Nothing Special   »   [go: up one dir, main page]

WO2024180863A1 - Drive circuit, optical unit, and drive method - Google Patents

Drive circuit, optical unit, and drive method Download PDF

Info

Publication number
WO2024180863A1
WO2024180863A1 PCT/JP2023/044582 JP2023044582W WO2024180863A1 WO 2024180863 A1 WO2024180863 A1 WO 2024180863A1 JP 2023044582 W JP2023044582 W JP 2023044582W WO 2024180863 A1 WO2024180863 A1 WO 2024180863A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
signal
optical element
unit
drive
Prior art date
Application number
PCT/JP2023/044582
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 藤田
幸央 小林
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Publication of WO2024180863A1 publication Critical patent/WO2024180863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods

Definitions

  • the present invention relates to a drive circuit, an optical unit, and a drive method.
  • Patent Document 1 JP 2005-354854 A
  • a drive circuit that drives a piezoelectric actuator that moves an optical element.
  • the drive circuit may include a drive section that generates a drive signal that controls the movement speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element should move.
  • the drive circuit may include a filter section that suppresses the frequency of fluctuations in the movement speed due to the drive signal.
  • the filter section may attenuate components of the fluctuation frequency of the movement speed that are equal to or higher than the operating frequency band of the piezoelectric actuator.
  • the filter unit may attenuate components in the fluctuation frequency of the movement speed that are greater than 100 Hz.
  • the drive unit may have a pulse signal generation unit that generates a pulse signal having a pulse train corresponding to the difference between the detection position and the target position.
  • the drive unit may have a driver that outputs the drive signal corresponding to the pulse signal.
  • the filter unit may suppress the frequency of changes to the pulse train in the pulse signal generation unit.
  • the filter unit may suppress the frequency of changes in the pulse train in a direction that decreases the moving speed more strongly than the frequency of changes in the pulse train in a direction that increases the moving speed.
  • the filter unit may suppress the frequency of changes in the pulse train in a direction that decreases the moving speed, and may not suppress the frequency of changes in the pulse train in a direction that increases the moving speed.
  • any of the drive circuits described above may include a pre-processing unit that AD converts the signal indicating the detection position and inputs it to the drive unit.
  • the filter unit may suppress the frequency at which the conversion result in the pre-processing unit is updated.
  • the filter section may adjust the filter characteristics based on the difference between the detected position and the target position.
  • the filter section may adjust the filter characteristics for at least one of the frequency of change in the moving speed in a direction that decreases the moving speed and the frequency of change in the moving speed in a direction that increases the moving speed, based on a comparison result between the difference and a set reference value.
  • the drive unit may perform PID control based on the detected position and the target position to generate the drive signal.
  • Any of the drive circuits described above may include a boosting section that boosts the drive signal and supplies it to the piezoelectric actuator.
  • the additional pulse may have a pulse width greater than that of the first pulse.
  • the pulse signal generating unit may generate a pre-change pulse signal for the first speed, the pulse signal including a number of the first pulses corresponding to the first speed.
  • the pulse signal generating unit may generate an intermediate pulse signal by adding one or more of the additional pulses to the pre-change pulse signal, after generating the pre-change pulse signal.
  • the pulse signal generating unit may generate a post-change pulse signal including a number of the first pulses corresponding to the second speed, after generating the intermediate pulse signal.
  • the pulse signal generating section may have a first pulse generating section that generates one or more of the first pulses. In any of the drive circuits described above, the pulse signal generating section may have an additional pulse generating section that generates one or more of the additional pulses. In any of the drive circuits described above, the pulse signal generating section may have a logical OR circuit that outputs the logical OR of the pulse train of the first pulses generated by the first pulse generating section and the pulse train of the additional pulses generated by the additional pulse generating section.
  • a drive circuit that drives a piezoelectric actuator that moves an optical element.
  • the drive circuit may include a signal processing unit that generates a control signal that controls the movement speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element is to move.
  • Any of the drive circuits may include a pulse signal generation unit that generates a pulse signal having a pulse train according to the control signal and controls the movement speed according to the pulse train.
  • the pulse signal generation unit may be capable of generating the pulse signal including one or more first pulses and one or more additional pulses that differ from the first pulses in at least one of the pulse width and amplitude, for one of the movement speeds indicated by the control signal.
  • an optical unit in a third aspect of the present invention, includes an optical element, a piezoelectric actuator that moves the optical element, and a drive circuit according to the first aspect that drives the piezoelectric actuator.
  • a driving method for driving a piezoelectric actuator that moves an optical element may generate a driving signal that controls the moving speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element should move.
  • the above-mentioned driving method may suppress the frequency of fluctuations in the moving speed due to the driving signal.
  • FIG. 1 is a diagram showing an example of an optical unit 100 according to an embodiment of the present invention.
  • 3A to 3C are diagrams illustrating an example of a drive signal generated by a drive circuit 10.
  • 4A to 4C are diagrams illustrating an example of the operation of the booster 170.
  • 1 is a diagram showing an example of the relationship between the number of first pulses 14 included in a pulse train 12 and the position of an optical element 120.
  • FIG. 1 is a diagram showing an example of the relationship between the number of first pulses 14 included in a pulse train 12 and the sound pressure of the drive sound.
  • FIG. 2 is a diagram illustrating an example of the configuration of a drive circuit 10.
  • FIG. 2 is a diagram illustrating an example of the configuration of a pulse signal generating unit 60.
  • FIGS. 1A and 1B are diagrams showing an example of a first pulse 14, an additional pulse 15, and a pulse signal.
  • 6A to 6C are diagrams illustrating an example of the operation of a pulse signal generating unit 60.
  • 11 is a diagram showing the relationship between the number of first pulses 14 included in a pulse train 12 and the sound pressure of the driving sound in a reference example.
  • FIG. 11 is a diagram showing the relationship between the number of pulses included in a pulse train 12 and the sound pressure of the driving sound in the embodiment.
  • FIG. 13 is a diagram showing an example of the timing for inserting an additional pulse 15.
  • FIG. 11 is a diagram showing another example of the timing for inserting the additional pulse 15.
  • FIG. 11 is a diagram showing another example of the timing for inserting the additional pulse 15.
  • FIG. 13A and 13B are diagrams showing other examples of the additional pulse 15.
  • FIG. 16 is a chart outlining a method for driving the piezoelectric actuator 110 described with reference to FIGS. 1 to 15.
  • FIG. 4 is a diagram showing another example of the configuration of the drive circuit 10.
  • FIG. 2 is a diagram illustrating an example of the configuration of a pulse signal generating unit 60.
  • 10A to 10C are diagrams illustrating an example of the operation of a filter unit 70.
  • 11 is a diagram showing an example of the position of the optical element 120 and the waveform of a control signal.
  • 11 is a diagram showing an example of the position of the optical element 120 and the waveform of a control signal.
  • 13A and 13B are diagrams illustrating other exemplary arrangements of the filter section 70.
  • FIG. 23 is a chart outlining a method for driving the piezoelectric actuator 110 described with reference to FIGS. 17 to 22.
  • one side in a direction parallel to the optical axis of the lens may be referred to as “upper” and the other side as “lower.”
  • the directions of “upper” and “lower” are not limited to directions parallel to the direction of gravity.
  • FIG. 1 is a diagram showing an example of an optical unit 100 according to an embodiment of the present invention.
  • the optical unit 100 includes an optical element 120, a piezoelectric actuator 110, and a drive circuit 10.
  • the optical element 120 is, for example, a lens, but is not limited to this.
  • the optical element 120 may be an element that generates outgoing light in response to incident light, or an element that operates in response to incident light. Examples of elements that generate outgoing light in response to incident light include elements that change the direction of travel of light, elements that change the polarization direction of light, elements that change the wavelength components of light, and elements that change the intensity of light. Examples of elements that operate in response to incident light include image sensors that convert incident light into electrical signals.
  • the piezoelectric actuator 110 moves the optical element 120 by deforming or vibrating in response to an input electrical signal.
  • the piezoelectric actuator 110 may include a piezoelectric portion that deforms or vibrates in response to an electrical signal.
  • the piezoelectric actuator 110 of this example moves the shaft 114.
  • the optical element 120 is fixed to the shaft 114. Therefore, the optical element 120 can be moved by moving the shaft 114.
  • the piezoelectric actuator 110 of this example moves the shaft 114 in the longitudinal direction of the shaft 114. In FIG. 1, the movement direction of the optical element 120 and the shaft 114 is indicated by an arrow.
  • the piezoelectric actuator 110 of this example can move the optical element 120 and the shaft 114 in both the positive (+) direction and the negative (-) direction of the movement direction.
  • the piezoelectric actuator 110 moves the optical element 120 to realize an autofocus function in a camera.
  • the use of the piezoelectric actuator 110 is not limited to this.
  • the movement direction of the optical element 120, etc. is not limited to a linear direction.
  • the drive circuit 10 drives the piezoelectric actuator 110.
  • the drive circuit 10 generates a drive signal for driving the piezoelectric actuator 110.
  • the drive circuit 10 is input with a detection position indicating the current position of the optical element 120 in the movement direction, and a target position to which the optical element 120 should move.
  • the drive circuit 10 generates a drive signal for controlling the movement speed of the optical element 120 based on the difference between the detection position and the target position.
  • the movement speed of the optical element 120 may include the direction of movement (positive or negative) and the absolute value of the speed.
  • the drive circuit 10 may generate a drive signal based on whether the target position is located in the positive or negative direction with respect to the detection position in the movement direction, and the absolute value of the difference between the detection position and the target position.
  • the optical unit 100 may include a boost section 170 that boosts the drive signal and supplies it to the piezoelectric actuator 110.
  • the boost section 170 may boost the drive signal using an inductor and a capacitance section.
  • the boost section 170 may boost the drive signal by resonating the drive signal between the inductor and the capacitance section.
  • the inductor may be provided in the boost section 170.
  • the capacitance section may be provided in the boost section 170 or in the piezoelectric actuator 110.
  • the capacitance section may be a capacitor element or may be a parasitic capacitance in the piezoelectric actuator 110, etc.
  • the optical unit 100 may further include some or all of the image acquisition section 130, the display section 140, the image processing section 150, and the position detection section 160.
  • the image acquisition section 130 receives light that has passed through the optical element 120 and generates image data according to the received light.
  • the image acquisition section 130 includes an imaging element that generates image data of a subject of the camera.
  • the imaging element of the image acquisition section 130 is, for example, a CMOS image sensor, but is not limited to this.
  • the image acquisition section 130 is also an example of an optical element.
  • the piezoelectric actuator 110 moves the lens (optical element 120) relative to the image acquisition section 130, but the piezoelectric actuator 110 in other examples may move the image acquisition section 130 relative to the lens (optical element 120). In other words, the piezoelectric actuator 110 may control the relative position between the lens and the image acquisition section 130.
  • the image processing unit 150 performs a predetermined process on the image data generated by the image acquisition unit 130.
  • the image processing unit 150 in this example may calculate a target position to which the optical element 120 should move based on the image data.
  • the image processing unit 150 may calculate the target position based on the contrast of the image data (so-called contrast autofocus), may split the light that has passed through the optical element 120 into two and calculate the target position based on the distance between the two images created by each light (so-called phase difference autofocus), or may calculate the target position using another method.
  • the image processing unit 150 may cause the display unit 140 to display an image corresponding to the image data.
  • the display unit 140 may be a display such as a liquid crystal display or an organic EL display provided in the camera, or may be another display.
  • the position detection unit 160 detects the position of the optical element 120 in the movement direction.
  • the position detection unit 160 may detect the position of the optical element 120 based on the magnetic field between the optical element 120 and the position detection unit 160.
  • a magnetic field generation unit such as a magnet may be provided in the fixed unit 122
  • a magnetic field detection unit such as a Hall element may be provided in the position detection unit 160.
  • a magnetic field detection unit may be provided in the fixed unit 122, and a magnetic field generation unit may be provided in the position detection unit 160.
  • the magnetic field generation unit and the magnetic field detection unit are provided so that the strength of the detected magnetic field changes depending on the relative positions of the position detection unit 160 and the fixed unit 122 in the movement direction.
  • the position detection unit 160 may calculate the position of the optical element 120 based on the strength of the magnetic field detected by the magnetic field detection unit.
  • FIG. 2 is a diagram for explaining an example of a drive signal generated by the drive circuit 10.
  • FIG. 2 shows the time waveforms of each signal such as the drive signal.
  • the drive circuit 10 of this example generates a first pulse signal and a second pulse signal.
  • the first pulse signal and the second pulse signal have a pulse train 12 for each predetermined modulation period T.
  • the first pulse signal includes a pulse train 12-1
  • the second pulse signal includes a pulse train 12-2.
  • Each pulse train 12 includes one or more first pulses 14.
  • the pulse trains 12-1 and 12-2 are out of phase with each other so that they do not become H level at the same time. In other words, during a period in which one pulse train 12 has a first pulse 14, the other pulse train 12 does not have a first pulse 14.
  • the pulse trains 12-1 and 12-2 may have a period in which they become L level at the same time. As an example, the periods of the pulse trains 12-1 and 12-2 may be shifted by half a period.
  • the drive circuit 10 may generate a drive signal corresponding to each pulse signal.
  • the drive circuit 10 generates a first drive signal corresponding to the first pulse signal and a second drive signal corresponding to the second pulse signal.
  • the drive signal has a pulse train of the same pattern as the pulse signal.
  • the drive signal may be a signal output by a driver to which a pulse signal is input.
  • the drive signal may be a signal with a different amplitude from the pulse signal.
  • the piezoelectric actuator 110 may include a first piezoelectric element to which a first drive signal is applied, and a second piezoelectric element to which a second drive signal is applied.
  • the first and second piezoelectric elements are formed of, for example, ceramic.
  • the piezoelectric actuator 110 may have a stator portion provided in contact with the first and second piezoelectric elements. The stator portion deforms in response to the deformation of the first and second piezoelectric elements. Since the pulse trains applied to the first and second piezoelectric elements are shifted by half a period, a traveling wave in response to the deformation of the first and second piezoelectric elements is generated on one of the surfaces of the stator portion.
  • the piezoelectric actuator 110 may move the shaft 114 by the traveling wave.
  • the direction of movement of the shaft 114 varies depending on the pulse periods of the first pulse train 12-1 and the second pulse train 12-2.
  • the drive circuit 10 may change the pulse periods of the first pulse train 12-1 and the second pulse train 12-2 depending on the direction in which the shaft 114 should be moved.
  • the drive circuit 10 may be preset with a pulse period (first period) when moving the optical element 120 in the positive direction of the movement direction, and a pulse period (second period) when moving the optical element 120 in the negative direction.
  • the absolute value of the movement speed of the shaft 114 can be controlled by the number of first pulses 14 included in the pulse train 12 in the modulation period T. The greater the number of first pulses 14 included in the pulse train 12, the greater the absolute value of the movement speed of the shaft 114.
  • the drive circuit 10 may control the number of first pulses 14 included in the pulse train 12 according to the absolute value of the speed at which the optical element 120 should be moved.
  • the driving circuit 10 in this example generates a first oscillation signal and a second oscillation signal.
  • the first oscillation signal and the second oscillation signal have the same period and differ in phase by half a period.
  • the driving circuit 10 generates the first oscillation signal and the second oscillation signal with the same period as the period (first period or second period) that the pulse train 12 should have.
  • the driving circuit 10 may control the periods of the first oscillation signal and the second oscillation signal depending on the direction in which the optical element 120 should be moved.
  • the driving circuit 10 of this example generates a modulation signal.
  • the modulation signal is a signal that exhibits an H level only for a predetermined period W in a modulation cycle T, and exhibits an L level in other periods.
  • the modulation signal may have a single pulse with a pulse width W in the modulation cycle T.
  • the driving circuit 10 generates a first pulse signal from the logical product of the modulation signal and the first oscillation signal, and generates a second pulse signal from the logical product of the modulation signal and the second oscillation signal.
  • the driving circuit 10 of this example controls the number of first pulses 14 included in the pulse train 12 of each pulse signal by controlling the period W in the modulation signal. For example, by lengthening the period W, the number of first pulses 14 included in the pulse train 12 increases.
  • the driving circuit 10 may control the period W according to the absolute value of the speed at which the optical element 120 should be moved.
  • the first modulation signal and the second modulation signal may be simply referred to as modulation signals
  • the first pulse signal and the second pulse signal may be simply referred to as pulse signals
  • the first drive signal and the second drive signal may be simply referred to as drive signals.
  • the period W of the modulation signal may be set so that the number of first pulses 14 included in the pulse train 12-1 is the same as the number of first pulses 14 included in the pulse train 12-2.
  • the timing of the falling edge of the modulation signal may be controlled to be the same as the timing of the falling edge of any of the first pulses 14.
  • the period W of the modulation signal may be set to be an even multiple of the pulse width of the first pulse 14.
  • FIG. 3 is a diagram illustrating an example of the operation of the boost unit 170.
  • the boost unit 170 boosts and outputs the drive signal.
  • the amplitude of the boosted drive signal is greater than the amplitude of the drive signal before boosting.
  • the period of the drive signal may be the same before and after boosting.
  • FIG. 4 is a diagram showing an example of the relationship between the number of first pulses 14 included in the pulse train 12 and the position of the optical element 120.
  • the vertical axis in FIG. 4 indicates the number of first pulses 14 included in the pulse train 12.
  • the sign on the vertical axis indicates the direction in which the optical element 120 is moved. In other words, when the signs on the vertical axis are different, the period of the pulse signal is different.
  • FIG. 4 shows an example in which the optical element 120 is moved from target position 1 to target position 2, and then to target position 3.
  • the number of first pulses 14 included in the pulse train 12 changes depending on the direction and distance of movement.
  • the number of first pulses 14 can be controlled by controlling the period W of the modulation signal.
  • the distance that the optical element 120 moves with one first pulse 14 may differ depending on the direction of movement of the optical element 120. In this case, as shown in FIG. 4, even if the slope of the waveform at the detection position of the optical element 120 is almost the same at the rising edge and the falling edge, the absolute value of the number of first pulses 14 corresponding to the rising edge and the falling edge may differ.
  • Driving noise may occur as the optical element 120 moves. Driving noise is likely to occur when the optical element 120 accelerates or decelerates.
  • FIG. 5 is a diagram showing an example of the relationship between the number of first pulses 14 included in the pulse train 12 and the sound pressure of the drive sound.
  • the change in the number of first pulses 14 is similar to the example in FIG. 4. Since the number of first pulses 14 included in the pulse train 12 corresponds to the moving speed of the optical element 120, the change in the number of first pulses 14 indicates the acceleration or deceleration of the optical element 120. As shown in FIG. 5, it can be seen that a drive sound with a relatively large sound pressure is generated when the optical element 120 accelerates or decelerates.
  • FIG. 6 is a diagram showing an example configuration of the drive circuit 10.
  • the drive circuit 10 includes a drive unit 50.
  • the drive circuit 10 may further include a pre-processing unit 20 and part or all of the setting unit 30.
  • the driving unit 50 acquires the detected position of the optical element 120 and the target position to which the optical element 120 should move.
  • the driving unit 50 in this example receives the detected position from the pre-processing unit 20.
  • the pre-processing unit 20 may receive an analog signal indicating the detected position from the position detection unit 160, for example, and output a digital signal resulting from AD conversion of the analog signal.
  • the driving unit 50 in this example may receive a digital signal indicating the target position from the setting unit 30.
  • the setting unit 30 may have a register that records the target position received from, for example, the image processing unit 150. The target position recorded by the setting unit 30 is updated appropriately by the image processing unit 150.
  • the drive unit 50 generates a drive signal that controls the movement speed of the optical element 120 based on the difference between the detected position and the target position.
  • the pulse signal generation unit 60 suppresses the amount of change in one control when changing the movement speed of the optical element 120. This makes it possible to suppress the peak volume of the drive sound.
  • the driving unit 50 in this example has a signal processing unit 40, a pulse signal generating unit 60, and a driver 80.
  • the signal processing unit 40 generates a control signal based on the detected position and the target position.
  • the control signal is a signal for controlling the movement speed of the optical element 120 so that the difference between the detected position and the target position is small.
  • the control signal may include information indicating the direction in which the optical element 120 should be moved and the absolute value of the movement speed.
  • the signal processing unit 40 may perform PID control based on the detected position and the target position to generate a control signal. That is, the signal processing unit 40 may perform a process that combines proportional control (P control), integral control (I control), and differential control (D control).
  • P control the absolute value of the moving speed of the optical element 120 is increased in proportion to the magnitude of the difference between the detected position and the target position.
  • I control the moving speed of the optical element 120 is adjusted according to the magnitude of the time integral of the difference between the detected position and the target position.
  • D control a process is performed that reduces the differential value of the control signal (that is, reduces the change over time in the moving speed of the optical element 120).
  • the pulse signal generating unit 60 generates a pulse signal having a pulse train 12 according to the difference between the detection position and the target position.
  • the pulse signal generating unit 60 generates the pulse signal shown in FIG. 2 according to a control signal.
  • the pulse signal generating unit 60 may control the period of the first pulses 14 in the oscillation signal or the pulse train 12 according to the movement direction of the optical element 120 indicated by the control signal.
  • the pulse signal generating unit 60 controls the number of first pulses 14 in the pulse train 12 according to the absolute value of the movement speed of the optical element 120 indicated by the control signal.
  • the pulse signal generating unit 60 may control the number of first pulses 14 included in the pulse train 12 by adjusting the period W of the modulation signal shown in FIG. 2.
  • the driver 80 outputs a drive signal corresponding to the pulse signal generated by the pulse signal generating unit 60.
  • the drive signal may include a pulse train 12 having the same pattern as the pulse signal.
  • the amplitude of each pulse of the drive signal may be the same as or different from the amplitude of each pulse of the pulse signal.
  • the driver 80 may supply a current to drive the piezoelectric actuator 110.
  • FIG. 7 is a diagram showing an example of the configuration of the pulse signal generating unit 60.
  • the pulse signal generating unit 60 of this example suppresses the amount of change in the moving speed of the optical element 120 that is changed in one control by inserting an additional pulse into the pulse signal shown in FIG. 2.
  • the pulse signal generating unit 60 of this example has a first pulse generating unit 67, an additional pulse generating unit 68, and a logical OR circuit 69.
  • the first pulse generating unit 67 generates a signal similar to the pulse signal shown in FIG. 2.
  • one or more pulses included in the pulse signal output by the first pulse generating unit 67 are referred to as a first pulse 14.
  • the first pulse generating unit 67 generates a pulse train 12 including one or more first pulses 14 for one moving speed indicated by the control signal.
  • the first pulse generating unit 67 repeatedly outputs a pulse train 12 including the same number of first pulses 14 until the moving speed indicated by the control signal is changed.
  • the first pulse generating unit 67 outputs a pulse train 12 including a number of first pulses 14 according to the changed moving speed.
  • the first pulse generating section 67 of this example has a first modulation section 62, a second modulation section 64, and a logical product circuit 66.
  • the first modulation section 62 generates the oscillation signal described in FIG. 2.
  • the first modulation section 62 may generate a first oscillation signal and a second oscillation signal as described in FIG. 2.
  • the first modulation section 62 of this example can change the period of the oscillation signal according to the moving direction of the optical element 120.
  • a clock signal with a predetermined period is input to the first modulation section 62 of this example.
  • the period of the clock signal is, for example, the first period or the second period described above.
  • the first modulation section 62 may generate each oscillation signal based on the clock signal.
  • the period of the oscillation signal may be the same as the period of the clock signal.
  • the second modulation unit 64 generates the modulation signal described in FIG. 2.
  • the second modulation unit 64 may receive a modulation setting signal for generating the modulation signal.
  • the modulation setting signal may include, for example, information indicating the length of the modulation period T shown in FIG. 2.
  • the second modulation unit 64 adjusts the period W in the modulation signal according to the control signal output by the signal processing unit 40. For example, the second modulation unit 64 lengthens the period W when a control signal for increasing the moving speed is input, and shortens the period W when a control signal for decreasing the moving speed is input.
  • the length that can be set as the period W (or pulse width W) may be a discrete value, such as an integer multiple of the period of the oscillation signal.
  • a clock signal having the same period as the first modulation unit 62 may be input to the second modulation unit 64.
  • the second modulation unit 64 may determine the period W by counting the pulses of the clock signal.
  • the second modulation unit 64 may generate a modulation signal with a pulse width W that is an integer multiple of the period of the clock signal.
  • the logical product circuit 66 generates a pulse signal by generating a logical product of the oscillation signal and the modulation signal.
  • the first pulse generation unit 67 outputs a pulse train 12 including a number of first pulses 14 according to the period W of the modulation signal.
  • a clock signal may be input to the additional pulse generating unit 68.
  • the period of the clock signal input to the additional pulse generating unit 68 may be the same as or different from the period of the clock signal input to the first pulse generating unit 67.
  • the additional pulse generating unit 68 may generate an additional pulse based on the input clock signal.
  • a clock signal having the same period as the clock signal input to the first pulse generating unit 67 is input to the additional pulse generating unit 68.
  • the additional pulse generating unit 68 may generate an additional pulse having the same pulse width as the first pulse 14 and a different amplitude from the first pulse 14.
  • the additional pulse generating unit 68 may generate an additional pulse having a pulse width that is an integer multiple of the period of the input clock signal.
  • the additional pulse generating unit 68 may generate an additional pulse having a pulse width that is an integer multiple of the pulse width of the first pulse 14. With this configuration, the first pulse 14 and the additional pulse can be generated based on a single clock signal, and an increase in circuit size can be suppressed.
  • the logical OR circuit 69 outputs the logical OR of the pulse train 12 of the first pulse 14 generated by the first pulse generating section 67 and the pulse train of the additional pulse generated by the additional pulse generating section 68.
  • the output of the logical OR circuit 69 is at H level during a period when at least one of the outputs of the first pulse generating section 67 and the additional pulse generating section 68 indicates H level, and is at L level during a period when both the output of the first pulse generating section 67 and the output of the additional pulse generating section 68 indicate L level.
  • the pulse signal generating unit 60 can generate, for one moving speed indicated by the control signal, a pulse signal including one or more first pulses 14 and one or more additional pulses that differ from the first pulses 14 in at least one of the pulse width and amplitude.
  • the pulse signal generating unit 60 in this example can generate a pulse signal including one or more first pulses 14 and one or more additional pulses in each modulation period T.
  • FIG. 8 is a diagram showing an example of a first pulse 14, an additional pulse 15, and a pulse signal.
  • the additional pulse 15 has a different pulse width from the first pulse 14.
  • the amplitudes of the additional pulse 15 and the first pulse 14 may be the same or different.
  • the first pulse generating unit 67 outputs a pulse train 12 including one or more first pulses 14 in each modulation period T.
  • the additional pulse generating unit 68 may output a pulse train including one or more additional pulses 15 in each modulation period T.
  • the additional pulse generating unit 68 may output an additional pulse 15 in some modulation periods T and may not output an additional pulse 15 in other modulation periods T.
  • the logical sum circuit 69 outputs the logical sum of the pulse train 12 of the first pulse 14 and the pulse train of the additional pulse 15 as the pulse train 12 of the new pulse signal. This allows the pulse signal generating unit 60 to output multiple types of pulses with different pulse widths or amplitudes within one modulation period T.
  • the first pulse 14 has a constant pulse width. Therefore, if the speed of the optical element 120 is controlled only by the first pulse 14, the speed of the optical element 120 can only be controlled in speed units corresponding to one first pulse 14. For example, consider a case where the speed of the optical element 120 changes by only V1 when the number of first pulses 14 included in the pulse train 12 is changed by only one. In this case, if the speed of the optical element 120 is controlled only by the first pulse 14, the speed of the optical element 120 can only be controlled to an integer multiple of V1. Therefore, the change in the speed of the optical element 120 in one control is at least V1. In this example, an additional pulse 15 can be included in the pulse train 12. This allows the change in the speed of the optical element 120 in one control to be smaller than V1. Since the volume of the drive sound generated in one control can be suppressed, the peak value of the drive sound can be suppressed.
  • the pulse width of the additional pulse 15 may be greater than the pulse width of the first pulse 14. When an additional pulse 15 greater than the pulse width of the first pulse 14 is inserted, the change in the speed of the optical element 120 becomes smaller than V1.
  • the pulse width of the additional pulse 15 may be greater than or equal to twice the pulse width of the first pulse 14, or greater than or equal to three times. Experimentally, when the pulse width of the additional pulse 15 is approximately three times the pulse width of the first pulse 14, the change in the speed of the optical element 120 due to the additional pulse 15 becomes 0.5 x V1.
  • the pulse signal generating unit 60 may control the pulse width of the additional pulse 15 according to the change in the moving speed of the optical element 120 to be set.
  • the relationship between the pulse width of the additional pulse 15 and the amount of change in the movement speed of the optical element 120 can be obtained by measuring it in advance.
  • the signal processing unit 40 may generate a control signal indicating whether or not to insert an additional pulse 15.
  • the signal processing unit 40 may generate the speed of the optical element 120 indicated by the control signal with a resolution finer than V1.
  • the signal processing unit 40 may control the speed of the optical element 120 indicated by the control signal with a resolution of 0.5 x V1.
  • the pulse signal generating unit 60 does not insert an additional pulse 15 into the pulse train 12 when the speed of the optical element 120 indicated by the control signal is an integer multiple of V1.
  • the pulse signal generating unit 60 inserts an additional pulse 15 into the pulse train 12 when the speed of the optical element 120 indicated by the control signal is a value obtained by adding 0.5 x V1 to an integer multiple of V1.
  • the pulse signal generating unit 60 may insert multiple additional pulses 15 into one pulse train 12.
  • the signal processing unit 40 may control the speed of the optical element 120 indicated by the control signal with a resolution of V1.
  • the speed of the optical element 120 indicated by the control signal is an integer multiple of V1.
  • the pulse signal generating unit 60 may automatically perform a process of inserting an additional pulse 15 when the speed of the optical element 120 indicated by the control signal changes.
  • FIG. 9 is a diagram showing an example of the operation of the pulse signal generating unit 60.
  • the speed of the optical element 120 is changed from a first speed to a second speed.
  • the first speed is 4 ⁇ V1
  • the second speed is 5 ⁇ V1.
  • the first speed and the second speed are integer multiples of the speed V1 corresponding to one first pulse 14.
  • the control signal output by the signal processing unit 40 in this example transitions from a control signal indicating the first speed to a control signal indicating the second speed.
  • the pulse signal generating unit 60 in this example sequentially generates a pre-change pulse signal corresponding to the first speed, an intermediate pulse signal corresponding to a speed between the first speed and the second speed, and a post-change pulse signal corresponding to the second speed.
  • the pre-change pulse signal includes a number of first pulses 14 (e.g., four) according to the first speed, and does not include additional pulses 15.
  • the pulse signal generating unit 60 generates an intermediate pulse signal after generating the pre-modified pulse signal and before generating the post-modified pulse signal.
  • the intermediate pulse signal is a signal in which one or more additional pulses 15 are added to the pre-modified pulse signal.
  • the pulse signal generating unit 60 After generating the intermediate pulse signal, the pulse signal generating unit 60 generates a modified pulse signal that includes a number of first pulses 14 (e.g., five) according to the second speed.
  • the modified pulse signal does not include the additional pulses 15.
  • the pulse signal generating unit 60 may generate pulse signals in the order of the changed pulse signal, the intermediate pulse signal, and the pulse signal before the change shown in FIG. 9. In other words, when decreasing the moving speed of the optical element 120, the pulse signal generating unit 60 inserts an additional pulse 15 in place of any of the first pulses 14 contained in the pulse signal before the speed reduction. Next, the pulse signal generating unit 60 can generate a pulse signal after the speed reduction by deleting the additional pulse 15.
  • FIG. 10 is a diagram showing the relationship between the number of first pulses 14 included in the pulse train 12 and the sound pressure of the drive sound in a reference example.
  • the additional pulses 15 are not used. In this case, each time the number of first pulses 14 included in the pulse train 12 is changed, a relatively loud drive sound is generated.
  • FIG. 11 is a diagram showing the relationship between the number of pulses included in the pulse train 12 and the sound pressure of the drive sound in the embodiment.
  • one first pulse 14 is counted as a pulse number of "1," and one additional pulse 15 is counted as a pulse number of "0.5.”
  • the pulse number corresponds to the moving speed of the optical element 120.
  • the resolution of the number of pulses included in the pulse train 12 (the moving speed of the optical element 120) can be improved. This makes it possible to reduce the volume of the drive noise generated by one speed change, and to suppress the peak value of the drive noise.
  • the additional pulse generating unit 68 may generate the additional pulse 15 in a period that does not overlap with any of the first pulses 14. As shown in FIG. 8 etc., the additional pulse generating unit 68 may generate the additional pulse 15 in a period after the period in which one or more first pulses 14 are generated in the modulation period T. In another example, the additional pulse generating unit 68 may generate the additional pulse 15 in a period before the period in which one or more first pulses 14 are generated. In another example, the additional pulse generating unit 68 may generate the additional pulse 15 in a period that overlaps with any of the first pulses 14.
  • FIG. 12 is a diagram showing an example of the timing for inserting an additional pulse 15.
  • the additional pulse generating unit 68 generates an additional pulse 15 at a timing that overlaps with the earliest first pulse 14 among one or more first pulses 14 included in the modulation period T.
  • the additional pulse 15 may overlap with multiple first pulses 14.
  • FIG. 13 is a diagram showing another example of the timing for inserting an additional pulse 15.
  • the additional pulse generating unit 68 generates an additional pulse 15 at a timing that does not overlap with either the earliest or latest first pulse 14 among one or more first pulses 14 included in the modulation period T.
  • the additional pulse 15 may overlap with a first pulse 14 that is located in the center on the time axis among the one or more first pulses 14.
  • the additional pulse 15 may overlap with multiple first pulses 14.
  • FIG. 14 is a diagram showing another example of the timing for inserting an additional pulse 15.
  • the additional pulse generating unit 68 generates an additional pulse 15 at a timing that overlaps with the latest first pulse 14 among one or more first pulses 14 included in the modulation period T.
  • the additional pulse 15 may overlap with multiple first pulses 14.
  • FIG. 15 is a diagram showing another example of the additional pulse 15.
  • the additional pulse generating unit 68 in this example generates an additional pulse 15 having a smaller amplitude than the first pulse 14.
  • FIG. 15 shows an example in which the additional pulse 15 is automatically inserted, similar to the example shown in FIG. 9.
  • the additional pulse 15 in this example can also be applied to examples other than FIG. 9.
  • the pulse width of the additional pulse 15 may be the same as or different from that of the first pulse 14.
  • the other processing is the same as any of the forms described in this specification. This type of processing can also gradually change the moving speed of the optical element 120, and suppress the peak value of the drive sound.
  • the ratio (A2/A1) of the amplitude A2 of the additional pulse 15 to the amplitude A1 of the first pulse 14 is R.
  • the amount of change in the movement speed of the optical element 120 due to the additional pulse 15 is approximately R x V1.
  • the amplitude of the additional pulse 15 may be 50% of that of the first pulse 14. In this case, the amount of change in the movement speed of the optical element 120 due to the additional pulse 15 is 0.5 x V1.
  • the ratio R may be less than 1 or may be greater than 1. If the ratio R is greater than 1, the pulse width of the additional pulse 15 may be made smaller than the pulse width of the first pulse 14. This allows for fine control of the amount of change in the movement speed of the optical element 120.
  • FIGS. 16 is a chart diagram outlining the driving method for driving the piezoelectric actuator 110 described in FIGS. 1 to 15.
  • the detection position and target position of the optical element 120 are acquired (S1202).
  • a control signal for controlling the movement speed of the optical element 120 is generated based on the difference between the detection position and the target position (S1204).
  • a pulse signal (or drive signal) for driving the piezoelectric actuator is generated based on the control signal (S1206).
  • S1206 As described in FIGS.
  • a pulse signal in the driving method of this example, in the step of generating a pulse signal (S1206), a pulse signal can be generated that includes one or more first pulses 14 and one or more additional pulses 15 that differ from the first pulses 14 in at least one of the pulse width and amplitude for one movement speed indicated by the control signal.
  • FIG. 17 is a diagram showing another example of the configuration of the drive circuit 10.
  • the drive circuit 10 of this example differs from the drive circuit 10 in the examples described in FIGS. 1 to 16 in that it includes a filter unit 70.
  • the configuration other than the filter unit 70 is the same as any of the aspects described in FIGS. 1 to 16.
  • the filter unit 70 may be included in the drive unit 50, or may be provided outside the drive unit 50.
  • the drive unit 50 generates a drive signal that controls the movement speed of the optical element 120 based on the difference between the detected position and the target position.
  • the filter unit 70 suppresses the frequency of fluctuations in the movement speed caused by the drive signal. In other words, the filter unit 70 reduces the frequency of fluctuations in the movement speed of the optical element 120 compared to when the filter unit 70 is not provided. This makes it possible to suppress the generation of drive noise as described in FIG. 5.
  • frequency refers to the number of times per unit time.
  • the frequency of fluctuations in the movement speed refers to the number of times the movement speed is changed per unit time.
  • the drive noise can also be suppressed by reducing the amount of change in one change in the movement speed.
  • the frequency of fluctuations in the movement speed is also suppressed by providing a filter unit 70. This makes it possible to further suppress the drive noise.
  • the operation of the filter unit 70 will be mainly explained, but the pulse signal generating unit 60 may combine the insertion process of the additional pulse 15 explained in Figures 1 to 16 with the processing by the filter unit 70. However, the pulse signal generating unit 60 does not have to perform the insertion process of the additional pulse 15 explained in Figures 1 to 16.
  • the drive noise can be suppressed by only performing the processing by the filter unit 70 without performing the insertion process of the additional pulse 15.
  • the filter unit 70 may be provided at any position in the drive circuit 10 as long as the frequency of fluctuations in the moving speed of the optical element 120 can be reduced compared to when the filter unit 70 is not provided.
  • the filter unit 70 may be provided in front of the drive unit 50 to suppress fluctuations in the detection position. In this case, fluctuations in the relative position between the detection position and the target position are suppressed, and as a result, fluctuations in the number of first pulses 14 included in the pulse train 12 are suppressed, and the frequency of fluctuations in the moving speed of the optical element 120 is suppressed.
  • the filter unit 70 may be provided inside the drive unit 50 to control the frequency of fluctuations in the number of first pulses 14 included in the pulse train 12 to be lower than the frequency of fluctuations in the relative position between the detection position and the target position.
  • the filter unit 70 may be provided in the rear of the drive unit 50 to suppress the frequency of fluctuations in the number of first pulses 14 included in the modulation period T in the generated drive signal.
  • the filter unit 70 of this example suppresses the frequency of changes to the pulse trains 12 in the pulse signal generating unit 60.
  • the filter unit 70 suppresses the frequency of changes to the number of first pulses 14 included in one pulse train 12. Since the number of first pulses 14 included in one pulse train 12 corresponds to the moving speed of the optical element 120, the frequency of changes to the moving speed of the optical element 120 can be suppressed by suppressing the frequency of changes to the number of first pulses 14.
  • the filter unit 70 may suppress the frequency of changes to the number of first pulses 14 included in one pulse train 12 by suppressing the frequency of changes to the period W of the modulated signal.
  • FIG. 18 is a diagram showing an example of the configuration of the pulse signal generating unit 60.
  • the pulse signal generating unit 60 of this example differs from the example of FIG. 7 in that it further includes a filter unit 70.
  • the other structures are similar to the example of FIG. 7. If the pulse signal generating unit 60 does not perform the process of inserting the additional pulse 15 described in FIG. 1 to FIG. 16, the pulse signal generating unit 60 does not need to include the additional pulse generating unit 68.
  • the filter unit 70 attenuates components in the fluctuation frequency of the movement speed of the optical element 120 that are equal to or higher than the operating frequency band of the piezoelectric actuator 110.
  • the filter unit 70 in this example attenuates components in the control signal that are equal to or higher than the operating frequency band of the piezoelectric actuator 110.
  • the filter unit 70 may attenuate components in the fluctuation frequency of the movement speed of the optical element 120 that are equal to or higher than the lower limit of the operating frequency band of the piezoelectric actuator 110.
  • the cutoff frequency in the filter unit 70 may be the upper limit or lower limit of the operating frequency band of the piezoelectric actuator 110.
  • the operating frequency band of the piezoelectric actuator 110 may use the specification value provided by the manufacturer of the piezoelectric actuator 110. This type of control makes it possible to suppress the drive noise while maintaining the operating speed of the piezoelectric actuator 110 at a constant level or higher.
  • the pulse signal generating unit 60 in this example has a first modulation unit 62 and a second modulation unit 64, but the pulse signal generating unit 60 in other examples may have the first modulation unit 62 and not the second modulation unit 64.
  • the first modulation unit 62 adjusts the pulse width of each pulse of the oscillation signal according to the control signal. Specifically, when a control signal for accelerating the optical element 120 is input, the first modulation unit 62 increases the pulse width of the oscillation signal, and when a control signal for decelerating the optical element 120 is input, the first modulation unit 62 decreases the pulse width of the oscillation signal. Even in this case, the filter unit 70 suppresses the fluctuation of the control signal, thereby suppressing the fluctuation of the moving speed of the optical element 120 and suppressing the drive noise.
  • FIG. 19 is a diagram illustrating an example of the operation of the filter unit 70.
  • the vertical axis in FIG. 19 indicates the moving speed of the optical element 120 in response to the control signal.
  • the horizontal axis in FIG. 19 indicates time.
  • the solid line indicates the time waveform of the control signal when the filter unit 70 is used, and the dashed line indicates the time waveform of the control signal when the filter unit 70 is not used.
  • the filter unit 70 of this example suppresses the frequency of fluctuations in the movement speed in the direction that decreases the movement speed of the optical element 120.
  • the filter unit 70 delays the falling edge of the control signal by a predetermined time.
  • the delay time may be set by a filter setting value included in the filter setting signal.
  • the delay time may be greater than the operation period (PID cycle) of the signal processing unit 40.
  • the operation period of the signal processing unit 40 refers to the minimum period in which the value of the control signal output by the signal processing unit 40 can fluctuate.
  • the delay time may be the product of the filter setting value and the PID cycle.
  • the filter setting value may be a value of 2 or more.
  • the filter section 70 may suppress the frequency of fluctuations in the movement speed of the optical element 120 to a greater extent in a direction that decreases the movement speed of the optical element 120 than in a direction that increases the movement speed of the optical element 120.
  • the filter section 70 suppresses the frequency of changes in the pulse train 12 to a greater extent in a direction that decreases the movement speed of the optical element 120 than in a direction that increases the movement speed of the optical element 120.
  • the degree of suppression of the fluctuation frequency may be the ratio of the fluctuation frequency after suppression to the fluctuation frequency before suppression.
  • a strong degree of suppression means that the ratio of the fluctuation frequency after suppression to the fluctuation frequency before suppression is small.
  • a strong degree of suppression of the fluctuation frequency may also mean that the cutoff frequency in the filter section 70 is low.
  • the filter unit 70 may also delay the rising edge of the control signal as shown in FIG. 19 by a predetermined delay time. In this case, the delay time of the rising edge (in the direction in which the moving speed increases) may be shorter than the delay time of the falling edge (in the direction in which the moving speed decreases). In another example, the filter unit 70 may not delay the rising edge. That is, the filter unit 70 may suppress the frequency of fluctuations in the moving speed of the optical element 120 in the direction in which the moving speed decreases, while not suppressing the frequency of fluctuations in the moving speed of the optical element 120 in the direction in which the moving speed increases. This type of control prevents the movement of the optical element 120 from slowing down. Therefore, operations such as autofocus can be completed quickly and the operating noise can be suppressed.
  • the filter unit 70 may suppress the frequency of fluctuations in the movement speed of the optical element 120 in a direction that increases the movement speed of the optical element 120 more than the frequency of fluctuations in the movement speed of the optical element 120 in a direction that decreases the movement speed of the optical element 120. In this case, it becomes easier to decelerate the optical element 120. This makes it possible to suppress overshooting, in which the optical element 120 moves past the target position, while suppressing operation noise.
  • the filter unit 70 may suppress the frequency of fluctuations in the movement speed of the optical element 120 in a direction that increases the movement speed of the optical element 120, but may not suppress the frequency of fluctuations in the movement speed of the optical element 120 in a direction that decreases the movement speed of the optical element 120.
  • FIG. 20 is a diagram showing an example of the position of the optical element 120 and the waveform of a control signal.
  • FIG. 20 shows an example in which the filter section 70 is not used.
  • the detection position of the optical element 120 is shown by a solid line
  • the target position is shown by a dashed line.
  • the drive circuit 10 moves the optical element 120 toward the target position.
  • the detection position of the optical element 120 gradually approaches the target position.
  • the drive unit 50 attempts to increase the movement speed of the optical element 120.
  • the drive unit 50 decelerates the optical element 120.
  • FIG. 21 is a diagram showing an example of the position of the optical element 120 and the waveform of the control signal.
  • FIG. 21 shows an example in which a filter unit 70 is used.
  • the control signal shown in FIG. 21 is the control signal output by the filter unit 70.
  • the filter unit 70 in this example suppresses fluctuations in the waveform of the control signal. As a result, the waveform of the control signal in this example does not have vibrations as shown in FIG. 20. This makes it possible to suppress drive noise. Also, even if the filter unit 70 is provided, the transition of the detection position of the optical element 120 is almost the same as the example in FIG. 20.
  • the degree of suppression of the frequency of fluctuations in the moving speed of the optical element 120 in the direction of increasing the moving speed of the optical element 120 may be stronger than the degree of suppression of the frequency of fluctuations in the moving speed of the optical element 120 in the direction of decreasing the moving speed of the optical element 120.
  • the optical element 120 can be moved to the target position at high speed by prioritizing the acceleration of the optical element 120.
  • priority is given to decelerating the optical element 120, and overshooting of the movement of the optical element 120 can be suppressed. Therefore, the optical element 120 can be moved at high speed and with high accuracy while suppressing drive noise.
  • the filter unit 70 may compare the difference between the detected position and the target position of the optical element 120 with a set reference value and adjust the filter characteristics according to the comparison result. Based on the comparison result, the filter unit 70 adjusts the filter characteristics for at least one of the frequency of change in the moving speed in the direction to decrease the moving speed of the optical element 120 and the frequency of change in the moving speed in the direction to increase the moving speed. If the difference is greater than the reference value, the filter unit 70 may determine that the detected position of the optical element 120 is separated from the target position and perform the above-mentioned control, and if the difference is equal to or less than the reference value, may determine that the detected position of the optical element 120 has approached the target position and perform the above-mentioned control.
  • FIG. 22 is a diagram showing another example of the arrangement of the filter section 70.
  • the filter section 70 may be provided at least in one of the positions indicated by the dotted lines in FIG. 22.
  • the filter section 70 may be provided before or after the pre-processing section 20.
  • the filter section 70 suppresses fluctuations in the detection position of the optical element 120 detected by the position detection section 160. This type of processing can also suppress fluctuations in the movement speed of the optical element 120.
  • the pre-processing unit 20 converts the analog signal of the detection position detected by the position detection unit 160 into a digital signal. For example, the pre-processing unit 20 samples the analog signal at a predetermined period, converts the sampled analog value into a digital value, and records it. The pre-processing unit 20 updates the recorded digital value each time it obtains a new conversion result. The pre-processing unit 20 outputs the recorded digital value as the detection position.
  • the filter unit 70 may suppress the frequency with which the conversion result in the pre-processing unit 20 is updated. In other words, the filter unit 70 may suppress the frequency of fluctuations in the digital signal output by the pre-processing unit 20.
  • the filter unit 70 may be provided between the signal processing unit 40 and the pulse signal generating unit 60. In this case, the filter unit 70 suppresses fluctuations in the control signal output by the signal processing unit 40, similar to the example of FIG. 18.
  • the filter unit 70 may be provided between the pulse signal generating unit 60 and the driver 80. In this case, the filter unit 70 suppresses fluctuations in the number of first pulses 14 included in the pulse train 12 in the pulse signal output by the pulse signal generating unit 60.
  • the filter unit 70 may be provided after the driver 80. In this case, the filter unit 70 suppresses fluctuations in the number of first pulses 14 included in the pulse train 12 in the drive signal output by the driver 80.
  • FIG. 23 is a chart outlining the driving method for driving the piezoelectric actuator 110 described in FIGS. 17 to 22.
  • the driving method of this example includes a filtering step S1104 that suppresses the frequency of fluctuations in the moving speed of the optical element 120 due to the driving signal.
  • the filtering step S1104 may be performed between S1102 and S1106, after S1106, or during the processing of S1106.
  • a drive circuit for driving a piezoelectric actuator that moves an optical element a signal processing unit that generates a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved; a pulse signal generating unit that generates a pulse signal having a pulse train corresponding to the control signal and controls the moving speed according to the pulse train; Equipped with The pulse signal generating unit is capable of generating the pulse signal including, for one of the moving speeds indicated by the control signal, one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses.
  • the pulse signal generating unit When changing the moving speed of the optical element from a first speed to a second speed, The pulse signal generating unit generating a pre-change pulse signal including the first pulses in a number corresponding to the first speed, for the first speed; generating an intermediate pulse signal by adding one or more of the additional pulses to the unaltered pulse signal after generating the unaltered pulse signal; 3.
  • the drive circuit further comprising: a drive circuit for generating a changed pulse signal including a number of the first pulses according to the second speed after generating the intermediate pulse signal.
  • the pulse signal generating unit A first pulse generating unit that generates one or more of the first pulses; an additional pulse generating unit that generates one or more of the additional pulses; a logical OR circuit that outputs a logical OR of a pulse train of the first pulses generated by the first pulse generating unit and a pulse train of the additional pulses generated by the additional pulse generating unit.
  • the first pulse generating unit is A first modulation unit that generates an oscillation signal including one or more of the first pulses; a second modulation unit that generates a modulation signal having a pulse width that is an integer multiple of the period of the oscillation signal; and a logical product circuit that outputs a logical product of the oscillation signal and the modulation signal.
  • the additional pulse generating section generates the additional pulse during a period overlapping with at least one of the first pulses. (Item 9) 2.
  • An optical unit comprising: an optical element; a piezoelectric actuator that moves the optical element; and a drive circuit that drives the piezoelectric actuator,
  • the drive circuit includes: a signal processing unit that generates a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved; a pulse signal generating unit that generates a pulse signal having a pulse train corresponding to the control signal and controls the moving speed according to the pulse train; having the pulse signal generating unit is capable of generating, for one of the moving speeds indicated by the control signal, the pulse signal including one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses.
  • a method for driving a piezoelectric actuator that moves an optical element comprising the steps of: generating a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the detected optical element and a target position to which the optical element should be moved; generating a pulse signal having a pulse train corresponding to the control signal, and controlling the moving speed corresponding to the pulse train;
  • the driving method is capable of generating the pulse signal including one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses for one of the moving speeds indicated by the control signal.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Provided is a drive circuit that drives a piezoelectric actuator for driving an optical element, the drive circuit comprising: a drive unit that, on the basis of a detection position indicating the detected position of the optical element and a target position to which the optical element is to move, generates a drive signal for controlling the movement speed of the optical element; and a filter unit that suppresses the frequency of fluctuation of the movement speed due to the drive signal. The filter unit may dampen components higher than 100 Hz within the frequency of fluctuation of the movement speed.

Description

駆動回路、光学ユニットおよび駆動方法Driving circuit, optical unit and driving method
 本発明は、駆動回路、光学ユニットおよび駆動方法に関する。 The present invention relates to a drive circuit, an optical unit, and a drive method.
 従来、圧電アクチュエータによりレンズを駆動する技術が知られている(例えば特許文献1参照)。
[先行技術文献]
[特許文献]
 [特許文献1]特開2005-354854号公報
A technique for driving a lens by a piezoelectric actuator is known (see, for example, Japanese Patent Application Laid-Open No. 2003-233663).
[Prior Art Literature]
[Patent Documents]
[Patent Document 1] JP 2005-354854 A
解決しようとする課題Problem to be solved
 圧電アクチュエータによりレンズを駆動したときの駆動音の発生を抑制する。  Suppresses the generation of drive noise when the lens is driven by a piezoelectric actuator.
一般的開示General Disclosure
 本発明の1つの態様においては、光学素子を移動させる圧電アクチュエータを駆動する駆動回路を提供する。上記駆動回路は、検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する駆動信号を生成する駆動部を備えてよい。上記駆動回路は、前記駆動信号による前記移動速度の変動頻度を抑制するフィルタ部を備えてよい。 In one aspect of the present invention, a drive circuit is provided that drives a piezoelectric actuator that moves an optical element. The drive circuit may include a drive section that generates a drive signal that controls the movement speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element should move. The drive circuit may include a filter section that suppresses the frequency of fluctuations in the movement speed due to the drive signal.
 上記いずれかの駆動回路において、前記フィルタ部は、前記移動速度の変動頻度における、前記圧電アクチュエータの動作周波数帯域以上の成分を減衰させてよい。 In any of the drive circuits described above, the filter section may attenuate components of the fluctuation frequency of the movement speed that are equal to or higher than the operating frequency band of the piezoelectric actuator.
 上記いずれかの駆動回路において、前記フィルタ部は、前記移動速度の変動頻度における、100Hzより大きい成分を減衰させてよい。 In any of the drive circuits described above, the filter unit may attenuate components in the fluctuation frequency of the movement speed that are greater than 100 Hz.
 上記いずれかの駆動回路において、前記駆動部は、前記検出位置と前記目標位置との差分に応じたパルス列を有するパルス信号を生成するパルス信号生成部を有してよい。上記いずれかの駆動回路において、前記駆動部は、前記パルス信号に応じた前記駆動信号を出力するドライバを有してよい。上記いずれかの駆動回路において、前記フィルタ部は、前記パルス信号生成部における前記パルス列の変更頻度を抑制してよい。 In any of the drive circuits described above, the drive unit may have a pulse signal generation unit that generates a pulse signal having a pulse train corresponding to the difference between the detection position and the target position. In any of the drive circuits described above, the drive unit may have a driver that outputs the drive signal corresponding to the pulse signal. In any of the drive circuits described above, the filter unit may suppress the frequency of changes to the pulse train in the pulse signal generation unit.
 上記いずれかの駆動回路において、前記フィルタ部は、前記移動速度を減少させる方向の前記パルス列の変更頻度に対する抑制度合いを、前記移動速度を増加させる方向の前記パルス列の変更頻度に対する抑制度合いよりも強くしてよい。 In any of the drive circuits described above, the filter unit may suppress the frequency of changes in the pulse train in a direction that decreases the moving speed more strongly than the frequency of changes in the pulse train in a direction that increases the moving speed.
 上記いずれかの駆動回路において、前記フィルタ部は、前記移動速度を減少させる方向の前記パルス列の変更頻度を抑制し、且つ、前記移動速度を増加させる方向の前記パルス列の変更頻度を抑制しなくてよい。 In any of the drive circuits described above, the filter unit may suppress the frequency of changes in the pulse train in a direction that decreases the moving speed, and may not suppress the frequency of changes in the pulse train in a direction that increases the moving speed.
 上記いずれかの駆動回路において、前記検出位置を示す信号をAD変換して前記駆動部に入力する前処理部を備えてよい。上記いずれかの駆動回路において、前記フィルタ部は、前記前処理部における変換結果を更新する頻度を抑制してよい。 Any of the drive circuits described above may include a pre-processing unit that AD converts the signal indicating the detection position and inputs it to the drive unit. In any of the drive circuits described above, the filter unit may suppress the frequency at which the conversion result in the pre-processing unit is updated.
 上記いずれかの駆動回路において、前記フィルタ部は、前記検出位置と前記目標位置との差分に基づいて、フィルタ特性を調整してよい。 In any of the drive circuits described above, the filter section may adjust the filter characteristics based on the difference between the detected position and the target position.
 上記いずれかの駆動回路において、前記フィルタ部は、前記差分と、設定された基準値との比較結果に基づいて、前記移動速度を減少させる方向の前記移動速度の変更頻度、および、前記移動速度を増加させる方向の前記移動速度の変更頻度の少なくとも一方に対するフィルタ特性を調整してよい。 In any of the drive circuits described above, the filter section may adjust the filter characteristics for at least one of the frequency of change in the moving speed in a direction that decreases the moving speed and the frequency of change in the moving speed in a direction that increases the moving speed, based on a comparison result between the difference and a set reference value.
 上記いずれかの駆動回路において、前記駆動部は、前記検出位置と前記目標位置とに基づいてPID制御を行い、前記駆動信号を生成してよい。 In any of the drive circuits described above, the drive unit may perform PID control based on the detected position and the target position to generate the drive signal.
 上記いずれかの駆動回路において、前記光学素子の位置を検出し、前記検出位置を示す信号を生成する位置検出部を備えてよい。 Any of the above drive circuits may include a position detection unit that detects the position of the optical element and generates a signal indicative of the detected position.
 上記いずれかの駆動回路において、前記駆動信号を昇圧させて前記圧電アクチュエータに供給する昇圧部を備えてよい。 Any of the drive circuits described above may include a boosting section that boosts the drive signal and supplies it to the piezoelectric actuator.
 上記いずれかの駆動回路において、前記駆動部は、検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成する信号処理部を有してよい。上記いずれかの駆動回路において、前記パルス信号生成部は、前記制御信号に応じた前記パルス列を有する前記パルス信号を生成してよい。上記いずれかの駆動回路において、前記パルス信号生成部は、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能であってよい。 In any of the drive circuits described above, the drive unit may have a signal processing unit that generates a control signal to control the movement speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element is to move. In any of the drive circuits described above, the pulse signal generation unit may generate the pulse signal having the pulse train according to the control signal. In any of the drive circuits described above, the pulse signal generation unit may be capable of generating, for one of the movement speeds indicated by the control signal, the pulse signal including one or more first pulses and one or more additional pulses differing from the first pulses in at least one of the pulse width and amplitude.
 上記いずれかの駆動回路において、前記追加パルスは、前記第1パルスよりもパルス幅が大きくてよい。 In any of the drive circuits described above, the additional pulse may have a pulse width greater than that of the first pulse.
 上記いずれかの駆動回路において、前記追加パルスは、前記第1パルスに対して2倍以上のパルス幅を有してよい。 In any of the drive circuits described above, the additional pulse may have a pulse width that is at least twice as long as that of the first pulse.
 上記いずれかの駆動回路において、前記光学素子の前記移動速度を第1の速度から第2の速度に変更する場合に、前記パルス信号生成部は、前記第1の速度に対して、前記第1の速度に応じた個数の前記第1パルスを含む変更前のパルス信号を生成してよい。上記いずれかの駆動回路において、前記パルス信号生成部は、前記変更前のパルス信号を生成した後に、前記変更前のパルス信号に1つ以上の前記追加パルスを追加した中間のパルス信号を生成してよい。上記いずれかの駆動回路において、前記パルス信号生成部は、前記中間のパルス信号を生成した後に、前記第2の速度に応じた個数の前記第1パルスを含む変更後のパルス信号を生成してよい。 In any of the drive circuits described above, when the moving speed of the optical element is changed from a first speed to a second speed, the pulse signal generating unit may generate a pre-change pulse signal for the first speed, the pulse signal including a number of the first pulses corresponding to the first speed. In any of the drive circuits described above, the pulse signal generating unit may generate an intermediate pulse signal by adding one or more of the additional pulses to the pre-change pulse signal, after generating the pre-change pulse signal. In any of the drive circuits described above, the pulse signal generating unit may generate a post-change pulse signal including a number of the first pulses corresponding to the second speed, after generating the intermediate pulse signal.
 上記いずれかの駆動回路において、前記パルス信号生成部は、1つ以上の前記第1パルスを生成する第1パルス生成部を有してよい。上記いずれかの駆動回路において、前記パルス信号生成部は、1つ以上の前記追加パルスを生成する追加パルス生成部を有してよい。上記いずれかの駆動回路において、前記パルス信号生成部は、前記第1パルス生成部が生成した前記第1パルスのパルス列と、前記追加パルス生成部が生成した前記追加パルスのパルス列との論理和を出力する論理和回路を有してよい。 In any of the drive circuits described above, the pulse signal generating section may have a first pulse generating section that generates one or more of the first pulses. In any of the drive circuits described above, the pulse signal generating section may have an additional pulse generating section that generates one or more of the additional pulses. In any of the drive circuits described above, the pulse signal generating section may have a logical OR circuit that outputs the logical OR of the pulse train of the first pulses generated by the first pulse generating section and the pulse train of the additional pulses generated by the additional pulse generating section.
 本発明の第2の態様においては、光学素子を移動させる圧電アクチュエータを駆動する駆動回路を提供する。上記駆動回路は、検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成する信号処理部を備えてよい。上記いずれかの駆動回路は、前記制御信号に応じたパルス列を有するパルス信号を生成し、前記パルス列に応じて前記移動速度を制御するパルス信号生成部を備えてよい。上記いずれかの駆動回路において前記パルス信号生成部は、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能であってよい。 In a second aspect of the present invention, a drive circuit is provided that drives a piezoelectric actuator that moves an optical element. The drive circuit may include a signal processing unit that generates a control signal that controls the movement speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element is to move. Any of the drive circuits may include a pulse signal generation unit that generates a pulse signal having a pulse train according to the control signal and controls the movement speed according to the pulse train. In any of the drive circuits, the pulse signal generation unit may be capable of generating the pulse signal including one or more first pulses and one or more additional pulses that differ from the first pulses in at least one of the pulse width and amplitude, for one of the movement speeds indicated by the control signal.
 本発明の第3の態様においては、光学素子と、前記光学素子を移動させる圧電アクチュエータと、前記圧電アクチュエータを駆動する上記第1の態様に係る駆動回路とを備える光学ユニットを提供する。 In a third aspect of the present invention, an optical unit is provided that includes an optical element, a piezoelectric actuator that moves the optical element, and a drive circuit according to the first aspect that drives the piezoelectric actuator.
 本発明の第4の態様においては、光学素子を移動させる圧電アクチュエータを駆動する駆動方法を提供する。上記起動方法は、検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する駆動信号を生成してよい。上記駆動方法は、前記駆動信号による前記移動速度の変動頻度を抑制してよい。 In a fourth aspect of the present invention, there is provided a driving method for driving a piezoelectric actuator that moves an optical element. The above-mentioned activation method may generate a driving signal that controls the moving speed of the optical element based on the difference between a detected position indicating the detected position of the optical element and a target position to which the optical element should move. The above-mentioned driving method may suppress the frequency of fluctuations in the moving speed due to the driving signal.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The above summary of the invention does not list all of the features of the present invention. Also, subcombinations of these features may also be inventions.
本発明の一つの実施形態に係る光学ユニット100の一例を示す図である。FIG. 1 is a diagram showing an example of an optical unit 100 according to an embodiment of the present invention. 駆動回路10が生成する駆動信号の一例を説明する図である。3A to 3C are diagrams illustrating an example of a drive signal generated by a drive circuit 10. 昇圧部170の動作例を説明する図である。4A to 4C are diagrams illustrating an example of the operation of the booster 170. パルス列12に含まれる第1パルス14の個数と、光学素子120の位置との関係の一例を示す図である。1 is a diagram showing an example of the relationship between the number of first pulses 14 included in a pulse train 12 and the position of an optical element 120. FIG. パルス列12に含まれる第1パルス14の個数と、駆動音の音圧との関係の一例を示す図である。1 is a diagram showing an example of the relationship between the number of first pulses 14 included in a pulse train 12 and the sound pressure of the drive sound. 駆動回路10の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a drive circuit 10. パルス信号生成部60の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a pulse signal generating unit 60. 第1パルス14、追加パルス15およびパルス信号の一例を示す図である。1A and 1B are diagrams showing an example of a first pulse 14, an additional pulse 15, and a pulse signal. パルス信号生成部60の動作例を示す図である。6A to 6C are diagrams illustrating an example of the operation of a pulse signal generating unit 60. 参考例における、パルス列12に含まれる第1パルス14の個数と、駆動音の音圧との関係を示す図である。11 is a diagram showing the relationship between the number of first pulses 14 included in a pulse train 12 and the sound pressure of the driving sound in a reference example. FIG. 実施例における、パルス列12に含まれるパルスの個数と、駆動音の音圧との関係を示す図である。FIG. 11 is a diagram showing the relationship between the number of pulses included in a pulse train 12 and the sound pressure of the driving sound in the embodiment. 追加パルス15を挿入するタイミングの一例を示す図である。FIG. 13 is a diagram showing an example of the timing for inserting an additional pulse 15. 追加パルス15を挿入するタイミングの他の例を示す図である。FIG. 11 is a diagram showing another example of the timing for inserting the additional pulse 15. 追加パルス15を挿入するタイミングの他の例を示す図である。FIG. 11 is a diagram showing another example of the timing for inserting the additional pulse 15. 追加パルス15の他の例を示す図である。13A and 13B are diagrams showing other examples of the additional pulse 15. 図1から図15において説明した圧電アクチュエータ110を駆動する駆動方法の概要を説明するチャート図である。FIG. 16 is a chart outlining a method for driving the piezoelectric actuator 110 described with reference to FIGS. 1 to 15. 駆動回路10の他の構成例を示す図である。FIG. 4 is a diagram showing another example of the configuration of the drive circuit 10. パルス信号生成部60の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a pulse signal generating unit 60. フィルタ部70の動作例を説明する図である。10A to 10C are diagrams illustrating an example of the operation of a filter unit 70. 光学素子120の位置と、制御信号の波形の一例を示す図である。11 is a diagram showing an example of the position of the optical element 120 and the waveform of a control signal. 光学素子120の位置と、制御信号の波形の一例を示す図である。11 is a diagram showing an example of the position of the optical element 120 and the waveform of a control signal. フィルタ部70の他の配置例を示す図である。13A and 13B are diagrams illustrating other exemplary arrangements of the filter section 70. 図17から図22において説明した圧電アクチュエータ110を駆動する駆動方法の概要を説明するチャート図である。FIG. 23 is a chart outlining a method for driving the piezoelectric actuator 110 described with reference to FIGS. 17 to 22.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 The present invention will be described below through embodiments of the invention, but the following embodiments do not limit the scope of the invention as claimed. Furthermore, not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention.
 本明細書においては、レンズの光軸と平行な方向における一方の側を「上」、他方の側を「下」と称する場合がある。「上」、「下」の方向は、重力方向と平行な方向には限定されない。 In this specification, one side in a direction parallel to the optical axis of the lens may be referred to as "upper" and the other side as "lower." The directions of "upper" and "lower" are not limited to directions parallel to the direction of gravity.
 本明細書において「同一」または「等しい」のように大きさまたは量を説明した場合、製造ばらつき等に起因する誤差を有する場合も包含してよい。当該誤差は、例えば5%以内である。また、「平行」、「垂直」、「直交」のように角度を説明した場合、製造ばらつき等に起因する誤差を有する場合も包含してよい。当該誤差は、例えば5度以内である。 In this specification, when size or quantity is described as "same" or "equal," this may include cases where there is an error due to manufacturing variations, etc. Such errors are within 5%, for example. In addition, when angles are described as "parallel," "perpendicular," or "orthogonal," this may also include cases where there is an error due to manufacturing variations, etc. Such errors are within 5 degrees, for example.
 図1は、本発明の一つの実施形態に係る光学ユニット100の一例を示す図である。光学ユニット100は、光学素子120と、圧電アクチュエータ110と、駆動回路10とを備える。光学素子120は、例えばレンズであるがこれに限定されない。光学素子120は、入射光に応じた出射光を生成する素子であってよく、入射光に応じて動作する素子であってもよい。入射光に応じた出射光を生成する素子としては、光の進行方向を変化させる素子、光の偏光方向を変化させる素子、光の波長成分を変化させる素子、光の強度を変化させる素子等があげられる。入射光に応じて動作する素子としては、入射光を電気信号に変化するイメージセンサ等があげられる。 FIG. 1 is a diagram showing an example of an optical unit 100 according to an embodiment of the present invention. The optical unit 100 includes an optical element 120, a piezoelectric actuator 110, and a drive circuit 10. The optical element 120 is, for example, a lens, but is not limited to this. The optical element 120 may be an element that generates outgoing light in response to incident light, or an element that operates in response to incident light. Examples of elements that generate outgoing light in response to incident light include elements that change the direction of travel of light, elements that change the polarization direction of light, elements that change the wavelength components of light, and elements that change the intensity of light. Examples of elements that operate in response to incident light include image sensors that convert incident light into electrical signals.
 圧電アクチュエータ110は、入力される電気信号に応じて変形または振動することで、光学素子120を移動させる。圧電アクチュエータ110は、電気信号に応じて変形または振動するピエゾ部を含んでよい。本例の圧電アクチュエータ110は、シャフト114を移動させる。シャフト114には光学素子120が固定されている。従って、シャフト114を移動させることで、光学素子120を移動できる。本例の圧電アクチュエータ110は、シャフト114の長手方向に、シャフト114を移動させる。図1では、光学素子120およびシャフト114の移動方向を矢印で示している。本例の圧電アクチュエータ110は、光学素子120およびシャフト114を、移動方向の正(+)方向および負(-)方向のいずれにも移動可能である。一例として圧電アクチュエータ110は、カメラにおけるオートフォーカス機能を実現するように、光学素子120を移動させる。ただし圧電アクチュエータ110の用途はこれに限定されない。また光学素子120等の移動方向は、直線方向に限定されない。 The piezoelectric actuator 110 moves the optical element 120 by deforming or vibrating in response to an input electrical signal. The piezoelectric actuator 110 may include a piezoelectric portion that deforms or vibrates in response to an electrical signal. The piezoelectric actuator 110 of this example moves the shaft 114. The optical element 120 is fixed to the shaft 114. Therefore, the optical element 120 can be moved by moving the shaft 114. The piezoelectric actuator 110 of this example moves the shaft 114 in the longitudinal direction of the shaft 114. In FIG. 1, the movement direction of the optical element 120 and the shaft 114 is indicated by an arrow. The piezoelectric actuator 110 of this example can move the optical element 120 and the shaft 114 in both the positive (+) direction and the negative (-) direction of the movement direction. As an example, the piezoelectric actuator 110 moves the optical element 120 to realize an autofocus function in a camera. However, the use of the piezoelectric actuator 110 is not limited to this. Furthermore, the movement direction of the optical element 120, etc. is not limited to a linear direction.
 駆動回路10は、圧電アクチュエータ110を駆動する。駆動回路10は、圧電アクチュエータ110を駆動するための駆動信号を生成する。本例の駆動回路10には、移動方向における、光学素子120の現在の位置を示す検出位置と、光学素子120が移動すべき目標位置とが入力される。駆動回路10は、検出位置および目標位置との差分に基づいて、光学素子120の移動速度を制御する駆動信号を生成する。光学素子120の移動速度には、移動の方向(正または負)と、速度の絶対値とが含まれてよい。駆動回路10は、移動方向において、検出位置に対して目標位置が正または負のいずれの方向に配置されているかと、検出位置および目標位置の差分の絶対値とに基づいて、駆動信号を生成してよい。 The drive circuit 10 drives the piezoelectric actuator 110. The drive circuit 10 generates a drive signal for driving the piezoelectric actuator 110. In this example, the drive circuit 10 is input with a detection position indicating the current position of the optical element 120 in the movement direction, and a target position to which the optical element 120 should move. The drive circuit 10 generates a drive signal for controlling the movement speed of the optical element 120 based on the difference between the detection position and the target position. The movement speed of the optical element 120 may include the direction of movement (positive or negative) and the absolute value of the speed. The drive circuit 10 may generate a drive signal based on whether the target position is located in the positive or negative direction with respect to the detection position in the movement direction, and the absolute value of the difference between the detection position and the target position.
 光学ユニット100は、駆動信号を昇圧して圧電アクチュエータ110に供給する昇圧部170を備えてよい。昇圧部170は、インダクタおよび容量部を用いて駆動信号を昇圧してよい。昇圧部170は、インダクタおよび容量部の間で駆動信号を共振させることで、駆動信号を昇圧してよい。当該インダクタは、昇圧部170に設けられてよい。当該容量部は、昇圧部170に設けられていてよく、圧電アクチュエータ110に設けられていてもよい。容量部は、コンデンサ素子であってよく、圧電アクチュエータ110等における寄生容量であってもよい。 The optical unit 100 may include a boost section 170 that boosts the drive signal and supplies it to the piezoelectric actuator 110. The boost section 170 may boost the drive signal using an inductor and a capacitance section. The boost section 170 may boost the drive signal by resonating the drive signal between the inductor and the capacitance section. The inductor may be provided in the boost section 170. The capacitance section may be provided in the boost section 170 or in the piezoelectric actuator 110. The capacitance section may be a capacitor element or may be a parasitic capacitance in the piezoelectric actuator 110, etc.
 光学ユニット100は、画像取得部130、表示部140、画像処理部150および位置検出部160のうちの一部または全部を更に備えてよい。画像取得部130は、光学素子120を通過した光を受光し、受光した光に応じた画像データを生成する。例えば画像取得部130は、カメラの被写体の画像データを生成する撮像素子を含む。画像取得部130の撮像素子は例えばCMOSイメージセンサであるが、これに限定されない。なお、画像取得部130は、光学素子の一例でもある。図1の例では、圧電アクチュエータ110はレンズ(光学素子120)を画像取得部130に対して移動させているが、他の例の圧電アクチュエータ110は、画像取得部130をレンズ(光学素子120)に対して移動させてもよい。つまり圧電アクチュエータ110は、レンズと画像取得部130との相対位置を制御してよい。 The optical unit 100 may further include some or all of the image acquisition section 130, the display section 140, the image processing section 150, and the position detection section 160. The image acquisition section 130 receives light that has passed through the optical element 120 and generates image data according to the received light. For example, the image acquisition section 130 includes an imaging element that generates image data of a subject of the camera. The imaging element of the image acquisition section 130 is, for example, a CMOS image sensor, but is not limited to this. The image acquisition section 130 is also an example of an optical element. In the example of FIG. 1, the piezoelectric actuator 110 moves the lens (optical element 120) relative to the image acquisition section 130, but the piezoelectric actuator 110 in other examples may move the image acquisition section 130 relative to the lens (optical element 120). In other words, the piezoelectric actuator 110 may control the relative position between the lens and the image acquisition section 130.
 画像処理部150は、画像取得部130が生成した画像データに対して所定の処理を行う。本例の画像処理部150は、画像データに基づいて、光学素子120が移動すべき目標位置を算出してよい。例えば画像処理部150は、画像データのコントラストに基づいて目標位置を算出してよく(いわゆるコントラストオートフォーカス)、光学素子120を通過した光を2つに分岐し、それぞれの光による2つの画像の間隔に基づいて目標位置を算出してもよく(いわゆる位相差オートフォーカス)、他の方法で目標位置を算出してもよい。 The image processing unit 150 performs a predetermined process on the image data generated by the image acquisition unit 130. The image processing unit 150 in this example may calculate a target position to which the optical element 120 should move based on the image data. For example, the image processing unit 150 may calculate the target position based on the contrast of the image data (so-called contrast autofocus), may split the light that has passed through the optical element 120 into two and calculate the target position based on the distance between the two images created by each light (so-called phase difference autofocus), or may calculate the target position using another method.
 画像処理部150は、画像データに応じた画像を、表示部140に表示させてもよい。表示部140は、カメラに設けられた液晶ディスプレイまたは有機ELディスプレイ等のディスプレイであってよく、他のディスプレイであってもよい。 The image processing unit 150 may cause the display unit 140 to display an image corresponding to the image data. The display unit 140 may be a display such as a liquid crystal display or an organic EL display provided in the camera, or may be another display.
 位置検出部160は、光学素子120の移動方向における位置を検出する。位置検出部160は、光学素子120と位置検出部160との間における磁場に基づいて、光学素子120の位置を検出してよい。例えば固定部122に磁石等の磁場発生部が設けられ、位置検出部160にホール素子等の磁場検出部が設けられてよい。他の例では、固定部122に磁場検出部が設けられ、位置検出部160に磁場発生部が設けられてもよい。磁場発生部および磁場検出部は、移動方向における位置検出部160と固定部122との相対位置に応じて、検出される磁場の強度が変化するように設けられる。位置検出部160は、磁場検出部が検出した磁場の強度に基づいて、光学素子120の位置を算出してよい。 The position detection unit 160 detects the position of the optical element 120 in the movement direction. The position detection unit 160 may detect the position of the optical element 120 based on the magnetic field between the optical element 120 and the position detection unit 160. For example, a magnetic field generation unit such as a magnet may be provided in the fixed unit 122, and a magnetic field detection unit such as a Hall element may be provided in the position detection unit 160. In another example, a magnetic field detection unit may be provided in the fixed unit 122, and a magnetic field generation unit may be provided in the position detection unit 160. The magnetic field generation unit and the magnetic field detection unit are provided so that the strength of the detected magnetic field changes depending on the relative positions of the position detection unit 160 and the fixed unit 122 in the movement direction. The position detection unit 160 may calculate the position of the optical element 120 based on the strength of the magnetic field detected by the magnetic field detection unit.
 図2は、駆動回路10が生成する駆動信号の一例を説明する図である。図2では、駆動信号等の各信号の時間波形を示している。本例の駆動回路10は、第1パルス信号および第2パルス信号を生成する。第1パルス信号および第2パルス信号は、所定の変調周期T毎にパルス列12を有する。図2の例では、第1パルス信号はパルス列12-1を含み、第2パルス信号はパルス列12-2を含む。それぞれのパルス列12は、1つ以上の第1パルス14を含んでいる。パルス列12-1およびパルス列12-2は、同時にHレベルとならないように、互いに位相が異なっている。つまり一方のパルス列12が第1パルス14を有する期間は、他方のパルス列12は第1パルス14を有していない。パルス列12-1およびパルス列12-2は、同時にLレベルになる期間を有していてもよい。一例としてパルス列12-1およびパルス列12-2の周期は、半周期ずれていてよい。 2 is a diagram for explaining an example of a drive signal generated by the drive circuit 10. FIG. 2 shows the time waveforms of each signal such as the drive signal. The drive circuit 10 of this example generates a first pulse signal and a second pulse signal. The first pulse signal and the second pulse signal have a pulse train 12 for each predetermined modulation period T. In the example of FIG. 2, the first pulse signal includes a pulse train 12-1, and the second pulse signal includes a pulse train 12-2. Each pulse train 12 includes one or more first pulses 14. The pulse trains 12-1 and 12-2 are out of phase with each other so that they do not become H level at the same time. In other words, during a period in which one pulse train 12 has a first pulse 14, the other pulse train 12 does not have a first pulse 14. The pulse trains 12-1 and 12-2 may have a period in which they become L level at the same time. As an example, the periods of the pulse trains 12-1 and 12-2 may be shifted by half a period.
 駆動回路10は、各パルス信号に応じた駆動信号を生成してよい。本例の駆動回路10は、第1パルス信号に応じた第1駆動信号と、第2パルス信号に応じた第2駆動信号とを生成する。駆動信号は、パルス信号と同一パターンのパルス列を有する。駆動信号は、パルス信号が入力されたドライバが出力する信号であってよい。駆動信号は、パルス信号とは異なる振幅の信号であってよい。 The drive circuit 10 may generate a drive signal corresponding to each pulse signal. In this example, the drive circuit 10 generates a first drive signal corresponding to the first pulse signal and a second drive signal corresponding to the second pulse signal. The drive signal has a pulse train of the same pattern as the pulse signal. The drive signal may be a signal output by a driver to which a pulse signal is input. The drive signal may be a signal with a different amplitude from the pulse signal.
 圧電アクチュエータ110は、第1駆動信号が印加される第1圧電素子と、第2駆動信号が印加される第2圧電素子とを含んでよい。第1圧電素子および第2圧電素子は、例えばセラミックで形成されている。圧電アクチュエータ110は、第1圧電素子および第2圧電素子に接して設けられたステータ部を有してよい。ステータ部は、第1圧電素子および第2圧電素子の変形に応じて変形する。第1圧電素子および第2圧電素子に印加されるパルス列が半周期ずれているので、ステータ部のいずれかの表面には、第1圧電素子および第2圧電素子の変形に応じた進行波が発生する。圧電アクチュエータ110は、当該進行波によりシャフト114を移動させてよい。 The piezoelectric actuator 110 may include a first piezoelectric element to which a first drive signal is applied, and a second piezoelectric element to which a second drive signal is applied. The first and second piezoelectric elements are formed of, for example, ceramic. The piezoelectric actuator 110 may have a stator portion provided in contact with the first and second piezoelectric elements. The stator portion deforms in response to the deformation of the first and second piezoelectric elements. Since the pulse trains applied to the first and second piezoelectric elements are shifted by half a period, a traveling wave in response to the deformation of the first and second piezoelectric elements is generated on one of the surfaces of the stator portion. The piezoelectric actuator 110 may move the shaft 114 by the traveling wave.
 シャフト114の移動方向は、第1パルス列12-1および第2パルス列12-2のパルスの周期により変化する。駆動回路10は、シャフト114を移動させるべき方向に応じて、第1パルス列12-1および第2パルス列12-2のパルスの周期を変更してよい。駆動回路10には、光学素子120を移動方向の正方向に移動させるときのパルスの周期(第1周期)と、負方向に移動させるときのパルスの周期(第2周期)とが予め設定されてよい。 The direction of movement of the shaft 114 varies depending on the pulse periods of the first pulse train 12-1 and the second pulse train 12-2. The drive circuit 10 may change the pulse periods of the first pulse train 12-1 and the second pulse train 12-2 depending on the direction in which the shaft 114 should be moved. The drive circuit 10 may be preset with a pulse period (first period) when moving the optical element 120 in the positive direction of the movement direction, and a pulse period (second period) when moving the optical element 120 in the negative direction.
 シャフト114の移動速度の絶対値は、変調周期Tにおいてパルス列12に含まれる第1パルス14の個数により制御できる。パルス列12に含まれる第1パルス14の個数が多いほど、シャフト114の移動速度の絶対値は大きくなる。駆動回路10は、光学素子120を移動させるべき速度の絶対値に応じて、パルス列12に含まれる第1パルス14の個数を制御してよい。 The absolute value of the movement speed of the shaft 114 can be controlled by the number of first pulses 14 included in the pulse train 12 in the modulation period T. The greater the number of first pulses 14 included in the pulse train 12, the greater the absolute value of the movement speed of the shaft 114. The drive circuit 10 may control the number of first pulses 14 included in the pulse train 12 according to the absolute value of the speed at which the optical element 120 should be moved.
 本例の駆動回路10は、第1発振信号および第2発振信号を生成する。第1発振信号および第2発振信号は、互いに同一周期であり、且つ、半周期分位相が異なる信号である。駆動回路10は、パルス列12が有するべき周期(第1周期または第2周期)と同一周期の第1発振信号および第2発振信号を生成する。駆動回路10は、光学素子120を移動させるべき方向に応じて、第1発振信号および第2発振信号の周期を制御してよい。 The driving circuit 10 in this example generates a first oscillation signal and a second oscillation signal. The first oscillation signal and the second oscillation signal have the same period and differ in phase by half a period. The driving circuit 10 generates the first oscillation signal and the second oscillation signal with the same period as the period (first period or second period) that the pulse train 12 should have. The driving circuit 10 may control the periods of the first oscillation signal and the second oscillation signal depending on the direction in which the optical element 120 should be moved.
 本例の駆動回路10は、変調信号を生成する。変調信号は、変調周期Tにおいて所定の期間WだけHレベルを示し、他の期間ではLレベルを示す信号である。変調信号は、変調周期Tにおいて、パルス幅Wの単一のパルスを有してよい。駆動回路10は、変調信号と第1発振信号との論理積から第1パルス信号を生成し、変調信号と第2発振信号との論理積から第2パルス信号を生成する。 The driving circuit 10 of this example generates a modulation signal. The modulation signal is a signal that exhibits an H level only for a predetermined period W in a modulation cycle T, and exhibits an L level in other periods. The modulation signal may have a single pulse with a pulse width W in the modulation cycle T. The driving circuit 10 generates a first pulse signal from the logical product of the modulation signal and the first oscillation signal, and generates a second pulse signal from the logical product of the modulation signal and the second oscillation signal.
 本例の駆動回路10は、変調信号における期間Wを制御することで、それぞれのパルス信号のパルス列12に含まれる第1パルス14の個数を制御する。例えば期間Wを長くすることで、パルス列12に含まれる第1パルス14は多くなる。駆動回路10は、光学素子120を移動させるべき速度の絶対値に応じて、期間Wを制御してよい。なお本明細書においては、第1変調信号および第2変調信号を単に変調信号と称し、第1パルス信号および第2パルス信号を単にパルス信号と称し、第1駆動信号および第2駆動信号を単に駆動信号と称する場合がある。変調信号の期間Wは、パルス列12-1に含まれる第1パルス14の個数と、パルス列12-2に含まれる第1パルス14の個数とが同一となるように設定されてよい。変調信号の立下りエッジのタイミングは、いずれかの第1パルス14の立下りエッジのタイミングと同一となるように制御されてよい。変調信号の期間Wは、第1パルス14のパルス幅の偶数倍となるように設定されてよい。 The driving circuit 10 of this example controls the number of first pulses 14 included in the pulse train 12 of each pulse signal by controlling the period W in the modulation signal. For example, by lengthening the period W, the number of first pulses 14 included in the pulse train 12 increases. The driving circuit 10 may control the period W according to the absolute value of the speed at which the optical element 120 should be moved. Note that in this specification, the first modulation signal and the second modulation signal may be simply referred to as modulation signals, the first pulse signal and the second pulse signal may be simply referred to as pulse signals, and the first drive signal and the second drive signal may be simply referred to as drive signals. The period W of the modulation signal may be set so that the number of first pulses 14 included in the pulse train 12-1 is the same as the number of first pulses 14 included in the pulse train 12-2. The timing of the falling edge of the modulation signal may be controlled to be the same as the timing of the falling edge of any of the first pulses 14. The period W of the modulation signal may be set to be an even multiple of the pulse width of the first pulse 14.
 図3は、昇圧部170の動作例を説明する図である。上述したように昇圧部170は、駆動信号を昇圧して出力する。昇圧された駆動信号の振幅は、昇圧前の駆動信号の振幅よりも大きい。昇圧前後において、駆動信号の周期は同一であってよい。 FIG. 3 is a diagram illustrating an example of the operation of the boost unit 170. As described above, the boost unit 170 boosts and outputs the drive signal. The amplitude of the boosted drive signal is greater than the amplitude of the drive signal before boosting. The period of the drive signal may be the same before and after boosting.
 図4は、パルス列12に含まれる第1パルス14の個数と、光学素子120の位置との関係の一例を示す図である。図4における縦軸は、パルス列12に含まれる第1パルス14の個数を示している。縦軸における符号は、光学素子120を移動させる方向を示している。つまり縦軸における符号が異なる場合、パルス信号の周期が異なっている。 FIG. 4 is a diagram showing an example of the relationship between the number of first pulses 14 included in the pulse train 12 and the position of the optical element 120. The vertical axis in FIG. 4 indicates the number of first pulses 14 included in the pulse train 12. The sign on the vertical axis indicates the direction in which the optical element 120 is moved. In other words, when the signs on the vertical axis are different, the period of the pulse signal is different.
 図4は、光学素子120を、目標位置1から目標位置2に移動させ、更に目標位置3に移動させる例を示している。移動させる方向および距離に応じて、パルス列12に含まれる第1パルス14の個数が変化している。図2において説明したように、変調信号の期間Wを制御することで、第1パルス14の個数を制御できる。本例では、目標位置1から目標位置2に移動する場合において、目標位置2の近傍に検出位置が到達すると、パルス列12に含まれる第1パルス14の個数が減少している。なお、1つの第1パルス14により光学素子120が移動する距離は、光学素子120の移動方向によって異なっていてよい。この場合、図4に示すように、光学素子120の検出位置の波形の傾きが、立上りエッジおよび立下りエッジでほぼ同一であっても、立上りエッジおよび立下りエッジに対応する第1パルス14の個数の絶対値は異なってよい。 FIG. 4 shows an example in which the optical element 120 is moved from target position 1 to target position 2, and then to target position 3. The number of first pulses 14 included in the pulse train 12 changes depending on the direction and distance of movement. As described in FIG. 2, the number of first pulses 14 can be controlled by controlling the period W of the modulation signal. In this example, when moving from target position 1 to target position 2, when the detection position reaches the vicinity of target position 2, the number of first pulses 14 included in the pulse train 12 decreases. Note that the distance that the optical element 120 moves with one first pulse 14 may differ depending on the direction of movement of the optical element 120. In this case, as shown in FIG. 4, even if the slope of the waveform at the detection position of the optical element 120 is almost the same at the rising edge and the falling edge, the absolute value of the number of first pulses 14 corresponding to the rising edge and the falling edge may differ.
 光学素子120の移動に伴い、駆動音が生じる場合がある。駆動音は、光学素子120の加速または減速時に発生しやすい。 Driving noise may occur as the optical element 120 moves. Driving noise is likely to occur when the optical element 120 accelerates or decelerates.
 図5は、パルス列12に含まれる第1パルス14の個数と、駆動音の音圧との関係の一例を示す図である。第1パルス14の個数の推移は、図4の例と同様である。パルス列12に含まれる第1パルス14の個数が、光学素子120の移動速度に対応しているので、第1パルス14の個数の変化が、光学素子120の加速または減速を示している。図5に示すように、光学素子120が加速または減速するタイミングで、比較的に音圧の大きい駆動音が生じていることがわかる。 FIG. 5 is a diagram showing an example of the relationship between the number of first pulses 14 included in the pulse train 12 and the sound pressure of the drive sound. The change in the number of first pulses 14 is similar to the example in FIG. 4. Since the number of first pulses 14 included in the pulse train 12 corresponds to the moving speed of the optical element 120, the change in the number of first pulses 14 indicates the acceleration or deceleration of the optical element 120. As shown in FIG. 5, it can be seen that a drive sound with a relatively large sound pressure is generated when the optical element 120 accelerates or decelerates.
 図6は、駆動回路10の構成例を示す図である。駆動回路10は、駆動部50を備える。駆動回路10は、前処理部20および設定部30の一部または全部を更に備えてよい。 FIG. 6 is a diagram showing an example configuration of the drive circuit 10. The drive circuit 10 includes a drive unit 50. The drive circuit 10 may further include a pre-processing unit 20 and part or all of the setting unit 30.
 駆動部50は、光学素子120の検出位置と、光学素子120が移動すべき目標位置を取得する。本例の駆動部50は、前処理部20から検出位置を受け取る。前処理部20は、例えば位置検出部160から検出位置を示すアナログ信号を受け取り、当該アナログ信号をAD変化したデジタル信号を出力してよい。本例の駆動部50は、設定部30から目標位置を示すデジタル信号を受け取ってよい。設定部30は、例えば画像処理部150から受け取る目標位置を記録するレジスタを有してよい。設定部30が記録する目標位置は、画像処理部150により適宜更新される。 The driving unit 50 acquires the detected position of the optical element 120 and the target position to which the optical element 120 should move. The driving unit 50 in this example receives the detected position from the pre-processing unit 20. The pre-processing unit 20 may receive an analog signal indicating the detected position from the position detection unit 160, for example, and output a digital signal resulting from AD conversion of the analog signal. The driving unit 50 in this example may receive a digital signal indicating the target position from the setting unit 30. The setting unit 30 may have a register that records the target position received from, for example, the image processing unit 150. The target position recorded by the setting unit 30 is updated appropriately by the image processing unit 150.
 上述したように、駆動部50は、検出位置と目標位置との差分に基づいて、光学素子120の移動速度を制御する駆動信号を生成する。本例のパルス信号生成部60は、光学素子120の移動速度を変化させる場合に、1回の制御で変化させる変化量を抑制する。これにより、駆動音のピークの大きさを抑制できる。 As described above, the drive unit 50 generates a drive signal that controls the movement speed of the optical element 120 based on the difference between the detected position and the target position. In this example, the pulse signal generation unit 60 suppresses the amount of change in one control when changing the movement speed of the optical element 120. This makes it possible to suppress the peak volume of the drive sound.
 本例の駆動部50は、信号処理部40、パルス信号生成部60およびドライバ80を有する。信号処理部40は、検出位置および目標位置に基づいて、制御信号を生成する。制御信号は、検出位置および目標位置の差分が小さくなるように、光学素子120の移動速度を制御するための信号である。制御信号は、光学素子120を移動させるべき方向と、移動速度の絶対値とを示す情報を含んでよい。 The driving unit 50 in this example has a signal processing unit 40, a pulse signal generating unit 60, and a driver 80. The signal processing unit 40 generates a control signal based on the detected position and the target position. The control signal is a signal for controlling the movement speed of the optical element 120 so that the difference between the detected position and the target position is small. The control signal may include information indicating the direction in which the optical element 120 should be moved and the absolute value of the movement speed.
 信号処理部40は、検出位置と目標位置とに基づいてPID制御を行い、制御信号を生成してよい。つまり信号処理部40は、比例制御(P制御)、積分制御(I制御)および微分制御(D制御)を組み合わせた処理を行ってよい。P制御では、検出位置と目標位置との差分の大きさに比例して、光学素子120の移動速度の絶対値を大きくする。I制御では、検出位置と目標位置との差分の時間積分の大きさに応じて、光学素子120の移動速度を調整する。D制御では、制御信号の微分値を小さくする(つまり、光学素子120の移動速度の時間変化を小さくする)処理を行う。 The signal processing unit 40 may perform PID control based on the detected position and the target position to generate a control signal. That is, the signal processing unit 40 may perform a process that combines proportional control (P control), integral control (I control), and differential control (D control). In P control, the absolute value of the moving speed of the optical element 120 is increased in proportion to the magnitude of the difference between the detected position and the target position. In I control, the moving speed of the optical element 120 is adjusted according to the magnitude of the time integral of the difference between the detected position and the target position. In D control, a process is performed that reduces the differential value of the control signal (that is, reduces the change over time in the moving speed of the optical element 120).
 パルス信号生成部60は、検出位置と目標位置との差分に応じたパルス列12を有するパルス信号を生成する。本例のパルス信号生成部60は、制御信号に応じて、図2に示したパルス信号を生成する。パルス信号生成部60は、制御信号で示される光学素子120の移動方向に応じて、発振信号またはパルス列12における第1パルス14の周期を制御してよい。パルス信号生成部60は、制御信号で示される光学素子120の移動速度の絶対値に応じて、パルス列12における第1パルス14の個数を制御する。パルス信号生成部60は、図2に示した変調信号の期間Wを調整することで、パルス列12に含まれる第1パルス14の個数を制御してよい。 The pulse signal generating unit 60 generates a pulse signal having a pulse train 12 according to the difference between the detection position and the target position. In this example, the pulse signal generating unit 60 generates the pulse signal shown in FIG. 2 according to a control signal. The pulse signal generating unit 60 may control the period of the first pulses 14 in the oscillation signal or the pulse train 12 according to the movement direction of the optical element 120 indicated by the control signal. The pulse signal generating unit 60 controls the number of first pulses 14 in the pulse train 12 according to the absolute value of the movement speed of the optical element 120 indicated by the control signal. The pulse signal generating unit 60 may control the number of first pulses 14 included in the pulse train 12 by adjusting the period W of the modulation signal shown in FIG. 2.
 ドライバ80は、パルス信号生成部60が生成したパルス信号に応じた駆動信号を出力する。上述したように、駆動信号は、パルス信号と同一のパターンのパルス列12を含んでよい。駆動信号の各パルスの振幅は、パルス信号の各パルスの振幅と同一であってよく、異なっていてもよい。ドライバ80は、圧電アクチュエータ110を駆動するための電流を供給してよい。 The driver 80 outputs a drive signal corresponding to the pulse signal generated by the pulse signal generating unit 60. As described above, the drive signal may include a pulse train 12 having the same pattern as the pulse signal. The amplitude of each pulse of the drive signal may be the same as or different from the amplitude of each pulse of the pulse signal. The driver 80 may supply a current to drive the piezoelectric actuator 110.
 図7は、パルス信号生成部60の構成例を示す図である。本例のパルス信号生成部60は、図2に示したパルス信号に対して追加パルスを挿入することで、1回の制御で変化させる光学素子120の移動速度の変化量を抑制する。本例のパルス信号生成部60は、第1パルス生成部67、追加パルス生成部68、および、論理和回路69を有する。 FIG. 7 is a diagram showing an example of the configuration of the pulse signal generating unit 60. The pulse signal generating unit 60 of this example suppresses the amount of change in the moving speed of the optical element 120 that is changed in one control by inserting an additional pulse into the pulse signal shown in FIG. 2. The pulse signal generating unit 60 of this example has a first pulse generating unit 67, an additional pulse generating unit 68, and a logical OR circuit 69.
 第1パルス生成部67は、図2に示したパルス信号と同様の信号を生成する。本明細書では、第1パルス生成部67が出力するパルス信号に含まれる1つ以上のパルスを第1パルス14と称する。第1パルス生成部67は、制御信号により示される1つの移動速度に対して、1つ以上の第1パルス14を含むパルス列12を生成する。第1パルス生成部67は、制御信号により示される移動速度が変更されるまで、同一の個数の第1パルス14を含むパルス列12を繰り返し出力する。第1パルス生成部67は、制御信号により示される移動速度が変化した場合に、変化後の移動速度に応じた個数の第1パルス14を含むパルス列12を出力する。 The first pulse generating unit 67 generates a signal similar to the pulse signal shown in FIG. 2. In this specification, one or more pulses included in the pulse signal output by the first pulse generating unit 67 are referred to as a first pulse 14. The first pulse generating unit 67 generates a pulse train 12 including one or more first pulses 14 for one moving speed indicated by the control signal. The first pulse generating unit 67 repeatedly outputs a pulse train 12 including the same number of first pulses 14 until the moving speed indicated by the control signal is changed. When the moving speed indicated by the control signal changes, the first pulse generating unit 67 outputs a pulse train 12 including a number of first pulses 14 according to the changed moving speed.
 本例の第1パルス生成部67は、第1変調部62、第2変調部64、および、論理積回路66を有する。第1変調部62は、図2において説明した発振信号を生成する。第1変調部62は、図2において説明したように、第1発振信号および第2発振信号を生成してよい。本例の第1変調部62は、光学素子120の移動方向に応じて、発振信号の周期を変更可能である。本例の第1変調部62には、所定の周期のクロック信号が入力される。クロック信号の周期は、例えば上述した第1周期または第2周期である。第1変調部62は、クロック信号に基づいて、それぞれの発振信号を生成してよい。発振信号の周期は、クロック信号の周期と同一であってよい。 The first pulse generating section 67 of this example has a first modulation section 62, a second modulation section 64, and a logical product circuit 66. The first modulation section 62 generates the oscillation signal described in FIG. 2. The first modulation section 62 may generate a first oscillation signal and a second oscillation signal as described in FIG. 2. The first modulation section 62 of this example can change the period of the oscillation signal according to the moving direction of the optical element 120. A clock signal with a predetermined period is input to the first modulation section 62 of this example. The period of the clock signal is, for example, the first period or the second period described above. The first modulation section 62 may generate each oscillation signal based on the clock signal. The period of the oscillation signal may be the same as the period of the clock signal.
 第2変調部64は、図2において説明した変調信号を生成する。第2変調部64には、変調信号を生成するための変調設定信号が入力されてよい。変調設定信号は、例えば図2に示した変調周期Tの長さを示す情報が含まれてよい。第2変調部64は、信号処理部40が出力する制御信号に応じて、変調信号における期間Wを調整する。例えば第2変調部64は、移動速度を上昇させる制御信号が入力された場合に期間Wを長くし、移動速度を減少させる制御信号が入力された場合に期間Wを短くする。本例の第2変調部64において、期間W(またはパルス幅W)として設定できる長さは、発振信号の周期の整数倍のように、離散的な値であってよい。第2変調部64には、第1変調部62と同一周期のクロック信号が入力されてよい。第2変調部64は、クロック信号のパルスを計数することで、期間Wを決定してよい。第2変調部64は、クロック信号の周期の整数倍のパルス幅Wの変調信号を生成してよい。 The second modulation unit 64 generates the modulation signal described in FIG. 2. The second modulation unit 64 may receive a modulation setting signal for generating the modulation signal. The modulation setting signal may include, for example, information indicating the length of the modulation period T shown in FIG. 2. The second modulation unit 64 adjusts the period W in the modulation signal according to the control signal output by the signal processing unit 40. For example, the second modulation unit 64 lengthens the period W when a control signal for increasing the moving speed is input, and shortens the period W when a control signal for decreasing the moving speed is input. In the second modulation unit 64 of this example, the length that can be set as the period W (or pulse width W) may be a discrete value, such as an integer multiple of the period of the oscillation signal. A clock signal having the same period as the first modulation unit 62 may be input to the second modulation unit 64. The second modulation unit 64 may determine the period W by counting the pulses of the clock signal. The second modulation unit 64 may generate a modulation signal with a pulse width W that is an integer multiple of the period of the clock signal.
 論理積回路66は、発振信号と変調信号の論理積を生成することで、パルス信号を生成する。これにより第1パルス生成部67は、変調信号の期間Wに応じた個数の第1パルス14を含むパルス列12を出力する。 The logical product circuit 66 generates a pulse signal by generating a logical product of the oscillation signal and the modulation signal. As a result, the first pulse generation unit 67 outputs a pulse train 12 including a number of first pulses 14 according to the period W of the modulation signal.
 追加パルス生成部68は、第1パルス14とはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスを生成する。追加パルス生成部68は、追加パルスが有するべきパルス幅および振幅の少なくとも一方を指定する追加設定信号が入力されてよい。追加設定信号は、信号処理部40が出力する制御信号に含まれてよい。追加設定信号には、追加パルス生成部68が追加パルスを出力するか否かを制御する情報が含まれていてもよい。 The additional pulse generating unit 68 generates one or more additional pulses that differ from the first pulse 14 in at least one of the pulse width and amplitude. The additional pulse generating unit 68 may receive an additional setting signal that specifies at least one of the pulse width and amplitude that the additional pulse should have. The additional setting signal may be included in the control signal output by the signal processing unit 40. The additional setting signal may include information that controls whether or not the additional pulse generating unit 68 outputs an additional pulse.
 追加パルス生成部68には、クロック信号が入力されてよい。追加パルス生成部68に入力されるクロック信号の周期は、第1パルス生成部67に入力されるクロック信号の周期と同一であってよく、異なっていてもよい。追加パルス生成部68は、入力されたクロック信号に基づいて追加パルスを生成してよい。本例の追加パルス生成部68には、第1パルス生成部67に入力されるクロック信号の周期と同一のクロック信号が入力される。追加パルス生成部68は、第1パルス14と同一のパルス幅を有し、且つ、第1パルス14とは振幅の異なる追加パルスを生成してよい。他の例では、追加パルス生成部68は、入力されるクロック信号の周期の整数倍のパルス幅を有する追加パルスを生成してよい。追加パルス生成部68は、第1パルス14のパルス幅の整数倍のパルス幅を有する追加パルスを生成してもよい。このような構成により、単一のクロック信号に基づいて、第1パルス14および追加パルスを生成でき、回路規模の増大を抑制できる。 A clock signal may be input to the additional pulse generating unit 68. The period of the clock signal input to the additional pulse generating unit 68 may be the same as or different from the period of the clock signal input to the first pulse generating unit 67. The additional pulse generating unit 68 may generate an additional pulse based on the input clock signal. In this example, a clock signal having the same period as the clock signal input to the first pulse generating unit 67 is input to the additional pulse generating unit 68. The additional pulse generating unit 68 may generate an additional pulse having the same pulse width as the first pulse 14 and a different amplitude from the first pulse 14. In another example, the additional pulse generating unit 68 may generate an additional pulse having a pulse width that is an integer multiple of the period of the input clock signal. The additional pulse generating unit 68 may generate an additional pulse having a pulse width that is an integer multiple of the pulse width of the first pulse 14. With this configuration, the first pulse 14 and the additional pulse can be generated based on a single clock signal, and an increase in circuit size can be suppressed.
 論理和回路69は、第1パルス生成部67が生成した第1パルス14のパルス列12と、追加パルス生成部68が生成した追加パルスのパルス列との論理和を出力する。つまり論理和回路69の出力は、第1パルス生成部67の出力および追加パルス生成部68の出力の少なくとも一方がHレベルを示す期間ではHレベルとなり、第1パルス生成部67の出力および追加パルス生成部68の出力の両方がLレベルを示す期間ではLレベルとなる。 The logical OR circuit 69 outputs the logical OR of the pulse train 12 of the first pulse 14 generated by the first pulse generating section 67 and the pulse train of the additional pulse generated by the additional pulse generating section 68. In other words, the output of the logical OR circuit 69 is at H level during a period when at least one of the outputs of the first pulse generating section 67 and the additional pulse generating section 68 indicates H level, and is at L level during a period when both the output of the first pulse generating section 67 and the output of the additional pulse generating section 68 indicate L level.
 このような構成により、パルス信号生成部60は、制御信号により示される1つの移動速度に対して、1つ以上の第1パルス14と、第1パルス14とはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含むパルス信号を生成可能である。本例のパルス信号生成部60は、それぞれの変調周期Tにおいて、1つ以上の第1パルス14と、1つ以上の追加パルスとを含むパルス信号を生成可能である。 With this configuration, the pulse signal generating unit 60 can generate, for one moving speed indicated by the control signal, a pulse signal including one or more first pulses 14 and one or more additional pulses that differ from the first pulses 14 in at least one of the pulse width and amplitude. The pulse signal generating unit 60 in this example can generate a pulse signal including one or more first pulses 14 and one or more additional pulses in each modulation period T.
 図8は、第1パルス14、追加パルス15およびパルス信号の一例を示す図である。本例の追加パルス15は、第1パルス14とはパルス幅が異なる。追加パルス15および第1パルス14の振幅は同一であってよく、異なっていてもよい。 FIG. 8 is a diagram showing an example of a first pulse 14, an additional pulse 15, and a pulse signal. In this example, the additional pulse 15 has a different pulse width from the first pulse 14. The amplitudes of the additional pulse 15 and the first pulse 14 may be the same or different.
 上述したように、第1パルス生成部67は、それぞれの変調周期Tにおいて、1つ以上の第1パルス14を含むパルス列12を出力する。追加パルス生成部68は、それぞれの変調周期Tにおいて、1つ以上の追加パルス15を含むパルス列を出力してよい。追加パルス生成部68は、いずれかの変調周期Tでは追加パルス15を出力し、他の変調周期Tでは追加パルス15を出力しなくてもよい。 As described above, the first pulse generating unit 67 outputs a pulse train 12 including one or more first pulses 14 in each modulation period T. The additional pulse generating unit 68 may output a pulse train including one or more additional pulses 15 in each modulation period T. The additional pulse generating unit 68 may output an additional pulse 15 in some modulation periods T and may not output an additional pulse 15 in other modulation periods T.
 論理和回路69は、第1パルス14のパルス列12と、追加パルス15のパルス列との論理和を、新たなパルス信号のパルス列12として出力する。これによりパルス信号生成部60は、1つの変調周期Tの中で、パルス幅または振幅の異なる複数種類のパルスを出力できる。 The logical sum circuit 69 outputs the logical sum of the pulse train 12 of the first pulse 14 and the pulse train of the additional pulse 15 as the pulse train 12 of the new pulse signal. This allows the pulse signal generating unit 60 to output multiple types of pulses with different pulse widths or amplitudes within one modulation period T.
 第1パルス14は一定のパルス幅を有する。このため、第1パルス14だけで光学素子120の速度を制御しようとすると、1つの第1パルス14に応じた速度単位でしか、光学素子120の速度を制御できない。例えばパルス列12に含まれる第1パルス14の個数を1個だけ変化させた場合に、光学素子120の速度がV1だけ変化する形態を考える。この場合、第1パルス14だけで光学素子120の速度を制御しようとすると、光学素子120の速度はV1の整数倍の値にしか制御できない。このため、1回の制御における光学素子120の速度の変化量は、最小でもV1となる。本例では、パルス列12に追加パルス15を含めることができる。これにより、1回の制御における光学素子120の速度の変化量を、V1よりも小さくできる。1回の制御で生じる駆動音の大きさを抑制できるので、駆動音のピーク値を抑制できる。 The first pulse 14 has a constant pulse width. Therefore, if the speed of the optical element 120 is controlled only by the first pulse 14, the speed of the optical element 120 can only be controlled in speed units corresponding to one first pulse 14. For example, consider a case where the speed of the optical element 120 changes by only V1 when the number of first pulses 14 included in the pulse train 12 is changed by only one. In this case, if the speed of the optical element 120 is controlled only by the first pulse 14, the speed of the optical element 120 can only be controlled to an integer multiple of V1. Therefore, the change in the speed of the optical element 120 in one control is at least V1. In this example, an additional pulse 15 can be included in the pulse train 12. This allows the change in the speed of the optical element 120 in one control to be smaller than V1. Since the volume of the drive sound generated in one control can be suppressed, the peak value of the drive sound can be suppressed.
 追加パルス15のパルス幅は、第1パルス14のパルス幅よりも大きくてよい。第1パルス14のパルス幅よりも大きい追加パルス15を挿入した場合、光学素子120の速度の変化量はV1よりも小さくなった。追加パルス15のパルス幅は、第1パルス14のパルス幅の2倍以上であってよく、3倍以上であってもよい。実験的には、追加パルス15のパルス幅が第1パルス14のパルス幅の概ね3倍の場合に、追加パルス15による光学素子120の速度の変化量が0.5×V1となった。追加パルス15のパルス幅が第1パルス14のパルス幅に近づくほど、追加パルス15による光学素子120の速度の変化量はV1に近づき、追加パルス15のパルス幅が大きくなるほど、追加パルス15による光学素子120の速度の変化量は0に近づいた。パルス信号生成部60は、設定すべき光学素子120の移動速度の変化量に応じて、追加パルス15のパルス幅を制御してよい。追加パルス15のパルス幅と光学素子120の移動速度の変化量との関係は、予め測定することで取得できる。 The pulse width of the additional pulse 15 may be greater than the pulse width of the first pulse 14. When an additional pulse 15 greater than the pulse width of the first pulse 14 is inserted, the change in the speed of the optical element 120 becomes smaller than V1. The pulse width of the additional pulse 15 may be greater than or equal to twice the pulse width of the first pulse 14, or greater than or equal to three times. Experimentally, when the pulse width of the additional pulse 15 is approximately three times the pulse width of the first pulse 14, the change in the speed of the optical element 120 due to the additional pulse 15 becomes 0.5 x V1. As the pulse width of the additional pulse 15 approaches the pulse width of the first pulse 14, the change in the speed of the optical element 120 due to the additional pulse 15 approaches V1, and as the pulse width of the additional pulse 15 increases, the change in the speed of the optical element 120 due to the additional pulse 15 approaches 0. The pulse signal generating unit 60 may control the pulse width of the additional pulse 15 according to the change in the moving speed of the optical element 120 to be set. The relationship between the pulse width of the additional pulse 15 and the amount of change in the movement speed of the optical element 120 can be obtained by measuring it in advance.
 信号処理部40は、追加パルス15を挿入するか否かを示す制御信号を生成してよい。例えば信号処理部40は、制御信号で示される光学素子120の速度を、V1よりも細かい分解能で生成してよい。例えば信号処理部40は、制御信号で示される光学素子120の速度を、0.5×V1の分解能で制御してよい。この場合のパルス信号生成部60は、制御信号で示される光学素子120の速度がV1の整数倍で示される場合、パルス列12に追加パルス15を挿入しない。またパルス信号生成部60は、制御信号で示される光学素子120の速度が、V1の整数倍に0.5×V1を加算した値である場合、パルス列12に追加パルス15を挿入する。このような制御により、光学素子120の速度を、細かい分解能で制御でき、駆動音のピーク値を抑制できる。パルス信号生成部60は、1つのパルス列12に対して、複数の追加パルス15を挿入してもよい。 The signal processing unit 40 may generate a control signal indicating whether or not to insert an additional pulse 15. For example, the signal processing unit 40 may generate the speed of the optical element 120 indicated by the control signal with a resolution finer than V1. For example, the signal processing unit 40 may control the speed of the optical element 120 indicated by the control signal with a resolution of 0.5 x V1. In this case, the pulse signal generating unit 60 does not insert an additional pulse 15 into the pulse train 12 when the speed of the optical element 120 indicated by the control signal is an integer multiple of V1. Also, the pulse signal generating unit 60 inserts an additional pulse 15 into the pulse train 12 when the speed of the optical element 120 indicated by the control signal is a value obtained by adding 0.5 x V1 to an integer multiple of V1. By such control, the speed of the optical element 120 can be controlled with fine resolution, and the peak value of the drive sound can be suppressed. The pulse signal generating unit 60 may insert multiple additional pulses 15 into one pulse train 12.
 他の例では、信号処理部40は、制御信号で示される光学素子120の速度を、V1の分解能で制御してよい。つまり、制御信号で示される光学素子120の速度は、V1の整数倍である。パルス信号生成部60は、制御信号で示される光学素子120の速度が変化した場合に、追加パルス15を挿入する処理を自動的に行ってもよい。 In another example, the signal processing unit 40 may control the speed of the optical element 120 indicated by the control signal with a resolution of V1. In other words, the speed of the optical element 120 indicated by the control signal is an integer multiple of V1. The pulse signal generating unit 60 may automatically perform a process of inserting an additional pulse 15 when the speed of the optical element 120 indicated by the control signal changes.
 図9は、パルス信号生成部60の動作例を示す図である。本例では、光学素子120の速度を、第1の速度から第2の速度に変更する例を説明する。図9では第1の速度は、4×V1であり、第2の速度は、5×V1である。つまり第1の速度および第2の速度は、第1パルス14の1個に相当する速度V1の整数倍である。本例の信号処理部40が出力する制御信号は、第1の速度を示す制御信号から、第2の速度を示す制御信号に遷移する。 FIG. 9 is a diagram showing an example of the operation of the pulse signal generating unit 60. In this example, an example is described in which the speed of the optical element 120 is changed from a first speed to a second speed. In FIG. 9, the first speed is 4×V1, and the second speed is 5×V1. In other words, the first speed and the second speed are integer multiples of the speed V1 corresponding to one first pulse 14. The control signal output by the signal processing unit 40 in this example transitions from a control signal indicating the first speed to a control signal indicating the second speed.
 本例のパルス信号生成部60は、第1の速度に相当する変更前のパルス信号と、第1の速度および第2の速度の間の速度に相当する中間のパルス信号と、第2の速度に相当する変更後のパルス信号とを順番に生成する。変更前のパルス信号は、第1の速度に応じた個数(例えば4個)の第1パルス14を含み、追加パルス15を含まない。 The pulse signal generating unit 60 in this example sequentially generates a pre-change pulse signal corresponding to the first speed, an intermediate pulse signal corresponding to a speed between the first speed and the second speed, and a post-change pulse signal corresponding to the second speed. The pre-change pulse signal includes a number of first pulses 14 (e.g., four) according to the first speed, and does not include additional pulses 15.
 パルス信号生成部60は、変更前のパルス信号を生成した後で、且つ、変更後のパルス信号を生成する前に、中間のパルス信号を生成する。中間のパルス信号は、変更前のパルス信号に、1つ以上の追加パルス15を追加した信号である。 The pulse signal generating unit 60 generates an intermediate pulse signal after generating the pre-modified pulse signal and before generating the post-modified pulse signal. The intermediate pulse signal is a signal in which one or more additional pulses 15 are added to the pre-modified pulse signal.
 パルス信号生成部60は、中間のパルス信号を生成した後に、第2の速度に応じた個数(例えば5個)の第1パルス14を含む変更後のパルス信号を生成する。変更後のパルス信号は、追加パルス15を含まない。このような制御により、光学素子120の移動速度を変更する場合に、移動速度を徐々に変化させることができ、駆動音のピーク値を抑制できる。 After generating the intermediate pulse signal, the pulse signal generating unit 60 generates a modified pulse signal that includes a number of first pulses 14 (e.g., five) according to the second speed. The modified pulse signal does not include the additional pulses 15. By controlling in this way, when changing the movement speed of the optical element 120, the movement speed can be changed gradually, and the peak value of the drive sound can be suppressed.
 図9の例では、光学素子120の移動速度を増加させる例を説明したが、光学素子120の移動速度を減少させる場合も同様である。光学素子120の移動速度を減少させる場合、パルス信号生成部60は、図9に示した変更後のパルス信号、中間のパルス信号、変更前のパルス信号の順番でパルス信号を生成してよい。つまり、光学素子120の移動速度を減少させる場合、パルス信号生成部60は、速度減少前のパルス信号に含まれるいずれかの第1パルス14に代えて、追加パルス15を挿入する。次に、パルス信号生成部60は、追加パルス15を削除することで、速度減少後のパルス信号を生成できる。 In the example of FIG. 9, an example of increasing the moving speed of the optical element 120 has been described, but the same applies when decreasing the moving speed of the optical element 120. When decreasing the moving speed of the optical element 120, the pulse signal generating unit 60 may generate pulse signals in the order of the changed pulse signal, the intermediate pulse signal, and the pulse signal before the change shown in FIG. 9. In other words, when decreasing the moving speed of the optical element 120, the pulse signal generating unit 60 inserts an additional pulse 15 in place of any of the first pulses 14 contained in the pulse signal before the speed reduction. Next, the pulse signal generating unit 60 can generate a pulse signal after the speed reduction by deleting the additional pulse 15.
 図10は、参考例における、パルス列12に含まれる第1パルス14の個数と、駆動音の音圧との関係を示す図である。参考例では、追加パルス15を用いていない。この場合、パルス列12に含まれる第1パルス14の個数を変更する毎に、比較的に大きい駆動音が発生してしまう。 FIG. 10 is a diagram showing the relationship between the number of first pulses 14 included in the pulse train 12 and the sound pressure of the drive sound in a reference example. In the reference example, the additional pulses 15 are not used. In this case, each time the number of first pulses 14 included in the pulse train 12 is changed, a relatively loud drive sound is generated.
 図11は、実施例における、パルス列12に含まれるパルスの個数と、駆動音の音圧との関係を示す図である。本例では、1つの第1パルス14をパルス数「1」として計数し、1つの追加パルス15をパルス数「0.5」として計数している。当該パルス数は、光学素子120の移動速度に対応する。 FIG. 11 is a diagram showing the relationship between the number of pulses included in the pulse train 12 and the sound pressure of the drive sound in the embodiment. In this example, one first pulse 14 is counted as a pulse number of "1," and one additional pulse 15 is counted as a pulse number of "0.5." The pulse number corresponds to the moving speed of the optical element 120.
 本例では、追加パルス15を用いることで、パルス列12に含まれるパルス数(光学素子120の移動速度)の分解能を向上できる。このため、1回の速度変更で生じる駆動音の大きさを抑制でき、駆動音のピーク値を抑制できる。 In this example, by using the additional pulse 15, the resolution of the number of pulses included in the pulse train 12 (the moving speed of the optical element 120) can be improved. This makes it possible to reduce the volume of the drive noise generated by one speed change, and to suppress the peak value of the drive noise.
 図8等に示すように、追加パルス生成部68は、いずれの第1パルス14とも重ならない期間に、追加パルス15を生成してよい。図8等に示すように、追加パルス生成部68は、変調周期Tにおいて、1つ以上の第1パルス14が生成される期間よりも後ろの期間に追加パルス15を生成してよい。他の例では、追加パルス生成部68は、1つ以上の第1パルス14が生成される期間よりも前の期間に追加パルス15を生成してよい。他の例では、追加パルス生成部68は、いずれかの第1パルス14と重なる期間に、追加パルス15を生成してもよい。 As shown in FIG. 8 etc., the additional pulse generating unit 68 may generate the additional pulse 15 in a period that does not overlap with any of the first pulses 14. As shown in FIG. 8 etc., the additional pulse generating unit 68 may generate the additional pulse 15 in a period after the period in which one or more first pulses 14 are generated in the modulation period T. In another example, the additional pulse generating unit 68 may generate the additional pulse 15 in a period before the period in which one or more first pulses 14 are generated. In another example, the additional pulse generating unit 68 may generate the additional pulse 15 in a period that overlaps with any of the first pulses 14.
 図12は、追加パルス15を挿入するタイミングの一例を示す図である。本例の追加パルス生成部68は、変調期間Tに含まれる1つ以上の第1パルス14のうち、最も早いタイミングの第1パルス14と重なるタイミングで、追加パルス15を生成している。追加パルス15は、複数の第1パルス14と重なっていてよい。 FIG. 12 is a diagram showing an example of the timing for inserting an additional pulse 15. In this example, the additional pulse generating unit 68 generates an additional pulse 15 at a timing that overlaps with the earliest first pulse 14 among one or more first pulses 14 included in the modulation period T. The additional pulse 15 may overlap with multiple first pulses 14.
 図13は、追加パルス15を挿入するタイミングの他の例を示す図である。本例の追加パルス生成部68は、変調期間Tに含まれる1つ以上の第1パルス14のうち、最も早いタイミングの第1パルス14、および、最も遅いタイミングの第1パルス14のいずれとも重ならないタイミングで、追加パルス15を生成している。追加パルス15は、1つ以上の第1パルス14のうち、時間軸において中央に配置された第1パルス14と重なっていてよい。追加パルス15は、複数の第1パルス14と重なっていてよい。 FIG. 13 is a diagram showing another example of the timing for inserting an additional pulse 15. In this example, the additional pulse generating unit 68 generates an additional pulse 15 at a timing that does not overlap with either the earliest or latest first pulse 14 among one or more first pulses 14 included in the modulation period T. The additional pulse 15 may overlap with a first pulse 14 that is located in the center on the time axis among the one or more first pulses 14. The additional pulse 15 may overlap with multiple first pulses 14.
 図14は、追加パルス15を挿入するタイミングの他の例を示す図である。本例の追加パルス生成部68は、変調期間Tに含まれる1つ以上の第1パルス14のうち、最も遅いタイミングの第1パルス14と重なるタイミングで、追加パルス15を生成している。追加パルス15は、複数の第1パルス14と重なっていてよい。 FIG. 14 is a diagram showing another example of the timing for inserting an additional pulse 15. In this example, the additional pulse generating unit 68 generates an additional pulse 15 at a timing that overlaps with the latest first pulse 14 among one or more first pulses 14 included in the modulation period T. The additional pulse 15 may overlap with multiple first pulses 14.
 図15は、追加パルス15の他の例を示す図である。本例の追加パルス生成部68は、第1パルス14よりも振幅の小さい追加パルス15を生成する。図15では、図9に示した例と同様に、自動的に追加パルス15を挿入する例を示している。ただし、本例の追加パルス15は、図9以外の他の例においても適用できる。追加パルス15のパルス幅は、第1パルス14と同一であってよく、異なっていてもよい。他の処理は、本明細書に記載したいずれかの形態と同様である。このような処理によっても、光学素子120の移動速度を徐々に変化させることができ、駆動音のピーク値を抑制できる。 FIG. 15 is a diagram showing another example of the additional pulse 15. The additional pulse generating unit 68 in this example generates an additional pulse 15 having a smaller amplitude than the first pulse 14. FIG. 15 shows an example in which the additional pulse 15 is automatically inserted, similar to the example shown in FIG. 9. However, the additional pulse 15 in this example can also be applied to examples other than FIG. 9. The pulse width of the additional pulse 15 may be the same as or different from that of the first pulse 14. The other processing is the same as any of the forms described in this specification. This type of processing can also gradually change the moving speed of the optical element 120, and suppress the peak value of the drive sound.
 第1パルス14の振幅A1に対する追加パルス15の振幅A2の比(A2/A1)をRとする。追加パルス15による光学素子120の移動速度の変化量は、概ねR×V1となる。追加パルス15の振幅は、第1パルス14の50%であってよい。この場合、追加パルス15による光学素子120の移動速度の変化量は、0.5×V1となる。比Rは、1未満であってよく、1より大きくてもよい。比Rが1より大きい場合、追加パルス15のパルス幅を、第1パルス14のパルス幅よりも小さくしてよい。これにより、光学素子120の移動速度の変化量を細かく制御できる。 The ratio (A2/A1) of the amplitude A2 of the additional pulse 15 to the amplitude A1 of the first pulse 14 is R. The amount of change in the movement speed of the optical element 120 due to the additional pulse 15 is approximately R x V1. The amplitude of the additional pulse 15 may be 50% of that of the first pulse 14. In this case, the amount of change in the movement speed of the optical element 120 due to the additional pulse 15 is 0.5 x V1. The ratio R may be less than 1 or may be greater than 1. If the ratio R is greater than 1, the pulse width of the additional pulse 15 may be made smaller than the pulse width of the first pulse 14. This allows for fine control of the amount of change in the movement speed of the optical element 120.
 図16は、図1から図15において説明した圧電アクチュエータ110を駆動する駆動方法の概要を説明するチャート図である。当該駆動方法においては、光学素子120の検出位置および目標位置を取得する(S1202)。その後に、検出位置と目標位置との差分に基づいて、光学素子120の移動速度を制御する制御信号を生成する(S1204)。その後に、制御信号に基づいて、圧電アクチュエータを駆動するパルス信号(または駆動信号)を生成する(S1206)。図1から図15において説明したように、本例の駆動方法では、パルス信号を生成する段階(S1206)において、制御信号により示される1つの移動速度に対して、1つ以上の第1パルス14と、第1パルス14とはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルス15とを含むパルス信号を生成可能である。 16 is a chart diagram outlining the driving method for driving the piezoelectric actuator 110 described in FIGS. 1 to 15. In this driving method, the detection position and target position of the optical element 120 are acquired (S1202). Then, a control signal for controlling the movement speed of the optical element 120 is generated based on the difference between the detection position and the target position (S1204). Then, a pulse signal (or drive signal) for driving the piezoelectric actuator is generated based on the control signal (S1206). As described in FIGS. 1 to 15, in the driving method of this example, in the step of generating a pulse signal (S1206), a pulse signal can be generated that includes one or more first pulses 14 and one or more additional pulses 15 that differ from the first pulses 14 in at least one of the pulse width and amplitude for one movement speed indicated by the control signal.
 図17は、駆動回路10の他の構成例を示す図である。本例の駆動回路10は、フィルタ部70を備える点で、図1から図16において説明した例における駆動回路10と相違する。フィルタ部70以外の構成は、図1から図16において説明したいずれかの態様と同様である。フィルタ部70は、駆動部50に含まれてよく、駆動部50の外部に設けられていてもよい。 FIG. 17 is a diagram showing another example of the configuration of the drive circuit 10. The drive circuit 10 of this example differs from the drive circuit 10 in the examples described in FIGS. 1 to 16 in that it includes a filter unit 70. The configuration other than the filter unit 70 is the same as any of the aspects described in FIGS. 1 to 16. The filter unit 70 may be included in the drive unit 50, or may be provided outside the drive unit 50.
 上述したように、駆動部50は、検出位置と目標位置との差分に基づいて、光学素子120の移動速度を制御する駆動信号を生成する。フィルタ部70は、駆動信号による移動速度の変動頻度を抑制する。つまりフィルタ部70は、フィルタ部70を設けない場合に比べて、光学素子120の移動速度の変動頻度を少なくする。これにより、図5において説明したような、駆動音の発生を抑制できる。本明細書において頻度とは、単位時間当たりの回数を指す。移動速度の変動頻度とは、単位時間当たりの、移動速度の変更回数を指す。 As described above, the drive unit 50 generates a drive signal that controls the movement speed of the optical element 120 based on the difference between the detected position and the target position. The filter unit 70 suppresses the frequency of fluctuations in the movement speed caused by the drive signal. In other words, the filter unit 70 reduces the frequency of fluctuations in the movement speed of the optical element 120 compared to when the filter unit 70 is not provided. This makes it possible to suppress the generation of drive noise as described in FIG. 5. In this specification, frequency refers to the number of times per unit time. The frequency of fluctuations in the movement speed refers to the number of times the movement speed is changed per unit time.
 図1から図16において説明したように、移動速度の1回の変化における変化量を小さくすることによっても、駆動音を抑制することもできる。本例では更に、フィルタ部70を設けることで、移動速度の変動頻度も抑制する。これにより、駆動音を更に抑制できる。以降では、主にフィルタ部70の動作を説明するが、パルス信号生成部60は、図1から図16において説明した追加パルス15の挿入処理と、フィルタ部70による処理とを組み合わせてよい。ただしパルス信号生成部60は、図1から図16において説明した追加パルス15の挿入処理を行わなくてもよい。追加パルス15の挿入処理を行わずに、フィルタ部70の処理を行うだけでも駆動音を抑制できる。 As explained in Figures 1 to 16, the drive noise can also be suppressed by reducing the amount of change in one change in the movement speed. In this example, the frequency of fluctuations in the movement speed is also suppressed by providing a filter unit 70. This makes it possible to further suppress the drive noise. In the following, the operation of the filter unit 70 will be mainly explained, but the pulse signal generating unit 60 may combine the insertion process of the additional pulse 15 explained in Figures 1 to 16 with the processing by the filter unit 70. However, the pulse signal generating unit 60 does not have to perform the insertion process of the additional pulse 15 explained in Figures 1 to 16. The drive noise can be suppressed by only performing the processing by the filter unit 70 without performing the insertion process of the additional pulse 15.
 フィルタ部70を設けない場合と比べて、光学素子120の移動速度の変動頻度を少なくできれば、駆動回路10におけるいずれの位置にフィルタ部70を設けてもよい。例えば、駆動部50の前段にフィルタ部70を設けて、検出位置の変動を抑制してもよい。この場合、検出位置と目標位置との相対位置の変動が抑制されるので、結果としてパルス列12に含まれる第1パルス14の個数の変動が抑制され、光学素子120の移動速度の変動頻度が抑制される。また、駆動部50の内部にフィルタ部70を設けて、検出位置と目標位置との相対位置の変動頻度よりも、パルス列12に含まれる第1パルス14の個数の変動頻度が少なくなるように制御してもよい。また、駆動部50の後段にフィルタ部70を設けて、生成された駆動信号において、変調周期Tに含まれる第1パルス14の個数の変動頻度を抑制してもよい。 The filter unit 70 may be provided at any position in the drive circuit 10 as long as the frequency of fluctuations in the moving speed of the optical element 120 can be reduced compared to when the filter unit 70 is not provided. For example, the filter unit 70 may be provided in front of the drive unit 50 to suppress fluctuations in the detection position. In this case, fluctuations in the relative position between the detection position and the target position are suppressed, and as a result, fluctuations in the number of first pulses 14 included in the pulse train 12 are suppressed, and the frequency of fluctuations in the moving speed of the optical element 120 is suppressed. In addition, the filter unit 70 may be provided inside the drive unit 50 to control the frequency of fluctuations in the number of first pulses 14 included in the pulse train 12 to be lower than the frequency of fluctuations in the relative position between the detection position and the target position. In addition, the filter unit 70 may be provided in the rear of the drive unit 50 to suppress the frequency of fluctuations in the number of first pulses 14 included in the modulation period T in the generated drive signal.
 本例のフィルタ部70は、パルス信号生成部60におけるパルス列12の変更頻度を抑制する。例えばフィルタ部70は、1つのパルス列12に含まれる第1パルス14の個数の変更頻度を抑制する。1つのパルス列12に含まれる第1パルス14の個数が、光学素子120の移動速度に対応するので、第1パルス14の個数の変動頻度を抑制することで、光学素子120の移動速度の変更頻度を抑制できる。フィルタ部70は、変調信号の期間Wの変更頻度を抑制することで、1つのパルス列12に含まれる第1パルス14の個数の変動頻度を抑制してよい。 The filter unit 70 of this example suppresses the frequency of changes to the pulse trains 12 in the pulse signal generating unit 60. For example, the filter unit 70 suppresses the frequency of changes to the number of first pulses 14 included in one pulse train 12. Since the number of first pulses 14 included in one pulse train 12 corresponds to the moving speed of the optical element 120, the frequency of changes to the moving speed of the optical element 120 can be suppressed by suppressing the frequency of changes to the number of first pulses 14. The filter unit 70 may suppress the frequency of changes to the number of first pulses 14 included in one pulse train 12 by suppressing the frequency of changes to the period W of the modulated signal.
 フィルタ部70は、パルス列12における、第1パルス14の個数以外のパラメータの変動を抑制してもよい。例えば駆動部50が、第1パルス14の振幅を変更することによって光学素子120の移動速度を変更する場合、フィルタ部70は、第1パルス14の振幅の変動頻度を抑制してもよい。また、駆動部50が、1つの第1パルス14のパルス幅を変更することによって光学素子120の移動速度を変更する場合、フィルタ部70は、第1パルス14のパルス幅の変動頻度を抑制してもよい。 The filter unit 70 may suppress fluctuations in parameters other than the number of first pulses 14 in the pulse train 12. For example, if the driver 50 changes the moving speed of the optical element 120 by changing the amplitude of the first pulses 14, the filter unit 70 may suppress the frequency of fluctuations in the amplitude of the first pulses 14. Also, if the driver 50 changes the moving speed of the optical element 120 by changing the pulse width of one first pulse 14, the filter unit 70 may suppress the frequency of fluctuations in the pulse width of the first pulse 14.
 図18は、パルス信号生成部60の構成例を示す図である。本例のパルス信号生成部60は、フィルタ部70を更に備える点で、図7の例と相違する。他の構造は、図7の例と同様である。パルス信号生成部60が図1から図16において説明した追加パルス15の挿入処理を行わない場合、パルス信号生成部60は、追加パルス生成部68を備えていなくてもよい。 FIG. 18 is a diagram showing an example of the configuration of the pulse signal generating unit 60. The pulse signal generating unit 60 of this example differs from the example of FIG. 7 in that it further includes a filter unit 70. The other structures are similar to the example of FIG. 7. If the pulse signal generating unit 60 does not perform the process of inserting the additional pulse 15 described in FIG. 1 to FIG. 16, the pulse signal generating unit 60 does not need to include the additional pulse generating unit 68.
 フィルタ部70は、信号処理部40が出力する制御信号の変動を抑制し、変動抑制後の制御信号を第2変調部64に入力する。フィルタ部70は、制御信号の高周波成分を除去して、残存した制御信号の低周波成分を第2変調部64に入力してよい。フィルタ部70には、フィルタ特性を設定するためのフィルタ設定信号が入力されてよい。例えばフィルタ部70はローパスフィルタであり、フィルタ設定信号は、フィルタ部70におけるカットオフ周波数を設定する信号である。 The filter unit 70 suppresses fluctuations in the control signal output by the signal processing unit 40, and inputs the control signal after the fluctuations have been suppressed to the second modulation unit 64. The filter unit 70 may remove high-frequency components from the control signal, and input the remaining low-frequency components of the control signal to the second modulation unit 64. A filter setting signal for setting the filter characteristics may be input to the filter unit 70. For example, the filter unit 70 is a low-pass filter, and the filter setting signal is a signal that sets the cutoff frequency in the filter unit 70.
 フィルタ部70は、光学素子120の移動速度の変動頻度における、圧電アクチュエータ110の動作周波数帯域以上の成分を減衰させる。本例のフィルタ部70は、制御信号における、圧電アクチュエータ110の動作周波数帯域以上の成分を減衰させる。フィルタ部70は、光学素子120の移動速度の変動頻度における、圧電アクチュエータ110の動作周波数帯域の下限値以上の成分を減衰させてもよい。フィルタ部70におけるカットオフ周波数は、圧電アクチュエータ110の動作周波数帯域の上限値であってよく、下限値であってもよい。圧電アクチュエータ110の動作周波数帯域は、圧電アクチュエータ110の製造者が提示する仕様値を用いてよい。このような制御により、圧電アクチュエータ110の動作速度を一定以上に維持しつつ、駆動音を抑制できる。 The filter unit 70 attenuates components in the fluctuation frequency of the movement speed of the optical element 120 that are equal to or higher than the operating frequency band of the piezoelectric actuator 110. The filter unit 70 in this example attenuates components in the control signal that are equal to or higher than the operating frequency band of the piezoelectric actuator 110. The filter unit 70 may attenuate components in the fluctuation frequency of the movement speed of the optical element 120 that are equal to or higher than the lower limit of the operating frequency band of the piezoelectric actuator 110. The cutoff frequency in the filter unit 70 may be the upper limit or lower limit of the operating frequency band of the piezoelectric actuator 110. The operating frequency band of the piezoelectric actuator 110 may use the specification value provided by the manufacturer of the piezoelectric actuator 110. This type of control makes it possible to suppress the drive noise while maintaining the operating speed of the piezoelectric actuator 110 at a constant level or higher.
 フィルタ部70は、光学素子120の移動速度の変動頻度における、100Hzより大きい成分を減衰させてもよい。本例のフィルタ部70は、制御信号における、100Hzより大きい成分を減衰させる。フィルタ部70は、80Hzより大きい成分を減衰させてよく、60Hzより大きい成分を減衰させてもよい。このような制御により、圧電アクチュエータ110の動作速度を一定以上に維持しつつ、駆動音を抑制できる。 The filter unit 70 may attenuate components greater than 100 Hz in the frequency of fluctuation in the movement speed of the optical element 120. In this example, the filter unit 70 attenuates components greater than 100 Hz in the control signal. The filter unit 70 may attenuate components greater than 80 Hz, or may attenuate components greater than 60 Hz. This type of control makes it possible to suppress drive noise while maintaining the operating speed of the piezoelectric actuator 110 at or above a constant level.
 本例のパルス信号生成部60は、第1変調部62および第2変調部64を有しているが、他の例のパルス信号生成部60は、第1変調部62を有し、第2変調部64を有さなくてもよい。この場合、第1変調部62は、制御信号に応じて、発振信号の各パルスのパルス幅を調整する。具体的には、光学素子120を加速させる制御信号が入力された場合、第1変調部62は発振信号のパルス幅を大きくし、光学素子120を減速させる制御信号が入力された場合、第1変調部62は発振信号のパルス幅を小さくする。この場合においても、フィルタ部70が制御信号の変動を抑制することで、光学素子120の移動速度の変動を抑制でき、駆動音を抑制できる。 The pulse signal generating unit 60 in this example has a first modulation unit 62 and a second modulation unit 64, but the pulse signal generating unit 60 in other examples may have the first modulation unit 62 and not the second modulation unit 64. In this case, the first modulation unit 62 adjusts the pulse width of each pulse of the oscillation signal according to the control signal. Specifically, when a control signal for accelerating the optical element 120 is input, the first modulation unit 62 increases the pulse width of the oscillation signal, and when a control signal for decelerating the optical element 120 is input, the first modulation unit 62 decreases the pulse width of the oscillation signal. Even in this case, the filter unit 70 suppresses the fluctuation of the control signal, thereby suppressing the fluctuation of the moving speed of the optical element 120 and suppressing the drive noise.
 図19は、フィルタ部70の動作例を説明する図である。図19における縦軸は、制御信号による光学素子120の移動速度を示す。図19における横軸は、時間を示す。図19では、フィルタ部70を用いた場合の制御信号の時間波形を実線で示し、フィルタ部70を用いない場合の制御信号の時間波形を破線で示している。 FIG. 19 is a diagram illustrating an example of the operation of the filter unit 70. The vertical axis in FIG. 19 indicates the moving speed of the optical element 120 in response to the control signal. The horizontal axis in FIG. 19 indicates time. In FIG. 19, the solid line indicates the time waveform of the control signal when the filter unit 70 is used, and the dashed line indicates the time waveform of the control signal when the filter unit 70 is not used.
 本例のフィルタ部70は、光学素子120の移動速度を減少させる方向の、移動速度の変動頻度を抑制する。例えばフィルタ部70は、制御信号の立下りエッジを、所定の時間だけ遅延させる。当該遅延時間は、フィルタ設定信号に含まれるフィルタ設定値により設定されてよい。当該遅延時間は、信号処理部40の動作周期(PIDサイクル)よりも大きくてよい。信号処理部40の動作周期とは、信号処理部40の出力する制御信号の値が変動し得る最小の周期を指す。当該遅延時間は、フィルタ設定値と、PIDサイクルとの積であってよい。フィルタ設定値は、2以上の値であってよい。つまり、フィルタ部70は、制御信号の立下りエッジを、信号処理部40の動作周期の2倍以上の遅延時間で遅延させてよい。フィルタ設定値は、3以上の値であってよく、5以上の値であってよく、10以上の値であってもよい。制御信号の立下りエッジを遅延させることで、制御信号の立上りエッジおよび立下りエッジが、短期間に繰り返して振動することを抑制できる。このため、駆動音の発生を抑制できる。 The filter unit 70 of this example suppresses the frequency of fluctuations in the movement speed in the direction that decreases the movement speed of the optical element 120. For example, the filter unit 70 delays the falling edge of the control signal by a predetermined time. The delay time may be set by a filter setting value included in the filter setting signal. The delay time may be greater than the operation period (PID cycle) of the signal processing unit 40. The operation period of the signal processing unit 40 refers to the minimum period in which the value of the control signal output by the signal processing unit 40 can fluctuate. The delay time may be the product of the filter setting value and the PID cycle. The filter setting value may be a value of 2 or more. In other words, the filter unit 70 may delay the falling edge of the control signal by a delay time that is twice or more the operation period of the signal processing unit 40. The filter setting value may be a value of 3 or more, 5 or more, or 10 or more. By delaying the falling edge of the control signal, it is possible to suppress the rising edge and the falling edge of the control signal from vibrating repeatedly in a short period of time. This makes it possible to suppress the generation of drive noise.
 フィルタ部70は、光学素子120の移動速度を減少させる方向の、移動速度の変動頻度の抑制度合いを、光学素子120の移動速度を増加させる方向の、移動速度の変動頻度の抑制度合いよりも強くしてよい。図18に示した例では、フィルタ部70は、光学素子120の移動速度を減少させる方向の、パルス列12の変更頻度に対する抑制度合いを、光学素子120の移動速度を増加させる方向の、パルス列12の変更頻度に対する抑制度合いよりも強くする。 The filter section 70 may suppress the frequency of fluctuations in the movement speed of the optical element 120 to a greater extent in a direction that decreases the movement speed of the optical element 120 than in a direction that increases the movement speed of the optical element 120. In the example shown in FIG. 18, the filter section 70 suppresses the frequency of changes in the pulse train 12 to a greater extent in a direction that decreases the movement speed of the optical element 120 than in a direction that increases the movement speed of the optical element 120.
 変動頻度の抑制度合いとは、抑制前の変動頻度に対する、抑制後の変動頻度の比であってよい。抑制度合いが強いとは、抑制前の変動頻度に対する、抑制後の変動頻度の比が小さいことを指す。また変動頻度の抑制度合いが強いとは、フィルタ部70におけるカットオフ周波数が低いことを指してもよい。 The degree of suppression of the fluctuation frequency may be the ratio of the fluctuation frequency after suppression to the fluctuation frequency before suppression. A strong degree of suppression means that the ratio of the fluctuation frequency after suppression to the fluctuation frequency before suppression is small. A strong degree of suppression of the fluctuation frequency may also mean that the cutoff frequency in the filter section 70 is low.
 フィルタ部70は、図19に示したような制御信号の立上りエッジも、所定の遅延時間で遅延させてよい。この場合、立上りエッジ(移動速度が増加する方向)の遅延時間は、立下りエッジ(移動速度が減少する方向)の遅延時間よりも短くてよい。他の例では、フィルタ部70は、立上りエッジを遅延させなくてもよい。つまりフィルタ部70は、光学素子120の移動速度を減少させる方向の移動速度の変動頻度を抑制しつつ、光学素子120の移動速度を増加させる方向の移動速度の変動頻度は抑制しなくてもよい。このような制御により、光学素子120の移動が遅くなることを防げる。従って、例えばオートフォーカス等の動作を高速に完了でき、且つ、動作音を抑制できる。 The filter unit 70 may also delay the rising edge of the control signal as shown in FIG. 19 by a predetermined delay time. In this case, the delay time of the rising edge (in the direction in which the moving speed increases) may be shorter than the delay time of the falling edge (in the direction in which the moving speed decreases). In another example, the filter unit 70 may not delay the rising edge. That is, the filter unit 70 may suppress the frequency of fluctuations in the moving speed of the optical element 120 in the direction in which the moving speed decreases, while not suppressing the frequency of fluctuations in the moving speed of the optical element 120 in the direction in which the moving speed increases. This type of control prevents the movement of the optical element 120 from slowing down. Therefore, operations such as autofocus can be completed quickly and the operating noise can be suppressed.
 他の例では、フィルタ部70は、光学素子120の移動速度を増加させる方向の、移動速度の変動頻度の抑制度合いを、光学素子120の移動速度を減少させる方向の、移動速度の変動頻度の抑制度合いよりも強くしてもよい。この場合、光学素子120を減速させやすくなる。このため、光学素子120が目標位置を過ぎて移動してしまうオーバーシュートを抑制しつつ、動作音を抑制できる。フィルタ部70は、光学素子120の移動速度を増加させる方向の移動速度の変動頻度を抑制しつつ、光学素子120の移動速度を減少させる方向の移動速度の変動頻度は抑制しなくてもよい。 In another example, the filter unit 70 may suppress the frequency of fluctuations in the movement speed of the optical element 120 in a direction that increases the movement speed of the optical element 120 more than the frequency of fluctuations in the movement speed of the optical element 120 in a direction that decreases the movement speed of the optical element 120. In this case, it becomes easier to decelerate the optical element 120. This makes it possible to suppress overshooting, in which the optical element 120 moves past the target position, while suppressing operation noise. The filter unit 70 may suppress the frequency of fluctuations in the movement speed of the optical element 120 in a direction that increases the movement speed of the optical element 120, but may not suppress the frequency of fluctuations in the movement speed of the optical element 120 in a direction that decreases the movement speed of the optical element 120.
 図20は、光学素子120の位置と、制御信号の波形の一例を示す図である。図20では、フィルタ部70を用いない例を示している。図20の上段では、光学素子120の検出位置を実線で示し、目標位置を破線で示している。破線で示すように目標位置が変化すると、駆動回路10は、当該目標位置に向けて光学素子120を移動させる。このため、光学素子120の検出位置が徐々に目標位置に近づく。 FIG. 20 is a diagram showing an example of the position of the optical element 120 and the waveform of a control signal. FIG. 20 shows an example in which the filter section 70 is not used. In the upper part of FIG. 20, the detection position of the optical element 120 is shown by a solid line, and the target position is shown by a dashed line. When the target position changes as shown by the dashed line, the drive circuit 10 moves the optical element 120 toward the target position. As a result, the detection position of the optical element 120 gradually approaches the target position.
 目標位置を変化させた直後は、目標位置と検出位置との差が大きいので、駆動部50は、光学素子120の移動速度を大きくしようとする。検出位置が目標位置に近づくにつれて、駆動部50は光学素子120を減速させる。 Immediately after the target position is changed, the difference between the target position and the detection position is large, so the drive unit 50 attempts to increase the movement speed of the optical element 120. As the detection position approaches the target position, the drive unit 50 decelerates the optical element 120.
 光学素子120の移動速度を変更する場合、例えば図17において説明したPID制御等においては、制御信号の値が短い期間内で振動する場合がある。図20の制御信号の時間波形では、光学素子120の移動速度を変更するたびに、制御信号の値が振動している。このような振動が生じると、大きな駆動音が発生しやすくなる。 When changing the moving speed of the optical element 120, for example in the PID control described in FIG. 17, the value of the control signal may oscillate within a short period of time. In the time waveform of the control signal in FIG. 20, the value of the control signal oscillates every time the moving speed of the optical element 120 is changed. When such oscillation occurs, it becomes easy for a loud drive noise to occur.
 図21は、光学素子120の位置と、制御信号の波形の一例を示す図である。図21では、フィルタ部70を用いた例を示している。図21に示す制御信号は、フィルタ部70が出力する制御信号である。本例のフィルタ部70は、制御信号の波形の変動を抑制する。このため、本例の制御信号の波形には、図20に示したような振動が生じていない。このため、駆動音を抑制できる。また、フィルタ部70を設けても、光学素子120の検出位置の推移は、図20の例とほとんど変わらない。 FIG. 21 is a diagram showing an example of the position of the optical element 120 and the waveform of the control signal. FIG. 21 shows an example in which a filter unit 70 is used. The control signal shown in FIG. 21 is the control signal output by the filter unit 70. The filter unit 70 in this example suppresses fluctuations in the waveform of the control signal. As a result, the waveform of the control signal in this example does not have vibrations as shown in FIG. 20. This makes it possible to suppress drive noise. Also, even if the filter unit 70 is provided, the transition of the detection position of the optical element 120 is almost the same as the example in FIG. 20.
 図18および図19等において説明したフィルタ部70のフィルタ特性は、時間経過によらず一定であった。他の例では、フィルタ部70のフィルタ特性は、動的に変更されてもよい。フィルタ部70は、光学素子120の検出位置と目標位置との差分に基づいて、フィルタ特性を調整してもよい。例えば、光学素子120の検出位置が目標位置と離れている場合、光学素子120の移動速度を減少させる方向の、移動速度の変動頻度の抑制度合いを、光学素子120の移動速度を増加させる方向の、移動速度の変動頻度の抑制度合いよりも強くしてよい。そして、光学素子120の検出位置が目標位置と近づいた場合、光学素子120の移動速度を増加させる方向の、移動速度の変動頻度の抑制度合いを、光学素子120の移動速度を減少させる方向の、移動速度の変動頻度の抑制度合いよりも強くしてよい。これにより、光学素子120の検出位置が目標位置と離れている場合には、光学素子120の加速を優先して、光学素子120を目標位置まで高速に移動できる。また、光学素子120の検出位置が目標位置に近づいた場合には、光学素子120の減速を優先して、光学素子120の移動のオーバーシュートを抑制できる。このため、光学素子120を高速且つ高精度に移動しつつ、駆動音を抑制できる。 18 and 19, the filter characteristics of the filter unit 70 are constant regardless of the passage of time. In another example, the filter characteristics of the filter unit 70 may be dynamically changed. The filter unit 70 may adjust the filter characteristics based on the difference between the detection position of the optical element 120 and the target position. For example, when the detection position of the optical element 120 is far from the target position, the degree of suppression of the frequency of fluctuations in the moving speed of the optical element 120 in the direction of decreasing the moving speed of the optical element 120 may be stronger than the degree of suppression of the frequency of fluctuations in the moving speed of the optical element 120 in the direction of increasing the moving speed of the optical element 120. When the detection position of the optical element 120 approaches the target position, the degree of suppression of the frequency of fluctuations in the moving speed of the optical element 120 in the direction of increasing the moving speed of the optical element 120 may be stronger than the degree of suppression of the frequency of fluctuations in the moving speed of the optical element 120 in the direction of decreasing the moving speed of the optical element 120. As a result, when the detection position of the optical element 120 is far from the target position, the optical element 120 can be moved to the target position at high speed by prioritizing the acceleration of the optical element 120. Furthermore, when the detection position of the optical element 120 approaches the target position, priority is given to decelerating the optical element 120, and overshooting of the movement of the optical element 120 can be suppressed. Therefore, the optical element 120 can be moved at high speed and with high accuracy while suppressing drive noise.
 フィルタ部70は、光学素子120の検出位置と目標位置との差分と、設定された基準値とを比較し、当該比較結果に応じてフィルタ特性を調整してよい。フィルタ部70は、当該比較結果に基づいて、光学素子120の移動速度を減少させる方向の移動速度の変更頻度、および、当該移動速度を増加させる方向の移動速度の変更頻度の少なくとも一方に対するフィルタ特性を調整する。フィルタ部70は、当該差分が当該基準値より大きい場合に、光学素子120の検出位置と目標位置とが離れていると判定して上述した制御を行い、当該差分が基準値以下の場合に、光学素子120の検出位置が目標位置に近づいたと判定して上述した制御を行ってよい。 The filter unit 70 may compare the difference between the detected position and the target position of the optical element 120 with a set reference value and adjust the filter characteristics according to the comparison result. Based on the comparison result, the filter unit 70 adjusts the filter characteristics for at least one of the frequency of change in the moving speed in the direction to decrease the moving speed of the optical element 120 and the frequency of change in the moving speed in the direction to increase the moving speed. If the difference is greater than the reference value, the filter unit 70 may determine that the detected position of the optical element 120 is separated from the target position and perform the above-mentioned control, and if the difference is equal to or less than the reference value, may determine that the detected position of the optical element 120 has approached the target position and perform the above-mentioned control.
 図22は、フィルタ部70の他の配置例を示す図である。フィルタ部70は、図22の点線でしめされる各位置の少なくとも1つに設けられてよい。例えばフィルタ部70は、前処理部20の前段または後段に設けられてよい。この場合のフィルタ部70は、位置検出部160が検出した光学素子120の検出位置の変動を抑制する。このような処理によっても、光学素子120の移動速度の変動を抑制できる。 FIG. 22 is a diagram showing another example of the arrangement of the filter section 70. The filter section 70 may be provided at least in one of the positions indicated by the dotted lines in FIG. 22. For example, the filter section 70 may be provided before or after the pre-processing section 20. In this case, the filter section 70 suppresses fluctuations in the detection position of the optical element 120 detected by the position detection section 160. This type of processing can also suppress fluctuations in the movement speed of the optical element 120.
 上述したように、前処理部20は、位置検出部160が検出した検出位置のアナログ信号を、デジタル信号に変換する。例えば前処理部20は、アナログ信号を所定の周期でサンプリングして、サンプリングしたアナログ値をデジタル値に変換して記録する。前処理部20は、新たな変換結果を取得する毎に、記録したデジタル値を更新する。前処理部20は、記録されたデジタル値を、検出位置として出力する。フィルタ部70は、前処理部20における変換結果を更新する頻度を抑制してよい。つまりフィルタ部70は、前処理部20が出力するデジタル信号の変動頻度を抑制してよい。 As described above, the pre-processing unit 20 converts the analog signal of the detection position detected by the position detection unit 160 into a digital signal. For example, the pre-processing unit 20 samples the analog signal at a predetermined period, converts the sampled analog value into a digital value, and records it. The pre-processing unit 20 updates the recorded digital value each time it obtains a new conversion result. The pre-processing unit 20 outputs the recorded digital value as the detection position. The filter unit 70 may suppress the frequency with which the conversion result in the pre-processing unit 20 is updated. In other words, the filter unit 70 may suppress the frequency of fluctuations in the digital signal output by the pre-processing unit 20.
 フィルタ部70は、信号処理部40とパルス信号生成部60との間に設けられてもよい。この場合のフィルタ部70は、図18の例と同様に、信号処理部40が出力する制御信号を変動を抑制する。 The filter unit 70 may be provided between the signal processing unit 40 and the pulse signal generating unit 60. In this case, the filter unit 70 suppresses fluctuations in the control signal output by the signal processing unit 40, similar to the example of FIG. 18.
 フィルタ部70は、パルス信号生成部60とドライバ80との間に設けられてもよい。この場合のフィルタ部70は、パルス信号生成部60が出力するパルス信号における、パルス列12に含まれる第1パルス14の個数の変動を抑制する。 The filter unit 70 may be provided between the pulse signal generating unit 60 and the driver 80. In this case, the filter unit 70 suppresses fluctuations in the number of first pulses 14 included in the pulse train 12 in the pulse signal output by the pulse signal generating unit 60.
 フィルタ部70は、ドライバ80の後段に設けられてもよい。この場合のフィルタ部70は、ドライバ80が出力する駆動信号における、パルス列12に含まれる第1パルス14の個数の変動を抑制する。 The filter unit 70 may be provided after the driver 80. In this case, the filter unit 70 suppresses fluctuations in the number of first pulses 14 included in the pulse train 12 in the drive signal output by the driver 80.
 図23は、図17から図22において説明した圧電アクチュエータ110を駆動する駆動方法の概要を説明するチャート図である。当該駆動方法においては、光学素子120の検出位置および目標位置を取得する(S1102)。その後に、検出位置と目標位置との差分に基づいて、光学素子120の移動速度を制御する駆動信号を生成する(S1106)。図1から図22において説明したように、本例の駆動方法では、駆動信号による光学素子120の移動速度の変動頻度を抑制するフィルタ処理段階S1104を備える。フィルタ処理段階S1104は、S1102とS1106の間に行ってよく、S1106の後に行ってよく、S1106の処理の間に行ってもよい。 FIG. 23 is a chart outlining the driving method for driving the piezoelectric actuator 110 described in FIGS. 17 to 22. In this driving method, the detected position and target position of the optical element 120 are acquired (S1102). Then, a driving signal for controlling the moving speed of the optical element 120 is generated based on the difference between the detected position and the target position (S1106). As described in FIGS. 1 to 22, the driving method of this example includes a filtering step S1104 that suppresses the frequency of fluctuations in the moving speed of the optical element 120 due to the driving signal. The filtering step S1104 may be performed between S1102 and S1106, after S1106, or during the processing of S1106.
 本明細書には、以下の各項目に係る発明も開示されている。
(項目1)
 光学素子を移動させる圧電アクチュエータを駆動する駆動回路であって、
 検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成する信号処理部と、
 前記制御信号に応じたパルス列を有するパルス信号を生成し、前記パルス列に応じて前記移動速度を制御するパルス信号生成部と、
 を備え、
 前記パルス信号生成部は、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能である
 駆動回路。
(項目2)
 前記追加パルスは、前記第1パルスよりもパルス幅が大きい
 項目1に記載の駆動回路。
(項目3)
 前記追加パルスは、前記第1パルスに対して2倍以上のパルス幅を有する
 項目2に記載の駆動回路。
(項目4)
 前記光学素子の前記移動速度を第1の速度から第2の速度に変更する場合に、
 前記パルス信号生成部は、
  前記第1の速度に対して、前記第1の速度に応じた個数の前記第1パルスを含む変更前のパルス信号を生成し、
  前記変更前のパルス信号を生成した後に、前記変更前のパルス信号に1つ以上の前記追加パルスを追加した中間のパルス信号を生成し、
  前記中間のパルス信号を生成した後に、前記第2の速度に応じた個数の前記第1パルスを含む変更後のパルス信号を生成する
 項目2に記載の駆動回路。
(項目5)
 前記パルス信号生成部は、
 1つ以上の前記第1パルスを生成する第1パルス生成部と、
 1つ以上の前記追加パルスを生成する追加パルス生成部と、
 前記第1パルス生成部が生成した前記第1パルスのパルス列と、前記追加パルス生成部が生成した前記追加パルスのパルス列との論理和を出力する論理和回路と
 を有する項目1から4のいずれか一項に記載の駆動回路。
(項目6)
 前記第1パルス生成部は、
  1つ以上の前記第1パルスを含む発振信号を生成する第1変調部と、
  前記発振信号の周期の整数倍のパルス幅を有する変調信号を生成する第2変調部と、
  前記発振信号および前記変調信号の論理積を出力する論理積回路と
 を備える項目5に記載の駆動回路。
(項目7)
 前記追加パルス生成部は、いずれの前記第1パルスとも重ならない期間に、前記追加パルスを生成する
 項目6に記載の駆動回路。
(項目8)
 前記追加パルス生成部は、少なくとも1つの前記第1パルスと重なる期間に、前記追加パルスを生成する
 項目6に記載の駆動回路。
(項目9)
 前記追加パルスは、前記第1パルスよりも振幅が小さい
 項目1に記載の駆動回路。
(項目10)
 前記光学素子の前記移動速度の変動頻度を抑制するフィルタ部を更に備える
 項目1から4のいずれか一項に記載の駆動回路。
(項目11)
 前記信号処理部は、前記検出位置と前記目標位置とに基づいてPID制御を行い、前記制御信号を生成する
 項目1から4のいずれか一項に記載の駆動回路。
(項目12)
 前記圧電アクチュエータに供給される駆動信号を昇圧する昇圧部を更に備える
 項目1から4のいずれか一項に記載の駆動回路。
(項目13)
 光学素子と、前記光学素子を移動させる圧電アクチュエータと、前記圧電アクチュエータを駆動する駆動回路とを備える光学ユニットであって、
 前記駆動回路は、
 検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成する信号処理部と、
 前記制御信号に応じたパルス列を有するパルス信号を生成し、前記パルス列に応じて前記移動速度を制御するパルス信号生成部と、
 を有し、
 前記パルス信号生成部は、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能である
 を有する光学ユニット。
(項目14)
 光学素子を移動させる圧電アクチュエータを駆動する駆動方法であって、
 検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成し、
 前記制御信号に応じたパルス列を有するパルス信号を生成し、前記パルス列に応じて前記移動速度を制御し、
 前記パルス信号の生成において、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能である
 駆動方法。
This specification also discloses inventions relating to the following items:
(Item 1)
A drive circuit for driving a piezoelectric actuator that moves an optical element,
a signal processing unit that generates a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved;
a pulse signal generating unit that generates a pulse signal having a pulse train corresponding to the control signal and controls the moving speed according to the pulse train;
Equipped with
The pulse signal generating unit is capable of generating the pulse signal including, for one of the moving speeds indicated by the control signal, one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses.
(Item 2)
2. The drive circuit according to item 1, wherein the additional pulse has a pulse width greater than that of the first pulse.
(Item 3)
3. The drive circuit according to item 2, wherein the additional pulse has a pulse width that is at least twice as long as that of the first pulse.
(Item 4)
When changing the moving speed of the optical element from a first speed to a second speed,
The pulse signal generating unit
generating a pre-change pulse signal including the first pulses in a number corresponding to the first speed, for the first speed;
generating an intermediate pulse signal by adding one or more of the additional pulses to the unaltered pulse signal after generating the unaltered pulse signal;
3. The drive circuit according to claim 2, further comprising: a drive circuit for generating a changed pulse signal including a number of the first pulses according to the second speed after generating the intermediate pulse signal.
(Item 5)
The pulse signal generating unit
A first pulse generating unit that generates one or more of the first pulses;
an additional pulse generating unit that generates one or more of the additional pulses;
a logical OR circuit that outputs a logical OR of a pulse train of the first pulses generated by the first pulse generating unit and a pulse train of the additional pulses generated by the additional pulse generating unit.
(Item 6)
The first pulse generating unit is
A first modulation unit that generates an oscillation signal including one or more of the first pulses;
a second modulation unit that generates a modulation signal having a pulse width that is an integer multiple of the period of the oscillation signal;
and a logical product circuit that outputs a logical product of the oscillation signal and the modulation signal.
(Item 7)
7. The drive circuit according to item 6, wherein the additional pulse generating section generates the additional pulse in a period that does not overlap with any of the first pulses.
(Item 8)
7. The drive circuit according to item 6, wherein the additional pulse generating section generates the additional pulse during a period overlapping with at least one of the first pulses.
(Item 9)
2. The drive circuit of claim 1, wherein the additional pulse has a smaller amplitude than the first pulse.
(Item 10)
5. The drive circuit according to claim 1, further comprising a filter unit that suppresses a frequency of fluctuations in the moving speed of the optical element.
(Item 11)
5. The drive circuit according to claim 1, wherein the signal processing unit performs PID control based on the detected position and the target position to generate the control signal.
(Item 12)
5. The drive circuit according to claim 1, further comprising a boosting unit that boosts a drive signal supplied to the piezoelectric actuator.
(Item 13)
An optical unit comprising: an optical element; a piezoelectric actuator that moves the optical element; and a drive circuit that drives the piezoelectric actuator,
The drive circuit includes:
a signal processing unit that generates a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved;
a pulse signal generating unit that generates a pulse signal having a pulse train corresponding to the control signal and controls the moving speed according to the pulse train;
having
the pulse signal generating unit is capable of generating, for one of the moving speeds indicated by the control signal, the pulse signal including one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses.
(Item 14)
A method for driving a piezoelectric actuator that moves an optical element, comprising the steps of:
generating a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the detected optical element and a target position to which the optical element should be moved;
generating a pulse signal having a pulse train corresponding to the control signal, and controlling the moving speed corresponding to the pulse train;
In generating the pulse signal, the driving method is capable of generating the pulse signal including one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses for one of the moving speeds indicated by the control signal.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 The present invention has been described above using an embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It will be clear to those skilled in the art that various modifications and improvements can be made to the above embodiment. It is clear from the claims that forms incorporating such modifications or improvements can also be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that the processes can be performed in any order, unless the output of a previous process is used in a later process. Even if the operational flow in the claims, specifications, and drawings is explained using "first," "next," etc. for convenience, it does not mean that it is necessary to perform the processes in that order.
10・・・駆動回路、12・・・パルス列、14・・・第1パルス、15・・・追加パルス、20・・・前処理部、30・・・設定部、40・・・信号処理部、50・・・駆動部、60・・・パルス信号生成部、62・・・第1変調部、64・・・第2変調部、66・・・論理積回路、67・・・第1パルス生成部、68・・・追加パルス生成部、69・・・論理和回路、70・・・フィルタ部、80・・・ドライバ、100・・・光学ユニット、110・・・圧電アクチュエータ、114・・・シャフト、120・・・光学素子、122・・・固定部、130・・・画像取得部、140・・・表示部、150・・・画像処理部、160・・・位置検出部、170・・・昇圧部 10: drive circuit, 12: pulse train, 14: first pulse, 15: additional pulse, 20: pre-processing section, 30: setting section, 40: signal processing section, 50: drive section, 60: pulse signal generating section, 62: first modulation section, 64: second modulation section, 66: logical product circuit, 67: first pulse generating section, 68: additional pulse generating section, 69: logical sum circuit, 70: filter section, 80: driver, 100: optical unit, 110: piezoelectric actuator, 114: shaft, 120: optical element, 122: fixing section, 130: image acquisition section, 140: display section, 150: image processing section, 160: position detection section, 170: boost section

Claims (20)

  1.  光学素子を移動させる圧電アクチュエータを駆動する駆動回路であって、
     検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する駆動信号を生成する駆動部と、
     前記駆動信号による前記移動速度の変動頻度を抑制するフィルタ部と
     を備える駆動回路。
    A drive circuit for driving a piezoelectric actuator that moves an optical element,
    a drive unit that generates a drive signal to control a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved;
    a filter unit that suppresses a frequency of fluctuations in the moving speed due to the drive signal.
  2.  前記フィルタ部は、前記移動速度の変動頻度における、前記圧電アクチュエータの動作周波数帯域以上の成分を減衰させる
     請求項1に記載の駆動回路。
    The drive circuit according to claim 1 , wherein the filter section attenuates components of the fluctuation frequency of the moving speed that are equal to or higher than an operating frequency band of the piezoelectric actuator.
  3.  前記フィルタ部は、前記移動速度の変動頻度における、100Hzより大きい成分を減衰させる
     請求項1に記載の駆動回路。
    The drive circuit according to claim 1 , wherein the filter section attenuates components of the fluctuation frequency of the moving speed that are greater than 100 Hz.
  4.  前記駆動部は、
     前記検出位置と前記目標位置との差分に応じたパルス列を有するパルス信号を生成するパルス信号生成部と、
     前記パルス信号に応じた前記駆動信号を出力するドライバと
     を有し、
     前記フィルタ部は、前記パルス信号生成部における前記パルス列の変更頻度を抑制する
     請求項1から3のいずれか一項に記載の駆動回路。
    The drive unit is
    a pulse signal generating unit that generates a pulse signal having a pulse train corresponding to a difference between the detected position and the target position;
    a driver that outputs the drive signal in response to the pulse signal;
    The drive circuit according to claim 1 , wherein the filter section suppresses a frequency of change of the pulse train in the pulse signal generating section.
  5.  前記フィルタ部は、前記移動速度を減少させる方向の前記パルス列の変更頻度に対する抑制度合いを、前記移動速度を増加させる方向の前記パルス列の変更頻度に対する抑制度合いよりも強くする
     請求項4に記載の駆動回路。
    The drive circuit according to claim 4 , wherein the filter section suppresses a frequency of change in the pulse train in a direction that decreases the moving speed more strongly than a frequency of change in the pulse train in a direction that increases the moving speed.
  6.  前記フィルタ部は、前記移動速度を減少させる方向の前記パルス列の変更頻度を抑制し、且つ、前記移動速度を増加させる方向の前記パルス列の変更頻度を抑制しない
     請求項5に記載の駆動回路。
    The drive circuit according to claim 5 , wherein the filter section suppresses a frequency of change in the pulse train in a direction that decreases the moving speed, and does not suppress a frequency of change in the pulse train in a direction that increases the moving speed.
  7.  前記検出位置を示す信号をAD変換して前記駆動部に入力する前処理部を更に備え、
     前記フィルタ部は、前記前処理部における変換結果を更新する頻度を抑制する
     請求項1から3のいずれか一項に記載の駆動回路。
    a pre-processing unit that performs AD conversion on a signal indicating the detected position and inputs the signal to the driving unit;
    The drive circuit according to claim 1 , wherein the filter section reduces a frequency at which the conversion result in the pre-processing section is updated.
  8.  前記フィルタ部は、前記検出位置と前記目標位置との差分に基づいて、フィルタ特性を調整する
     請求項1から3のいずれか一項に記載の駆動回路。
    The drive circuit according to claim 1 , wherein the filter section adjusts a filter characteristic based on a difference between the detected position and the target position.
  9.  前記フィルタ部は、前記差分と、設定された基準値との比較結果に基づいて、前記移動速度を減少させる方向の前記移動速度の変更頻度、および、前記移動速度を増加させる方向の前記移動速度の変更頻度の少なくとも一方に対するフィルタ特性を調整する
     請求項8に記載の駆動回路。
    9. The drive circuit according to claim 8, wherein the filter section adjusts a filter characteristic for at least one of a frequency of change in the moving speed in a direction to decrease the moving speed and a frequency of change in the moving speed in a direction to increase the moving speed, based on a result of comparing the difference with a set reference value.
  10.  前記駆動部は、前記検出位置と前記目標位置とに基づいてPID制御を行い、前記駆動信号を生成する
     請求項1から3のいずれか一項に記載の駆動回路。
    The drive circuit according to claim 1 , wherein the drive section performs PID control based on the detected position and the target position to generate the drive signal.
  11.  前記光学素子の位置を検出し、前記検出位置を示す信号を生成する位置検出部を更に備える
     請求項1から3のいずれか一項に記載の駆動回路。
    The drive circuit according to claim 1 , further comprising a position detector configured to detect a position of the optical element and generate a signal indicative of the detected position.
  12.  前記駆動信号を昇圧させて前記圧電アクチュエータに供給する昇圧部を更に備える
     請求項1から3のいずれか一項に記載の駆動回路。
    The drive circuit according to claim 1 , further comprising a boosting section that boosts the drive signal and supplies the boosted signal to the piezoelectric actuator.
  13.  前記駆動部は、検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成する信号処理部を更に有し、
     前記パルス信号生成部は、前記制御信号に応じた前記パルス列を有する前記パルス信号を生成し、
     前記パルス信号生成部は、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能である
     請求項4に記載の駆動回路。
    the driving unit further includes a signal processing unit that generates a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the detected optical element and a target position to which the optical element should be moved,
    the pulse signal generating unit generates the pulse signal having the pulse train in response to the control signal;
    5. The drive circuit according to claim 4, wherein the pulse signal generating unit is capable of generating the pulse signal including, for one of the moving speeds indicated by the control signal, one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses.
  14.  前記追加パルスは、前記第1パルスよりもパルス幅が大きい
     請求項13に記載の駆動回路。
    The drive circuit according to claim 13 , wherein the additional pulse has a pulse width greater than that of the first pulse.
  15.  前記追加パルスは、前記第1パルスに対して2倍以上のパルス幅を有する
     請求項14に記載の駆動回路。
    The drive circuit according to claim 14 , wherein the additional pulse has a pulse width at least twice as long as that of the first pulse.
  16.  前記光学素子の前記移動速度を第1の速度から第2の速度に変更する場合に、
     前記パルス信号生成部は、
      前記第1の速度に対して、前記第1の速度に応じた個数の前記第1パルスを含む変更前のパルス信号を生成し、
      前記変更前のパルス信号を生成した後に、前記変更前のパルス信号に1つ以上の前記追加パルスを追加した中間のパルス信号を生成し、
      前記中間のパルス信号を生成した後に、前記第2の速度に応じた個数の前記第1パルスを含む変更後のパルス信号を生成する
     請求項14に記載の駆動回路。
    When changing the moving speed of the optical element from a first speed to a second speed,
    The pulse signal generating unit
    generating a pre-change pulse signal including the first pulses in a number corresponding to the first speed, for the first speed;
    generating an intermediate pulse signal by adding one or more of the additional pulses to the unaltered pulse signal after generating the unaltered pulse signal;
    The drive circuit according to claim 14 , further comprising: a drive circuit configured to generate, after generating the intermediate pulse signal, a modified pulse signal including a number of the first pulses corresponding to the second speed.
  17.  前記パルス信号生成部は、
     1つ以上の前記第1パルスを生成する第1パルス生成部と、
     1つ以上の前記追加パルスを生成する追加パルス生成部と、
     前記第1パルス生成部が生成した前記第1パルスのパルス列と、前記追加パルス生成部が生成した前記追加パルスのパルス列との論理和を出力する論理和回路と
     を有する請求項13に記載の駆動回路。
    The pulse signal generating unit
    A first pulse generating unit that generates one or more of the first pulses;
    an additional pulse generating unit that generates one or more of the additional pulses;
    14. The drive circuit according to claim 13, further comprising: a logical OR circuit that outputs a logical OR of the pulse train of the first pulses generated by the first pulse generating section and the pulse train of the additional pulses generated by the additional pulse generating section.
  18.  光学素子を移動させる圧電アクチュエータを駆動する駆動回路であって、
     検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する制御信号を生成する信号処理部と、
     前記制御信号に応じたパルス列を有するパルス信号を生成し、前記パルス列に応じて前記移動速度を制御するパルス信号生成部と、
     を備え、
     前記パルス信号生成部は、前記制御信号により示される1つの前記移動速度に対して、1つ以上の第1パルスと、前記第1パルスとはパルス幅および振幅の少なくとも一方が異なる1つ以上の追加パルスとを含む前記パルス信号を生成可能である
     駆動回路。
    A drive circuit for driving a piezoelectric actuator that moves an optical element,
    a signal processing unit that generates a control signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved;
    a pulse signal generating unit that generates a pulse signal having a pulse train corresponding to the control signal and controls the moving speed according to the pulse train;
    Equipped with
    The pulse signal generating unit is capable of generating the pulse signal including, for one of the moving speeds indicated by the control signal, one or more first pulses and one or more additional pulses having at least one of a pulse width and an amplitude different from that of the first pulses.
  19.  光学素子と、前記光学素子を移動させる圧電アクチュエータと、前記圧電アクチュエータを駆動する駆動回路とを備える光学ユニットであって、
     前記駆動回路は、
     検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する駆動信号を生成する駆動部と、
     前記駆動信号による前記移動速度の変動頻度を抑制するフィルタ部と
     を有する光学ユニット。
    An optical unit comprising: an optical element; a piezoelectric actuator that moves the optical element; and a drive circuit that drives the piezoelectric actuator,
    The drive circuit includes:
    a drive unit that generates a drive signal to control a moving speed of the optical element based on a difference between a detected position indicating a position of the optical element that has been detected and a target position to which the optical element should be moved;
    and a filter unit that suppresses a frequency of fluctuations in the moving speed due to the drive signal.
  20.  光学素子を移動させる圧電アクチュエータを駆動する駆動方法であって、
     検出された前記光学素子の位置を示す検出位置と、前記光学素子が移動すべき目標位置との差分に基づいて、前記光学素子の移動速度を制御する駆動信号を生成し、
     前記駆動信号による前記移動速度の変動頻度を抑制する
     駆動方法。
    A method for driving a piezoelectric actuator that moves an optical element, comprising the steps of:
    generating a drive signal for controlling a moving speed of the optical element based on a difference between a detected position indicating a position of the detected optical element and a target position to which the optical element should be moved;
    The driving method suppresses a frequency of fluctuations in the moving speed due to the driving signal.
PCT/JP2023/044582 2023-02-27 2023-12-13 Drive circuit, optical unit, and drive method WO2024180863A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023028978 2023-02-27
JP2023-028977 2023-02-27
JP2023-028978 2023-02-27
JP2023028977 2023-02-27

Publications (1)

Publication Number Publication Date
WO2024180863A1 true WO2024180863A1 (en) 2024-09-06

Family

ID=92589473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044582 WO2024180863A1 (en) 2023-02-27 2023-12-13 Drive circuit, optical unit, and drive method

Country Status (1)

Country Link
WO (1) WO2024180863A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252951A (en) * 1998-02-27 1999-09-17 Star Micronics Co Ltd Ultrasonic motor
JP2008278721A (en) * 2007-05-07 2008-11-13 Matsushita Electric Ind Co Ltd Ultrasonic actuator device
JP2010028974A (en) * 2008-07-18 2010-02-04 Olympus Corp Ultrasonic motor
JP2010057212A (en) * 2008-08-26 2010-03-11 Canon Inc Control device of vibration-type actuator, lens barrel, imaging device, control method of vibration-type actuator, and control program of vibration-type actuator
JP2014131405A (en) * 2012-12-28 2014-07-10 Nikon Corp Drive device, and lens barrel
JP2018133873A (en) * 2017-02-14 2018-08-23 キヤノン株式会社 Method for controlling vibration type actuator, vibration type drive unit, and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252951A (en) * 1998-02-27 1999-09-17 Star Micronics Co Ltd Ultrasonic motor
JP2008278721A (en) * 2007-05-07 2008-11-13 Matsushita Electric Ind Co Ltd Ultrasonic actuator device
JP2010028974A (en) * 2008-07-18 2010-02-04 Olympus Corp Ultrasonic motor
JP2010057212A (en) * 2008-08-26 2010-03-11 Canon Inc Control device of vibration-type actuator, lens barrel, imaging device, control method of vibration-type actuator, and control program of vibration-type actuator
JP2014131405A (en) * 2012-12-28 2014-07-10 Nikon Corp Drive device, and lens barrel
JP2018133873A (en) * 2017-02-14 2018-08-23 キヤノン株式会社 Method for controlling vibration type actuator, vibration type drive unit, and electronic apparatus

Similar Documents

Publication Publication Date Title
US8681231B2 (en) Camera with image stabilization function
KR100899057B1 (en) Voice coil motor control device, drive method for the device, and image pickup device
WO2009116453A1 (en) Camera system, device for driving voice coil motor, and method for driving voice coil motor
EP2818909A1 (en) Image display device and mirror drive method therefor
US20210286192A1 (en) Driving control apparatus, device, optical module and driving control method
US9154066B2 (en) Drive control apparatus and drive control method
US10589988B2 (en) Mechanical component and manufacturing method for a mechanical component
US20110304933A1 (en) Control apparatus and adjustment method for vibratory actuator using a plurality of vibrators, vibratory actuator, and lens unit and optical apparatus using the vibratory actuator
WO2024180863A1 (en) Drive circuit, optical unit, and drive method
US20170194879A1 (en) Vibration type actuator control apparatus, apparatus having the same, and storage medium storing vibration type actuator control program
JP2009153228A (en) Piezoelectric actuator drive circuit, and vibration control circuit
US10326384B2 (en) Drive controller, imaging apparatus and drive control method
JPH0980549A (en) Optical device provided with shake correction mechanism
US8698904B2 (en) Image capturing apparatus and method of controlling image capturing apparatus
JP2000287467A (en) Servo-controller of piezoelectric actuator
JP2009153229A (en) Piezoelectric actuator control circuit and vibration control circuit
EP2613306B1 (en) Projector, apparatus and method for driving optical scanner thereof
US20220103108A1 (en) Vibration actuator control apparatus, vibration driving apparatus including the same, and electronic device
JP2001006305A (en) Positioning controller
KR20150061399A (en) Apparatus and method for controlling actuator in optical image stabilizer and optical image stabilizer using the same
KR20160102736A (en) Optical image stabilizer and camera module including the same
US20150042365A1 (en) Detection circuit
JP2011151887A (en) Method and device for controlling motor
CN114070124A (en) Control apparatus and driving apparatus of vibration type motor
JP2008003327A (en) Camera device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23925414

Country of ref document: EP

Kind code of ref document: A1