Nothing Special   »   [go: up one dir, main page]

WO2024179036A1 - 一种单晶锰基锂电池正极材料及其制备方法 - Google Patents

一种单晶锰基锂电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2024179036A1
WO2024179036A1 PCT/CN2023/131018 CN2023131018W WO2024179036A1 WO 2024179036 A1 WO2024179036 A1 WO 2024179036A1 CN 2023131018 W CN2023131018 W CN 2023131018W WO 2024179036 A1 WO2024179036 A1 WO 2024179036A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
positive electrode
single crystal
manganese
source
Prior art date
Application number
PCT/CN2023/131018
Other languages
English (en)
French (fr)
Inventor
蒋永善
黄耀博
张天任
张昊
黄碧英
Original Assignee
天能电池集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天能电池集团股份有限公司 filed Critical 天能电池集团股份有限公司
Publication of WO2024179036A1 publication Critical patent/WO2024179036A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of lithium battery positive electrode materials, and in particular relates to a single crystal manganese-based lithium battery positive electrode material and a preparation method thereof.
  • the performance of lithium batteries mainly depends on the positive electrode material, negative electrode material, electrolyte and separator, among which the positive electrode material is the most critical part.
  • the research and development of positive electrode materials has become the key to the development of lithium ion.
  • the characteristics of an ideal positive electrode material should be: (1) high and stable discharge platform, no reaction with the electrolyte; (2) stable crystal structure, small change in redox potential during charge and discharge, good cycle performance and stable discharge platform; (3) high lithium ion diffusion coefficient, which can reduce the degree of polarization, reduce energy loss, and obtain faster charge and discharge; (4) large Gibbs free energy in lithium ion reaction to reduce energy loss caused by polarization.
  • the single crystal manganese-based lithium battery positive electrode material is an upgraded version of the spinel lithium manganese oxide (LiMn 2 O 4 ) positive electrode material with improved performance.
  • the pure lithium manganese oxide positive electrode material has high safety, high rate discharge capacity and low price, its low specific capacity, poor cycle performance, especially high temperature cycle performance, has greatly limited its application.
  • the cycle performance has been improved to a certain extent after more than ten years of research, the high temperature cycle performance has not been well solved, which seriously lags behind the development and application of nickel cobalt manganese oxide, lithium cobalt oxide and lithium iron phosphate.
  • the patent application with publication number CN111640937A discloses a method for preparing a single-crystal lithium manganate material.
  • a raw manganese compound and sodium sulfate are weighed according to the required ratio, added to deionized water, stirred for 1-10 hours, reacted at 100-150°C for 10-15 hours, filtered and collected after cooling, washed with deionized water for 1-5 times, and dried to obtain a ⁇ -MnO2 precursor; the obtained ⁇ -MnO2 precursor is mixed with a lithium source and a compound of a doping element M in a certain proportion, and a finished product is obtained after sintering.
  • the finished product has a molecular formula of Li1+aMn2-a-bMbO4, 0 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 0.2, wherein the doping element M is one of Al, Ti, Zr, Si, Zn, Mg, Ga, B, Cr, Co, and Y.
  • the invention requires the preparation of ⁇ -MnO2 precursor by liquid phase method, which requires a large amount of ionized water for washing. If the wastewater generated in the process is not properly treated, it will cause pollution to the environment.
  • the patent application with publication number CN113285068A discloses a single crystal lithium manganate positive electrode material and a preparation method thereof, wherein the preparation method comprises the following steps: a first step of uniformly mixing a Li compound, a Mn compound and a compound containing a doping element M; performing a first sintering at 650-950° C., cooling, crushing and screening to obtain a single crystal lithium manganate primary sintered material; a second step of coating the single crystal lithium manganate primary sintered material with a compound of a coating element N to obtain a coated single crystal lithium manganate primary sintered material; a third step of performing a second sintering at 300-800° C., cooling and crushing the coated single crystal lithium manganate primary sintered material to obtain a single crystal lithium manganate positive electrode material.
  • the single crystal lithium manganese oxide positive electrode material prepared by this invention has good structural stability during charge and discharge cycles, and excellent high-temperature and room-temperature cycle performance and high-temperature storage performance.
  • the button battery test capacity is not high.
  • the room-temperature capacity is only between 106.2 and 110.5mAh/g.
  • step A mixing small particle manganese source, lithium carbonate and additives by ball milling in proportion
  • step B sintering the ball milled mixed material at low temperature
  • step C mixing the low temperature sintered material, fine crystal lithium manganese oxide seeds and sintering aid by ball milling in proportion
  • step D sintering the ball milled mixed material containing fine crystal lithium manganese oxide seeds
  • step E crushing the material after high temperature sintering, and then adding a coating agent for coating sintering
  • step F preparing the finished product by post-processing steps such as process classification, demagnetization, batch mixing and packaging of the coated sintered material.
  • the invention has a simple preparation method, a more environmentally friendly process, and the obtained lithium manganese oxide product has a high capacity and a long life, but the
  • the object of the present invention is to provide a single crystal manganese-based lithium battery positive electrode material and a preparation method thereof.
  • the present invention provides a single crystal manganese-based lithium battery positive electrode material, the single crystal manganese-based lithium battery positive electrode material has a general composition formula of: (1-x)Li 1+a Ni b Co k Mn 2-abkcdk Al c M d O 4-e/2 F e ⁇ xG ⁇ yLi f D g O h ;
  • M is a doping element
  • G is a coating modifier
  • D is a metal or a metalloid
  • f, g and h satisfy the valence balance of Li f D g O h , 0 ⁇ x ⁇ 10%, 2 ⁇ y ⁇ 4.2%, 0.05 ⁇ a ⁇ 0.06, 0.01 ⁇ b ⁇ 0.03, 0.01 ⁇ k ⁇ 0.03, 0.04 ⁇ c ⁇ 0.07, 0.01 ⁇ d ⁇ 0.06, 0.03 ⁇ e ⁇ 0.07.
  • M is Zr, La and La-based rare earth, Sb, Mg, Nb, Mo, Cr, Ta, Sr, K, At least one of the oxides, hydroxides, carbonates, acetates, nitrates and oxalates of the elements Cs, V, Zn, In, Si, Rb, Y, B, Ga, Bi, Sn, Ge and W, or the oxides, hydroxides, carbonates, acetates, nitrates and oxalates of at least one of the elements Zr, La and La-based rare earths, Sb, Mg, Nb, Mo, Cr, Ta, Sr, K, Cs, V, Zn, In, Si, Rb, Y, B, Ga, Bi, Sn, Ge and W.
  • G is Al 2 O 3 , Y 2 O 3 , AlPO 4 , LiFePO 4 , LiMn 1-n Fe n PO 4 , 0 ⁇ n ⁇ 1, LiNim Mn 2-m O 4 , 0 ⁇ m ⁇ 1.0 , LiTi 2 (PO 4 ) 3 , La 2 O 3 , FePO 4 , LiMnPO 4 , MnPO 4 , LiCoPO 4 , CoPO 4 , LiNiPO 4 , NiPO 4 , Mn 1-n Fe n PO 4 , 0 ⁇ n ⁇ 1, Li 1+p Al p Ti 2-p (PO 4 ) 3 , 0 ⁇ p ⁇ 1, ZnO, Sb 2 O 3 , Bi 2 O 3 , Li 3 AlF 6 , LiAlF 4 , LiAlO 2 , Li 4 Ti 5 O 12 , Co 3 O 4 , Sc 2 O 3 ; or G is an oxide of at least one of the following substances: pseudo-boehmite, boehmite, Al
  • the oxides after decomposition of the pseudo-boehmite, boehmite, Al(OH) 3 , Sb(OH) 3 , Bi(OH) 3 , La(OH) 3 , Ce(OH) 4 , Y(OH) 3 , Zn(OH) 2 , and Sc(OH) 3 are Al 2 O 3 , Sb 2 O 3 , Bi 2 O 3 , La 2 O 3 , CeO 2 , Y 2 O 3 , ZnO, and Sc 2 O 3 .
  • the present invention also provides a method for preparing the single crystal manganese-based lithium battery positive electrode material, comprising the following steps:
  • step (1) The mixed material WL1 obtained in step (1) is subjected to decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth, crystal recrystallization, cooling, crushing, and screening to obtain a semi-finished product WL2 having a large single crystal morphology of a spinel structure;
  • step (3) adding water to the mixed slurry WL3 obtained in step (3) and mixing evenly, adding the remaining amount of lithium source and the semi-finished product WL2 obtained in step (2), continuing to mix evenly for 2 to 6 hours, and drying to obtain a mixed material WL4;
  • step (4) The mixed material WL4 obtained in step (4) is subjected to decomposition, single crystal recrystallization, crystal surface reconstruction, cooling, crushing, screening, and iron removal processes to obtain a single crystal manganese-based lithium battery positive electrode material.
  • step (1) Specifically, in step (1),
  • the lithium source is at least one of Li 2 CO 3 , LiOH ⁇ H 2 O, Li 2 C 2 O 4 , LiOH, CH 3 COOLi, C 4 H 9 Li, C 6 H 5 Li, and LiF;
  • the fluorine source is at least one of MgF 2 , SbF 3 , CoF 2 , AlF 3 , AlF 3 ⁇ 3H 2 O, LiF, GaF 3 , MnF 2 , YF 3 , SrF 2 , NiF 2 , MnF 3 , ZnF 2 , LaF 3 , NbF 5 , SnF 2 , BaF 2 , NH 4 F, LiAlF 4 , BiF 3 , ZrF 4 , CsF, Li 3 AlF 6 , and SiF 4 ;
  • the nickel source is a carbonate, oxide, hydroxide, nitrate, fluoride, boride, At least one of oxalate and acetate; or the nickel source is at least one of the following substances: Ni1 -qMnq ( OH) 2 , LiNiO2 , LiNi1 - rqCOrMnqO2 , LiNi1 -qCOqO2, LiNi1-rqCOrAlqO2 , LiNi1 - qMnqO2 , Ni1 -qCOq ( OH) 2 , Ni1-rqCOrMnq ( OH ) 2 , Ni1 -rqCOrAlq ( OH ) 2 ; wherein, 0 ⁇ q ⁇ 1.0, r+ q ⁇ 1.0 ;
  • the cobalt source is at least one of carbonate, oxide, nitrate, hydroxide, fluoride, boride, oxalate and acetate containing Co element; or the cobalt source is at least one of the following substances: LiCoO2 , Ni1 -tC Ot (OH) 2 , Co1 -tMnt ( OH) 2 , LiNi1 - tuC OtMnuO2 , LiNi1 -zC OzO2 , 0 ⁇ z ⁇ 1.0, LiNi1-tuC OtAluO2 , LiCo1-tMntO2, Ni1-tuC OtMnu(OH)2, Ni1-tuC OtAlu(OH)2 ; wherein , 0 ⁇ t ⁇ 1.0 , t + u ⁇ 1.0 ;
  • the manganese source is at least one of an oxide, hydroxide, carbonate, nitrate, fluoride, boride, oxalate, and acetate containing the Mn element;
  • the aluminum source is at least one of hydroxides, nitrates, fluorides, oxides, acetates, oxalates and organic compounds containing Al; or the aluminum source is at least one of the following substances: pseudo-boehmite, boehmite, LiAlO 2 , Li 3 AlF 6 , LiAlF 4 .
  • the decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth, crystal recrystallization, cooling, crushing, and screening process are specifically as follows: the mixed material WL1 is decomposed, oxidized, solid phase melted, crystal nucleation, and crystal growth are carried out at a temperature of 630 to 710° C. under protective air atmosphere conditions for 9 to 17 hours, the temperature is continued to be raised to 930 to 990° C., the crystal is recrystallized and synthesized for 12 to 18 hours, the temperature is lowered to 600 to 690° C., the crystal is repaired and roasted for 5 to 8 hours, the temperature is lowered to room temperature, and the crushing and screening process is carried out;
  • the primary grain size of the semi-finished product WL2 is 1.0-5.0 ⁇ m.
  • the particle size of the mixed slurry WL3 is 200 to 800 nm;
  • step (5) the primary grain size of the single crystal manganese-based lithium battery positive electrode material is 1.5 to 6.0 ⁇ m.
  • the decomposition, single crystal recrystallization, crystal surface reconstruction, cooling, crushing, screening, and demagnetization processes are specifically as follows: the mixed material WL4 is placed in a synthesis sintering furnace under air atmosphere conditions at a temperature of 580 to 670°C for decomposition, single crystal recrystallization, and crystal surface reconstruction for 12 to 17 hours, cooled to room temperature, and crushed, screened, and demagnetized.
  • the present invention regulates the size and crystal morphology of the primary particles of the material crystal by controlling the material reaction temperature and reaction time, reduces the material specific surface area, reduces the manganese dissolution crystal surface, and enhances the stability of the two phases when Li + is extracted and embedded during the material charge and discharge cycle process.
  • the molar ratio of the remainder to the semi-finished product WL2 is 0.24 to 0.45:1.
  • the present invention also provides a lithium battery, comprising the single crystal manganese-based lithium battery positive electrode material.
  • the present invention regulates the oxidation state of Mn through the interaction between composite metal ion co-doping and anion-cation co-doping, thereby suppressing the Jahn-Teller distortion effect during the charge and discharge process to cause a structural phase change, improving the stability of the material's main skeleton and reducing the disproportionation reaction at the end of the discharge, thereby improving the defect of rapid capacity decay during the material's charge and discharge cycle and enhancing the material's cycle performance.
  • the present invention adds a lithium-rich compound Li f D g Oh with a high specific capacity.
  • the surplus lithium can effectively supplement a large amount of lithium from the positive electrode consumed when a solid electrolyte interface (SEI) film is formed on the surface of the negative electrode of the battery, which is beneficial to improving the Coulomb efficiency (ICE) of the first cycle of the material, improving the specific capacity of the material, and can also reduce the phase change caused by structural instability caused by lithium extraction, thereby extending its cycle life.
  • SEI solid electrolyte interface
  • the material of the present invention has the remarkable advantages of high gram capacity, high compaction density of battery pole pieces, long cycle life at room temperature, good rate discharge, good high-temperature cycle and power storage performance, etc. It is used to manufacture high-end lithium manganese oxide batteries, and can also be mixed with lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium cobalt oxide, lithium manganese iron phosphate and other lithium battery positive electrode materials to manufacture lithium-ion batteries, meeting the use requirements of new energy vehicles, electric bicycles, electric ships, household energy storage, portable energy storage, electric tools, and communication equipment.
  • the preparation method of the present invention is simple, easy to industrialize and produce, and can also form a variety of products to meet different market demands.
  • FIG1 is a particle morphology of the single crystal manganese-based lithium battery positive electrode material prepared in Example 8.
  • FIG2 is a particle size distribution diagram of the single crystal manganese-based lithium battery positive electrode material prepared in Example 8.
  • FIG3 is a graph showing the charge and discharge current curve of the single crystal manganese-based lithium battery positive electrode material prepared in Example 8 at a simulated battery temperature of 0.2C.
  • FIG4 is a graph showing the performance trend of the single crystal manganese-based lithium battery positive electrode material prepared in Example 8 in a full battery at room temperature and 1C current charge and discharge cycle.
  • Figure 5 is a trend chart of the charge and discharge cycle performance of the single crystal manganese-based lithium battery positive electrode material prepared in Example 8 in a 45°C environment and 1C current.
  • the present invention provides a method for preparing a single crystal manganese-based lithium battery positive electrode material, comprising the following steps:
  • step (1) The mixed material WL1 obtained in step (1) is subjected to decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth, crystal recrystallization, cooling, crushing, and screening to obtain a semi-finished product WL2 having a large single crystal morphology of a spinel structure;
  • step (3) adding water to the mixed slurry WL3 obtained in step (3) and mixing evenly, adding the remaining amount of lithium source and the semi-finished product WL2 obtained in step (2), continuing to mix evenly for 2 to 6 hours, and drying to obtain a mixed material WL4;
  • step (4) The mixed material WL4 obtained in step (4) is subjected to decomposition, single crystal recrystallization, crystal surface reconstruction, cooling, crushing, screening, and iron removal processes to obtain a single crystal manganese-based lithium battery positive electrode material.
  • the decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth, crystal recrystallization, cooling, crushing and screening processes are specifically as follows: the mixed material WL1 is decomposed, oxidized, solid phase melted, crystal nucleation and crystal growth are carried out at a temperature of 300-750°C under a protective air atmosphere for 3-20 hours, the temperature is continued to be raised to 850-1150°C, the crystal is recrystallized and synthesized for 5-30 hours, the temperature is lowered to 750-450°C, the crystal is restoratively calcined for 3-10 hours, the temperature is lowered to room temperature, and the crushing and screening processes are carried out; the primary grain size of the semi-finished product WL2 obtained is in the range of 1.0-5.0 ⁇ m.
  • the particle size of the mixed slurry WL3 is 200 to 800 nm
  • the primary grain size of the single crystal manganese-based lithium battery positive electrode material finally prepared is in the range of 1.5 to 6.0 ⁇ m.
  • the decomposition, single crystal recrystallization, crystal surface reconstruction, cooling, crushing, screening, and demagnetization processes are specifically as follows: the mixed material WL4 is decomposed, single crystal recrystallized, and crystal surface reconstructed at a temperature of 300-750°C in a synthetic sintering furnace under air atmosphere conditions for 5-20 hours, cooled to room temperature, and crushed, screened, and demagnetized.
  • step (4) the molar ratio of the remainder to the semi-finished product WL2 is 0.24-0.45:1.
  • the general composition formula of the prepared single crystal manganese-based lithium battery positive electrode material is: (1-x)Li 1+a Ni b Co k Mn 2-abkcdk Al c M d O 4-e/2 F e ⁇ xG ⁇ yLi f D g O h ;
  • M is a doping element
  • G is a coating modifier
  • D is a metal or a metalloid
  • f, g and h satisfy the valence balance of Li f D g O h , 0 ⁇ x ⁇ 10%, 0 ⁇ y ⁇ 10%, 0.001 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.1, 0 ⁇ k ⁇ 0.1, 0.001 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ e ⁇ 0.3.
  • the M can be at least one of the oxides, hydroxides, carbonates, acetates, nitrates, and oxalates of Zr, La, La-based rare earths, Sb, Mg, Nb, Mo, Cr, Ta, Sr, K, Cs, V, Zn, In, Si, Rb, Y, B, Ga, Bi, Sn, Ge, and W elements, or the M can be at least one of the oxides, hydroxides, carbonates, acetates, nitrates, and oxalates of Zr, La, La-based rare earths, Sb, Mg, Nb, Mo, Cr, Ta, Sr, K, Cs, V, Zn, In, Si, Rb, Y, B, Ga, Bi, Sn, Ge, and W elements.
  • the coating modifier G can be Al 2 O 3 , Y 2 O 3 , AlPO 4 , LiFePO 4 , LiMn 1-n Fe n PO 4 , 0 ⁇ n ⁇ 1, LiNi m Mn 2-m O 4 , 0 ⁇ m ⁇ 1.0, LiTi 2 (PO 4 ) 3 , La 2 O 3 , FePO 4 , LiMnPO 4 , MnPO 4 , LiCoPO 4 , CoPO 4 , LiNiPO 4 , NiPO 4 , Mn 1-n Fe n PO 4 , 0 ⁇ n ⁇ 1, Li 1+p Al p Ti 2-p (PO 4 ) 3 , 0 ⁇ p ⁇ 1, ZnO, Sb 2 O 3 , Bi 2 O 3 , Li 3 AlF 6 , LiAlF 4 , LiAlO 2 , Li 4 At least one of Ti 5 O 12 , Co 3 O 4 , and Sc 2 O 3 or G is an oxide obtained by decomposition of at least one of the following substances: pseudo-b
  • the lithium source may be at least one of Li 2 CO 3 , LiOH ⁇ H 2 O, Li 2 C 2 O 4 , LiOH, CH 3 COOLi, C 4 H 9 Li, C 6 H 5 Li, and LiF;
  • the fluorine source may be at least one of MgF 2 , SbF 3 , CoF 2 , AlF 3 , AlF 3 ⁇ 3H 2 O, LiF, GaF 3 , MnF 2 , YF 3 , SrF 2 , NiF 2 , MnF 3 , ZnF 2 , LaF 3 , NbF 5 , SnF 2 , BaF 2 , NH 4 F, LiAlF 4 , BiF 3 , ZrF 4 , CsF, Li 3 AlF 6 , and SiF 4 ;
  • the nickel source is at least one of carbonate, oxide, hydroxide, nitrate, fluoride, boride, oxalate and acetate containing Ni element; or the nickel source is at least one of the following substances: Ni 1-q Mn q (OH) 2 , LiNiO 2 , LiNi 1-rq C Or Mn q O 2 , LiNi 1-q C Oq O 2 , LiNi 1-rq C Or Al q O 2 , LiNi 1-q Mn q O 2 , Ni 1-q C Oq (OH) 2 , Ni 1-rq C Or Mn q (OH) 2 , Ni 1-rq C Or Al q (OH) 2 ; wherein, 0 ⁇ q ⁇ 1.0, r+q ⁇ 1.0;
  • the cobalt source is at least one of carbonate, oxide, nitrate, hydroxide, fluoride, boride, oxalate and acetate containing Co element; or the cobalt source is at least one of the following substances: LiCoO2 , Ni1 -tC Ot (OH) 2 , Co1 -tMnt ( OH) 2 , LiNi1 - tuC OtMnuO2 , LiNi1 -zC OzO2 , 0 ⁇ z ⁇ 1.0, LiNi1-tuC OtAluO2 , LiCo1-tMntO2, Ni1-tuC OtMnu(OH)2, Ni1-tuC OtAlu(OH)2 ; wherein , 0 ⁇ t ⁇ 1.0 , t + u ⁇ 1.0 ;
  • the manganese source is at least one of an oxide, hydroxide, carbonate, nitrate, fluoride, boride, oxalate, and acetate containing the Mn element;
  • the aluminum source is at least one of hydroxides, nitrates, fluorides, oxides, acetates, oxalates and organic compounds containing Al; or the aluminum source is at least one of the following substances: pseudo-boehmite, boehmite, LiAlO 2 , Li 3 AlF 6 , LiAlF 4 .
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is placed in a crucible and sintered in a synthesis furnace under air atmosphere at 680°C. Decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth for 10 hours, heating to 985°C, crystal recrystallization synthesis for 15 hours, cooling to 620°C, crystal repair roasting for 6 hours, cooling to room temperature, crushing and sieving to obtain a spinel structured large single crystal morphology, Li + / vacancy semi-finished product
  • the primary grain size range is 1.0 to 5.0 ⁇ m, where ⁇ represents Li + vacancy; the semi-finished product prepared by this process is referred to as WL2;
  • the WL3 mixed slurry is transferred to the mixing and drying integrated equipment, and then pure water equal to the total mass of the finished product is added, and mixed evenly for 1 hour; the remaining lithium and semi-finished product WL2 are weighed, the molar ratio of Li to semi-finished product WL2 is 0.45:1, and the mass of the two products meets the reaction synthesis of the two products.
  • the product accounts for 96% of the total mass of the finished product, and is placed in the mixing and drying integrated equipment, and continued to be evenly mixed for 5 hours, and dried to obtain the mixed material WL4;
  • the WL4 material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, it is decomposed at a temperature of 650°C, the single crystal WL2 is recrystallized, and the crystal surface is reconstructed for 16 hours, then cooled to room temperature, crushed, sieved, and demagnetized to obtain a single crystal manganese-based lithium battery positive electrode material of 96% Li 1.05 Ni 0.01 Co 0.02 Mn 1.83 Al 0.05 Zr 0.01 Mg 0.02 O 3.98 F 0.04 ⁇ 1.5% Al 2 O 3 ⁇ 2.5% Li 2 NiO 2 , with a primary grain size of 1.5 to 6.0 ⁇ m.
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, the mixture is decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grown at 670°C for 9 hours, and then the temperature is raised to 970°C, and the crystal is recrystallized and synthesized for 17 hours, and then the temperature is lowered to 620°C, and the crystal is repaired and roasted for 8 hours, and then the mixture is lowered to room temperature, and then crushed and sieved to obtain a semi-finished product with a large single crystal morphology of a spinel structure and Li + / vacancy.
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • the WL4 material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, it is decomposed at 670°C, the single crystal WL2 is recrystallized, and the crystal surface is reconstructed for 17 hours, then cooled to room temperature, crushed, sieved, and demagnetized to obtain a single crystal manganese-based lithium battery positive electrode material of 97.3% Li 1.08 Ni 0.01 Co 0.01 Mn 1.81 Al 0.06 La 0.02 Sb 0.01 O 3.985 F 0.03 ⁇ 0.7% Y 2 O 3 ⁇ 2.0% Li 5 FeO 4 , with a primary grain size of 1.5 to 6.0 ⁇ m.
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grew at 690°C for 9 hours, heated to 990°C, crystal recrystallized for 12 hours, cooled to 690°C, and repaired by calcining for 5 hours, cooled to room temperature, crushed, and sieved to obtain a semi-finished product with a large single crystal morphology of spinel structure and Li + / vacancy
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, the mixture is decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grown at 700°C for 10 hours, and then the temperature is raised to 930°C, and the crystal is recrystallized and synthesized for 18 hours, and then the temperature is lowered to 650°C, and the crystal is repaired and roasted for 6 hours, and then the mixture is lowered to room temperature, and then crushed and sieved to obtain a semi-finished product with a large single crystal morphology of a spinel structure and Li + / vacancy.
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • the WL4 material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, it is decomposed at a temperature of 580°C, the single crystal WL2 is recrystallized, and the crystal surface is reconstructed for 20 hours, then cooled to room temperature, crushed, sieved, and demagnetized to obtain a single crystal manganese-based lithium battery positive electrode material of 92% Li 1.05 Ni 0.02 Co 0.02 Mn 1.82 Al 0.07 Mg 0.02 O 3.97 F 0.06 ⁇ 6% LiFePO 4 ⁇ 2.0% Li 2 NiO 2 , with a primary grain size of 1.5 to 6.0 ⁇ m.
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, the mixture is decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grown at 630°C for 10 hours, and then the temperature is raised to 955°C, and the crystal is recrystallized and synthesized for 17 hours, and then the temperature is lowered to 600°C, and the crystal is repaired and roasted for 7 hours, and then the mixture is lowered to room temperature, and then crushed and sieved to obtain a semi-finished product with a large single crystal morphology of a spinel structure and Li + / vacancy.
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • the WL4 material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, the decomposition is carried out at a temperature of 610°C, the single crystal WL2 is recrystallized, and the crystal surface is reconstructed for 12 hours, and then the temperature is cooled to room temperature, and the single crystal manganese-based lithium battery positive electrode material 87% Li 1.06 Ni 0.02 Co 0.02 Mn 1.76 Al 0.05 Nb 0.01 O 3.97 F 0.06 ⁇ 10.0% LiMn 0.5 Fe 0.5 PO 4 ⁇ 3.0% Li 2 NiO 2 is obtained through the process of crushing and sieving to remove iron, and the primary grain size is 1.5-6.0 ⁇ m.
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, the mixture is decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grown at 710°C for 17 hours, and then the temperature is raised to 970°C, and the crystal is recrystallized and synthesized for 18 hours, and then the temperature is lowered to 610°C, and the crystal is repaired and roasted for 6 hours, and then the mixture is lowered to room temperature, and then crushed and sieved to obtain a semi-finished product with a large single crystal morphology of a spinel structure and Li + / vacancy.
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • the WL4 material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, it is decomposed at a temperature of 620°C, the single crystal WL2 is recrystallized, and the crystal surface is reconstructed for 17 hours, then cooled to room temperature, crushed, sieved, and demagnetized to obtain a single crystal manganese-based lithium battery positive electrode material of 95.5% Li 1.06 Ni 0.02 Co 0.03 Mn 1.82 Al 0.04 Mo 0.01 La 0.02 O 3.98 F 0.04 ⁇ 1.0% LiNi 0.2 Mn 1.8 O 4 ⁇ 3.5% Li 2 NiO 2 , with a primary grain size of 1.5 to 6.0 ⁇ m.
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grew at 680°C for 15 hours, heated to 975°C, crystal recrystallized for 17 hours, cooled to 620°C, and the crystal was repaired and roasted for 6 hours, cooled to room temperature, crushed, and sieved to obtain a semi-finished product with a large single crystal morphology of spinel structure and Li + / vacancy
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • the WL4 material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, it is decomposed at 600°C, the single crystal WL2 is recrystallized, and the crystal surface is reconstructed for 15 hours, then cooled to room temperature, crushed, sieved, and demagnetized to obtain a single crystal manganese-based lithium battery positive electrode material of 95.8% Li 1.04 Ni 0.01 Co 0.01 Mn 1.84 Al 0.04 Cr 0.02 La 0.02 Ga 0.02 O 3.97 F 0.06 ⁇ 0.7% LiTi 2 (PO 4 ) 3 ⁇ 3.5% Li 6 CoO 4 , with a primary grain size of 1.5 to 6.0 ⁇ m.
  • This embodiment provides a single crystal manganese-based lithium battery positive electrode material, and a preparation method thereof, comprising the following steps:
  • the mixed material WL1 is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere, the mixture is decomposed, oxidized, solid-phase melted, crystal nucleated, and crystal grown at 670°C for 12 hours, and then the temperature is raised to 985°C, and the crystal is recrystallized and synthesized for 16 hours, and then the temperature is lowered to 680°C, and the crystal is repaired and roasted for 6 hours, and then the mixture is lowered to room temperature, and then crushed and sieved to obtain a semi-finished product with a large single crystal morphology of a spinel structure and Li + / vacancy.
  • the primary grain size range is 1.0 to 5.0 ⁇ m; the semi-finished product prepared by this process is referred to as WL2;
  • the single crystal manganese-based lithium battery positive electrode material 88.5% Li 1.06 Ni 0.03 Co 0.01 Mn 1.85 Al 0.05 Nb 0.01 La 0.02 O 3.965 F 0.07 ⁇ 9.5% (La 2 O 3 ⁇ Al 2 O 3 ⁇ LiFePO 4 ) ⁇ 2.0% Li 2 NiO 2 is obtained by the iron process, and its primary grain size is 1.5-6.0 ⁇ m.
  • the particle morphology of the single crystal manganese-based lithium battery positive electrode material prepared in this embodiment is shown in Figure 1, and it can be seen that the single crystal is clear and has no agglomeration.
  • Example 2 The difference from Example 1 is that:
  • step S2 The decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth, crystal recrystallization, cooling, crushing, and screening process described in step S2 is specifically as follows: the mixture is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere conditions, the mixture is decomposed, oxidized, solid phase melted, crystal nucleation, and crystal growth are performed at a temperature of 710° C. for 8 hours, the temperature is raised to 1020° C., the crystal is recrystallized and synthesized for 12 hours, the temperature is lowered to 650° C., the crystal is repaired and roasted for 8 hours, the temperature is lowered to room temperature, and the mixture is crushed and screened;
  • the decomposition, single crystal recrystallization, crystal surface reconstruction, cooling to room temperature, crushing, sieving, and demagnetization described in step S5 are specifically as follows: the material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere conditions, the decomposition, single crystal recrystallization, and crystal surface reconstruction are carried out at a temperature of 620°C for 20 hours, the temperature is cooled to room temperature, and crushing, sieving, and demagnetization are carried out.
  • Example 2 The difference from Example 1 is that:
  • step S2 The decomposition, oxidation, solid phase melting, crystal nucleation, crystal growth, crystal recrystallization, cooling, crushing, and screening process described in step S2 is specifically as follows: the mixture is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere conditions, the mixture is decomposed, oxidized, solid phase melted, crystal nucleated, and crystal grown at 700°C for 10 hours, the temperature is raised to 1000°C, the crystal is recrystallized and synthesized for 13 hours, the temperature is lowered to 630°C, the crystal is repaired and roasted for 7 hours, the temperature is lowered to room temperature, and the mixture is crushed and screened;
  • the decomposition, single crystal recrystallization, crystal surface reconstruction, cooling to room temperature, crushing, sieving, and demagnetization described in step S5 are specifically as follows: the material is loaded into a crucible, and in a synthesis sintering furnace under air atmosphere conditions, the decomposition, single crystal recrystallization, and crystal surface reconstruction are carried out at a temperature of 600°C for 19 hours, and then cooled to room temperature, crushed, sieving, and demagnetized.
  • the performance of the single crystal manganese-based lithium battery positive electrode material prepared in Examples 1 to 8 of the present invention is shown in Table 1.
  • the performance of the single crystal manganese-based lithium battery positive electrode material prepared in Example 8 is shown in Figures 3-5, and the specific data is shown in Table 1; wherein, the test methods and instruments for physical properties and electrochemical properties are shown in Table 2.
  • Charge and discharge voltage limit 4.2 ⁇ 3.0V.
  • Charge and discharge voltage limit 4.2 ⁇ 3.0V.
  • the single crystal manganese-based lithium battery positive electrode material prepared by the present invention has good stability, high safety, high charge and discharge efficiency, long cycle life at room temperature, storage at high temperature (45°C, the capacity decrease rate after 28 days of storage is about 1/3 of the positive electrode material prepared by the prior art) and good cycle performance (more than 2 times).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种单晶锰基锂电池正极材料及其制备方法,属于锂电池正极材料技术领域。通过复合金属离子协同掺杂和阴阳离子协同掺杂、控制材料反应温度和反应时间、加入高比容量的富锂化合物的方法,提升材料的比容量,延长其循环寿命;该单晶材料具有克容量高、电池极片压实密度大、常温循环寿命长、倍率放电好、高温循环和储电性能良好等显著优势。所述电池正极材料制备方法简单,易于产业化生产,可形成多款产品,满足不同的市场需求。

Description

一种单晶锰基锂电池正极材料及其制备方法 技术领域
本发明属于锂电池正极材料技术领域,具体涉及一种单晶锰基锂电池正极材料及其制备方法。
背景技术
锂电池的性能主要取决于正极材料、负极材料、电解液和隔膜,其中正极材料是最关键的部分,正极材料的研发已成为决定锂离子发展的关键。理想的正极材料应具备的特点:(1)放电平台高且平稳性好,与电解液不发生反应;(2)晶体结构稳定,在充放电过程中氧化还原电位的变化量小,良好的循环性能和平稳的放电平台;(3)较高的锂离子扩散系数,可降低极化程度,减少能量损耗,并且获得较快的充放电;(4)锂离子反应中有较大的吉布斯自由能,以减少极化造成的能量损失。
单晶锰基锂电池正极材料属于尖晶石锰酸锂(LiMn2O4)正极材料性能改善后的升级版。单纯的锰酸锂正极材料虽然具有较高的安全性和高倍率放电能力,低廉的价格,但其较低的比容量,较差的循环性能,特别是高温循环性能使其应用受到了较大的限制,尽管经过最近十几年的研究,循环性能得到一定的改善,但是高温循环性能还没有得到较好的解决,严重滞后于镍钴锰酸锂、钴酸锂和磷酸铁锂的发展和应用。
结构性的和化学性的原因导致LiMn2O4在常温下容量衰减,高温下电解液中的HF导致的锰溶解会加剧,化学效应加剧协同结构效应,导致其高温下容量的快速衰减。改善尖晶石LiMn2O4的高温循环性能,必须从尖晶石的体相、表面相和晶体一次粒子大小着手,通过稳定其体相抑制其结构性变化,通过改善其表面相来防止其化学性变化,通过调整合成条件改变尖晶石晶体形貌、表面积大小来降低锰溶解速率来提升高温循环性能。
公开号为CN111640937A的专利申请公开了一种单晶锰酸锂材料的制备方法,所述方法中,按所需配比称取原料锰化合物以及硫酸钠,加入到去离子水中,搅拌1-10h后,在100-150℃下反应10-15h,冷却后过滤收集沉淀,使用去离子水洗涤1-5次,干燥得到β-MnO2前驱体;将所得到的β-MnO2前驱体与锂源、掺杂元素M的化合物按一定比例进行混合,烧结后得到成品,成品分子式为Li1+aMn2-a-bMbO4,0≤a≤0.2,0<b≤0.2,其中掺杂元素M为Al、Ti、Zr、Si、Zn、Mg、Ga、B、Cr、Co、Y中的一 种或几种。该发明需通过液相法制备β-MnO2前驱体,制备时需要大量的离子水洗涤,若对过程产生的废水处理不当会给环境带来污染。
公开号为CN113285068A的专利申请公开了一种单晶锰酸锂正极材料及其制备方法,所述制备方法步骤为:第一步,将Li的化合物、Mn的化合物以及含掺杂元素M的化合物混合均匀;在650~950℃下进行第一次烧结,冷却,破碎,过筛得到单晶锰酸锂一次烧结物料;第二步,用包覆元素N的化合物对单晶锰酸锂一次烧结物料进行表面包覆,得到包覆的单晶锰酸锂一次烧结物料;第三步,将包覆的单晶锰酸锂一次烧结物料在300~800℃下进行第二次烧结,冷却,破碎,即得单晶锰酸锂正极材料。该发明制备的单晶锰酸锂正极材料的充放电循环时的结构稳定性好,高温及常温循环性能和高温存储性能优异,但是扣式电池测试容量发挥不高,在工作电压3.0~4.3V,0.1C放电电流下的常温容量仅在106.2~110.5mAh/g之间。
公开号为CN111362307A的专利申请公开了一种锂离子电池用单晶锰酸锂正极材料的制备方法,所述方法包括6个步骤:步骤A,将小颗粒锰源,碳酸锂,添加剂按照比例球磨混合;步骤B:将球磨混合的物料低温烧结;步骤C,将低温烧结的物料,细晶锰酸锂晶种和烧结助剂按比例球磨混合;步骤D,将球磨混合后的含有细晶锰酸锂晶种的混合料装钵烧结;步骤E,将高温烧结后的物料粉碎处理,然后添加包覆剂进行包覆烧结;步骤F,将包覆烧结后的物料经过程分级,除磁、批混和包装等后处理工序制备成品。该发明与传统工艺相比制备方法简单,工艺更环保,所得锰酸锂产品容量高,寿命长,但该方法没能有效改进材料的高温循环性能和储存性能。
发明内容
基于现有技术中的不足,本发明的目的在于提供一种单晶锰基锂电池正极材料及其制备方法。
本发明的具体技术方案如下:
本发明提供了一种单晶锰基锂电池正极材料,所述单晶锰基锂电池正极材料的组成通式为:
(1-x)Li1+aNibCokMn2-a-b-k-c-d-kAlcMdO4-e/2Fe·xG·yLifDgOh
其中,M为掺杂元素,G为包覆改性剂;D为金属或类金属,f、g和h满足LifDgOh化合价平衡,0<x≤10%,2<y≤4.2%,0.05≤a≤0.06,0.01<b≤0.03,0.01<k≤0.03,0.04≤c≤0.07,0.01<d≤0.06,0.03<e≤0.07。
具体的,所述M为Zr、La及La系稀土、Sb、Mg、Nb、Mo、Cr、Ta、Sr、K、 Cs、V、Zn、In、Si、Rb、Y、B、Ga、Bi、Sn、Ge、W元素中的氧化物、氢氧化物、碳酸盐、乙酸盐、硝酸盐、草酸盐中的至少一种,或者是所述M为Zr、La及La系稀土、Sb、Mg、Nb、Mo、Cr、Ta、Sr、K、Cs、V、Zn、In、Si、Rb、Y、B、Ga、Bi、Sn、Ge、W元素中至少一种的氧化物、氢氧化物、碳酸盐、乙酸盐、硝酸盐、草酸盐。
具体的,G为Al2O3、Y2O3、AlPO4、LiFePO4、LiMn1-nFenPO4,0<n<1、LiNimMn2-mO4,0<m≤1.0、LiTi2(PO4)3、La2O3、FePO4、LiMnPO4、MnPO4、LiCoPO4、CoPO4、LiNiPO4、NiPO4、Mn1-nFenPO4,0<n<1、Li1+pAlpTi2-p(PO4)3,0≤p≤1、ZnO、Sb2O3、Bi2O3、Li3AlF6、LiAlF4、LiAlO2、Li4Ti5O12、Co3O4、Sc2O3中的至少一种;或者是G为以下至少一种物质分解后的氧化物:拟薄水铝石、勃姆石、Al(OH)3、Sb(OH)3、Bi(OH)3、La(OH)3、Ce(OH)4、Y(OH)3、Zn(OH)2、Sc(OH)3
所述拟薄水铝石、勃姆石、Al(OH)3、Sb(OH)3、Bi(OH)3、La(OH)3、Ce(OH)4、Y(OH)3、Zn(OH)2、Sc(OH)3分解后的氧化物为Al2O3、Sb2O3、Bi2O3、La2O3、CeO2、Y2O3、ZnO、Sc2O3
本发明还提供了所述单晶锰基锂电池正极材料的制备方法,包括以下步骤:
(1)将锂源的一部分、镍源、钴源、锰源、铝源、M源、氟源混合均匀得到混合料WL1;
(2)步骤(1)得到的混合料WL1经过分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程得到尖晶石结构的大单晶形貌的半成品WL2;
(3)称取一定量的G、LifDgOh,加水后研磨得到纳米级的混合浆料WL3;
(4)将步骤(3)中得到的混合浆料WL3加水混合均匀,加入余量的锂源、步骤(2)得到的半成品WL2,继续均匀混合2~6小时,烘干得到混合料WL4;
(5)将步骤(4)得到的混合料WL4经过分解、单晶晶体再结晶、晶体表面重构、降温、破碎、过筛、除铁过程得到单晶锰基锂电池正极材料。
具体的,步骤(1)中,
所述锂源为Li2CO3、LiOH·H2O、Li2C2O4、LiOH、CH3COOLi、C4H9Li、C6H5Li、LiF中的至少一种;
所述氟源为MgF2、SbF3、CoF2、AlF3、AlF3·3H2O、LiF、GaF3、MnF2、YF3、SrF2、NiF2、MnF3、ZnF2、LaF3、NbF5、SnF2、BaF2、NH4F、LiAlF4、BiF3、ZrF4、CsF、Li3AlF6、SiF4中的至少一种;
所述镍源为含Ni元素的碳酸盐、氧化物、氢氧化物、硝酸盐、氟化物、硼化物、 草酸盐、乙酸盐中的至少一种;或者所述镍源为以下物质中的至少一种:Ni1-qMnq(OH)2、LiNiO2、LiNi1-r-qCOrMnqO2、LiNi1-qCOqO2、LiNi1-r-qCOrAlqO2、LiNi1-qMnqO2、Ni1-qCOq(OH)2、Ni1-r-qCOrMnq(OH)2、Ni1-r-qCOrAlq(OH)2;其中,0<q<1.0,r+q<1.0;
所述钴源为含Co元素的碳酸盐、氧化物、硝酸盐、氢氧化物、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;或者是所述钴源为以下物质中的至少一种:LiCoO2、Ni1-tCOt(OH)2、Co1-tMnt(OH)2、LiNi1-t-uCOtMnuO2、LiNi1-zCOzO2,0≤z≤1.0、LiNi1-t-uCOtAluO2、LiCo1-tMntO2、Ni1-t-uCOtMnu(OH)2、Ni1-t-uCOtAlu(OH)2;其中,0<t<1.0,t+u<1.0;
所述锰源为含Mn元素的氧化物、氢氧化物、碳酸盐、硝酸盐、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;
所述铝源为含Al元素的氢氧化物、硝酸盐、氟化物、氧化物、乙酸盐、草酸盐、有机化合物中的至少一种;或者是所述铝源为以下物质中的至少一种:拟薄水铝石、勃姆石、LiAlO2、Li3AlF6、LiAlF4
优选的,步骤(2)中,所述分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程具体为:将混合料WL1在保护空气气氛条件下,以630~710℃温度分解、氧化、固相熔融、晶体成核、晶体生长9~17小时,继续升温至930~990℃,晶体再结晶合成12~18小时,降温至600~690℃,对晶体修复性焙烧5~8小时,降至室温,破碎、过筛过程;
所述半成品WL2的一次晶粒大小为1.0~5.0μm。
优选的,步骤(3)中,所述混合浆料WL3的粒径为200~800nm;
步骤(5)中,所述单晶锰基锂电池正极材料的一次晶粒大小为1.5~6.0μm。
优选的,步骤(5)中,所述分解、单晶晶体再结晶、晶体表面重构、降温、破碎、过筛、除磁过程具体为:将混合料WL4在空气气氛条件下的合成烧结炉中,580~670℃温度进行分解、单晶晶体再结晶、晶体表面重构12~17小时,降至室温,破碎、过筛、除磁过程。
本发明通过控制材料反应温度和反应时间调控材料晶体一次粒子的大小尺寸和晶体形貌,降低材料比表面积,减小锰溶解晶面,增强材料充放电循环过程时的Li+脱出和嵌入时两相的稳定性。
优选的,步骤(4)中,余量里与半成品WL2的摩尔比为0.24~0.45∶1。
本发明还提供了一种锂电池,包括所述单晶锰基锂电池正极材料。
本发明的有益效果:
本发明通过复合金属离子协同掺杂和阴阳离子协同掺杂之间的交互作用,调控了Mn的氧化态而抑制了充放电过程中Jahn-Teller畸变效应导致结构相变,提高了材料主体骨架稳定性能和降低放电末期的歧化反应,从而改善了材料充放电循环过程中的容量衰减快的缺陷,增强材料的循环性能。
本发明通过加入高比容量的富锂化合物LifDgOh,富余的锂会有效补充电池负极表面形成固体电解质相界面(SEI)膜时消耗的大量来自正极的锂,有利于提高材料首次循环的库仑效率(ICE),提升材料的比容量,还可以降低锂脱出后引起的结构不稳定带来的相变,延长其循环寿命。
本发明材料具有克容量高、电池极片压实密度大、常温循环寿命长、倍率放电好、高温循环和储电性能良好等显著优势,用于制造高端锰酸锂电池,也可与镍钴锰酸锂、镍钴铝酸锂、钴酸锂、磷酸锰铁锂等锂电池正极材料混合使用制造锂离子电池,满足新能源汽车、电动自行车、电动轮船、家庭储能、便携式储能、电动工具、通讯类设备的使用要求。
本发明制备方法简单,易于产业化生产,也可以形成多款产品,满足不同的市场需求。
附图说明
图1为实施例8制备的单晶锰基锂电池正极材料的颗粒形貌图。
图2为实施例8制备的单晶锰基锂电池正极材料的颗粒度分布图。
图3为实施例8制备的单晶锰基锂电池正极材料模拟电池常温0.2C电流充放电曲线图。
图4为实施例8制备的单晶锰基锂电池正极材料全电池常温环境、1C电流充放电循环性能趋势图。
图5为实施例8制备的单晶锰基锂电池正极材料全电池45℃环境、1C电流充放电循环性能趋势图。
具体实施方式
本发明提供了一种单晶锰基锂电池正极材料的制备方法,包括以下步骤:
(1)将锂源的一部分、镍源、钴源、锰源、铝源、M源、氟源混合均匀得到混合料WL1;
(2)步骤(1)得到的混合料WL1经过分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程得到尖晶石结构的大单晶形貌的半成品WL2;
(3)称取一定量的G、LifDgOh,加水后研磨得到纳米级的混合浆料WL3;
(4)将步骤(3)中得到的混合浆料WL3加水混合均匀,加入余量的锂源、步骤(2)得到的半成品WL2,继续均匀混合2~6小时,烘干得到混合料WL4;
(5)将步骤(4)得到的混合料WL4经过分解、单晶晶体再结晶、晶体表面重构、降温、破碎、过筛、除铁过程得到单晶锰基锂电池正极材料。
在制备中间晶粒时,也就是步骤(2)中,所述分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程具体为:将混合料WL1在保护空气气氛条件下,以300~750℃温度分解、氧化、固相熔融、晶体成核、晶体生长3~20小时,继续升温至850~1150℃,晶体再结晶合成5~30小时,降温至750~450℃,对晶体修复性焙烧3~10小时,降至室温,破碎、过筛过程;得到半成品WL2的一次晶粒大小范围在1.0~5.0μm之间。
混合浆料WL3的粒径为200~800nm;
最后制备得到的单晶锰基锂电池正极材料的一次晶粒大小范围为1.5~6.0μm。
分解、单晶晶体再结晶、晶体表面重构、降温、破碎、过筛、除磁过程具体为:将混合料WL4在空气气氛条件下的合成烧结炉中,以300~750℃温度进行分解、单晶晶体再结晶、晶体表面重构5~20小时,降至室温,破碎、过筛、除磁过程。
其中,步骤(4)中,余量里与半成品WL2的摩尔比为0.24~0.45∶1。
制备得到的单晶锰基锂电池正极材料的组成通式为:
(1-x)Li1+aNibCokMn2-a-b-k-c-d-kAlcMdO4-e/2Fe·xG·yLifDgOh
其中,M为掺杂元素,G为包覆改性剂;D为金属或类金属,f、g和h满足LifDgOh化合价平衡,0<x≤10%,0<y≤10%,0.001≤a≤0.5,0<b≤0.1,0<k≤0.1,0.001≤c≤0.2,0<d≤0.1,0<e≤0.3。
所述M可以为Zr、La及La系稀土、Sb、Mg、Nb、Mo、Cr、Ta、Sr、K、Cs、V、Zn、In、Si、Rb、Y、B、Ga、Bi、Sn、Ge、W元素的氧化物、氢氧化物、碳酸盐、乙酸盐、硝酸盐、草酸盐中的至少一种,或者是所述M为Zr、La及La系稀土、Sb、Mg、Nb、Mo、Cr、Ta、Sr、K、Cs、V、Zn、In、Si、Rb、Y、B、Ga、Bi、Sn、Ge、W元素中至少一种的氧化物、氢氧化物、碳酸盐、乙酸盐、硝酸盐、草酸盐。
相同的,包覆改性剂G可以为Al2O3、Y2O3、AlPO4、LiFePO4、LiMn1-nFenPO4,0<n<1、LiNimMn2-mO4,0<m≤1.0、LiTi2(PO4)3、La2O3、FePO4、LiMnPO4、MnPO4、LiCoPO4、CoPO4、LiNiPO4、NiPO4、Mn1-nFenPO4,0<n<1、Li1+pAlpTi2-p(PO4)3,0≤p≤1、ZnO、Sb2O3、Bi2O3、Li3AlF6、LiAlF4、LiAlO2、Li4Ti5O12、Co3O4、Sc2O3中的至少一 种;或者是G为以下至少一种物质分解后的氧化物:拟薄水铝石、勃姆石、Al(OH)3、Sb(OH)3、Bi(OH)3、La(OH)3、Ce(OH)4、Y(OH)3、Zn(OH)2、Sc(OH)3
在本发明制备方法的步骤(1)中,锂源可以为为Li2CO3、LiOH·H2O、Li2C2O4、LiOH、CH3COOLi、C4H9Li、C6H5Li、LiF中的至少一种;
氟源可以为MgF2、SbF3、CoF2、AlF3、AlF3·3H2O、LiF、GaF3、MnF2、YF3、SrF2、NiF2、MnF3、ZnF2、LaF3、NbF5、SnF2、BaF2、NH4F、LiAlF4、BiF3、ZrF4、CsF、Li3AlF6、SiF4中的至少一种;
所述镍源为含Ni元素的碳酸盐、氧化物、氢氧化物、硝酸盐、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;或者所述镍源为以下物质中的至少一种:Ni1-qMnq(OH)2、LiNiO2、LiNi1-r-qCOrMnqO2、LiNi1-qCOqO2、LiNi1-r-qCOrAlqO2、LiNi1-qMnqO2、Ni1-qCOq(OH)2、Ni1-r-qCOrMnq(OH)2、Ni1-r-qCOrAlq(OH)2;其中,0<q<1.0,r+q<1.0;
所述钴源为含Co元素的碳酸盐、氧化物、硝酸盐、氢氧化物、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;或者是所述钴源为以下物质中的至少一种:LiCoO2、Ni1-tCOt(OH)2、Co1-tMnt(OH)2、LiNi1-t-uCOtMnuO2、LiNi1-zCOzO2,0≤z≤1.0、LiNi1-t-uCOtAluO2、LiCo1-tMntO2、Ni1-t-uCOtMnu(OH)2、Ni1-t-uCOtAlu(OH)2;其中,0<t<1.0,t+u<1.0;
所述锰源为含Mn元素的氧化物、氢氧化物、碳酸盐、硝酸盐、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;
所述铝源为含Al元素的氢氧化物、硝酸盐、氟化物、氧化物、乙酸盐、草酸盐、有机化合物中的至少一种;或者是所述铝源为以下物质中的至少一种:拟薄水铝石、勃姆石、LiAlO2、Li3AlF6、LiAlF4
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
实施例1
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需Li2CO3、NiCO3、CoCO3、MnO2、Al(OH)3、ZrO2、MgF2按照Li∶Ni∶Mn∶Al∶Zr∶F摩尔比为0.6∶0.01∶0.02∶1.79∶0.08∶0.01∶0.04称量,之后装进高效高速混合机中均匀混合40分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以680℃温 度分解、氧化、固相熔融、晶体成核、晶体生长10小时,升温至985℃,晶体再结晶合成15小时,降温至620℃,对晶体修复性焙烧6小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm,其中表示Li+空位的意思;此过程制备的半成品简称为WL2;
S3.称取成品总质量1.5%的Al2O3和2.5%的富锂氧化物Li2NiO2及两者质量2倍的纯水,经砂磨机研磨、破碎,得到纳米级的Al2O3和Li2NiO2的混合浆料,其粒径PSD-D50为:200~800nm,此过程制备的半成品简称为WL3;
S4.将WL3混合浆料全部转移到混合干燥一体机设备中,再加入与成品总质量相等质量的纯水,均匀混合1小时;再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.45∶1,两者质量满足两者反应合成的生成物占成品总质量的96%,放入混合干燥一体机设备中,继续均匀混合5小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以650℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构16小时,降至室温,破碎、过筛、除磁,得到单晶锰基锂电池正极材料96%Li1.05Ni0.01Co0.02Mn1.83Al0.05Zr0.01Mg0.02O3.98F0.04·1.5%Al2O3·2.5%Li2NiO2,其一次晶粒大小为1.5~6.0μm。
实施例2
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需Li2CO3、NiO、Co3O4、Mn3O4、Al(OH)3、La2O3、SbF3按照Li∶Ni∶Mn∶Al∶La∶F摩尔比为0.7∶0.01∶0.01∶1.83∶0.06∶0.02∶0.03称量,之后装进高效高速混合机中均匀混合45分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以670℃温度分解、氧化、固相熔融、晶体成核、晶体生长9小时,升温至970℃,晶体再结晶合成17小时,降温至620℃,对晶体修复性焙烧8小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称取成品总质量0.7%的Y2O3和2.0%的富锂氧化物Li5FeO4及两者质量2倍的纯水,经砂磨机研磨、破碎,得到纳米级的Y2O3和Li5FeO4的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入成品总质量相等质量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.38∶1,两者质量满足两者反应合成的生成物占成品总质量的97.3%,放入混合干燥一体机设备中,继续均匀混合5小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以670℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构17小时,降至室温,破碎、过筛、除磁,得到单晶锰基锂电池正极材料97.3%Li1.08Ni0.01Co0.01Mn1.81Al0.06La0.02Sb0.01O3.985F0.03·0.7%Y2O3·2.0%Li5FeO4,其一次晶粒大小为1.5~6.0μm。
实施例3
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需LiOH·H2O、Ni(OH)2、Mn2O3、Al(OH)3、Sb2O3、CoF2按照Li∶Ni∶Mn∶Al∶Sb∶F摩尔比为0.75∶0.02∶1.84∶0.05∶0.01∶0.04称量,之后装进高效高速混合机中均匀混合50分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以690℃温度分解、氧化、固相熔融、晶体成核、晶体生长9小时,升温至990℃,晶体再结晶合成12小时,降温至690℃,对晶体修复性焙烧5小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称成品取总质量0.5%的AlPO4和2.0%的富锂氧化物Li5FeO4及两者质量2倍的纯水,经砂磨机研磨、破碎,得到纳米级的AlPO4和Li5FeO4的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入与成品总质量相等质量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.31∶1,两者质量满足两者反应合成的生成物占成品总质量的97.5%,放入混合干燥一体机设备中,继续均匀混合5小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以650℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构15小时,降至室温,破碎、过筛、 除磁,得到单晶锰基锂电池正极材料97.5%Li1.06Ni0.02Co0.02Mn1.84Al0.05Sb0.01O3.98F0.04·0.5%AlPO4·2.0%Li5FeO4,其一次晶粒大小为1.5~6.0μm。
实施例4
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需LiOH·H2O、Ni0.5CO0.5(OH)2、Mn(OH)2、AlOOH·nH2O、MgO、AlF3按照Li∶Ni∶CO∶Mn∶Al∶Mg∶F摩尔比为0.81∶0.02∶0.02∶1.67∶0.05∶0.02∶0.06称量,之后装进高效高速混合机中均匀混合45分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以700℃温度分解、氧化、固相熔融、晶体成核、晶体生长10小时,升温至930℃,晶体再结晶合成18小时,降温至650℃,对晶体修复性焙烧6小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称取成品总质量6.0%的LiFePO4和2.0%的富锂氧化物Li2NiO2及两者质量的2倍的纯水,经砂磨机研磨、破碎,得到纳米级的LiFePO4和Li2NiO2的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入与成品总质量相等质量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.24∶1,两者质量满足两者反应合成的生成物占成品总质量的92%,放入混合干燥一体机设备中均匀混合4小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以580℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构20小时,降至室温,破碎、过筛、除磁,得到单晶锰基锂电池正极材料92%Li1.05Ni0.02Co0.02Mn1.82Al0.07Mg0.02O3.97F0.06·6%LiFePO4·2.0%Li2NiO2,其一次晶粒大小为1.5~6.0μm。
实施例5
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需LiOH·H2O、Ni1/3CO1/3Mn1/3(OH)2、Mn3O4、MnCO3、γ-AlOOH、Nb2O5、AlF3·H2O按照Li∶Ni∶CO∶Mn∶Mn∶Mn∶Al∶Nb∶F摩尔比为0.75∶0.02∶0.02∶ 0.02∶1.74∶0.1∶0.03∶0.01∶0.06称量,之后装进高效高速混合机中均匀混合60分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以630℃温度分解、氧化、固相熔融、晶体成核、晶体生长10小时,升温至955℃,晶体再结晶合成17小时,降温至600℃,对晶体修复性焙烧7小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称取成品总质量10.0%的LiMn0.5Fe0.5PO4和3.0%的富锂氧化物Li2NiO2及两者质量的2倍的纯水,经砂磨机研磨、破碎,得到纳米级的LiMn0.5Fe0.5PO4和Li2NiO2的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入与成品总质量相等质量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.31∶1,两者质量满足两者反应合成的生成物占成品总质量的87%,放入混合干燥一体机设备中,继续均匀混合4小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以610℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构12小时,降至室温,破碎、过筛除铁过程得到单晶锰基锂电池正极材料87%Li1.06Ni0.02Co0.02Mn1.76Al0.05Nb0.01O3.97F0.06·10.0%LiMn0.5Fe0.5PO4·3.0%Li2NiO2,其一次晶粒大小为1.5~6.0μm。
实施例6
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需Li2C2O4、NiCO3、COCO3、Mn3O4、C54H105AlO6(硬脂酸铝)、MoO3、La2O3、LiF按照Li∶Ni∶CO∶Mn∶Al∶Mo∶La∶F摩尔比为0.70∶0.02∶0.03∶1.82∶0.04∶0.01∶0.02∶0.04称量,之后装进高效高速混合机中均匀混合55分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以710℃温度分解、氧化、固相熔融、晶体成核、晶体生长17小时,升温至970℃,晶体再结晶合成18小时,降温至610℃,对晶体修复性焙烧6小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品 其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称取成品总质量1.0%的LiNi0.2Mn1.8O4和3.5%的富锂氧化物Li2NiO2及两者质量2倍的纯水,经砂磨机研磨、破碎,得到纳米级的LiNi0.5Mn1.5O4和Li2NiO2的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入与成品总质量相等质量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.32∶1,两者质量满足两者反应合成的生成物占成品总质量的95.5%,放入混合干燥一体机设备中,继续均匀混合5小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以620℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构17小时,降至室温,破碎、过筛,除磁,得到单晶锰基锂电池正极材料95.5%Li1.06Ni0.02Co0.03Mn1.82Al0.04Mo0.01La0.02O3.98F0.04·1.0%LiNi0.2Mn1.8O4·3.5%Li2NiO2,其一次晶粒大小为1.5~6.0μm。
实施例7
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需Li2CO3、Ni(OH)2、LiCoO2、Mn3O4、MnO2、Al(NO3)3、Cr2O3、La2O3、GaF3按照Li∶Ni∶CO∶Mn∶Mn∶Al∶Cr∶La∶F摩尔比为0.77∶0.01∶0.01∶1.04∶0.8∶0.04∶0.02∶0.02∶0.06称量,之后装进高效高速混合机中均匀混合55分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以680℃温度分解、氧化、固相熔融、晶体成核、晶体生长15小时,升温至975℃,晶体再结晶合成17小时,降温至620℃,对晶体修复性焙烧6小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称取成品总质量0.7%的LiTi2(PO4)3和2.5%的富锂氧化物Li6CoO4及两者质量2倍的纯水,经砂磨机研磨、破碎,得到纳米级的LiTi2(PO4)3和Li6CoO4的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入与成品总质量相等质 量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.27∶1,两者质量满足两者反应合成的生成物占成品总质量的95.8%,放入混合干燥一体机设备中均匀混合5小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以600℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构15小时,降至室温,破碎、过筛、除磁,得到单晶锰基锂电池正极材料95.8%Li1.04Ni0.01Co0.01Mn1.84Al0.04Cr0.02La0.02Ga0.02O3.97F0.06·0.7%LiTi2(PO4)3·3.5%Li6CoO4,其一次晶粒大小为1.5~6.0μm。
实施例8
该实施例提供了一种单晶锰基锂电池正极材料,其制备方法,包括以下步骤:
S1.将所需Li2CO3、LiNiO2、Ni0.5CO0.5(OH)2、MnO2、Al(OH)3、AlF3、Nb(OH)5、La2O3、MnF2按照Li∶Ni∶Co∶Mn∶Al∶Al:Nb∶La∶F摩尔比为0.7∶0.02∶0.01∶1.83∶0.04∶0.01∶0.01∶0.02∶0.04称量,之后装进高效高速混合机中均匀混合55分钟,得到混合料WL1;
S2.把混合料WL1装入坩埚中,在空气气氛条件下的合成烧结炉中,以670℃温度分解、氧化、固相熔融、晶体成核、晶体生长12小时,升温至985℃,晶体再结晶合成16小时,降温至680℃,对晶体修复性焙烧6小时,降至室温,破碎、过筛得到尖晶石结构的大单晶形貌的、Li+/空位的半成品其一次晶粒大小范围为1.0~5.0μm;此过程制备的半成品简称为WL2;
S3.称取成品总质量0.5%的La2O3、1.0%的Al2O3、8%LiFePO4和2.0%的富锂氧化物Li2NiO2及四者质量的2倍的纯水,一起经砂磨机研磨、破碎,得到纳米级的混合浆料,其粒径PSD-D50为:200~400nm,此过程制备的半成品简称为WL3;
S4.将WL3浆料全部转移到混合干燥一体机设备中,再加入成品总质量相等质量的纯水,均匀混合1小时;根据权利要求1所述的质量比要求,再称取余量的锂和半成品WL2,Li与半成品WL2摩尔比为0.34∶1,两者质量满足两者反应合成的生成物占成品总质量的88.5%,放入混合干燥一体机设备中均匀混合5小时,烘干得到混合料WL4;
S5.把WL4物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以620℃温度进行分解、单晶晶体WL2再结晶、晶体表面重构15小时,降至室温,破碎、过筛除 铁过程得到单晶锰基锂电池正极材料88.5%Li1.06Ni0.03Co0.01Mn1.85Al0.05Nb0.01La0.02O3.965F0.07·9.5%(La2O3·Al2O3·LiFePO4)·2.0%Li2NiO2,其一次晶粒大小为1.5~6.0μm。
本实施例制备的单晶锰基锂电池正极材料的颗粒形貌图如图1所示,可以看出单晶体清晰,无团聚。本实施例制备的单晶锰基锂电池正极材料的颗粒度分布图如图2所示,可以看出,粒度D10=2.94μm,粒度D50=6.61μm,粒度D90=14.41μm。
实施例9
与实施例1的不同之处在于:
步骤S2中所述的分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程,具体为:把混合料装入坩埚中,在空气气氛条件下的合成烧结炉中,以710℃温度分解、氧化、固相熔融、晶体成核、晶体生长8小时,升温至1020℃,晶体再结晶合成12小时,降温至650℃,对晶体修复性焙烧8小时,降至室温,破碎、过筛;
步骤S5中所述的分解、单晶晶体再结晶、晶体表面重构,降至室温,破碎、过筛、除磁,具体为:把物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以620℃温度进行分解、单晶晶体再结晶、晶体表面重构20小时,降至室温,破碎、过筛、除磁。
实施例10
与实施例1的不同之处在于:
步骤S2中所述的分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程,具体为:把混合料装入坩埚中,在空气气氛条件下的合成烧结炉中,以700℃温度分解、氧化、固相熔融、晶体成核、晶体生长10小时,升温至1000℃,晶体再结晶合成13小时,降温至630℃,对晶体修复性焙烧7小时,降至室温,破碎、过筛;
步骤S5中所述的分解、单晶晶体再结晶、晶体表面重构,降至室温,破碎、过筛、除磁,具体为:把物料装入坩埚中,在空气气氛条件下的合成烧结炉中,以600℃温度进行分解、单晶晶体再结晶、晶体表面重构19小时,降至室温,破碎、过筛、除磁。
测试例1
本发明实施例1~8制备的单晶锰基锂电池正极材料性能如表1所示。实施例8制备的单晶锰基锂电池正极材料性能如图3-5所示,具体数据如表1所示;其中,物理性能和电化学性能的测试方法和仪器设备如表2所示。
表1本发明实施例1~8制备的单晶锰基锂电池正极材料性能
注:充放电压限制:4.2~3.0V。
本发明实施例1~8制备的单晶锰基锂电池正极材料与现有技术中单晶锰基锂电池正极材料的性能对比数据如表2所示。
表2

注:充放电压限制:4.2~3.0V。
由表1~2和图3-5可知,相较于现有技术工艺制备的单晶锰基正极材料,本发明制备的单晶锰基锂电池正极材料的稳定性好、安全性高,充放电效率高、常温循环寿命长、高温下的贮存(45℃,储存28天容量下降率是含有现有技术制备的正极材料的约1/3倍)和循环性能(超过2倍)好。

Claims (9)

  1. 一种单晶锰基锂电池正极材料,其特征在于,所述单晶锰基锂电池正极材料的组成通式为:
    (1-x-y)Li1+aNibCokMn2-a-b-k-c-d-kAlcMdO4-e/2Fe·xG·yLifDgOh
    其中,M为掺杂元素,G为包覆改性剂;D为金属或类金属,f、g和h满足LifDgOh化合价平衡,0<x≤10%,2<y≤4.2%,0.05≤a≤0.06,0.01<b≤0.03,0.01<k≤0.03,0.04≤c≤0.07,0.01<d≤0.06,0.03<e≤0.07;
    所述G为Al2O3、Y2O3、AlPO4、LiFePO4、LiMn1-nFenPO4,0<n<1、LiNimMn2-mO4,0<m≤1.0、LiTi2(PO4)3、La2O3、FePO4、LiMnPO4、MnPO4、LiCoPO4、CoPO4、LiNiPO4、NiPO4、Mn1-nFenPO4,0<n<1、Li1+pAlpTi2-p(PO4)3,0≤p≤1、ZnO、Sb2O3、Bi2O3、Li3AlF6、LiAlF4、LiAlO2、Li4Ti5O12、Co3O4、Sc2O3中的至少一种;或者是G为以下至少一种物质分解后的氧化物:拟薄水铝石、勃姆石、Al(OH)3、Sb(OH)3、Bi(OH)3、La(OH)3、Ce(OH)4、Y(OH)3、Zn(OH)2、Sc(OH)3
  2. 如权利要求1所述的单晶锰基锂电池正极材料,其特征在于,所述M为Zr、La及La系稀土、Sb、Mg、Nb、Mo、Cr、Ta、Sr、K、Cs、V、Zn、In、Si、Rb、Y、B、Ga、Bi、Sn、Ge、W元素的氧化物、氢氧化物、碳酸盐、乙酸盐、硝酸盐、草酸盐中的至少一种,或者是所述M为Zr、La及La系稀土、Sb、Mg、Nb、Mo、Cr、Ta、Sr、K、Cs、V、Zn、In、Si、Rb、Y、B、Ga、Bi、Sn、Ge、W元素中至少一种的氧化物、氢氧化物、碳酸盐、乙酸盐、硝酸盐、草酸盐。
  3. 权利要求1或2所述单晶锰基锂电池正极材料的制备方法,其特征在于,包括以下步骤:
    (1)将锂源的一部分、镍源、钴源、锰源、铝源、M源、氟源混合均匀得到混合料WL1;
    (2)步骤(1)得到的混合料WL1经过分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程得到尖晶石结构的大单晶形貌的半成品WL2;
    (3)称取一定量的G、LifDgOh,加水后研磨得到纳米级的混合浆料WL3;
    (4)将步骤(3)中得到的混合浆料WL3加水混合均匀,加入余量的锂源、步骤(2)得到的半成品WL2,继续均匀混合2~6小时,烘干得到混合料WL4;
    (5)将步骤(4)得到的混合料WL4经过分解、单晶晶体再结晶、晶体表面重构、 降温、破碎、过筛、除铁过程得到单晶锰基锂电池正极材料。
  4. 如权利要求3所述的制备方法,其特征在于,步骤(1)中,
    所述锂源为Li2CO3、LiOH·H2O、Li2C2O4、LiOH、CH3COOLi、C4H9Li、C6H5Li、LiF中的至少一种;
    所述氟源为MgF2、SbF3、CoF2、AlF3、AlF3·3H2O、LiF、GaF3、MnF2、YF3、SrF2、NiF2、MnF3、ZnF2、LaF3、NbF5、SnF2、BaF2、NH4F、LiAlF4、BiF3、ZrF4、CsF、Li3AlF6、SiF4中的至少一种;
    所述镍源为含Ni元素的碳酸盐、氧化物、氢氧化物、硝酸盐、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;或者所述镍源为以下物质中的至少一种:Ni1-qMnq(OH)2、LiNiO2、LiNi1-r-qCOrMnqO2、LiNi1-qCOqO2、LiNi1-r-qCOrAlqO2、LiNi1-qMnqO2、Ni1-qCOq(OH)2、Ni1-r-qCOrMnq(OH)2、Ni1-r-qCOrAlq(OH)2;其中,0<q<1.0,r+q<1.0;
    所述钴源为含Co元素的碳酸盐、氧化物、硝酸盐、氢氧化物、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;或者是所述钴源为以下物质中的至少一种:LiCoO2、Ni1-tCOt(OH)2、Co1-tMnt(OH)2、LiNi1-t-uCOtMnuO2、LiNi1-zCOzO2,0≤z≤1.0、LiNi1-t-uCOtAluO2、LiCo1-tMntO2、Ni1-t-uCOtMnu(OH)2、Ni1-t-uCOtAlu(OH)2;其中,0<t<1.0,t+u<1.0;
    所述锰源为含Mn元素的氧化物、氢氧化物、碳酸盐、硝酸盐、氟化物、硼化物、草酸盐、乙酸盐中的至少一种;
    所述铝源为含Al元素的氢氧化物、硝酸盐、氟化物、氧化物、乙酸盐、草酸盐、有机化合物中的至少一种;或者是所述铝源为以下物质中的至少一种:拟薄水铝石、勃姆石、LiAlO2、Li3AlF6、LiAlF4
  5. 如权利要求3所述的制备方法,其特征在于,步骤(2)中,所述分解、氧化、固相熔融、晶体成核、晶体生长、晶体再结晶、降温、破碎、过筛过程具体为:将混合料WL1在保护空气气氛条件下,以630~710℃温度分解、氧化、固相熔融、晶体成核、晶体生长9~17小时,继续升温至930~990℃,晶体再结晶合成12~18小时,降温至600~690℃,对晶体修复性焙烧5~8小时,降至室温,破碎、过筛过程;
    所述半成品WL2的一次晶粒大小为1.0~5.0μm。
  6. 如权利要求3所述的制备方法,其特征在于,步骤(3)中,所述混合浆料WL3的粒径为200~800nm;
    步骤(5)中,所述单晶锰基锂电池正极材料的一次晶粒大小为1.5~6.0μm。
  7. 如权利要求3所述的制备方法,其特征在于,步骤(5)中,所述分解、单晶 晶体再结晶、晶体表面重构、降温、破碎、过筛、除磁过程具体为:将混合料WL4在空气气氛条件下的合成烧结炉中,以580~670℃温度进行分解、单晶晶体再结晶、晶体表面重构12~17小时,降至室温,破碎、过筛、除磁过程。
  8. 如权利要求3所述的制备方法,其特征在于,步骤(4)中,余量里与半成品WL2的摩尔比为0.24~0.45∶1。
  9. 一种锂电池,其特征在于,包括权利要求1或2所述单晶锰基锂电池正极材料。
PCT/CN2023/131018 2023-02-27 2023-11-10 一种单晶锰基锂电池正极材料及其制备方法 WO2024179036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310200201.5 2023-02-27
CN202310200201.5A CN116314799A (zh) 2023-02-27 2023-02-27 一种单晶锰基锂电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024179036A1 true WO2024179036A1 (zh) 2024-09-06

Family

ID=86793603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131018 WO2024179036A1 (zh) 2023-02-27 2023-11-10 一种单晶锰基锂电池正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN116314799A (zh)
WO (1) WO2024179036A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116314799A (zh) * 2023-02-27 2023-06-23 天能电池集团股份有限公司 一种单晶锰基锂电池正极材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134791A (zh) * 2014-07-10 2014-11-05 宁波金和新材料股份有限公司 一种高电压单晶镍钴锰酸锂正极材料及其制备方法
CN105161710A (zh) * 2015-08-31 2015-12-16 宁波金和锂电材料有限公司 一种电池正极材料及其制备方法和锂离子电池
US20160233502A1 (en) * 2014-02-27 2016-08-11 Nokomis, Inc. Lithium ion Battery Cell With Single Crystal Li+- Intercalated Titanium Dioxide As An Anode Material
KR20170104235A (ko) * 2016-03-07 2017-09-15 한국과학기술원 금속 나노입자와 금속 초박막이 코팅된 전도성 단결정 실리콘 입자, 이를 포함하는 고용량 이차전지용 음극활물질 및 그 제조방법
CN110904495A (zh) * 2019-12-02 2020-03-24 中南大学 一种单晶多面体形貌锰酸锂正极材料的制备方法
CN111172582A (zh) * 2019-12-31 2020-05-19 浙江美都海创锂电科技有限公司 一种碳包覆单晶型镍钴锰酸锂三元正极材料的制备方法
CN113224277A (zh) * 2021-05-03 2021-08-06 星恒电源股份有限公司 一种高安全长循环寿命锂离子电池用正极极片
CN116314799A (zh) * 2023-02-27 2023-06-23 天能电池集团股份有限公司 一种单晶锰基锂电池正极材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233502A1 (en) * 2014-02-27 2016-08-11 Nokomis, Inc. Lithium ion Battery Cell With Single Crystal Li+- Intercalated Titanium Dioxide As An Anode Material
CN104134791A (zh) * 2014-07-10 2014-11-05 宁波金和新材料股份有限公司 一种高电压单晶镍钴锰酸锂正极材料及其制备方法
CN105161710A (zh) * 2015-08-31 2015-12-16 宁波金和锂电材料有限公司 一种电池正极材料及其制备方法和锂离子电池
KR20170104235A (ko) * 2016-03-07 2017-09-15 한국과학기술원 금속 나노입자와 금속 초박막이 코팅된 전도성 단결정 실리콘 입자, 이를 포함하는 고용량 이차전지용 음극활물질 및 그 제조방법
CN110904495A (zh) * 2019-12-02 2020-03-24 中南大学 一种单晶多面体形貌锰酸锂正极材料的制备方法
CN111172582A (zh) * 2019-12-31 2020-05-19 浙江美都海创锂电科技有限公司 一种碳包覆单晶型镍钴锰酸锂三元正极材料的制备方法
CN113224277A (zh) * 2021-05-03 2021-08-06 星恒电源股份有限公司 一种高安全长循环寿命锂离子电池用正极极片
CN116314799A (zh) * 2023-02-27 2023-06-23 天能电池集团股份有限公司 一种单晶锰基锂电池正极材料及其制备方法

Also Published As

Publication number Publication date
CN116314799A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN101320807B (zh) 多元复合锂离子电池正极材料及其制备方法
JP6612356B2 (ja) リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極及びリチウムイオン電池
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN111009646B (zh) 一种具有包覆层的高倍率类单晶型镍钴铝酸锂正极材料及其制备方法
KR20020042427A (ko) 리튬 2차 전지용 정극(正極) 재료 및 그 제조 방법
WO2015076376A1 (ja) スピネル型リチウム金属複合酸化物
CN110233250A (zh) 一种单晶颗粒三元正极材料的制备方法
WO2023221624A1 (zh) 熔融盐制备三元正极材料的方法及其应用
CN105753072B (zh) 一种镍锰酸锂、其制备方法及用途
CN114566632A (zh) 一种钠离子电池用的正极材料及其制备方法
CN111224089A (zh) 一种熔盐法制备的锂离子电池三元正极材料ncm811及其制备方法
KR20190007801A (ko) 양극 활물질의 제조방법
CN114899391A (zh) 超高镍单晶正极材料及其制备方法
WO2024179036A1 (zh) 一种单晶锰基锂电池正极材料及其制备方法
WO2024098904A1 (zh) 电池正极材料及其制备方法以及应用
CN103199236B (zh) 掺杂锰酸锂前驱体、改性锰酸锂正极材料及其制备方法
EP4443558A1 (en) Multi-element co-doped sodium-ion positive electrode material, and preparation method therefor and use thereof
CN109755530B (zh) 一种高压钴酸锂正极材料的钛钡双金属氧化物表面包覆方法
CN101409346A (zh) 锂离子电池用正极材料的制备方法
CN115881942A (zh) 一种单晶型正极材料及其制备方法和应用
CN112885993B (zh) 一种包覆纳米磷酸钴锂的钴酸锂正极材料及制备方法
CN112062168B (zh) 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2及高压固相制备方法与应用
JP2001064020A (ja) マンガン酸リチウムの製造方法
CN108110252A (zh) 一种耐高温的锰酸锂复合正极材料及其合成方法
JP2000040512A (ja) リチウム二次電池用正極材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23924987

Country of ref document: EP

Kind code of ref document: A1