Nothing Special   »   [go: up one dir, main page]

WO2024180941A1 - Metal pipe for oil wells, and composition for forming lubricant coating layer for said metal pipe for oil wells - Google Patents

Metal pipe for oil wells, and composition for forming lubricant coating layer for said metal pipe for oil wells Download PDF

Info

Publication number
WO2024180941A1
WO2024180941A1 PCT/JP2024/001593 JP2024001593W WO2024180941A1 WO 2024180941 A1 WO2024180941 A1 WO 2024180941A1 JP 2024001593 W JP2024001593 W JP 2024001593W WO 2024180941 A1 WO2024180941 A1 WO 2024180941A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
pin
box
coating layer
pipe
Prior art date
Application number
PCT/JP2024/001593
Other languages
French (fr)
Japanese (ja)
Inventor
知花 安倍
幸司 秋岡
崇夫 倉西
邦夫 後藤
Original Assignee
日本製鉄株式会社
バローレック・オイル・アンド・ガス・フランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, バローレック・オイル・アンド・ガス・フランス filed Critical 日本製鉄株式会社
Publication of WO2024180941A1 publication Critical patent/WO2024180941A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/22Carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M117/00Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof
    • C10M117/02Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/06Waxes, e.g. ozocerite, ceresine, petrolatum, slack-wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended

Definitions

  • This disclosure relates to a metal oil well pipe and a composition for forming a lubricating coating layer on the metal oil well pipe.
  • Oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to simply as "oil wells") use metal oil well pipes.
  • multiple metal oil well pipes are connected according to the depth of the oil well to form an oil well pipe assembly, typically casing or tubing.
  • a threaded joint (pin and box) is formed on the pipe body of the metal oil well pipe.
  • the pipe body means a pipe body (hollow pipe) with a pin and box formed on the end by machining or the like.
  • an oil well pipe assembly is formed by connecting a pin formed on the end of the pipe body of a metal oil well pipe to a box formed on the end of the pipe body of another metal oil well pipe by screwing them together.
  • the pin has a pin contact surface including a male thread portion on the outer peripheral surface of one end of the pipe body.
  • the box has a box contact surface including a female thread portion on the inner peripheral surface of the end of the pipe body of the metal pipe for oil wells where the pin is not formed.
  • the male thread portion and the female thread portion are also collectively referred to as the "thread portion”.
  • the pin contact surface and the box contact surface are also collectively referred to as the "contact surface”.
  • the pin contact surface may further include a pin unthreaded metal contact portion including a pin seal surface and a pin shoulder surface.
  • the box contact surface may further include a box unthreaded metal contact portion including a box seal surface and a box shoulder surface.
  • the pin unthreaded metal contact portion and the box unthreaded metal contact portion are also collectively referred to as the "unthreaded metal contact portion".
  • the contact surface of the pipe body may include only a thread portion, or may include a thread portion and an unthreaded metal contact portion.
  • inspections may be carried out on the formed oil well pipe connections.
  • the oil well pipe connection is pulled up and the pin and box are unscrewed.
  • the oil well metal pipe is then removed from the oil well pipe connection by unscrewing and inspected.
  • the pin and box are screwed together again and the oil well metal pipe is reused as part of the oil well pipe connection. In this way, when using the oil well metal pipe as an oil well pipe connection, screwing and unscrewing the pin and box may be repeated.
  • compound grease containing heavy metal powder has been used to improve the seizure resistance of metal oil well pipes.
  • the seizure resistance of metal oil well pipes can be improved by applying compound grease to the contact surface.
  • the heavy metal powders, such as Pb, Zn, and Cu, contained in compound grease may have a negative impact on the environment. For this reason, there is a need to develop metal oil well pipes that have excellent seizure resistance without using compound grease.
  • Patent Document 1 JP 2002-348587 A
  • Patent Document 2 JP 2002-348587 A
  • the oil well metal pipe disclosed in Patent Document 1 has a solid lubricating coating made of a lubricating powder and a binder formed on the contact surface of at least one of the pin and the box.
  • the lubricating powder is made of one or two types selected from molybdenum disulfide powder and tungsten disulfide powder, and graphite powder.
  • the graphite powder accounts for 2 to 20 mass % of the lubricating powder.
  • Patent Document 1 discloses that this oil well metal pipe has excellent seizure resistance.
  • the oil well metal pipe disclosed in Patent Document 2 has a viscous liquid or semi-solid lubricating coating formed on the contact surface of at least one of the pin and the box, and a dry solid coating formed on top of that.
  • Patent Document 2 discloses that this oil well metal pipe has excellent seizure resistance without the use of compound grease.
  • the tightening torque is set so that sufficient sealing surface pressure is obtained regardless of the amount of thread interference.
  • the surface pressure between the contacting surfaces becomes high. Therefore, even if the surface pressure becomes high, if the torque can be steadily increased without seizing, it becomes easy to adjust the tightening torque. Therefore, it is preferable for the metal pipe for oil wells to be able to steadily increase the torque even if the surface pressure between the contacting surfaces increases.
  • high torque performance being able to steadily increase the torque even if the surface pressure between the contacting surfaces increases is referred to as high torque performance.
  • metal pipes for oil wells have not only excellent seizure resistance but also excellent high torque performance.
  • Patent Documents 1 and 2 do not consider the high torque performance of metal pipes for oil wells.
  • the object of the present disclosure is to provide a metal pipe for oil wells having excellent seizure resistance and excellent high torque performance, and to provide a composition for forming a lubricating coating layer formed on a metal pipe for oil wells having excellent seizure resistance and excellent high torque performance.
  • the metal pipe for oil well use comprises: a tube body including a first end and a second end;
  • the tube body includes: a pin formed on the first end; a box formed at the second end,
  • the pin is a pin contact surface including an external thread;
  • the box includes: a box contact surface including an internal thread;
  • the metal pipe for oil well further comprises: a lubricating coating layer formed as an uppermost layer on at least one of the pin contact surface and the box contact surface;
  • the lubricating coating layer is ZrO2 , Metal soaps, Wax and and a basic aromatic organic acid metal salt.
  • composition according to the present disclosure comprises: A composition for forming the lubricating coating layer on the metal oil well pipe, comprising: ZrO2 , Metal soaps, Wax and and a basic aromatic organic acid metal salt.
  • the metal pipe for oil wells according to the present disclosure has excellent seizure resistance and excellent high torque performance.
  • the composition according to the present disclosure can form a lubricating coating layer formed on the metal pipe for oil wells having excellent seizure resistance and excellent high torque performance.
  • FIG. 1 is a diagram for explaining the torque-on shoulder resistance ⁇ T′ in this embodiment.
  • FIG. 2 is a graph showing the relationship between the ZrO 2 content (mass %) in the lubricating coating layer 100 and the torque-on-shoulder resistance ⁇ T′ (relative value), which is an index of high torque performance.
  • FIG. 3 is a graph showing the relationship between the ZrO2 content (mass %) in the lubricating coating layer 100 and the number of make-up and unmake-up cycles, which is an index of seizure resistance.
  • FIG. 4 is a configuration diagram showing an example of the metal oil well pipe 1 according to this embodiment.
  • FIG. 4 is a configuration diagram showing an example of the metal oil well pipe 1 according to this embodiment.
  • FIG. 5 is a cross-sectional view (longitudinal cross-sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil well 1 shown in FIG.
  • FIG. 6 is a cross-sectional view (longitudinal cross-sectional view) of a portion of the pin 40 taken along a line parallel to the tube axis direction.
  • FIG. 7 is a cross-sectional view (longitudinal cross-sectional view) of a portion of the box 50 taken along a line parallel to the tube axis direction.
  • FIG. 8 is a longitudinal sectional view of an example different from FIG. 5 among cross sections (longitudinal sectional views) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil well 1.
  • FIG. 9 is a longitudinal sectional view of an example different from FIG. 5 and FIG. 8, among cross sections (longitudinal sectional views) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil well 1.
  • FIG. 10 is a cross-sectional view (longitudinal cross-sectional view) parallel to the tube axis direction of a part in the vicinity of the pin 40.
  • FIG. 11 is a cross-sectional view (longitudinal cross-sectional view) parallel to the tube axis direction of a part in the vicinity of the box 50.
  • FIG. 12 is a vertical cross-sectional view of an example different from FIG.
  • FIG. 10 among cross-sectional views (vertical cross-sectional views) parallel to the tube axis direction of a part in the vicinity of the pin 40.
  • FIG. 13 is a vertical cross-sectional view of an example different from FIG. 11, among cross-sectional views (vertical cross-sectional views) parallel to the tube axis direction of a part in the vicinity of the box 50.
  • FIG. 14 is a vertical cross-sectional view of an example different from FIGS. 10 and 12, among cross-sectional views (vertical cross-sectional views) parallel to the tube axis direction of a part in the vicinity of the pin 40.
  • FIG. 15 is a diagram for explaining the torque-on-shoulder resistance ⁇ T′ in this embodiment.
  • the inventors of the present invention have conducted various studies on the relationship between the metal pipe for oil wells and the composition for forming the lubricating coating layer of the metal pipe for oil wells, and the seizure resistance and high torque performance of the metal pipe for oil wells. As a result, the following findings were obtained.
  • the ability to stably increase torque even when the surface pressure between the contact surfaces increases is referred to as high torque performance.
  • the high torque performance of metal pipes for oil wells will be specifically explained using as an example a case in which the contact surfaces have threadless metal contact parts.
  • the pin threadless metal contact part includes the pin seal surface and the pin shoulder surface
  • the box threadless metal contact part includes the box seal surface and the box shoulder surface.
  • the pin and box of the metal oil well pipe are screwed together to form an oil well pipe connector.
  • the pin shoulder surface and the box shoulder surface come into contact as the pin and box are screwed together. Further screwing causes the pin seal surface and the box seal surface to interfere with each other, increasing the airtightness between the pin contact surface and the box contact surface.
  • the torque generated when the pin shoulder surface and the box shoulder surface come into contact is called shouldering torque.
  • the torque generated when the screwing of the pin and the box is completed is called tightening torque. Note that if the screwing is further performed after the tightening torque is reached, there is a concern that at least one of the pin and the box of the pipe body may undergo plastic deformation.
  • the torque generated when the pin and/or the box undergo plastic deformation is called yield torque.
  • the tightening torque is set so that sufficient seal surface pressure is obtained regardless of the amount of thread interference. That is, in an oil well metal pipe having an unthreaded metal contact portion, after the pin shoulder surface and the box shoulder surface come into contact, that is, in the final stage of screw tightening, the pin contact surface and the box contact surface slide while receiving a high frictional force.
  • the pin contact surface and the box contact surface can maintain sliding without seizing even under high frictional force, the difference between the shouldering torque and the yield torque can be made large.
  • the difference between the shouldering torque and the yield torque is referred to as the torque-on-shoulder resistance ⁇ T'.
  • FIG. 1 is a diagram for explaining the torque on shoulder resistance ⁇ T' in this embodiment.
  • the torque first increases in proportion to the rotation speed (solid line at the bottom left in FIG. 1). At this time, the rate of increase in torque according to the rotation speed is low.
  • the pin shoulder surface and the box shoulder surface come into contact. At this time, the torque generated in the metal oil well pipe is the shouldering torque (denoted as "Ts" in FIG. 1).
  • the torque-on-shoulder resistance ⁇ T' can be made larger, the tightening torque can be set higher.
  • the torque-on-shoulder resistance ⁇ T' is large, the torque can be increased stably even if the surface pressure between the contact surfaces increases.
  • the torque-on-shoulder resistance ⁇ T' is an indicator of the high torque performance of the metal pipe for oil wells.
  • the present inventors have studied various methods for improving the high torque performance of metal pipes for oil wells.
  • the present inventors have studied forming a lubricating coating layer as the uppermost layer on the contact surface of the pipe body of the metal pipe for oil wells.
  • a lubricating coating layer containing metal soap, wax, and a basic aromatic organic acid metal salt could improve the high torque performance of the metal pipe for oil wells.
  • FIG. 2 is a diagram showing the relationship between the ZrO2 content (mass%) in the lubricating coating layer and the torque-on-shoulder resistance ⁇ T' (relative value), which is an index of high torque performance.
  • FIG. 2 was created using the ZrO2 content (mass%) in the lubricating coating layer and the torque-on-shoulder resistance ⁇ T' (relative value) in the examples described later.
  • the torque-on-shoulder resistance ⁇ T' was determined as a relative value with the value of the torque-on-shoulder resistance ⁇ T' when a compound grease standardized by API (American Petroleum Institute) was used instead of the lubricating coating layer in test number 11 of the examples described later as the standard (100).
  • the white circle mark ⁇ in FIG. 2 indicates the torque-on-shoulder resistance ⁇ T' (relative value) of the test number in which the lubricating coating layer was formed in the examples.
  • the triangle mark ⁇ in FIG. 2 indicates the torque-on-shoulder resistance ⁇ T′ (reference value) of test number 11 in which a compound grease was used instead of the lubricating coating layer among the examples (denoted as “API doped” in FIG. 2).
  • the present inventors further conducted a detailed study on the relationship between the ZrO2 content in the lubricating coating layer and the seizure resistance of the metal pipe for oil well use. As a result, it was revealed that the seizure resistance of the metal pipe for oil well use can be improved by forming a lubricating coating layer as the uppermost layer on the contact surface of the pipe body of the metal pipe for oil well use and by making the lubricating coating layer contain ZrO2 . This point will be specifically explained with reference to the drawings.
  • Figure 3 is a diagram showing the relationship between the ZrO2 content (mass%) in the lubricating coating layer and the number of times of tightening and unscrewing, which is an index of seizure resistance.
  • Figure 3 was created using the ZrO2 content (mass%) in the lubricating coating layer and the number of times that the screw could be tightened and unscrewed without irrecoverable seizure in the threaded portion or seizure on the seal surface (pin seal surface and/or box seal surface) in the examples described below.
  • the white circle mark ⁇ in Figure 3 indicates the number of times of tightening and unscrewing for the test number in the examples in which the lubricating coating layer was formed.
  • the triangle mark ⁇ in Figure 3 indicates the number of times of tightening and unscrewing for the test number 11 in the examples in which compound grease was used instead of the lubricating coating layer (indicated as "API dope" in Figure 3).
  • the inclusion of even a small amount of ZrO2 in the lubricating coating layer resulted in a greater number of screwing and unscrewing operations than the number of times with API doping (5 times).
  • the inclusion of even a small amount of ZrO2 in the lubricating coating layer can increase the seizure resistance of metal oil well pipes to at least the same level as when compound grease is used.
  • the metal pipe for oil well use according to the present embodiment forms a lubricating coating layer containing ZrO2 , metal soap, wax, and a basic aromatic organic acid metal salt as the uppermost layer on at least one of the pin contact surface and the box contact surface.
  • the metal pipe for oil well use according to the present embodiment has excellent seizure resistance and excellent high torque performance.
  • the composition according to the present embodiment contains ZrO2 , metal soap, wax, and a basic aromatic organic acid metal salt. As a result, the composition according to the present embodiment can form a lubricating coating layer of the metal pipe for oil well use having excellent seizure resistance and excellent high torque performance.
  • a metal pipe for oil wells comprising: a tube body including a first end and a second end;
  • the tube body includes: a pin formed on the first end; a box formed at the second end,
  • the pin is a pin contact surface including an external thread;
  • the box includes: a box contact surface including an internal thread;
  • the metal pipe for oil well further comprises: a lubricating coating layer formed as an uppermost layer on at least one of the pin contact surface and the box contact surface;
  • the lubricating coating layer is ZrO2 , Metal soaps, Wax and A basic aromatic organic acid metal salt, Metal pipe for oil wells.
  • the metal pipe for oil well according to [1],
  • the lubricating coating layer is When the total content of the ZrO2 , the metal soap, the wax, the basic aromatic organic acid metal salt, and the lubricating powder is 100 mass%, ZrO 2 :0.2-8.0%, Metal soap: 2-30%, Wax: 2-30%, Basic aromatic organic acid metal salt: 12.0 to 80.0%, and Lubricating powder: 0 to 20.0%, Metal pipe for oil wells.
  • the metal pipe for oil well according to [2],
  • the lubricating coating layer is Lubricating powder: 0.1 to 20.0%, Metal pipe for oil wells.
  • the metal pipe for oil well use according to any one of [1] to [3],
  • the metal pipe for oil well further comprises: a metal plating layer disposed between at least one of the pin contact surface and the box contact surface and the lubricating coating layer; Metal pipe for oil wells.
  • the metal pipe for oil well use according to any one of [1] to [5],
  • the metal pipe for oil well further comprises: a chemical conversion layer disposed between at least one of the pin contact surface and the box contact surface and the lubricating coating layer, the chemical conversion layer having a surface in contact with the lubricating coating layer; Metal pipe for oil wells.
  • the metal pipe for oil well use according to any one of [1] to [6],
  • the pin contact surface further comprises: a pin seal surface and a pin shoulder surface;
  • the box contact surface further comprises: Including a box seal surface and a box shoulder surface.
  • [8] A composition for forming the lubricant coating layer of the metal oil well pipe according to any one of [1] to [7], ZrO2 , Metal soaps, Wax and A basic aromatic organic acid metal salt, Composition.
  • composition according to [8] The composition further comprises: Contains a lubricating powder, Composition.
  • composition according to [8] or [9], The composition further comprises: Contains volatile organic solvents, Composition.
  • the metal pipe for oil well use has a well-known configuration. There are T&C type metal pipe for oil well use and integral type metal pipe for oil well use. Each type of metal pipe for oil well use will be described in detail below.
  • Fig. 4 is a configuration diagram showing an example of the metal pipe for oil well use 1 according to the present embodiment.
  • Fig. 4 is a configuration diagram of a so-called T&C type (Threaded and Coupled) metal pipe for oil well use 1.
  • the metal pipe for oil well use 1 includes a pipe body 10.
  • the pipe body 10 extends in the pipe axial direction.
  • the cross section of the pipe body 10 perpendicular to the pipe axial direction is circular.
  • the pipe body 10 includes a first end 10A and a second end 10B.
  • the first end 10A is the end opposite the second end 10B.
  • the pipe body 10 includes a pin pipe body 11 and a coupling 12.
  • the coupling 12 is attached to one end of the pin pipe body 11. More specifically, the coupling 12 is fastened to one end of the pin pipe body 11 by a screw.
  • FIG. 5 is a cross-sectional view (longitudinal cross-sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1 shown in FIG. 4.
  • the pipe body 10 includes a pin 40 and a box 50.
  • the pin 40 is formed at the first end 10A of the pipe body 10.
  • the box 50 is formed at the second end 10B of the pipe body 10.
  • the pin 40 is inserted into the box 50 of another metal pipe for oil wells 1 (not shown) and fastened to the box 50 of the other metal pipe for oil wells 1 by a screw.
  • the pin 40 of the other metal pipe for oil wells 1 is inserted into the box 50 and fastened to the pin 40 of the other metal pipe for oil wells 1 by a screw.
  • Fig. 6 is a cross-sectional view (longitudinal cross-sectional view) of a part of the pin 40, parallel to the pipe axis direction.
  • the dashed line portion in Fig. 6 shows the configuration of a box 50 of another metal pipe for oil well use 1 when fastening with another metal pipe for oil well use 1.
  • the pin 40 has a pin contact surface 400 on the outer circumferential surface of the first end 10A of the pipe body 10.
  • the pin contact surface 400 is screwed into the box 50 of the other metal pipe for oil well use 1, and comes into contact with a box contact surface 500 (described later) of the box 50.
  • the pin contact surface 400 includes at least the male thread portion 41 formed on the outer peripheral surface of the first end portion 10A.
  • the pin contact surface 400 may further include a pin seal surface 42 and a pin shoulder surface 43.
  • the pin shoulder surface 43 is disposed on the tip surface of the first end portion 10A
  • the pin seal surface 42 is disposed on the outer peripheral surface of the first end portion 10A, closer to the tip side of the first end portion 10A than the male thread portion 41.
  • the pin seal surface 42 is disposed between the male thread portion 41 and the pin shoulder surface 43.
  • the pin seal surface 42 is tapered. Specifically, the outer diameter of the pin seal surface 42 gradually decreases from the male thread portion 41 to the pin shoulder surface 43 in the longitudinal direction (pipe axis direction) of the first end portion 10A.
  • the pin seal surface 42 comes into contact with the box seal surface 52 (described later) of the box 50 of the other metal oil well pipe 1. More specifically, when fastening, the pin 40 is inserted into the box 50 of the other metal oil well pipe 1, so that the pin seal surface 42 comes into contact with the box seal surface 52. Then, when the pin 40 is further screwed into the box 50 of the other metal oil well pipe 1, the pin seal surface 42 comes into close contact with the box seal surface 52. As a result, when fastening, the pin seal surface 42 comes into close contact with the box seal surface 52 to form a seal based on metal-metal contact. Therefore, the airtightness of the metal oil well pipes 1 fastened to each other can be improved.
  • the pin shoulder surface 43 is disposed on the tip surface of the first end 10A. That is, the pin 40 shown in FIG. 6 is disposed in the order of the male thread portion 41, the pin seal surface 42, and the pin shoulder surface 43 from the center of the pipe body 10 toward the first end 10A.
  • the pin shoulder surface 43 faces and contacts a box shoulder surface 53 (described later) of the box 50 of the other oil well metal pipe 1. More specifically, when fastening, the pin 40 is inserted into the box 50 of the other oil well metal pipe 1, so that the pin shoulder surface 43 contacts the box shoulder surface 53. This allows a high torque to be obtained when fastening.
  • the positional relationship between the pin 40 and the box 50 in the fastened state can be stabilized.
  • the pin contact surface 400 of the pin 40 includes at least the male thread portion 41.
  • the pin contact surface 400 may include the male thread portion 41, and not include the pin seal surface 42 and the pin shoulder surface 43.
  • the pin contact surface 400 may include the male thread portion 41 and the pin shoulder surface 43, and not include the pin seal surface 42.
  • the pin contact surface 400 may include the male thread portion 41 and the pin seal surface 42, and not include the pin shoulder surface 43.
  • Fig. 7 is a cross-sectional view (longitudinal cross-sectional view) parallel to the pipe axis direction of a part of the box 50.
  • the dashed line portion in Fig. 7 shows the configuration of the pin 40 of the other metal pipe for oil well use 1 when fastening with the other metal pipe for oil well use 1.
  • the box 50 has a box contact surface 500 on the inner peripheral surface of the second end portion 10B of the pipe body 10.
  • the pin 40 of the other metal pipe for oil well use 1 is screwed into the box contact surface 500, and the box contact surface 500 comes into contact with the pin contact surface 400 of the pin 40.
  • the box contact surface 500 includes at least a female thread portion 51 formed on the inner circumferential surface of the second end portion 10B. When fastened, the female thread portion 51 meshes with the male thread portion 41 of the pin 40 of the other oil well metal pipe 1.
  • the box contact surface 500 may further include a box seal surface 52 and a box shoulder surface 53.
  • the box seal surface 52 is located on the inner circumferential surface of the second end 10B closer to the pipe body 10 than the female thread portion 51.
  • the box seal surface 52 is located between the female thread portion 51 and the box shoulder surface 53.
  • the box seal surface 52 is tapered. Specifically, the inner diameter of the box seal surface 52 gradually decreases from the female thread portion 51 toward the box shoulder surface 53 in the longitudinal direction (pipe axial direction) of the second end 10B.
  • the box seal surface 52 comes into contact with the pin seal surface 42 of the pin 40 of the other metal oil well pipe 1. More specifically, when fastening, the pin 40 of the other metal oil well pipe 1 is screwed into the box 50, so that the box seal surface 52 comes into contact with the pin seal surface 42, and when further screwed, the box seal surface 52 comes into close contact with the pin seal surface 42. As a result, when fastening, the box seal surface 52 comes into close contact with the pin seal surface 42 to form a seal based on metal-metal contact. Therefore, the airtightness of the metal oil well pipes 1 fastened to each other can be improved.
  • the box shoulder surface 53 is disposed closer to the pipe body 10 than the box seal surface 52.
  • the box shoulder surface 53, the box seal surface 52, and the female threaded portion 51 are disposed in this order from the center of the pipe body 10 toward the tip of the second end 10B.
  • the box shoulder surface 53 faces and contacts the pin shoulder surface 43 of the pin 40 of the other oil well metal pipe 1. More specifically, when fastening, the pin 40 of the other oil well metal pipe 1 is inserted into the box 50, so that the box shoulder surface 53 contacts the pin shoulder surface 43. This allows a high torque to be obtained when fastening.
  • the positional relationship between the pin 40 and the box 50 in the fastened state can be stabilized.
  • the box contact surface 500 includes at least a female thread portion 51.
  • the female thread portion 51 of the box contact surface 500 of the box 50 corresponds to the male thread portion 41 of the pin contact surface 400 of the pin 40 and contacts the male thread portion 41.
  • the box seal surface 52 corresponds to the pin seal surface 42 and contacts the pin seal surface 42.
  • the box shoulder surface 53 corresponds to the pin shoulder surface 43 and contacts the pin shoulder surface 43.
  • the box contact surface 500 includes the female thread portion 51 and does not include the box seal surface 52 and the box shoulder surface 53. If the pin contact surface 400 includes the male thread portion 41 and the pin shoulder surface 43 and does not include the pin seal surface 42, the box contact surface 500 includes the female thread portion 51 and the box shoulder surface 53 and does not include the box seal surface 52. If the pin contact surface 400 includes the male thread portion 41 and the pin seal surface 42 and does not include the pin shoulder surface 43, the box contact surface 500 includes the female thread portion 51 and the box seal surface 52 and does not include the box shoulder surface 53.
  • the pin contact surface 400 may include multiple male threads 41, multiple pin seal surfaces 42, and multiple pin shoulder surfaces 43.
  • the pin contact surface 400 of the pin 40 may be arranged in the following order from the tip of the first end 10A toward the center of the pipe body 10: pin shoulder surface 43, pin seal surface 42, male thread 41, pin seal surface 42, pin shoulder surface 43, pin seal surface 42, male thread 41.
  • the box contact surface 500 of the box 50 is arranged in the following order from the tip of the second end 10B toward the center of the pipe body 10: female thread 51, box seal surface 52, box shoulder surface 53, box seal surface 52, female thread 51, box seal surface 52, box shoulder surface 53.
  • FIG. 6 and 7 show a so-called premium joint in which the pin 40 includes the male thread portion 41, the pin seal surface 42, and the pin shoulder surface 43, and the box 50 includes the female thread portion 51, the box seal surface 52, and the box shoulder surface 53.
  • the pin 40 may include the male thread portion 41 and not include the pin seal surface 42 and the pin shoulder surface 43.
  • the box 50 includes the female thread portion 51 and does not include the box seal surface 52 and the box shoulder surface 53.
  • FIG. 8 is a longitudinal sectional view of an example of a cross section (longitudinal sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1, which is different from FIG. 5.
  • FIG. 8 is a longitudinal sectional view of an example of a cross section (longitudinal sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1, which is different from FIG. 5.
  • the pin 40 includes the male thread portion 41, does not include the pin seal surface 42, and does not include the pin shoulder surface 43, and the box 50 includes the female thread portion 51, and does not include the box seal surface 52 and the box shoulder surface 53.
  • the metal oil well pipe 1 shown in Figures 4, 5 and 8 is a so-called T&C type metal oil well pipe 1 in which a pipe body 10 includes a pin pipe body 11 and a coupling 12.
  • the metal oil well pipe 1 of the present embodiment may be an integral type instead of a T&C type.
  • FIG. 9 is a longitudinal sectional view of an example different from those of FIG. 5 and FIG. 8, among cross sections (longitudinal sectional views) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1.
  • FIG. 9 is a longitudinal sectional view of an integral type metal pipe for oil wells 1.
  • the pipe body 10 in the integral type metal pipe for oil wells 1, the pipe body 10 includes a first end 10A and a second end 10B. The first end 10A is disposed on the opposite side to the second end 10B.
  • the pipe body 10 includes a pin pipe body 11 and a coupling 12.
  • the pipe body 10 is configured by fastening two separate members (the pin pipe body 11 and the coupling 12).
  • the pipe body 10 is integrally formed.
  • the pin 40 is formed at the first end 10A of the pipe body 10. When fastening, the pin 40 is inserted into and screwed into the box 50 of the other integral type metal pipe for oil wells 1, and is fastened to the box 50 of the other integral type metal pipe for oil wells 1.
  • the box 50 is formed at the second end 10B of the pipe body 10. When fastening, the pin 40 of the other integral type metal pipe for oil wells 1 is inserted into and screwed into the box 50, and is fastened to the pin 40 of the other integral type metal pipe for oil wells 1.
  • the configuration of the pin 40 of the integral type metal pipe for oil wells 1 is the same as that of the pin 40 of the T&C type metal pipe for oil wells 1 shown in FIG. 6.
  • the configuration of the box 50 of the integral type metal pipe for oil wells 1 is the same as that of the box 50 of the T&C type metal pipe for oil wells 1 shown in FIG. 7.
  • the pin shoulder surface 43, the pin seal surface 42, and the male thread portion 41 are arranged in this order in the pin 40 from the tip of the first end 10A toward the center of the pipe body 10. Therefore, in the box 50, the female thread portion 51, the box seal surface 52, and the box shoulder surface 53 are arranged in this order from the tip of the second end 10B toward the center of the pipe body 10.
  • the pin contact surface 400 of the pin 40 of the T&C type metal pipe for oil wells 1 only needs to include at least the male thread portion 41.
  • the box contact surface 500 of the box 50 of the T&C type metal pipe for oil wells 1 only needs to include at least the female thread portion 51.
  • the oil well metal pipe 1 of this embodiment may be of the T&C type or the integral type.
  • the chemical composition of the pipe body 10 of the metal pipe for oil well use 1 according to the present embodiment is not particularly limited. That is, in the present embodiment, the steel type of the pipe body 10 of the metal pipe for oil well use 1 is not particularly limited.
  • the pipe body 10 may be formed of, for example, carbon steel, stainless steel, alloy, or the like. That is, the pipe body 10 may be a steel pipe made of an Fe-based alloy, or an alloy pipe represented by a Ni-based alloy pipe.
  • the steel pipe is, for example, a low alloy steel pipe, a martensitic stainless steel pipe, a ferritic stainless steel pipe, an austenitic stainless steel pipe, a duplex stainless steel pipe, or the like.
  • the alloy pipe is, for example, a Ni-based alloy pipe, a NiCrFe alloy pipe, or the like.
  • the pipe body 10 is a stainless steel pipe, the seizure resistance is more likely to decrease compared to when the pipe body 10 is a low-alloy steel pipe.
  • a lubricating coating layer which will be described later, is formed as the uppermost layer on at least one of the contact surfaces 400, 500. As a result, the metal pipe for oil wells 1 according to this embodiment exhibits excellent seizure resistance even if the pipe body 10 is a stainless steel pipe.
  • the metal oil well pipe 1 according to the present embodiment is provided with a lubricating coating layer as the uppermost layer on at least one of the pin contact surface 400 and the box contact surface 500.
  • the metal oil well pipe 1 according to the present embodiment is provided with a lubricating coating layer There may or may not be other layers between the contact surfaces 400, 500.
  • Figs. 10, 12, and 14 are cross-sectional views (longitudinal cross-sectional views) parallel to the tube axis direction of a portion near the pin 40.
  • Figs. 11 and 13 are cross-sectional views (longitudinal cross-sectional views) parallel to the tube axis direction of a portion near the box 50.
  • the lubricating coating layer 100 may be formed directly on the pin contact surface 400.
  • the lubricating coating layer 100 may be formed directly on the box contact surface 500.
  • the lubricating coating layer 100 may be formed on another layer formed on the pin contact surface 400.
  • the lubricating coating layer 100 may be formed on another layer formed on the box contact surface 500.
  • the lubricating coating layer 100 contains ZrO2 , metal soap, wax, and a basic metal salt of an aromatic organic acid.
  • the lubricating coating layer 100 may further contain a lubricating powder. That is, the lubricating powder is an optional component in the lubricating coating layer 100.
  • % for each component refers to the content (mass %) of each component when the total content of ZrO2 , metal soap, wax, basic metal salt of an aromatic organic acid, and lubricating powder in the lubricating coating layer 100 is taken as 100 mass %.
  • ZrO2 is a white solid particle at room temperature and has a melting point of about 2700°C. ZrO2 is generally used as a heat-resistant ceramic material. As described above, even if only a small amount of ZrO2 is contained in the lubricating coating layer 100, the seizure resistance and high torque performance of the metal pipe for oil well 1 can be improved to the same level or higher than that of compound grease.
  • the ZrO2 content in the lubricating coating layer 100 is more than 0%.
  • the preferable lower limit of the ZrO2 content in the lubricating coating layer 100 is 0.2%.
  • the more preferable lower limit of the ZrO2 content in the lubricating coating layer 100 is 0.5%, more preferably 1.0%, more preferably 2.0%, and even more preferably 3.0%. If the ZrO2 content is 0.5% or more, the high torque performance of the metal pipe for oil well 1 is significantly improved.
  • the upper limit of the ZrO2 content in the lubricating coating layer 100 is not particularly limited.
  • the upper limit of the ZrO2 content in order to stably form the lubricating coating layer 100 is less than 10.0%.
  • a more preferable upper limit of the ZrO2 content in the lubricating coating layer 100 is 8.0%, even more preferably 7.0%, and even more preferably 6.5%.
  • the Mohs hardness of ZrO 2 is about 6 to 9. If the Mohs hardness is too high, the seizure resistance of the metal pipe for oil well use 1 may not be sufficiently improved. On the other hand, if the Mohs hardness is too low, the high torque performance of the metal pipe for oil well use 1 may not be sufficiently improved. That is, since ZrO 2 has a moderate Mohs hardness, it is possible to improve the seizure resistance and high torque performance of the metal pipe for oil well use 1. On the other hand, for example, among the metal oxides, TiO 2 has a lower Mohs hardness than ZrO 2. Therefore, it is expected that, among the metal oxides, TiO 2 is less likely to achieve the effect of improving the high torque performance than ZrO 2. As described above, metal oxides have significantly different properties depending on the type, and therefore cannot be easily replaced.
  • the Mohs hardness of ZrO 2 is preferably 6 to 8.5, more preferably 6 to 7, and even more preferably 6.5 to 7.
  • the Mohs hardness of ZrO 2 is measured by the following method.
  • the standard material is rubbed with the sample material (ZrO 2 ) to check for scratches.
  • the standard material is a mineral that is generally used as a standard material for Mohs hardness measurement.
  • the Mohs hardness is measured on a 10-point scale using talc (Mg 3 (Si 4 O 10 ) (OH) 2 ) with a Mohs hardness of 1 to diamond (diamond) with a Mohs hardness of 10.
  • ZrO 2 has a hardness between orthoclase (KAlSi 3 O 8 ) with a Mohs hardness of 6 and corundum (Al 2 O 3 ) with a Mohs hardness of 9.
  • ZrO2 has a hardness between that of orthoclase, which has a hardness of 6 on the Mohs scale, and that of quartz ( SiO2 ), which has a hardness of 7 on the Mohs scale.
  • the above-mentioned method for measuring the Mohs hardness of ZrO 2 involves forming scratches on ZrO 2 before it is processed into a powder state.
  • it is difficult to form scratches on ZrO 2 powder it is difficult to directly measure the Mohs hardness of ZrO 2 powder. Therefore, in this embodiment, when determining the Mohs hardness from ZrO 2 powder, it is estimated from the Vickers hardness. Specifically, first, a sample is prepared by embedding and fixing ZrO 2 powder in a resin and polishing the surface. A diamond triangular pyramid-shaped indenter is pressed into the surface of the prepared sample, and a load-unload test is performed while controlling the test force and the load rate.
  • the Vickers hardness can be obtained by using the test force and the indentation depth curve obtained from the load-unload test.
  • a Vickers tester used for the load-unload test for example, a dynamic ultra-microhardness tester (DUH-211S) manufactured by Shimadzu Corporation can be used.
  • the Mohs hardness is 6 to 7
  • the Mohs hardness is 7 to 8
  • the Mohs hardness is estimated to be 8 to 9.
  • the preferred particle size of ZrO2 is 20 to 2000 nm. If the particle size of ZrO2 is 20 to 2000 nm, the dispersion state of ZrO2 in the lubricating coating layer 100 is improved, and the seizure resistance and high torque performance of the metal pipe for oil well 1 can be stably improved.
  • a more preferred lower limit of the particle size of ZrO2 is 100 nm, more preferably 300 nm, more preferably 500 nm, and even more preferably 1000 nm.
  • a more preferred upper limit of the particle size of ZrO2 is 1800 nm, more preferably 1600 nm, and even more preferably 1500 nm.
  • the particle size of ZrO2 is measured by the following method.
  • a particle size distribution measurement is performed on the sample material ( ZrO2 ) by a laser diffraction/scattering method.
  • the particle size distribution measurement can be performed by a well-known method.
  • the arithmetic mean value of the effective diameter distribution obtained using, for example, a Shimadzu SALD series particle size distribution measuring device is taken as the particle size of ZrO2 in this embodiment.
  • high torque performance means that the torque can be stably increased even if the surface pressure between the contact surfaces increases.
  • ZrO 2 may have the effect of increasing friction at high surface pressure. Therefore, it is preferable that the surface of ZrO 2 is not covered with a coating (for example, a coating containing F).
  • Metal soaps are salts of aliphatic acids and metals.
  • fatty acids refer to aliphatic organic acids. That is, aromatic organic acids are not included in fatty acids by definition.
  • the fatty acid of the metal soap may be a mixture of fatty acids or a single compound.
  • fatty acid mixtures include beef tallow, lard, wool fat, palm oil, rapeseed oil, and coconut oil.
  • single compound fatty acids include lauric acid, tridecylic acid, myristic acid, palmitic acid, lanopalmitic acid, stearic acid, isostearic acid, 12-hydroxystearic acid, oleic acid, elaidic acid, arachic acid, behenic acid, erucic acid, lignoceric acid, lanoceric acid, ricinoleic acid, montanic acid, linoleic acid, linolenic acid, ricinolenic acid, octylic acid, and sebacic acid.
  • the fatty acid according to this embodiment may be one or more selected from the group consisting of the examples of fatty acids described above.
  • the fatty acid according to this embodiment has a carbon number of 12 to 30.
  • Examples of fatty acids having 12 to 30 carbon atoms include lauric acid, tridecylic acid, myristic acid, palmitic acid, lanopalmitic acid, stearic acid, isostearic acid, 12-hydroxystearic acid, oleic acid, elaidic acid, arachic acid, behenic acid, erucic acid, lignoceric acid, lanoceric acid, ricinoleic acid, montanic acid, linoleic acid, linolenic acid, and ricinolenic acid.
  • the metal of the metal soap is not particularly limited as long as it can form a salt with the fatty acid.
  • the metal of the metal soap are calcium, sodium, magnesium, zinc, and barium.
  • the metal soap may be a neutral salt or a basic salt.
  • the metal soap according to this embodiment is not particularly limited as long as it is a salt of the above-mentioned fatty acid and the above-mentioned metal.
  • the content of the metal soap is not particularly limited.
  • the content of the metal soap in the lubricating coating layer 100 is 2 to 30%. If the content of the metal soap is 2% or more, the seizure resistance and rust prevention of the metal oil well pipe 1 can be stably improved. If the content of the metal soap is 30% or less, the adhesion and strength of the lubricating coating layer 100 can be stably improved. Therefore, the content of the metal soap in the lubricating coating layer 100 is preferably 2 to 30%.
  • a more preferable lower limit of the content of the metal soap in the lubricating coating layer 100 is 5%, more preferably 7%, and even more preferably 10%.
  • a more preferable upper limit of the content of the metal soap in the lubricating coating layer 100 is 28%, more preferably 25%, and even more preferably 20%.
  • Wax is a general term for organic matter that is solid at room temperature and becomes liquid when heated.
  • the wax is one or more selected from the group consisting of animal, vegetable, mineral, and synthetic wax.
  • animal waxes are beeswax and spermaceti.
  • vegetable waxes are Japan wax, carnauba wax, candelilla wax, and rice wax.
  • mineral waxes are paraffin wax, microcrystalline wax, petrolatum, montan wax, ozokerite, and ceresin.
  • Examples of synthetic waxes are oxidized wax, polyethylene wax, Fischer-Tropsch wax, amide wax, and hardened castor oil (castor wax).
  • the molecular weight of the wax is 1000 or less.
  • the wax is paraffin wax with a molecular weight of 150 to 500.
  • the wax is, for example, one or more selected from the group consisting of beeswax, spermaceti, Japan wax, carnauba wax, candelilla wax, rice wax, paraffin wax, microcrystalline wax, petrolatum, montan wax, ozokerite, ceresin, oxidized wax, polyethylene wax, Fischer-Tropsch wax, amide wax, and hardened castor oil (castor wax).
  • the wax is preferably one or more selected from the group consisting of paraffin wax, microcrystalline wax, and oxidized wax.
  • the wax content is not particularly limited.
  • the wax content in the lubricating coating layer 100 is 2 to 30%. If the wax content is 2% or more, the friction of the lubricating coating layer 100 can be reduced, and the seizure resistance of the metal oil well pipe 1 can be stably improved. If the wax content is 30% or less, the adhesion and strength of the lubricating coating layer 100 can be stably improved. Therefore, the wax content in the lubricating coating layer 100 is preferably 2 to 30%. A more preferable lower limit of the wax content in the lubricating coating layer 100 is 5%, more preferably 7%, and even more preferably 10%. A more preferable upper limit of the wax content in the lubricating coating layer 100 is 28%, more preferably 25%, and even more preferably 20%.
  • the basic metal salt of an aromatic organic acid is a basic salt of an aromatic organic acid and a metal.
  • the basic metal salt of an aromatic organic acid is, for example, a grease-like or semi-solid substance at room temperature.
  • the aromatic organic acid is, for example, a sulfonate, a phenate, or a salicylate.
  • the metal of the basic aromatic organic acid metal salt is an alkali metal (lithium, sodium, potassium, rubidium, cesium, or francium) or an alkaline earth metal (beryllium, magnesium, calcium, barium, or radium).
  • the metal of the basic aromatic organic acid metal salt is one or more selected from the group consisting of sodium, potassium, calcium, barium, or magnesium. More preferably, the metal of the basic aromatic organic acid metal salt is one or more selected from the group consisting of calcium, barium, or magnesium.
  • the basic aromatic organic acid metal salt is, for example, one or more selected from the group consisting of basic sodium sulfonate, basic potassium sulfonate, basic magnesium sulfonate, basic calcium sulfonate, basic barium sulfonate, basic sodium phenate, basic potassium phenate, basic magnesium phenate, basic calcium phenate, basic barium phenate, basic sodium salicylate, basic potassium salicylate, basic magnesium salicylate, basic calcium salicylate, and basic barium salicylate.
  • the higher the base number of the basic aromatic organic metal salt the higher the amount of fine metal salt particles that function as a solid lubricant. Therefore, by using a basic aromatic organic metal salt with a high base number, the seizure resistance of the oil well metal pipe 1 is further improved. Furthermore, if the base number is increased to a certain level or higher, the effect of neutralizing the acid component is obtained. Therefore, by using a basic aromatic organic metal salt with a high base number, the rust prevention ability of the oil well metal pipe 1 is further improved. Therefore, it is preferable that the basic aromatic organic metal salt has a base number (JIS K2501) (when two or more types are used, the weighted average value of the base number taking into account the amount) of 50 to 500 mg KOH/g.
  • the base number of the basic aromatic organic metal salt is 50 mgKOH/g or more, the above effects can be sufficiently obtained. If the base number is 500 mgKOH/g or less, the hydrophilicity can be reduced and sufficient rust prevention properties can be obtained.
  • a more preferred lower limit of the base number of the basic aromatic organic metal salt is 100 mgKOH/g, more preferably 200 mgKOH/g, and even more preferably 250 mgKOH/g.
  • a more preferred upper limit of the base number of the basic aromatic organic metal salt is 450 mgKOH/g.
  • the content of the basic aromatic organic metal salt is not particularly limited.
  • the basic aromatic organic metal salt is a grease-like or semi-solid substance, and also functions as a base for the lubricating coating layer 100. Therefore, the content of the basic aromatic organic metal salt in the lubricating coating layer 100 can be increased up to 80.0%. That is, in this embodiment, the content of the basic aromatic organic metal salt in the lubricating coating layer 100 is 12.0 to 80.0%.
  • a more preferred lower limit for the content of the basic aromatic organic metal salt in the lubricating coating layer 100 is 20.0%, more preferably 30.0%, and even more preferably 40.0%.
  • a more preferred upper limit for the content of the basic aromatic organic metal salt in the lubricating coating layer 100 is 75.0%, more preferably 71.0%, and even more preferably 70.0%.
  • the lubricating coating layer 100 may further contain a lubricating powder in addition to ZrO2 , metal soap, wax, and basic aromatic organic acid metal salt. That is, the lubricating powder is an optional component and does not have to be contained in the lubricating coating layer 100.
  • the lubricating powder is a general term for solid powders that have lubricity. In this embodiment, a well-known solid powder that has lubricity can be used as the lubricating powder.
  • lubricating powders are roughly classified into the following four types.
  • Materials that exhibit lubricity due to having a specific slippery crystal structure such as a hexagonal layered crystal structure (e.g., graphite, amorphous graphite, zinc oxide, boron nitride, and talc);
  • Those that exhibit lubricity by having a reactive element in addition to a crystal structure for example, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide, and organic molybdenum
  • Those that exhibit lubricity due to chemical reactivity e.g., thiosulfate compounds
  • Those that exhibit lubricity due to plastic or viscoplastic behavior under frictional stress e.g., polytetrafluoroethylene (PTFE), polyamide, copper (Cu), and melamine cyanurate (MCA)).
  • PTFE polytetraflu
  • the lubricating powder contains one or more selected from the group consisting of (1) to (4) above. That is, preferably, the lubricating powder is one or more selected from the group consisting of graphite, amorphous graphite, zinc oxide, boron nitride, talc, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide, organic molybdenum, thiosulfate compounds, polytetrafluoroethylene (PTFE), polyamide, copper (Cu), and melamine cyanurate (MCA).
  • PTFE polytetrafluoroethylene
  • Cu copper
  • MCA melamine cyanurate
  • the lubricating powder is one or more selected from the group consisting of molybdenum disulfide, graphite, polytetrafluoroethylene (PTFE), and graphite fluoride. Even more preferably, the lubricating powder is one or two selected from the group consisting of graphite and polytetrafluoroethylene (PTFE).
  • the content of lubricating powder in the lubricating coating layer 100 is 0 to 20.0%.
  • a more preferred lower limit of the content of lubricating powder in the lubricating coating layer 100 is 0.5%, more preferably 3.0%, and even more preferably 5.0%.
  • a more preferred upper limit of the content of lubricating powder in the lubricating coating layer 100 is 18.0%, more preferably 15.0%, and even more preferably 12.0%.
  • the lubricating coating layer 100 may contain other components in addition to ZrO2 , metal soap, wax, basic aromatic organic acid metal salt, and lubricating powder, such as well-known anti-rust additives, preservatives, color pigments, and impurities.
  • the lubricating coating layer 100 contains a rust-preventive additive, the rust-preventive properties of the metal pipe for oil wells 1 are improved. If the rust-preventive properties of the metal pipe for oil wells 1 are improved, rusting of the metal pipe for oil wells 1 due to long-term storage can be suppressed.
  • the rust-preventive additive include aluminum tripolyphosphate, aluminum phosphite, and calcium ion-exchanged silica. Other commercially available reactive water repellents can also be used as rust-preventive additives.
  • the lubricating coating layer 100 contains a preservative, the corrosion resistance of the metal oil well pipe 1 is increased. If the corrosion resistance of the metal oil well pipe 1 is increased, corrosion of the metal oil well pipe 1 due to long-term storage can be suppressed. Furthermore, the lubricating coating layer 100 may contain, as impurities, trace amounts of volatile organic solvents contained in the composition described below. In this embodiment, the total content of other components in the lubricating coating layer 100 is 0 to 10%.
  • the composition for forming the lubricating coating layer 100 contains ZrO2 , metal soap, wax, and a basic metal salt of an aromatic organic acid.
  • the composition according to this embodiment may further contain a lubricating powder.
  • the composition contains ZrO2 : 0.2 to 8.0%, metal soap: 2 to 30%, wax: 2 to 30%, basic metal salt of an aromatic organic acid: 12.0 to 80.0%, and lubricating powder: 0 to 20.0%.
  • the content of ZrO2 , metal soap, wax, basic metal salt of an aromatic organic acid, and lubricating powder in the composition is the same as that of the lubricating coating layer 100.
  • the composition according to this embodiment may further contain a volatile organic solvent.
  • the composition When coating is performed at room temperature, the composition is prepared by adding a volatile organic solvent to a mixture of the components of the lubricating coating layer 100. Unlike substances contained in the composition, the volatile organic solvent evaporates almost entirely during the process of forming the lubricating coating layer 100. However, the volatile organic solvent may remain as an impurity in the lubricating coating layer 100 according to this embodiment.
  • volatile means that it shows a tendency to evaporate at temperatures from room temperature to 150°C.
  • the type of volatile organic solvent is not particularly limited.
  • the volatile organic solvent is, for example, a petroleum-based solvent.
  • the petroleum-based solvent is, for example, one or more selected from the group consisting of solvent equivalent to industrial gasoline specified in JIS K2201 (2006), mineral spirits, aromatic petroleum naphtha, xylene, and cellosolve.
  • the volatile organic solvent preferably has a flash point of 30°C or higher, an initial boiling point of 150°C or higher, and an end point of 210°C or lower. In this case, the volatile organic solvent is relatively easy to handle, evaporates quickly, and requires a short drying time.
  • the content of the volatile organic solvent may be adjusted as appropriate so that the viscosity of the composition can be adjusted appropriately depending on the application method of the composition.
  • the content of the volatile organic solvent is 20 to 50 g when the total amount of the non-volatile components is 100 g.
  • the thickness of the lubricating coating layer 100 is not particularly limited.
  • the thickness of the lubricating coating layer 100 is 20 to 80 ⁇ m. If the thickness of the lubricating coating layer 100 is 20 ⁇ m or more, the lubricity of the lubricating coating layer 100 is stably increased. On the other hand, if the thickness of the lubricating coating layer 100 is 80 ⁇ m or less, the adhesion of the lubricating coating layer 100 is stably increased. Therefore, in this embodiment, the thickness of the lubricating coating layer 100 is preferably 20 to 80 ⁇ m.
  • the thickness of the lubricating coating layer 100 is measured by the following method.
  • a wet gauge is brought into contact with the pin contact surface 400 or the box contact surface 500 on which the lubricating coating layer 100 is formed.
  • the wet gauge includes a number of end faces corresponding to the thickness.
  • the wet gauge is brought into contact with the lubricating coating layer 100, and it is confirmed which end face of the wet gauge the lubricating coating layer 100 is attached to. In this manner, the thickness of the lubricating coating layer 100 is determined.
  • the measurement points are 12 points (12 points at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, and 330°) around the circumference of the metal oil well pipe 1.
  • the arithmetic mean value of the measurement results at the 12 points is regarded as the thickness of the lubricating coating layer 100.
  • the lubricating coating layer 100 is formed as the uppermost layer on at least one of the pin contact surface 400 and the box contact surface 500. In other words, in this embodiment, the lubricating coating layer 100 is disposed as the outermost layer on at least one of the pin contact surface 400 and the box contact surface 500.
  • the lubricating coating layer 100 may be formed as the entire top layer of at least one of the pin contact surface 400 and the box contact surface 500, or may be formed as the top layer only on a part of the surface.
  • the pipe body 10 has a pin seal surface 42, a box seal surface 52, a pin shoulder surface 43, and a box shoulder surface 53, the surface pressure of the seal surfaces 42, 52 and the shoulder surfaces 43, 53 is particularly high in the final stage of screw tightening.
  • the lubricating coating layer 100 when the lubricating coating layer 100 is partially formed as the top layer of at least one of the contact surfaces 400, 500 having the seal surfaces 42, 52 and the shoulder surfaces 43, 53, the lubricating coating layer 100 may be formed as the top layer of at least one of the seal surfaces 42, 52 and the shoulder surfaces 43, 53.
  • the lubricating coating layer 100 is formed as the entire top layer of at least one of the contact surfaces 400, 500, the production efficiency of the metal pipe for oil wells 1 is improved.
  • the lubricating coating layer 100 may be a single layer or multiple layers. Multiple layers refers to a state in which the lubricating coating layer 100 is laminated in two or more layers as the uppermost layer of the contact surface 400 or 500. Specifically, by repeatedly applying and drying the composition, two or more lubricating coating layers 100 can be formed.
  • the metal oil well pipe 1 may have a layer other than the lubricating coating layer 100 formed on or above the contact surfaces 400, 500.
  • the other layer is, for example, a metal plating layer and a chemical conversion layer.
  • the metal oil well pipe 1 may further include a metal plating layer between the lubricating coating layer 100 and at least one of the pin contact surface 400 and the box contact surface 500.
  • the metal plating layer 110 may be formed on the pin contact surface 400 as an underlayer of the lubricating coating layer 100.
  • the metal plating layer 110 may be formed on the box contact surface 500 as an underlayer of the lubricating coating layer 100. In this way, when both the lubricating coating layer 100 and the metal plating layer 110 are formed, the metal plating layer 110 is formed between at least one of the contact surfaces 400, 500 and the lubricating coating layer 100.
  • the type of the metal plating layer 110 is not particularly limited.
  • the metal plating layer 110 may be a single-layer plating layer or a multi-layer plating layer (two-layer plating layer or three-layer plating layer).
  • the metal plating layer 110 is, for example, a single-layer plating layer of Cu, Sn, or Ni metal, a single-layer plating layer of a Zn-Ni alloy, a Cu-Sn alloy, or a Cu-Sn-Zn alloy.
  • the metal plating layer 110 is a multi-layer plating layer
  • the metal plating layer 110 is, for example, a two-layer plating layer of a Cu layer and a Sn layer, a three-layer plating layer of a Ni layer, a Cu layer, and a Sn layer, or a multi-layer plating layer that combines the above single-layer plating layers.
  • the hardness of the metal plating layer 110 is 200 or more in micro Vickers. If the hardness of the metal plating layer 110 is 200 or more, the corrosion resistance of the metal pipe for oil wells 1 is further stably increased.
  • the hardness of the metal plating layer 110 is measured as follows. Five arbitrary regions are identified in the metal plating layer 110 formed on the contact surfaces 400, 500 of the metal pipe for oil wells 1. For each identified region, the Vickers hardness (HV) is measured in accordance with JIS Z2244 (2009). The test conditions are, for example, a test temperature of room temperature (25°C) and a test force of 2.94 N (300 gf). The arithmetic mean value of the obtained values is defined as the hardness of the metal plating layer 110.
  • the thickness of the metal plating layer 110 is not particularly limited. However, when forming a multi-layer plating layer as the metal plating layer 110, it is preferable that the bottom plating layer has a film thickness of less than 1 ⁇ m. In addition, it is preferable that the thickness of the metal plating layer 110 (total thickness in the case of a multi-layer plating layer) is 5 to 15 ⁇ m.
  • the thickness of the metal plating layer 110 in this embodiment is measured as follows.
  • a probe of an eddy current phase type film thickness gauge conforming to ISO (International Organization for Standardization) 21968 (2005) is brought into contact with the contact surfaces 400, 500 on which the metal plating layer 110 is formed.
  • the phase difference between the high-frequency magnetic field on the input side of the probe and the eddy currents excited by it on the metal plating layer is measured. This phase difference is converted into the thickness of the metal plating layer 110.
  • the metal oil well pipe 1 may further include a chemical conversion layer disposed between at least one of the pin contact surface 400 and the box contact surface 500 and the lubricant coating layer 100, and having a surface in contact with the lubricant coating layer 100.
  • the chemical conversion layer 120 may be formed on the metal plating layer 110 formed on the pin contact surface 400, as a lower layer of the lubricant coating layer 100.
  • the chemical conversion layer 120 may be formed on the metal plating layer 110 formed on the box contact surface 500, as a lower layer of the lubricant coating layer 100.
  • the chemical conversion layer 120 may be formed on the pin contact surface 400, as a lower layer of the lubricant coating layer 100.
  • the chemical conversion layer 120 may be formed on the box contact surface 500, as a lower layer of the lubricant coating layer 100.
  • the type of the chemical conversion layer 120 is not particularly limited.
  • the chemical conversion layer 120 may be, for example, a phosphate chemical conversion layer, an oxalate chemical conversion layer, a borate chemical conversion layer, a chromate chemical conversion layer, or a zirconium chemical conversion layer.
  • the chemical conversion layer 120 is porous. Therefore, if the lubricating coating layer 100 is formed on the chemical conversion layer 120, the adhesion of the lubricating coating layer 100 is further increased due to the so-called anchor effect.
  • the thickness of the chemical conversion layer 120 is not particularly limited. The preferred thickness of the chemical conversion layer 120 in this embodiment is 5 to 40 ⁇ m.
  • the contact surfaces 400, 500 may be blasted or pickled. That is, the surface of the metal pipe for oil well use 1 on which the lubricating coating layer 100 is formed as the uppermost layer may be a surface that has been blasted or pickled. That is, the contact surfaces 400, 500 of the pipe body 10 of the metal pipe for oil well use 1 may be blasted or pickled, and the lubricating coating layer 100 may be formed thereon.
  • the metal pipe for oil well use 1 when the metal pipe for oil well use 1 has a metal plating layer 110, the metal pipe for oil well use 1 may have a contact surface 400, 500 that has been blasted or pickled, and the metal plating layer 110 thereon, and the lubricating coating layer 100 may be provided on or above the metal plating layer 110. In addition, when the metal pipe for oil well use 1 has a metal plating layer 110, the metal pipe for oil well use 1 may further have a metal plating layer 110 that has been blasted or pickled, and the lubricating coating layer 100 thereon.
  • the preferred surface roughness of the surface that comes into contact with the lubricating coating layer 100 is an arithmetic mean roughness Ra of 1 to 8 ⁇ m (reference length 2.5 mm). If the arithmetic mean roughness Ra of the surface that comes into contact with the lubricating coating layer 100 is 1 ⁇ m or more, the adhesion of the lubricating coating layer 100 is further increased. If the arithmetic mean roughness Ra of the surface that comes into contact with the lubricating coating layer 100 is 8 ⁇ m or less, the lubricating coating layer 100 is less likely to peel off.
  • the arithmetic mean roughness Ra is measured based on JIS B0601 (2013). For example, it can be measured using a scanning probe microscope SPI3800N manufactured by SII Nanotechnology. The measurement conditions are, for example, a 2 ⁇ m ⁇ 2 ⁇ m area of the sample as a unit of the number of acquired data, and 1024 ⁇ 1024 acquired data. The reference length is 2.5 mm.
  • the larger the arithmetic mean roughness Ra the larger the contact area with the lubricating coating layer 100. Therefore, the anchor effect increases the adhesion with the lubricating coating layer 100. If the adhesion of the lubricating coating layer 100 is increased, the seizure resistance of the metal pipe for oil wells 1 will be further improved.
  • the manufacturing method for the oil well metal pipe 1 includes a preparation process and a lubricating coating layer formation process.
  • a metal pipe for oil well use 1 is prepared, which includes a pipe body 10 including a pin 40 including a pin contact surface 400 including a male thread portion 41, and a box 50 including a box contact surface 500 including a female thread portion 51.
  • the metal pipe for oil well use 1 according to the present embodiment has a well-known configuration. That is, in the preparation step, it is sufficient to prepare a metal pipe for oil well use 1 having a well-known configuration.
  • a composition containing the above-mentioned components is prepared.
  • the composition for forming the lubricating coating layer 100 contains ZrO2 , metal soap, wax, and basic aromatic organic solvent.
  • the composition is liquefied by adding a solvent and/or by heating, and is applied onto or above at least one of the pin contact surface 400 and the box contact surface 500. If necessary, the applied composition is The composition is dried to form the lubricant coating layer 100.
  • a composition containing the above-mentioned components is prepared.
  • a solventless composition can be produced by heating a mixture of the components of the above-mentioned composition and kneading them in a molten state.
  • a powder mixture in which all components are mixed in powder form may be used as the composition.
  • a solvent-based composition can be produced by dissolving or dispersing ZrO2 , a metal soap, a wax, and a basic aromatic organic acid metal salt in a volatile organic solvent and mixing them.
  • the prepared composition is applied on or above at least one of the contact surfaces 400, 500.
  • the composition can be applied using a hot melt method.
  • the hot melt method the composition is heated and melted to a low-viscosity fluid state.
  • the fluidized composition is then sprayed from a spray gun having a temperature maintenance function.
  • the composition is heated and melted in a tank equipped with an appropriate stirring device, and is supplied to the spray head of the spray gun (maintained at a predetermined temperature) via a metering pump by a compressor, and sprayed.
  • the heating temperature is, for example, 90 to 130°C.
  • the holding temperature in the tank and the spray head is adjusted according to the melting point of the composition.
  • the application method may be brush coating, immersion, etc. instead of spray coating.
  • the heating temperature of the composition is preferably 10 to 50°C higher than the melting point of the composition.
  • the composition is made into a solution state by adding a solvent, and is applied by spray application or the like to at least one of the contact surfaces 400, 500.
  • the viscosity of the composition is adjusted so that the composition can be spray applied under an environment of normal temperature and pressure.
  • the composition applied to at least one of the pin contact surface 400 and the box contact surface 500 is cooled, whereby the molten composition dries to form the lubricating coating layer 100.
  • the composition can be cooled by a known method. For example, cooling is allowed to stand in the air and air cooling.
  • the composition applied to or above the contact surfaces 400, 500 is dried to form the lubricating coating layer 100.
  • the composition can be dried by a known method. For example, drying is allowed to stand in the air, air drying at low temperature, and vacuum drying.
  • the above-mentioned cooling may be performed by rapid cooling using a nitrogen gas and carbon dioxide gas cooling system, etc.
  • rapid cooling cooling is performed indirectly from the opposite side of the contact surface.
  • cooling is performed from the inner surface side of the pipe body 10.
  • cooling is performed indirectly from the outer surface side of the pipe body 10.
  • the lubricating coating layer 100 may be a single layer or multiple layers. Multiple layers means that the lubricating coating layer 100 is laminated in two or more layers in the radial direction of the pipe body 10 from the contact surfaces 400, 500 side. By repeating the application and drying of the composition, two or more lubricating coating layers 100 can be formed.
  • the lubricating coating layer 100 may be formed directly on at least one of the contact surfaces 400, 500, or may be formed after carrying out the base treatment described below.
  • the method for producing the metal oil well pipe 1 according to the present embodiment may further include other steps.
  • the other steps are, for example, a metal plating step, a chemical conversion treatment step, a blasting treatment step, and a pickling treatment step. Each step will be described below.
  • the method for manufacturing the metal oil well pipe 1 according to this embodiment may further include a metal plating step prior to the step of forming the lubricating coating layer 100.
  • the metal plating layer 110 can be formed by, for example, electroplating or impact plating.
  • the electroplating process is a process for forming the metal plating layer 110 by electroplating.
  • the metal plating layer 110 is, for example, a single-layer plating layer of Cu, Sn, or Ni metal, a single-layer plating layer of a Zn-Ni alloy, a Cu-Sn alloy, or a Cu-Sn-Zn alloy, a two-layer plating layer of a Cu layer and a Sn layer, a three-layer plating layer of a Ni layer, a Cu layer, and a Sn layer, or a multi-layer plating layer combining the above single-layer plating layers.
  • the electroplating process can be carried out by a known method. For example, a plating bath containing ions of the metal elements contained in the alloy plating is prepared. Next, at least one of the contact surfaces 400, 500 is immersed in the plating bath. Furthermore, electricity is passed through at least one of the contact surfaces 400, 500 to form a metal plating layer 110 on at least one of the contact surfaces 400, 500.
  • the conditions of the plating bath such as the temperature and plating time, can be set as appropriate.
  • the plating bath contains copper ions, tin ions, and zinc ions.
  • the plating bath preferably has a composition of Cu: 1-50 g/L, Sn: 1-50 g/L, and Zn: 1-50 g/L.
  • the electroplating conditions are, for example, plating bath pH: 1-10, plating bath temperature: 60°C, current density: 1-100 A/ dm2 , and treatment time: 0.1-30 minutes.
  • the plating bath contains zinc ions and nickel ions.
  • the plating bath preferably has a composition of Zn: 1 to 100 g/L and Ni: 1 to 50 g/L.
  • the electroplating conditions are, for example, plating bath pH: 1 to 10, plating bath temperature: 60°C, current density: 1 to 100 A/ dm2 , and treatment time: 0.1 to 30 minutes.
  • Impact plating is a process that can be carried out by mechanical plating, in which particles and the object to be plated are collided in a rotating barrel, or projection plating, in which particles are collided with the object to be plated using a blasting device.
  • the method for producing a metal oil well pipe 1 may include a chemical conversion treatment step prior to the lubricant coating layer-forming step.
  • a chemical conversion treatment is carried out to form a chemical conversion layer 120 as an underlayer of the lubricant coating layer 100, the chemical conversion layer 120 having a surface in contact with the lubricant coating layer 100.
  • the chemical conversion treatment can be performed by a known method.
  • a general chemical conversion treatment liquid can be used as the treatment liquid.
  • a zinc phosphate-based chemical conversion treatment liquid containing 1 to 150 g/L of phosphate ions, 3 to 70 g/L of zinc ions, 1 to 100 g/L of nitrate ions, and 0 to 30 g/L of nickel ions can be used.
  • a manganese phosphate-based chemical conversion treatment liquid can be used.
  • a chemical conversion treatment liquid can be used depending on the chemical conversion treatment layer 120 to be formed.
  • the liquid temperature of the treatment liquid is, for example, room temperature to 100°C.
  • the treatment time of the chemical conversion treatment can be appropriately set depending on the desired film thickness, for example, 15 minutes.
  • surface conditioning may be performed before the phosphate conversion treatment in order to promote the formation of the chemical conversion treatment layer.
  • Surface conditioning refers to a treatment of immersing in a surface conditioning aqueous solution containing colloidal titanium. After the phosphate conversion treatment, it is preferable to wash with water or hot water and then dry.
  • the blasting process is, for example, a process of colliding particles using a blasting device.
  • the blasting process is, for example, a sandblasting process.
  • the sandblasting process is a process of mixing a blasting material (abrasive) and compressed air and projecting the mixture.
  • the blasting material is, for example, a spherical shot material and an angular grid material.
  • the sandblasting process can increase the surface roughness of the contact surfaces 400, 500 and the surface of the metal plating layer 110.
  • the sandblasting process can be performed by a known method.
  • air is compressed with a compressor and the compressed air is mixed with a blasting material.
  • the blasting material can be made of, for example, stainless steel, aluminum, ceramic, alumina, etc.
  • the conditions of the sandblasting process, such as the projection speed, can be set appropriately.
  • the pickling process refers to a process of roughening the surface by immersing in a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid, or hydrofluoric acid. That is, by immersing the contact surfaces 400, 500 and the surface of the metal plating layer 110 in a strong acid solution, the surface roughness of these surfaces can be increased.
  • a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid, or hydrofluoric acid.
  • the metal pipe for oil wells and the composition according to this embodiment will be explained in more detail below using examples.
  • the metal pipe for oil wells and the composition according to this embodiment are not limited to the examples explained below.
  • the pin contact surface is referred to as the pin surface
  • the box contact surface is referred to as the box surface.
  • % in the examples means mass % unless otherwise specified.
  • VAM (registered trademark) 21HT manufactured by Nippon Steel Corporation was used.
  • VAM (registered trademark) 21HT is a metal pipe for oil wells with an outer diameter of 177.80 mm (7 inches) and a wall thickness of 11.506 mm (0.453 inches).
  • the steel type was 13Cr stainless steel.
  • the composition of the 13Cr steel was C: 0.19%, Si: 0.25%, Mn: 0.80%, P: 0.02%, S: 0.01%, Cu: 0.04%, Ni: 0.10%, Cr: 13.0%, Mo: 0.04%, and the remainder was Fe and impurities.
  • test numbers 8 and 9 were further sandblasted.
  • Mesh 100 abrasive was used to create a surface roughness.
  • Table 1 a metal plating layer was formed on the box surface of each test number other than test number 11, which had been ground to finish, as shown in Table 1.
  • the type of metal plating layer formed and its film thickness are listed in the "Preparation" column for the box surface in Table 1.
  • a "-" in the "Preparation” column for the box surface means that no metal plating layer was formed.
  • the film thickness of the metal plating layer was measured using the method described above.
  • Zn-Ni alloy plating was performed by electroplating to form the Zn-Ni alloy plating layer.
  • the Zn-Ni alloy plating bath used was Dainjin Alloy N-PL, a product name of Daiwa Kasei Co., Ltd.
  • the electroplating conditions were plating bath pH: 6.5, plating bath temperature: 25°C, current density: 2 A/dm 2 , and treatment time: 18 minutes.
  • the composition of the Zn-Ni alloy plating layer was Zn: 85% and Ni: 15%.
  • test number 7 in which a Cu-Sn-Zn alloy plating layer was formed as the metal plating layer, Ni strike plating was first formed by electroplating. Then, the Cu-Sn-Zn alloy plating layer was formed.
  • the Cu-Sn-Zn alloy plating bath used was a plating bath manufactured by Nippon Kagaku Sangyo Co., Ltd.
  • the arithmetic mean roughness Ra of the pin surface and box surface after the base treatment for each test number is as shown in Table 1.
  • the arithmetic mean roughness Ra was measured based on JIS B 0601 (2013).
  • the arithmetic mean roughness Ra was measured using a scanning probe microscope SPI3800N manufactured by SII Nanotechnology. The measurement conditions were as follows: the unit of data acquisition was a 2 ⁇ m x 2 ⁇ m area of the sample, and the number of data acquisitions was 1024 x 1024.
  • a lubricating coating layer having the composition shown in Table 2 was formed on the pin and box surfaces of each test number prepared as described above.
  • the parentheses in the "Lubricating Coating Layer Composition" column indicate the content of each component in mass % when the total content of ZrO2 , metal soap, wax, basic aromatic organic acid metal salt, and lubricating powder is taken as 100 mass %.
  • the composition for forming the lubricating coating layer of each test number except for test numbers 7 and 11 contained a volatile organic solvent in addition to the lubricating coating layer composition shown in Table 2. The content of the volatile organic solvent was 30% when the total content of ZrO2 , metal soap, wax, basic aromatic organic acid metal salt, and lubricating powder is taken as 100 mass %.
  • the composition for forming the lubricating coating layer of test numbers 7 and 11 was the same as the lubricating coating layer composition shown in Table 2.
  • the particle diameter of ZrO2 used was 1000 nm.
  • the Mohs hardness of ZrO2 used in each test number is shown in Table 2.
  • Test number 10 contained Cr2O3 instead of ZrO2 .
  • the content of Cr2O3 was 10.0 mass%.
  • the content of Cr2O3 means the content of Cr2O3 when the total content of Cr2O3 , metal soap , wax, and basic aromatic organic acid metal salt is 100 mass%.
  • ZrO2 was Zirconium Oxide (product name: MIZ ) manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.
  • Cr2O3 was Green F3 manufactured by Nippon Kagaku Kogyo Co., Ltd.
  • the particle size of this Cr2O3 was 1500 nm.
  • Ca- STEARATE manufactured by DIC Corporation was used as Ca stearate.
  • Zn-STEARATE manufactured by DIC Corporation was used as Zn stearate.
  • Na-STEARATE manufactured by DIC Corporation was used as Na stearate.
  • the carnauba wax used was XAQUASOROUT-0013, a product of Nippon Seiro Co., Ltd.
  • the paraffin wax used was paraffin wax manufactured by Nippon Seiro Co., Ltd.
  • the microcrystalline wax used was Hi-Mic-1080, a product of Nippon Seiro Co., Ltd.
  • the basic Ca sulfonate used was Calcinate (registered trademark) C400CLR (base number 400 mg KOH/g), a product of LANXESS Corporation.
  • the basic Ca phenate used had a base number of 100 mg KOH/g, a soap concentration of 40%, and a metal ratio of 10.
  • the basic Ca salicylate used was MD9A01, a product of Nippon Lubrizol Co., Ltd.
  • the graphite used was graphite powder manufactured by Nippon Graphite Industries Co., Ltd., product name Blue P (ash content 3.79%, crystallinity 96.9%, average particle size 7 ⁇ m).
  • the PTFE used was Lubron (registered trademark) L-5F, a product of Daikin Industries, Ltd.
  • the volatile organic solvent used was Exxsol (registered trademark) D40, a product of Exxon.
  • API dope contains, by mass, 15-40% lead, 7-13% zinc, and 3-7% copper. This API dope contains heavy metals such as lead, which may have adverse effects on the human body and the environment, but it has good lubricity, so it was used as the standard for the high torque performance evaluation described below.
  • pin surfaces and box surfaces for each test number were prepared using the above method.
  • the resulting pin surfaces and box surfaces were used to carry out the seizure resistance evaluation test and high torque performance evaluation test described below.
  • seizure resistance evaluation test The seizure resistance evaluation was performed by a repeated fastening test. Specifically, the pin surface and the box surface of each test number were used to repeatedly tighten and unscrew the screws at room temperature (20°C) to evaluate the seizure resistance. The fastening torque in the screw tightening was 24,350 N ⁇ m. After each tightening and unscrewing, the pin surface and the box surface were visually observed. The occurrence of seizure on the threaded portion and the seal surface was confirmed by visual observation. The test was terminated when seizure occurred on the seal surface. In cases where the seizure on the threaded portion was minor and could be restored by care such as filing, the seizure defects were repaired and the test was continued. In cases where irreparable seizure occurred on the threaded portion, the test was also terminated at that point.
  • the evaluation index for seizure resistance was the maximum number of times the screws were tightened without causing irreversible seizure in the threads or seizure on the seal surface.
  • the results of the seizure resistance evaluation test are shown in Table 3. Note that for test number 6, the composition for forming the lubricating coating layer was not applied properly, resulting in poor formation of the lubricating coating layer. For this reason, the test could not be carried out for test number 6.
  • test number 11 a new layer of API dope was applied each time the screw was tightened and loosened. This is because API dope is usually reapplied each time the screw is tightened and loosened. In addition, this is the only intended use of API dope.
  • test numbers 1 to 10 and 12 the test was continued without re-forming the lubricating coating layer until the end of the test.
  • FIG. 15 is a diagram for explaining the torque on shoulder resistance ⁇ T' in this embodiment.
  • Ts in FIG. 15 means shouldering torque.
  • MTV in FIG. 15 represents the torque value where line segment L intersects with the torque chart.
  • Line segment L in FIG. 15 is a straight line that has the same slope as the slope of the linear region in the torque chart after shouldering, and has 0.2% more rotation speed than the linear region.
  • Ty yield torque
  • line segment L was used to define MTV. The difference between MTV and Ts was taken as the torque on shoulder resistance ⁇ T' in this embodiment.
  • the torque on shoulder resistance ⁇ T' for each test number was calculated as a relative value, with the torque on shoulder resistance ⁇ T' for test number 11 when API dope was used instead of the lubricating coating layer being set as the standard (100).
  • the torque on shoulder resistance ⁇ T' (relative value) obtained for each test number is shown in Table 3.
  • Table 3 As mentioned above, for test number 6, the composition for forming the lubricating coating layer was not applied properly, resulting in poor formation of the lubricating coating layer. Therefore, the test could not be performed for test number 6.
  • the lubricating coating layers of the metal pipes for oil wells of Test Nos. 1 to 5 and 7 to 9 and the compositions for forming the lubricating coating layers contained ZrO2 . Therefore, the metal pipes for oil wells of Test Nos. 1 to 5 and 7 to 9 did not experience galling even after being repeatedly screwed in and unscrewed eight times, and thus exhibited excellent galling resistance. Furthermore, the metal pipes for oil wells of Test Nos. 1 to 5 and 7 to 9 had torque-on-shoulder resistance ⁇ T' (relative value) exceeding 100, and thus exhibited excellent high torque performance.
  • the oil well metal pipes of Test Nos. 2 to 5 and 7 to 9 had a ZrO2 content of 0.5 to 8.0% in the lubricating coating layer and in the composition for forming the lubricating coating layer. Therefore, the oil well metal pipes of Test Nos. 2 to 5 and 7 to 9 showed even more excellent high torque performance than the oil well metal pipe of Test No. 1.
  • the lubricating coating layer of the metal oil well pipe of test number 10 and the composition for forming the lubricating coating layer contained Cr 2 O 3 instead of ZrO 2.
  • the lubricating coating layer of the metal oil well pipe of test number 12 and the composition for forming the lubricating coating layer did not contain ZrO2 .
  • seizure occurred, and excellent seizure resistance was not exhibited.
  • the torque-on-shoulder resistance ⁇ T' was less than 100, and excellent high torque performance was not exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

Provided is a metal pipe for oil wells, the metal pipe having excellent seizure resistance and excellent high torque performance. The metal pipe (1) for oil wells according to the present disclosure is provided with a pipe body (10) that includes a first end part (10A) and a second end part (10B). The pipe body (10) includes a pin (40) formed in the first end part (10A) and a box (50) formed in the second end part (10B). The pin (40) includes a pin contact surface (400) including a male screw portion (41), and the box (50) includes a box contact surface (500) including a female screw portion (51). The metal pipe (1) for oil wells is further provided with a lubricant coating layer (100) formed as an uppermost layer of at least one of the pin contact surface (400) and the box contact surface (500). The lubricant coating layer (100) contains ZrO2, a metal soap, a wax, and a basic aromatic organic metal salt.

Description

油井用金属管及びその油井用金属管の潤滑被膜層を形成するための組成物Metallic pipe for oil well and composition for forming lubricating coating layer on said metallic pipe for oil well
 本開示は、油井用金属管及びその油井用金属管の潤滑被膜層を形成するための組成物に関する。 This disclosure relates to a metal oil well pipe and a composition for forming a lubricating coating layer on the metal oil well pipe.
 油井やガス井(以下、油井及びガス井を総称して、単に「油井」という)には、油井用金属管が使用される。油井採掘地において、油井の深さに応じて、複数の油井用金属管を連結して、ケーシングやチュービングに代表される油井管連結体を形成する。そのため、油井用金属管の管本体には、ねじ継手(ピン及びボックス)が形成されている。本明細書において管本体とは、機械加工等により、端部にピン及びボックスを形成した管体(中空管)を意味する。すなわち、油井管連結体は、油井用金属管の管本体の端部に形成されたピンと、他の油井用金属管の管本体の端部に形成されたボックスとをねじ締めして、連結することにより形成される。 Oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to simply as "oil wells") use metal oil well pipes. In oil well mining areas, multiple metal oil well pipes are connected according to the depth of the oil well to form an oil well pipe assembly, typically casing or tubing. For this reason, a threaded joint (pin and box) is formed on the pipe body of the metal oil well pipe. In this specification, the pipe body means a pipe body (hollow pipe) with a pin and box formed on the end by machining or the like. In other words, an oil well pipe assembly is formed by connecting a pin formed on the end of the pipe body of a metal oil well pipe to a box formed on the end of the pipe body of another metal oil well pipe by screwing them together.
 ここで、ピンは、管本体の一方の端部の外周面に、雄ねじ部を含むピン接触表面を有する。ボックスは、油井用金属管の管本体のうち、ピンが形成されていない端部の内周面に、雌ねじ部を含むボックス接触表面を有する。本明細書において、雄ねじ部と雌ねじ部とを総称して、「ねじ部」ともいう。本明細書において、ピン接触表面とボックス接触表面とを総称して、「接触表面」ともいう。なお、ピン接触表面はさらに、ピンシール面とピンショルダー面とを含む、ピンねじ無し金属接触部を含む場合がある。同様に、ボックス接触表面はさらに、ボックスシール面とボックスショルダー面とを含む、ボックスねじ無し金属接触部を含む場合がある。以下、ピンねじ無し金属接触部とボックスねじ無し金属接触部とを総称して、「ねじ無し金属接触部」ともいう。つまり、管本体のうち接触表面は、ねじ部のみを含んでいてもよく、ねじ部とねじ無し金属接触部とを含んでいてもよい。 Here, the pin has a pin contact surface including a male thread portion on the outer peripheral surface of one end of the pipe body. The box has a box contact surface including a female thread portion on the inner peripheral surface of the end of the pipe body of the metal pipe for oil wells where the pin is not formed. In this specification, the male thread portion and the female thread portion are also collectively referred to as the "thread portion". In this specification, the pin contact surface and the box contact surface are also collectively referred to as the "contact surface". Note that the pin contact surface may further include a pin unthreaded metal contact portion including a pin seal surface and a pin shoulder surface. Similarly, the box contact surface may further include a box unthreaded metal contact portion including a box seal surface and a box shoulder surface. Hereinafter, the pin unthreaded metal contact portion and the box unthreaded metal contact portion are also collectively referred to as the "unthreaded metal contact portion". In other words, the contact surface of the pipe body may include only a thread portion, or may include a thread portion and an unthreaded metal contact portion.
 ところで、形成された油井管連結体に対して、検査を実施する場合がある。検査を実施する場合、油井管連結体が引き上げられ、ピンとボックスとがねじ戻しされる。そして、ねじ戻しにより油井管連結体から油井用金属管が取り外され、検査される。検査後、ピンとボックスとが再びねじ締めされ、油井用金属管が油井管連結体の一部として再度利用される。このように、油井用金属管を油井管連結体として使用する際、ピンとボックスとのねじ締め及びねじ戻しが繰り返される場合がある。 Incidentally, inspections may be carried out on the formed oil well pipe connections. When carrying out an inspection, the oil well pipe connection is pulled up and the pin and box are unscrewed. The oil well metal pipe is then removed from the oil well pipe connection by unscrewing and inspected. After inspection, the pin and box are screwed together again and the oil well metal pipe is reused as part of the oil well pipe connection. In this way, when using the oil well metal pipe as an oil well pipe connection, screwing and unscrewing the pin and box may be repeated.
 一方、ピンとボックスとがねじ締めやねじ戻しされる際、接触表面(ピン接触表面及びボックス接触表面)は、強い摩擦を繰り返し受ける。そのため、ピン及びボックスのねじ締め及びねじ戻しを繰り返した場合、接触表面にはゴーリング(修復不可能な焼付き)が発生しやすい。したがって、油井用金属管には、摩擦に対する十分な耐久性、すなわち、優れた耐焼付き性が求められる。 On the other hand, when the pin and box are screwed in and out, the contact surfaces (the pin contact surface and the box contact surface) are repeatedly subjected to strong friction. Therefore, when the pin and box are repeatedly screwed in and out, galling (irreparable seizure) is likely to occur on the contact surfaces. Therefore, metal pipes for oil wells are required to have sufficient durability against friction, i.e., excellent seizure resistance.
 従来、油井用金属管の耐焼付き性を向上するために、ドープと呼ばれる重金属粉入りのコンパウンドグリスが使用されてきた。接触表面にコンパウンドグリスを塗布することで、油井用金属管の耐焼付き性を改善できる。しかしながら、コンパウンドグリスに含まれるPb、Zn及びCu等の重金属粉は、環境に悪影響を与える懸念がある。このため、コンパウンドグリスを使用せずに、優れた耐焼付き性を有する油井用金属管の開発が望まれている。  Traditionally, compound grease containing heavy metal powder, called dope, has been used to improve the seizure resistance of metal oil well pipes. The seizure resistance of metal oil well pipes can be improved by applying compound grease to the contact surface. However, there are concerns that the heavy metal powders, such as Pb, Zn, and Cu, contained in compound grease may have a negative impact on the environment. For this reason, there is a need to develop metal oil well pipes that have excellent seizure resistance without using compound grease.
 油井用金属管の耐焼付き性を高める技術が、たとえば、特開2002-348587号公報(特許文献1)、及び、国際公開第2006/104251号(特許文献2)に提案されている。 Technologies for improving the seizure resistance of metal pipes for oil wells are proposed, for example, in JP 2002-348587 A (Patent Document 1) and WO 2006/104251 (Patent Document 2).
 特許文献1に開示される油井用金属管は、ピン及びボックスのうち少なくとも一方の接触表面に、潤滑性粉末とバインダーとからなる固体潤滑被膜が形成されている。潤滑性粉末は、二硫化モリブデン粉末及び二硫化タングステン粉末から選んだ1種又は2種と黒鉛粉末とからなる。黒鉛粉末は潤滑性粉末の2~20質量%を占める。この油井用金属管は、優れた耐焼付き性を得られる、と特許文献1に開示されている。 The oil well metal pipe disclosed in Patent Document 1 has a solid lubricating coating made of a lubricating powder and a binder formed on the contact surface of at least one of the pin and the box. The lubricating powder is made of one or two types selected from molybdenum disulfide powder and tungsten disulfide powder, and graphite powder. The graphite powder accounts for 2 to 20 mass % of the lubricating powder. Patent Document 1 discloses that this oil well metal pipe has excellent seizure resistance.
 特許文献2に開示される油井用金属管は、ピン及びボックスのうち少なくとも一方の接触表面に、粘稠液体又は半固体の潤滑被膜と、その上に形成された乾燥固体被膜とが形成されている。この油井用金属管は、コンパウンドグリスを使用せずに、優れた耐焼付き性を得られる、と特許文献2に開示されている。 The oil well metal pipe disclosed in Patent Document 2 has a viscous liquid or semi-solid lubricating coating formed on the contact surface of at least one of the pin and the box, and a dry solid coating formed on top of that. Patent Document 2 discloses that this oil well metal pipe has excellent seizure resistance without the use of compound grease.
特開2002-348587号公報JP 2002-348587 A 国際公開第2006/104251号International Publication No. WO 2006/104251
 ところで、油井用金属管の管本体に形成されたピン及びボックスをねじ締めする際、締結完了時のトルク(以下、締結トルクという)は、ねじ干渉量の大小に関わらず、十分なシール面圧が得られるように設定されている。ねじ締めの最終段階においては、接触表面同士の面圧が高くなる。そのため、面圧が高くなった場合でも、焼付くことなくトルクが安定的に増加すれば、締結トルクの調整が容易になる。したがって、油井用金属管には、接触表面同士の面圧が高まっても、トルクを安定的に高められることが好ましい。以下、本明細書において、接触表面同士の面圧が高まっても、トルクを安定的に高められることを、ハイトルク性能という。 When the pin and box formed on the pipe body of the metal pipe for oil wells are screwed together, the torque at the completion of screwing (hereinafter referred to as the tightening torque) is set so that sufficient sealing surface pressure is obtained regardless of the amount of thread interference. In the final stage of screwing, the surface pressure between the contacting surfaces becomes high. Therefore, even if the surface pressure becomes high, if the torque can be steadily increased without seizing, it becomes easy to adjust the tightening torque. Therefore, it is preferable for the metal pipe for oil wells to be able to steadily increase the torque even if the surface pressure between the contacting surfaces increases. Hereinafter in this specification, being able to steadily increase the torque even if the surface pressure between the contacting surfaces increases is referred to as high torque performance.
 要するに、油井用金属管には、優れた耐焼付き性だけでなく、優れたハイトルク性能も有していることが好ましい。一方、上記特許文献1及び2では、油井用金属管のハイトルク性能について、検討されていない。 In short, it is preferable that metal pipes for oil wells have not only excellent seizure resistance but also excellent high torque performance. However, the above-mentioned Patent Documents 1 and 2 do not consider the high torque performance of metal pipes for oil wells.
 本開示の目的は、優れた耐焼付き性と優れたハイトルク性能とを有する油井用金属管を提供すること、及び、優れた耐焼付き性と優れたハイトルク性能とを有する油井用金属管に形成された潤滑被膜層を形成するための組成物を提供することである。 The object of the present disclosure is to provide a metal pipe for oil wells having excellent seizure resistance and excellent high torque performance, and to provide a composition for forming a lubricating coating layer formed on a metal pipe for oil wells having excellent seizure resistance and excellent high torque performance.
 本開示による油井用金属管は、
 第1端部と第2端部とを含む管本体を備え、
 前記管本体は、
 前記第1端部に形成されているピンと、
 前記第2端部に形成されているボックスと、を含み、
 前記ピンは、
 雄ねじ部を含むピン接触表面を含み、
 前記ボックスは、
 雌ねじ部を含むボックス接触表面を含み、
 前記油井用金属管はさらに、
 前記ピン接触表面及び前記ボックス接触表面の少なくとも一方の最上層として形成される潤滑被膜層を備え、
 前記潤滑被膜層は、
 ZrOと、
 金属石鹸と、
 ワックスと、
 塩基性芳香族有機酸金属塩と、を含有する。
The metal pipe for oil well use according to the present disclosure comprises:
a tube body including a first end and a second end;
The tube body includes:
a pin formed on the first end;
a box formed at the second end,
The pin is
a pin contact surface including an external thread;
The box includes:
a box contact surface including an internal thread;
The metal pipe for oil well further comprises:
a lubricating coating layer formed as an uppermost layer on at least one of the pin contact surface and the box contact surface;
The lubricating coating layer is
ZrO2 ,
Metal soaps,
Wax and
and a basic aromatic organic acid metal salt.
 本開示による組成物は、
 前記油井用金属管が備える前記潤滑被膜層を形成するための組成物であって、
 ZrOと、
 金属石鹸と、
 ワックスと、
 塩基性芳香族有機酸金属塩と、を含有する。
The composition according to the present disclosure comprises:
A composition for forming the lubricating coating layer on the metal oil well pipe, comprising:
ZrO2 ,
Metal soaps,
Wax and
and a basic aromatic organic acid metal salt.
 本開示による油井用金属管は、優れた耐焼付き性と優れたハイトルク性能とを有する。本開示による組成物は、優れた耐焼付き性と優れたハイトルク性能とを有する油井用金属管に形成された潤滑被膜層を形成することができる。 The metal pipe for oil wells according to the present disclosure has excellent seizure resistance and excellent high torque performance. The composition according to the present disclosure can form a lubricating coating layer formed on the metal pipe for oil wells having excellent seizure resistance and excellent high torque performance.
図1は、本実施形態における、トルクオンショルダー抵抗ΔT′を説明するための図である。FIG. 1 is a diagram for explaining the torque-on shoulder resistance ΔT′ in this embodiment. 図2は、潤滑被膜層100中のZrOの含有量(質量%)と、ハイトルク性能の指標であるトルクオンショルダー抵抗ΔT′(相対値)との関係を示す図である。FIG. 2 is a graph showing the relationship between the ZrO 2 content (mass %) in the lubricating coating layer 100 and the torque-on-shoulder resistance ΔT′ (relative value), which is an index of high torque performance. 図3は、潤滑被膜層100中のZrOの含有量(質量%)と、耐焼付き性の指標であるねじ締め及びねじ戻し回数との関係を示す図である。FIG. 3 is a graph showing the relationship between the ZrO2 content (mass %) in the lubricating coating layer 100 and the number of make-up and unmake-up cycles, which is an index of seizure resistance. 図4は、本実施形態による油井用金属管1の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of the metal oil well pipe 1 according to this embodiment. 図5は、図4に示す油井用金属管1の第2端部10Bの管軸方向に平行な断面図(縦断面図)である。FIG. 5 is a cross-sectional view (longitudinal cross-sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil well 1 shown in FIG. 図6は、ピン40の一部の、管軸方向に平行な断面図(縦断面図)である。FIG. 6 is a cross-sectional view (longitudinal cross-sectional view) of a portion of the pin 40 taken along a line parallel to the tube axis direction. 図7は、ボックス50の一部の、管軸方向に平行な断面図(縦断面図)である。FIG. 7 is a cross-sectional view (longitudinal cross-sectional view) of a portion of the box 50 taken along a line parallel to the tube axis direction. 図8は、油井用金属管1の第2端部10Bの管軸方向に平行な断面図(縦断面図)のうち、図5と異なる一例の縦断面図である。FIG. 8 is a longitudinal sectional view of an example different from FIG. 5 among cross sections (longitudinal sectional views) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil well 1. 図9は、油井用金属管1の第2端部10Bの管軸方向に平行な断面図(縦断面図)のうち、図5及び図8と異なる一例の縦断面図である。FIG. 9 is a longitudinal sectional view of an example different from FIG. 5 and FIG. 8, among cross sections (longitudinal sectional views) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil well 1. 図10は、ピン40の近傍の一部の管軸方向に平行な断面図(縦断面図)である。FIG. 10 is a cross-sectional view (longitudinal cross-sectional view) parallel to the tube axis direction of a part in the vicinity of the pin 40. As shown in FIG. 図11は、ボックス50の近傍の一部の管軸方向に平行な断面図(縦断面図)である。FIG. 11 is a cross-sectional view (longitudinal cross-sectional view) parallel to the tube axis direction of a part in the vicinity of the box 50. As shown in FIG. 図12は、ピン40の近傍の一部の管軸方向に平行な断面図(縦断面図)のうち、図10と異なる一例の縦断面図である。FIG. 12 is a vertical cross-sectional view of an example different from FIG. 10, among cross-sectional views (vertical cross-sectional views) parallel to the tube axis direction of a part in the vicinity of the pin 40. In FIG. 図13は、ボックス50の近傍の一部の管軸方向に平行な断面図(縦断面図)のうち、図11と異なる一例の縦断面図である。FIG. 13 is a vertical cross-sectional view of an example different from FIG. 11, among cross-sectional views (vertical cross-sectional views) parallel to the tube axis direction of a part in the vicinity of the box 50. In FIG. 図14は、ピン40の近傍の一部の管軸方向に平行な断面図(縦断面図)のうち、図10及び図12と異なる一例の縦断面図である。FIG. 14 is a vertical cross-sectional view of an example different from FIGS. 10 and 12, among cross-sectional views (vertical cross-sectional views) parallel to the tube axis direction of a part in the vicinity of the pin 40. In FIG. 図15は、本実施例における、トルクオンショルダー抵抗ΔT′を説明するための図である。FIG. 15 is a diagram for explaining the torque-on-shoulder resistance ΔT′ in this embodiment.
 以下、図面を参照して、本実施形態による油井用金属管及び組成物を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 The oil well metal pipe and composition according to this embodiment will be described in detail below with reference to the drawings. The same or corresponding parts in the drawings will be given the same reference numerals and their description will not be repeated.
 本発明者らは、油井用金属管及び油井用金属管の潤滑被膜層を形成するための組成物と、油井用金属管の耐焼付き性及びハイトルク性能との関係について種々検討を行った。その結果、以下の知見を得た。 The inventors of the present invention have conducted various studies on the relationship between the metal pipe for oil wells and the composition for forming the lubricating coating layer of the metal pipe for oil wells, and the seizure resistance and high torque performance of the metal pipe for oil wells. As a result, the following findings were obtained.
 上述のとおり、本明細書において、接触表面同士の面圧が高まっても、トルクを安定的に高められることを、ハイトルク性能という。ここで、油井用金属管のハイトルク性能について、接触表面がねじ無し金属接触部を有する場合を一例に、具体的に説明する。なお、上述のとおり、ピンねじ無し金属接触部には、ピンシール面及びピンショルダー面を含み、ボックスねじ無し金属接触部には、ボックスシール面及びボックスショルダー面を含む。 As mentioned above, in this specification, the ability to stably increase torque even when the surface pressure between the contact surfaces increases is referred to as high torque performance. Here, the high torque performance of metal pipes for oil wells will be specifically explained using as an example a case in which the contact surfaces have threadless metal contact parts. As mentioned above, the pin threadless metal contact part includes the pin seal surface and the pin shoulder surface, and the box threadless metal contact part includes the box seal surface and the box shoulder surface.
 上述のとおり、油井用金属管のピンとボックスとをねじ締めして、油井管連結体を形成する。接触表面がねじ無し金属接触部を有する場合、ピンとボックスとのねじ締めをしていくと、ピンショルダー面とボックスショルダー面とが接触する。その後さらにねじ締めをすることで、ピンシール面とボックスシール面とが干渉し、ピン接触表面とボックス接触表面との気密性が高まる。ここで、ピンショルダー面とボックスショルダー面とが接触するときに生じるトルクを、ショルダリングトルクという。また、上述のとおり、ピンとボックスとのねじ締めが完了するときのトルクを、締結トルクという。なお、締結トルクに到達した後、さらにねじ締めをすると、管本体のうちピンとボックスとの少なくとも一方が塑性変形を起こす懸念がある。ピン及び/又はボックスが塑性変形を起こすときに生じるトルクを、イールドトルクという。 As described above, the pin and box of the metal oil well pipe are screwed together to form an oil well pipe connector. When the contact surfaces have unthreaded metal contact portions, the pin shoulder surface and the box shoulder surface come into contact as the pin and box are screwed together. Further screwing causes the pin seal surface and the box seal surface to interfere with each other, increasing the airtightness between the pin contact surface and the box contact surface. The torque generated when the pin shoulder surface and the box shoulder surface come into contact is called shouldering torque. As described above, the torque generated when the screwing of the pin and the box is completed is called tightening torque. Note that if the screwing is further performed after the tightening torque is reached, there is a concern that at least one of the pin and the box of the pipe body may undergo plastic deformation. The torque generated when the pin and/or the box undergo plastic deformation is called yield torque.
 上述のとおり、締結トルクは、ねじ干渉量の大小に関わらず、十分なシール面圧が得られるように設定される。すなわち、ねじ無し金属接触部を有する油井用金属管では、ピンショルダー面とボックスショルダー面とが接触した後、つまりねじ締めの最終段階において、ピン接触表面とボックス接触表面とが、高い摩擦力を受けながら摺動する。ここで、ピン接触表面とボックス接触表面とが、高摩擦力下でも焼付くことなく摺動を維持できれば、ショルダリングトルクとイールドトルクとの差を大きくできる。以下、ショルダリングトルクとイールドトルクとの差を、トルクオンショルダー抵抗ΔT′という。 As mentioned above, the tightening torque is set so that sufficient seal surface pressure is obtained regardless of the amount of thread interference. That is, in an oil well metal pipe having an unthreaded metal contact portion, after the pin shoulder surface and the box shoulder surface come into contact, that is, in the final stage of screw tightening, the pin contact surface and the box contact surface slide while receiving a high frictional force. Here, if the pin contact surface and the box contact surface can maintain sliding without seizing even under high frictional force, the difference between the shouldering torque and the yield torque can be made large. Hereinafter, the difference between the shouldering torque and the yield torque is referred to as the torque-on-shoulder resistance ΔT'.
 トルクオンショルダー抵抗ΔT′について、図面を用いてさらに具体的に説明する。図1は、本実施形態における、トルクオンショルダー抵抗ΔT′を説明するための図である。図1を参照して、油井用金属管をねじ締めすると、まず、回転数に比例してトルクが上昇する(図1中左下実線部)。このとき、回転数に応じたトルクの上昇率は低い。さらにねじ締めをすると、ピンショルダー面とボックスショルダー面とが接触する。このとき、油井用金属管に生じるトルクが、ショルダリングトルクである(図1中「Ts」と表記)。 The torque on shoulder resistance ΔT' will be explained in more detail with reference to the drawings. FIG. 1 is a diagram for explaining the torque on shoulder resistance ΔT' in this embodiment. Referring to FIG. 1, when the metal oil well pipe is screwed, the torque first increases in proportion to the rotation speed (solid line at the bottom left in FIG. 1). At this time, the rate of increase in torque according to the rotation speed is low. When the pipe is screwed further, the pin shoulder surface and the box shoulder surface come into contact. At this time, the torque generated in the metal oil well pipe is the shouldering torque (denoted as "Ts" in FIG. 1).
 トルクがショルダリングトルク(Ts)に到達した後、さらにねじ締めをすると、回転数に応じてさらにトルクが上昇する(図1中中央実線部)。このとき、回転数に応じたトルクの上昇率は高い。さらにねじ締めをすると、トルクが所定の締結トルクに到達する(図1中「To」と表記)。さらにねじ締めをすると、ピン及び/又はボックスに塑性変形が生じる(図1中右上実線部)。このとき、油井用金属管に生じるトルクが、イールドトルクである(図1中「Ty」と表記)。 When the torque reaches the shouldering torque (Ts), further tightening of the screw causes the torque to increase further in accordance with the rotation speed (solid line in the center of Figure 1). At this time, the rate of increase in torque in accordance with the rotation speed is high. When the screw is further tightened, the torque reaches a predetermined fastening torque (shown as "To" in Figure 1). When the screw is further tightened, plastic deformation occurs in the pin and/or box (solid line in the upper right corner of Figure 1). The torque generated in the oil well metal pipe at this time is the yield torque (shown as "Ty" in Figure 1).
 図1を参照して、イールドトルクTyとショルダリングトルクTsとの差(トルクオンショルダー抵抗ΔT′)が大きいほど、締結トルクToとして設定できる範囲が広がる。すなわち、トルクオンショルダー抵抗ΔT′を大きくできれば、締結トルクを高く設定することができる。すなわち、油井用金属管がねじ無し金属接触部を有する場合、トルクオンショルダー抵抗ΔT′が大きければ、接触表面同士の面圧が高まっても、トルクを安定的に高められる。言い換えると、油井用金属管がねじ無し金属接触部を有する場合、トルクオンショルダー抵抗ΔT′は、油井用金属管のハイトルク性能の指標となる。 Referring to FIG. 1, the greater the difference between the yield torque Ty and the shouldering torque Ts (torque-on-shoulder resistance ΔT'), the wider the range in which the tightening torque To can be set. In other words, if the torque-on-shoulder resistance ΔT' can be made larger, the tightening torque can be set higher. In other words, when the metal pipe for oil wells has an unthreaded metal contact portion, if the torque-on-shoulder resistance ΔT' is large, the torque can be increased stably even if the surface pressure between the contact surfaces increases. In other words, when the metal pipe for oil wells has an unthreaded metal contact portion, the torque-on-shoulder resistance ΔT' is an indicator of the high torque performance of the metal pipe for oil wells.
 以上の知見に基づいて、本発明者らは、油井用金属管のハイトルク性能を高める手法を種々検討した。まず、本発明者らは、油井用金属管の管本体のうち、接触表面の最上層として潤滑被膜層を形成することを検討した。本発明者らの詳細な検討の結果、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩とを含有する潤滑被膜層であれば、油井用金属管のハイトルク性能を高められる可能性があると考えた。本発明者らのさらなる詳細な検討の結果、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩とを含有する潤滑被膜層に、さらにZrOが含有されれば、油井用金属管のハイトルク性能の指標であるトルクオンショルダー抵抗ΔT′を高められることが明らかになった。この点について、図面を用いて具体的に説明する。 Based on the above findings, the present inventors have studied various methods for improving the high torque performance of metal pipes for oil wells. First, the present inventors have studied forming a lubricating coating layer as the uppermost layer on the contact surface of the pipe body of the metal pipe for oil wells. As a result of detailed studies by the present inventors, it was thought that a lubricating coating layer containing metal soap, wax, and a basic aromatic organic acid metal salt could improve the high torque performance of the metal pipe for oil wells. As a result of further detailed studies by the present inventors, it was revealed that if ZrO2 is further contained in the lubricating coating layer containing metal soap, wax, and a basic aromatic organic acid metal salt, the torque-on-shoulder resistance ΔT′, which is an index of the high torque performance of the metal pipe for oil wells, can be improved. This point will be specifically explained using the drawings.
 図2は、潤滑被膜層中のZrOの含有量(質量%)と、ハイトルク性能の指標であるトルクオンショルダー抵抗ΔT′(相対値)との関係を示す図である。図2は、後述する実施例のうち、潤滑被膜層中のZrO含有量(質量%)と、トルクオンショルダー抵抗ΔT′(相対値)とを用いて作成した。なお、トルクオンショルダー抵抗ΔT′は、後述する実施例の試験番号11において、潤滑被膜層の代わりにAPI(American Petroleum Institute)で規格されたコンパウンドグリスを使用した際のトルクオンショルダー抵抗ΔT′の数値を基準(100)として、相対値で求めた。なお、図2中の白丸印○は、実施例のうち、潤滑被膜層を形成した試験番号のトルクオンショルダー抵抗ΔT′(相対値)を示す。図2中の三角印△は、実施例のうち、潤滑被膜層の代わりにコンパウンドグリスを使用した試験番号11のトルクオンショルダー抵抗ΔT′(基準値)を示す(図2中「APIドープ」と表記)。 FIG. 2 is a diagram showing the relationship between the ZrO2 content (mass%) in the lubricating coating layer and the torque-on-shoulder resistance ΔT' (relative value), which is an index of high torque performance. FIG. 2 was created using the ZrO2 content (mass%) in the lubricating coating layer and the torque-on-shoulder resistance ΔT' (relative value) in the examples described later. Note that the torque-on-shoulder resistance ΔT' was determined as a relative value with the value of the torque-on-shoulder resistance ΔT' when a compound grease standardized by API (American Petroleum Institute) was used instead of the lubricating coating layer in test number 11 of the examples described later as the standard (100). Note that the white circle mark ○ in FIG. 2 indicates the torque-on-shoulder resistance ΔT' (relative value) of the test number in which the lubricating coating layer was formed in the examples. The triangle mark Δ in FIG. 2 indicates the torque-on-shoulder resistance ΔT′ (reference value) of test number 11 in which a compound grease was used instead of the lubricating coating layer among the examples (denoted as “API doped” in FIG. 2).
 図2を参照して、潤滑被膜層中にZrOを少しでも含有すれば、トルクオンショルダー抵抗ΔT′が100を超える。すなわち、潤滑被膜層中にZrOを少しでも含有すれば、少なくともコンパウンドグリスを使用した場合と同等以上にまで、油井用金属管のハイトルク性能を高められることが明らかになった。 2, if the lubricating coating layer contains even a small amount of ZrO2 , the torque-on-shoulder resistance ΔT' exceeds 100. In other words, it has become clear that if the lubricating coating layer contains even a small amount of ZrO2 , the high torque performance of the metal oil well pipe can be improved to at least the same level as when compound grease is used.
 本発明者らはさらに、潤滑被膜層中のZrO含有量と油井用金属管の耐焼付き性との関係についても、詳細に検討した。その結果、油井用金属管の管本体のうち、接触表面の最上層として潤滑被膜層を形成し、その潤滑被膜層にZrOを含有させれば、油井用金属管の耐焼付き性を高められることを明らかにした。この点について、図面を用いて具体的に説明する。 The present inventors further conducted a detailed study on the relationship between the ZrO2 content in the lubricating coating layer and the seizure resistance of the metal pipe for oil well use. As a result, it was revealed that the seizure resistance of the metal pipe for oil well use can be improved by forming a lubricating coating layer as the uppermost layer on the contact surface of the pipe body of the metal pipe for oil well use and by making the lubricating coating layer contain ZrO2 . This point will be specifically explained with reference to the drawings.
 図3は、潤滑被膜層中のZrOの含有量(質量%)と、耐焼付き性の指標であるねじ締め及びねじ戻し回数との関係を示す図である。図3は、後述する実施例のうち、潤滑被膜層中のZrO含有量(質量%)と、ねじ部での回復不可能な焼付きや、シール面(ピンシール面及び/又はボックスシール面)での焼付きが発生せずに、ねじ締め及びねじ戻しができた回数とを用いて作成した。なお、図2と同様に、図3中の白丸印○は、実施例のうち、潤滑被膜層を形成した試験番号のねじ締め及びねじ戻し回数を示す。図3中の三角印△は、実施例のうち、潤滑被膜層の代わりにコンパウンドグリスを使用した試験番号11のねじ締め及びねじ戻し回数を示す(図3中「APIドープ」と表記)。 Figure 3 is a diagram showing the relationship between the ZrO2 content (mass%) in the lubricating coating layer and the number of times of tightening and unscrewing, which is an index of seizure resistance. Figure 3 was created using the ZrO2 content (mass%) in the lubricating coating layer and the number of times that the screw could be tightened and unscrewed without irrecoverable seizure in the threaded portion or seizure on the seal surface (pin seal surface and/or box seal surface) in the examples described below. As in Figure 2, the white circle mark ○ in Figure 3 indicates the number of times of tightening and unscrewing for the test number in the examples in which the lubricating coating layer was formed. The triangle mark △ in Figure 3 indicates the number of times of tightening and unscrewing for the test number 11 in the examples in which compound grease was used instead of the lubricating coating layer (indicated as "API dope" in Figure 3).
 図3を参照して、潤滑被膜層中にZrOを少しでも含有すれば、ねじ締め及びねじ戻し回数が、APIドープの回数(5回)を超える。すなわち、潤滑被膜層中にZrOを少しでも含有すれば、少なくともコンパウンドグリスを使用した場合と同等以上にまで、油井用金属管の耐焼付き性を高められることが明らかになった。 3, the inclusion of even a small amount of ZrO2 in the lubricating coating layer resulted in a greater number of screwing and unscrewing operations than the number of times with API doping (5 times). In other words, it was revealed that the inclusion of even a small amount of ZrO2 in the lubricating coating layer can increase the seizure resistance of metal oil well pipes to at least the same level as when compound grease is used.
 したがって、本実施形態による油井用金属管は、ピン接触表面とボックス接触表面との少なくとも一方の最上層として、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩とを含有する潤滑被膜層を形成する。その結果、本実施形態による油井用金属管は、優れた耐焼付き性と、優れたハイトルク性能とを有する。さらに、本実施形態による組成物は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩とを含有する。その結果、本実施形態による組成物は、優れた耐焼付き性と、優れたハイトルク性能とを有する油井用金属管の潤滑被膜層を形成することができる。 Therefore, the metal pipe for oil well use according to the present embodiment forms a lubricating coating layer containing ZrO2 , metal soap, wax, and a basic aromatic organic acid metal salt as the uppermost layer on at least one of the pin contact surface and the box contact surface. As a result, the metal pipe for oil well use according to the present embodiment has excellent seizure resistance and excellent high torque performance. Furthermore, the composition according to the present embodiment contains ZrO2 , metal soap, wax, and a basic aromatic organic acid metal salt. As a result, the composition according to the present embodiment can form a lubricating coating layer of the metal pipe for oil well use having excellent seizure resistance and excellent high torque performance.
 以上の知見に基づいて完成した本実施形態による油井用金属管及び組成物の要旨は、次のとおりである。 The essential features of the oil well metal pipe and composition according to this embodiment, which were developed based on the above findings, are as follows:
 [1]
 油井用金属管であって、
 第1端部と第2端部とを含む管本体を備え、
 前記管本体は、
 前記第1端部に形成されているピンと、
 前記第2端部に形成されているボックスと、を含み、
 前記ピンは、
 雄ねじ部を含むピン接触表面を含み、
 前記ボックスは、
 雌ねじ部を含むボックス接触表面を含み、
 前記油井用金属管はさらに、
 前記ピン接触表面及び前記ボックス接触表面の少なくとも一方の最上層として形成される潤滑被膜層を備え、
 前記潤滑被膜層は、
 ZrOと、
 金属石鹸と、
 ワックスと、
 塩基性芳香族有機酸金属塩と、を含有する、
 油井用金属管。
[1]
A metal pipe for oil wells, comprising:
a tube body including a first end and a second end;
The tube body includes:
a pin formed on the first end;
a box formed at the second end,
The pin is
a pin contact surface including an external thread;
The box includes:
a box contact surface including an internal thread;
The metal pipe for oil well further comprises:
a lubricating coating layer formed as an uppermost layer on at least one of the pin contact surface and the box contact surface;
The lubricating coating layer is
ZrO2 ,
Metal soaps,
Wax and
A basic aromatic organic acid metal salt,
Metal pipe for oil wells.
 [2]
 [1]に記載の油井用金属管であって、
 前記潤滑被膜層は、
 前記ZrOと、前記金属石鹸と、前記ワックスと、前記塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量の合計を100質量%とした場合、
 ZrO:0.2~8.0%、
 金属石鹸:2~30%、
 ワックス:2~30%、
 塩基性芳香族有機酸金属塩:12.0~80.0%、及び、
 潤滑性粉末:0~20.0%、を含有する、
 油井用金属管。
[2]
The metal pipe for oil well according to [1],
The lubricating coating layer is
When the total content of the ZrO2 , the metal soap, the wax, the basic aromatic organic acid metal salt, and the lubricating powder is 100 mass%,
ZrO 2 :0.2-8.0%,
Metal soap: 2-30%,
Wax: 2-30%,
Basic aromatic organic acid metal salt: 12.0 to 80.0%, and
Lubricating powder: 0 to 20.0%,
Metal pipe for oil wells.
 [3]
 [2]に記載の油井用金属管であって、
 前記潤滑被膜層は、
 潤滑性粉末:0.1~20.0%、を含有する、
 油井用金属管。
[3]
The metal pipe for oil well according to [2],
The lubricating coating layer is
Lubricating powder: 0.1 to 20.0%,
Metal pipe for oil wells.
 [4]
 [1]~[3]のいずれか1項に記載の油井用金属管であって、
 前記油井用金属管はさらに、
 前記ピン接触表面及び前記ボックス接触表面の少なくとも一方と、前記潤滑被膜層との間に配置される、金属めっき層を備える、
 油井用金属管。
[4]
The metal pipe for oil well use according to any one of [1] to [3],
The metal pipe for oil well further comprises:
a metal plating layer disposed between at least one of the pin contact surface and the box contact surface and the lubricating coating layer;
Metal pipe for oil wells.
 [5]
 [1]~[4]のいずれか1項に記載の油井用金属管であって、
 前記ピン接触表面及び前記ボックス接触表面の少なくとも一方は、
 ブラスト処理された面又は酸洗された面である、
 油井用金属管。
[5]
The metal pipe for oil well use according to any one of [1] to [4],
At least one of the pin contact surface and the box contact surface is
The surface is blasted or pickled.
Metal pipe for oil wells.
 [6]
 [1]~[5]のいずれか1項に記載の油井用金属管であって、
 前記油井用金属管はさらに、
 前記ピン接触表面及び前記ボックス接触表面の少なくとも一方と、前記潤滑被膜層との間に配置され、前記潤滑被膜層と接触する面を有する化成処理層を備える、
 油井用金属管。
[6]
The metal pipe for oil well use according to any one of [1] to [5],
The metal pipe for oil well further comprises:
a chemical conversion layer disposed between at least one of the pin contact surface and the box contact surface and the lubricating coating layer, the chemical conversion layer having a surface in contact with the lubricating coating layer;
Metal pipe for oil wells.
 [7]
 [1]~[6]のいずれか1項に記載の油井用金属管であって、
 前記ピン接触表面はさらに、
 ピンシール面及びピンショルダー面を含み、
 前記ボックス接触表面はさらに、
 ボックスシール面及びボックスショルダー面を含む、
 油井用金属管。
[7]
The metal pipe for oil well use according to any one of [1] to [6],
The pin contact surface further comprises:
a pin seal surface and a pin shoulder surface;
The box contact surface further comprises:
Including a box seal surface and a box shoulder surface.
Metal pipe for oil wells.
 [8]
 [1]~[7]のいずれか1項に記載の油井用金属管が備える前記潤滑被膜層を形成するための組成物であって、
 ZrOと、
 金属石鹸と、
 ワックスと、
 塩基性芳香族有機酸金属塩と、を含有する、
 組成物。
[8]
A composition for forming the lubricant coating layer of the metal oil well pipe according to any one of [1] to [7],
ZrO2 ,
Metal soaps,
Wax and
A basic aromatic organic acid metal salt,
Composition.
 [9]
 [8]に記載の組成物であって、
 前記組成物はさらに、
 潤滑性粉末を含有する、
 組成物。
[9]
The composition according to [8],
The composition further comprises:
Contains a lubricating powder,
Composition.
 [10]
 [8]又は[9]に記載の組成物であって、
 前記組成物はさらに、
 揮発性有機溶剤を含有する、
 組成物。
[10]
The composition according to [8] or [9],
The composition further comprises:
Contains volatile organic solvents,
Composition.
 以下、本実施形態による油井用金属管について詳述する。  The metal oil well pipe according to this embodiment will be described in detail below.
 [油井用金属管の構成]
 初めに、本実施形態の油井用金属管の構成について説明する。油井用金属管は、周知の構成を有する。油井用金属管は、T&C型の油井用金属管と、インテグラル型の油井用金属管とがある。以下、各型の油井用金属管について詳述する。
[Configuration of metal pipe for oil wells]
First, the configuration of the metal pipe for oil well use of the present embodiment will be described. The metal pipe for oil well use has a well-known configuration. There are T&C type metal pipe for oil well use and integral type metal pipe for oil well use. Each type of metal pipe for oil well use will be described in detail below.
 [油井用金属管がT&C型である場合]
 図4は、本実施形態による油井用金属管1の一例を示す構成図である。図4は、いわゆるT&C型(Threaded and Coupled)の油井用金属管1の構成図である。図4を参照して、油井用金属管1は、管本体10を備える。
[When the oil well metal pipe is T&C type]
Fig. 4 is a configuration diagram showing an example of the metal pipe for oil well use 1 according to the present embodiment. Fig. 4 is a configuration diagram of a so-called T&C type (Threaded and Coupled) metal pipe for oil well use 1. Referring to Fig. 4, the metal pipe for oil well use 1 includes a pipe body 10.
 管本体10は、管軸方向に延びている。管本体10の管軸方向に垂直な断面は円形状である。管本体10は、第1端部10Aと、第2端部10Bとを含む。第1端部10Aは、第2端部10Bの反対側の端部である。図4に示すT&C型の油井用金属管1では、管本体10は、ピン管体11と、カップリング12とを備える。カップリング12は、ピン管体11の一端に取り付けられている。より具体的には、カップリング12は、ピン管体11の一端にねじにより締結されている。 The pipe body 10 extends in the pipe axial direction. The cross section of the pipe body 10 perpendicular to the pipe axial direction is circular. The pipe body 10 includes a first end 10A and a second end 10B. The first end 10A is the end opposite the second end 10B. In the T&C type oil well metal pipe 1 shown in FIG. 4, the pipe body 10 includes a pin pipe body 11 and a coupling 12. The coupling 12 is attached to one end of the pin pipe body 11. More specifically, the coupling 12 is fastened to one end of the pin pipe body 11 by a screw.
 図5は、図4に示す油井用金属管1の第2端部10Bの管軸方向に平行な断面図(縦断面図)である。図4及び図5を参照して、管本体10は、ピン40と、ボックス50とを含む。ピン40は、管本体10の第1端部10Aに形成されている。ボックス50は、管本体10の第2端部10Bに形成されている。ピン40は、締結時において、他の油井用金属管1(図示せず)のボックス50に挿入されて、他の油井用金属管1のボックス50とねじにより締結される。締結時において、ボックス50には、他の油井用金属管1のピン40が挿入されて、他の油井用金属管1のピン40とねじにより締結される。 FIG. 5 is a cross-sectional view (longitudinal cross-sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1 shown in FIG. 4. Referring to FIGS. 4 and 5, the pipe body 10 includes a pin 40 and a box 50. The pin 40 is formed at the first end 10A of the pipe body 10. The box 50 is formed at the second end 10B of the pipe body 10. When fastening, the pin 40 is inserted into the box 50 of another metal pipe for oil wells 1 (not shown) and fastened to the box 50 of the other metal pipe for oil wells 1 by a screw. When fastening, the pin 40 of the other metal pipe for oil wells 1 is inserted into the box 50 and fastened to the pin 40 of the other metal pipe for oil wells 1 by a screw.
 [ピン40の構成について]
 図6は、ピン40の一部の、管軸方向に平行な断面図(縦断面図)である。図6中の破線部分は、他の油井用金属管1と締結する場合の、他の油井用金属管1のボックス50の構成を示す。図6を参照して、ピン40は、管本体10の第1端部10Aの外周面に、ピン接触表面400を備える。ピン接触表面400は、他の油井用金属管1との締結時において、他の油井用金属管1のボックス50にねじ込まれ、ボックス50のボックス接触表面500(後述)と接触する。
[Configuration of pin 40]
Fig. 6 is a cross-sectional view (longitudinal cross-sectional view) of a part of the pin 40, parallel to the pipe axis direction. The dashed line portion in Fig. 6 shows the configuration of a box 50 of another metal pipe for oil well use 1 when fastening with another metal pipe for oil well use 1. Referring to Fig. 6, the pin 40 has a pin contact surface 400 on the outer circumferential surface of the first end 10A of the pipe body 10. When fastening with the other metal pipe for oil well use 1, the pin contact surface 400 is screwed into the box 50 of the other metal pipe for oil well use 1, and comes into contact with a box contact surface 500 (described later) of the box 50.
 ピン接触表面400は、第1端部10Aの外周面に形成された雄ねじ部41を少なくとも含む。ピン接触表面400はさらに、ピンシール面42と、ピンショルダー面43とを含んでもよい。図6では、ピンショルダー面43は第1端部10Aの先端面に配置され、ピンシール面42は、第1端部10Aの外周面のうち、雄ねじ部41よりも第1端部10Aの先端側に配置されている。つまり、ピンシール面42は、雄ねじ部41とピンショルダー面43との間に配置されている。ピンシール面42はテーパ状に設けられている。具体的には、ピンシール面42では、第1端部10Aの長手方向(管軸方向)において、雄ねじ部41からピンショルダー面43に向かうにしたがって、外径が徐々に小さくなっている。 The pin contact surface 400 includes at least the male thread portion 41 formed on the outer peripheral surface of the first end portion 10A. The pin contact surface 400 may further include a pin seal surface 42 and a pin shoulder surface 43. In FIG. 6, the pin shoulder surface 43 is disposed on the tip surface of the first end portion 10A, and the pin seal surface 42 is disposed on the outer peripheral surface of the first end portion 10A, closer to the tip side of the first end portion 10A than the male thread portion 41. In other words, the pin seal surface 42 is disposed between the male thread portion 41 and the pin shoulder surface 43. The pin seal surface 42 is tapered. Specifically, the outer diameter of the pin seal surface 42 gradually decreases from the male thread portion 41 to the pin shoulder surface 43 in the longitudinal direction (pipe axis direction) of the first end portion 10A.
 他の油井用金属管1との締結時において、ピンシール面42は、他の油井用金属管1のボックス50のボックスシール面52(後述)と接触する。より具体的には、締結時において、ピン40が他の油井用金属管1のボックス50に挿入されることにより、ピンシール面42がボックスシール面52と接触する。そして、ピン40が他の油井用金属管1のボックス50にさらにねじ込まれることにより、ピンシール面42は、ボックスシール面52と密着する。これにより、締結時において、ピンシール面42は、ボックスシール面52と密着してメタル-メタル接触に基づくシールを形成する。そのため、互いに締結された油井用金属管1において、気密性を高めることができる。 When fastening with another metal oil well pipe 1, the pin seal surface 42 comes into contact with the box seal surface 52 (described later) of the box 50 of the other metal oil well pipe 1. More specifically, when fastening, the pin 40 is inserted into the box 50 of the other metal oil well pipe 1, so that the pin seal surface 42 comes into contact with the box seal surface 52. Then, when the pin 40 is further screwed into the box 50 of the other metal oil well pipe 1, the pin seal surface 42 comes into close contact with the box seal surface 52. As a result, when fastening, the pin seal surface 42 comes into close contact with the box seal surface 52 to form a seal based on metal-metal contact. Therefore, the airtightness of the metal oil well pipes 1 fastened to each other can be improved.
 図6では、ピンショルダー面43は、第1端部10Aの先端面に配置されている。つまり、図6に示されるピン40は、管本体10の中央から第1端部10Aに向かって順に、雄ねじ部41、ピンシール面42、ピンショルダー面43の順に配置されている。他の油井用金属管1との締結時において、ピンショルダー面43は、他の油井用金属管1のボックス50のボックスショルダー面53(後述)と対向し、接触する。より具体的には、締結時において、ピン40が他の油井用金属管1のボックス50に挿入されることにより、ピンショルダー面43がボックスショルダー面53と接触する。これにより、締結時において、高いトルクを得ることができる。また、ピン40とボックス50との締結状態での位置関係を安定させることができる。 In FIG. 6, the pin shoulder surface 43 is disposed on the tip surface of the first end 10A. That is, the pin 40 shown in FIG. 6 is disposed in the order of the male thread portion 41, the pin seal surface 42, and the pin shoulder surface 43 from the center of the pipe body 10 toward the first end 10A. When fastening with another oil well metal pipe 1, the pin shoulder surface 43 faces and contacts a box shoulder surface 53 (described later) of the box 50 of the other oil well metal pipe 1. More specifically, when fastening, the pin 40 is inserted into the box 50 of the other oil well metal pipe 1, so that the pin shoulder surface 43 contacts the box shoulder surface 53. This allows a high torque to be obtained when fastening. In addition, the positional relationship between the pin 40 and the box 50 in the fastened state can be stabilized.
 なお、ピン40のピン接触表面400は、少なくとも雄ねじ部41を含んでいる。つまり、ピン接触表面400は、雄ねじ部41を含み、ピンシール面42及びピンショルダー面43を含んでいなくてもよい。ピン接触表面400は、雄ねじ部41とピンショルダー面43とを含み、ピンシール面42を含んでいなくてもよい。ピン接触表面400は、雄ねじ部41とピンシール面42とを含み、ピンショルダー面43を含んでいなくてもよい。 The pin contact surface 400 of the pin 40 includes at least the male thread portion 41. In other words, the pin contact surface 400 may include the male thread portion 41, and not include the pin seal surface 42 and the pin shoulder surface 43. The pin contact surface 400 may include the male thread portion 41 and the pin shoulder surface 43, and not include the pin seal surface 42. The pin contact surface 400 may include the male thread portion 41 and the pin seal surface 42, and not include the pin shoulder surface 43.
 [ボックス50の構成について]
 図7は、ボックス50の一部の、管軸方向に平行な断面図(縦断面図)である。図7中の破線部分は、他の油井用金属管1と締結する場合の、他の油井用金属管1のピン40の構成を示す。図7を参照して、ボックス50は、管本体10の第2端部10Bの内周面に、ボックス接触表面500を備える。ボックス接触表面500は、他の油井用金属管1との締結時において、他の油井用金属管1のピン40がねじ込まれ、ピン40のピン接触表面400と接触する。
[Regarding the configuration of box 50]
Fig. 7 is a cross-sectional view (longitudinal cross-sectional view) parallel to the pipe axis direction of a part of the box 50. The dashed line portion in Fig. 7 shows the configuration of the pin 40 of the other metal pipe for oil well use 1 when fastening with the other metal pipe for oil well use 1. Referring to Fig. 7, the box 50 has a box contact surface 500 on the inner peripheral surface of the second end portion 10B of the pipe body 10. When fastening with the other metal pipe for oil well use 1, the pin 40 of the other metal pipe for oil well use 1 is screwed into the box contact surface 500, and the box contact surface 500 comes into contact with the pin contact surface 400 of the pin 40.
 ボックス接触表面500は、第2端部10Bの内周面に形成された雌ねじ部51を少なくとも含む。締結時において、雌ねじ部51は、他の油井用金属管1のピン40の雄ねじ部41と噛み合う。 The box contact surface 500 includes at least a female thread portion 51 formed on the inner circumferential surface of the second end portion 10B. When fastened, the female thread portion 51 meshes with the male thread portion 41 of the pin 40 of the other oil well metal pipe 1.
 ボックス接触表面500はさらに、ボックスシール面52と、ボックスショルダー面53とを含んでもよい。図7では、ボックスシール面52は、第2端部10Bの内周面のうち、雌ねじ部51よりも管本体10側に配置されている。つまり、ボックスシール面52は、雌ねじ部51とボックスショルダー面53との間に配置されている。ボックスシール面52はテーパ状に設けられている。具体的には、ボックスシール面52では、第2端部10Bの長手方向(管軸方向)において、雌ねじ部51からボックスショルダー面53に向かうにしたがって、内径が徐々に小さくなっている。 The box contact surface 500 may further include a box seal surface 52 and a box shoulder surface 53. In FIG. 7, the box seal surface 52 is located on the inner circumferential surface of the second end 10B closer to the pipe body 10 than the female thread portion 51. In other words, the box seal surface 52 is located between the female thread portion 51 and the box shoulder surface 53. The box seal surface 52 is tapered. Specifically, the inner diameter of the box seal surface 52 gradually decreases from the female thread portion 51 toward the box shoulder surface 53 in the longitudinal direction (pipe axial direction) of the second end 10B.
 他の油井用金属管1との締結時において、ボックスシール面52は、他の油井用金属管1のピン40のピンシール面42と接触する。より具体的には、締結時において、ボックス50に他の油井用金属管1のピン40がねじ込まれることにより、ボックスシール面52がピンシール面42と接触し、さらにねじ込まれることにより、ボックスシール面52がピンシール面42と密着する。これにより、締結時において、ボックスシール面52は、ピンシール面42と密着してメタル-メタル接触に基づくシールを形成する。そのため、互いに締結された油井用金属管1において、気密性を高めることができる。 When fastening with another metal oil well pipe 1, the box seal surface 52 comes into contact with the pin seal surface 42 of the pin 40 of the other metal oil well pipe 1. More specifically, when fastening, the pin 40 of the other metal oil well pipe 1 is screwed into the box 50, so that the box seal surface 52 comes into contact with the pin seal surface 42, and when further screwed, the box seal surface 52 comes into close contact with the pin seal surface 42. As a result, when fastening, the box seal surface 52 comes into close contact with the pin seal surface 42 to form a seal based on metal-metal contact. Therefore, the airtightness of the metal oil well pipes 1 fastened to each other can be improved.
 ボックスショルダー面53は、ボックスシール面52よりも管本体10側に配置されている。つまり、ボックス50では、管本体10の中央から第2端部10Bの先端に向かって順に、ボックスショルダー面53、ボックスシール面52、雌ねじ部51、の順に配置されている。他の油井用金属管1との締結時において、ボックスショルダー面53は、他の油井用金属管1のピン40のピンショルダー面43と対向し、接触する。より具体的には、締結時において、ボックス50に他の油井用金属管1のピン40が挿入されることにより、ボックスショルダー面53がピンショルダー面43と接触する。これにより、締結時において、高いトルクを得ることができる。また、ピン40とボックス50との締結状態での位置関係を安定させることができる。 The box shoulder surface 53 is disposed closer to the pipe body 10 than the box seal surface 52. In other words, in the box 50, the box shoulder surface 53, the box seal surface 52, and the female threaded portion 51 are disposed in this order from the center of the pipe body 10 toward the tip of the second end 10B. When fastening with another oil well metal pipe 1, the box shoulder surface 53 faces and contacts the pin shoulder surface 43 of the pin 40 of the other oil well metal pipe 1. More specifically, when fastening, the pin 40 of the other oil well metal pipe 1 is inserted into the box 50, so that the box shoulder surface 53 contacts the pin shoulder surface 43. This allows a high torque to be obtained when fastening. In addition, the positional relationship between the pin 40 and the box 50 in the fastened state can be stabilized.
 ボックス接触表面500は、少なくとも雌ねじ部51を含む。締結時において、ボックス50のボックス接触表面500の雌ねじ部51は、ピン40のピン接触表面400の雄ねじ部41に対応し、雄ねじ部41と接触する。ボックスシール面52は、ピンシール面42と対応し、ピンシール面42と接触する。ボックスショルダー面53は、ピンショルダー面43と対応し、ピンショルダー面43と接触する。 The box contact surface 500 includes at least a female thread portion 51. During fastening, the female thread portion 51 of the box contact surface 500 of the box 50 corresponds to the male thread portion 41 of the pin contact surface 400 of the pin 40 and contacts the male thread portion 41. The box seal surface 52 corresponds to the pin seal surface 42 and contacts the pin seal surface 42. The box shoulder surface 53 corresponds to the pin shoulder surface 43 and contacts the pin shoulder surface 43.
 ピン接触表面400が雄ねじ部41を含み、ピンシール面42及びピンショルダー面43を含まない場合、ボックス接触表面500は雌ねじ部51を含み、ボックスシール面52及びボックスショルダー面53を含まない。ピン接触表面400が雄ねじ部41とピンショルダー面43とを含み、ピンシール面42を含まない場合、ボックス接触表面500は、雌ねじ部51とボックスショルダー面53とを含み、ボックスシール面52を含まない。ピン接触表面400が雄ねじ部41とピンシール面42とを含み、ピンショルダー面43を含まない場合、ボックス接触表面500は、雌ねじ部51とボックスシール面52とを含み、ボックスショルダー面53を含まない。 If the pin contact surface 400 includes the male thread portion 41 and does not include the pin seal surface 42 and the pin shoulder surface 43, the box contact surface 500 includes the female thread portion 51 and does not include the box seal surface 52 and the box shoulder surface 53. If the pin contact surface 400 includes the male thread portion 41 and the pin shoulder surface 43 and does not include the pin seal surface 42, the box contact surface 500 includes the female thread portion 51 and the box shoulder surface 53 and does not include the box seal surface 52. If the pin contact surface 400 includes the male thread portion 41 and the pin seal surface 42 and does not include the pin shoulder surface 43, the box contact surface 500 includes the female thread portion 51 and the box seal surface 52 and does not include the box shoulder surface 53.
 ピン接触表面400は、複数の雄ねじ部41を含んでもよく、複数のピンシール面42を含んでもよく、複数のピンショルダー面43を含んでもよい。たとえば、ピン40のピン接触表面400において、第1端部10Aの先端から管本体10の中央に向かって、ピンショルダー面43、ピンシール面42、雄ねじ部41、ピンシール面42、ピンショルダー面43、ピンシール面42、雄ねじ部41の順で配置されてもよい。この場合、ボックス50のボックス接触表面500において、第2端部10Bの先端から管本体10の中央に向かって、雌ねじ部51、ボックスシール面52、ボックスショルダー面53、ボックスシール面52、雌ねじ部51、ボックスシール面52、ボックスショルダー面53の順に配置される。 The pin contact surface 400 may include multiple male threads 41, multiple pin seal surfaces 42, and multiple pin shoulder surfaces 43. For example, the pin contact surface 400 of the pin 40 may be arranged in the following order from the tip of the first end 10A toward the center of the pipe body 10: pin shoulder surface 43, pin seal surface 42, male thread 41, pin seal surface 42, pin shoulder surface 43, pin seal surface 42, male thread 41. In this case, the box contact surface 500 of the box 50 is arranged in the following order from the tip of the second end 10B toward the center of the pipe body 10: female thread 51, box seal surface 52, box shoulder surface 53, box seal surface 52, female thread 51, box seal surface 52, box shoulder surface 53.
 図6及び図7では、ピン40が、雄ねじ部41、ピンシール面42、及び、ピンショルダー面43を含み、ボックス50が、雌ねじ部51、ボックスシール面52、及び、ボックスショルダー面53を含む、いわゆる、プレミアムジョイントを図示している。しかしながら、上述のとおり、ピン40は、雄ねじ部41を含み、ピンシール面42及びピンショルダー面43を含んでいなくてもよい。この場合、ボックス50は、雌ねじ部51を含み、ボックスシール面52及びボックスショルダー面53を含んでいない。図8は、油井用金属管1の第2端部10Bの管軸方向に平行な断面図(縦断面図)のうち、図5と異なる一例の縦断面図である。図8は、ピン40が雄ねじ部41を含み、ピンシール面42及びピンショルダー面43を含んでおらず、かつ、ボックス50が雌ねじ部51を含み、ボックスシール面52及びボックスショルダー面53を含んでいない油井用金属管1の一例を示す。 6 and 7 show a so-called premium joint in which the pin 40 includes the male thread portion 41, the pin seal surface 42, and the pin shoulder surface 43, and the box 50 includes the female thread portion 51, the box seal surface 52, and the box shoulder surface 53. However, as described above, the pin 40 may include the male thread portion 41 and not include the pin seal surface 42 and the pin shoulder surface 43. In this case, the box 50 includes the female thread portion 51 and does not include the box seal surface 52 and the box shoulder surface 53. FIG. 8 is a longitudinal sectional view of an example of a cross section (longitudinal sectional view) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1, which is different from FIG. 5. FIG. 8 shows an example of a metal pipe for oil wells 1 in which the pin 40 includes the male thread portion 41, does not include the pin seal surface 42, and does not include the pin shoulder surface 43, and the box 50 includes the female thread portion 51, and does not include the box seal surface 52 and the box shoulder surface 53.
 [油井用金属管1がインテグラル型である場合]
 図4、図5及び図8に示す油井用金属管1は、管本体10が、ピン管体11とカップリング12とを含む、いわゆる、T&C型の油井用金属管1である。しかしながら、本実施形態の油井用金属管1は、T&C型ではなく、インテグラル型であってもよい。
[When the metal oil well pipe 1 is an integral type]
The metal oil well pipe 1 shown in Figures 4, 5 and 8 is a so-called T&C type metal oil well pipe 1 in which a pipe body 10 includes a pin pipe body 11 and a coupling 12. However, the metal oil well pipe 1 of the present embodiment may be an integral type instead of a T&C type.
 図9は、油井用金属管1の第2端部10Bの管軸方向に平行な断面図(縦断面図)のうち、図5及び図8と異なる一例の縦断面図である。図9は、インテグラル型の油井用金属管1の縦断面図である。図9を参照して、インテグラル型の油井用金属管1において、管本体10は、第1端部10Aと、第2端部10Bとを含む。第1端部10Aは、第2端部10Bと反対側に配置されている。上述のとおり、T&C型の油井用金属管1では、管本体10は、ピン管体11と、カップリング12とを備える。つまり、T&C型の油井用金属管1では、管本体10は、2つの別個の部材(ピン管体11及びカップリング12)を締結して構成されている。これに対して、インテグラル型の油井用金属管1では、管本体10は一体的に形成されている。 9 is a longitudinal sectional view of an example different from those of FIG. 5 and FIG. 8, among cross sections (longitudinal sectional views) parallel to the pipe axis direction of the second end 10B of the metal pipe for oil wells 1. FIG. 9 is a longitudinal sectional view of an integral type metal pipe for oil wells 1. Referring to FIG. 9, in the integral type metal pipe for oil wells 1, the pipe body 10 includes a first end 10A and a second end 10B. The first end 10A is disposed on the opposite side to the second end 10B. As described above, in the T&C type metal pipe for oil wells 1, the pipe body 10 includes a pin pipe body 11 and a coupling 12. That is, in the T&C type metal pipe for oil wells 1, the pipe body 10 is configured by fastening two separate members (the pin pipe body 11 and the coupling 12). In contrast, in the integral type metal pipe for oil wells 1, the pipe body 10 is integrally formed.
 ピン40は、管本体10の第1端部10Aに形成されている。締結時において、ピン40は、他のインテグラル型の油井用金属管1のボックス50に挿入されてねじ込まれ、他のインテグラル型の油井用金属管1のボックス50と締結される。ボックス50は、管本体10の第2端部10Bに形成されている。締結時において、ボックス50には、他のインテグラル型の油井用金属管1のピン40が挿入されてねじ込まれ、他のインテグラル型の油井用金属管1のピン40と締結される。 The pin 40 is formed at the first end 10A of the pipe body 10. When fastening, the pin 40 is inserted into and screwed into the box 50 of the other integral type metal pipe for oil wells 1, and is fastened to the box 50 of the other integral type metal pipe for oil wells 1. The box 50 is formed at the second end 10B of the pipe body 10. When fastening, the pin 40 of the other integral type metal pipe for oil wells 1 is inserted into and screwed into the box 50, and is fastened to the pin 40 of the other integral type metal pipe for oil wells 1.
 インテグラル型の油井用金属管1のピン40の構成は、図6に示すT&C型の油井用金属管1のピン40の構成と同じである。同様に、インテグラル型の油井用金属管1のボックス50の構成は、図7に示すT&C型の油井用金属管1のボックス50の構成と同じである。なお、図6では、ピン40において、第1端部10Aの先端から管本体10の中央に向かって、ピンショルダー面43、ピンシール面42、雄ねじ部41の順で配置されている。そのため、ボックス50において、第2端部10Bの先端から管本体10の中央に向かって、雌ねじ部51、ボックスシール面52、ボックスショルダー面53の順に配置されている。しかしながら、T&C型の油井用金属管1のピン40のピン接触表面400と同様に、インテグラル型の油井用金属管1のピン40のピン接触表面400は、少なくとも雄ねじ部41を含んでいればよい。また、T&C型の油井用金属管1のボックス50のボックス接触表面500と同様に、インテグラル型の油井用金属管1のボックス50のボックス接触表面500は、少なくとも雌ねじ部51を含んでいればよい。 The configuration of the pin 40 of the integral type metal pipe for oil wells 1 is the same as that of the pin 40 of the T&C type metal pipe for oil wells 1 shown in FIG. 6. Similarly, the configuration of the box 50 of the integral type metal pipe for oil wells 1 is the same as that of the box 50 of the T&C type metal pipe for oil wells 1 shown in FIG. 7. In FIG. 6, the pin shoulder surface 43, the pin seal surface 42, and the male thread portion 41 are arranged in this order in the pin 40 from the tip of the first end 10A toward the center of the pipe body 10. Therefore, in the box 50, the female thread portion 51, the box seal surface 52, and the box shoulder surface 53 are arranged in this order from the tip of the second end 10B toward the center of the pipe body 10. However, like the pin contact surface 400 of the pin 40 of the T&C type metal pipe for oil wells 1, the pin contact surface 400 of the pin 40 of the integral type metal pipe for oil wells 1 only needs to include at least the male thread portion 41. Also, like the box contact surface 500 of the box 50 of the T&C type metal pipe for oil wells 1, the box contact surface 500 of the box 50 of the integral type metal pipe for oil wells 1 only needs to include at least the female thread portion 51.
 要するに、本実施形態の油井用金属管1は、T&C型であってもよく、インテグラル型であってもよい。 In short, the oil well metal pipe 1 of this embodiment may be of the T&C type or the integral type.
 [管本体の化学組成]
 本実施形態による油井用金属管1の管本体10の化学組成は、特に限定されない。すなわち、本実施形態において、油井用金属管1の管本体10の鋼種は特に限定されない。管本体10はたとえば、炭素鋼、ステンレス鋼及び合金等によって形成されていてもよい。つまり、管本体10とは、Fe基合金からなる鋼管であってもよく、Ni基合金管に代表される合金管であってもよい。ここで、鋼管はたとえば、低合金鋼管、マルテンサイト系ステンレス鋼管、フェライト系ステンレス鋼管、オーステナイト系ステンレス鋼管、及び、二相ステンレス鋼管等である。合金管はたとえば、Ni基合金管、及び、NiCrFe合金管等である。
[Chemical composition of the tube body]
The chemical composition of the pipe body 10 of the metal pipe for oil well use 1 according to the present embodiment is not particularly limited. That is, in the present embodiment, the steel type of the pipe body 10 of the metal pipe for oil well use 1 is not particularly limited. The pipe body 10 may be formed of, for example, carbon steel, stainless steel, alloy, or the like. That is, the pipe body 10 may be a steel pipe made of an Fe-based alloy, or an alloy pipe represented by a Ni-based alloy pipe. Here, the steel pipe is, for example, a low alloy steel pipe, a martensitic stainless steel pipe, a ferritic stainless steel pipe, an austenitic stainless steel pipe, a duplex stainless steel pipe, or the like. The alloy pipe is, for example, a Ni-based alloy pipe, a NiCrFe alloy pipe, or the like.
 合金の中でも、Ni基合金及びCr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼等のいわゆる高合金は、耐食性が高い。そのため、これらの高合金を管本体10として使用すれば、硫化水素や二酸化炭素等を含有する腐食環境において、優れた耐食性が得られる。なお、管本体10がステンレス鋼管である場合、管本体10が低合金鋼管である場合と比較して、耐焼付き性が低下しやすい。しかしながら、本実施形態による油井用金属管1は、接触表面400,500の少なくとも一方の最上層として、後述の潤滑被膜層が形成される。その結果、本実施形態による油井用金属管1は、管本体10がステンレス鋼管であっても、優れた耐焼付き性を示す。 Among alloys, so-called high alloys such as Ni-based alloys and duplex stainless steels containing alloying elements such as Cr, Ni, and Mo have high corrosion resistance. Therefore, if these high alloys are used as the pipe body 10, excellent corrosion resistance can be obtained in a corrosive environment containing hydrogen sulfide, carbon dioxide, etc. If the pipe body 10 is a stainless steel pipe, the seizure resistance is more likely to decrease compared to when the pipe body 10 is a low-alloy steel pipe. However, in the metal pipe for oil wells 1 according to this embodiment, a lubricating coating layer, which will be described later, is formed as the uppermost layer on at least one of the contact surfaces 400, 500. As a result, the metal pipe for oil wells 1 according to this embodiment exhibits excellent seizure resistance even if the pipe body 10 is a stainless steel pipe.
 [潤滑被膜層100]
 本実施形態による油井用金属管1は、ピン接触表面400及びボックス接触表面500の少なくとも一方の最上層として潤滑被膜層を備える。ここで、本実施形態による油井用金属管1は、潤滑被膜層と接触表面400,500との間に、その他の層が形成されていてもよく、その他の層が形成されなくてもよい。
[Lubricating film layer 100]
The metal oil well pipe 1 according to the present embodiment is provided with a lubricating coating layer as the uppermost layer on at least one of the pin contact surface 400 and the box contact surface 500. Here, the metal oil well pipe 1 according to the present embodiment is provided with a lubricating coating layer There may or may not be other layers between the contact surfaces 400, 500.
 具体的に、図10、図12、及び、図14は、ピン40の近傍の一部の管軸方向に平行な断面図(縦断面図)である。さらに、図11及び図13は、ボックス50の近傍の一部の管軸方向に平行な断面図(縦断面図)である。図10を参照して、潤滑被膜層100は、ピン接触表面400の上に直接形成されていてもよい。図11を参照して、潤滑被膜層100は、ボックス接触表面500の上に直接形成されていてもよい。図12及び図14を参照して、潤滑被膜層100は、ピン接触表面400の上に形成された他の層の上に形成されていてもよい。さらに、図13を参照して、潤滑被膜層100は、ボックス接触表面500の上に形成された他の層の上に形成されていてもよい。 Specifically, Figs. 10, 12, and 14 are cross-sectional views (longitudinal cross-sectional views) parallel to the tube axis direction of a portion near the pin 40. Furthermore, Figs. 11 and 13 are cross-sectional views (longitudinal cross-sectional views) parallel to the tube axis direction of a portion near the box 50. With reference to Fig. 10, the lubricating coating layer 100 may be formed directly on the pin contact surface 400. With reference to Fig. 11, the lubricating coating layer 100 may be formed directly on the box contact surface 500. With reference to Figs. 12 and 14, the lubricating coating layer 100 may be formed on another layer formed on the pin contact surface 400. Furthermore, with reference to Fig. 13, the lubricating coating layer 100 may be formed on another layer formed on the box contact surface 500.
 潤滑被膜層100は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩とを含有する。潤滑被膜層100はさらに、潤滑性粉末を含有してもよい。すなわち、潤滑被膜層100中において、潤滑性粉末は任意の成分である。以下、各成分について説明する。なお、各成分に関する「%」は、特に断りがない限り、潤滑被膜層100中のZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量の合計を100質量%とした場合の、各成分の含有量(質量%)を意味する。 The lubricating coating layer 100 contains ZrO2 , metal soap, wax, and a basic metal salt of an aromatic organic acid. The lubricating coating layer 100 may further contain a lubricating powder. That is, the lubricating powder is an optional component in the lubricating coating layer 100. Each component will be described below. Note that, unless otherwise specified, "%" for each component refers to the content (mass %) of each component when the total content of ZrO2 , metal soap, wax, basic metal salt of an aromatic organic acid, and lubricating powder in the lubricating coating layer 100 is taken as 100 mass %.
 [ZrO
 ZrOは、常温で白色の固体粒子であり、融点が2700℃程度である。ZrOは一般的に、耐熱性セラミックス材料として用いられる。上述のとおり、潤滑被膜層100にZrOが少しでも含有されれば、油井用金属管1の耐焼付き性と、ハイトルク性能とを、コンパウンドグリスと同程度以上に高めることができる。
[ ZrO2 ]
ZrO2 is a white solid particle at room temperature and has a melting point of about 2700°C. ZrO2 is generally used as a heat-resistant ceramic material. As described above, even if only a small amount of ZrO2 is contained in the lubricating coating layer 100, the seizure resistance and high torque performance of the metal pipe for oil well 1 can be improved to the same level or higher than that of compound grease.
 すなわち、潤滑被膜層100中のZrO含有量は0%超である。上記ZrOの効果を安定して得るための、潤滑被膜層100中のZrO含有量の好ましい下限は0.2%である。潤滑被膜層100中のZrO含有量のさらに好ましい下限は0.5%であり、さらに好ましくは1.0%であり、さらに好ましくは2.0%であり、さらに好ましくは3.0%である。ZrOの含有量が0.5%以上であれば、油井用金属管1のハイトルク性能が顕著に高まる。なお、潤滑被膜層100中のZrO含有量の上限は、特に限定されない。しかしながら、潤滑被膜層100中のZrO含有量が高すぎれば、潤滑被膜層100が形成されにくくなる。したがって、潤滑被膜層100を安定して形成するための、ZrO含有量の上限は10.0%未満である。潤滑被膜層100中のZrO含有量のさらに好ましい上限は8.0%であり、さらに好ましくは7.0%であり、さらに好ましくは6.5%である。 That is, the ZrO2 content in the lubricating coating layer 100 is more than 0%. In order to stably obtain the above-mentioned effect of ZrO2 , the preferable lower limit of the ZrO2 content in the lubricating coating layer 100 is 0.2%. The more preferable lower limit of the ZrO2 content in the lubricating coating layer 100 is 0.5%, more preferably 1.0%, more preferably 2.0%, and even more preferably 3.0%. If the ZrO2 content is 0.5% or more, the high torque performance of the metal pipe for oil well 1 is significantly improved. The upper limit of the ZrO2 content in the lubricating coating layer 100 is not particularly limited. However, if the ZrO2 content in the lubricating coating layer 100 is too high, the lubricating coating layer 100 becomes difficult to form. Therefore, the upper limit of the ZrO2 content in order to stably form the lubricating coating layer 100 is less than 10.0%. A more preferable upper limit of the ZrO2 content in the lubricating coating layer 100 is 8.0%, even more preferably 7.0%, and even more preferably 6.5%.
 本実施形態において、ZrOのモース硬度は6~9程度である。モース硬度が高すぎれば、油井用金属管1の耐焼付き性が十分に高められない可能性がある。一方、モース硬度が低すぎれば、油井用金属管1のハイトルク性能が十分に高められない可能性がある。すなわち、ZrOは適度なモース硬度を有しているため、油井用金属管1の耐焼付き性及びハイトルク性能を高められる可能性がある。一方、たとえば、金属酸化物のうちTiOは、ZrOよりもモース硬度が低い。そのため、金属酸化物のうちTiOは、ZrOよりもハイトルク性能を高める効果が得られにくいと予想される。このように、金属酸化物は、その種類によって性質が大きく異なるため、容易に置き換えることはできない。 In this embodiment, the Mohs hardness of ZrO 2 is about 6 to 9. If the Mohs hardness is too high, the seizure resistance of the metal pipe for oil well use 1 may not be sufficiently improved. On the other hand, if the Mohs hardness is too low, the high torque performance of the metal pipe for oil well use 1 may not be sufficiently improved. That is, since ZrO 2 has a moderate Mohs hardness, it is possible to improve the seizure resistance and high torque performance of the metal pipe for oil well use 1. On the other hand, for example, among the metal oxides, TiO 2 has a lower Mohs hardness than ZrO 2. Therefore, it is expected that, among the metal oxides, TiO 2 is less likely to achieve the effect of improving the high torque performance than ZrO 2. As described above, metal oxides have significantly different properties depending on the type, and therefore cannot be easily replaced.
 ZrOの好ましいモース硬度は6~8.5であり、さらに好ましくは6~7であり、さらに好ましくは6.5~7である。本実施形態において、ZrOのモース硬度は、次の方法で測定する。試料物質(ZrO)で標準物質をこすり、ひっかき傷の有無を確認する。標準物質は、一般的にモース硬度測定の標準物質として使用されている鉱物を用いる。モース硬度1の滑石(Mg(Si10)(OH))から、モース硬度10のダイヤモンド(金剛石)を用いて10段階評価でモース硬度を測定する。ZrOは、モース硬度6の正長石(KAlSi)と、モース硬度9のコランダム(Al)との間の硬度を有する。好ましくは、ZrOは、モース硬度6の正長石と、モース硬度7の石英(SiO)との間の硬度を有する。 The Mohs hardness of ZrO 2 is preferably 6 to 8.5, more preferably 6 to 7, and even more preferably 6.5 to 7. In this embodiment, the Mohs hardness of ZrO 2 is measured by the following method. The standard material is rubbed with the sample material (ZrO 2 ) to check for scratches. The standard material is a mineral that is generally used as a standard material for Mohs hardness measurement. The Mohs hardness is measured on a 10-point scale using talc (Mg 3 (Si 4 O 10 ) (OH) 2 ) with a Mohs hardness of 1 to diamond (diamond) with a Mohs hardness of 10. ZrO 2 has a hardness between orthoclase (KAlSi 3 O 8 ) with a Mohs hardness of 6 and corundum (Al 2 O 3 ) with a Mohs hardness of 9. Preferably, ZrO2 has a hardness between that of orthoclase, which has a hardness of 6 on the Mohs scale, and that of quartz ( SiO2 ), which has a hardness of 7 on the Mohs scale.
 なお、上述のZrOのモース硬度の測定方法は、粉末状態に加工される前のZrOに対して、ひっかき傷を形成する。一方、ZrO粉末にひっかき傷を形成するのは困難であるため、ZrO粉末のモース硬度を直接測定するのは困難である。そこで、本実施形態では、ZrO粉末からモース硬度を求める場合、ビッカース硬度から推算して求める。具体的に、まず、ZrO粉末を樹脂に埋込み固定して、表面を研磨したサンプルを作製する。作製されたサンプル表面に対して、ダイヤモンド製三角すい状の圧子を押し込み、試験力と負荷速度を制御しながら、負荷-除荷試験を実施する。負荷-除荷試験から得られた試験力と押込み深さ曲線を用いて、ビッカース硬度を求めることができる。負荷-除荷試験に用いるビッカース試験機として、たとえば、株式会社島津製作所製のダイナミック超微小硬度計(DUH-211S)を用いることができる。 In addition, the above-mentioned method for measuring the Mohs hardness of ZrO 2 involves forming scratches on ZrO 2 before it is processed into a powder state. On the other hand, since it is difficult to form scratches on ZrO 2 powder, it is difficult to directly measure the Mohs hardness of ZrO 2 powder. Therefore, in this embodiment, when determining the Mohs hardness from ZrO 2 powder, it is estimated from the Vickers hardness. Specifically, first, a sample is prepared by embedding and fixing ZrO 2 powder in a resin and polishing the surface. A diamond triangular pyramid-shaped indenter is pressed into the surface of the prepared sample, and a load-unload test is performed while controlling the test force and the load rate. The Vickers hardness can be obtained by using the test force and the indentation depth curve obtained from the load-unload test. As a Vickers tester used for the load-unload test, for example, a dynamic ultra-microhardness tester (DUH-211S) manufactured by Shimadzu Corporation can be used.
 以上の方法で得られた、ZrO粉末のビッカースが600~780Hvの場合、モース硬度は6~7であり、ビッカース硬度が780~1250Hvの場合、モース硬度は7~8であり、ビッカース硬度が1250~1900Hvの場合、モース硬度は8~9であると推算できる。 When the Vickers hardness of the ZrO2 powder obtained by the above method is 600 to 780 Hv, the Mohs hardness is 6 to 7, when the Vickers hardness is 780 to 1250 Hv, the Mohs hardness is 7 to 8, and when the Vickers hardness is 1250 to 1900 Hv, the Mohs hardness is estimated to be 8 to 9.
 本実施形態において、ZrOの好ましい粒子径は20~2000nmである。ZrOの粒子径が20~2000nmであれば、潤滑被膜層100中のZrOの分散状態が向上し、安定して油井用金属管1の耐焼付き性及びハイトルク性能を高めることができる。ZrOの粒子径のさらに好ましい下限は100nmであり、さらに好ましくは300nmであり、さらに好ましくは500nmであり、さらに好ましくは1000nmである。ZrOの粒子径のさらに好ましい上限は1800nmであり、さらに好ましくは1600nmであり、さらに好ましくは1500nmである。 In this embodiment, the preferred particle size of ZrO2 is 20 to 2000 nm. If the particle size of ZrO2 is 20 to 2000 nm, the dispersion state of ZrO2 in the lubricating coating layer 100 is improved, and the seizure resistance and high torque performance of the metal pipe for oil well 1 can be stably improved. A more preferred lower limit of the particle size of ZrO2 is 100 nm, more preferably 300 nm, more preferably 500 nm, and even more preferably 1000 nm. A more preferred upper limit of the particle size of ZrO2 is 1800 nm, more preferably 1600 nm, and even more preferably 1500 nm.
 本実施形態において、ZrOの粒子径は、次の方法で測定する。試料物質(ZrO)に対するレーザー回折・散乱法による粒度分布測定を実施する。粒度分布測定は、周知の方法で実施することができる。粒度分布測定装置として、たとえば、SHIMADZU製SALDシリーズを用いて得られる、有効径分布の算術平均値を、本実施形態におけるZrOの粒子径とする。 In this embodiment, the particle size of ZrO2 is measured by the following method. A particle size distribution measurement is performed on the sample material ( ZrO2 ) by a laser diffraction/scattering method. The particle size distribution measurement can be performed by a well-known method. The arithmetic mean value of the effective diameter distribution obtained using, for example, a Shimadzu SALD series particle size distribution measuring device is taken as the particle size of ZrO2 in this embodiment.
 なお、上述のとおり、ZrOが潤滑被膜層100に少しでも含有されれば、油井用金属管1のハイトルク性能が高まる。上述のとおり、ハイトルク性能とは、接触表面同士の面圧が高まっても、トルクを安定的に高められることを意味する。すなわち、ZrOは、高面圧時に摩擦を高める効果を有する可能性がある。したがって、ZrOは、その表面が被膜(たとえば、Fを含有する被膜等)で覆われていないことが好ましい。 As described above, even if only a small amount of ZrO 2 is contained in the lubricating coating layer 100, the high torque performance of the metal pipe for oil well 1 is improved. As described above, high torque performance means that the torque can be stably increased even if the surface pressure between the contact surfaces increases. In other words, ZrO 2 may have the effect of increasing friction at high surface pressure. Therefore, it is preferable that the surface of ZrO 2 is not covered with a coating (for example, a coating containing F).
 [金属石鹸]
 金属石鹸は、脂肪酸(aliphatic acid)と金属との塩である。ここで、脂肪酸とは、脂肪族の有機酸を意味する。すなわち、芳香族の有機酸は、定義上脂肪酸には含まれない。
[Metal soap]
Metal soaps are salts of aliphatic acids and metals. Here, fatty acids refer to aliphatic organic acids. That is, aromatic organic acids are not included in fatty acids by definition.
 本実施形態において、金属石鹸の脂肪酸は、脂肪酸の混合物であってもよく、単一化合物であってもよい。脂肪酸の混合物はたとえば、牛脂、ラード、羊毛脂、パーム油、菜種油、及び、椰子油等である。単一化合物の脂肪酸はたとえば、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ラノパルミチン酸、ステアリン酸、イソステアリン酸、12-ヒドロキシステアリン酸、オレイン酸、エライジン酸、アラキン酸、ベヘン酸、エルカ酸、リグノセリン酸、ラノセリン酸、リシノール酸、モンタン酸、リノール酸、リノレン酸、リシノレン酸、オクチル酸、及び、セバシン酸である。本実施形態による脂肪酸は、上述の脂肪酸の例からなる群から選択される1種以上を用いることができる。好ましくは、本実施形態による脂肪酸の炭素数は12~30である。炭素数12~30の脂肪酸はたとえば、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ラノパルミチン酸、ステアリン酸、イソステアリン酸、12-ヒドロキシステアリン酸、オレイン酸、エライジン酸、アラキン酸、ベヘン酸、エルカ酸、リグノセリン酸、ラノセリン酸、リシノール酸、モンタン酸、リノール酸、リノレン酸、及び、リシノレン酸である。 In this embodiment, the fatty acid of the metal soap may be a mixture of fatty acids or a single compound. Examples of fatty acid mixtures include beef tallow, lard, wool fat, palm oil, rapeseed oil, and coconut oil. Examples of single compound fatty acids include lauric acid, tridecylic acid, myristic acid, palmitic acid, lanopalmitic acid, stearic acid, isostearic acid, 12-hydroxystearic acid, oleic acid, elaidic acid, arachic acid, behenic acid, erucic acid, lignoceric acid, lanoceric acid, ricinoleic acid, montanic acid, linoleic acid, linolenic acid, ricinolenic acid, octylic acid, and sebacic acid. The fatty acid according to this embodiment may be one or more selected from the group consisting of the examples of fatty acids described above. Preferably, the fatty acid according to this embodiment has a carbon number of 12 to 30. Examples of fatty acids having 12 to 30 carbon atoms include lauric acid, tridecylic acid, myristic acid, palmitic acid, lanopalmitic acid, stearic acid, isostearic acid, 12-hydroxystearic acid, oleic acid, elaidic acid, arachic acid, behenic acid, erucic acid, lignoceric acid, lanoceric acid, ricinoleic acid, montanic acid, linoleic acid, linolenic acid, and ricinolenic acid.
 本実施形態において、金属石鹸の金属は、脂肪酸と塩を形成できれば、特に限定されない。金属石鹸の金属はたとえば、カルシウム、ナトリウム、マグネシウム、亜鉛、バリウムである。本実施形態において、金属石鹸は、中性塩であってもよく、塩基性塩であってもよい。すなわち、本実施形態による金属石鹸は、上述の脂肪酸と、上述の金属との塩であれば、特に限定されない。 In this embodiment, the metal of the metal soap is not particularly limited as long as it can form a salt with the fatty acid. Examples of the metal of the metal soap are calcium, sodium, magnesium, zinc, and barium. In this embodiment, the metal soap may be a neutral salt or a basic salt. In other words, the metal soap according to this embodiment is not particularly limited as long as it is a salt of the above-mentioned fatty acid and the above-mentioned metal.
 本実施形態による潤滑被膜層100において、金属石鹸の含有量は特に限定されない。好ましくは、潤滑被膜層100中の金属石鹸の含有量は2~30%である。金属石鹸の含有量が2%以上であれば、油井用金属管1の耐焼付き性と防錆性とを安定して高めることができる。金属石鹸の含有量が30%以下であれば、潤滑被膜層100の密着性と強度とを安定して高めることができる。したがって、潤滑被膜層100中の金属石鹸の含有量は2~30%とするのが好ましい。潤滑被膜層100中の金属石鹸の含有量のさらに好ましい下限は5%であり、さらに好ましくは7%であり、さらに好ましくは10%である。潤滑被膜層100中の金属石鹸の含有量のさらに好ましい上限は28%であり、さらに好ましくは25%であり、さらに好ましくは20%である。 In the lubricating coating layer 100 according to this embodiment, the content of the metal soap is not particularly limited. Preferably, the content of the metal soap in the lubricating coating layer 100 is 2 to 30%. If the content of the metal soap is 2% or more, the seizure resistance and rust prevention of the metal oil well pipe 1 can be stably improved. If the content of the metal soap is 30% or less, the adhesion and strength of the lubricating coating layer 100 can be stably improved. Therefore, the content of the metal soap in the lubricating coating layer 100 is preferably 2 to 30%. A more preferable lower limit of the content of the metal soap in the lubricating coating layer 100 is 5%, more preferably 7%, and even more preferably 10%. A more preferable upper limit of the content of the metal soap in the lubricating coating layer 100 is 28%, more preferably 25%, and even more preferably 20%.
 [ワックス]
 ワックスとは、常温では固体であり、加熱すると液体となる有機物の総称である。本実施形態において、ワックスは、動物性、植物性、鉱物性及び合成ワックスからなる群から選択される1種以上である。動物性のワックスはたとえば、蜜蝋、及び、鯨蝋である。植物性のワックスはたとえば、木蝋、カルナウバワックス、キャンデリラワックス、及び、ライスワックスである。鉱物性のワックスはたとえば、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタム、モンタンワックス、オゾケライト、及び、セレシンである。合成ワックスはたとえば、酸化ワックス、ポリエチレンワックス、フィッシャー・トロプッシュワックス、アミドワックス、及び、硬化ひまし油(カスターワックス)である。一例として、ワックスの分子量は1000以下である。好ましくは、ワックスは、分子量150~500のパラフィンワックスである。
[wax]
Wax is a general term for organic matter that is solid at room temperature and becomes liquid when heated. In this embodiment, the wax is one or more selected from the group consisting of animal, vegetable, mineral, and synthetic wax. Examples of animal waxes are beeswax and spermaceti. Examples of vegetable waxes are Japan wax, carnauba wax, candelilla wax, and rice wax. Examples of mineral waxes are paraffin wax, microcrystalline wax, petrolatum, montan wax, ozokerite, and ceresin. Examples of synthetic waxes are oxidized wax, polyethylene wax, Fischer-Tropsch wax, amide wax, and hardened castor oil (castor wax). As an example, the molecular weight of the wax is 1000 or less. Preferably, the wax is paraffin wax with a molecular weight of 150 to 500.
 すなわち、ワックスはたとえば、蜜蝋、鯨蝋、木蝋、カルナウバワックス、キャンデリラワックス、ライスワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタム、モンタンワックス、オゾケライト、セレシン、酸化ワックス、ポリエチレンワックス、フィッシャー・トロプッシュワックス、アミドワックス及び硬化ひまし油(カスターワックス)からなる群から選択される1種以上である。ワックスは、パラフィンワックス、マイクロクリスタリンワックス及び酸化ワックスからなる群から選択される1種以上であるのが好ましい。 That is, the wax is, for example, one or more selected from the group consisting of beeswax, spermaceti, Japan wax, carnauba wax, candelilla wax, rice wax, paraffin wax, microcrystalline wax, petrolatum, montan wax, ozokerite, ceresin, oxidized wax, polyethylene wax, Fischer-Tropsch wax, amide wax, and hardened castor oil (castor wax). The wax is preferably one or more selected from the group consisting of paraffin wax, microcrystalline wax, and oxidized wax.
 本実施形態による潤滑被膜層100において、ワックスの含有量は特に限定されない。好ましくは、潤滑被膜層100中のワックスの含有量は2~30%である。ワックスの含有量が2%以上であれば、潤滑被膜層100の摩擦を低減して、油井用金属管1の耐焼付き性を安定して高めることができる。ワックスの含有量が30%以下であれば、潤滑被膜層100の密着性と強度とを安定して高めることができる。したがって、潤滑被膜層100中のワックスの含有量は2~30%とするのが好ましい。潤滑被膜層100中のワックスの含有量のさらに好ましい下限は5%であり、さらに好ましくは7%であり、さらに好ましくは10%である。潤滑被膜層100中のワックスの含有量のさらに好ましい上限は28%であり、さらに好ましくは25%であり、さらに好ましくは20%である。 In the lubricating coating layer 100 according to this embodiment, the wax content is not particularly limited. Preferably, the wax content in the lubricating coating layer 100 is 2 to 30%. If the wax content is 2% or more, the friction of the lubricating coating layer 100 can be reduced, and the seizure resistance of the metal oil well pipe 1 can be stably improved. If the wax content is 30% or less, the adhesion and strength of the lubricating coating layer 100 can be stably improved. Therefore, the wax content in the lubricating coating layer 100 is preferably 2 to 30%. A more preferable lower limit of the wax content in the lubricating coating layer 100 is 5%, more preferably 7%, and even more preferably 10%. A more preferable upper limit of the wax content in the lubricating coating layer 100 is 28%, more preferably 25%, and even more preferably 20%.
 [塩基性芳香族有機酸金属塩]
 塩基性芳香族有機酸金属塩は、芳香族有機酸と金属との塩基性塩である。塩基性芳香族有機酸金属塩は、たとえば、常温でグリース状又は半固体の物質である。
[Basic aromatic organic acid metal salt]
The basic metal salt of an aromatic organic acid is a basic salt of an aromatic organic acid and a metal. The basic metal salt of an aromatic organic acid is, for example, a grease-like or semi-solid substance at room temperature.
 本実施形態において、芳香族有機酸はたとえば、スルホネート、フェネート、及び、サリシレートである。本実施形態において塩基性芳香族有機酸金属塩の金属は、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、及び、フランシウム)、又は、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、バリウム、及び、ラジウム)である。好ましくは、塩基性芳香族有機酸金属塩の金属は、ナトリウム、カリウム、カルシウム、バリウム、及び、マグネシウムからなる群から選択される1種以上である。さらに好ましくは、塩基性芳香族有機酸金属塩の金属は、カルシウム、バリウム、及び、マグネシウムからなる群から選択される1種以上である。 In this embodiment, the aromatic organic acid is, for example, a sulfonate, a phenate, or a salicylate. In this embodiment, the metal of the basic aromatic organic acid metal salt is an alkali metal (lithium, sodium, potassium, rubidium, cesium, or francium) or an alkaline earth metal (beryllium, magnesium, calcium, barium, or radium). Preferably, the metal of the basic aromatic organic acid metal salt is one or more selected from the group consisting of sodium, potassium, calcium, barium, or magnesium. More preferably, the metal of the basic aromatic organic acid metal salt is one or more selected from the group consisting of calcium, barium, or magnesium.
 すなわち、塩基性芳香族有機酸金属塩はたとえば、塩基性ナトリウムスルホネート、塩基性カリウムスルホネート、塩基性マグネシウムスルホネート、塩基性カルシウムスルホネート、塩基性バリウムスルホネート、塩基性ナトリウムフェネート、塩基性カリウムフェネート、塩基性マグネシウムフェネート、塩基性カルシウムフェネート、塩基性バリウムフェネート、塩基性ナトリウムサリシレート、塩基性カリウムサリシレート、塩基性マグネシウムサリシレート、塩基性カルシウムサリシレート、及び、塩基性バリウムサリシレートからなる群から選択される1種以上である。 In other words, the basic aromatic organic acid metal salt is, for example, one or more selected from the group consisting of basic sodium sulfonate, basic potassium sulfonate, basic magnesium sulfonate, basic calcium sulfonate, basic barium sulfonate, basic sodium phenate, basic potassium phenate, basic magnesium phenate, basic calcium phenate, basic barium phenate, basic sodium salicylate, basic potassium salicylate, basic magnesium salicylate, basic calcium salicylate, and basic barium salicylate.
 塩基性芳香族有機酸金属塩は、その塩基価が高いほど、固形潤滑剤として機能する微粒子金属塩の量が高まる。そのため、塩基価が高い塩基性芳香族有機酸金属塩を用いることで、油井用金属管1の耐焼付き性がさらに高まる。また、塩基価をある程度以上に高めれば、酸成分を中和する効果が得られる。そのため、塩基価が高い塩基性芳香族有機酸金属塩を用いることでさらに、油井用金属管1の防錆力も高まる。したがって、塩基性芳香族有機酸金属塩は、塩基価(JIS K2501)(2種以上使用する場合は、量を加味した塩基価の加重平均値)が、50~500mgKOH/gであるのが好ましい。 The higher the base number of the basic aromatic organic metal salt, the higher the amount of fine metal salt particles that function as a solid lubricant. Therefore, by using a basic aromatic organic metal salt with a high base number, the seizure resistance of the oil well metal pipe 1 is further improved. Furthermore, if the base number is increased to a certain level or higher, the effect of neutralizing the acid component is obtained. Therefore, by using a basic aromatic organic metal salt with a high base number, the rust prevention ability of the oil well metal pipe 1 is further improved. Therefore, it is preferable that the basic aromatic organic metal salt has a base number (JIS K2501) (when two or more types are used, the weighted average value of the base number taking into account the amount) of 50 to 500 mg KOH/g.
 塩基性芳香族有機酸金属塩の塩基価が50mgKOH/g以上であれば、上記効果を十分に得られる。塩基価が500mgKOH/g以下であれば、親水性を低下でき、十分な防錆性が得られる。塩基性芳香族有機酸金属塩の塩基価のさらに好ましい下限は100mgKOH/gであり、さらに好ましくは200mgKOH/gであり、さらに好ましくは250mgKOH/gである。塩基性芳香族有機酸金属塩の塩基価のさらに好ましい上限は450mgKOH/gである。 If the base number of the basic aromatic organic metal salt is 50 mgKOH/g or more, the above effects can be sufficiently obtained. If the base number is 500 mgKOH/g or less, the hydrophilicity can be reduced and sufficient rust prevention properties can be obtained. A more preferred lower limit of the base number of the basic aromatic organic metal salt is 100 mgKOH/g, more preferably 200 mgKOH/g, and even more preferably 250 mgKOH/g. A more preferred upper limit of the base number of the basic aromatic organic metal salt is 450 mgKOH/g.
 本実施形態による潤滑被膜層100において、塩基性芳香族有機酸金属塩の含有量は特に限定されない。上述のとおり、塩基性芳香族有機酸金属塩はグリース状又は半固体の物質であり、潤滑被膜層100の基剤としても機能する。そのため、潤滑被膜層100中の塩基性芳香族有機酸金属塩の含有量は、80.0%まで高めることができる。すなわち、本実施形態において、潤滑被膜層100中の塩基性芳香族有機酸金属塩の含有量は、12.0~80.0%である。 In the lubricating coating layer 100 according to this embodiment, the content of the basic aromatic organic metal salt is not particularly limited. As described above, the basic aromatic organic metal salt is a grease-like or semi-solid substance, and also functions as a base for the lubricating coating layer 100. Therefore, the content of the basic aromatic organic metal salt in the lubricating coating layer 100 can be increased up to 80.0%. That is, in this embodiment, the content of the basic aromatic organic metal salt in the lubricating coating layer 100 is 12.0 to 80.0%.
 本実施形態において、潤滑被膜層100中の塩基性芳香族有機酸金属塩の含有量のさらに好ましい下限は20.0%であり、さらに好ましくは30.0%であり、さらに好ましくは40.0%である。潤滑被膜層100中の塩基性芳香族有機酸金属塩の含有量のさらに好ましい上限は75.0%であり、さらに好ましくは71.0%であり、さらに好ましくは70.0%である。 In this embodiment, a more preferred lower limit for the content of the basic aromatic organic metal salt in the lubricating coating layer 100 is 20.0%, more preferably 30.0%, and even more preferably 40.0%. A more preferred upper limit for the content of the basic aromatic organic metal salt in the lubricating coating layer 100 is 75.0%, more preferably 71.0%, and even more preferably 70.0%.
 [潤滑性粉末]
 本実施形態による潤滑被膜層100は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、に加えてさらに、潤滑性粉末を含有してもよい。すなわち、潤滑性粉末は任意の成分であり、潤滑被膜層100に含有されなくてもよい。本明細書において潤滑性粉末とは、潤滑性を有する固体粉末の総称である。本実施形態では、潤滑性粉末として、潤滑性を有する周知の固体粉末を用いることができる。
[Lubricant powder]
The lubricating coating layer 100 according to this embodiment may further contain a lubricating powder in addition to ZrO2 , metal soap, wax, and basic aromatic organic acid metal salt. That is, the lubricating powder is an optional component and does not have to be contained in the lubricating coating layer 100. In this specification, the lubricating powder is a general term for solid powders that have lubricity. In this embodiment, a well-known solid powder that has lubricity can be used as the lubricating powder.
 具体的に、一例として潤滑性粉末は、以下の4種類に大別される。
 (1)滑り易い特定の結晶構造、たとえば、六方晶層状結晶構造を有することにより潤滑性を示すもの(たとえば、黒鉛、土状黒鉛、酸化亜鉛、窒化硼素及びタルク)、
 (2)結晶構造に加えて反応性元素を有することにより潤滑性を示すもの(たとえば、二硫化モリブデン、二硫化タングステン、フッ化黒鉛、硫化スズ、硫化ビスマス及び有機モリブデン)、
 (3)化学反応性により潤滑性を示すもの(たとえば、チオ硫酸塩化合物)、
 (4)摩擦応力下での塑性又は粘塑性挙動により潤滑性を示すもの(たとえば、ポリテトラフルオロエチレン(PTFE)、ポリアミド、銅(Cu)、及びメラミンシアヌレート(MCA))
Specifically, as an example, lubricating powders are roughly classified into the following four types.
(1) Materials that exhibit lubricity due to having a specific slippery crystal structure, such as a hexagonal layered crystal structure (e.g., graphite, amorphous graphite, zinc oxide, boron nitride, and talc);
(2) Those that exhibit lubricity by having a reactive element in addition to a crystal structure (for example, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide, and organic molybdenum),
(3) Those that exhibit lubricity due to chemical reactivity (e.g., thiosulfate compounds);
(4) Those that exhibit lubricity due to plastic or viscoplastic behavior under frictional stress (e.g., polytetrafluoroethylene (PTFE), polyamide, copper (Cu), and melamine cyanurate (MCA)).
 好ましくは、潤滑性粉末は上記(1)~(4)からなる群から選ばれる1種以上を含有する。つまり、好ましくは、潤滑性粉末は、黒鉛、土状黒鉛、酸化亜鉛、窒化硼素、タルク、二硫化モリブデン、二硫化タングステン、フッ化黒鉛、硫化スズ、硫化ビスマス、有機モリブデン、チオ硫酸塩化合物、ポリテトラフルオロエチレン(PTFE)、ポリアミド、銅(Cu)及びメラミンシアヌレート(MCA)からなる群から選択される1種又は2種以上である。より好ましくは、潤滑性粉末は、二硫化モリブデン、黒鉛、ポリテトラフルオロエチレン(PTFE)及びフッ化黒鉛からなる群から選ばれる1種以上である。さらに好ましくは、潤滑性粉末は、黒鉛及びポリテトラフルオロエチレン(PTFE)からなる群から選択される1種又は2種である。 Preferably, the lubricating powder contains one or more selected from the group consisting of (1) to (4) above. That is, preferably, the lubricating powder is one or more selected from the group consisting of graphite, amorphous graphite, zinc oxide, boron nitride, talc, molybdenum disulfide, tungsten disulfide, graphite fluoride, tin sulfide, bismuth sulfide, organic molybdenum, thiosulfate compounds, polytetrafluoroethylene (PTFE), polyamide, copper (Cu), and melamine cyanurate (MCA). More preferably, the lubricating powder is one or more selected from the group consisting of molybdenum disulfide, graphite, polytetrafluoroethylene (PTFE), and graphite fluoride. Even more preferably, the lubricating powder is one or two selected from the group consisting of graphite and polytetrafluoroethylene (PTFE).
 本実施形態において、潤滑被膜層100中の潤滑性粉末の含有量は0~20.0%である。潤滑被膜層100中の潤滑性粉末の含有量のさらに好ましい下限は0.5%であり、さらに好ましくは3.0%であり、さらに好ましくは5.0%である。潤滑被膜層100中の潤滑性粉末の含有量のさらに好ましい上限は18.0%であり、さらに好ましくは15.0%であり、さらに好ましくは12.0%である。 In this embodiment, the content of lubricating powder in the lubricating coating layer 100 is 0 to 20.0%. A more preferred lower limit of the content of lubricating powder in the lubricating coating layer 100 is 0.5%, more preferably 3.0%, and even more preferably 5.0%. A more preferred upper limit of the content of lubricating powder in the lubricating coating layer 100 is 18.0%, more preferably 15.0%, and even more preferably 12.0%.
 [その他の成分]
 潤滑被膜層100は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、潤滑性粉末との他に、その他の成分を含有していてもよい。その他の成分とは、たとえば、周知の防錆添加剤、防腐剤、着色顔料、及び、不純物である。
[Other ingredients]
The lubricating coating layer 100 may contain other components in addition to ZrO2 , metal soap, wax, basic aromatic organic acid metal salt, and lubricating powder, such as well-known anti-rust additives, preservatives, color pigments, and impurities.
 潤滑被膜層100に防錆添加剤が含有されれば、油井用金属管1の防錆性が高まる。油井用金属管1の防錆性が高まれば、長期間の保管による油井用金属管1の発錆を抑制できる。防錆添加剤はたとえば、トリポリリン酸アルミニウム、亜リン酸アルミニウム、及び、カルシウムイオン交換シリカである。防錆添加剤として、他に市販の反応撥水剤を用いることもできる。 If the lubricating coating layer 100 contains a rust-preventive additive, the rust-preventive properties of the metal pipe for oil wells 1 are improved. If the rust-preventive properties of the metal pipe for oil wells 1 are improved, rusting of the metal pipe for oil wells 1 due to long-term storage can be suppressed. Examples of the rust-preventive additive include aluminum tripolyphosphate, aluminum phosphite, and calcium ion-exchanged silica. Other commercially available reactive water repellents can also be used as rust-preventive additives.
 潤滑被膜層100に防腐剤が含有されれば、油井用金属管1の耐食性が高まる。油井用金属管1の耐食性が高まれば、長期間の保管による油井用金属管1の腐食を抑制できる。また、不純物として、潤滑被膜層100には、後述の組成物に含有される揮発性有機溶剤を微量に含有する場合がある。本実施形態では、潤滑被膜層100中において、その他の成分の合計含有量は0~10%である。 If the lubricating coating layer 100 contains a preservative, the corrosion resistance of the metal oil well pipe 1 is increased. If the corrosion resistance of the metal oil well pipe 1 is increased, corrosion of the metal oil well pipe 1 due to long-term storage can be suppressed. Furthermore, the lubricating coating layer 100 may contain, as impurities, trace amounts of volatile organic solvents contained in the composition described below. In this embodiment, the total content of other components in the lubricating coating layer 100 is 0 to 10%.
 [潤滑被膜層100を形成するための組成物]
 本実施形態において、潤滑被膜層100を形成するための組成物は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩を含有する。本実施形態による組成物はさらに、潤滑性粉末を含有してもよい。好ましくは、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量の合計を100質量%とした場合、組成物は、ZrO:0.2~8.0%、金属石鹸:2~30%、ワックス:2~30%、塩基性芳香族有機酸金属塩:12.0~80.0%、及び、潤滑性粉末:0~20.0%、を含有する。要するに、組成物のうちZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量は、潤滑被膜層100と同じである。
[Composition for forming lubricating coating layer 100]
In this embodiment, the composition for forming the lubricating coating layer 100 contains ZrO2 , metal soap, wax, and a basic metal salt of an aromatic organic acid. The composition according to this embodiment may further contain a lubricating powder. Preferably, when the total content of ZrO2 , metal soap, wax, basic metal salt of an aromatic organic acid, and lubricating powder is taken as 100 mass%, the composition contains ZrO2 : 0.2 to 8.0%, metal soap: 2 to 30%, wax: 2 to 30%, basic metal salt of an aromatic organic acid: 12.0 to 80.0%, and lubricating powder: 0 to 20.0%. In short, the content of ZrO2 , metal soap, wax, basic metal salt of an aromatic organic acid, and lubricating powder in the composition is the same as that of the lubricating coating layer 100.
 本実施形態による組成物はさらに、揮発性有機溶剤を含有してもよい。常温で塗布を行う場合、潤滑被膜層100の成分の混合物に揮発性有機溶剤を添加して、組成物を調製する。揮発性有機溶剤は、組成物に含有される物質とは異なり、潤滑被膜層100を形成する過程で、そのほとんどが蒸発する。しかしながら、本実施形態による潤滑被膜層100には、揮発性有機溶剤が不純物として残存する場合もある。なお、本明細書において「揮発性」とは、室温~150℃までの温度において、蒸発傾向を示すことを意味する。 The composition according to this embodiment may further contain a volatile organic solvent. When coating is performed at room temperature, the composition is prepared by adding a volatile organic solvent to a mixture of the components of the lubricating coating layer 100. Unlike substances contained in the composition, the volatile organic solvent evaporates almost entirely during the process of forming the lubricating coating layer 100. However, the volatile organic solvent may remain as an impurity in the lubricating coating layer 100 according to this embodiment. In this specification, "volatile" means that it shows a tendency to evaporate at temperatures from room temperature to 150°C.
 本実施形態において、揮発性有機溶剤の種類は特に制限されない。揮発性有機溶剤はたとえば、石油系溶剤である。石油系溶剤とはたとえば、JIS K2201(2006)に規定されている工業用ガソリンに相当するソルベント、ミネラルスピリット、芳香族石油ナフタ、キシレン、及び、セロソルブからなる群から選択される1種以上である。揮発性有機溶剤は、引火点が30℃以上で、初留温度が150℃以上、終点が210℃以下であるものが好ましい。この場合、揮発性有機溶剤の取り扱いが比較的容易で、しかも蒸発が速く、乾燥時間が短くてすむ。 In this embodiment, the type of volatile organic solvent is not particularly limited. The volatile organic solvent is, for example, a petroleum-based solvent. The petroleum-based solvent is, for example, one or more selected from the group consisting of solvent equivalent to industrial gasoline specified in JIS K2201 (2006), mineral spirits, aromatic petroleum naphtha, xylene, and cellosolve. The volatile organic solvent preferably has a flash point of 30°C or higher, an initial boiling point of 150°C or higher, and an end point of 210°C or lower. In this case, the volatile organic solvent is relatively easy to handle, evaporates quickly, and requires a short drying time.
 本実施形態において、揮発性有機溶剤の含有量は、組成物の塗布方法に応じて組成物を適正な粘度に調整できるよう適宜調整すればよい。揮発性有機溶剤の含有量はたとえば、不揮発性成分の合計量を100gとした場合、20~50gである。 In this embodiment, the content of the volatile organic solvent may be adjusted as appropriate so that the viscosity of the composition can be adjusted appropriately depending on the application method of the composition. For example, the content of the volatile organic solvent is 20 to 50 g when the total amount of the non-volatile components is 100 g.
 [潤滑被膜層100の膜厚]
 本実施形態において、潤滑被膜層100の膜厚は特に限定されない。好ましくは、潤滑被膜層100の膜厚は20~80μmである。潤滑被膜層100の膜厚が20μm以上であれば、潤滑被膜層100の潤滑性が安定して高まる。一方、潤滑被膜層100の膜厚が80μm以下であれば、潤滑被膜層100の密着性が安定して高まる。したがって、本実施形態において、潤滑被膜層100の膜厚は20~80μmとするのが好ましい。
[Thickness of lubricating coating layer 100]
In this embodiment, the thickness of the lubricating coating layer 100 is not particularly limited. Preferably, the thickness of the lubricating coating layer 100 is 20 to 80 μm. If the thickness of the lubricating coating layer 100 is 20 μm or more, the lubricity of the lubricating coating layer 100 is stably increased. On the other hand, if the thickness of the lubricating coating layer 100 is 80 μm or less, the adhesion of the lubricating coating layer 100 is stably increased. Therefore, in this embodiment, the thickness of the lubricating coating layer 100 is preferably 20 to 80 μm.
 本実施形態では、潤滑被膜層100の膜厚は、次の方法で測定する。潤滑被膜層100を形成したピン接触表面400又はボックス接触表面500上に、ウェットゲージを接触させる。ウェットゲージは、厚さに対応する複数の端面を含む。ウェットゲージと潤滑被膜層100とを接触させ、ウェットゲージのいずれの端面に潤滑被膜層100が付着するか確認する。このようにして、潤滑被膜層100の膜厚を求める。測定箇所は、油井用金属管1の管周方向の12箇所(0°、30°、60°、90°、120°、150°、180°、210°、240°、270°、300°、及び、330°の12箇所)である。12箇所の測定結果の算術平均値を、潤滑被膜層100の膜厚とする。 In this embodiment, the thickness of the lubricating coating layer 100 is measured by the following method. A wet gauge is brought into contact with the pin contact surface 400 or the box contact surface 500 on which the lubricating coating layer 100 is formed. The wet gauge includes a number of end faces corresponding to the thickness. The wet gauge is brought into contact with the lubricating coating layer 100, and it is confirmed which end face of the wet gauge the lubricating coating layer 100 is attached to. In this manner, the thickness of the lubricating coating layer 100 is determined. The measurement points are 12 points (12 points at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, and 330°) around the circumference of the metal oil well pipe 1. The arithmetic mean value of the measurement results at the 12 points is regarded as the thickness of the lubricating coating layer 100.
 [潤滑被膜層100の配置]
 本実施形態において潤滑被膜層100は、ピン接触表面400及びボックス接触表面500の少なくとも一方の最上層として形成される。言い換えると、本実施形態において潤滑被膜層100は、ピン接触表面400及びボックス接触表面500の少なくとも一方の最表層として配置される。
[Arrangement of lubricating coating layer 100]
In this embodiment, the lubricating coating layer 100 is formed as the uppermost layer on at least one of the pin contact surface 400 and the box contact surface 500. In other words, in this embodiment, the lubricating coating layer 100 is disposed as the outermost layer on at least one of the pin contact surface 400 and the box contact surface 500.
 また、潤滑被膜層100は、ピン接触表面400及びボックス接触表面500の少なくとも一方の全体の最上層として形成されてもよく、一部にのみの最上層として形成されてもよい。管本体10がピンシール面42、ボックスシール面52、ピンショルダー面43、及び、ボックスショルダー面53を有する場合、シール面42,52及びショルダー面43,53の面圧が、ねじ締め最終段階で特に高まる。したがって、潤滑被膜層100を、シール面42,52及びショルダー面43,53を有する接触表面400,500の少なくとも一方の最上層として部分的に形成される場合、シール面42,52及びショルダー面43,53のうち、少なくとも1か所の最上層として、潤滑被膜層100が形成されてもよい。一方、潤滑被膜層100を接触表面400,500の少なくとも一方の全体の最上層として形成すれば、油井用金属管1の生産効率が高まる。 The lubricating coating layer 100 may be formed as the entire top layer of at least one of the pin contact surface 400 and the box contact surface 500, or may be formed as the top layer only on a part of the surface. When the pipe body 10 has a pin seal surface 42, a box seal surface 52, a pin shoulder surface 43, and a box shoulder surface 53, the surface pressure of the seal surfaces 42, 52 and the shoulder surfaces 43, 53 is particularly high in the final stage of screw tightening. Therefore, when the lubricating coating layer 100 is partially formed as the top layer of at least one of the contact surfaces 400, 500 having the seal surfaces 42, 52 and the shoulder surfaces 43, 53, the lubricating coating layer 100 may be formed as the top layer of at least one of the seal surfaces 42, 52 and the shoulder surfaces 43, 53. On the other hand, if the lubricating coating layer 100 is formed as the entire top layer of at least one of the contact surfaces 400, 500, the production efficiency of the metal pipe for oil wells 1 is improved.
 潤滑被膜層100は、単層でもよく、複層でもよい。複層とは、潤滑被膜層100が接触表面400又は500の最上層として、2層以上積層している状態をいう。具体的に、組成物の塗布と乾燥とを繰り返せば、潤滑被膜層100を2層以上形成できる。 The lubricating coating layer 100 may be a single layer or multiple layers. Multiple layers refers to a state in which the lubricating coating layer 100 is laminated in two or more layers as the uppermost layer of the contact surface 400 or 500. Specifically, by repeatedly applying and drying the composition, two or more lubricating coating layers 100 can be formed.
 [その他の層]
 本実施形態による油井用金属管1は、接触表面400,500の上又は上方に、潤滑被膜層100以外の層を形成されてもよい。その他の層は、たとえば、金属めっき層及び化成処理層である。
[Other layers]
The metal oil well pipe 1 according to this embodiment may have a layer other than the lubricating coating layer 100 formed on or above the contact surfaces 400, 500. The other layer is, for example, a metal plating layer and a chemical conversion layer.
 [金属めっき層110]
 本実施形態による油井用金属管1はさらに、ピン接触表面400及びボックス接触表面500の少なくとも一方と潤滑被膜層100との間に、金属めっき層を備えてもよい。具体的に、図12を参照して、金属めっき層110は、ピン接触表面400の上であって、潤滑被膜層100の下層として形成されていてもよい。同様に、図13を参照して、金属めっき層110は、ボックス接触表面500の上であって、潤滑被膜層100の下層として形成されていてもよい。このように、潤滑被膜層100と金属めっき層110とが両方形成される場合、金属めっき層110は、接触表面400,500の少なくとも一方と、潤滑被膜層100との間に形成される。
[Metal plating layer 110]
The metal oil well pipe 1 according to this embodiment may further include a metal plating layer between the lubricating coating layer 100 and at least one of the pin contact surface 400 and the box contact surface 500. Specifically, with reference to Fig. 12, the metal plating layer 110 may be formed on the pin contact surface 400 as an underlayer of the lubricating coating layer 100. Similarly, with reference to Fig. 13, the metal plating layer 110 may be formed on the box contact surface 500 as an underlayer of the lubricating coating layer 100. In this way, when both the lubricating coating layer 100 and the metal plating layer 110 are formed, the metal plating layer 110 is formed between at least one of the contact surfaces 400, 500 and the lubricating coating layer 100.
 本実施形態において、金属めっき層110の種類は特に限定されない。また、金属めっき層110は、単層めっき層で構成されていてもよく、多層めっき層(2層めっき層や3層めっき層)で構成されていてもよい。金属めっき層110が単層めっき層の場合、金属めっき層110はたとえば、Cu、Sn、又は、Ni金属による単層めっき層、Zn-Ni合金、Cu-Sn合金、又は、Cu-Sn-Zn合金の単層めっき層である。金属めっき層110が多層めっき層の場合、金属めっき層110はたとえば、Cu層とSn層との2層めっき層、Ni層、Cu層及びSn層による3層めっき層、上記単層めっき層を組み合わせた多層めっき層である。 In this embodiment, the type of the metal plating layer 110 is not particularly limited. The metal plating layer 110 may be a single-layer plating layer or a multi-layer plating layer (two-layer plating layer or three-layer plating layer). When the metal plating layer 110 is a single-layer plating layer, the metal plating layer 110 is, for example, a single-layer plating layer of Cu, Sn, or Ni metal, a single-layer plating layer of a Zn-Ni alloy, a Cu-Sn alloy, or a Cu-Sn-Zn alloy. When the metal plating layer 110 is a multi-layer plating layer, the metal plating layer 110 is, for example, a two-layer plating layer of a Cu layer and a Sn layer, a three-layer plating layer of a Ni layer, a Cu layer, and a Sn layer, or a multi-layer plating layer that combines the above single-layer plating layers.
 好ましくは、金属めっき層110の硬度は、マイクロビッカースで200以上である。金属めっき層110の硬度が200以上であれば、油井用金属管1の耐食性がさらに安定して高まる。本実施形態において、金属めっき層110の硬度は、次のとおりに測定する。油井用金属管1の接触表面400,500に形成された金属めっき層110において、任意の領域を5箇所特定する。特定された各領域について、JIS Z2244(2009)に準拠してビッカース硬さ(HV)を測定する。試験条件はたとえば、試験温度を常温(25℃)とし、試験力を2.94N(300gf)とする。得られた値の算術平均値を、金属めっき層110の硬度と定義する。 Preferably, the hardness of the metal plating layer 110 is 200 or more in micro Vickers. If the hardness of the metal plating layer 110 is 200 or more, the corrosion resistance of the metal pipe for oil wells 1 is further stably increased. In this embodiment, the hardness of the metal plating layer 110 is measured as follows. Five arbitrary regions are identified in the metal plating layer 110 formed on the contact surfaces 400, 500 of the metal pipe for oil wells 1. For each identified region, the Vickers hardness (HV) is measured in accordance with JIS Z2244 (2009). The test conditions are, for example, a test temperature of room temperature (25°C) and a test force of 2.94 N (300 gf). The arithmetic mean value of the obtained values is defined as the hardness of the metal plating layer 110.
 本実施形態において、金属めっき層110の厚さは特に限定されない。ただし、金属めっき層110として多層めっき層を形成する場合、最下層のめっき層は、膜厚1μm未満とすることが好ましい。また、金属めっき層110の厚さ(多層めっき層の場合は合計の厚さ)は、5~15μmとすることが好ましい。 In this embodiment, the thickness of the metal plating layer 110 is not particularly limited. However, when forming a multi-layer plating layer as the metal plating layer 110, it is preferable that the bottom plating layer has a film thickness of less than 1 μm. In addition, it is preferable that the thickness of the metal plating layer 110 (total thickness in the case of a multi-layer plating layer) is 5 to 15 μm.
 本実施形態による金属めっき層110の厚さは、次のとおりに測定する。金属めっき層110を形成した接触表面400,500上に、ISO(International Organization for Standardization)21968(2005)に準拠する渦電流位相式の膜厚測定器のプローブを接触させる。プローブの入力側の高周波磁界と、それにより励起された金属めっき層上の渦電流との位相差を測定する。この位相差を金属めっき層110の厚さに変換する。 The thickness of the metal plating layer 110 in this embodiment is measured as follows. A probe of an eddy current phase type film thickness gauge conforming to ISO (International Organization for Standardization) 21968 (2005) is brought into contact with the contact surfaces 400, 500 on which the metal plating layer 110 is formed. The phase difference between the high-frequency magnetic field on the input side of the probe and the eddy currents excited by it on the metal plating layer is measured. This phase difference is converted into the thickness of the metal plating layer 110.
 [化成処理層120]
 本実施形態による油井用金属管1はさらに、ピン接触表面400及びボックス接触表面500の少なくとも一方と潤滑被膜層100との間に配置され、潤滑被膜層100と接触する面を有する化成処理層を備えてもよい。具体的に、図14を参照して、化成処理層120は、ピン接触表面400の上に形成された金属めっき層110の上であって、潤滑被膜層100の下層として形成されていてもよい。また、図示されないが、化成処理層120は、ボックス接触表面500の上に形成された金属めっき層110の上であって、潤滑被膜層100の下層として形成されていてもよい。同様に、図示されないが、化成処理層120は、ピン接触表面400の上であって、潤滑被膜層100の下層として形成されていてもよい。同様に、図示されないが、化成処理層120は、ボックス接触表面500の上であって、潤滑被膜層100の下層として形成されていてもよい。
[Chemical conversion layer 120]
The metal oil well pipe 1 according to this embodiment may further include a chemical conversion layer disposed between at least one of the pin contact surface 400 and the box contact surface 500 and the lubricant coating layer 100, and having a surface in contact with the lubricant coating layer 100. Specifically, with reference to FIG. 14 , the chemical conversion layer 120 may be formed on the metal plating layer 110 formed on the pin contact surface 400, as a lower layer of the lubricant coating layer 100. Although not shown, the chemical conversion layer 120 may be formed on the metal plating layer 110 formed on the box contact surface 500, as a lower layer of the lubricant coating layer 100. Similarly, although not shown, the chemical conversion layer 120 may be formed on the pin contact surface 400, as a lower layer of the lubricant coating layer 100. Similarly, although not shown, the chemical conversion layer 120 may be formed on the box contact surface 500, as a lower layer of the lubricant coating layer 100.
 本実施形態において、化成処理層120の種類は特に限定されない。化成処理層120はたとえば、リン酸塩化成処理層であってもよく、シュウ酸塩化成処理層であってもよく、ホウ酸塩化成処理層であってもよく、クロメート化成処理層であってもよく、ジルコニウム化成処理層であってもよい。ここで、化成処理層120は多孔質である。そのため、化成処理層120の上に潤滑被膜層100が形成されれば、いわゆるアンカー効果により、潤滑被膜層100の密着性がさらに高まる。また、本実施形態において、化成処理層120の厚さは特に限定されない。本実施形態による化成処理層120の好ましい厚さは5~40μmである。 In this embodiment, the type of the chemical conversion layer 120 is not particularly limited. The chemical conversion layer 120 may be, for example, a phosphate chemical conversion layer, an oxalate chemical conversion layer, a borate chemical conversion layer, a chromate chemical conversion layer, or a zirconium chemical conversion layer. Here, the chemical conversion layer 120 is porous. Therefore, if the lubricating coating layer 100 is formed on the chemical conversion layer 120, the adhesion of the lubricating coating layer 100 is further increased due to the so-called anchor effect. Furthermore, in this embodiment, the thickness of the chemical conversion layer 120 is not particularly limited. The preferred thickness of the chemical conversion layer 120 in this embodiment is 5 to 40 μm.
 [ブラスト処理されている表面、又は、酸洗されている表面]
 本実施形態による油井用金属管1は、接触表面400,500が、ブラスト処理されている又は酸洗されていてもよい。つまり、油井用金属管1は、潤滑被膜層100が最上層として形成される面が、ブラスト処理又は酸洗された面であってもよい。すなわち、油井用金属管1の管本体10のうち、接触表面400,500がブラスト処理又は酸洗処理され、その上に潤滑被膜層100が形成されてもよい。また、油井用金属管1が金属めっき層110を備える場合、油井用金属管1は、接触表面400,500がブラスト処理又は酸洗処理され、その上に金属めっき層110を備え、当該金属めっき層110の上又は上方に潤滑被膜層100を備えてもよい。また、油井用金属管1が金属めっき層110を備える場合さらに、油井用金属管1は、ブラスト処理又は酸洗された金属めっき層110を備え、その上に潤滑被膜層100を備えてもよい。
[Surface that has been blasted or pickled]
In the metal pipe for oil well use 1 according to the present embodiment, the contact surfaces 400, 500 may be blasted or pickled. That is, the surface of the metal pipe for oil well use 1 on which the lubricating coating layer 100 is formed as the uppermost layer may be a surface that has been blasted or pickled. That is, the contact surfaces 400, 500 of the pipe body 10 of the metal pipe for oil well use 1 may be blasted or pickled, and the lubricating coating layer 100 may be formed thereon. In addition, when the metal pipe for oil well use 1 has a metal plating layer 110, the metal pipe for oil well use 1 may have a contact surface 400, 500 that has been blasted or pickled, and the metal plating layer 110 thereon, and the lubricating coating layer 100 may be provided on or above the metal plating layer 110. In addition, when the metal pipe for oil well use 1 has a metal plating layer 110, the metal pipe for oil well use 1 may further have a metal plating layer 110 that has been blasted or pickled, and the lubricating coating layer 100 thereon.
 ブラスト処理されている表面、又は、酸洗されている表面は、表面粗さが高まる。具体的に、潤滑被膜層100が接触する表面の好ましい表面粗さは、算術平均粗さRaが1~8μm(基準長さ2.5mm)である。潤滑被膜層100と接触する表面の算術平均粗さRaが1μm以上であれば、潤滑被膜層100の密着性がさらに高まる。潤滑被膜層100と接触する表面の算術平均粗さRaが8μm以下であれば、潤滑被膜層100が剥離しにくくなる。 Surfaces that have been blasted or pickled have increased surface roughness. Specifically, the preferred surface roughness of the surface that comes into contact with the lubricating coating layer 100 is an arithmetic mean roughness Ra of 1 to 8 μm (reference length 2.5 mm). If the arithmetic mean roughness Ra of the surface that comes into contact with the lubricating coating layer 100 is 1 μm or more, the adhesion of the lubricating coating layer 100 is further increased. If the arithmetic mean roughness Ra of the surface that comes into contact with the lubricating coating layer 100 is 8 μm or less, the lubricating coating layer 100 is less likely to peel off.
 本実施形態において、算術平均粗さRaは、JIS B0601(2013)に基づいて、測定される。たとえば、エスアイアイ・ナノテクノロジー社製 走査型プローブ顕微鏡 SPI3800Nを用いて測定することができる。測定条件はたとえば、取得データ数の単位としてサンプルの2μm×2μmの領域で、取得データ数1024×1024である。基準長さは2.5mmとする。算術平均粗さRaが大きいほど、潤滑被膜層100との接触面積が高まる。このため、アンカー効果により潤滑被膜層100との密着性が高まる。潤滑被膜層100の密着性が高まれば、油井用金属管1の耐焼付き性がさらに高まる。 In this embodiment, the arithmetic mean roughness Ra is measured based on JIS B0601 (2013). For example, it can be measured using a scanning probe microscope SPI3800N manufactured by SII Nanotechnology. The measurement conditions are, for example, a 2 μm×2 μm area of the sample as a unit of the number of acquired data, and 1024×1024 acquired data. The reference length is 2.5 mm. The larger the arithmetic mean roughness Ra, the larger the contact area with the lubricating coating layer 100. Therefore, the anchor effect increases the adhesion with the lubricating coating layer 100. If the adhesion of the lubricating coating layer 100 is increased, the seizure resistance of the metal pipe for oil wells 1 will be further improved.
 [製造方法]
 以下、本実施形態による油井用金属管1の製造方法を説明する。
[Production method]
Hereinafter, a method for producing the metal oil well pipe 1 according to the present embodiment will be described.
 本実施形態による油井用金属管1の製造方法は、準備工程と、潤滑被膜層形成工程とを備える。 The manufacturing method for the oil well metal pipe 1 according to this embodiment includes a preparation process and a lubricating coating layer formation process.
 [準備工程]
 準備工程では、雄ねじ部41を含むピン接触表面400を含むピン40と、雌ねじ部51を含むボックス接触表面500を含むボックス50とを含む管本体10を備える油井用金属管1を準備する。上述のとおり、本実施形態による油井用金属管1は、周知の構成を有する。すなわち準備工程では、周知の構成を有する油井用金属管1を準備すればよい。
[Preparation process]
In the preparation step, a metal pipe for oil well use 1 is prepared, which includes a pipe body 10 including a pin 40 including a pin contact surface 400 including a male thread portion 41, and a box 50 including a box contact surface 500 including a female thread portion 51. As described above, the metal pipe for oil well use 1 according to the present embodiment has a well-known configuration. That is, in the preparation step, it is sufficient to prepare a metal pipe for oil well use 1 having a well-known configuration.
 [潤滑被膜層形成工程]
 潤滑被膜層形成工程では、まず、上述の成分を含有する組成物を準備する。潤滑被膜層100を形成するための組成物は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩を含有する。当該組成物を、溶剤添加及び/又は加熱により液状化し、ピン接触表面400及びボックス接触表面500の少なくとも一方の上又は上方に塗布する。必要に応じて、塗布された組成物を乾燥して、潤滑被膜層100を形成する。
[Lubricating film layer formation process]
In the lubricating coating layer formation process, first, a composition containing the above-mentioned components is prepared. The composition for forming the lubricating coating layer 100 contains ZrO2 , metal soap, wax, and basic aromatic organic solvent. The composition is liquefied by adding a solvent and/or by heating, and is applied onto or above at least one of the pin contact surface 400 and the box contact surface 500. If necessary, the applied composition is The composition is dried to form the lubricant coating layer 100.
 具体的に、まず、上述の成分を含有する組成物を準備する。無溶剤型の組成物はたとえば、上述の組成物の構成成分の混合物を加熱して溶融状態として混練することにより製造できる。全ての成分を粉末状として混合した粉末混合物を組成物としてもよい。溶剤型の組成物はたとえば、揮発性有機溶剤中に、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩とを溶解又は分散させて混合することにより製造できる。 Specifically, first, a composition containing the above-mentioned components is prepared. For example, a solventless composition can be produced by heating a mixture of the components of the above-mentioned composition and kneading them in a molten state. A powder mixture in which all components are mixed in powder form may be used as the composition. For example, a solvent-based composition can be produced by dissolving or dispersing ZrO2 , a metal soap, a wax, and a basic aromatic organic acid metal salt in a volatile organic solvent and mixing them.
 準備された組成物を、接触表面400,500の少なくともいずれか一方の上又は上方に塗布する。具体的に、無溶剤型の組成物の場合、ホットメルト法を用いて組成物を塗布できる。ホットメルト法では、組成物を加熱して溶融させ、低粘度の流動状態にする。さらに、流動状態の組成物を、温度保持機能を有するスプレーガンから噴霧する。この場合、組成物は、適当な撹拌装置を備えたタンク内で加熱して溶融され、コンプレッサにより計量ポンプを経てスプレーガンの噴霧ヘッド(所定温度に保持)に供給されて、噴霧される。加熱温度はたとえば、90~130℃である。タンク内と噴霧ヘッドの保持温度は組成物中の融点に応じて調整される。塗布方法は、スプレー塗布に替えて、刷毛塗り及び浸漬等でもよい。組成物の加熱温度は、組成物の融点より10~50℃高い温度とすることが好ましい。組成物を塗布する際、組成物が塗布される表面(接触表面400,500、金属めっき層110の表面、又は、化成処理層120の表面)は、基剤の融点より高い温度に加熱しておくことが好ましい。 The prepared composition is applied on or above at least one of the contact surfaces 400, 500. Specifically, in the case of a solvent-free composition, the composition can be applied using a hot melt method. In the hot melt method, the composition is heated and melted to a low-viscosity fluid state. The fluidized composition is then sprayed from a spray gun having a temperature maintenance function. In this case, the composition is heated and melted in a tank equipped with an appropriate stirring device, and is supplied to the spray head of the spray gun (maintained at a predetermined temperature) via a metering pump by a compressor, and sprayed. The heating temperature is, for example, 90 to 130°C. The holding temperature in the tank and the spray head is adjusted according to the melting point of the composition. The application method may be brush coating, immersion, etc. instead of spray coating. The heating temperature of the composition is preferably 10 to 50°C higher than the melting point of the composition. When applying the composition, it is preferable to heat the surface to which the composition is to be applied (the contact surface 400, 500, the surface of the metal plating layer 110, or the surface of the chemical conversion layer 120) to a temperature higher than the melting point of the base.
 溶剤型の組成物の場合、溶剤を添加して溶液状態となった組成物を、スプレー塗布等で接触表面400,500の少なくとも一方の上又は上方に塗布する。この場合、組成物を常温及び常圧の環境下でスプレー塗布できるよう、組成物の粘度を調整する。 In the case of a solvent-based composition, the composition is made into a solution state by adding a solvent, and is applied by spray application or the like to at least one of the contact surfaces 400, 500. In this case, the viscosity of the composition is adjusted so that the composition can be spray applied under an environment of normal temperature and pressure.
 無溶剤型の組成物の場合、ピン接触表面400及びボックス接触表面500の少なくとも一方に塗布された組成物を冷却することにより、溶融状態の組成物が乾燥して潤滑被膜層100が形成される。組成物の冷却は、周知の方法で実施できる。冷却方法はたとえば、大気中での放冷及び空冷である。溶剤型の組成物の場合、接触表面400,500の上又は上方に塗布された組成物を乾燥させて、潤滑被膜層100が形成される。組成物の乾燥は、周知の方法で実施できる。乾燥方法はたとえば、自然乾燥、低温送風乾燥及び真空乾燥である。 In the case of a solvent-free composition, the composition applied to at least one of the pin contact surface 400 and the box contact surface 500 is cooled, whereby the molten composition dries to form the lubricating coating layer 100. The composition can be cooled by a known method. For example, cooling is allowed to stand in the air and air cooling. In the case of a solvent-based composition, the composition applied to or above the contact surfaces 400, 500 is dried to form the lubricating coating layer 100. The composition can be dried by a known method. For example, drying is allowed to stand in the air, air drying at low temperature, and vacuum drying.
 なお、上述の冷却は、窒素ガス及び炭酸ガス冷却システム等の急速冷却によって実施してもよい。急速冷却を実施する場合、接触表面の反対面から、間接的に冷却する。具体的に、ピン接触表面400の最上層として潤滑被膜層100を形成する場合、管本体10の内面側から冷却する。同様に、ボックス接触表面500の最上層として潤滑被膜層100を形成する場合、管本体10の外面側から間接的に冷却する。 The above-mentioned cooling may be performed by rapid cooling using a nitrogen gas and carbon dioxide gas cooling system, etc. When rapid cooling is performed, cooling is performed indirectly from the opposite side of the contact surface. Specifically, when forming the lubricating coating layer 100 as the top layer of the pin contact surface 400, cooling is performed from the inner surface side of the pipe body 10. Similarly, when forming the lubricating coating layer 100 as the top layer of the box contact surface 500, cooling is performed indirectly from the outer surface side of the pipe body 10.
 なお、潤滑被膜層100は、単層であってもよく、複層であってもよい。複層とは、潤滑被膜層100が接触表面400,500の側から、管本体10の径方向に、2層以上積層している状態を意味する。組成物の塗布と乾燥とを繰り返すことで、潤滑被膜層100を2層以上形成できる。潤滑被膜層100は、接触表面400,500の少なくとも一方の上に直接形成してもよく、後述する下地処理をした後に形成してもよい。 The lubricating coating layer 100 may be a single layer or multiple layers. Multiple layers means that the lubricating coating layer 100 is laminated in two or more layers in the radial direction of the pipe body 10 from the contact surfaces 400, 500 side. By repeating the application and drying of the composition, two or more lubricating coating layers 100 can be formed. The lubricating coating layer 100 may be formed directly on at least one of the contact surfaces 400, 500, or may be formed after carrying out the base treatment described below.
 以上の工程により、本実施形態による油井用金属管1が製造される。 The above steps produce the metal oil well pipe 1 according to this embodiment.
 [その他の工程]
 本実施形態による油井用金属管1の製造方法はさらに、その他の工程を備えてもよい。その他の工程はたとえば、金属めっき工程、化成処理工程、ブラスト処理工程、及び、酸洗処理工程である。以下、各工程について説明する。
[Other steps]
The method for producing the metal oil well pipe 1 according to the present embodiment may further include other steps. The other steps are, for example, a metal plating step, a chemical conversion treatment step, a blasting treatment step, and a pickling treatment step. Each step will be described below.
 [金属めっき工程]
 本実施形態による油井用金属管1の製造方法はさらに、潤滑被膜層100形成工程の前に、金属めっき工程を備えてもよい。金属めっき層110はたとえば、電気めっき処理、又は、衝撃めっき処理により形成できる。
[Metal plating process]
The method for manufacturing the metal oil well pipe 1 according to this embodiment may further include a metal plating step prior to the step of forming the lubricating coating layer 100. The metal plating layer 110 can be formed by, for example, electroplating or impact plating.
 [電気めっき処理]
 本実施形態において、電気めっき処理は、電気めっきにより、金属めっき層110を形成する処理である。上述のとおり、金属めっき層110はたとえば、Cu、Sn、又は、Ni金属による単層めっき層、Zn-Ni合金、Cu-Sn合金、又は、Cu-Sn-Zn合金の単層めっき層、Cu層とSn層との2層めっき層、Ni層、Cu層及びSn層による3層めっき層、及び、上記単層めっき層を組み合わせた多層めっき層である。
[Electroplating process]
In this embodiment, the electroplating process is a process for forming the metal plating layer 110 by electroplating. As described above, the metal plating layer 110 is, for example, a single-layer plating layer of Cu, Sn, or Ni metal, a single-layer plating layer of a Zn-Ni alloy, a Cu-Sn alloy, or a Cu-Sn-Zn alloy, a two-layer plating layer of a Cu layer and a Sn layer, a three-layer plating layer of a Ni layer, a Cu layer, and a Sn layer, or a multi-layer plating layer combining the above single-layer plating layers.
 電気めっき処理は、周知の方法で実施することができる。たとえば、合金めっきに含まれる金属元素のイオンを含むめっき浴を準備する。次に、接触表面400,500の少なくとも一方をめっき浴に浸漬する。さらに、接触表面400,500の少なくとも一方に通電して、接触表面400,500の少なくとも一方の上に金属めっき層110が形成される。めっき浴の温度及びめっき時間等の条件は、適宜設定できる。 The electroplating process can be carried out by a known method. For example, a plating bath containing ions of the metal elements contained in the alloy plating is prepared. Next, at least one of the contact surfaces 400, 500 is immersed in the plating bath. Furthermore, electricity is passed through at least one of the contact surfaces 400, 500 to form a metal plating layer 110 on at least one of the contact surfaces 400, 500. The conditions of the plating bath, such as the temperature and plating time, can be set as appropriate.
 より具体的に、たとえば、Cu-Sn-Zn合金めっき層を形成する場合、めっき浴は銅イオン、スズイオン及び亜鉛イオンを含有する。この場合、めっき浴の組成は好ましくは、Cu:1~50g/L、Sn:1~50g/L及びZn:1~50g/Lである。電気めっきの条件はたとえば、めっき浴pH:1~10、めっき浴温度:60℃、電流密度:1~100A/dm及び、処理時間:0.1~30分である。 More specifically, for example, when a Cu-Sn-Zn alloy plating layer is formed, the plating bath contains copper ions, tin ions, and zinc ions. In this case, the plating bath preferably has a composition of Cu: 1-50 g/L, Sn: 1-50 g/L, and Zn: 1-50 g/L. The electroplating conditions are, for example, plating bath pH: 1-10, plating bath temperature: 60°C, current density: 1-100 A/ dm2 , and treatment time: 0.1-30 minutes.
 同様に、たとえば、Zn-Ni合金めっき層を形成する場合、めっき浴は亜鉛イオン及びニッケルイオンを含有する。この場合、めっき浴の組成は好ましくは、Zn:1~100g/L及びNi:1~50g/Lである。電気めっきの条件はたとえば、めっき浴pH:1~10、めっき浴温度:60℃、電流密度:1~100A/dm及び、処理時間:0.1~30分である。 Similarly, for example, when a Zn-Ni alloy plating layer is formed, the plating bath contains zinc ions and nickel ions. In this case, the plating bath preferably has a composition of Zn: 1 to 100 g/L and Ni: 1 to 50 g/L. The electroplating conditions are, for example, plating bath pH: 1 to 10, plating bath temperature: 60°C, current density: 1 to 100 A/ dm2 , and treatment time: 0.1 to 30 minutes.
 [衝撃めっき処理]
 衝撃めっき処理は、粒子と被めっき物を回転バレル内で衝突させるメカニカルプレーティングや、ブラスト装置を用いて粒子を被めっき物に衝突させる投射めっきにより実施することができる処理である。
[Impact plating process]
Impact plating is a process that can be carried out by mechanical plating, in which particles and the object to be plated are collided in a rotating barrel, or projection plating, in which particles are collided with the object to be plated using a blasting device.
 [化成処理工程]
 本実施形態による油井用金属管1の製造方法は、潤滑被膜層形成工程の前に、化成処理工程を備えてもよい。化成処理工程では、化成処理を実施して、潤滑被膜層100の下層として、潤滑被膜層100と接触する表面を有する化成処理層120を形成する。
[Chemical conversion treatment process]
The method for producing a metal oil well pipe 1 according to this embodiment may include a chemical conversion treatment step prior to the lubricant coating layer-forming step. In the chemical conversion treatment step, a chemical conversion treatment is carried out to form a chemical conversion layer 120 as an underlayer of the lubricant coating layer 100, the chemical conversion layer 120 having a surface in contact with the lubricant coating layer 100.
 本実施形態において、化成処理は周知の方法で実施できる。処理液は、一般的な化成処理液が使用できる。たとえば、リン酸イオン1~150g/L、亜鉛イオン3~70g/L、硝酸イオン1~100g/L、ニッケルイオン0~30g/Lを含有するリン酸亜鉛系化成処理液を用いることができる。又は、リン酸マンガン系化成処理液を用いることもできる。その他、形成したい化成処理層120に応じて、化成処理液を用いることができる。処理液の液温はたとえば、常温から100℃である。化成処理の処理時間は、所望の膜厚に応じて適宜設定でき、たとえば15分である。リン酸塩化成処理層を形成する場合、化成処理層の形成を促すため、リン酸塩化成処理前に、表面調整を行ってもよい。表面調整とは、コロイドチタンを含有する表面調整用水溶液に浸漬する処理を意味する。リン酸塩化成処理後、水洗又は湯洗してから、乾燥することが好ましい。 In this embodiment, the chemical conversion treatment can be performed by a known method. A general chemical conversion treatment liquid can be used as the treatment liquid. For example, a zinc phosphate-based chemical conversion treatment liquid containing 1 to 150 g/L of phosphate ions, 3 to 70 g/L of zinc ions, 1 to 100 g/L of nitrate ions, and 0 to 30 g/L of nickel ions can be used. Alternatively, a manganese phosphate-based chemical conversion treatment liquid can be used. In addition, a chemical conversion treatment liquid can be used depending on the chemical conversion treatment layer 120 to be formed. The liquid temperature of the treatment liquid is, for example, room temperature to 100°C. The treatment time of the chemical conversion treatment can be appropriately set depending on the desired film thickness, for example, 15 minutes. When forming a phosphate conversion treatment layer, surface conditioning may be performed before the phosphate conversion treatment in order to promote the formation of the chemical conversion treatment layer. Surface conditioning refers to a treatment of immersing in a surface conditioning aqueous solution containing colloidal titanium. After the phosphate conversion treatment, it is preferable to wash with water or hot water and then dry.
 [ブラスト処理工程]
 本実施形態において、ブラスト処理はたとえば、ブラスト装置を用いて粒子を衝突させる処理である。ブラスト処理はたとえば、サンドブラスト処理である。サンドブラスト処理は、ブラスト材(研磨剤)と圧縮空気とを混合して、投射する処理である。ブラスト材はたとえば、球状のショット材及び角状のグリッド材である。サンドブラスト処理により、接触表面400,500や、金属めっき層110の表面の表面粗さを大きくできる。
[Blast treatment process]
In this embodiment, the blasting process is, for example, a process of colliding particles using a blasting device. The blasting process is, for example, a sandblasting process. The sandblasting process is a process of mixing a blasting material (abrasive) and compressed air and projecting the mixture. The blasting material is, for example, a spherical shot material and an angular grid material. The sandblasting process can increase the surface roughness of the contact surfaces 400, 500 and the surface of the metal plating layer 110.
 本実施形態において、サンドブラスト処理は、周知の方法により実施できる。サンドブラスト処理ではたとえば、コンプレッサで空気を圧縮し、圧縮空気とブラスト材を混合する。ブラスト材の材質はたとえば、ステンレス鋼、アルミ、セラミック及びアルミナ等である。また、サンドブラスト処理の投射速度等の条件は、適宜設定できる。 In this embodiment, the sandblasting process can be performed by a known method. In the sandblasting process, for example, air is compressed with a compressor and the compressed air is mixed with a blasting material. The blasting material can be made of, for example, stainless steel, aluminum, ceramic, alumina, etc. In addition, the conditions of the sandblasting process, such as the projection speed, can be set appropriately.
 [酸洗処理工程]
 本実施形態において、酸洗処理工程は、硫酸、塩酸、硝酸又はフッ酸等の強酸液に浸漬して、表面を荒らす処理を意味する。すなわち、接触表面400,500や金属めっき層110の表面を強酸液に浸漬することで、これらの表面の表面粗さを大きくできる。
[Pickling treatment process]
In this embodiment, the pickling process refers to a process of roughening the surface by immersing in a strong acid solution such as sulfuric acid, hydrochloric acid, nitric acid, or hydrofluoric acid. That is, by immersing the contact surfaces 400, 500 and the surface of the metal plating layer 110 in a strong acid solution, the surface roughness of these surfaces can be increased.
 以下、実施例を用いて、本実施形態による油井用金属管及び組成物を、より具体的に説明する。ただし、本実施形態による油井用金属管及び組成物は、以下に説明する実施例によって制限されない。以下、実施例では、ピン接触表面をピン表面、ボックス接触表面をボックス表面という。また、実施例中の%は、特に指定しない限り、質量%を意味する。 The metal pipe for oil wells and the composition according to this embodiment will be explained in more detail below using examples. However, the metal pipe for oil wells and the composition according to this embodiment are not limited to the examples explained below. In the examples below, the pin contact surface is referred to as the pin surface, and the box contact surface is referred to as the box surface. In addition, % in the examples means mass % unless otherwise specified.
 本実施例において、日本製鉄株式会社製のVAM(登録商標)21HTを用いた。VAM(登録商標)21HTは外径:177.80mm(7インチ)、肉厚11.506mm(0.453インチ)の油井用金属管である。鋼種は、13Crステンレス鋼であった。13Cr鋼の組成は、C:0.19%、Si:0.25%、Mn:0.80%、P:0.02%、S:0.01%、Cu:0.04%、Ni:0.10%、Cr:13.0%、Mo:0.04%、残部:Fe及び不純物であった。 In this example, VAM (registered trademark) 21HT manufactured by Nippon Steel Corporation was used. VAM (registered trademark) 21HT is a metal pipe for oil wells with an outer diameter of 177.80 mm (7 inches) and a wall thickness of 11.506 mm (0.453 inches). The steel type was 13Cr stainless steel. The composition of the 13Cr steel was C: 0.19%, Si: 0.25%, Mn: 0.80%, P: 0.02%, S: 0.01%, Cu: 0.04%, Ni: 0.10%, Cr: 13.0%, Mo: 0.04%, and the remainder was Fe and impurities.
 各試験番号のピン表面及びボックス表面に対し、まず、研削仕上げを実施した。研削仕上げがされた各試験番号のピン表面のうち、試験番号8及び9についてはさらに、サンドブラスト処理を実施した。サンドブラスト処理は、砥粒Mesh100を用いて、表面粗さを形成した。研削仕上げがされた試験番号11以外の各試験番号のボックス表面に対して、表1に示すとおり、金属めっき層を形成した。表1のボックス表面の「下地処理」欄には、形成した金属めっき層の種類と、その膜厚とを記載した。ボックス表面の「下地処理」欄の「-」は、金属めっき層を形成しなかったことを意味する。なお、金属めっき層の膜厚は、上述の方法で測定した。 First, the pin surface and box surface of each test number were ground to finish. Of the pin surfaces of each test number that had been ground to finish, test numbers 8 and 9 were further sandblasted. For the sandblasting, Mesh 100 abrasive was used to create a surface roughness. As shown in Table 1, a metal plating layer was formed on the box surface of each test number other than test number 11, which had been ground to finish, as shown in Table 1. The type of metal plating layer formed and its film thickness are listed in the "Preparation" column for the box surface in Table 1. A "-" in the "Preparation" column for the box surface means that no metal plating layer was formed. The film thickness of the metal plating layer was measured using the method described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、金属めっき層としてZn-Ni合金めっき層を形成した試験番号は、電気めっきによりZn-Ni合金めっきを実施して、Zn-Ni合金めっき層を形成した。Zn-Ni合金めっき浴は、大和化成株式会社製の商品名ダインジンアロイN-PLを使用した。電気めっきの条件は、めっき浴pH:6.5、めっき浴温度:25℃、電流密度:2A/dm、及び、処理時間:18分であった。Zn-Ni合金めっき層の組成は、Zn:85%及びNi:15%であった。 For the test numbers in which a Zn-Ni alloy plating layer was formed as the metal plating layer, Zn-Ni alloy plating was performed by electroplating to form the Zn-Ni alloy plating layer. The Zn-Ni alloy plating bath used was Dainjin Alloy N-PL, a product name of Daiwa Kasei Co., Ltd. The electroplating conditions were plating bath pH: 6.5, plating bath temperature: 25°C, current density: 2 A/dm 2 , and treatment time: 18 minutes. The composition of the Zn-Ni alloy plating layer was Zn: 85% and Ni: 15%.
 金属めっき層としてCu-Sn-Zn合金めっき層を形成した試験番号7は、まず、電気めっきによりNiストライクめっきを形成した。その後、Cu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき浴は、日本化学産業株式会社製のめっき浴を使用した。 In test number 7, in which a Cu-Sn-Zn alloy plating layer was formed as the metal plating layer, Ni strike plating was first formed by electroplating. Then, the Cu-Sn-Zn alloy plating layer was formed. The Cu-Sn-Zn alloy plating bath used was a plating bath manufactured by Nippon Kagaku Sangyo Co., Ltd.
 各試験番号の下地処理後のピン表面及びボックス表面の算術平均粗さRaは、表1に示すとおりであった。算術平均粗さRaは、JIS B 0601(2013)に基づいて測定した。算術平均粗さRaの測定には、エスアイアイ・ナノテクノロジー社製 走査型プローブ顕微鏡 SPI3800Nを用いた。測定条件は、取得データ数の単位としてサンプルの2μm×2μmの領域で、取得データ数1024×1024とした。 The arithmetic mean roughness Ra of the pin surface and box surface after the base treatment for each test number is as shown in Table 1. The arithmetic mean roughness Ra was measured based on JIS B 0601 (2013). The arithmetic mean roughness Ra was measured using a scanning probe microscope SPI3800N manufactured by SII Nanotechnology. The measurement conditions were as follows: the unit of data acquisition was a 2 μm x 2 μm area of the sample, and the number of data acquisitions was 1024 x 1024.
 以上のとおりに準備された各試験番号のピン表面及びボックス表面について、表2に記載の組成の潤滑被膜層を形成した。なお、表2中「潤滑被膜層の組成」欄のカッコ内には、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量の合計を100質量%とした場合における、各組成の含有量を質量%で示す。なお、試験番号7と11とを除く各試験番号の潤滑被膜層を形成するための組成物は、表2に記載の潤滑被膜層の組成に加えて、揮発性有機溶剤を含有した。このとき、揮発性有機溶剤の含有量は、ZrOと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量の合計を100質量%として、30%であった。また、試験番号7と11との潤滑被膜層を形成するための組成物は、表2に記載の潤滑被膜層の組成と同じであった。 A lubricating coating layer having the composition shown in Table 2 was formed on the pin and box surfaces of each test number prepared as described above. In Table 2, the parentheses in the "Lubricating Coating Layer Composition" column indicate the content of each component in mass % when the total content of ZrO2 , metal soap, wax, basic aromatic organic acid metal salt, and lubricating powder is taken as 100 mass %. The composition for forming the lubricating coating layer of each test number except for test numbers 7 and 11 contained a volatile organic solvent in addition to the lubricating coating layer composition shown in Table 2. The content of the volatile organic solvent was 30% when the total content of ZrO2 , metal soap, wax, basic aromatic organic acid metal salt, and lubricating powder is taken as 100 mass %. The composition for forming the lubricating coating layer of test numbers 7 and 11 was the same as the lubricating coating layer composition shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施例において、用いたZrOの粒子径は、いずれも1000nmであった。また、各試験番号で用いたZrOのモース硬度を、表2に示す。また、試験番号10には、ZrOに代えて、Crを含有した。Crの含有量は10.0質量%であった。ここで、Crの含有量とは、Crと、金属石鹸と、ワックスと、塩基性芳香族有機酸金属塩との含有量の合計を100質量%とした場合における、Crの含有量を意味する。 In this embodiment, the particle diameter of ZrO2 used was 1000 nm. The Mohs hardness of ZrO2 used in each test number is shown in Table 2. Test number 10 contained Cr2O3 instead of ZrO2 . The content of Cr2O3 was 10.0 mass%. Here, the content of Cr2O3 means the content of Cr2O3 when the total content of Cr2O3 , metal soap , wax, and basic aromatic organic acid metal salt is 100 mass%.
 なお、本実施例において、ZrOは、第一稀元素化学工業株式会社製の製品名MIZ酸化ジルコニウムを用いた。Crは、日本化学工業株式会社製の製品名グリーンF3を用いた。このCrの粒子径は、1500nmであった。本実施例において、ステアリン酸Caは、DIC株式会社製Ca-STEARATEを用いた。ステアリン酸Znは、DIC株式会社製Zn-STEARATEを用いた。ステアリン酸Naは、DIC株式会社製Na-STEARATEを用いた。 In this example, ZrO2 was Zirconium Oxide (product name: MIZ ) manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cr2O3 was Green F3 manufactured by Nippon Kagaku Kogyo Co., Ltd. The particle size of this Cr2O3 was 1500 nm. In this example, Ca- STEARATE manufactured by DIC Corporation was used as Ca stearate. Zn-STEARATE manufactured by DIC Corporation was used as Zn stearate. Na-STEARATE manufactured by DIC Corporation was used as Na stearate.
 本実施例ではさらに、カルナウバワックスは、日本精蝋株式会社製の製品名XAQUASOROUT-0013を用いた。パラフィンワックスは、日本精蝋株式会社製のパラフィンワックスを用いた。マイクロクリスタリンワックスは、日本精蝋株式会社製の製品名Hi-Mic-1080を用いた。塩基性Caスルホネートは、LANXESS社製の製品名Calcinate(登録商標) C400CLR(塩基価400mgKOH/g)を用いた。塩基性Caフェネートは、塩基価100mgKOH/g、石鹸濃度40%、金属比10のものを用いた。塩基性Caサリシレートは、日本ルーブリゾール製の製品名MD9A01を用いた。黒鉛は、日本黒鉛工業株式会社製の黒鉛粉末、製品名青P(灰分3.79%、結晶度96.9%、平均粒径7μm)を用いた。PTFEは、ダイキン工業株式会社製の製品名ルブロン(登録商標)L-5Fを用いた。揮発性有機溶剤は、Exxon社製の製品名Exxsol(登録商標)D40を用いた。 Furthermore, in this embodiment, the carnauba wax used was XAQUASOROUT-0013, a product of Nippon Seiro Co., Ltd. The paraffin wax used was paraffin wax manufactured by Nippon Seiro Co., Ltd. The microcrystalline wax used was Hi-Mic-1080, a product of Nippon Seiro Co., Ltd. The basic Ca sulfonate used was Calcinate (registered trademark) C400CLR (base number 400 mg KOH/g), a product of LANXESS Corporation. The basic Ca phenate used had a base number of 100 mg KOH/g, a soap concentration of 40%, and a metal ratio of 10. The basic Ca salicylate used was MD9A01, a product of Nippon Lubrizol Co., Ltd. The graphite used was graphite powder manufactured by Nippon Graphite Industries Co., Ltd., product name Blue P (ash content 3.79%, crystallinity 96.9%, average particle size 7 μm). The PTFE used was Lubron (registered trademark) L-5F, a product of Daikin Industries, Ltd. The volatile organic solvent used was Exxsol (registered trademark) D40, a product of Exxon.
 なお、試験番号11では、潤滑被膜層を形成せずに、BESTОLIFE製API Modified304-ST(以下、APIドープと称する)を刷毛で塗布した。APIドープは、質量%で、鉛:15~40%、亜鉛:7~13%、銅:3~7%を含有する。なお、このAPIドープは、鉛などの重金属を含有し、人体や環境に悪影響を与える懸念があるが、潤滑性は良好であるため、これを後述のハイトルク性能評価の基準とした。 In test number 11, a lubricating coating layer was not formed, and BESTOLIFE API Modified 304-ST (hereafter referred to as API dope) was applied with a brush. API dope contains, by mass, 15-40% lead, 7-13% zinc, and 3-7% copper. This API dope contains heavy metals such as lead, which may have adverse effects on the human body and the environment, but it has good lubricity, so it was used as the standard for the high torque performance evaluation described below.
 以上の方法で、各試験番号のピン表面及びボックス表面を準備した。得られたピン表面及びボックス表面を用いて、以下に説明する耐焼付き性評価試験、及び、ハイトルク性能評価試験を実施した。  The pin surfaces and box surfaces for each test number were prepared using the above method. The resulting pin surfaces and box surfaces were used to carry out the seizure resistance evaluation test and high torque performance evaluation test described below.
 [耐焼付き性評価試験]
 耐焼付き性評価は、繰返し締結試験により行った。具体的に、各試験番号のピン表面及びボックス表面を用いて、室温(20℃)でねじ締め及びねじ戻しを繰り返し、耐焼付き性を評価した。ねじ締めでの締結トルクは、24350N・mとした。ねじ締め及びねじ戻しを1回行うごとに、ピン表面及びボックス表面を目視により観察した。目視観察により、ねじ部及びシール面における焼付きの発生状況を確認した。シール面に焼付きが発生した時点で試験終了とした。ねじ部は焼付きが軽微であり、ヤスリなどの手入れにより回復可能な場合には、焼付き疵を補修して試験を続行した。ねじ部で回復不可能な焼付きが発生した場合も、その時点で試験終了とした。
[Seizure resistance evaluation test]
The seizure resistance evaluation was performed by a repeated fastening test. Specifically, the pin surface and the box surface of each test number were used to repeatedly tighten and unscrew the screws at room temperature (20°C) to evaluate the seizure resistance. The fastening torque in the screw tightening was 24,350 N·m. After each tightening and unscrewing, the pin surface and the box surface were visually observed. The occurrence of seizure on the threaded portion and the seal surface was confirmed by visual observation. The test was terminated when seizure occurred on the seal surface. In cases where the seizure on the threaded portion was minor and could be restored by care such as filing, the seizure defects were repaired and the test was continued. In cases where irreparable seizure occurred on the threaded portion, the test was also terminated at that point.
 耐焼付き性の評価指標は、ねじ部で回復不可能な焼付き、及び、シール面で焼付きのいずれも発生しない最大の締結回数とした。耐焼付き性評価試験の結果を、表3に示す。なお、試験番号6については、潤滑被膜層を形成するための組成物の塗布がうまく行えなかったため、潤滑被膜層の形成不良が生じた。そのため、試験番号6では、試験を実施できなかった。 The evaluation index for seizure resistance was the maximum number of times the screws were tightened without causing irreversible seizure in the threads or seizure on the seal surface. The results of the seizure resistance evaluation test are shown in Table 3. Note that for test number 6, the composition for forming the lubricating coating layer was not applied properly, resulting in poor formation of the lubricating coating layer. For this reason, the test could not be carried out for test number 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、試験番号11においては、ねじ締め及びねじ戻しを1回行うごとに、新しくAPIドープを塗りなおした。通常、APIドープは、ねじ締め及びねじ戻しを1回行うごとに新しく塗りなおして使用されているためである。また、APIドープはそのような使用方法しか想定されていない。一方、試験番号1~10及び12では、試験終了まで潤滑被膜層を形成しなおすことなく、試験を続けた。 In addition, in test number 11, a new layer of API dope was applied each time the screw was tightened and loosened. This is because API dope is usually reapplied each time the screw is tightened and loosened. In addition, this is the only intended use of API dope. On the other hand, in test numbers 1 to 10 and 12, the test was continued without re-forming the lubricating coating layer until the end of the test.
 [ハイトルク性評価試験]
 各試験番号のピン表面及びボックス表面を用いて、トルクオンショルダー抵抗ΔT′を測定した。具体的に、締付け速度10rpm、締付けトルク42.8kN・mで、ピンとボックスとをねじ締めした。ねじ締めの際にトルクを測定し、図15に示されるようなトルクチャートを作成した。
[High torque evaluation test]
The torque-on-shoulder resistance ΔT' was measured using the pin surface and box surface of each test number. Specifically, the pin and the box were screwed together at a screwing speed of 10 rpm and a screwing torque of 42.8 kN m. The torque was measured during screwing, and a torque chart was created as shown in FIG.
 図15は、本実施例における、トルクオンショルダー抵抗ΔT′を説明するための図である。図15中のTsは、ショルダリングトルクを意味する。図15中のMTVは、線分Lと、トルクチャートとが交わるトルク値を表す。図15中の線分Lは、ショルダリング後のトルクチャートにおける、線形域の傾きと同じ傾きを有し、同線形域と比べて回転数が0.2%多い直線である。通常、トルクオンショルダー抵抗ΔT′を測定する場合には、Ty(イールドトルク)を使用する。しかしながら、本実施例では、イールドトルク(ショルダリング後におけるトルクチャートにおける、線形域と非線形域との境界)が不明瞭であった。そのため、線分Lを用いて、MTVを規定した。MTVとTsとの差分を、本実施例におけるトルクオンショルダー抵抗ΔT′とした。 FIG. 15 is a diagram for explaining the torque on shoulder resistance ΔT' in this embodiment. Ts in FIG. 15 means shouldering torque. MTV in FIG. 15 represents the torque value where line segment L intersects with the torque chart. Line segment L in FIG. 15 is a straight line that has the same slope as the slope of the linear region in the torque chart after shouldering, and has 0.2% more rotation speed than the linear region. Normally, Ty (yield torque) is used to measure the torque on shoulder resistance ΔT'. However, in this embodiment, the yield torque (the boundary between the linear region and the nonlinear region in the torque chart after shouldering) was unclear. Therefore, line segment L was used to define MTV. The difference between MTV and Ts was taken as the torque on shoulder resistance ΔT' in this embodiment.
 本実施例では、試験番号11において、潤滑被膜層の代わりにAPIドープを使用した際のトルクオンショルダー抵抗ΔT′の数値を基準(100)として、各試験番号のトルクオンショルダー抵抗ΔT′を相対値として求めた。得られた各試験番号のトルクオンショルダー抵抗ΔT′(相対値)を、表3に示す。なお、上述のとおり、試験番号6については、潤滑被膜層を形成するための組成物の塗布がうまく行えなかったため、潤滑被膜層の形成不良が生じた。そのため、試験番号6では、試験を実施できなかった。 In this example, the torque on shoulder resistance ΔT' for each test number was calculated as a relative value, with the torque on shoulder resistance ΔT' for test number 11 when API dope was used instead of the lubricating coating layer being set as the standard (100). The torque on shoulder resistance ΔT' (relative value) obtained for each test number is shown in Table 3. As mentioned above, for test number 6, the composition for forming the lubricating coating layer was not applied properly, resulting in poor formation of the lubricating coating layer. Therefore, the test could not be performed for test number 6.
 [評価結果]
 表1~表3を参照して、試験番号1~5及び7~9の油井用金属管の潤滑被膜層、及び、その潤滑被膜層を形成するための組成物は、ZrOを含有した。そのため、試験番号1~5及び7~9の油井用金属管は、ねじ締め及びねじ戻しを8回繰り返しても、焼付きが発生せず、優れた耐焼付き性を示した。さらに、試験番号1~5及び7~9の油井用金属管は、トルクオンショルダー抵抗ΔT′(相対値)が100を超え、優れたハイトルク性能を示した。
[Evaluation Results]
Referring to Tables 1 to 3, the lubricating coating layers of the metal pipes for oil wells of Test Nos. 1 to 5 and 7 to 9 and the compositions for forming the lubricating coating layers contained ZrO2 . Therefore, the metal pipes for oil wells of Test Nos. 1 to 5 and 7 to 9 did not experience galling even after being repeatedly screwed in and unscrewed eight times, and thus exhibited excellent galling resistance. Furthermore, the metal pipes for oil wells of Test Nos. 1 to 5 and 7 to 9 had torque-on-shoulder resistance ΔT' (relative value) exceeding 100, and thus exhibited excellent high torque performance.
 試験番号2~5及び7~9の油井用金属管はさらに、潤滑被膜層中、及び、その潤滑被膜層を形成するための組成物中におけるZrOの含有量が0.5~8.0%であった。そのため、試験番号2~5及び7~9の油井用金属管は、試験番号1の油井用金属管に比べて、さらに優れたハイトルク性能を示した。 Furthermore, the oil well metal pipes of Test Nos. 2 to 5 and 7 to 9 had a ZrO2 content of 0.5 to 8.0% in the lubricating coating layer and in the composition for forming the lubricating coating layer. Therefore, the oil well metal pipes of Test Nos. 2 to 5 and 7 to 9 showed even more excellent high torque performance than the oil well metal pipe of Test No. 1.
 一方、試験番号10の油井用金属管の潤滑被膜層、及び、その潤滑被膜層を形成するための組成物は、ZrOに代えて、Crを含有した。その結果、ねじ締め及びねじ戻しを8回繰り返すと焼付きが発生し、優れた耐焼付き性を示さなかった。 On the other hand, the lubricating coating layer of the metal oil well pipe of test number 10 and the composition for forming the lubricating coating layer contained Cr 2 O 3 instead of ZrO 2. As a result, after the pipe was repeatedly screwed in and out eight times, seizure occurred, and the pipe did not exhibit excellent seizure resistance.
 試験番号12の油井用金属管の潤滑被膜層、及び、その潤滑被膜層を形成するための組成物は、ZrOを含有しなかった。その結果、ねじ締め及びねじ戻しを5回繰り返すと焼付きが発生し、優れた耐焼付き性を示さなかった。その結果さらに、トルクオンショルダー抵抗ΔT′が100未満となり、優れたハイトルク性能を示さなかった。 The lubricating coating layer of the metal oil well pipe of test number 12 and the composition for forming the lubricating coating layer did not contain ZrO2 . As a result, after five repeated screwing and unscrewing cycles, seizure occurred, and excellent seizure resistance was not exhibited. Furthermore, the torque-on-shoulder resistance ΔT' was less than 100, and excellent high torque performance was not exhibited.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The above describes the embodiments of the present disclosure. However, the above-described embodiments are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiments, and can be implemented by modifying the above-described embodiments as appropriate within the scope of the spirit of the present disclosure.
  1 油井用金属管
  10 管本体
  10A 第1端部
  10B 第2端部
  11 ピン管体
  12 カップリング
  40 ピン
  41 雄ねじ部
  42 ピンシール面
  43 ピンショルダー面
  50 ボックス
  51 雌ねじ部
  52 ボックスシール面
  53 ボックスショルダー面
  100 潤滑被膜層
  110 金属めっき層
  120 化成処理層
  400 ピン接触表面
  500 ボックス接触表面
REFERENCE SIGNS LIST 1 Metal pipe for oil wells 10 Pipe body 10A First end 10B Second end 11 Pin pipe body 12 Coupling 40 Pin 41 Male threaded portion 42 Pin seal surface 43 Pin shoulder surface 50 Box 51 Female threaded portion 52 Box seal surface 53 Box shoulder surface 100 Lubricating coating layer 110 Metal plating layer 120 Chemical conversion layer 400 Pin contact surface 500 Box contact surface

Claims (10)

  1.  油井用金属管であって、
     第1端部と第2端部とを含む管本体を備え、
     前記管本体は、
     前記第1端部に形成されているピンと、
     前記第2端部に形成されているボックスと、を含み、
     前記ピンは、
     雄ねじ部を含むピン接触表面を含み、
     前記ボックスは、
     雌ねじ部を含むボックス接触表面を含み、
     前記油井用金属管はさらに、
     前記ピン接触表面及び前記ボックス接触表面の少なくとも一方の最上層として形成される潤滑被膜層を備え、
     前記潤滑被膜層は、
     ZrOと、
     金属石鹸と、
     ワックスと、
     塩基性芳香族有機酸金属塩と、を含有する、
     油井用金属管。
    A metal pipe for oil wells, comprising:
    a tube body including a first end and a second end;
    The tube body includes:
    a pin formed on the first end;
    a box formed at the second end,
    The pin is
    a pin contact surface including an external thread;
    The box includes:
    a box contact surface including an internal thread;
    The metal pipe for oil well further comprises:
    a lubricating coating layer formed as an uppermost layer on at least one of the pin contact surface and the box contact surface;
    The lubricating coating layer is
    ZrO2 ,
    Metal soaps,
    Wax and
    A basic aromatic organic acid metal salt,
    Metal pipe for oil wells.
  2.  請求項1に記載の油井用金属管であって、
     前記潤滑被膜層は、
     前記ZrOと、前記金属石鹸と、前記ワックスと、前記塩基性芳香族有機酸金属塩と、潤滑性粉末との含有量の合計を100質量%とした場合、
     ZrO:0.2~8.0%、
     金属石鹸:2~30%、
     ワックス:2~30%、
     塩基性芳香族有機酸金属塩:12.0~80.0%、及び、
     潤滑性粉末:0~20.0%、を含有する、
     油井用金属管。
    The metal pipe for oil well according to claim 1,
    The lubricating coating layer is
    When the total content of the ZrO2 , the metal soap, the wax, the basic aromatic organic acid metal salt, and the lubricating powder is 100 mass%,
    ZrO 2 :0.2-8.0%,
    Metal soap: 2-30%,
    Wax: 2-30%,
    Basic aromatic organic acid metal salt: 12.0 to 80.0%, and
    Lubricating powder: 0 to 20.0%,
    Metal pipe for oil wells.
  3.  請求項2に記載の油井用金属管であって、
     前記潤滑被膜層は、
     潤滑性粉末:0.1~20.0%、を含有する、
     油井用金属管。
    The metal pipe for oil well according to claim 2,
    The lubricating coating layer is
    Lubricating powder: 0.1 to 20.0%,
    Metal pipe for oil wells.
  4.  請求項1~請求項3のいずれか1項に記載の油井用金属管であって、
     前記油井用金属管はさらに、
     前記ピン接触表面及び前記ボックス接触表面の少なくとも一方と、前記潤滑被膜層との間に配置される、金属めっき層を備える、
     油井用金属管。
    The metal pipe for oil well according to any one of claims 1 to 3,
    The metal pipe for oil well further comprises:
    a metal plating layer disposed between at least one of the pin contact surface and the box contact surface and the lubricating coating layer;
    Metal pipe for oil wells.
  5.  請求項1~請求項4のいずれか1項に記載の油井用金属管であって、
     前記ピン接触表面及び前記ボックス接触表面の少なくとも一方は、
     ブラスト処理された面又は酸洗された面である、
     油井用金属管。
    The metal pipe for oil well according to any one of claims 1 to 4,
    At least one of the pin contact surface and the box contact surface is
    The surface is blasted or pickled.
    Metal pipe for oil wells.
  6.  請求項1~請求項5のいずれか1項に記載の油井用金属管であって、
     前記油井用金属管はさらに、
     前記ピン接触表面及び前記ボックス接触表面の少なくとも一方と、前記潤滑被膜層との間に配置され、前記潤滑被膜層と接触する面を有する化成処理層を備える、
     油井用金属管。
    The metal pipe for oil well according to any one of claims 1 to 5,
    The metal pipe for oil well further comprises:
    a chemical conversion layer disposed between at least one of the pin contact surface and the box contact surface and the lubricating coating layer, the chemical conversion layer having a surface in contact with the lubricating coating layer;
    Metal pipe for oil wells.
  7.  請求項1~請求項6のいずれか1項に記載の油井用金属管であって、
     前記ピン接触表面はさらに、
     ピンシール面及びピンショルダー面を含み、
     前記ボックス接触表面はさらに、
     ボックスシール面及びボックスショルダー面を含む、
     油井用金属管。
    The metal pipe for oil well according to any one of claims 1 to 6,
    The pin contact surface further comprises:
    a pin seal surface and a pin shoulder surface;
    The box contact surface further comprises:
    Including a box seal surface and a box shoulder surface.
    Metal pipe for oil wells.
  8.  請求項1~請求項7のいずれか1項に記載の油井用金属管が備える前記潤滑被膜層を形成するための組成物であって、
     ZrOと、
     金属石鹸と、
     ワックスと、
     塩基性芳香族有機酸金属塩と、を含有する、
     組成物。
    A composition for forming the lubricating coating layer provided on the metal oil well pipe according to any one of claims 1 to 7,
    ZrO2 ,
    Metal soaps,
    Wax and
    A basic aromatic organic acid metal salt,
    Composition.
  9.  請求項8に記載の組成物であって、
     前記組成物はさらに、
     潤滑性粉末を含有する、
     組成物。
    9. The composition of claim 8,
    The composition further comprises:
    Contains a lubricating powder,
    Composition.
  10.  請求項8又は請求項9に記載の組成物であって、
     前記組成物はさらに、
     揮発性有機溶剤を含有する、
     組成物。
    10. The composition according to claim 8 or claim 9,
    The composition further comprises:
    Contains volatile organic solvents,
    Composition.
PCT/JP2024/001593 2023-02-28 2024-01-22 Metal pipe for oil wells, and composition for forming lubricant coating layer for said metal pipe for oil wells WO2024180941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023029041A JP2024121847A (en) 2023-02-28 2023-02-28 Metallic pipe for oil well and composition for forming lubricating coating layer on said metallic pipe for oil well
JP2023-029041 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024180941A1 true WO2024180941A1 (en) 2024-09-06

Family

ID=92590343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001593 WO2024180941A1 (en) 2023-02-28 2024-01-22 Metal pipe for oil wells, and composition for forming lubricant coating layer for said metal pipe for oil wells

Country Status (2)

Country Link
JP (1) JP2024121847A (en)
WO (1) WO2024180941A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268580A (en) * 2006-03-31 2007-10-18 Sumitomo Metal Ind Ltd Method of cold drawing, and method for manufacturing drawn pipe
WO2019074097A1 (en) * 2017-10-13 2019-04-18 新日鐵住金株式会社 Composition and threaded joint for pipes provided with lubricating coating film layer that is formed from said composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268580A (en) * 2006-03-31 2007-10-18 Sumitomo Metal Ind Ltd Method of cold drawing, and method for manufacturing drawn pipe
WO2019074097A1 (en) * 2017-10-13 2019-04-18 新日鐵住金株式会社 Composition and threaded joint for pipes provided with lubricating coating film layer that is formed from said composition

Also Published As

Publication number Publication date
JP2024121847A (en) 2024-09-09

Similar Documents

Publication Publication Date Title
JP6893978B2 (en) Manufacturing method of threaded joints for pipes and threaded joints for pipes
JPWO2018216497A1 (en) Pipe threaded joint and method of manufacturing pipe threaded joint
JP2023164546A (en) Composition and threaded joint for pipe comprising lubrication film layer made of the composition
WO2018003455A1 (en) Screw joint for pipe and manufacturing method for screw joint for pipe
JP6872032B2 (en) Threaded pipe fittings with a composition and a lubricating coating layer formed from the composition
WO2024180941A1 (en) Metal pipe for oil wells, and composition for forming lubricant coating layer for said metal pipe for oil wells
WO2020149310A1 (en) Threaded joint for pipes and method for manufacturing threaded joint for pipes
WO2023063384A1 (en) Metal pipe for oil wells
JP2024106003A (en) Metal pipe for oil well and composition for forming lubricating film on metal pipe for oil well
WO2023063385A1 (en) Metal pipe for oil wells
WO2024154524A1 (en) Metal pipe for oil wells
OA19598A (en) Composition and threaded joint for pipes provided with lubricating coating film layer that is formed from said composition.
OA20639A (en) Composition and threaded pipe joint provided with lubricant coating layer comprising said composition.
EA045795B1 (en) METAL PIPE FOR OIL WELL AND METHOD OF ITS MANUFACTURE
EA044029B1 (en) COMPOSITION AND THREADED CONNECTION FOR PIPE OR PIPE, CONTAINING A LUBRICANT COATING MADE FROM THE COMPOSITION
BR112021012924B1 (en) COMPOSITION, AND THREADED CONNECTION FOR PIPE, INCLUDING LUBRICANT COATING LAYER FORMED FROM THE COMPOSITION
EA041163B1 (en) COMPOSITION AND A SCREW JOINT FOR PIPE CONTAINING A LUBRICATING COATING LAYER FORMED FROM THE COMPOSITION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763426

Country of ref document: EP

Kind code of ref document: A1