechanical polishing composition according to this embodiment contains (C) liquid medium. Examples of (C) liquid medium include water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent compatible with water, and the like. Among these, it is preferable to use water, a mixed medium of water and alcohol, and it is more preferable to use water. Water is not particularly limited, but pure water is preferable. Water may be blended as the remainder of the constituent materials of the chemical mechanical polishing composition, and there is no particular limit to the content of water.
 1.4.その他の成分
 本実施形態に係る化学機械研磨用組成物は、前述の各成分の他、必要に応じて有機酸及びその塩(以下、「有機酸(塩)」ともいう。)、リン酸エステル、水溶性高分子、界面活性剤、無機酸及びその塩、塩基性化合物等を含有してもよい。
1.4. Other Components In addition to the components described above, the chemical mechanical polishing composition according to this embodiment may contain, as necessary, an organic acid and a salt thereof (hereinafter, also referred to as an "organic acid (salt)"), a phosphate ester, a water-soluble polymer, a surfactant, an inorganic acid and a salt thereof, a basic compound, or the like.
<有機酸及びその塩>
 本実施形態に係る化学機械研磨用組成物は、有機酸及びその塩からなる群より選択される少なくとも1種を含有してもよい。有機酸(塩)は、(A)成分との相乗効果により、タングステン膜の研磨速度を大きくする作用効果を奏する。
<Organic acids and their salts>
The chemical mechanical polishing composition according to this embodiment may contain at least one selected from the group consisting of organic acids and their salts. The organic acid (salt) has a synergistic effect with the component (A) to increase the polishing rate of the tungsten film.
 有機酸(塩)としては、カルボキシ基を有する化合物、スルホ基を有する化合物であることが好ましい。カルボキシ基を有する化合物としては、例えば、ステアリン酸、ラウリン酸、オレイン酸、ミリスチン酸、アルケニルコハク酸、乳酸、酒石酸、フマル酸、グリコール酸、フタル酸、マレイン酸、ギ酸、酢酸、シュウ酸、クエン酸、リンゴ酸、マロン酸、グルタル酸、コハク酸、安息香酸、キノリン酸、キナルジン酸、アミド硫酸、プロピオン酸、トリフルオロ酢酸;グリシン、アラニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、トリプトファン、ドデシルアミノエチルアミノエチルグリシン、芳香族アミノ酸、複素環型アミノ酸等のアミノ酸;アルキルイミノジカルボン酸等のイミノ酸;及びこれらの塩が挙げられる。スルホ基を有する化合物としては、例えば、ドデシルベンゼンスルホン酸、p-トルエンスルホン酸等のアルキルベンゼンスルホン酸;ブチルナフタレンスルホン酸等のアルキルナフタレンスルホン酸;テトラデセンスルホン酸等のα-オレフィンスルホン酸等が挙げられる。これらの化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The organic acid (salt) is preferably a compound having a carboxy group or a compound having a sulfo group. Examples of compounds having a carboxy group include stearic acid, lauric acid, oleic acid, myristic acid, alkenylsuccinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, acetic acid, oxalic acid, citric acid, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid, propionic acid, and trifluoroacetic acid; amino acids such as glycine, alanine, aspartic acid, glutamic acid, lysine, arginine, tryptophan, dodecylaminoethylaminoethylglycine, aromatic amino acids, and heterocyclic amino acids; imino acids such as alkyliminodicarboxylic acids; and salts thereof. Examples of compounds having a sulfo group include alkylbenzenesulfonic acids such as dodecylbenzenesulfonic acid and p-toluenesulfonic acid; alkylnaphthalenesulfonic acids such as butylnaphthalenesulfonic acid; and α-olefinsulfonic acids such as tetradecenesulfonic acid. These compounds may be used alone or in combination of two or more.
 本実施形態に係る化学機械研磨用組成物が有機酸(塩)を含有する場合、有機酸(塩)の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.001質量部以上であり、より好ましくは0.01質量部以上である。有機酸(塩)の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは5質量部以下であり、より好ましくは1質量部以下である。 When the chemical mechanical polishing composition according to this embodiment contains an organic acid (salt), the content of the organic acid (salt) is preferably 0.001 parts by mass or more, and more preferably 0.01 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the organic acid (salt) is preferably 5 parts by mass or less, and more preferably 1 part by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
<リン酸エステル>
 本実施形態に係る化学機械研磨用組成物は、リン酸エステルを含有してもよい。リン酸エステルは、タングステン膜の表面に吸着することで、ディッシングの発生を低減させる効果を高めることができる場合がある。
<Phosphate ester>
The chemical mechanical polishing composition according to this embodiment may contain a phosphate ester, which may enhance the effect of reducing the occurrence of dishing by being adsorbed to the surface of the tungsten film.
 「リン酸エステル」とは、リン酸(O=P(OH))が持つ3個の水素の全て又は一部が有機基で置換された構造を有する化合物の総称のことをいう。リン酸エステルの中でも、ディッシングの発生を低減させる効果が特に高いことから、ポリオキシエチレンアルキルエーテルリン酸エステルを好ましく使用することができる。 "Phosphate ester" is a general term for compounds having a structure in which all or some of the three hydrogen atoms in phosphoric acid (O=P(OH) 3 ) are substituted with organic groups. Among phosphate esters, polyoxyethylene alkyl ether phosphate esters can be preferably used because they are particularly effective in reducing the occurrence of dishing.
 ポリオキシエチレンアルキルエーテルリン酸エステルの具体例としては、ポリオキシエチレンデシルエーテルのリン酸モノエステル、ポリオキシエチレンデシルエーテルのリン酸ジエステル、ポリオキシエチレンイソデシルエーテルのリン酸モノエステル、ポリオキシエチレンイソデシルエーテルのリン酸ジエステル、ポリオキシエチレンラウリルエーテルのリン酸モノエステル、ポリオキシエチレンラウリルエーテルのリン酸ジエステル、ポリオキシエチレントリデシルエーテルのリン酸モノエステル、ポリオキシエチレントリデシルエーテルのリン酸ジエステル、ポリオキシエチレンアリルフェニルエーテルのリン酸モノエステル、ポリオキシエチレンアリルフェニルエーテルのリン酸ジエステル等が挙げられる。これらは、1種単独であるいは2種以上組み合わせて使用することができる。また、これらのポリオキシエチレンアルキルエーテルリン酸エステルには、モノエステル、ジエステルなどがあるが、本発明では、モノエステル及びジエステルはそれぞれ単独で使用してもよいし、混合物として使用してもよい。 Specific examples of polyoxyethylene alkyl ether phosphate esters include polyoxyethylene decyl ether phosphate monoester, polyoxyethylene decyl ether phosphate diester, polyoxyethylene isodecyl ether phosphate monoester, polyoxyethylene isodecyl ether phosphate diester, polyoxyethylene lauryl ether phosphate monoester, polyoxyethylene lauryl ether phosphate diester, polyoxyethylene tridecyl ether phosphate monoester, polyoxyethylene tridecyl ether phosphate diester, polyoxyethylene allyl phenyl ether phosphate monoester, polyoxyethylene allyl phenyl ether phosphate diester, etc. These can be used alone or in combination of two or more. In addition, these polyoxyethylene alkyl ether phosphate esters include monoesters and diesters, and in the present invention, the monoesters and diesters may be used alone or as a mixture.
 本実施形態に係る化学機械研磨用組成物がリン酸エステルを含有する場合、リン酸エステルの含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.001質量部以上であり、より好ましくは0.002質量部以上である。リン酸エステルの含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.1質量部以下であり、より好ましくは0.01質量部以下である。 When the chemical mechanical polishing composition according to this embodiment contains a phosphate ester, the content of the phosphate ester is preferably 0.001 parts by mass or more, and more preferably 0.002 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the phosphate ester is preferably 0.1 parts by mass or less, and more preferably 0.01 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子は、被研磨面の表面に吸着して研磨摩擦を低減させ、被研磨面のディッシングの発生を低減できる場合がある。
<Water-soluble polymer>
The chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer. The water-soluble polymer may be adsorbed to the surface of the surface to be polished to reduce polishing friction, which may reduce the occurrence of dishing on the surface to be polished.
 水溶性高分子の具体例としては、ポリカルボン酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリエーテル、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンイミン、ポリアリルアミン、ヒドロキシエチルセルロース等が挙げられる。これらは、1種単独であるいは2種以上組み合わせて使用することができる。 Specific examples of water-soluble polymers include polycarboxylic acids, polystyrene sulfonic acids, polyacrylic acids, polymethacrylic acids, polyethers, polyacrylamides, polyvinyl alcohols, polyvinylpyrrolidones, polyethyleneimines, polyallylamines, hydroxyethyl celluloses, etc. These can be used alone or in combination of two or more.
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1万以上150万以下、より好ましくは4万以上120万以下である。ここで、「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。 The weight average molecular weight (Mw) of the water-soluble polymer is preferably 10,000 or more and 1,500,000 or less, and more preferably 40,000 or more and 1,200,000 or less. Here, "weight average molecular weight" refers to the weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
 本実施形態に係る化学機械研磨用組成物が水溶性高分子を含有する場合、水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.001質量部以上であり、より好ましくは0.002質量部以上である。水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量部としたときに、好ましくは0.1質量部以下であり、より好ましくは0.01質量部以下である。 When the chemical mechanical polishing composition according to this embodiment contains a water-soluble polymer, the content of the water-soluble polymer is preferably 0.001 parts by mass or more, and more preferably 0.002 parts by mass or more, when the total mass of the chemical mechanical polishing composition is 100 parts by mass. The content of the water-soluble polymer is preferably 0.1 parts by mass or less, and more preferably 0.01 parts by mass or less, when the total mass of the chemical mechanical polishing composition is 100 parts by mass.
<界面活性剤>
 本実施形態に係る化学機械研磨用組成物は、界面活性剤を含有してもよい。界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等を使用することができる。アニオン性界面活性剤としては、例えば、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Surfactant>
The chemical mechanical polishing composition according to this embodiment may contain a surfactant. The surfactant is not particularly limited, and anionic surfactants, cationic surfactants, nonionic surfactants, etc. may be used. Examples of anionic surfactants include sulfates such as alkyl ether sulfates and polyoxyethylene alkylphenyl ether sulfates; fluorine-containing surfactants such as perfluoroalkyl compounds; and the like. Examples of cationic surfactants include aliphatic amine salts and aliphatic ammonium salts. Examples of nonionic surfactants include nonionic surfactants having triple bonds such as acetylene glycol, acetylene glycol ethylene oxide adducts, and acetylene alcohol; polyethylene glycol surfactants, etc. These surfactants may be used alone or in combination of two or more.
<無機酸及びその塩>
 無機酸としては、塩酸、硝酸、硫酸、及びリン酸から選択される少なくとも1種であることが好ましい。なお、無機酸は、化学機械研磨用組成物中で別途添加した塩基と塩を形成してもよい。
<Inorganic acids and their salts>
The inorganic acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The inorganic acid may form a salt with a base added separately to the chemical mechanical polishing composition.
<塩基性化合物>
 塩基性化合物としては、有機塩基及び無機塩基が挙げられる。有機塩基としては、アミンが好ましく、例えばトリエチルアミン、モノエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルアミン、メチルアミン、エチレンジアミン、ジグリコールアミン、イソプロピルアミン等が挙げられる。無機塩基としては、例えばアンモニア、水酸化カリウム、水酸化ナトリウム等が挙げられる。これらの塩基性化合物の中でも、アンモニア、水酸化カリウムが好ましい。これらの塩基性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Basic Compound>
Examples of the basic compound include organic bases and inorganic bases. Examples of the organic base include amines, such as triethylamine, monoethanolamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, benzylamine, methylamine, ethylenediamine, diglycolamine, and isopropylamine. Examples of the inorganic base include ammonia, potassium hydroxide, and sodium hydroxide. Among these basic compounds, ammonia and potassium hydroxide are preferred. These basic compounds may be used alone or in combination of two or more.
 1.5.pH
 本実施形態に係る化学機械研磨用組成物のpHは、好ましくは2以上7以下であり、より好ましくは2以上6以下であり、特に好ましくは2.5以上5.5以下である。pHが前記範囲内であると、化学機械研磨用組成物中の(A)成分のゼータ電位の絶対値が大きくなることで分散性が向上するため、タングステン膜を含有する半導体基板の研磨傷やディッシングの発生を低減しながら高速研磨することができる。
1.5. pH
The pH of the chemical mechanical polishing composition according to this embodiment is preferably from 2 to 7, more preferably from 2 to 6, and particularly preferably from 2.5 to 5.5. When the pH is within this range, the absolute value of the zeta potential of component (A) in the chemical mechanical polishing composition increases, improving dispersibility, and enabling high-speed polishing of a semiconductor substrate containing a tungsten film while reducing the occurrence of polishing scratches and dishing.
 なお、本実施形態に係る化学機械研磨用組成物のpHは、必要に応じて、有機酸及びその塩、無機酸及びその塩、塩基性化合物の含有量を適宜増減することにより調整することができる。 The pH of the chemical mechanical polishing composition according to this embodiment can be adjusted as necessary by appropriately increasing or decreasing the content of the organic acid and its salt, the inorganic acid and its salt, and the basic compound.
 本発明において、pHとは、水素イオン指数のことを指し、その値は、25℃、1気圧の条件下で市販のpHメーター(例えば、株式会社堀場製作所製、卓上型pHメーター)を用いて測定することができる。 In the present invention, pH refers to the hydrogen ion exponent, and its value can be measured using a commercially available pH meter (e.g., a tabletop pH meter manufactured by Horiba, Ltd.) under conditions of 25°C and 1 atmospheric pressure.
 1.5.用途
 本実施形態に係る化学機械研磨用組成物は、主として半導体装置を構成する複数の基板のうち、タングステンを含む配線層が設けられた被処理体を研磨するための研磨剤として使用することができる。例えば、コンタクトホールを有する絶縁膜と、前記コンタクトホール内及び前記絶縁膜上に設けられたタングステン膜と、を有する被処理体において、前記絶縁膜上のタングステン膜を研磨し、前記絶縁膜中のコンタクトホールに埋め込まれたタングステンプラグ(W-plug)を形成するプロセスに使用することができる。
1.5. Uses The chemical mechanical polishing composition according to this embodiment can be used as an abrasive for polishing a workpiece provided with a wiring layer containing tungsten, among a plurality of substrates constituting a semiconductor device. For example, in a workpiece having an insulating film having a contact hole and a tungsten film provided in the contact hole and on the insulating film, the composition can be used in a process of polishing the tungsten film on the insulating film to form a tungsten plug (W-plug) embedded in the contact hole in the insulating film.
 1.6.化学機械研磨用組成物の調製方法
 本実施形態に係る化学機械研磨用組成物は、水等の液状媒体に上述の各成分を溶解又は分散させることにより調製することができる。溶解又は分散させる方法は、特に制限されず、均一に溶解又は分散できればどのような方法を適用してもよい。また、上述の各成分の混合順序や混合方法についても特に制限されない。
1.6. Method for preparing the composition for chemical mechanical polishing The composition for chemical mechanical polishing according to this embodiment can be prepared by dissolving or dispersing each of the above-mentioned components in a liquid medium such as water. The method for dissolving or dispersing is not particularly limited, and any method may be used as long as it can dissolve or disperse uniformly. In addition, the order and method of mixing each of the above-mentioned components are not particularly limited.
 1.7.POUスラリー
 本実施形態に係る化学機械研磨用組成物は、POUスラリーとして用いることができる。POUスラリーは、本実施形態に係る化学機械研磨用組成物をそのまま使用してもよく、また本実施形態に係る化学機械研磨用組成物へ水等の液状媒体、上述の各成分及び過酸化水素や鉄などの金属イオンなどの酸化剤を添加して希釈することにより調製することもできる。添加する方法は、特に制限されず、均一にPOUスラリーを作製できればどのような方法を適用してもよい。また、上述の各成分の混合順序や混合方法についても特に制限されない。
1.7. POU Slurry The chemical mechanical polishing composition according to this embodiment can be used as a POU slurry. The POU slurry may be prepared by using the chemical mechanical polishing composition according to this embodiment as it is, or by adding a liquid medium such as water, the above-mentioned components, and an oxidizing agent such as hydrogen peroxide or a metal ion such as iron to the chemical mechanical polishing composition according to this embodiment and diluting the composition. The method of addition is not particularly limited, and any method may be applied as long as a uniform POU slurry can be prepared. In addition, the mixing order and mixing method of the above-mentioned components are not particularly limited.
 2.研磨方法
 本発明の一実施形態に係る研磨方法は、上述したPOUスラリーを用いてタングステンを含む配線層が設けられた被処理体を研磨する工程を含む。かかるPOUスラリーによれば、タングステン膜の研磨速度が大きく、かつ、タングステン表面の腐食や欠陥の発生を低減することができるため、良好な品質のタングステンプラグを形成することができる。以下、図1~図3を参照しながら、本実施形態に係る研磨方法について詳細に説明する。
2. Polishing Method The polishing method according to one embodiment of the present invention includes a step of polishing a processing object provided with a wiring layer containing tungsten using the above-mentioned POU slurry. Such a POU slurry has a high polishing rate for the tungsten film and can reduce the occurrence of corrosion and defects on the tungsten surface, so that a tungsten plug of good quality can be formed. The polishing method according to this embodiment will be described in detail below with reference to FIGS. 1 to 3.
 2.1.被処理体
 図1に、本実施形態に係る研磨方法に適用される被処理体100の一例を示す。
1 shows an example of a workpiece 100 to which the polishing method according to this embodiment is applied.
(1)まず、図1に示すように、基体10を用意する。基体10は、例えば、シリコン基板とその上に形成されたシリコン酸化膜から構成されていてもよい。さらに、基体10には、トランジスタ等の機能デバイスが形成されていてもよい。 (1) First, as shown in FIG. 1, a substrate 10 is prepared. The substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, functional devices such as transistors may be formed on the substrate 10.
(2)次に、基体10の上に、シランガスと酸素ガスを用いたCVD法によって、絶縁膜であるシリコン酸化膜12を形成する。その後、CMPによりシリコン酸化膜12を途中まで研磨して表面を平坦化する。 (2) Next, a silicon oxide film 12, which is an insulating film, is formed on the substrate 10 by a CVD method using silane gas and oxygen gas. After that, the silicon oxide film 12 is partially polished by CMP to flatten the surface.
(3)次に、シリコン酸化膜12にレジストパターンを形成する。それをマスクとして、シリコン酸化膜12をエッチングし、コンタクトホール14を形成する。コンタクトホール14を形成した後、レジストパターンを除去する。 (3) Next, a resist pattern is formed on the silicon oxide film 12. Using this as a mask, the silicon oxide film 12 is etched to form contact holes 14. After the contact holes 14 are formed, the resist pattern is removed.
(4)次に、CVD法を適用して、シリコン酸化膜12の表面及びコンタクトホール14内にタングステン膜16を堆積させる。 (4) Next, a tungsten film 16 is deposited on the surface of the silicon oxide film 12 and in the contact holes 14 using the CVD method.
 以上の工程により、被処理体100が形成される。 The above steps result in the processed object 100.
 2.2.化学機械研磨工程
 化学機械研磨工程では、図2に示すように、上述したPOUスラリーを用いてタングステン膜16をシリコン酸化膜12が露出するまで研磨する。上述したPOUスラリーによれば、タングステン膜の研磨速度が大きく、かつ、タングステン表面の腐食や欠陥の発生を低減することができるため、良好な品質のタングステンプラグを形成することができる。
2, in the chemical mechanical polishing process, the tungsten film 16 is polished using the above-mentioned POU slurry until the silicon oxide film 12 is exposed. The above-mentioned POU slurry has a high polishing rate for the tungsten film and can reduce corrosion and defects on the tungsten surface, so that a good quality tungsten plug can be formed.
 化学機械研磨工程後、被研磨面に残留する砥粒を除去することが好ましい。この砥粒の除去は、通常の洗浄方法によって行うことができる。例えば、ブラシスクラブ洗浄後、アンモニア:過酸化水素:水が1:1:5(質量比)程度のアルカリ性洗浄液によって洗浄を行うことにより、被研磨面に付着した砥粒の除去を行うことができる。さらに、被研磨面に吸着した不純物金属種の洗浄液として、例えば、クエン酸水溶液、フッ化水素酸とクエン酸の混合水溶液、及びフッ化水素酸とエチレンジアミン四酢酸(EDTA)の混合水溶液等が使用できる。 After the chemical mechanical polishing process, it is preferable to remove the abrasive grains remaining on the polished surface. This removal of the abrasive grains can be performed by a normal cleaning method. For example, after brush scrubbing, the abrasive grains adhering to the polished surface can be removed by cleaning with an alkaline cleaning solution of ammonia: hydrogen peroxide: water in a ratio of about 1:1:5 (by mass). Furthermore, as a cleaning solution for impurity metal species adsorbed on the polished surface, for example, an aqueous solution of citric acid, an aqueous mixture of hydrofluoric acid and citric acid, and an aqueous mixture of hydrofluoric acid and ethylenediaminetetraacetic acid (EDTA) can be used.
 2.3.化学機械研磨装置
 前記化学機械研磨工程では、例えば、図3に示すような化学機械研磨装置200を用いることができる。図3は、化学機械研磨装置200を模式的に示した斜視図である。スラリー供給ノズル42からPOUスラリー44を供給し、かつ、研磨用パッド46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図3には、水供給ノズル54及びドレッサー56も併せて示してある。
2.3. Chemical Mechanical Polishing Apparatus In the chemical mechanical polishing step, for example, a chemical mechanical polishing apparatus 200 as shown in Fig. 3 can be used. Fig. 3 is a perspective view showing a schematic diagram of the chemical mechanical polishing apparatus 200. The chemical mechanical polishing is performed by supplying a POU slurry 44 from a slurry supply nozzle 42, and contacting a carrier head 52 holding a semiconductor substrate 50 with a turntable 48 to which a polishing pad 46 is attached while rotating the turntable 48. Note that a water supply nozzle 54 and a dresser 56 are also shown in Fig. 3.
 キャリアーヘッド52の研磨荷重は、10~980hPaの範囲内で選択することができ、好ましくは30~490hPaである。また、ターンテーブル48及びキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(POUスラリー)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。 The polishing load of the carrier head 52 can be selected within the range of 10 to 980 hPa, and is preferably 30 to 490 hPa. The rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and is preferably 30 to 150 rpm. The flow rate of the slurry (POU slurry) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL/min, and is preferably 50 to 400 mL/min.
 市販の化学機械研磨装置としては、例えば、荏原製作所社製、型式「EPO-112」、「EPO-222」、「F-REX300SII」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライド・マテリアルズ社製、型式「Mirra」、「Reflexion」;G&P TECHNOLOGY社製、型式「POLI-762」等が挙げられる。 Commercially available chemical mechanical polishing devices include, for example, models "EPO-112", "EPO-222", and "F-REX300SII" manufactured by Ebara Corporation; models "LGP-510" and "LGP-552" manufactured by Lapmaster SFT; models "Mirra" and "Reflexion" manufactured by Applied Materials; and model "POLI-762" manufactured by G&P Technology.
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」及び「%」は、特に断らない限り質量基準である。
3. Examples The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the examples, "parts" and "%" are by mass unless otherwise specified.
 3.1.砥粒の調製
<砥粒A>
 扶桑化学工業社製コロイダルシリカ(商品名:PL-3)、シリカ濃度20質量%、pH7.8、平均粒子径が70nmの球状コロイダルシリカを購入し、そのまま砥粒Aとして使用した。なお、砥粒Aの平均粒子径は、動的吸着表面積自動測定装置(Micromeritics社製、「Micromeritics FlowSorb II 2300」)を用いてBET法による比表面積を測定し、その測定値から算出して求めた。
3.1. Preparation of abrasive grains <Abrasive grain A>
Colloidal silica (product name: PL-3) manufactured by Fuso Chemical Co., Ltd., spherical colloidal silica having a silica concentration of 20 mass%, pH 7.8, and an average particle size of 70 nm, was purchased and used as is as abrasive grain A. The average particle size of abrasive grain A was calculated from the specific surface area measured by the BET method using an automatic dynamic adsorption surface area measuring device (Micromeritics FlowSorb II 2300 manufactured by Micromeritics).
<砥粒B>
 多摩化学工業社製コロイダルシリカ(商品名:TS60C20β)、シリカ濃度20質量%、pH8.1、平均粒子径が55nmの、表面に複数の突起を有するコロイダルシリカを購入し、そのまま砥粒Bとして使用した。なお、砥粒Bの平均粒子径は、砥粒Aと同様にして求めた。
<Abrasive grain B>
Colloidal silica (product name: TS60C20β) manufactured by Tama Chemicals Co., Ltd., having a silica concentration of 20 mass%, pH 8.1, and an average particle size of 55 nm and having multiple protrusions on the surface, was purchased and used as is as abrasive B. The average particle size of abrasive B was determined in the same manner as for abrasive A.
<砥粒C>
 扶桑化学工業社製コロイダルシリカ(商品名:PL-3-C)、シリカ濃度20質量%、pH9.1、平均粒子径が68nmの、アミノ基で表面修飾された球状のコロイダルシリカを購入し、そのまま砥粒Cとして使用した。なお、砥粒Cの平均粒子径は、砥粒Aと同様にして求めた。
<Abrasive Grain C>
Colloidal silica (product name: PL-3-C) manufactured by Fuso Chemical Co., Ltd., spherical colloidal silica having a silica concentration of 20 mass%, pH 9.1, and an average particle size of 68 nm and surface-modified with amino groups, was purchased and used as is as abrasive grain C. The average particle size of abrasive grain C was determined in the same manner as abrasive grain A.
<砥粒D>
 サンゴバン社製コロイダルアルミナ(商品名:アルミナポリッシングスラリー 7992 0.20MICS)、アルミナ濃度20質量%、pH4.2、平均粒子径が187nmの、球状のコロイダルアルミナを購入し、そのまま砥粒Dとして使用した。なお、砥粒Dの平均粒子径は、砥粒Aと同様にして求めた。
<Abrasive grain D>
Colloidal alumina manufactured by Saint-Gobain (product name: Alumina Polishing Slurry 7992 0.20MICS), spherical colloidal alumina with an alumina concentration of 20 mass%, pH 4.2, and average particle size of 187 nm was purchased and used as is as abrasive grain D. The average particle size of abrasive grain D was determined in the same manner as abrasive grain A.
<砥粒E>
 日揮触媒化成社製水ガラスシリカ(商品名:CATALOID PPS-45PKH)、シリカ濃度40質量%、pH10.1、平均粒子径が63nmの、球状の水ガラスシリカを購入し、そのまま砥粒Eとして使用した。なお、砥粒Eの平均粒子径は、砥粒Aと同様にして求めた。
<Abrasive Grain E>
Spherical water glass silica (product name: CATALOID PPS-45PKH) manufactured by JGC Catalysts and Chemicals, having a silica concentration of 40 mass%, pH of 10.1, and an average particle size of 63 nm, was purchased and used as is as abrasive grain E. The average particle size of abrasive grain E was determined in the same manner as abrasive grain A.
 3.2.化学機械研磨用組成物の調製
 下表1~下表2に記載された砥粒を所定濃度となるように容量1Lのポリエチレン製の瓶に添加した後、下表1~下表2に示す組成となるように残りの成分を添加し、さらに下表1~下表2に示すpHとなるように各種酸の添加量で調整し、全成分の合計量が100質量部となるように液状媒体としての純水を添加して調整することにより、各実施例及び各比較例の化学機械研磨用組成物を調製した。
3.2. Preparation of chemical mechanical polishing composition The abrasive grains shown in Tables 1 and 2 below were added to a 1 L polyethylene bottle to give a predetermined concentration, and the remaining components were then added to give the composition shown in Tables 1 and 2 below. The pH was then adjusted by adding various acids in the amounts shown in Tables 1 and 2 below. Pure water was then added as a liquid medium to give a total amount of all components of 100 parts by mass to prepare chemical mechanical polishing compositions for each of the Examples and Comparative Examples.
 3.3.評価方法
 3.3.1.研磨速度評価
 まず、直径12インチのアドバンスマテリアルズテクノロジー株式会社のタングステン膜ブランケットウェハ「W 6000Å」とD&X株式会社の酸化ケイ素膜ブランケットウェハ「p-TEOS 10000Å」を用意した。これらのブランケットウェハを被処理体として、下記の条件で化学機械研磨を実施した。
3.3. Evaluation method 3.3.1. Polishing rate evaluation First, a tungsten film blanket wafer "W 6000 Å" with a diameter of 12 inches manufactured by Advanced Materials Technology Co., Ltd. and a silicon oxide film blanket wafer "p-TEOS 10000 Å" manufactured by D&X Co., Ltd. were prepared. Chemical mechanical polishing was carried out using these blanket wafers as the processing objects under the following conditions.
<研磨条件>
・研磨装置:アプライド・マテリアルズ社製、型式「REFLEXION LK」
・研磨用パッド:富士紡績社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・POUスラリー供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2psi
・研磨速度(Å/分)=(研磨前の膜の厚さ-研磨後の膜の厚さ)/研磨時間
<Polishing conditions>
Polishing equipment: Applied Materials, model "REFLEXION LK"
Polishing pad: Fujibo Co., Ltd., "Multi-hard polyurethane pad; H800-type1 (3-1S) 775"
POU slurry supply rate: 300 mL/min Plate rotation speed: 100 rpm
Head rotation speed: 90 rpm
Head pressing pressure: 2 psi
Polishing rate (Å/min)=(film thickness before polishing−film thickness after polishing)/polishing time
 酸化ケイ素膜の厚さは、非接触式光学式膜厚測定装置(ケーエルエー・テンコール社製、型式「F5x」)を用いて屈折率を測定することによって算出した。タングステン膜の厚さは、シート抵抗測定装置(ケーエルエー・テンコール社製、型式「RS-100」)を用いてシート抵抗を測定することによって算出した。 The thickness of the silicon oxide film was calculated by measuring the refractive index using a non-contact optical film thickness measuring device (KLA Tencor, model "F5x"). The thickness of the tungsten film was calculated by measuring the sheet resistance using a sheet resistance measuring device (KLA Tencor, model "RS-100").
 上記で得られた研磨速度のうち、タングステン膜の研磨速度が150Å/分以上である場合、実際の半導体研磨において実用に供することのできる十分な研磨が可能であるため、良好と判断して表中に「A」と記載した。タングステン膜の研磨速度が150Å/分未満である場合、研磨速度が遅く実用に供することができないため不良であると判断して表中に「B」と記載した。また、酸化ケイ素膜についても同様に、酸化ケイ素膜の研磨速度が1000Å/分以上である場合、実際の半導体研磨において実用に供することのできる十分な研磨が可能であるため、良好と判断して表中に「A」と記載した。酸化ケイ素膜の研磨速度が1000Å/分未満である場合、研磨速度が遅く実用に供することができないため不良であると判断して表中に「B」と記載した。  Among the polishing rates obtained above, when the polishing rate of the tungsten film is 150 Å/min or more, it is possible to polish sufficiently for practical use in actual semiconductor polishing, so it is judged to be good and recorded as "A" in the table. When the polishing rate of the tungsten film is less than 150 Å/min, it is judged to be poor because the polishing rate is too slow for practical use and recorded as "B" in the table. Similarly, for the silicon oxide film, when the polishing rate of the silicon oxide film is 1000 Å/min or more, it is possible to polish sufficiently for practical use in actual semiconductor polishing, so it is judged to be good and recorded as "A" in the table. When the polishing rate of the silicon oxide film is less than 1000 Å/min, it is judged to be poor because the polishing rate is too slow for practical use and recorded as "B" in the table.
 3.3.2.腐食評価
 図4に示すように、直径12インチのアドバンスマテリアルズテクノロジー株式会社のパターン付きウェハ「MASK754 W PTW」を用意した。図4に示すパターン付きウェハ300において、62は「300mm Si」、64は「100nm PE-TEOS(SiO)」、66は「10nm Ti」、68は「6nm TiN」、70は「200nm W」を表す。このパターン付きウェハ300を被処理体として、下記の条件で一段目化学機械研磨を実施した。
3.3.2. Corrosion evaluation As shown in Fig. 4, a patterned wafer "MASK754 W PTW" with a diameter of 12 inches manufactured by Advanced Materials Technology Co., Ltd. was prepared. In the patterned wafer 300 shown in Fig. 4, 62 represents "300 mm Si", 64 represents "100 nm PE-TEOS (SiO 2 )", 66 represents "10 nm Ti", 68 represents "6 nm TiN", and 70 represents "200 nm W". This patterned wafer 300 was used as the processing object and a first stage chemical mechanical polishing was carried out under the following conditions.
<一段目研磨条件>
・化学機械研磨用組成物:キャボット社製、「W2000」(鉄イオン及び過酸化水素を含有するスラリー)
・研磨用パッド:ロデール・ニッタ社製、「IC1000/SUBA400」
・定盤回転数:70rpm
・ヘッド回転数:71rpm
・ヘッド荷重:50g/cm
・化学機械研磨用組成物供給速度:200mL/分
・研磨時間:150秒
<First stage polishing conditions>
Chemical mechanical polishing composition: Cabot Corporation's "W2000" (slurry containing iron ions and hydrogen peroxide)
Polishing pad: Rodel Nitta "IC1000/SUBA400"
・Surface plate rotation speed: 70 rpm
Head rotation speed: 71 rpm
Head load: 50g/ cm2
・Chemical mechanical polishing composition supply rate: 200 mL/min ・Polishing time: 150 seconds
 次いで、下表1~下表2に記載された質量部の化学機械研磨用組成物を10Lのポリエチレン製の瓶へ添加し、これに純水を添加し、全量を100質量部としてPOUスラリーを作製した。このようにして作製したPOUスラリーを用いて、上記の一段目化学機械研磨で得られた研磨面に対して、下記の研磨条件で二段目化学機械研磨を実施した。 Next, the parts by weight of the chemical mechanical polishing composition shown in Tables 1 and 2 below were added to a 10 L polyethylene bottle, and pure water was added to make a POU slurry with a total amount of 100 parts by weight. Using the POU slurry thus prepared, a second stage chemical mechanical polishing was carried out on the polished surface obtained by the first stage chemical mechanical polishing described above under the following polishing conditions.
<二段目研磨条件>
・研磨装置:アプライド・マテリアルズ社製、型式「REFLEXION LK」
・研磨用パッド:富士紡績社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・POUスラリー供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2psi
<Second stage polishing conditions>
Polishing equipment: Applied Materials, model "REFLEXION LK"
Polishing pad: Fujibo Co., Ltd., "Multi-hard polyurethane pad; H800-type1 (3-1S) 775"
POU slurry supply rate: 300 mL/min Plate rotation speed: 100 rpm
Head rotation speed: 90 rpm
Head pressing pressure: 2 psi
 上記の二段目化学機械研磨後のパターン付きウェハをSEMで観察した。100kの視野において腐食が3個以下である場合、実際の半導体研磨において十分な腐食抑制が可能であるため、良好と判断して表中に「A」と記載した。100kの視野において腐食が4個以上である場合、腐食抑制が不良であると判断して表中に「B」と記載した。 The patterned wafer after the second-stage chemical mechanical polishing was observed with an SEM. If there were three or fewer corrosion spots in a 100k field of view, it was determined that sufficient corrosion suppression was possible in actual semiconductor polishing, and was marked as "A" in the table. If there were four or more corrosion spots in a 100k field of view, it was determined that corrosion suppression was poor, and was marked as "B" in the table.
 3.3.3.欠陥評価
 上記の研磨速度評価後のパターン付きウェハを欠陥検査装置(ケーエルエー・テンコール社製、KLA2351)にて観察した。欠陥数の算出は、欠陥検査装置のピクセルサイズを0.16μm、アレイモードで測定して、比較イメージとピクセル単位の重ね合わせによって生じる差異から抽出される欠陥を検出して評価した。0.16μm以上の欠陥が10個/ウェハ未満の場合、良好な結果であると判断して表中に「A」と記載した。0.16μm以上の欠陥が10個/ウェハ以上である場合、ウェハの電気特性に異常が発生する懸念があるため、不良であると判断して表中に「B」と記載した。
3.3.3. Defect evaluation The patterned wafer after the polishing rate evaluation was observed with a defect inspection device (KLA2351, manufactured by KLA Tencor Corporation). The number of defects was calculated by measuring the pixel size of the defect inspection device at 0.16 μm in array mode, and detecting and evaluating defects extracted from the difference caused by superimposing the comparison image and pixel unit. When there were less than 10 defects of 0.16 μm or more per wafer, the result was judged to be good and was recorded as "A" in the table. When there were 10 defects of 0.16 μm or more per wafer, there was a concern that abnormalities would occur in the electrical characteristics of the wafer, so the result was judged to be bad and was recorded as "B" in the table.
 3.4.評価結果
 下表1~下表2に、各実施例及び各比較例の化学機械研磨用組成物の組成並びに各評価結果を示す。
3.4. Evaluation Results Tables 1 and 2 below show the compositions of the chemical mechanical polishing compositions of the Examples and Comparative Examples, as well as the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上表1~上表2中の各成分は、それぞれ下記の商品又は試薬を用いた。
<複素環化合物>
・チアゾール:富士フイルム和光純薬社製、商品名「チアゾール」
・イソチアゾリノン:富士フイルム和光純薬社製、商品名「イソチアゾリノン」
・5-クロロ-2-メチル-4-イソチアゾリン-3-オン:富士フイルム和光純薬社製、商品名「5-クロロ-2-メチル-4-イソチアゾリン-3-オン」
・2-n-オクチル-4-イソチアゾリン-3-オン:富士フイルム和光純薬社製、商品名「2-n-オクチル-4-イソチアゾリン-3-オン」
・ピリジン:富士フイルム和光純薬社製、商品名「ピリジン」
・ピロール:富士フイルム和光純薬社製、商品名「ピロール」
<有機酸>
・クエン酸:扶桑化学工業社製、商品名「精製クエン酸(結晶)L」
・酒石酸:富士フイルム和光純薬社製、商品名「酒石酸」
・マレイン酸:扶桑化学工業社製、商品名「精製マレイン酸」
The following products or reagents were used for each component in Tables 1 and 2 above.
<Heterocyclic compounds>
-Thiazole: Fujifilm Wako Pure Chemical Industries, product name "Thiazole"
・Isothiazolinone: Manufactured by Fujifilm Wako Pure Chemical Industries, trade name "Isothiazolinone"
5-Chloro-2-methyl-4-isothiazolin-3-one: Manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name "5-chloro-2-methyl-4-isothiazolin-3-one"
2-n-octyl-4-isothiazolin-3-one: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name "2-n-octyl-4-isothiazolin-3-one"
Pyridine: Fujifilm Wako Pure Chemical Industries, trade name "Pyridine"
Pyrrole: Fujifilm Wako Pure Chemical Industries, product name "Pyrrole"
<Organic Acid>
Citric acid: Fuso Chemical Co., Ltd., product name "Purified Citric Acid (Crystal) L"
Tartaric acid: Fujifilm Wako Pure Chemical Industries, product name "Tartaric acid"
Maleic acid: Fuso Chemical Co., Ltd., product name "refined maleic acid"
 実施例1~13のPOUスラリーによれば、MA/MBの比が50~10000であれば、パターン付きウェハ上のタングステン膜を高速研磨できるとともに、タングステン配線の腐食及び欠陥の発生が低減されることがわかった。 The POU slurries of Examples 1 to 13 showed that if the MA/MB ratio was between 50 and 10,000, the tungsten film on the patterned wafer could be polished at high speed, while reducing the corrosion and defects of the tungsten wiring.
 比較例1、4、6のPOUスラリーは、MA/MBの比が50未満となる例である。この場合には、パターン付きウェハ上のタングステン配線の腐食及び/又は欠陥が発生しやすいことがわかった。 The POU slurries of Comparative Examples 1, 4, and 6 are examples in which the MA/MB ratio is less than 50. In these cases, it was found that corrosion and/or defects are likely to occur in the tungsten wiring on the patterned wafer.
 比較例2、3、5のPOUスラリーは、MA/MBの比が10000以上となる例である。この場合には、パターン付きウェハ上のタングステン配線の腐食が発生しやすいことがわかった。 The POU slurries of Comparative Examples 2, 3, and 5 are examples in which the MA/MB ratio is 10,000 or more. In these cases, it was found that corrosion of the tungsten wiring on the patterned wafer is likely to occur.
 以上の結果から、本願発明に係る化学機械研磨用組成物によれば、タングステン膜の研磨速度が大きく、かつ、タングステン表面の腐食や欠陥の発生を低減できることがわかった。 These results show that the chemical mechanical polishing composition of the present invention can polish tungsten films at a high rate and reduce corrosion and defects on the tungsten surface.
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the present invention includes configurations that are substantially the same as those described in the embodiments (for example, configurations with the same functions, methods, and results, or configurations with the same purpose and effect). The present invention also includes configurations in which non-essential parts of the configurations described in the embodiments are replaced. The present invention also includes configurations that achieve the same effects as the configurations described in the embodiments, or that can achieve the same purpose. The present invention also includes configurations in which publicly known technology is added to the configurations described in the embodiments.
10…基体、12…シリコン酸化膜、14…コンタクトホール、16…タングステン膜、42…スラリー供給ノズル、44…POUスラリー、46…研磨用パッド、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、62…300mm Si、64…100nm PE-TEOS(SiO)、66…10nm Ti、68…6nm TiN、70…200nm W、100…被処理体、200…化学機械研磨装置、300…パターン付きウェハ 10...substrate, 12...silicon oxide film, 14...contact hole, 16...tungsten film, 42...slurry supply nozzle, 44...POU slurry, 46...polishing pad, 48...turntable, 50...semiconductor substrate, 52...carrier head, 54...water supply nozzle, 56...dresser, 62...300 mm Si, 64...100 nm PE-TEOS (SiO 2 ), 66...10 nm Ti, 68...6 nm TiN, 70...200 nm W, 100...processing object, 200...chemical mechanical polishing apparatus, 300...patterned wafer

Claims (9)

  1.  (A)砥粒と、
     (B)複素環化合物と、
     (C)液状媒体と、
    を含有する化学機械研磨用組成物であって、
     前記(A)成分の含有量をMA[質量部]、前記(B)成分の含有量をMB[質量部]としたときに、MA/MB=50~10000である、化学機械研磨用組成物。
    (A) abrasive grains;
    (B) a heterocyclic compound;
    (C) a liquid medium;
    A chemical mechanical polishing composition comprising:
    A chemical mechanical polishing composition, in which MA/MB=50 to 10,000, where MA is the content of the component (A) [parts by mass] and MB is the content of the component (B) [parts by mass].
  2.  前記(B)成分が、含窒素複素環化合物である、請求項1に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to claim 1, wherein the component (B) is a nitrogen-containing heterocyclic compound.
  3.  前記含窒素複素環化合物が、イソチアゾリン構造又はチアゾール構造を有する、請求項2に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to claim 2, wherein the nitrogen-containing heterocyclic compound has an isothiazolinone structure or a thiazole structure.
  4.  pHが2以上7以下である、請求項1または請求項2に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to claim 1 or 2, having a pH of 2 or more and 7 or less.
  5.  前記(A)成分が、下記一般式(1)で表される官能基を有する、請求項1または請求項2に記載の化学機械研磨用組成物。
     -SO  ・・・・・(1)
     (Mは1価の陽イオンを表す。)
    The chemical mechanical polishing composition according to claim 1 or 2, wherein the component (A) has a functional group represented by the following general formula (1):
    -SO 3 - M + ...(1)
    (M + represents a monovalent cation.)
  6.  前記(A)成分が、下記一般式(2)で表される官能基を有する、請求項1または請求項2に記載の化学機械研磨用組成物。
     -COO ・・・・・(2)
     (Mは1価の陽イオンを表す。)
    The chemical mechanical polishing composition according to claim 1 , wherein the component (A) has a functional group represented by the following general formula (2):
    -COO - M + ...(2)
    (M + represents a monovalent cation.)
  7.  前記(A)成分が、下記一般式(3)又は下記一般式(4)で表される官能基を有する、請求項1または請求項2に記載の化学機械研磨用組成物。
     -NR ・・・・・(3)
     -N ・・・・・(4)
     (上記式(3)及び(4)中、R、R及びRは各々独立して、水素原子、又は置換もしくは非置換の炭化水素基を表す。Mは陰イオンを表す。)
    3. The chemical mechanical polishing composition according to claim 1, wherein the component (A) has a functional group represented by the following general formula (3) or the following general formula (4):
    -NR 1 R 2 ...(3)
    -N + R 1 R 2 R 3 M - (4)
    (In the above formulas (3) and (4), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. M − represents an anion.)
  8.  前記(A)成分の含有量が、化学機械研磨用組成物100質量部に対して、1質量部以上20質量部以下である、請求項1または請求項2に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to claim 1 or 2, wherein the content of component (A) is 1 part by mass or more and 20 parts by mass or less per 100 parts by mass of the chemical mechanical polishing composition.
  9.  請求項1または請求項2に記載の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む、研磨方法。
     
    A polishing method comprising the step of polishing a semiconductor substrate with the chemical mechanical polishing composition of claim 1 or 2.
PCT/JP2024/006201 2023-03-01 2024-02-21 Chemical-mechanical polishing composition and polishing method WO2024181261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-031005 2023-03-01
JP2023031005 2023-03-01

Publications (1)

Publication Number Publication Date
WO2024181261A1 true WO2024181261A1 (en) 2024-09-06

Family

ID=92590586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006201 WO2024181261A1 (en) 2023-03-01 2024-02-21 Chemical-mechanical polishing composition and polishing method

Country Status (1)

Country Link
WO (1) WO2024181261A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313542A (en) * 2002-04-22 2003-11-06 Jsr Corp Aqueous dispersion for chemomechanical polishing use
JP2007214270A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Composition for polishing
JP2011108811A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Abrasive, abrasive set, and polishing method
JP2021050268A (en) * 2019-09-24 2021-04-01 株式会社フジミインコーポレーテッド Polishing composition and polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313542A (en) * 2002-04-22 2003-11-06 Jsr Corp Aqueous dispersion for chemomechanical polishing use
JP2007214270A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Composition for polishing
JP2011108811A (en) * 2009-11-17 2011-06-02 Asahi Glass Co Ltd Abrasive, abrasive set, and polishing method
JP2021050268A (en) * 2019-09-24 2021-04-01 株式会社フジミインコーポレーテッド Polishing composition and polishing method

Similar Documents

Publication Publication Date Title
TWI466991B (en) Polishing composition and polishing method
TW201940644A (en) Chemical mechanical polishing composition and polishing method
JP2018049992A (en) Surface treatment composition, surface treatment method by use thereof, and method for manufacturing semiconductor substrate
WO2011093195A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method using same, and kit for preparing aqueous dispersion for chemical mechanical polishing
TW202007757A (en) Chemical mechanical polishing aqueous dispersion capable of polishing a substrate including tungsten and an insulating film at high speed and reducing generation of polishing scratches on a surface to be polished
WO2024181261A1 (en) Chemical-mechanical polishing composition and polishing method
WO2021251108A1 (en) Composition for chemical mechanical polishing and method for polishing
WO2024181262A1 (en) Chemical-mechanical polishing composition and polishing method
JP7375483B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2021117428A1 (en) Composition for chemical mechanical polishing and method for polishing
JP2023094060A (en) Chemical mechanical polishing composition and polishing method
TW202436541A (en) Chemical mechanical polishing composition and polishing method
WO2024162160A1 (en) Composition for chemical mechanical polishing and polishing method
JP7468811B1 (en) Chemical mechanical polishing composition and polishing method
WO2023007938A1 (en) Composition for chemical mechanical polishing and polishing method
TW202436583A (en) Chemical mechanical polishing composition and polishing method
TWI859998B (en) Chemical mechanical polishing composition and polishing method
WO2023085007A1 (en) Chemical-mechanical polishing composition and polishing method
TW202028412A (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method including abrasive grains having reactive groups, a nitrogen-containing heterocyclic compound, and substantially no etchants
WO2023085008A1 (en) Chemical-mechanical polishing composition, production method therefor, and polishing method
WO2023085009A1 (en) Chemical-mechanical polishing composition and polishing method
JP2024075071A (en) Method for manufacturing chemical mechanical polishing composition
WO2023026780A1 (en) Composition for chemical mechanical polishing and polishing method
WO2023026778A1 (en) Chemical mechanical polishing composition and polishing method
WO2023026779A1 (en) Composition for chemical mechanical polishing and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763742

Country of ref document: EP

Kind code of ref document: A1