Nothing Special   »   [go: up one dir, main page]

WO2024166411A1 - Information processing device, information processing method, and information processing program - Google Patents

Information processing device, information processing method, and information processing program Download PDF

Info

Publication number
WO2024166411A1
WO2024166411A1 PCT/JP2023/023180 JP2023023180W WO2024166411A1 WO 2024166411 A1 WO2024166411 A1 WO 2024166411A1 JP 2023023180 W JP2023023180 W JP 2023023180W WO 2024166411 A1 WO2024166411 A1 WO 2024166411A1
Authority
WO
WIPO (PCT)
Prior art keywords
average speed
vehicle
section
road section
predicted
Prior art date
Application number
PCT/JP2023/023180
Other languages
French (fr)
Japanese (ja)
Inventor
幸秀 ▲高▼垣
太郎 長▲瀬▼
良平 加川
友二 伊藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2024166411A1 publication Critical patent/WO2024166411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/75Information technology; Communication
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/60Positioning; Navigation

Definitions

  • This disclosure relates to an information processing device, an information processing method, and an information processing program.
  • the above-mentioned conventional technology appropriately averages link travel times and vehicle speeds by taking into account factors that cause changes in vehicle speed, such as traffic lights, railroad crossings, and toll booths.
  • simple averaging does not necessarily result in content being output at the appropriate time.
  • the above-mentioned conventional technology does not even consider the idea of outputting content.
  • the present disclosure has been made in consideration of the above, and proposes an information processing device, an information processing method, and an information processing program that are capable of outputting content at appropriate timing.
  • the information processing device includes a distribution unit that distributes to a target vehicle traveling on a specific road section first timing information indicating a timing for outputting content, the first timing information being generated based on a section average speed, which is the average speed of the vehicle on the specific road section, and a calculation unit that calculates a predicted average speed, which is the average speed of the target vehicle on the specific road section predicted at the specific time point based on a cumulative average speed, which is the average speed based on the driving performance of the target vehicle at a specific time point while the target vehicle is traveling on the specific road section, and the section average speed after the first timing information is distributed, and the distribution unit determines whether or not to distribute second timing information indicating a timing for outputting the content, which is newly generated using the predicted average speed, based on the specified information based on the section average speed.
  • the information processing method is an information processing method executed by an information processing device, and includes a distribution step of distributing, to a target vehicle traveling on a specific road section, first timing information indicating a timing related to output of content, the first timing information being generated based on a section average speed, which is the average speed of the vehicle on the specific road section, and a calculation step of calculating, after the first timing information is distributed, a predicted average speed, which is the average speed of the target vehicle on the specific road section predicted at the specific time point based on a cumulative average speed, which is the average speed based on the driving performance of the target vehicle at the specific time point while the target vehicle is traveling on the specific road section, and the section average speed, and the distribution step determines whether or not to distribute second timing information indicating a timing related to output of the content, which is newly generated using the predicted average speed, based on the specified information based on the section average speed.
  • the information processing program is an information processing program executed by an information processing device, and causes the information processing device to execute a delivery procedure for delivering first timing information indicating a timing for outputting content, the first timing information being generated based on a section average speed, which is the average speed of the vehicle in a specified road section, to a target vehicle traveling on the specified road section, and a calculation procedure for calculating a predicted average speed, which is the average speed of the target vehicle in the specified road section predicted at the specified time point, based on a cumulative average speed, which is the average speed based on the driving performance of the target vehicle at a specified time point while the target vehicle is traveling on the specified road section, and the section average speed, after the first timing information is delivered, and the delivery procedure determines whether or not to deliver second timing information indicating a timing for outputting the content, which is newly generated using the predicted average speed, based on specified information based on the section average speed.
  • FIG. 1 is a diagram illustrating an example of a system according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of the operation of the server device.
  • FIG. 3 is a schematic diagram showing an example of the operation of the in-vehicle device.
  • FIG. 4 is a diagram illustrating an example of the configuration of the server device and the in-vehicle device according to the embodiment.
  • FIG. 5 is a diagram showing a specific example of a method for estimating the WL type.
  • FIG. 6 is a diagram showing a specific example of a method for calculating a predicted average speed.
  • FIG. 7 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the leading link.
  • FIG. 8 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the n-th link.
  • FIG. 9 is a hardware configuration diagram showing an example of a computer that realizes the functions of the server device 100.
  • Navigation systems that guide users (drivers) to their destinations generally employ a method of predicting (estimating) the time of arrival at the destination based on the average time required to travel a link and the average speed on the link.
  • this method is not suitable for providing content that takes into account the driving load (called "workload”).
  • workload the driving load
  • Another method that could be considered would be to output content after a certain grace period (buffer) has been set in anticipation of a discrepancy between the actual time and the predicted time, but this method could result in the content being output in an unpredictable manner.
  • buffer a certain grace period
  • This disclosure proposes a new technology that solves the above problem. Specifically, in this disclosure, when sufficient driving history by the vehicle has not been secured and, for example, there is a long remaining distance from the current position on the driving route to a specific point (for example, a change point where the type of driving load changes), the arrival time is predicted using a statistical average speed corresponding to the driving scene. On the other hand, once sufficient driving history has been secured, the cumulative average speed according to the driving history is apportioned to the statistical average speed corresponding to the driving scene, and the apportioned result is determined as the average speed to be used in predicting the arrival time.
  • this disclosure is a measure that makes a plausible prediction when sufficient driving history is not secured, and as the vehicle approaches a specific point and driving history is secured, distributes the cumulative average speed proportionately to absorb the difference with the actual arrival time.
  • the number of times prediction result information is distributed is reduced when the vehicle is away from the specific point, highly accurate prediction result information regarding the arrival time is distributed when the vehicle approaches the specific point.
  • the in-vehicle device can use the highly accurate prediction result information, it becomes possible to output content at an appropriate timing.
  • Fig. 1 is a diagram showing an example of a system according to an embodiment.
  • Fig. 1 shows a system 1 as an example of a system according to an embodiment.
  • Information processing according to an embodiment may be realized in the system 1.
  • the system 1 may include a cloud system 10 and an in-vehicle device 200.
  • the cloud system 10 and the in-vehicle device 200 may be connected to each other via a network N so as to be able to communicate with each other via a wired or wireless connection.
  • the cloud system 10 includes a server device 100, which is a central device responsible for information processing according to an embodiment of the present disclosure.
  • the server device 100 acquires, for example from a database, the section average speed, which is the average speed obtained statistically for the road section on which the target vehicle VE is traveling, and generates first timing information indicating the timing of the output of the content based on the acquired section average speed. The server device 100 then distributes the first timing information to the in-vehicle device 200 possessed by the target vehicle VE.
  • the server device 100 After distributing the first timing information, the server device 100 calculates the cumulative average speed, which is the average speed at a given time point, based on the driving performance at the given time point while the target vehicle VE is traveling on the road section. The server device 100 then calculates the predicted average speed, which is the average speed predicted at the given time point, based on the cumulative average speed and the section average speed, and is the average speed of the target vehicle VE on the road section on which the target vehicle VE is traveling.
  • the server device 100 determines whether or not to distribute the second timing information indicating the timing of the output of the content, which is newly generated using the predicted average speed instead of the average speed of the section, based on predetermined information based on the average speed of the section.
  • the server device 100 determines to distribute the second timing information, it generates second timing information indicating the timing of the output of the content based on the predicted average speed. Then, the server device 100 distributes the second timing information to the in-vehicle device 200 of the target vehicle VE.
  • the target vehicle VE is a vehicle to which content is output, and may be any vehicle equipped with the in-vehicle device 200.
  • the target vehicle VE is abbreviated to "vehicle VE”
  • the driver of the target vehicle VE is referred to as "driver D”.
  • the content referred to here may be content output by voice, such as guidance content related to navigation or warnings, recommended content that suggests spots (e.g., tourist spots, stores, etc.) and various events that are considered to be useful to the user, or other content related to various news and everyday conversations.
  • the in-vehicle device 200 may be a dedicated navigation device built into or mounted on the vehicle VE.
  • the in-vehicle device 200 may be composed of a navigation device and a recording device.
  • the in-vehicle device 200 may be a composite device in which a navigation device and a recording device that are independent of each other are connected so as to be able to communicate with each other.
  • the in-vehicle device 200 may be a single device having a navigation function and a recording function.
  • the in-vehicle device 200 may also be equipped with various sensors.
  • the in-vehicle device 200 may be equipped with various sensors such as a camera, an acceleration sensor, a gyro sensor, a GPS (Global Positioning System) sensor, and an air pressure sensor.
  • the in-vehicle device 200 may also have a function of providing dialogue and information to assist driving based on sensor information acquired by the various sensors.
  • the in-vehicle device 200 can use not only the sensors provided in the device itself, but also sensor information detected by sensors provided in the vehicle VE itself as a safe driving system.
  • the portable terminal device can be made to operate in the same manner as the in-vehicle device 200.
  • Fig. 2 is a schematic diagram showing an operation example of the server device 100.
  • the cloud system 10 may include the server device 100 having a workload estimation engine E, a situation grasping engine 231, a guidance information DB, and an application MA.
  • the workload (WL) referred to here indicates the driving load and may include both the driver's sense of burden (which can also be considered the degree of difficulty) and the driving load set for a road section.
  • Types of driving load include, for example, "BUSY,” “IDEAL,” and “FREE,” and indicate that the load on the driver on a road section designated as “BUSY” is above a standard (i.e., driving difficulty is high), the load on the driver on a road section designated as “FREE” is below a standard (i.e., driving difficulty is low or not high), and the load on the driver on a road section designated as "IDEAL” is medium (i.e., driving difficulty is normal or not high).
  • the degree of difficulty for the driver may be expressed numerically as the driver's sense of burden, and can be defined as follows:
  • a level of difficulty of "1” corresponds to a driving load type of "BUSY_MAX” and is a road section where all general drivers have to be careful when driving, and it is defined that the in-vehicle device 200 should only issue a warning notification on such road sections.
  • the level of difficulty "0.80” corresponds to a driving load type of "BUSY+”, and is a road section where more than 60% of general drivers have to be careful when driving. It is defined that in such road sections, the in-vehicle device 200 should only issue warning notifications and caution notifications.
  • the level of difficulty "0.60” corresponds to a "BUSY” type of driving load, and is a road section where more than 20% of general drivers have to be careful when driving. It is defined that in such road sections, the in-vehicle device 200 should only issue warning notifications, caution notifications, and important notifications.
  • the level of difficulty "0.50” corresponds to the driving load type "IDEAL", and it is defined that in the relevant road section, the in-vehicle device 200 may also speak content other than guidance-related information (warning notifications, caution notifications, important notifications).
  • the level of difficulty "0.25" corresponds to the driving load type "FREE,” and is defined as a road section that more than 50% of average drivers would find monotonous and boring, and in which a variety of content should be spoken.
  • the types of driving load are not necessarily limited to the above examples ("BUSY_MAX”, “BUSY+”, “BUSY”, “IDEAL”, and “FREE”).
  • the types of driving load are expressed as “WL types” and will be explained using “BUSY” and "FREE”.
  • the criteria and reference values shown above are merely examples and may be any values.
  • a road section means a section between characteristic points of a road, and is called a link. Characteristic points of a road are intersections, corners, dead ends, etc., and are called nodes.
  • a link means a road section that is set based on a specific rule.
  • a link means a unit that divides a recorded section of a movement history based on a specific rule.
  • a road section is represented as a link
  • a connection point between road sections is represented as a node.
  • the server device 100 has a map information storage unit 121 (FIG. 4), which includes road data that represents a road network as a combination of nodes and links, facility data, and object information around the road.
  • the object information includes information on obstacles that exist temporarily, as well as features such as signs such as road signs, road markings such as stop lines, road dividing lines such as center lines, and structures along the road. Obstacles refer to factors that impede the passage of pedestrians and bicycles, such as puddles, sunken parts of the road, fallen objects, and drains (including parts blocked by nets).
  • the object information may include highly accurate point cloud information of objects to be used for vehicle position estimation, etc.
  • links may be identified by link IDs.
  • the situation assessment engine 231 is a cloud service that collects situation information, including analysis results obtained by analyzing sensor information obtained by sensors possessed by the in-vehicle device 200, or the operating status of various applications installed in the in-vehicle device 200, and distributes the accumulated information as situation information.
  • the situation assessment engine 231 is included in the cloud system 10, but the in-vehicle device 200 may have the situation assessment engine 231.
  • the guidance information DB stores guidance information used to guide the driver along a route that has been set according to the driver's destination, or guidance information used to guide the driver along a route that has been reset (rerouted) when the target vehicle VE deviates from the set route.
  • the application MA has the function of distributing the results processed by the workload estimation engine E to the information matching engine 232 of the in-vehicle device 200.
  • the workload estimation engine E performs information processing according to an embodiment of the present disclosure.
  • the workload estimation engine E acquires situation information from the situation grasping engine 231, and estimates the type of driving load (WL type) of the vehicle VE at the current time based on the acquired situation information (step S21). For example, the workload estimation engine E may estimate the degree of difficulty (driving load) of the driver D on the road section on which the vehicle VE is currently traveling, i.e., the current link, as the WL type of the vehicle VE at the current time.
  • the workload estimation engine E may estimate the degree of difficulty (driving load) of the driver D on the road section on which the vehicle VE is currently traveling, i.e., the current link, as the WL type of the vehicle VE at the current time.
  • the workload estimation engine E also estimates the type of future driving load (WL type) of the vehicle VE (step S22). Specifically, the workload estimation engine E estimates (predicts) the WL type for each link included in the planned driving route based on the planned driving route, which is the route along which the vehicle VE is scheduled to travel.
  • the workload estimation engine E may compare the planned driving route with map data (map information storage unit 121) in which a WL type is associated with each link, and predict the WL type for each link included in the planned driving route.
  • the workload estimation engine E executes processing related to generating and distributing timing information as information processing according to an embodiment of the present disclosure (step S23).
  • the information processing according to an embodiment of the present disclosure will be described in more detail using the example of FIG. 2.
  • Figure 2 shows links L1 and L2 that are adjacent to each other and are estimated to have different WL types among the links that make up the planned driving route RTx, which is the route that vehicle VE1 (an example of a vehicle VE) is scheduled to travel, and shows a scene immediately after vehicle VE1 starts traveling along link L1 toward link L2.
  • RTx the route that vehicle VE1 (an example of a vehicle VE) is scheduled to travel
  • the WL type of link L1 is estimated to be "FREE,” and the WL type of link L2 is estimated to be “BUSY.”
  • position PTx1 is the current position of vehicle VE1 at this point in time
  • position PTx2 corresponds to the connection point where link L1 and link L2 are connected.
  • link L1, which includes position PTx1 can be said to be the current link (current road section) along which vehicle VE1 is currently traveling.
  • link L2 can be said to be the future link (future road section) along which vehicle VE1 is scheduled to travel in the future.
  • workload estimation engine E acquires, for example, from a database, the section average speed, which is the average speed obtained statistically for link L1, and generates first timing information indicating the timing of content output based on the acquired section average speed.
  • the workload estimation engine E calculates the estimated time TM1 at which the vehicle VE1 will arrive at the connection point PTx2 based on the average section speed corresponding to link L1 and the distance from the current position PTx1 to the connection point PTx2.
  • the workload estimation engine E also generates a time range including the estimated time TM1 as first timing information, and distributes the generated first timing information to the in-vehicle device 200 of the vehicle VE1.
  • the first timing information may be information indicating a period of several tens of seconds including the estimated time TM1, and may be defined as a period during which content output is recommended.
  • the section average speed may be a speed obtained by simply averaging the driving records of various vehicles VE that have a driving history of link L1, or may be a speed obtained by averaging the driving records in driving situations corresponding to link L1 (e.g., occurrence of a large decrease in speed, a large increase in speed, temporary stop, stop, slow driving, curves, sudden acceleration, sudden braking, sudden steering, impact, etc.).
  • the workload estimation engine E monitors changes in the driving scene of the vehicle VE1, and detects a change in the driving scene after the first timing information is delivered. In this way, when the driving scene changes, the workload estimation engine E determines that the WL type of the vehicle VE1 at the current time has changed. For example, the workload estimation engine E may determine that the degree of difficulty of the driver D on the link L1 on which the vehicle VE1 is currently traveling has changed, as the WL type of the vehicle VE1 at the current time.
  • the workload estimation engine E determines that the current WL type of the vehicle VE1 has changed when the vehicle VE1 passed through position PTx3. In this case, the workload estimation engine E acquires the driving performance at the time when the vehicle VE1 reached position PTx3. For example, the workload estimation engine E acquires, as the driving performance, the distance from position PTx1 to position PTx3 and the time required to reach position PTx3 from position PTx1. Then, the workload estimation engine E calculates, based on the driving performance, the cumulative average speed, which is the average speed at the time when the vehicle VE1 reached position PTx3.
  • the workload estimation engine E calculates the cumulative average speed using the driving performance at the time when it is determined that the WL type has changed.
  • the workload estimation engine E may also calculate the cumulative average speed, for example, using the driving performance at each time a predetermined period has elapsed since the vehicle VE1 started traveling on link L1, or each time a predetermined distance has been traveled since the vehicle VE1 started traveling on link L1.
  • the workload estimation engine E calculates a predicted average speed, which is the average speed currently predicted for link L1 and is the average speed of vehicle VE1, based on the cumulative average speed and the above-mentioned section average speed.
  • the method for calculating the predicted average speed will be explained in detail later.
  • the workload estimation engine E also generates new second timing information indicating the timing of content output based on the predicted average speed. Specifically, the workload estimation engine E calculates the predicted time TM2 at which the vehicle VE1 will arrive at the connection point PTx2 based on the predicted average speed and the distance from the current position PTx3 to the connection point PTx2. The workload estimation engine E then generates a time range including the predicted time TM2 as the second timing information.
  • the workload estimation engine E determines whether or not to deliver the second timing information based on the result of comparing the first timing information with the second timing information. Note that the workload estimation engine E may also determine whether or not to deliver the second timing information based on the result of comparing the section average speed with the predicted average speed.
  • the workload estimation engine E determines that the second timing information should be distributed, it distributes the second timing information to the in-vehicle device 200 of the vehicle VE1.
  • the second timing information may be information indicating a period of several tens of seconds including the predicted time TM2, and may be defined as a period during which content output is recommended.
  • Fig. 3 is a schematic diagram showing an example of the operation of the in-vehicle device 200.
  • the in-vehicle device 200 has an information matching engine 232.
  • the information matching engine 232 receives timing information distributed from the server device 100 (step S31).
  • the information matching engine 232 receives the first timing information and the second timing information.
  • the information matching engine 232 also determines whether output request information has been received in a phase other than step S31.
  • the output request information referred to here is output request information sent by various applications installed in the in-vehicle device 200.
  • an application that provides content related to tourist information may send output request information to the information matching engine 232 that includes output conditions (time conditions that permit output, or geographical conditions that permit output) and the content to be output.
  • the information matching engine 232 When the information matching engine 232 receives output request information (step S32-1), it estimates the time required to play the content included in the output request information (step S32-2). For example, the information matching engine 232 may estimate the time required based on the playback time length of the content included in the output request information.
  • the information matching engine 232 determines whether or not the content included in the output request information can be output based on the timing information received in step S31 and the required time estimated in step S32-2 (step S33). For example, if the time range indicated by the timing information is sufficiently longer than the required time, the information matching engine 232 may determine that the content included in the output request information can be output.
  • the information matching engine 232 performs scheduling based on the timing information to determine the time to output the content (step S34). Furthermore, when the content output timing is determined as a result of scheduling by the information matching engine 232, the content is output as audio from the speaker SP (FIG. 4) of the in-vehicle device 200 in accordance with this output timing.
  • Fig. 4 is a diagram showing a configuration example of the server device 100 and the in-vehicle device 200 according to the embodiment.
  • the communication unit 110 is realized by, for example, a network interface card (NIC) etc.
  • the communication unit 110 is connected to a network N by wire or wirelessly, and transmits and receives information to and from the in-vehicle device 200, for example.
  • NIC network interface card
  • the storage unit 120 is realized by, for example, a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 120 may store, for example, data and programs related to the information processing according to the embodiment.
  • the storage unit 120 may include a map information storage unit 121 and a control result storage unit 122.
  • the map information storage unit 121 stores map data used for estimating the WL type.
  • the map data includes road data in which a road network is represented by a combination of nodes and links.
  • the links are managed by link IDs, and may be associated with the WL type and the link length.
  • Control result storage unit 122 The control result storage unit 122 may store information obtained by the workload estimation engine E (for example, the current WL type, the future WL type, change point information, etc.).
  • the control unit 130 is realized by a central processing unit (CPU), a micro processing unit (MPU), or the like executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the server device 100 using a RAM as a working area.
  • the control unit 130 is also realized by an integrated circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the control unit 130 is equipped with a workload estimation engine E, which includes an acquisition unit 131, an estimation unit 132, a detection unit 133, a determination unit 134, a generation unit 135, a delivery unit 136, and a calculation unit 137, and realizes or executes the functions and actions of the information processing described below.
  • a workload estimation engine E which includes an acquisition unit 131, an estimation unit 132, a detection unit 133, a determination unit 134, a generation unit 135, a delivery unit 136, and a calculation unit 137, and realizes or executes the functions and actions of the information processing described below.
  • the internal configuration of the workload estimation engine E is not limited to the configuration shown in FIG. 4, and may be other configurations as long as they perform the information processing described below.
  • the connection relationships of each processing unit in the workload estimation engine E are not limited to the connection relationships shown in FIG. 4, and may be other connection relationships.
  • the acquisition unit 131 acquires information indicating a driving route of the vehicle VE.
  • the acquisition unit 131 may acquire information on a planned driving route, which is a route along which the vehicle VE is scheduled to travel, as the information indicating the driving route of the vehicle VE.
  • the acquisition unit 131 sets a route to the destination as a planned driving route based on a route plan that satisfies the destination. As a result, the acquisition unit 131 acquires information indicating the set planned driving route.
  • the acquisition unit 131 may predict a driving route based on the driving history of the vehicle VE, and set the predicted driving route as the planned driving route. In this case, the acquisition unit 131 acquires information indicating the predicted planned driving route.
  • the estimation unit 132 estimates the WL type. For example, the estimation unit 132 estimates the degree of difficulty (driving difficulty) of the driver D in the road section on which the vehicle VE is currently traveling, i.e., the current link, as the WL type of the vehicle VE at the current time. For example, the estimation unit 132 may acquire situation information from the situation grasping engine 231, and estimate the degree of difficulty of the driver D based on the acquired situation information. Furthermore, the estimation unit 132 may compare the current link with map data in which a WL type is associated with each link, and estimate the degree of difficulty of the driver D based on the WL type associated with the current link.
  • the estimation unit 132 also estimates the WL type for each link included in the planned driving route, which is the route along which the vehicle VE is scheduled to travel, as the future WL type for the vehicle VE. For example, the estimation unit 132 may compare the planned driving route with map data in which a WL type is associated with each link, and predict the WL type for each link included in the planned driving route.
  • the estimation unit 132 may estimate the WL type without relying on map data in which a WL type is associated with each link. For example, the estimation unit 132 may statistically estimate the WL type based on the driving history of each link. As an example, the estimation unit 132 may estimate the WL type as "BUSY" for a link that shows a tendency for sudden braking as a result of analyzing the driving history. The estimation unit 132 may also estimate the WL type based on the driving difficulty calculated from the attributes of the link. For example, the estimation unit 132 may determine that a link with a sharp curve or a steep gradient has a high driving difficulty and estimate the WL type as "BUSY.”
  • the detection unit 133 detects a change in the driving scene based on the driving conditions of the vehicle VE. For example, the detection unit 133 detects a change in the driving behavior of the vehicle VE as a change in the driving scene. As an example, the detection unit 133 may detect a significant decrease in speed, a significant increase in speed, a temporary stop, a stop, slow driving, a curve, a sudden start, a sudden brake, an abrupt steering wheel, an impact, and the like as a change in the driving behavior of the vehicle VE.
  • the detection unit 133 may also detect, as a change in the driving scene, whether the vehicle VE has entered a point corresponding to a change point where the WL type changes. Specifically, when different WL types are estimated between adjacent links, the detection unit 133 detects whether the vehicle VE has entered a node that is a connection point where the adjacent links are connected.
  • the detection unit 133 may also detect, as a change in the driving scene, a change in attributes based on a comparison between the attributes of a first link, among the links included in the planned driving route, along which the vehicle VE is currently traveling, and the attributes of a second link that is located in the traveling direction of the vehicle VE and is connected to the first link. For example, the detection unit 133 may detect entry from a narrow road to a wide road, entry from a wide road to a narrow road, and entry from a road outside the living area to a road within the living area.
  • the detection unit 133 may also detect, as a change in the driving scene, whether the vehicle VE has entered an area corresponding to a specific characteristic point that exists in a first link on which the vehicle VE is currently traveling, among the links included in the planned driving route.
  • the characteristic point referred to here is, for example, an intersection, a junction, a fork, a toll booth, a railroad crossing, etc.
  • the detection unit 133 may also detect, for example, whether the road on which the vehicle VE is currently traveling is an expressway, or whether the road on which the vehicle VE is currently traveling is a road with the same tendency (for example, a straight road) with no change in attributes.
  • the determination unit 134 determines whether or not the WL type of the vehicle VE at the current time has changed based on the driving conditions of the vehicle VE. For example, the determination unit 134 may determine whether or not the degree of difficulty for the driver D on the link on which the vehicle VE is currently traveling has changed, as the WL type of the vehicle VE at the current time. For example, the determination unit 134 may determine whether or not the degree of difficulty for the driver D on the link on which the vehicle VE is currently traveling has changed, based on whether or not a change in the driving scene has been detected by the detection unit 133.
  • the determination unit 134 may determine that the degree of difficulty of the driver D has changed.
  • the determination unit 134 may determine that the degree of difficulty of the driver D has changed if it detects that the vehicle VE has entered a location (node) corresponding to a change point where the WL type changes.
  • the determination unit 134 may determine that the degree of difficulty of the driver D has changed if an attribute change is detected between the attribute of a first link along which the vehicle VE is currently traveling and the attribute of a second link that is located in the traveling direction of the vehicle VE and is connected to the first link.
  • the determination unit 134 may determine that the degree of difficulty of the driver D has changed.
  • the generating unit 135 generates timing information that indicates timing related to the output of the content.
  • the generating unit 135 generates first timing information indicating the timing of content output based on the section average speed, which is the average speed of the vehicle VE on a specific link. For example, when different WL types are estimated between adjacent links included in the planned driving route, the generating unit 135 calculates the predicted time for the vehicle VE to arrive at a connection point where the adjacent links are connected from the current position of the vehicle VE. The generating unit 135 then generates a time range including the predicted time as the first timing information.
  • the generation unit 135 when it is determined that the WL type of the vehicle VE has changed while the vehicle VE is traveling on a link included in the planned travel route, the generation unit 135 generates the first timing information based on the average section speed corresponding to the current link (current road section), which is the link that includes the current position of the vehicle VE.
  • the generation unit 135 when it is determined that the WL type has changed and the vehicle VE enters a link for which a WL type different from that of the link on which the vehicle has been traveling is estimated, the generation unit 135 generates the first timing information based on the average section speed corresponding to the entered link as the current link. More specifically, when the vehicle VE enters a future link via a connection point that connects adjacent links for which a WL type different from that of the link on which the vehicle has been traveling is estimated, the generation unit 135 generates the first timing information based on the average section speed corresponding to the entered link.
  • the generation unit 135 generates the first timing information based on the section average speed, which is the average speed obtained statistically for the entered link.
  • the generation unit 135 calculates the predicted time at which the vehicle VE will reach the start point of the future link that is included in the planned driving route and for which a different WL type than the current link is estimated. For example, the generation unit 135 calculates the predicted time at which the vehicle VE will reach the start point based on the predicted average speed that is predicted as the average speed of the vehicle VE on the current link. Then, the generation unit 135 generates a time range including the predicted time as the second timing information.
  • the distribution unit 136 distributes timing information indicating timing related to the output of the content to the in-vehicle device 200 of the vehicle VE. For example, when the generation unit 135 generates first timing information, the distribution unit 136 distributes the first timing information to the in-vehicle device 200. Furthermore, when the generation unit 135 generates second timing information, the distribution unit 136 distributes the second timing information to the in-vehicle device 200.
  • the distribution unit 136 also determines whether to distribute the second timing information based on specified information based on the section average speed. For example, when a comparison result between the first timing information and the second timing information satisfies a specified condition, the distribution unit 136 determines to distribute the second timing information generated by the generation unit 135. As another example, the distribution unit may determine to distribute the second timing information when a comparison result between a value based on the section average speed and a value based on the predicted average speed satisfies a specified condition. The predicted average speed is calculated by the calculation unit 137.
  • the calculation unit 137 calculates an accumulated average speed, which is the average speed at a predetermined time point, based on the driving performance at the predetermined time point while the vehicle VE is traveling on the current link. Then, the calculation unit 137 calculates a predicted average speed, which is the average speed predicted at the predetermined time point and is the average speed of the vehicle VE predicted for the current link, based on the accumulated average speed and the section average speed corresponding to the current link.
  • the calculation unit 137 calculates the cumulative average speed, which is the average speed of the vehicle VE at the current time, based on the driving performance at the current time when it is determined that the WL type has changed, that is, the driving performance for the current link.
  • the calculation unit 137 may calculate a cumulative average speed, which is the average speed of the vehicle VE at the current time, based on the driving performance for the current link, which is the driving performance when a predetermined period of time has elapsed while the vehicle VE is traveling on the current link, or when the vehicle VE has traveled a predetermined distance on the current link.
  • the calculation unit 137 calculates the predicted average speed, which is the average speed predicted for the current link at the current time, based on the cumulative average speed and the section average speed corresponding to the current link, and is the average speed of the vehicle VE.
  • the calculation unit 137 calculates the predicted average speed by performing a correction calculation to correct the section average speed to approach the cumulative average speed using the ratio of the actual driving performance to the distance of the current link as a coefficient indicating the influence of the cumulative average speed on the section average speed. More specifically, the calculation unit 137 calculates the predicted average speed by adding together a first average speed, which is an average speed obtained by correcting the cumulative average speed with a first coefficient that is the ratio of the actual driving performance to the distance of the current link, and a second average speed, which is an average speed obtained by correcting the average value of the cumulative average speed and the section average speed with a second coefficient that is the ratio of the remaining distance to the current link, which is the distance obtained by subtracting the actual driving performance from the current link.
  • a first average speed which is an average speed obtained by correcting the cumulative average speed with a first coefficient that is the ratio of the actual driving performance to the distance of the current link
  • a second average speed which is an average speed obtained by correcting the average value of the cumulative average speed and the section average
  • the in-vehicle device 200 has a microphone MC, a speaker SP, a sensor SC, an application AP, a communication unit 210, a storage unit 220, and a control unit 230.
  • the microphone MC is a sound collecting device that collects sounds generated within the vehicle VE. For example, the microphone MC collects speech generated by the driver D.
  • the speaker SP corresponds to an output device that outputs various information by sound.
  • the speaker SP outputs content information in accordance with output control by the control unit 230.
  • the sensor SC detects various information related to the vehicle VE and transmits the detected sensor information to the situation assessment engine 231.
  • the application AP is an application that provides content.
  • the application AP transmits output request information including output conditions (time conditions for permitting output or geographic conditions for permitting output) and content to be output to the information matching engine 232.
  • the system 1 may further include an application server that controls the application AP.
  • the storage unit 220 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 220 may store, for example, data and programs related to the information processing according to the embodiment.
  • the storage unit 220 may include a user information storage unit 221 and a content storage unit 222.
  • the user information storage unit 221 stores various information related to a user (e.g., a driver D) of the vehicle VE.
  • the user information storage unit 221 may store a user of the vehicle VE, or may store information related to the vehicle VE.
  • the driving history may further be stored.
  • the content storage unit 222 stores the content provided by the application AP.
  • the control unit 230 is realized by a CPU, an MPU, or the like executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the in-vehicle device 200 using a RAM as a working area.
  • the control unit 230 is also realized by an integrated circuit such as an ASIC or an FPGA.
  • control unit 230 has a situation understanding engine 231, an information matching engine 232, and an output control unit 233, and realizes or executes the information processing functions and actions described below.
  • the internal configuration of the control unit 230 is not limited to the configuration shown in FIG. 4, and may be other configurations as long as they perform the information processing described below.
  • the connection relationships between the processing units in the control unit 230 are not limited to the connection relationships shown in FIG. 4, and may be other connection relationships.
  • the situation recognition engine 231 identifies the situation related to the vehicle VE based on the sensor information. For example, the situation recognition engine 231 identifies the situation of the vehicle VE by detecting the voice, the state, the behavior of the vehicle VE, etc. inside the vehicle VE. Then, the situation recognition engine 231 outputs situation information indicating the identified situation to the information matching engine 232.
  • the information matching engine 232 searches for links (speech-permitted links) that can be determined to allow output of content by voice from among the links included in the planned driving route.
  • the information matching engine 232 when the information matching engine 232 receives output request information, it estimates the time required to play the content included in the output request information.
  • the information matching engine 232 also determines whether the content included in the output request information can be output based on the speech allowable link and the required time.
  • the information matching engine 232 executes a scheduling process that determines the output timing of the content so as to satisfy the output conditions included in the output request information.
  • the output control unit 233 controls the content to be output from the speaker SP at the timing scheduled by the information matching engine 232 .
  • WL type estimation method From here, the WL type estimation method will be specifically described with reference to Fig. 5.
  • Fig. 5 is a diagram showing a specific example of the WL type estimation method. In Fig. 5, the WL type estimation method will be described using an example in which a travel route RT1 is plotted according to a route plan that satisfies the destination.
  • the travel route RT1 is a route connecting the starting point PT1 and the destination point PT2, and the scene in which the WL type estimation process is started at a predetermined time point while the vehicle VE1 is traveling on the travel route RT1 is shown.
  • the estimation unit 132 compares the travel route RT1 with map data in which a WL type is associated with each link, and links each link that constitutes the travel route RT1 with a link ID (link_id).
  • FIG. 5(a) shows an example in which the estimation unit 132 divides the travel route RT1 into five links by linking link ID "100", link ID "101", link ID "102", link ID "103", link ID "104", and link ID "105" to the travel route RT1.
  • node ND01 is shown as information on the connection point where the link identified by link ID "100" (link 100) and the link identified by link ID "101" (link 101) are connected.
  • node ND12 is shown as information on the connection point where the link identified by link ID "101" (link 101) and the link identified by link ID "102" (link 102) are connected.
  • node ND23 is shown as information on the connection point where the link identified by link ID "102" (link 102) and the link identified by link ID "103" (link 103) are connected.
  • node ND34 is shown as information on the connection point where the link identified by link ID "103" (link 103) and the link identified by link ID "104" (link 104) are connected.
  • node ND45 is shown as information on the connection point where the link identified by link ID "104" (link 104) and the link identified by link ID "105" (link 105) are connected.
  • the estimation unit 132 may also refer to the map data and calculate the distance (len) of each link.
  • FIG. 5(a) shows an example in which the estimation unit 132 calculates the distance "100" of link 100, the distance "200” of link 101, the distance "300” of link 102, the distance "100” of link 103, the distance “500” of link 104, and the distance "200” of link 105.
  • the estimation unit 132 may estimate the WL type for the link 102 on which the vehicle VE1 is currently traveling, and for the links 103, 104, and 105 which the vehicle VE1 is scheduled to travel after the link 102.
  • FIG. 5(b) shows an example in which the estimation unit 132 refers to map data in which the WL type is associated with each link, and estimates the WL type of link 102 as "FREE", the WL type of link 103 as "BUSY”, the WL type of link 104 as "FREE”, and the WL type of link 105 as "BUSY".
  • the estimation unit 132 may also estimate the degree of difficulty of the driver D on the link 102 on which the vehicle VE1 is currently traveling as the WL type of the vehicle VE1 at the current time.
  • the estimation unit 132 estimates the WL type of the link by comparing the map data in which the WL type is associated with each link with the links that make up the travel route RT1. However, the estimation unit 132 may estimate the WL type of the link on which the vehicle VE1 is traveling based on the link type (link_kind) of the link on which the vehicle VE1 is traveling, or the road type (road_kind) of the travel route RT1.
  • the link on which the vehicle VE1 is traveling changes according to the traveling of the vehicle VE1, so the estimation unit 132 may estimate the WL type of the current link each time the link changes.
  • the link type here refers to classification information such as a main line, a connecting road, etc.
  • the road type refers to classification information such as an expressway, a national road, a narrow street, etc.
  • Fig. 6 is a diagram showing a specific example of a method for calculating the predicted average speed.
  • Fig. 6 shows an example of calculating the predicted average speed, in which the first link (leading link) for which the predicted average speed is calculated among the links constituting the travel route RT1 (Fig. 5) is set as link 104. Note that the example in Fig. 6 corresponds to a process in which the second timing information is distributed in accordance with a comparison result between the section average speed and the predicted average speed.
  • node ND34 is a connection point that connects link 103 with a WL type of "BUSY” and link 104 with a WL type of "FREE".
  • node ND34 is a connection point that connects links whose WL types are estimated to be different from each other.
  • node ND45 is a connection point that connects link 104 with a WL type of "FREE” and link 105 with a WL type of "BUSY”.
  • node ND45 is also a connection point that connects links whose WL types are estimated to be different from each other.
  • the predicted average speed may be calculated for links whose WL types are estimated to be different from each other and the connection points that connect these links.
  • FIG. 6(a) shows a scene immediately after vehicle VE1 starts traveling along link 104, i.e., when it is located at node ND34.
  • link 104 is the current link of vehicle VE1.
  • the generation unit 135 obtains, for example, from a database, section average speed LV1, which is the average speed obtained statistically for link 104, and generates first timing information indicating the timing related to the output of the content based on section average speed LV1.
  • the generation unit 135 calculates the predicted time TM1 at which the vehicle VE1 will reach node ND45 based on the average section speed LV1 corresponding to link 104 and the distance from node ND34, which is the current position of the vehicle VE1, to node ND45, which is the next connection point.
  • the generation unit 135 also generates a time range including the predicted time TM1 as first timing information, and the distribution unit 136 distributes the first timing information to the in-vehicle device 200 of the vehicle VE1.
  • the detection unit 133 detects a change in the driving scene based on the driving conditions of the vehicle VE1. Furthermore, the determination unit 134 continuously monitors whether the WL type of the vehicle VE1 at the current time has changed based on whether a change in the driving scene has been detected.
  • the detection unit 133 detects a change in the driving scene of the vehicle VE1 when the vehicle VE1 has traveled 100 m on the link 104, and as a result, the determination unit 134 determines that the WL type of the vehicle VE1 has changed at the present time when the vehicle VE1 has traveled 100 m on the link 104. In this case, the calculation unit 137 acquires the driving performance at the present time when the vehicle VE1 has traveled 100 m on the link 104.
  • the calculation unit 137 acquires, as the driving performance, the driving distance "100 m" from the node ND34 to the current position PT3 and the time it took for the vehicle VE1 to reach the current position PT3 from the node ND34. Then, the calculation unit 137 calculates the cumulative average speed SV1, which is the average speed at the present time when the vehicle VE1 reached the current position PT3, based on the driving performance.
  • the calculation unit 137 calculates a predicted average speed PV1, which is the average speed predicted for link 104 at the current time (the current time when vehicle VE1 has reached current position PT3) based on the cumulative average speed SV1 and the section average speed LV1, and is the average speed of vehicle VE1.
  • the calculation unit 137 calculates the predicted average speed PV1 using calculation formula (1) shown in FIG. 6.
  • the predicted average speed PV1 of the leading link is calculated by adding together a first average speed, which is an average speed obtained by correcting the cumulative average speed SV1 by a first coefficient that is the ratio of the traveled distance D2 to the distance D1 of the current link, and a second average speed, which is an average speed obtained by correcting the average value of the cumulative average speed SV1 and the section average speed LV1 by a second coefficient that is the ratio of the remaining distance D3 (the distance obtained by subtracting the traveled distance D2 from the distance D1 of the current link) to the current link.
  • the calculation unit 137 calculates the predicted average speed PV1 corresponding to the leading link 104 by applying the distance "500 m" of the current link 104 as the distance D1 of the current link, the distance "100 m” from node ND34 to the current position PT3 as the traveled distance D2 for the distance D1 of the current link, and the distance "400 m” from the current position PT3 to node ND45 as the remaining distance D3 for the current link to the calculation formula (1).
  • the distribution unit 136 calculates the predicted average speed PV1, it compares the section average speed LV1 with the predicted average speed PV1, as shown in FIG. 6(c). If the speed difference between the section average speed LV1 and the predicted average speed PV1 is equal to or greater than a threshold (Yes), the distribution unit 136 determines that it is OK to distribute second timing information indicating the timing of content output, the second timing information being newly generated using the predicted average speed PV1. On the other hand, if the speed difference between the section average speed LV1 and the predicted average speed PV1 is less than the threshold (No), the distribution unit 136 determines not to distribute the second timing information.
  • the distribution unit 136 may compare the arrival time calculated based on the section average speed LV1 with the arrival time calculated based on the predicted average speed PV1, rather than simply comparing the section average speed LV1 with the predicted average speed PV1.
  • the arrival time here is the predicted time at which the vehicle VE1 will arrive at node ND45.
  • the generation unit 135 calculates the predicted time TM2 at which the vehicle VE1 will reach node ND45 based on the distance "400 m" from the current position PT3 to node ND45 and the predicted average speed PV1.
  • the generation unit 135 also generates a time range including the predicted time TM2 as the second timing information, and the distribution unit 136 distributes the second timing information to the in-vehicle device 200 of the vehicle VE1.
  • the calculation unit 137 may use calculation formula (2) to calculate the predicted average speed PVn corresponding to the nth link.
  • the predicted average speed PVn corresponding to the nth link is calculated by correcting the cumulative average speed SVn corresponding to the nth link with a coefficient calculated as the ratio of the section average speed LVn of the nth link to the section average speed LV1 of the leading link.
  • calculation unit 137 applies the section average speed LV1 of the first link 104, the section average speed LV2 of the second link 105, and the cumulative average speed SV2 corresponding to the second link 105 to calculation formula (2) to calculate a predicted average speed PV2 corresponding to the second link 105.
  • Timing Information Distribution Procedure The processing procedure for distributing timing information will be described with reference to Fig. 7 and Fig. 8.
  • Fig. 7 describes the processing procedure when the vehicle VE is traveling on the first link.
  • Fig. 8 describes the processing procedure when the vehicle VE is traveling on the n-th link, which is the second or subsequent link following the first link.
  • FIG. 7 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the leading link.
  • the acquisition unit 131 acquires information indicating the driving route of the vehicle VE (step S701). For example, the acquisition unit 131 acquires information on a planned driving route, which is a route along which the vehicle VE is scheduled to travel, as information indicating the driving route of the vehicle VE.
  • the generation unit 135 determines whether the vehicle VE has started traveling on the leading link, which is the first link for which the predicted average speed is calculated (step S702).
  • the leading link is, for example, a link having a connection point that connects links for which different WL types are estimated, and may be determined from among the links that make up the planned traveling route of the vehicle VE.
  • step S702 If the vehicle VE has not yet started traveling along the leading link (step S702; No), the generation unit 135 waits until the vehicle VE starts traveling along the leading link.
  • the generation unit 135 when the vehicle VE starts traveling on the leading link (step S702; Yes), the generation unit 135 generates first timing information indicating the timing related to the output of the content based on the average section speed LV1 corresponding to the leading link (step S703). Specifically, the generation unit 135 calculates the predicted time TM1 at which the vehicle VE will finish traveling on the leading link based on the average section speed LV1 and the distance D1 of the leading link, and generates a time range including the predicted time TM1 as the first timing information.
  • the distribution unit 136 also distributes the first timing information to the in-vehicle device 200 of the vehicle VE (step S704).
  • the determination unit 134 determines whether the traveling of the vehicle VE satisfies a predetermined condition (step S705). For example, the determination unit 134 may determine whether the WL type of the vehicle VE (the degree of difficulty of the driver D) has changed based on the detection result by the detection unit 133 (detection result of a change in the traveling scene). As another example, the determination unit 134 may repeatedly determine whether a predetermined period has elapsed since the vehicle VE started traveling on the leading link, or whether the vehicle VE has traveled a predetermined distance since starting traveling on the leading link.
  • step S705 While the traveling of the vehicle VE does not satisfy the predetermined condition (step S705; No), the determination unit 134 waits until it can determine that the traveling of the vehicle VE satisfies the predetermined condition.
  • the calculation unit 137 determines that the travel of the vehicle VE meets the predetermined condition (step S705; Yes), it acquires the travel performance of the vehicle VE traveling along the leading link up to the current time (step S706). For example, the calculation unit 137 acquires, as the travel performance, the travel distance D2 to the current position on the leading link and the time required to reach the current position. The calculation unit 137 may also acquire the remaining distance D3, which is calculated by subtracting the travel distance D2 from the distance D1 of the leading link.
  • the calculation unit 137 calculates the cumulative average speed SV1, which is the average speed at the time when the vehicle VE reached the current position on the leading link (the current position determined to satisfy the predetermined condition), based on the driving history (step S707).
  • the calculation unit 137 calculates a predicted average speed PV1, which is the average speed currently predicted for the leading link and is the average speed of the vehicle VE, based on the cumulative average speed SV1 and the section average speed LV1 (step S708). For example, the calculation unit 137 calculates the predicted average speed PV1 by applying the cumulative average speed SV1, the section average speed LV1, the distance D1 of the leading link, the traveled distance D2, and the remaining distance D3 to the calculation formula (1) described in FIG. 6.
  • the generating unit 135 generates second timing information indicating the timing of the output of the content based on the predicted average speed PV1 (step S709). Specifically, the generating unit 135 calculates the predicted time TM2 at which the vehicle VE will finish traveling the leading link based on the predicted average speed PV1 and the remaining distance D3, and generates a time range including the predicted time TM2 as the second timing information.
  • the distribution unit 136 compares the first timing information with the second timing information and determines whether there is a deviation between the two timings that is equal to or exceeds a threshold (step S710).
  • the distribution unit 136 distributes the second timing information to the in-vehicle device 200 of the vehicle VE (step S711).
  • the calculation unit 137 determines whether the vehicle VE has started traveling on the nth link (n ⁇ 2), which is the second or subsequent link following the leading link (step S712). If the vehicle VE has not started traveling on the nth link (step S712; No), the process returns to step S705. Also, as shown in FIG. 7, if it is determined that the deviation is less than the threshold (step S710; No), the process may return to step S705.
  • FIG. 8 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the n-th link.
  • the determination unit 134 determines whether the traveling of the vehicle VE satisfies a predetermined condition (step S801). For example, the determination unit 134 may determine whether the WL type of the vehicle VE (the degree of difficulty of the driver D) has changed based on the detection result by the detection unit 133 (detection result of a change in the traveling scene). As another example, the determination unit 134 may repeatedly determine whether a predetermined period has elapsed since the vehicle VE started traveling on the nth link, or whether the vehicle VE has traveled a predetermined distance since starting traveling on the nth link.
  • step S801 While the traveling of the vehicle VE does not satisfy the predetermined condition (step S801; No), the determination unit 134 waits until it can determine that the traveling of the vehicle VE satisfies the predetermined condition.
  • the calculation unit 137 determines that the travel of the vehicle VE satisfies the predetermined condition (step S801; Yes), it acquires the travel performance of the vehicle VE traveling along the n-th link up to the current time (step S802). For example, the calculation unit 137 acquires, as the travel performance, the travel distance to the current position on the n-th link and the time required to reach the current position.
  • the calculation unit 137 calculates the cumulative average speed SVn, which is the average speed at the time when the vehicle VE reaches the current position on the nth link (the current position that is determined to satisfy the specified condition), based on the driving history (step S803).
  • the calculation unit 137 calculates the predicted average speed PVn corresponding to the nth link by correcting the cumulative average speed SVn based on the section average speed LV1 of the first link and the section average speed LVn of the nth link (step S804). For example, the calculation unit 137 calculates the predicted average speed PVn by applying the section average speed LV1, the section average speed LVn, and the cumulative average speed SVn to the calculation formula (2) described in FIG. 6.
  • the generating unit 135 generates second timing information indicating the timing of the output of the content based on the predicted average speed PVn (step S805). Specifically, the generating unit 135 calculates the predicted time TM2 at which the vehicle VE finishes traveling the nth link based on the predicted average speed PVn, and generates a time range including the predicted time TM2 as the second timing information.
  • the distribution unit 136 compares the first timing information with the second timing information and determines whether there is a difference between the two timings that is equal to or greater than a threshold (step S806).
  • the first timing information here is a time range that includes the predicted time TM1 at which the vehicle VE will finish traveling the nth link, and the predicted time TM1 is calculated based on the average section speed LVn.
  • step S806 If it is determined that the deviation is equal to or greater than the threshold (step S806; Yes), the distribution unit 136 distributes the second timing information to the in-vehicle device 200 of the vehicle VE (step S807).
  • the calculation unit 137 determines whether the vehicle VE has started traveling on the next n-th link (step S808). If the vehicle VE has not started traveling on the next n-th link (step S808; No), the process returns to step S801. Also, as shown in FIG. 8, if the speed difference between the section average speed LVn and the predicted average speed PVn is less than the threshold (step S806; No), the process may also return to step S801.
  • step S808 if the vehicle VE starts traveling on the next n-th link (step S808; Yes), the calculation unit 137 repeats the process from step S802.
  • the processes described as being performed by the server device 100 may be performed by the in-vehicle device 200.
  • a series of processes related to the generation and distribution of timing information described as the information processing according to the embodiment of the present disclosure may be performed by the in-vehicle device 200.
  • Fig. 9 is a hardware configuration diagram showing an example of a computer that realizes the functions of the server device 100.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM 1300, a HDD 1400, a communication interface (I/F) 1500, an input/output interface (I/F) 1600, and a media interface (I/F) 1700.
  • the CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400, and controls each component.
  • the ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 starts up, and programs that depend on the hardware of the computer 1000, etc.
  • HDD 1400 stores programs executed by CPU 1100 and data used by such programs.
  • Communication interface 1500 receives data from other devices via a specified communication network and sends it to CPU 1100, and transmits data generated by CPU 1100 to other devices via the specified communication network.
  • the CPU 1100 controls an output device such as a display and an input device such as a keyboard via the input/output interface 1600.
  • the CPU 1100 acquires data from the input device via the input/output interface 1600.
  • the CPU 1100 also outputs generated data to the output device via the input/output interface 1600.
  • the media interface 1700 reads a program or data stored in the recording medium 1800 and provides it to the CPU 1100 via the RAM 1200.
  • the CPU 1100 loads the program from the recording medium 1800 onto the RAM 1200 via the media interface 1700 and executes the loaded program.
  • the recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or a PD (Phase change rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200 to realize the functions of the control unit 130.
  • the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communication network.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure.
  • the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.
  • some or all of the processing described as being performed by the server device 100 may be configured to be performed on the in-vehicle device 200 side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computing Systems (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

An information processing device (100) according to the present disclosure comprises: a distribution unit (136) that distributes, to a target vehicle traveling in a prescribed road section, first timing information that indicates a timing related to an output of content and that is generated on the basis of a section average speed, which is an average speed of a vehicle in the prescribed road section; and a calculation unit (137) that, after the first timing information has been distributed, calculates a predicted average speed on the basis of the section average speed and a cumulative average speed, which is an average speed based on travel records at a prescribed time point while the target vehicle is traveling in the prescribed road section, the predicted average speed being an average speed of the target vehicle in the prescribed road section that is predicted at the prescribed time point. In addition, the distribution unit determines, on the basis of prescribed information based on the section average speed, whether or not to distribute second timing information that indicates a timing related to the output of the content and that is newly generated using the predicted average speed.

Description

情報処理装置、情報処理方法、および、情報処理プログラムInformation processing device, information processing method, and information processing program
 本開示は、情報処理装置、情報処理方法、および、情報処理プログラムに関する。 This disclosure relates to an information processing device, an information processing method, and an information processing program.
 従来、道路リンクのリンク属性に基づいて、適切な平均値(例えば、平均リンク旅行時間、あるいは、平均車速)を算出する手法が提案されている。  Conventionally, methods have been proposed to calculate appropriate average values (e.g., average link travel time or average vehicle speed) based on the link attributes of road links.
特開2007-241813号公報JP 2007-241813 A
 しかしながら、上記の従来技術では、コンテンツを適切なタイミングで出力させることができるとは限らない。 However, the above conventional technologies do not necessarily enable content to be output at the appropriate time.
 例えば、上記の従来技術では、信号機、踏み切り、料金所等の車両の速度変化の発生する要因について考慮することで、リンク旅行時間や車速を適切に平均化しているが、単に平均化するだけではコンテンツを適切なタイミングで出力させることができるとは限らない。また、上記の従来技術には、コンテンツを出力させる思想がそもそも存在しない。 For example, the above-mentioned conventional technology appropriately averages link travel times and vehicle speeds by taking into account factors that cause changes in vehicle speed, such as traffic lights, railroad crossings, and toll booths. However, simple averaging does not necessarily result in content being output at the appropriate time. Furthermore, the above-mentioned conventional technology does not even consider the idea of outputting content.
 本開示は、上記に鑑みてなされたものであって、コンテンツを適切なタイミングで出力させることができる情報処理装置、情報処理方法、および、情報処理プログラムを提案する。 The present disclosure has been made in consideration of the above, and proposes an information processing device, an information processing method, and an information processing program that are capable of outputting content at appropriate timing.
 請求項1に記載の情報処理装置は、コンテンツの出力に関するタイミングを示す第1のタイミング情報であって、所定の道路区間における車両の平均速度である区間平均速度に基づいて生成された第1のタイミング情報を、前記所定の道路区間を走行中の対象車両に配信する配信部と、前記第1のタイミング情報が配信された後において、前記対象車両が前記所定の道路区間を走行中の所定の時点での走行実績に基づく平均速度である累積平均速度と、前記区間平均速度とに基づいて、前記所定の時点で予測される、前記所定の道路区間における前記対象車両の平均速度である予測平均速度を算出する算出部と、を備え、前記配信部は、前記コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、前記予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する。 The information processing device according to claim 1 includes a distribution unit that distributes to a target vehicle traveling on a specific road section first timing information indicating a timing for outputting content, the first timing information being generated based on a section average speed, which is the average speed of the vehicle on the specific road section, and a calculation unit that calculates a predicted average speed, which is the average speed of the target vehicle on the specific road section predicted at the specific time point based on a cumulative average speed, which is the average speed based on the driving performance of the target vehicle at a specific time point while the target vehicle is traveling on the specific road section, and the section average speed after the first timing information is distributed, and the distribution unit determines whether or not to distribute second timing information indicating a timing for outputting the content, which is newly generated using the predicted average speed, based on the specified information based on the section average speed.
 請求項12に記載の情報処理方法は、情報処理装置が実行する情報処理方法であって、コンテンツの出力に関するタイミングを示す第1のタイミング情報であって、所定の道路区間における車両の平均速度である区間平均速度に基づいて生成された第1のタイミング情報を、前記所定の道路区間を走行中の対象車両に配信する配信工程と、前記第1のタイミング情報が配信された後において、前記対象車両が前記所定の道路区間を走行中の所定の時点での走行実績に基づく平均速度である累積平均速度と、前記区間平均速度とに基づいて、前記所定の時点で予測される、前記所定の道路区間における前記対象車両の平均速度である予測平均速度を算出する算出工程と、を含み、前記配信工程は、前記コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、前記予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する。 The information processing method according to claim 12 is an information processing method executed by an information processing device, and includes a distribution step of distributing, to a target vehicle traveling on a specific road section, first timing information indicating a timing related to output of content, the first timing information being generated based on a section average speed, which is the average speed of the vehicle on the specific road section, and a calculation step of calculating, after the first timing information is distributed, a predicted average speed, which is the average speed of the target vehicle on the specific road section predicted at the specific time point based on a cumulative average speed, which is the average speed based on the driving performance of the target vehicle at the specific time point while the target vehicle is traveling on the specific road section, and the section average speed, and the distribution step determines whether or not to distribute second timing information indicating a timing related to output of the content, which is newly generated using the predicted average speed, based on the specified information based on the section average speed.
 請求項13に記載の情報処理プログラムは、情報処理装置によって実行される情報処理プログラムであって、コンテンツの出力に関するタイミングを示す第1のタイミング情報であって、所定の道路区間における車両の平均速度である区間平均速度に基づいて生成された第1のタイミング情報を、前記所定の道路区間を走行中の対象車両に配信する配信手順と、前記第1のタイミング情報が配信された後において、前記対象車両が前記所定の道路区間を走行中の所定の時点での走行実績に基づく平均速度である累積平均速度と、前記区間平均速度とに基づいて、前記所定の時点で予測される、前記所定の道路区間における前記対象車両の平均速度である予測平均速度を算出する算出手順と、を前記情報処理装置に実行させ、前記配信手順は、前記コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、前記予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する。 The information processing program according to claim 13 is an information processing program executed by an information processing device, and causes the information processing device to execute a delivery procedure for delivering first timing information indicating a timing for outputting content, the first timing information being generated based on a section average speed, which is the average speed of the vehicle in a specified road section, to a target vehicle traveling on the specified road section, and a calculation procedure for calculating a predicted average speed, which is the average speed of the target vehicle in the specified road section predicted at the specified time point, based on a cumulative average speed, which is the average speed based on the driving performance of the target vehicle at a specified time point while the target vehicle is traveling on the specified road section, and the section average speed, after the first timing information is delivered, and the delivery procedure determines whether or not to deliver second timing information indicating a timing for outputting the content, which is newly generated using the predicted average speed, based on specified information based on the section average speed.
図1は、実施形態に係るシステムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a system according to an embodiment. 図2は、サーバ装置の動作例を示す概要図である。FIG. 2 is a schematic diagram illustrating an example of the operation of the server device. 図3は、車載装置の動作例を示す概要図である。FIG. 3 is a schematic diagram showing an example of the operation of the in-vehicle device. 図4は、実施形態に係るサーバ装置および車載装置の構成例を示す図である。FIG. 4 is a diagram illustrating an example of the configuration of the server device and the in-vehicle device according to the embodiment. 図5は、WL種別の推定手法の具体例を示す図である。FIG. 5 is a diagram showing a specific example of a method for estimating the WL type. 図6は、予測平均速度の算出手法の具体例を示す図である。FIG. 6 is a diagram showing a specific example of a method for calculating a predicted average speed. 図7は、車両VEが先頭リンクを走行している場合のタイミング情報処理手順を示すフローチャートである。FIG. 7 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the leading link. 図8は、車両VEがn番目リンクを走行している場合のタイミング情報処理手順を示すフローチャートである。FIG. 8 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the n-th link. 図9は、サーバ装置100の機能を実現するコンピュータの一例を示すハードウェア構成図である。FIG. 9 is a hardware configuration diagram showing an example of a computer that realizes the functions of the server device 100.
[実施形態]
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、この実施形態により本開示に係る情報処理装置、情報処理方法、および、情報処理プログラムが限定されるものではない。また、以下の実施形態において同一の部位には同一の符号を付し、重複する説明は省略する。
[Embodiment]
Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the drawings. Note that the information processing device, information processing method, and information processing program according to the present disclosure are not limited to the embodiment. In addition, the same components in the following embodiments are given the same reference numerals, and duplicated descriptions are omitted.
〔1.はじめに〕
 利用者(運転者)を目的地に案内するナビゲーションシステムにおいては、リンクの走行に要する平均時間やリンクでの平均速度を基にして、目的地に到着する時刻を予測(予想)するという手法が一般的に採用されている。
1. Introduction
Navigation systems that guide users (drivers) to their destinations generally employ a method of predicting (estimating) the time of arrival at the destination based on the average time required to travel a link and the average speed on the link.
 しかしながら、係る手法は、運転負荷(「ワークロード」と呼ばれる)を考慮したコンテンツ提供においては適しているとはいい難い。具体的には、運転負荷を考慮したコンテンツ提供においては、運転者の妨げにならないような適切なタイミングで車載装置からコンテンツを出力させることが求められているが、従来手法のように、リンクにおける各種平均値を用いるだけでは、適切なタイミングでコンテンツを出力させることができない場合がある。 However, this method is not suitable for providing content that takes into account the driving load (called "workload"). Specifically, when providing content that takes into account the driving load, it is necessary to output content from the in-vehicle device at an appropriate time so as not to disturb the driver, but simply using various average values in the link, as in conventional methods, may not be able to output content at the appropriate time.
 例えば、車両の運転は、個人差や道路状況の変化による影響を大きく受けるため、本来期待される平均速度とは異なってしまうと、実際の時刻と予測時刻との間にズレが発生してしまう。このように、リンクでの統計的な平均速度を用いる場合では、車両が特定の地点に到達する時刻の予測精度が高いとはいえず、運転者の妨げになり得る不適切なタイミングでコンテンツが出力されてしまうという問題がある。 For example, vehicle driving is heavily influenced by individual differences and changes in road conditions, so if the average speed deviates from what is expected, a discrepancy will occur between the actual time and the predicted time. In this way, when using the statistical average speed on a link, the accuracy of predicting the time when a vehicle will reach a specific point is not high, and there is a problem that content is output at inappropriate times that could be an obstacle to the driver.
 また、実際の時刻と予測時刻との間にズレが発生することを見込んで、特定の猶予期間(バッファ)を定めた状態でコンテンツを出力させる手法が考えられるが、係る手法では、コンテンツの出力機会が損なわれてしまう恐れがある。 Another method that could be considered would be to output content after a certain grace period (buffer) has been set in anticipation of a discrepancy between the actual time and the predicted time, but this method could result in the content being output in an unpredictable manner.
 一方で、予測精度を高めるには、リンクでの統計的な平均速度を用いるのではなく、例えば、車両の走行シーンの変化に応じて、逐一、予測し直すことが考えられる。しかしながら、予測結果の情報をクラウドから車載装置に配信するという構成が採用されるケースでは、配信回数の増加による運用費の増大が問題となる。 On the other hand, in order to improve prediction accuracy, it is possible to, for example, re-predict each time the vehicle's driving conditions change, rather than using the statistical average speed on the link. However, in cases where a configuration is adopted in which prediction result information is distributed from the cloud to the in-vehicle device, the increase in the number of distributions leads to an increase in operating costs, which becomes a problem.
 本開示では、上記の問題を解決する新たな技術を提案する。具体的には、本開示では、車両による走行実績が十分に確保できておらず、例えば、走行ルート上の現在位置から特定の地点(例えば、運転負荷の種別が変化する変化点)まで残距離が長い場合には、走行シーンに対応した統計的な平均速度を用いて到達時刻を予測する。一方、走行実績が十分に確保できた以降は、走行実績に応じた累積の平均速度を、走行シーンに対応した統計的な平均速度に按分し、按分した結果を到達時刻の予測に用いる平均速度と定める。 This disclosure proposes a new technology that solves the above problem. Specifically, in this disclosure, when sufficient driving history by the vehicle has not been secured and, for example, there is a long remaining distance from the current position on the driving route to a specific point (for example, a change point where the type of driving load changes), the arrival time is predicted using a statistical average speed corresponding to the driving scene. On the other hand, once sufficient driving history has been secured, the cumulative average speed according to the driving history is apportioned to the statistical average speed corresponding to the driving scene, and the apportioned result is determined as the average speed to be used in predicting the arrival time.
 すなわち、本開示では、走行実績が十分に確保できていない状態では尤もらしい予測を立てつつ、車両が特定の地点に近づき走行実績を確保できてゆくに従って、累積の平均速度を按分し現実の到達時間との差を吸収しようとする施策である。この結果、車両が特定の地点から離れている状態では予測結果の情報を配信する配信回数を抑えつつ、車両が特定の地点に近づいた場合には、到達時刻に関する高精度な予測結果の情報が配信される。また、車載装置は、高精度な予測結果の情報を用いることができるため、適切なタイミングでコンテンツを出力させることができるようになる。以下では、本開示の実施形態に係る情報処理について具体的に説明する。 In other words, this disclosure is a measure that makes a plausible prediction when sufficient driving history is not secured, and as the vehicle approaches a specific point and driving history is secured, distributes the cumulative average speed proportionately to absorb the difference with the actual arrival time. As a result, while the number of times prediction result information is distributed is reduced when the vehicle is away from the specific point, highly accurate prediction result information regarding the arrival time is distributed when the vehicle approaches the specific point. Furthermore, since the in-vehicle device can use the highly accurate prediction result information, it becomes possible to output content at an appropriate timing. Below, information processing according to an embodiment of the present disclosure will be specifically described.
〔2.システム構成〕
 まず、図1を用いて、実施形態に係るシステムの構成を説明する。図1は、実施形態に係るシステムの一例を示す図である。図1には、実施形態に係るシステムの一例として、システム1が示される。実施形態に係る情報処理は、システム1において実現されてよい。
2. System Configuration
First, the configuration of a system according to an embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing an example of a system according to an embodiment. Fig. 1 shows a system 1 as an example of a system according to an embodiment. Information processing according to an embodiment may be realized in the system 1.
 図1に示すように、システム1は、クラウドシステム10と、車載装置200とを備えてよい。また、クラウドシステム10と、車載装置200とは、ネットワークNを介して、有線または無線により通信可能に接続されてよい。 As shown in FIG. 1, the system 1 may include a cloud system 10 and an in-vehicle device 200. The cloud system 10 and the in-vehicle device 200 may be connected to each other via a network N so as to be able to communicate with each other via a wired or wireless connection.
 クラウドシステム10には、本開示の実施形態に係る情報処理を担う中心的な装置であるサーバ装置100が含まれる。 The cloud system 10 includes a server device 100, which is a central device responsible for information processing according to an embodiment of the present disclosure.
 サーバ装置100は、対象車両VEが走行中の道路区間について、統計的に得られている平均速度である区間平均速度を例えばデータベースから取得し、取得した区間平均速度に基づいて、コンテンツの出力に関するタイミングを示す第1のタイミング情報を生成する。そして、サーバ装置100は、第1のタイミング情報を対象車両VEが有する車載装置200に配信する。 The server device 100 acquires, for example from a database, the section average speed, which is the average speed obtained statistically for the road section on which the target vehicle VE is traveling, and generates first timing information indicating the timing of the output of the content based on the acquired section average speed. The server device 100 then distributes the first timing information to the in-vehicle device 200 possessed by the target vehicle VE.
 サーバ装置100は、第1のタイミング情報を配信した後においては、対象車両VEが道路区間を走行中の所定の時点での走行実績に基づいて、この所定の時点での平均速度である累積平均速度を算出する。そして、サーバ装置100は、累積平均速度と、区間平均速度とに基づいて、所定の時点で予測される平均速度であって、対象車両VEが走行中の道路区間における対象車両VEの平均速度である予測平均速度を算出する。 After distributing the first timing information, the server device 100 calculates the cumulative average speed, which is the average speed at a given time point, based on the driving performance at the given time point while the target vehicle VE is traveling on the road section. The server device 100 then calculates the predicted average speed, which is the average speed predicted at the given time point, based on the cumulative average speed and the section average speed, and is the average speed of the target vehicle VE on the road section on which the target vehicle VE is traveling.
 そして、サーバ装置100は、コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、区間平均速度ではなく予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する。 Then, the server device 100 determines whether or not to distribute the second timing information indicating the timing of the output of the content, which is newly generated using the predicted average speed instead of the average speed of the section, based on predetermined information based on the average speed of the section.
 サーバ装置100は、第2のタイミング情報を配信すると判定した場合には、予測平均速度に基づいて、コンテンツの出力に関するタイミングを示す第2のタイミング情報を生成する。そして、サーバ装置100は、第2のタイミング情報を対象車両VEが有する車載装置200に配信する。 If the server device 100 determines to distribute the second timing information, it generates second timing information indicating the timing of the output of the content based on the predicted average speed. Then, the server device 100 distributes the second timing information to the in-vehicle device 200 of the target vehicle VE.
 なお、上記によれば、対象車両VEは、コンテンツが出力される対象の車両であり、車載装置200が備えられていればいかなる車両であってよい。以下の実施形態では、対象車両VEを「車両VE」と略し、対象車両VEの運転者を「運転者D」と表記する。また、ここでいうコンテンツとは、音声により出力されるコンテンツであってよく、ナビゲーションや警告に関する誘導コンテンツ、利用者に有益と考えられるスポット(例えば、観光地や店舗等)や各種イベント等を提案するレコメンドコンテンツ、あるいは、各種ニュースや日常会話に関するその他のコンテンツ等が挙げられる。 Note that, according to the above, the target vehicle VE is a vehicle to which content is output, and may be any vehicle equipped with the in-vehicle device 200. In the following embodiment, the target vehicle VE is abbreviated to "vehicle VE", and the driver of the target vehicle VE is referred to as "driver D". Furthermore, the content referred to here may be content output by voice, such as guidance content related to navigation or warnings, recommended content that suggests spots (e.g., tourist spots, stores, etc.) and various events that are considered to be useful to the user, or other content related to various news and everyday conversations.
 車載装置200は、車両VEに内蔵あるいは積載される専用のナビゲーション装置であってよい。例えば、車載装置200は、ナビゲーション装置と、録画装置とで構成されてもよい。この一例として、車載装置200は、互いに独立したナビゲーション装置および録画装置が通信可能に接続された複合的な装置であってよい。他の例として、車載装置200は、ナビゲーション機能と、録画機能とを有する1つの装置であってもよい。 The in-vehicle device 200 may be a dedicated navigation device built into or mounted on the vehicle VE. For example, the in-vehicle device 200 may be composed of a navigation device and a recording device. As one example, the in-vehicle device 200 may be a composite device in which a navigation device and a recording device that are independent of each other are connected so as to be able to communicate with each other. As another example, the in-vehicle device 200 may be a single device having a navigation function and a recording function.
 また、車載装置200は、各種のセンサを備えていてよい。例えば、車載装置200は、カメラ、加速度センサ、ジャイロセンサ、GPS(Global Positioning System)センサ、気圧センサ等の各種センサを備えていてよい。このようなことから、車載装置200は、各種センサによって取得されたセンサ情報に基づいて、運転を支援するための対話や情報提供を行う機能も有してよい。 The in-vehicle device 200 may also be equipped with various sensors. For example, the in-vehicle device 200 may be equipped with various sensors such as a camera, an acceleration sensor, a gyro sensor, a GPS (Global Positioning System) sensor, and an air pressure sensor. For this reason, the in-vehicle device 200 may also have a function of providing dialogue and information to assist driving based on sensor information acquired by the various sensors.
 また、車載装置200は、自装置に備えられるセンサだけでなく、安全走行システムとして、車両VE自体に備えられるセンサが検知したセンサ情報も用いることができる。 In addition, the in-vehicle device 200 can use not only the sensors provided in the device itself, but also sensor information detected by sensors provided in the vehicle VE itself as a safe driving system.
 また、利用者は、日常的に使用している携帯型端末装置(例えば、スマートフォン、タブレット型端末、ノート型PC、PDA等)に所定のアプリケーションソフトウェアを導入することで、この携帯型端末装置を車載装置200と同様に動作させることができる。 In addition, by installing specific application software into a portable terminal device (e.g., a smartphone, tablet terminal, notebook PC, PDA, etc.) that a user uses on a daily basis, the portable terminal device can be made to operate in the same manner as the in-vehicle device 200.
〔3.サーバ装置の概要〕
 次に、図2を用いてサーバ装置100の動作例を説明する。図2は、サーバ装置100の動作例を示す概要図である。図2の例によれば、クラウドシステム10は、ワークロード推定エンジンEを有するサーバ装置100と、状況把握エンジン231と、誘導情報DBと、アプリケーションMAとを含んでよい。
3. Overview of the Server Device
Next, an operation example of the server device 100 will be described with reference to Fig. 2. Fig. 2 is a schematic diagram showing an operation example of the server device 100. According to the example of Fig. 2, the cloud system 10 may include the server device 100 having a workload estimation engine E, a situation grasping engine 231, a guidance information DB, and an application MA.
 なお、ここでいうワークロード(WL)とは、運転負荷を指し示し、運転者の負担感(大変度ともいえる)と、道路区間に対して定められる運転負荷との双方を内包したものであってよい。 Note that the workload (WL) referred to here indicates the driving load and may include both the driver's sense of burden (which can also be considered the degree of difficulty) and the driving load set for a road section.
 運転負荷の種別には、例えば、「BUSY」、「IDEAL」、「FREE」等が存在し、「BUSY」が定められた道路区間では運転者に対して掛かる負担が基準以上であり(すなわち、運転大変度が高い)、「FREE」が定められた道路区間では運転者に対して掛かる負担が基準未満であり(すなわち、運転大変度が低い、もしくは高くない)、「IDEAL」が定められた道路区間では運転者に対して掛かる負担が中間(すなわち、運転大変度が普通、もしくは高くない)であることを示す。 Types of driving load include, for example, "BUSY," "IDEAL," and "FREE," and indicate that the load on the driver on a road section designated as "BUSY" is above a standard (i.e., driving difficulty is high), the load on the driver on a road section designated as "FREE" is below a standard (i.e., driving difficulty is low or not high), and the load on the driver on a road section designated as "IDEAL" is medium (i.e., driving difficulty is normal or not high).
 また、運転者の大変度は、運転者の負担感を数値で表すものであってよく、以下のように定義することができる。 Furthermore, the degree of difficulty for the driver may be expressed numerically as the driver's sense of burden, and can be defined as follows:
 例えば、大変度「1」は、運転負荷の種別「BUSY_MAX」に相当し、全ての一般的な運転者が運転に気を遣う道路区間であり、係る道路区間では、車載装置200は警告通知のみを発話すべきと定義される。 For example, a level of difficulty of "1" corresponds to a driving load type of "BUSY_MAX" and is a road section where all general drivers have to be careful when driving, and it is defined that the in-vehicle device 200 should only issue a warning notification on such road sections.
 大変度「0.80」は、運転負荷の種別「BUSY+」に相当し、6割以上の一般的な運転者が運転に気を遣う道路区間であり、係る道路区間では、車載装置200は警告通知および注意通知のみを発話すべきと定義される。 The level of difficulty "0.80" corresponds to a driving load type of "BUSY+", and is a road section where more than 60% of general drivers have to be careful when driving. It is defined that in such road sections, the in-vehicle device 200 should only issue warning notifications and caution notifications.
 大変度「0.60」は、運転負荷の種別「BUSY」に相当し、2割以上の一般的な運転者が運転に気を遣う道路区間であり、係る道路区間では、車載装置200は警告通知、注意通知、重要通知のみを発話すべきと定義される。 The level of difficulty "0.60" corresponds to a "BUSY" type of driving load, and is a road section where more than 20% of general drivers have to be careful when driving. It is defined that in such road sections, the in-vehicle device 200 should only issue warning notifications, caution notifications, and important notifications.
 大変度「0.50」は、運転負荷の種別「IDEAL」に相当し、係る道路区間では、車載装置200は誘導系(警告通知、注意通知、重要通知)以外のコンテンツも発話してよいと定義される。 The level of difficulty "0.50" corresponds to the driving load type "IDEAL", and it is defined that in the relevant road section, the in-vehicle device 200 may also speak content other than guidance-related information (warning notifications, caution notifications, important notifications).
 大変度「0.25」は、運転負荷の種別「FREE」に相当し、5割以上の一般的な運転者が単調で退屈と感じ得る道路区間であり、様々な内容のコンテンツを発話すべきと定義される。 The level of difficulty "0.25" corresponds to the driving load type "FREE," and is defined as a road section that more than 50% of average drivers would find monotonous and boring, and in which a variety of content should be spoken.
 なお、運転負荷の種別は、必ずしも上記例(「BUSY_MAX」、「BUSY+」、「BUSY」、「IDEAL」、「FREE」)に限定されない。また、以下の実施形態では、運転負荷の種別を「WL種別」と表現し、「BUSY」および「FREE」を用いて説明する。また、上記で示した基準および基準値は一例であり、任意の値であってよい。 Note that the types of driving load are not necessarily limited to the above examples ("BUSY_MAX", "BUSY+", "BUSY", "IDEAL", and "FREE"). In the following embodiment, the types of driving load are expressed as "WL types" and will be explained using "BUSY" and "FREE". The criteria and reference values shown above are merely examples and may be any values.
 ここで、道路区間についても説明する。例えば、道路区間は、道路の特徴点間の区間を意味し、リンクと称される。道路の特徴点は、交差点、曲り角、行き止まり等であり、ノードと称される。すなわち、リンクは、所定規則に基づいて設定される道路区間を意味する。言い換えると、リンクは、移動履歴の記録区間を所定規則に基づいて区切った単位を意味する。 Here, we will also explain road sections. For example, a road section means a section between characteristic points of a road, and is called a link. Characteristic points of a road are intersections, corners, dead ends, etc., and are called nodes. In other words, a link means a road section that is set based on a specific rule. In other words, a link means a unit that divides a recorded section of a movement history based on a specific rule.
 上記例に倣い、以下の実施形態では、道路区間をリンクと表現し、道路区間と道路区間との接続地点をノードと表現する。例えば、サーバ装置100は、地図情報記憶部121(図4)を有しており、地図情報記憶部121は、道路網をノードとリンクの組合せにより表した道路データ、施設データ、および道路周辺のオブジェクト情報等を含む。オブジェクト情報は、道路標識等の看板や停止線等の道路標示、センターライン等の道路区画線や道路沿いの構造物等の地物の他、一時的に存在する障害物の情報を含む。障害物は、例えば、水たまり、道路の陥没部分、落下物、排水溝(網で塞がれた部分含む)等の歩行者や自転車の通行の障害となる要因となるものを指す。オブジェクト情報は、自車位置推定等に用いるためのオブジェクトの高精度な点群情報などを含んでもよい。また、地図情報記憶部121において、リンクは、リンクIDによって識別されてよい。 Following the above example, in the following embodiment, a road section is represented as a link, and a connection point between road sections is represented as a node. For example, the server device 100 has a map information storage unit 121 (FIG. 4), which includes road data that represents a road network as a combination of nodes and links, facility data, and object information around the road. The object information includes information on obstacles that exist temporarily, as well as features such as signs such as road signs, road markings such as stop lines, road dividing lines such as center lines, and structures along the road. Obstacles refer to factors that impede the passage of pedestrians and bicycles, such as puddles, sunken parts of the road, fallen objects, and drains (including parts blocked by nets). The object information may include highly accurate point cloud information of objects to be used for vehicle position estimation, etc. In addition, in the map information storage unit 121, links may be identified by link IDs.
 状況把握エンジン231は、車載装置200が有するセンサによって得られたセンサ情報を分析して得られた分析結果、あるいは、車載装置200に導入されている各種のアプリケーションの動作状況等を含む状況情報を収集し、蓄積された情報を状況情報として配信するクラウドサービスである。図2の例では、状況把握エンジン231は、クラウドシステム10に含まれているが、車載装置200が状況把握エンジン231を有してよい。 The situation assessment engine 231 is a cloud service that collects situation information, including analysis results obtained by analyzing sensor information obtained by sensors possessed by the in-vehicle device 200, or the operating status of various applications installed in the in-vehicle device 200, and distributes the accumulated information as situation information. In the example of FIG. 2, the situation assessment engine 231 is included in the cloud system 10, but the in-vehicle device 200 may have the situation assessment engine 231.
 誘導情報DBは、運転者の目的地に応じて設定されたルートの案内に用いられる誘導情報、あるいは、設定されたルートから対象車両VEが外れたことで再設定(リルート)されたルートの案内に用いられる誘導情報等を記憶する。 The guidance information DB stores guidance information used to guide the driver along a route that has been set according to the driver's destination, or guidance information used to guide the driver along a route that has been reset (rerouted) when the target vehicle VE deviates from the set route.
 アプリケーションMAは、ワークロード推定エンジンEによって処理された結果を、車載装置200が有する情報整合エンジン232に配信する機能を有する。 The application MA has the function of distributing the results processed by the workload estimation engine E to the information matching engine 232 of the in-vehicle device 200.
 ここからは、ワークロード推定エンジンEによる具体的な動作例を説明する。ワークロード推定エンジンEは、本開示の実施形態に係る情報処理を行う。 From here on, a specific example of the operation of the workload estimation engine E will be described. The workload estimation engine E performs information processing according to an embodiment of the present disclosure.
 まず、ワークロード推定エンジンEは、状況把握エンジン231から状況情報を取得し、取得した状況情報に基づいて、車両VEの現時点における運転負荷の種別(WL種別)を推定する(ステップS21)。例えば、ワークロード推定エンジンEは、車両VEの現時点におけるWL種別として、車両VEが現在走行している道路区間すなわち現在のリンクでの運転者Dの大変度(運転負荷)を推定してよい。 First, the workload estimation engine E acquires situation information from the situation grasping engine 231, and estimates the type of driving load (WL type) of the vehicle VE at the current time based on the acquired situation information (step S21). For example, the workload estimation engine E may estimate the degree of difficulty (driving load) of the driver D on the road section on which the vehicle VE is currently traveling, i.e., the current link, as the WL type of the vehicle VE at the current time.
 また、ワークロード推定エンジンEは、車両VEの将来における運転負荷の種別(WL種別)を推定する(ステップS22)。具体的には、ワークロード推定エンジンEは、車両VEが走行する予定の経路である走行予定経路に基づいて、走行予定経路に含まれるリンクごとにWL種別を推定(予測)する。 The workload estimation engine E also estimates the type of future driving load (WL type) of the vehicle VE (step S22). Specifically, the workload estimation engine E estimates (predicts) the WL type for each link included in the planned driving route based on the planned driving route, which is the route along which the vehicle VE is scheduled to travel.
 例えば、ワークロード推定エンジンEは、走行予定経路と、リンクごとにWL種別が対応付けられた地図データ(地図情報記憶部121)とを照らし合わせて、走行予定経路に含まれるリンクごとにWL種別を予測してよい。 For example, the workload estimation engine E may compare the planned driving route with map data (map information storage unit 121) in which a WL type is associated with each link, and predict the WL type for each link included in the planned driving route.
 次に、ワークロード推定エンジンEは、本開示の実施形態に係る情報処理として、タイミング情報の生成および配信に係る処理を実行する(ステップS23)。以下では、図2の例を用いて、本開示の実施形態に係る情報処理についてより具体的に説明する。 Next, the workload estimation engine E executes processing related to generating and distributing timing information as information processing according to an embodiment of the present disclosure (step S23). Below, the information processing according to an embodiment of the present disclosure will be described in more detail using the example of FIG. 2.
 図2には、車両VE1(車両VEの一例)が走行する予定の経路である走行予定経路RTxを構成するリンクうち、隣接関係にあり、かつ、互いに異なるWL種別が推定されているリンクL1とリンクL2が示され、車両VE1がリンクL2に向かってリンクL1の走行を開始した直後の場面が示される。 Figure 2 shows links L1 and L2 that are adjacent to each other and are estimated to have different WL types among the links that make up the planned driving route RTx, which is the route that vehicle VE1 (an example of a vehicle VE) is scheduled to travel, and shows a scene immediately after vehicle VE1 starts traveling along link L1 toward link L2.
 また、図2の例によれば、リンクL1のWL種別として「FREE」が推定され、リンクL2のWL種別として「BUSY」が推定されている。さらに、図2の例によれば、位置PTx1はこの時点での車両VE1の現在位置であり、位置PTx2はリンクL1とリンクL2とが接続される接続地点に相当する。また、このようなことから、位置PTx1を含むリンクL1は、車両VE1が現在走行している現在リンク(現在道路区間)といえる。一方、リンクL2は、車両VE1が将来走行する予定の将来リンク(将来道路区間)といえる。 Also, in the example of FIG. 2, the WL type of link L1 is estimated to be "FREE," and the WL type of link L2 is estimated to be "BUSY." Furthermore, in the example of FIG. 2, position PTx1 is the current position of vehicle VE1 at this point in time, and position PTx2 corresponds to the connection point where link L1 and link L2 are connected. Also, for this reason, link L1, which includes position PTx1, can be said to be the current link (current road section) along which vehicle VE1 is currently traveling. On the other hand, link L2 can be said to be the future link (future road section) along which vehicle VE1 is scheduled to travel in the future.
 ここで、車両VE1がリンクL1の走行を開始した直後すなわち位置PT1を走行している時点では、リンクL1に対する車両VE1の走行実績が十分蓄積されていない。係る場合、ワークロード推定エンジンEは、リンクL1について統計的に得られている平均速度である区間平均速度を例えばデータベースから取得し、取得した区間平均速度に基づいて、コンテンツの出力に関するタイミングを示す第1のタイミング情報を生成する。 Here, immediately after vehicle VE1 starts traveling on link L1, i.e., when vehicle VE1 is traveling at position PT1, the traveling history of vehicle VE1 on link L1 has not been sufficiently accumulated. In such a case, workload estimation engine E acquires, for example, from a database, the section average speed, which is the average speed obtained statistically for link L1, and generates first timing information indicating the timing of content output based on the acquired section average speed.
 より具体的には、ワークロード推定エンジンEは、リンクL1に対応する区間平均速度と、現在位置PTx1から接続地点PTx2までの距離とに基づいて、接続地点PTx2に車両VE1が到達する予想時刻TM1を算出する。また、ワークロード推定エンジンEは、予想時刻TM1を含む時刻範囲を第1のタイミング情報として生成し、生成した第1のタイミング情報を車両VE1の車載装置200に配信する。ここで、第1のタイミング情報は、予想時刻TM1を含む数十秒の期間を示す情報であってよく、コンテンツ出力が推奨される期間として定義されてよい。 More specifically, the workload estimation engine E calculates the estimated time TM1 at which the vehicle VE1 will arrive at the connection point PTx2 based on the average section speed corresponding to link L1 and the distance from the current position PTx1 to the connection point PTx2. The workload estimation engine E also generates a time range including the estimated time TM1 as first timing information, and distributes the generated first timing information to the in-vehicle device 200 of the vehicle VE1. Here, the first timing information may be information indicating a period of several tens of seconds including the estimated time TM1, and may be defined as a period during which content output is recommended.
 なお、区間平均速度は、リンクL1の走行履歴を有する様々な車両VEの走行実績を単純に平均して得られた速度であってよいし、リンクL1に対応する走行シーン(例えば、速度の大幅な低下、速度の大幅な上昇、一時停止、停止、徐行運転、カーブ、急発進、急ブレーキ、急ハンドル、衝撃等の発生)での走行実績を平均して得られた速度であってもよい。 The section average speed may be a speed obtained by simply averaging the driving records of various vehicles VE that have a driving history of link L1, or may be a speed obtained by averaging the driving records in driving situations corresponding to link L1 (e.g., occurrence of a large decrease in speed, a large increase in speed, temporary stop, stop, slow driving, curves, sudden acceleration, sudden braking, sudden steering, impact, etc.).
 図2に戻り、ワークロード推定エンジンEは、車両VE1の走行シーンの変化を監視しており、第1のタイミング情報を配信した後において走行シーンの変化を検出したとする。このように、走行シーンが変化した場合には、ワークロード推定エンジンEは、車両VE1の現時点におけるWL種別が変化したと判定する。例えば、ワークロード推定エンジンEは、車両VE1の現時点におけるWL種別として、車両VE1が現在走行しているリンクL1での運転者Dの大変度が変化したと判定してよい。 Returning to FIG. 2, the workload estimation engine E monitors changes in the driving scene of the vehicle VE1, and detects a change in the driving scene after the first timing information is delivered. In this way, when the driving scene changes, the workload estimation engine E determines that the WL type of the vehicle VE1 at the current time has changed. For example, the workload estimation engine E may determine that the degree of difficulty of the driver D on the link L1 on which the vehicle VE1 is currently traveling has changed, as the WL type of the vehicle VE1 at the current time.
 図2の例によれば、ワークロード推定エンジンEは、車両VE1が位置PTx3を通過した際に、車両VE1の現時点におけるWL種別が変化したと判定したものとする。係る場合、ワークロード推定エンジンEは、車両VE1が位置PTx3に至った現時点での走行実績を取得する。例えば、ワークロード推定エンジンEは、走行実績として、位置PTx1から位置PTx3までの距離と、位置PTx1から位置PTx3に到達するまでに要した時間とを取得する。そして、ワークロード推定エンジンEは、走行実績に基づいて、車両VE1が位置PTx3に至った現時点での平均速度である累積平均速度を算出する。 In the example of FIG. 2, the workload estimation engine E determines that the current WL type of the vehicle VE1 has changed when the vehicle VE1 passed through position PTx3. In this case, the workload estimation engine E acquires the driving performance at the time when the vehicle VE1 reached position PTx3. For example, the workload estimation engine E acquires, as the driving performance, the distance from position PTx1 to position PTx3 and the time required to reach position PTx3 from position PTx1. Then, the workload estimation engine E calculates, based on the driving performance, the cumulative average speed, which is the average speed at the time when the vehicle VE1 reached position PTx3.
 なお、上記例では、ワークロード推定エンジンEは、WL種別が変化したと判定できた時点での走行実績を用いて累積平均速度を算出している。しかしながら、ワークロード推定エンジンEは、例えば、車両VE1がリンクL1の走行を開始してから所定期間が経過するごとの時点、あるいは、車両VE1がリンクL1の走行を開始してから所定距離進むごとの時点での走行実績を用いて累積平均速度を算出してもよい。 In the above example, the workload estimation engine E calculates the cumulative average speed using the driving performance at the time when it is determined that the WL type has changed. However, the workload estimation engine E may also calculate the cumulative average speed, for example, using the driving performance at each time a predetermined period has elapsed since the vehicle VE1 started traveling on link L1, or each time a predetermined distance has been traveled since the vehicle VE1 started traveling on link L1.
 図2に戻り、ワークロード推定エンジンEは、累積平均速度と、上記区間平均速度とに基づいて、リンクL1について現時点で予測される平均速度であって、車両VE1の平均速度である予測平均速度を算出する。予測平均速度の算出手法については後程詳細に説明する。 Returning to FIG. 2, the workload estimation engine E calculates a predicted average speed, which is the average speed currently predicted for link L1 and is the average speed of vehicle VE1, based on the cumulative average speed and the above-mentioned section average speed. The method for calculating the predicted average speed will be explained in detail later.
 また、ワークロード推定エンジンEは、予測平均速度に基づいて、コンテンツの出力に関するタイミングを示す第2のタイミング情報を新たに生成する。具体的には、ワークロード推定エンジンEは、予測平均速度と、現在位置PTx3から接続地点PTx2までの距離とに基づいて、接続地点PTx2に車両VE1が到達する予想時刻TM2を算出する。そして、ワークロード推定エンジンEは、予想時刻TM2を含む時刻範囲を第2のタイミング情報として生成する。 The workload estimation engine E also generates new second timing information indicating the timing of content output based on the predicted average speed. Specifically, the workload estimation engine E calculates the predicted time TM2 at which the vehicle VE1 will arrive at the connection point PTx2 based on the predicted average speed and the distance from the current position PTx3 to the connection point PTx2. The workload estimation engine E then generates a time range including the predicted time TM2 as the second timing information.
 次に、ワークロード推定エンジンEは、第1のタイミング情報と、第2のタイミング情報とを比較した比較結果に基づいて、第2のタイミング情報を配信するか否かを判定する。なお、ワークロード推定エンジンEは、区間平均速度と、予測平均速度とを比較した比較結果に基づいて、第2のタイミング情報を配信するか否かを判定してもよい。 Next, the workload estimation engine E determines whether or not to deliver the second timing information based on the result of comparing the first timing information with the second timing information. Note that the workload estimation engine E may also determine whether or not to deliver the second timing information based on the result of comparing the section average speed with the predicted average speed.
 ワークロード推定エンジンEは、第2のタイミング情報を配信すると判定した場合には、第2のタイミング情報を車両VE1の車載装置200に配信する。ここで、第2のタイミング情報は、予想時刻TM2を含む数十秒の期間を示す情報であってよく、コンテンツ出力が推奨される期間として定義されてよい。 If the workload estimation engine E determines that the second timing information should be distributed, it distributes the second timing information to the in-vehicle device 200 of the vehicle VE1. Here, the second timing information may be information indicating a period of several tens of seconds including the predicted time TM2, and may be defined as a period during which content output is recommended.
〔4.車載装置の概要〕
 次に、図3を用いて車載装置200の動作例を説明する。図3は、車載装置200の動作例を示す概要図である。図3の例によれば、車載装置200は、情報整合エンジン232を有する。
4. Overview of the in-vehicle device
Next, an example of the operation of the in-vehicle device 200 will be described with reference to Fig. 3. Fig. 3 is a schematic diagram showing an example of the operation of the in-vehicle device 200. According to the example of Fig. 3, the in-vehicle device 200 has an information matching engine 232.
 まず、情報整合エンジン232は、サーバ装置100から配信されたタイミング情報を受信する(ステップS31)。情報整合エンジン232は、第1のタイミング情報や第2のタイミング情報を受信する。 First, the information matching engine 232 receives timing information distributed from the server device 100 (step S31). The information matching engine 232 receives the first timing information and the second timing information.
 また、情報整合エンジン232は、ステップS31とは別のフェーズで、出力要求情報を受信したか否かも判定している。ここでいう出力要求情報とは、車載装置200に導入されている各種のアプリケーションにより送信される出力要求情報である。例えば、観光案内に関するコンテンツを提供するアプリケーションは、出力条件(出力を許可する時刻条件、あるいは、出力を許可する地理的条件)と、出力対象のコンテンツとを含む出力要求情報を情報整合エンジン232に対して送信する場合がある。 The information matching engine 232 also determines whether output request information has been received in a phase other than step S31. The output request information referred to here is output request information sent by various applications installed in the in-vehicle device 200. For example, an application that provides content related to tourist information may send output request information to the information matching engine 232 that includes output conditions (time conditions that permit output, or geographical conditions that permit output) and the content to be output.
 情報整合エンジン232は、出力要求情報を受信した場合には(ステップS32-1)、出力要求情報に含まれるコンテンツの再生に要する所要時間を推定する(ステップS32-2)。例えば、情報整合エンジン232は、出力要求情報に含まれるコンテンツの再生時間長に基づいて、所要時間を推定してよい。 When the information matching engine 232 receives output request information (step S32-1), it estimates the time required to play the content included in the output request information (step S32-2). For example, the information matching engine 232 may estimate the time required based on the playback time length of the content included in the output request information.
 続いて、情報整合エンジン232は、ステップS31で受信したタイミング情報と、ステップS32-2で推定した所要時間とに基づいて、出力要求情報に含まれるコンテンツを出力可能か否か判定する(ステップS33)。例えば、情報整合エンジン232は、タイミング情報が示す時刻範囲が所要時間よりも十分長い場合には、出力要求情報に含まれるコンテンツを出力可能と判定してよい。 Then, the information matching engine 232 determines whether or not the content included in the output request information can be output based on the timing information received in step S31 and the required time estimated in step S32-2 (step S33). For example, if the time range indicated by the timing information is sufficiently longer than the required time, the information matching engine 232 may determine that the content included in the output request information can be output.
 そして、情報整合エンジン232は、タイミング情報に基づいて、コンテンツを出力させる時刻を決定するためのスケジューリングを行う(ステップS34)。また、情報整合エンジン232によるスケジューリングの結果、コンテンツの出力タイミングが決定された場合には、この出力タイミングに応じて車載装置200が有するスピーカーSP(図4)からコンテンツが音声出力される。 Then, the information matching engine 232 performs scheduling based on the timing information to determine the time to output the content (step S34). Furthermore, when the content output timing is determined as a result of scheduling by the information matching engine 232, the content is output as audio from the speaker SP (FIG. 4) of the in-vehicle device 200 in accordance with this output timing.
〔5.機能構成〕
 ここからは、図4を用いて、サーバ装置100および車載装置200の構成例について説明する。図4は、実施形態に係るサーバ装置100および車載装置200の構成例を示す図である。
5. Functional Configuration
From here, a configuration example of the server device 100 and the in-vehicle device 200 will be described with reference to Fig. 4. Fig. 4 is a diagram showing a configuration example of the server device 100 and the in-vehicle device 200 according to the embodiment.
(サーバ装置100)
 まず、サーバ装置100の構成例を説明する。図4に示すように、サーバ装置100は、通信部110と、記憶部120と、制御部130とを有する。
(Server device 100)
First, a description will be given of an example of the configuration of the server device 100. As shown in FIG.
(通信部110)
 通信部110は、例えば、NIC(Network Interface Card)等によって実現される。そして、通信部110は、ネットワークNと有線または無線で接続され、例えば、車載装置200との間で情報の送受信を行う。
(Communication unit 110)
The communication unit 110 is realized by, for example, a network interface card (NIC) etc. The communication unit 110 is connected to a network N by wire or wirelessly, and transmits and receives information to and from the in-vehicle device 200, for example.
(記憶部120)
 記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子またはハードディスク、光ディスク等の記憶装置によって実現される。記憶部120は、例えば、実施形態に係る情報処理に関するデータやプログラムが記憶されてよい。また、図4の例によれば、記憶部120は、地図情報記憶部121と、制御結果記憶部122とを有してよい。
(Memory unit 120)
The storage unit 120 is realized by, for example, a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 120 may store, for example, data and programs related to the information processing according to the embodiment. According to the example of FIG. 4, the storage unit 120 may include a map information storage unit 121 and a control result storage unit 122.
(地図情報記憶部121)
 地図情報記憶部121は、WL種別の推定に用いられる地図データが記憶される。係る地図データでは、道路網をノードとリンクの組合せにより表した道路データ等が含まれる。リンクは、リンクIDによって管理され、WL種別やリンク長が紐付けられてよい。
(Map information storage unit 121)
The map information storage unit 121 stores map data used for estimating the WL type. The map data includes road data in which a road network is represented by a combination of nodes and links. The links are managed by link IDs, and may be associated with the WL type and the link length.
(制御結果記憶部122)
 制御結果記憶部122は、ワークロード推定エンジンEにより得られた情報(例えば、現在のWL種別、将来のWL種別、変化点情報等)を記憶してよい。
(Control result storage unit 122)
The control result storage unit 122 may store information obtained by the workload estimation engine E (for example, the current WL type, the future WL type, change point information, etc.).
(制御部130について)
 制御部130は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、サーバ装置100内部の記憶装置に記憶されている各種プログラム(例えば、実施形態に係る情報処理プログラム)がRAMを作業領域として実行されることにより実現される。また、制御部130は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
(Regarding the control unit 130)
The control unit 130 is realized by a central processing unit (CPU), a micro processing unit (MPU), or the like executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the server device 100 using a RAM as a working area. The control unit 130 is also realized by an integrated circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
 図4に示すように、制御部130は、ワークロード推定エンジンEを搭載し、ワークロード推定エンジンEには、取得部131と、推定部132と、検出部133と、判定部134と、生成部135と、配信部136と、算出部137とが含まれ、以下に説明する情報処理の機能や作用を実現または実行する。なお、ワークロード推定エンジンEの内部構成は、図4に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、ワークロード推定エンジンEが有する各処理部の接続関係は、図4に示した接続関係に限られず、他の接続関係であってもよい。 As shown in FIG. 4, the control unit 130 is equipped with a workload estimation engine E, which includes an acquisition unit 131, an estimation unit 132, a detection unit 133, a determination unit 134, a generation unit 135, a delivery unit 136, and a calculation unit 137, and realizes or executes the functions and actions of the information processing described below. Note that the internal configuration of the workload estimation engine E is not limited to the configuration shown in FIG. 4, and may be other configurations as long as they perform the information processing described below. Furthermore, the connection relationships of each processing unit in the workload estimation engine E are not limited to the connection relationships shown in FIG. 4, and may be other connection relationships.
(取得部131)
 取得部131は、車両VEの走行ルートを示す情報を取得する。例えば、取得部131は、車両VEの走行ルートを示す情報として、車両VEが走行する予定の経路である走行予定経路の情報を取得してよい。
(Acquisition unit 131)
The acquisition unit 131 acquires information indicating a driving route of the vehicle VE. For example, the acquisition unit 131 may acquire information on a planned driving route, which is a route along which the vehicle VE is scheduled to travel, as the information indicating the driving route of the vehicle VE.
 例えば、取得部131は、運転者Dが目的地を指定した場合には、この目的地を満たすルート計画によって、目的地までのルートを走行予定経路として設定する。この結果、取得部131は、設定した走行予定経路を示す情報を取得する。 For example, when the driver D specifies a destination, the acquisition unit 131 sets a route to the destination as a planned driving route based on a route plan that satisfies the destination. As a result, the acquisition unit 131 acquires information indicating the set planned driving route.
 また、取得部131は、運転者Dが目的地を指定しておらず、目的地に応じたルート設定が不可能な場合には、車両VEの走行履歴に基づいて、走行ルートを予測することで、予測した走行ルートを走行予定経路として設定してもよい。この場合、取得部131は、予測した走行予定経路を示す情報を取得する。 In addition, if the driver D has not specified a destination and it is not possible to set a route according to the destination, the acquisition unit 131 may predict a driving route based on the driving history of the vehicle VE, and set the predicted driving route as the planned driving route. In this case, the acquisition unit 131 acquires information indicating the predicted planned driving route.
(推定部132)
 推定部132は、WL種別を推定する。例えば、推定部132は、車両VEの現時点におけるWL種別として、車両VEが現在走行している道路区間すなわち現在のリンクでの運転者Dの大変度(運転大変度)を推定する。例えば、推定部132は、状況把握エンジン231から状況情報を取得し、取得した状況情報に基づいて、運転者Dの大変度を推定してよい。また、推定部132は、現在のリンクと、リンクごとにWL種別が対応付けられた地図データとを照らし合わせて、現在のリンクに対応付けられるWL種別に基づいて、運転者Dの大変度を推定してもよい。
(Estimation unit 132)
The estimation unit 132 estimates the WL type. For example, the estimation unit 132 estimates the degree of difficulty (driving difficulty) of the driver D in the road section on which the vehicle VE is currently traveling, i.e., the current link, as the WL type of the vehicle VE at the current time. For example, the estimation unit 132 may acquire situation information from the situation grasping engine 231, and estimate the degree of difficulty of the driver D based on the acquired situation information. Furthermore, the estimation unit 132 may compare the current link with map data in which a WL type is associated with each link, and estimate the degree of difficulty of the driver D based on the WL type associated with the current link.
 また、推定部132は、車両VEの将来におけるWL種別として、車両VEが走行する予定の経路である走行予定経路に含まれるリンクごとにWL種別を推定する。例えば、推定部132は、走行予定経路と、リンクごとにWL種別が対応付けられた地図データとを照らし合わせて、走行予定経路に含まれるリンクごとにWL種別を予測してよい。 The estimation unit 132 also estimates the WL type for each link included in the planned driving route, which is the route along which the vehicle VE is scheduled to travel, as the future WL type for the vehicle VE. For example, the estimation unit 132 may compare the planned driving route with map data in which a WL type is associated with each link, and predict the WL type for each link included in the planned driving route.
 なお、推定部132は、リンクごとにWL種別が対応付けられた地図データに頼らずWL種別を推定してもよい。例えば、推定部132は、リンクごとの走行履歴に基づいて、統計的にWL種別を推定してよい。一例として、推定部132は、走行履歴を解析した結果、急制動の傾向が得られたリンクについてはWL種別「BUSY」と推定してよい。また、推定部132は、リンクの属性から算出された運転難易度に基づいて、WL種別を推定してもよい。例えば、推定部132は、急カーブを有するリンク、あるいは、急勾配を有するリンクについては運転難易度が高いと判断し、WL種別「BUSY」と推定してよい。 The estimation unit 132 may estimate the WL type without relying on map data in which a WL type is associated with each link. For example, the estimation unit 132 may statistically estimate the WL type based on the driving history of each link. As an example, the estimation unit 132 may estimate the WL type as "BUSY" for a link that shows a tendency for sudden braking as a result of analyzing the driving history. The estimation unit 132 may also estimate the WL type based on the driving difficulty calculated from the attributes of the link. For example, the estimation unit 132 may determine that a link with a sharp curve or a steep gradient has a high driving difficulty and estimate the WL type as "BUSY."
(検出部133)
 検出部133は、車両VEの走行状況に基づいて、走行シーンの変化を検出する。例えば、検出部133は、走行シーンの変化として、車両VEの運転挙動の変化を検出する。一例として、検出部133は、車両VEの運転挙動の変化として、速度の大幅な低下、速度の大幅な上昇、一時停止、停止、徐行運転、カーブ、急発進、急ブレーキ、急ハンドル、衝撃等を検出してよい。
(Detection Unit 133)
The detection unit 133 detects a change in the driving scene based on the driving conditions of the vehicle VE. For example, the detection unit 133 detects a change in the driving behavior of the vehicle VE as a change in the driving scene. As an example, the detection unit 133 may detect a significant decrease in speed, a significant increase in speed, a temporary stop, a stop, slow driving, a curve, a sudden start, a sudden brake, an abrupt steering wheel, an impact, and the like as a change in the driving behavior of the vehicle VE.
 また、検出部133は、走行シーンの変化として、WL種別が変化する変化点に対応する地点に車両VEが侵入したか否かを検出してよい。具体的には、検出部133は、互いに隣接関係にあるリンクの間において、異なるWL種別が推定されている場合に、互いに隣接関係にあるリンク同士が接続される接続地点であるノードに車両VEが侵入したか否かを検出する。 The detection unit 133 may also detect, as a change in the driving scene, whether the vehicle VE has entered a point corresponding to a change point where the WL type changes. Specifically, when different WL types are estimated between adjacent links, the detection unit 133 detects whether the vehicle VE has entered a node that is a connection point where the adjacent links are connected.
 また、検出部133は、走行シーンの変化として、走行予定経路に含まれるリンクのうち、車両VEが現在走行している第1のリンクの属性と、車両VEの進行方向に位置し第1のリンクと接続される第2のリンクの属性との比較に基づく属性変化を検出してよい。例えば、検出部133は、狭い道から広い道への進入、広い道から狭い道への進入、生活圏外の道から生活圏内の道への進入を検出してよい。 The detection unit 133 may also detect, as a change in the driving scene, a change in attributes based on a comparison between the attributes of a first link, among the links included in the planned driving route, along which the vehicle VE is currently traveling, and the attributes of a second link that is located in the traveling direction of the vehicle VE and is connected to the first link. For example, the detection unit 133 may detect entry from a narrow road to a wide road, entry from a wide road to a narrow road, and entry from a road outside the living area to a road within the living area.
 また、検出部133は、走行シーンの変化として、走行予定経路に含まれるリンクのうち、車両VEが現在走行している第1のリンクに存在する所定の特徴地点に対応するエリアに車両VEが侵入したか否かを検出してよい。ここでいう特徴地点とは、例えば、交差点・合流・分岐・料金所・踏切等である。 The detection unit 133 may also detect, as a change in the driving scene, whether the vehicle VE has entered an area corresponding to a specific characteristic point that exists in a first link on which the vehicle VE is currently traveling, among the links included in the planned driving route. The characteristic point referred to here is, for example, an intersection, a junction, a fork, a toll booth, a railroad crossing, etc.
 また、検出部133は、上記例以外にも例えば、車両VEが現在走行している道路は高速道路であるか否か、車両VEが現在走行している道路は属性に変化のない同じ傾向の道理(例えば、直線道路)であるか否かを検出してもよい。 In addition to the above examples, the detection unit 133 may also detect, for example, whether the road on which the vehicle VE is currently traveling is an expressway, or whether the road on which the vehicle VE is currently traveling is a road with the same tendency (for example, a straight road) with no change in attributes.
(判定部134)
 判定部134は、車両VEの走行状況に基づいて、車両VEの現時点におけるWL種別が変化したか否かを判定する。例えば、判定部134は、車両VEの現時点におけるWL種別として、車両VEが現在走行しているリンクでの運転者Dの大変度が変化したか否かを判定してよい。例えば、判定部134は、検出部133によって走行シーンの変化を検出されたか否かに基づいて、車両VEが現在走行しているリンクでの運転者Dの大変度が変化したか否かを判定してよい。
(Determination unit 134)
The determination unit 134 determines whether or not the WL type of the vehicle VE at the current time has changed based on the driving conditions of the vehicle VE. For example, the determination unit 134 may determine whether or not the degree of difficulty for the driver D on the link on which the vehicle VE is currently traveling has changed, as the WL type of the vehicle VE at the current time. For example, the determination unit 134 may determine whether or not the degree of difficulty for the driver D on the link on which the vehicle VE is currently traveling has changed, based on whether or not a change in the driving scene has been detected by the detection unit 133.
 例えば、判定部134は、車両VEの運転挙動が変化したことを検出された場合には、運転者Dの大変度が変化したと判定してよい。 For example, if the determination unit 134 detects that the driving behavior of the vehicle VE has changed, it may determine that the degree of difficulty of the driver D has changed.
 また、判定部134は、WL種別が変化する変化点に対応する地点(ノード)に車両VEが侵入したことを検出された場合には、運転者Dの大変度が変化したと判定してよい。 In addition, the determination unit 134 may determine that the degree of difficulty of the driver D has changed if it detects that the vehicle VE has entered a location (node) corresponding to a change point where the WL type changes.
 また、判定部134は、車両VEが現在走行している第1のリンクの属性と、車両VEの進行方向に位置し第1のリンクと接続される第2のリンクの属性との間に属性変化を検出された場合には、運転者Dの大変度が変化したと判定してよい。 In addition, the determination unit 134 may determine that the degree of difficulty of the driver D has changed if an attribute change is detected between the attribute of a first link along which the vehicle VE is currently traveling and the attribute of a second link that is located in the traveling direction of the vehicle VE and is connected to the first link.
 また、判定部134は、所定の特徴地点に対応するエリアに車両VEが侵入したことを検出された場合には、運転者Dの大変度が変化したと判定してよい。 In addition, if the determination unit 134 detects that the vehicle VE has entered an area corresponding to a specified characteristic point, it may determine that the degree of difficulty of the driver D has changed.
(生成部135)
 生成部135は、コンテンツの出力に関するタイミングを示すタイミング情報を生成する。
(Generation unit 135)
The generating unit 135 generates timing information that indicates timing related to the output of the content.
 生成部135は、所定のリンクにおける車両VEの平均速度である区間平均速度に基づいて、コンテンツの出力に関するタイミングを示す第1のタイミング情報を生成する。例えば、生成部135は、走行予定経路に含まれるリンクのうち、互いに隣接関係にあるリンクの間において、異なるWL種別が推定されている場合に、車両VEの現在位置から、互いに隣接関係にあるリンク同士が接続される接続地点へと車両VEが到達する予想時刻を算出する。そして、生成部135は、予想時刻を含む時刻範囲を第1のタイミング情報として生成する。 The generating unit 135 generates first timing information indicating the timing of content output based on the section average speed, which is the average speed of the vehicle VE on a specific link. For example, when different WL types are estimated between adjacent links included in the planned driving route, the generating unit 135 calculates the predicted time for the vehicle VE to arrive at a connection point where the adjacent links are connected from the current position of the vehicle VE. The generating unit 135 then generates a time range including the predicted time as the first timing information.
 また、生成部135は、走行予定経路に含まれるリンクを車両VEが走行中に、車両VEのWL種別が変化したと判定された場合には、車両VEの現在位置を含むリンクである現在リンク(現在道路区間)に対応する区間平均速度に基づいて、第1のタイミング情報を生成する。 In addition, when it is determined that the WL type of the vehicle VE has changed while the vehicle VE is traveling on a link included in the planned travel route, the generation unit 135 generates the first timing information based on the average section speed corresponding to the current link (current road section), which is the link that includes the current position of the vehicle VE.
 具体的には、生成部135は、WL種別が変化したと判定された場合として、これまで走行していたリンクとは異なるWL種別が推定されているリンクに車両VEが進入した場合には、現在リンクとして、進入先のリンクに対応する区間平均速度に基づいて、第1のタイミング情報を生成する。より具体的には、生成部135は、隣接関係にあり、かつ、互いに異なるWL種別が推定されているリンク同士を接続する接続地点を介して先のリンクに車両VEが進入した場合には、進入先のリンクに対応する区間平均速度に基づいて、第1のタイミング情報を生成する。 Specifically, when it is determined that the WL type has changed and the vehicle VE enters a link for which a WL type different from that of the link on which the vehicle has been traveling is estimated, the generation unit 135 generates the first timing information based on the average section speed corresponding to the entered link as the current link. More specifically, when the vehicle VE enters a future link via a connection point that connects adjacent links for which a WL type different from that of the link on which the vehicle has been traveling is estimated, the generation unit 135 generates the first timing information based on the average section speed corresponding to the entered link.
 このように、車両VEがこれまで走行していたリンクから、当該リンクとは異なるWL種別が推定されているリンクへと進入した直後では、進入先のリンクに対する車両VEの走行実績が十分蓄積されていない。そこで、生成部135は、これまで走行していたリンクとは異なるWL種別が推定されているリンクへと車両VEが進入した場合には、進入先のリンクについて統計的に得られている平均速度である区間平均速度に基づいて、第1のタイミング情報を生成する。 In this way, immediately after the vehicle VE leaves the link on which it has been traveling and enters a link for which a WL type different from that of the link on which it has been traveling has been estimated, the vehicle VE's travel history for the entered link has not been sufficiently accumulated. Therefore, when the vehicle VE enters a link for which a WL type different from that of the link on which it has been traveling has been estimated, the generation unit 135 generates the first timing information based on the section average speed, which is the average speed obtained statistically for the entered link.
 一方、第1のタイミング情報が配信された後の特定の時点では、現在リンクに対する車両VEの走行実績の蓄積が進んでいる。このため、係る場合には、生成部135は、走行予定経路に含まれるリンクであって、現在リンクとは異なるWL種別が推定されているこの先のリンクの開始地点へと車両VEが到達する予想時刻を算出する。例えば、生成部135は、現在リンクでの車両VEの平均速度として予測された予測平均速度に基づいて、開始地点へと車両VEが到達する予想時刻を算出する。そして、生成部135は、予想時刻を含む時刻範囲を第2のタイミング情報として生成する。 On the other hand, at a specific point in time after the first timing information is distributed, the accumulation of the vehicle VE's driving performance for the current link is progressing. Therefore, in such a case, the generation unit 135 calculates the predicted time at which the vehicle VE will reach the start point of the future link that is included in the planned driving route and for which a different WL type than the current link is estimated. For example, the generation unit 135 calculates the predicted time at which the vehicle VE will reach the start point based on the predicted average speed that is predicted as the average speed of the vehicle VE on the current link. Then, the generation unit 135 generates a time range including the predicted time as the second timing information.
(配信部136)
 配信部136は、コンテンツの出力に関するタイミングを示すタイミング情報を車両VEの車載装置200に配信する。例えば、配信部136は、生成部135により第1のタイミング情報が生成された場合には、第1のタイミング情報を車載装置200に配信する。また、配信部136は、生成部135により第2のタイミング情報が生成された場合には、第2のタイミング情報を車載装置200に配信する。
(Distribution unit 136)
The distribution unit 136 distributes timing information indicating timing related to the output of the content to the in-vehicle device 200 of the vehicle VE. For example, when the generation unit 135 generates first timing information, the distribution unit 136 distributes the first timing information to the in-vehicle device 200. Furthermore, when the generation unit 135 generates second timing information, the distribution unit 136 distributes the second timing information to the in-vehicle device 200.
 また、配信部136は、区間平均速度に基づく所定の情報に基づいて、第2のタイミング情報を配信するか否かを判定する。例えば、配信部136は、第1のタイミング情報と、第2のタイミング情報とを比較した比較結果が所定の条件を満たす場合に、生成部135により生成された第2のタイミング情報を配信すると判定する。他の例として、配信部は、区間平均速度に基づく値と、予測平均速度に基づく値とを比較した比較結果が所定の条件を満たす場合に、第2のタイミング情報を配信すると判定してよい。予測平均速度は、算出部137によって算出される。 The distribution unit 136 also determines whether to distribute the second timing information based on specified information based on the section average speed. For example, when a comparison result between the first timing information and the second timing information satisfies a specified condition, the distribution unit 136 determines to distribute the second timing information generated by the generation unit 135. As another example, the distribution unit may determine to distribute the second timing information when a comparison result between a value based on the section average speed and a value based on the predicted average speed satisfies a specified condition. The predicted average speed is calculated by the calculation unit 137.
(算出部137)
 算出部137は、第1のタイミング情報を配信した後においては、車両VEが現在リンクを走行中の所定の時点での走行実績に基づいて、この所定の時点での平均速度である累積平均速度を算出する。そして、算出部137は、累積平均速度と、現在リンクに対応する区間平均速度とに基づいて、所定の時点で予測される平均速度であって、現在リンクについて予測される車両VEの平均速度である予測平均速度を算出する。
(Calculation unit 137)
After distributing the first timing information, the calculation unit 137 calculates an accumulated average speed, which is the average speed at a predetermined time point, based on the driving performance at the predetermined time point while the vehicle VE is traveling on the current link. Then, the calculation unit 137 calculates a predicted average speed, which is the average speed predicted at the predetermined time point and is the average speed of the vehicle VE predicted for the current link, based on the accumulated average speed and the section average speed corresponding to the current link.
 例えば、算出部137は、車両VE現在リンクを走行中にWL種別が変化したと判定された場合には、WL種別が変化したと判定された現時点での走行実績であって現在リンクに対する走行実績に基づいて、現時点での車両VEの平均速度である累積平均速度を算出する。 For example, when it is determined that the WL type has changed while the vehicle VE is traveling on the current link, the calculation unit 137 calculates the cumulative average speed, which is the average speed of the vehicle VE at the current time, based on the driving performance at the current time when it is determined that the WL type has changed, that is, the driving performance for the current link.
 他の例として、算出部137は、車両VEが現在リンクを走行中に所定期間が経過した時点、または、車両VEが現在リンクを所定距離進んだ時点での走行実績であって現在リンクに対する走行実績に基づいて、現時点での車両VEの平均速度である累積平均速度を算出してもよい。 As another example, the calculation unit 137 may calculate a cumulative average speed, which is the average speed of the vehicle VE at the current time, based on the driving performance for the current link, which is the driving performance when a predetermined period of time has elapsed while the vehicle VE is traveling on the current link, or when the vehicle VE has traveled a predetermined distance on the current link.
 そして、算出部137は、累積平均速度と、現在リンクに対応する区間平均速度とに基づいて、現時点において現在リンクに対して予測される平均速度であって、車両VEの平均速度である予測平均速度を算出する。 Then, the calculation unit 137 calculates the predicted average speed, which is the average speed predicted for the current link at the current time, based on the cumulative average speed and the section average speed corresponding to the current link, and is the average speed of the vehicle VE.
 例えば、算出部137は、現在リンクの距離に対する走行実績の割合を、累積平均速度が区間平均速度に及ぼす影響度を示す係数として用いて、区間平均速度を累積平均速度に近づけるよう補正する補正計算を行うことで、予測平均速度を算出する。より具体的には、算出部137は、現在リンクの距離に対する走行実績の割合である第1の係数で累積平均速度を補正した平均速度である第1の平均速度と、現在リンクに対する残りの距離であって現在リンクから走行実績を差し引いた距離の割合である第2の係数で累積平均速度と区間平均速度との平均値を補正した平均速度である第2の平均速度との足し合わせにより、予測平均速度を算出する。 For example, the calculation unit 137 calculates the predicted average speed by performing a correction calculation to correct the section average speed to approach the cumulative average speed using the ratio of the actual driving performance to the distance of the current link as a coefficient indicating the influence of the cumulative average speed on the section average speed. More specifically, the calculation unit 137 calculates the predicted average speed by adding together a first average speed, which is an average speed obtained by correcting the cumulative average speed with a first coefficient that is the ratio of the actual driving performance to the distance of the current link, and a second average speed, which is an average speed obtained by correcting the average value of the cumulative average speed and the section average speed with a second coefficient that is the ratio of the remaining distance to the current link, which is the distance obtained by subtracting the actual driving performance from the current link.
(車載装置200)
 引き続き図4を用いて、車載装置200の構成例を説明する。図4に示すように、車載装置200は、マイクMCと、スピーカーSPと、センサSCと、アプリケーションAPと、通信部210と、記憶部220と、制御部230とを有する。
(In-vehicle device 200)
Continuing to use Fig. 4, a configuration example of the in-vehicle device 200 will be described. As shown in Fig. 4, the in-vehicle device 200 has a microphone MC, a speaker SP, a sensor SC, an application AP, a communication unit 210, a storage unit 220, and a control unit 230.
(マイクMC)
 マイクMCは、車両VE内で発生した音を集音する集音装置である。例えば、マイクMCは、運転者Dが発話したことによる発話音声を集音する。
(Mike MC)
The microphone MC is a sound collecting device that collects sounds generated within the vehicle VE. For example, the microphone MC collects speech generated by the driver D.
(スピーカーSP)
 スピーカーSPは、音声により各種情報を出力する出力装置に相当する。例えば、スピーカーSPは、制御部230による出力制御に応じて、コンテンツ情報を出力する。
(Speaker SP)
The speaker SP corresponds to an output device that outputs various information by sound. For example, the speaker SP outputs content information in accordance with output control by the control unit 230.
 センサSCは、車両VEに関する各種情報を検出し、検出したセンサ情報を状況把握エンジン231に伝送する。 The sensor SC detects various information related to the vehicle VE and transmits the detected sensor information to the situation assessment engine 231.
(アプリケーションAP)
 アプリケーションAPは、コンテンツを提供するアプリケーションである。例えば、アプリケーションAPは、出力条件(出力を許可する時刻条件、あるいは、出力を許可する地理的条件)と、出力対象のコンテンツとを含む出力要求情報を情報整合エンジン232に対して送信する。なお、図1では不図示であるが、システム1には、アプリケーションAPを制御するアプリサーバがさらに含まれてよい。
(Application AP)
The application AP is an application that provides content. For example, the application AP transmits output request information including output conditions (time conditions for permitting output or geographic conditions for permitting output) and content to be output to the information matching engine 232. Although not shown in FIG. 1, the system 1 may further include an application server that controls the application AP.
(記憶部220)
 記憶部220は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子またはハードディスク、光ディスク等の記憶装置によって実現される。記憶部220は、例えば、実施形態に係る情報処理に関するデータやプログラムが記憶されてよい。また、図4の例によれば、記憶部220は、利用者情報記憶部221と、コンテンツ記憶部222とを有してよい。
(Memory unit 220)
The storage unit 220 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 220 may store, for example, data and programs related to the information processing according to the embodiment. According to the example of FIG. 4, the storage unit 220 may include a user information storage unit 221 and a content storage unit 222.
(利用者情報記憶部221)
 利用者情報記憶部221は、車両VEに関する利用者(例えば、運転者D)に関する各種情報を記憶する。利用者情報記憶部221は、車両VEに関する利用者を記憶してもよいし、車両VEの走行履歴をさらに記憶してもよい。
(User information storage unit 221)
The user information storage unit 221 stores various information related to a user (e.g., a driver D) of the vehicle VE. The user information storage unit 221 may store a user of the vehicle VE, or may store information related to the vehicle VE. The driving history may further be stored.
(コンテンツ記憶部222)
 コンテンツ記憶部222は、アプリケーションAPにより提供されたコンテンツを記憶する。
(Content storage unit 222)
The content storage unit 222 stores the content provided by the application AP.
(制御部230について)
 制御部230は、CPUやMPU等によって、車載装置200内部の記憶装置に記憶されている各種プログラム(例えば、実施形態に係る情報処理プログラム)がRAMを作業領域として実行されることにより実現される。また、制御部230は、例えば、ASICやFPGA等の集積回路により実現される。
(Regarding the control unit 230)
The control unit 230 is realized by a CPU, an MPU, or the like executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the in-vehicle device 200 using a RAM as a working area. The control unit 230 is also realized by an integrated circuit such as an ASIC or an FPGA.
 図4に示すように、制御部230は、状況把握エンジン231と、情報整合エンジン232と、出力制御部233とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部230の内部構成は、図4に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、制御部230が有する各処理部の接続関係は、図4に示した接続関係に限られず、他の接続関係であってもよい。 As shown in FIG. 4, the control unit 230 has a situation understanding engine 231, an information matching engine 232, and an output control unit 233, and realizes or executes the information processing functions and actions described below. Note that the internal configuration of the control unit 230 is not limited to the configuration shown in FIG. 4, and may be other configurations as long as they perform the information processing described below. Also, the connection relationships between the processing units in the control unit 230 are not limited to the connection relationships shown in FIG. 4, and may be other connection relationships.
(状況把握エンジン231)
 状況把握エンジン231は、センサ情報に基づいて、車両VEに関する状況を特定する。例えば、状況把握エンジン231は、車両VE内の音声、様子、車両VEの挙動等を検出することで、車両VEの状況を特定する。そして、状況把握エンジン231は、特定した状況を示す状況情報を情報整合エンジン232に出力する。
(Situation awareness engine 231)
The situation recognition engine 231 identifies the situation related to the vehicle VE based on the sensor information. For example, the situation recognition engine 231 identifies the situation of the vehicle VE by detecting the voice, the state, the behavior of the vehicle VE, etc. inside the vehicle VE. Then, the situation recognition engine 231 outputs situation information indicating the identified situation to the information matching engine 232.
(情報整合エンジン232)
 情報整合エンジン232は、走行予定経路に含まれるリンクの中から、音声によりコンテンツを出力してよいと判断できるリンク(発話許容リンク)を探索する。
(Information Matching Engine 232)
The information matching engine 232 searches for links (speech-permitted links) that can be determined to allow output of content by voice from among the links included in the planned driving route.
 また、情報整合エンジン232は、出力要求情報を受信した場合には、出力要求情報に含まれるコンテンツの再生に要する所要時間を推定する。 In addition, when the information matching engine 232 receives output request information, it estimates the time required to play the content included in the output request information.
 また、情報整合エンジン232は、発話許容リンクと、所要時間とに基づいて、出力要求情報に含まれるコンテンツを出力可能か否か判定する。 The information matching engine 232 also determines whether the content included in the output request information can be output based on the speech allowable link and the required time.
 また、情報整合エンジン232は、出力要求情報に含まれる出力条件を満たすように、コンテンツの出力タイミングを決定するスケジューリング処理を実行する。 In addition, the information matching engine 232 executes a scheduling process that determines the output timing of the content so as to satisfy the output conditions included in the output request information.
(出力制御部233)
 出力制御部233は、情報整合エンジン232によってスケジューリングされたタイミングでスピーカーSPからコンテンツが出力されるよう制御する。
(Output control unit 233)
The output control unit 233 controls the content to be output from the speaker SP at the timing scheduled by the information matching engine 232 .
〔6.WL種別の推定手法〕
 ここからは、図5を用いて、WL種別の推定手法を具体的に説明する。図5は、WL種別の推定手法の具体例を示す図である。図5では、目的地を満たすルート計画によって、走行ルートRT1が引かれた場面を例に用いて、WL種別の推定手法を説明する。
6. WL type estimation method
From here, the WL type estimation method will be specifically described with reference to Fig. 5. Fig. 5 is a diagram showing a specific example of the WL type estimation method. In Fig. 5, the WL type estimation method will be described using an example in which a travel route RT1 is plotted according to a route plan that satisfies the destination.
 また、図5に示すように、走行ルートRT1は、出発地PT1と、目的地PT2とを結ぶルートであり、車両VE1が走行ルートRT1を走行中の所定の時点で、WL種別の推定処理が開始される場面が示される。 As shown in FIG. 5, the travel route RT1 is a route connecting the starting point PT1 and the destination point PT2, and the scene in which the WL type estimation process is started at a predetermined time point while the vehicle VE1 is traveling on the travel route RT1 is shown.
 ここで、図5(a)の例によれば、推定部132は、走行ルートRT1と、リンクごとにWL種別が対応付けられた地図データとを照らし合わせて、走行ルートRT1を構成する各リンクに対して、リンクID(link_id)を紐付ける。図5(a)には、推定部132が、走行ルートRT1に対して、リンクID「100」、リンクID「101」、リンクID「102」、リンクID「103」、リンクID「104」、リンクID「105」を紐付けることで、走行ルートRT1を5つのリンクに分割した例が示される。 Here, in the example of FIG. 5(a), the estimation unit 132 compares the travel route RT1 with map data in which a WL type is associated with each link, and links each link that constitutes the travel route RT1 with a link ID (link_id). FIG. 5(a) shows an example in which the estimation unit 132 divides the travel route RT1 into five links by linking link ID "100", link ID "101", link ID "102", link ID "103", link ID "104", and link ID "105" to the travel route RT1.
 また、図5(a)には、リンクID「100」で識別されるリンク(リンク100)と、リンクID「101」で識別されるリンク(リンク101)とが接続される接続地点の情報として、ノードND01が示される。 In addition, in FIG. 5(a), node ND01 is shown as information on the connection point where the link identified by link ID "100" (link 100) and the link identified by link ID "101" (link 101) are connected.
 また、リンクID「101」で識別されるリンク(リンク101)と、リンクID「102」で識別されるリンク(リンク102)とが接続される接続地点の情報として、ノードND12が示される。 In addition, node ND12 is shown as information on the connection point where the link identified by link ID "101" (link 101) and the link identified by link ID "102" (link 102) are connected.
 また、リンクID「102」で識別されるリンク(リンク102)と、リンクID「103」で識別されるリンク(リンク103)とが接続される接続地点の情報として、ノードND23が示される。 In addition, node ND23 is shown as information on the connection point where the link identified by link ID "102" (link 102) and the link identified by link ID "103" (link 103) are connected.
 また、リンクID「103」で識別されるリンク(リンク103)と、リンクID「104」で識別されるリンク(リンク104)とが接続される接続地点の情報として、ノードND34が示される。 In addition, node ND34 is shown as information on the connection point where the link identified by link ID "103" (link 103) and the link identified by link ID "104" (link 104) are connected.
 また、リンクID「104」で識別されるリンク(リンク104)と、リンクID「105」で識別されるリンク(リンク105)とが接続される接続地点の情報として、ノードND45が示される。 In addition, node ND45 is shown as information on the connection point where the link identified by link ID "104" (link 104) and the link identified by link ID "105" (link 105) are connected.
 また、推定部132は、地図データを参照し、各リンクの距離(len)も算出してよい。図5(a)には、推定部132が、リンク100の距離「100」、リンク101の距離「200」、リンク102の距離「300」、リンク103の距離「100」、リンク104の距離「500」、リンク105の距離「200」を算出した例が示される。 The estimation unit 132 may also refer to the map data and calculate the distance (len) of each link. FIG. 5(a) shows an example in which the estimation unit 132 calculates the distance "100" of link 100, the distance "200" of link 101, the distance "300" of link 102, the distance "100" of link 103, the distance "500" of link 104, and the distance "200" of link 105.
 このような状態において、図5(b)に示すように、車両VE1がリンク102を走行中であるものとする。係る例では、推定部132は、車両VE1が現在走行しているリンク102、リンク102より後に走行予定のリンク103、リンク104、リンク105に対して、WL種別を推定してよい。図5(b)には、推定部132が、リンクごとにWL種別が対応付けられた地図データを参照し、リンク102のWL種別「FREE」、リンク103のWL種別「BUSY」、リンク104のWL種別「FREE」、リンク105のWL種別「BUSY」を推定した例が示される。 In this state, as shown in FIG. 5(b), it is assumed that the vehicle VE1 is traveling on the link 102. In this example, the estimation unit 132 may estimate the WL type for the link 102 on which the vehicle VE1 is currently traveling, and for the links 103, 104, and 105 which the vehicle VE1 is scheduled to travel after the link 102. FIG. 5(b) shows an example in which the estimation unit 132 refers to map data in which the WL type is associated with each link, and estimates the WL type of link 102 as "FREE", the WL type of link 103 as "BUSY", the WL type of link 104 as "FREE", and the WL type of link 105 as "BUSY".
 また、図5(b)では不図示であるが、推定部132は、車両VE1の現時点におけるWL種別として、車両VEが現在走行しているリンク102での運転者Dの大変度も推定してよい。 Although not shown in FIG. 5(b), the estimation unit 132 may also estimate the degree of difficulty of the driver D on the link 102 on which the vehicle VE1 is currently traveling as the WL type of the vehicle VE1 at the current time.
 なお、上記例では、推定部132が、リンクごとにWL種別が対応付けられた地図データと、走行ルートRT1を構成するリンクとを照らし合わせることで、係るリンクのWL種別を推定する例を示した。しかしながら、推定部132は、車両VE1が走行しているリンクのリンク種別(link_kind)、あるいは、走行ルートRT1の道路種別(road_kind)に基づいて、車両VE1が走行しているリンクのWL種別を推定してもよい。 In the above example, the estimation unit 132 estimates the WL type of the link by comparing the map data in which the WL type is associated with each link with the links that make up the travel route RT1. However, the estimation unit 132 may estimate the WL type of the link on which the vehicle VE1 is traveling based on the link type (link_kind) of the link on which the vehicle VE1 is traveling, or the road type (road_kind) of the travel route RT1.
 例えば、車両VE1が走行しているリンクは、車両VE1の走行に応じて変化するため、推定部132は、リンクが変化するたびに、現在のリンクのWL種別を推定してよい。また、ここでいうリンク種別とは、例えば、本線、連結路等といった分類情報である。また、道路種別とは、高速道路、国道、細街路等といった分類情報である。 For example, the link on which the vehicle VE1 is traveling changes according to the traveling of the vehicle VE1, so the estimation unit 132 may estimate the WL type of the current link each time the link changes. Furthermore, the link type here refers to classification information such as a main line, a connecting road, etc. Furthermore, the road type refers to classification information such as an expressway, a national road, a narrow street, etc.
〔7.予測平均速度の算出手法〕
 次に、図6を用いて、予測平均速度の算出手法を具体的に説明する。図6は、予測平均速度の算出手法の具体例を示す図である。図6には、走行ルートRT1(図5)を構成するリンクのうち、予測平均速度の算出が行われる始めのリンク(先頭リンク)をリンク104として、予測平均速度の算出例が示される。なお、図6の例は、区間平均速度と予測平均速度とを比較した比較結果に応じて、第2のタイミング情報を配信する場合の処理に対応する。
[7. Calculation method of predicted average speed]
Next, a method for calculating the predicted average speed will be specifically described with reference to Fig. 6. Fig. 6 is a diagram showing a specific example of a method for calculating the predicted average speed. Fig. 6 shows an example of calculating the predicted average speed, in which the first link (leading link) for which the predicted average speed is calculated among the links constituting the travel route RT1 (Fig. 5) is set as link 104. Note that the example in Fig. 6 corresponds to a process in which the second timing information is distributed in accordance with a comparison result between the section average speed and the predicted average speed.
 ここで、ノードND34は、WL種別「BUSY」のリンク103と、WL種別「FREE」のリンク104とを接続する接続地点である。すなわち、ノードND34は、互いに異なるWL種別が推定されているリンクを接続する接続地点である。また、ノードND45は、WL種別「FREE」のリンク104と、WL種別「BUSY」のリンク105とを接続する接続地点である。すなわち、ノードND45も、互いに異なるWL種別が推定されているリンクを接続する接続地点である。一例として、予測平均速度の算出は、互いに異なるWL種別が推定されているリンクと、これらリンクを接続する接続地点とを対象に行われてよい。 Here, node ND34 is a connection point that connects link 103 with a WL type of "BUSY" and link 104 with a WL type of "FREE". In other words, node ND34 is a connection point that connects links whose WL types are estimated to be different from each other. Also, node ND45 is a connection point that connects link 104 with a WL type of "FREE" and link 105 with a WL type of "BUSY". In other words, node ND45 is also a connection point that connects links whose WL types are estimated to be different from each other. As an example, the predicted average speed may be calculated for links whose WL types are estimated to be different from each other and the connection points that connect these links.
 このような状態において、図6(a)には、車両VE1がリンク104の走行を開始した直後すなわちノードND34に位置した場面が示される。係る例では、リンク104は、車両VE1の現在リンクである。 In this state, FIG. 6(a) shows a scene immediately after vehicle VE1 starts traveling along link 104, i.e., when it is located at node ND34. In this example, link 104 is the current link of vehicle VE1.
 車両VE1がリンク104の走行を開始した時点では、リンク104に対する車両VE1の走行実績が十分蓄積されていない。係る場合、生成部135は、リンク104について統計的に得られている平均速度である区間平均速度LV1を例えばデータベースから取得し、区間平均速度LV1に基づいて、コンテンツの出力に関するタイミングを示す第1のタイミング情報を生成する。 At the time when vehicle VE1 starts traveling on link 104, the travel history of vehicle VE1 on link 104 has not been sufficiently accumulated. In such a case, the generation unit 135 obtains, for example, from a database, section average speed LV1, which is the average speed obtained statistically for link 104, and generates first timing information indicating the timing related to the output of the content based on section average speed LV1.
 より具体的には、生成部135は、リンク104に対応する区間平均速度LV1と、車両VE1の現在位置であるノードND34から次の接続地点であるノードND45までの距離とに基づいて、ノードND45に車両VE1が到達する予想時刻TM1を算出する。また、生成部135は、予想時刻TM1を含む時刻範囲を第1のタイミング情報として生成し、配信部136は、第1のタイミング情報を車両VE1の車載装置200に配信する。 More specifically, the generation unit 135 calculates the predicted time TM1 at which the vehicle VE1 will reach node ND45 based on the average section speed LV1 corresponding to link 104 and the distance from node ND34, which is the current position of the vehicle VE1, to node ND45, which is the next connection point. The generation unit 135 also generates a time range including the predicted time TM1 as first timing information, and the distribution unit 136 distributes the first timing information to the in-vehicle device 200 of the vehicle VE1.
 ここで、検出部133は、車両VE1の走行状況に基づいて、走行シーンの変化を検出している。また、判定部134は、走行シーンの変化を検出されたか否かに基づいて、現時点における車両VE1のWL種別が変化したか否かを継続的に監視している。 Here, the detection unit 133 detects a change in the driving scene based on the driving conditions of the vehicle VE1. Furthermore, the determination unit 134 continuously monitors whether the WL type of the vehicle VE1 at the current time has changed based on whether a change in the driving scene has been detected.
 図6(b)の例に移り、検出部133は、車両VE1がリンク104を100m進んだ時点で車両VE1の走行シーンの変化を検出し、この結果、判定部134は、車両VE1がリンク104を100m進んだ現時点で車両VE1のWL種別が変化したと判定したとする。係る場合、算出部137は、車両VE1がリンク104を100m進んだ現時点での走行実績を取得する。例えば、算出部137は、走行実績として、ノードND34から現在位置PT3までの走行距離「100m」と、車両VE1がノードND34から現在位置PT3に到達するまでに要した時間とを取得する。そして、算出部137は、走行実績に基づいて、車両VE1が現在位置PT3に至った現時点での平均速度である累積平均速度SV1を算出する。 Now, moving on to the example of FIG. 6(b), the detection unit 133 detects a change in the driving scene of the vehicle VE1 when the vehicle VE1 has traveled 100 m on the link 104, and as a result, the determination unit 134 determines that the WL type of the vehicle VE1 has changed at the present time when the vehicle VE1 has traveled 100 m on the link 104. In this case, the calculation unit 137 acquires the driving performance at the present time when the vehicle VE1 has traveled 100 m on the link 104. For example, the calculation unit 137 acquires, as the driving performance, the driving distance "100 m" from the node ND34 to the current position PT3 and the time it took for the vehicle VE1 to reach the current position PT3 from the node ND34. Then, the calculation unit 137 calculates the cumulative average speed SV1, which is the average speed at the present time when the vehicle VE1 reached the current position PT3, based on the driving performance.
 そして、算出部137は、累積平均速度SV1と、区間平均速度LV1とに基づいて、リンク104について現時点(車両VE1が現在位置PT3に至った現時点)で予測される平均速度であって、車両VE1の平均速度である予測平均速度PV1を算出する。 Then, the calculation unit 137 calculates a predicted average speed PV1, which is the average speed predicted for link 104 at the current time (the current time when vehicle VE1 has reached current position PT3) based on the cumulative average speed SV1 and the section average speed LV1, and is the average speed of vehicle VE1.
 算出部137は、先頭リンクがリンク104である今回の例では、図6に示す算出式(1)を用いて、予測平均速度PV1を算出する。算出式(1)によれば、現在リンクの距離D1に対する走行距離D2の割合である第1の係数で累積平均速度SV1を補正した平均速度である第1の平均速度と、現在リンクに対する残りの距離D3(現在リンクの距離D1から走行距離D2を差し引いた距離)の割合である第2の係数で累積平均速度SV1と区間平均速度LV1との平均値を補正した平均速度である第2の平均速度との足し合わせにより、先頭リンクの予測平均速度PV1が算出される。 In this example where the leading link is link 104, the calculation unit 137 calculates the predicted average speed PV1 using calculation formula (1) shown in FIG. 6. According to calculation formula (1), the predicted average speed PV1 of the leading link is calculated by adding together a first average speed, which is an average speed obtained by correcting the cumulative average speed SV1 by a first coefficient that is the ratio of the traveled distance D2 to the distance D1 of the current link, and a second average speed, which is an average speed obtained by correcting the average value of the cumulative average speed SV1 and the section average speed LV1 by a second coefficient that is the ratio of the remaining distance D3 (the distance obtained by subtracting the traveled distance D2 from the distance D1 of the current link) to the current link.
 したがって、算出部137は、図6(b)の例では、現在リンクの距離D1として現在リンク104の距離「500m」、現在リンクの距離D1に対する走行距離D2としてノードND34から現在位置PT3までの走行距離「100m」、現在リンクに対する残りの距離D3として現在位置PT3からノードND45までの距離「400m」等を算出式(1)に当て嵌めて、先頭リンク104に対応する予測平均速度PV1を算出する。 Therefore, in the example of FIG. 6(b), the calculation unit 137 calculates the predicted average speed PV1 corresponding to the leading link 104 by applying the distance "500 m" of the current link 104 as the distance D1 of the current link, the distance "100 m" from node ND34 to the current position PT3 as the traveled distance D2 for the distance D1 of the current link, and the distance "400 m" from the current position PT3 to node ND45 as the remaining distance D3 for the current link to the calculation formula (1).
 配信部136は、予測平均速度PV1を算出されると、図6(c)に示すように、区間平均速度LV1と、予測平均速度PV1とを比較する。配信部136は、区間平均速度LV1と予測平均速度PV1との速度差が閾値以上である場合には(Yes)、コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、予測平均速度PV1を用いて新たに生成された第2のタイミング情報を配信してよいと判定する。一方、配信部136は、区間平均速度LV1と予測平均速度PV1との速度差が閾値未満である場合には(No)、第2のタイミング情報を配信しないと判定する。 When the distribution unit 136 calculates the predicted average speed PV1, it compares the section average speed LV1 with the predicted average speed PV1, as shown in FIG. 6(c). If the speed difference between the section average speed LV1 and the predicted average speed PV1 is equal to or greater than a threshold (Yes), the distribution unit 136 determines that it is OK to distribute second timing information indicating the timing of content output, the second timing information being newly generated using the predicted average speed PV1. On the other hand, if the speed difference between the section average speed LV1 and the predicted average speed PV1 is less than the threshold (No), the distribution unit 136 determines not to distribute the second timing information.
 なお、配信部136は、単純に、区間平均速度LV1と予測平均速度PV1とを比較するのではなく、区間平均速度LV1に基づき算出した到達時刻と、予測平均速度PV1に基づき算出した到達時刻とを比較してもよい。ここでいう到達時刻とは、ノードND45に車両VE1が到達する予想時刻である。 In addition, the distribution unit 136 may compare the arrival time calculated based on the section average speed LV1 with the arrival time calculated based on the predicted average speed PV1, rather than simply comparing the section average speed LV1 with the predicted average speed PV1. The arrival time here is the predicted time at which the vehicle VE1 will arrive at node ND45.
 生成部135は、第2のタイミング情報を配信してよいと判定された場合には、現在位置PT3からノードND45までの距離「400m」と、予測平均速度PV1とに基づいて、ノードND45に車両VE1が到達する予想時刻TM2を算出する。また、生成部135は、予想時刻TM2を含む時刻範囲を第2のタイミング情報として生成し、配信部136は、第2のタイミング情報を車両VE1の車載装置200に配信する。 If it is determined that the second timing information may be distributed, the generation unit 135 calculates the predicted time TM2 at which the vehicle VE1 will reach node ND45 based on the distance "400 m" from the current position PT3 to node ND45 and the predicted average speed PV1. The generation unit 135 also generates a time range including the predicted time TM2 as the second timing information, and the distribution unit 136 distributes the second timing information to the in-vehicle device 200 of the vehicle VE1.
 ここで、算出部137は、先頭リンク104に続く2番目以降のリンクであるn番目リンク(n≧2)を車両VE1が走行している場合には、算出式(2)を用いて、n番目リンクに対応する予測平均速度PVnを算出してよい。算出式(2)によれば、先頭リンクの区間平均速度LV1に対するn番目リンクの区間平均速度LVnの割合として求めた係数でn番目リンクに対応する累積平均速度SVnを補正することにより、n番目リンクに対応する予測平均速度PVnが算出される。 Here, when the vehicle VE1 is traveling on the nth link (n≧2), which is the second or subsequent link following the leading link 104, the calculation unit 137 may use calculation formula (2) to calculate the predicted average speed PVn corresponding to the nth link. According to calculation formula (2), the predicted average speed PVn corresponding to the nth link is calculated by correcting the cumulative average speed SVn corresponding to the nth link with a coefficient calculated as the ratio of the section average speed LVn of the nth link to the section average speed LV1 of the leading link.
 したがって、算出部137は、例えば、車両VE1がリンク104を通過して、2番目のリンク105を走行している場合には、先頭リンク104の区間平均速度LV1、2番目のリンク105の区間平均速度LV2、2番目のリンク105に対応する累積平均速度SV2を算出式(2)に当て嵌めて、2番目のリンク105に対応する予測平均速度PV2を算出する。 Therefore, for example, when vehicle VE1 has passed link 104 and is traveling on second link 105, calculation unit 137 applies the section average speed LV1 of the first link 104, the section average speed LV2 of the second link 105, and the cumulative average speed SV2 corresponding to the second link 105 to calculation formula (2) to calculate a predicted average speed PV2 corresponding to the second link 105.
〔8.タイミング情報の配信手順〕
 図7および図8を用いて、タイミング情報の配信に係る処理手順を説明する。図7では、車両VEが先頭リンクを走行している場合の処理手順を説明する。図8では、先頭リンクに続く2番目以降のリンクであるn番目リンクを車両VEが走行している場合の処理手順を説明する。
8. Timing Information Distribution Procedure
The processing procedure for distributing timing information will be described with reference to Fig. 7 and Fig. 8. Fig. 7 describes the processing procedure when the vehicle VE is traveling on the first link. Fig. 8 describes the processing procedure when the vehicle VE is traveling on the n-th link, which is the second or subsequent link following the first link.
〔8-1.タイミング情報の配信手順(1)〕
 図7は、車両VEが先頭リンクを走行している場合のタイミング情報処理手順を示すフローチャートである。
8-1. Timing information distribution procedure (1)
FIG. 7 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the leading link.
 まず、取得部131は、車両VEの走行ルートを示す情報を取得する(ステップS701)。例えば、取得部131は、車両VEの走行ルートを示す情報として、車両VEが走行する予定の経路である走行予定経路の情報を取得する。 First, the acquisition unit 131 acquires information indicating the driving route of the vehicle VE (step S701). For example, the acquisition unit 131 acquires information on a planned driving route, which is a route along which the vehicle VE is scheduled to travel, as information indicating the driving route of the vehicle VE.
 生成部135は、車両VEが予測平均速度の算出が行われる始めのリンクである先頭リンクの走行を開始したか否かを判定する(ステップS702)。先頭リンクは、例えば、互いに異なるWL種別が推定されているリンクを接続する接続地点を有するリンクであって、車両VEの走行予定経路を構成するリンクの中から決められてよい。 The generation unit 135 determines whether the vehicle VE has started traveling on the leading link, which is the first link for which the predicted average speed is calculated (step S702). The leading link is, for example, a link having a connection point that connects links for which different WL types are estimated, and may be determined from among the links that make up the planned traveling route of the vehicle VE.
 生成部135は、車両VEが先頭リンクの走行を開始していない間は(ステップS702;No)、車両VEが先頭リンクの走行を開始するまで待機する。 If the vehicle VE has not yet started traveling along the leading link (step S702; No), the generation unit 135 waits until the vehicle VE starts traveling along the leading link.
 一方、生成部135は、車両VEが先頭リンクの走行を開始した場合には(ステップS702;Yes)、先頭リンクに対応する区間平均速度LV1に基づいて、コンテンツの出力に関するタイミングを示す第1のタイミング情報を生成する(ステップS703)。具体的には、生成部135は、区間平均速度LV1と、先頭リンクの距離D1とに基づいて、車両VEが先頭リンクを走行し終わる予想時刻TM1を算出し、予想時刻TM1を含む時刻範囲を第1のタイミング情報として生成する。 On the other hand, when the vehicle VE starts traveling on the leading link (step S702; Yes), the generation unit 135 generates first timing information indicating the timing related to the output of the content based on the average section speed LV1 corresponding to the leading link (step S703). Specifically, the generation unit 135 calculates the predicted time TM1 at which the vehicle VE will finish traveling on the leading link based on the average section speed LV1 and the distance D1 of the leading link, and generates a time range including the predicted time TM1 as the first timing information.
 また、配信部136は、第1のタイミング情報を車両VEの車載装置200に配信する(ステップS704)。 The distribution unit 136 also distributes the first timing information to the in-vehicle device 200 of the vehicle VE (step S704).
 このような状態において、判定部134は、車両VEの走行が所定の条件を満たしたか否かを判定する(ステップS705)。例えば、判定部134は、検出部133による検出結果(走行シーンの変化の検出結果)に基づき、車両VEのWL種別(運転者Dの大変度)が変化したか否か判定してよい。他の例として、判定部134は、車両VEが先頭リンクの走行を開始してから所定期間が経過したか否か、あるいは、車両VEが先頭リンクの走行を開始してから所定距離進んだ否かを繰り返し判定してもよい。 In this state, the determination unit 134 determines whether the traveling of the vehicle VE satisfies a predetermined condition (step S705). For example, the determination unit 134 may determine whether the WL type of the vehicle VE (the degree of difficulty of the driver D) has changed based on the detection result by the detection unit 133 (detection result of a change in the traveling scene). As another example, the determination unit 134 may repeatedly determine whether a predetermined period has elapsed since the vehicle VE started traveling on the leading link, or whether the vehicle VE has traveled a predetermined distance since starting traveling on the leading link.
 判定部134は、車両VEの走行が所定の条件を満たしていない間は(ステップS705;No)、車両VEの走行が所定の条件を満たしたと判定できるまで待機する。 While the traveling of the vehicle VE does not satisfy the predetermined condition (step S705; No), the determination unit 134 waits until it can determine that the traveling of the vehicle VE satisfies the predetermined condition.
 一方、算出部137は、車両VEの走行が所定の条件を満たしたと判定された場合には(ステップS705;Yes)、車両VEが先頭リンクを現時点まで走行したことによる走行実績を取得する(ステップS706)。例えば、算出部137は、走行実績として、先頭リンク上の現在位置までの走行距離D2と、現在位置に到達するまでに要した時間とを取得する。また、算出部137は、先頭リンクの距離D1から走行距離D2を差し引いた残距離D3も取得してよい。 On the other hand, if the calculation unit 137 determines that the travel of the vehicle VE meets the predetermined condition (step S705; Yes), it acquires the travel performance of the vehicle VE traveling along the leading link up to the current time (step S706). For example, the calculation unit 137 acquires, as the travel performance, the travel distance D2 to the current position on the leading link and the time required to reach the current position. The calculation unit 137 may also acquire the remaining distance D3, which is calculated by subtracting the travel distance D2 from the distance D1 of the leading link.
 そして、算出部137は、走行実績に基づいて、車両VEが先頭リンク上の現在位置(所定の条件を満たしたと判定された現在位置)に至った現時点での平均速度である累積平均速度SV1を算出する(ステップS707)。 Then, the calculation unit 137 calculates the cumulative average speed SV1, which is the average speed at the time when the vehicle VE reached the current position on the leading link (the current position determined to satisfy the predetermined condition), based on the driving history (step S707).
 次に、算出部137は、累積平均速度SV1と、区間平均速度LV1とに基づいて、先頭リンクについて現時点で予測される平均速度であって、車両VEの平均速度である予測平均速度PV1を算出する(ステップS708)。例えば、算出部137は、図6で説明した算出式(1)に対して、累積平均速度SV1と、区間平均速度LV1と、先頭リンクの距離D1と、走行距離D2と、残距離D3とを当て嵌めて、予測平均速度PV1を算出する。 Then, the calculation unit 137 calculates a predicted average speed PV1, which is the average speed currently predicted for the leading link and is the average speed of the vehicle VE, based on the cumulative average speed SV1 and the section average speed LV1 (step S708). For example, the calculation unit 137 calculates the predicted average speed PV1 by applying the cumulative average speed SV1, the section average speed LV1, the distance D1 of the leading link, the traveled distance D2, and the remaining distance D3 to the calculation formula (1) described in FIG. 6.
 生成部135は、予測平均速度PV1に基づいて、コンテンツの出力に関するタイミングを示す第2のタイミング情報を生成する(ステップS709)。具体的には、生成部135は、予測平均速度PV1と、残距離D3とに基づいて、車両VEが先頭リンクを走行し終わる予想時刻TM2を算出し、予想時刻TM2を含む時刻範囲を第2のタイミング情報として生成する。 The generating unit 135 generates second timing information indicating the timing of the output of the content based on the predicted average speed PV1 (step S709). Specifically, the generating unit 135 calculates the predicted time TM2 at which the vehicle VE will finish traveling the leading link based on the predicted average speed PV1 and the remaining distance D3, and generates a time range including the predicted time TM2 as the second timing information.
 配信部136は、第1のタイミング情報と、第2のタイミング情報とを比較し、双方のタイミングの間に閾値以上の乖離があるか否かを判定する(ステップS710)。 The distribution unit 136 compares the first timing information with the second timing information and determines whether there is a deviation between the two timings that is equal to or exceeds a threshold (step S710).
 配信部136は、乖離が閾値以上であると判定された場合には(ステップS710;Yes)、第2のタイミング情報を車両VEの車載装置200に配信する(ステップS711)。 If it is determined that the deviation is equal to or greater than the threshold (step S710; Yes), the distribution unit 136 distributes the second timing information to the in-vehicle device 200 of the vehicle VE (step S711).
 このような状態において、算出部137は、車両VEが先頭リンクに続く2番目以降のリンクであるn番目リンク(n≧2)の走行を開始したか否かを判定する(ステップS712)。車両VEがn番目リンクの走行を開始していない場合には(ステップS712;No)、ステップS705へと処理が戻される。また、図7に示すように、乖離が閾値未満であると判定された場合にも(ステップS710;No)、ステップS705へと処理が戻されてよい。 In this state, the calculation unit 137 determines whether the vehicle VE has started traveling on the nth link (n≧2), which is the second or subsequent link following the leading link (step S712). If the vehicle VE has not started traveling on the nth link (step S712; No), the process returns to step S705. Also, as shown in FIG. 7, if it is determined that the deviation is less than the threshold (step S710; No), the process may return to step S705.
〔8-2.タイミング情報の配信手順(2)〕
 図8は、車両VEがn番目リンクを走行している場合のタイミング情報処理手順を示すフローチャートである。
8-2. Timing information distribution procedure (2)
FIG. 8 is a flowchart showing a timing information processing procedure when the vehicle VE is traveling on the n-th link.
 判定部134は、車両VEがn番目リンクの走行を開始した場合には(ステップS712;Yes)、車両VEの走行が所定の条件を満たしたか否かを判定する(ステップS801)。例えば、判定部134は、検出部133による検出結果(走行シーンの変化の検出結果)に基づき、車両VEのWL種別(運転者Dの大変度)が変化したか否か判定してよい。他の例として、判定部134は、車両VEがn番目リンクの走行を開始してから所定期間が経過したか否か、あるいは、車両VEがn番目リンクの走行を開始してから所定距離進んだ否かを繰り返し判定してもよい。 When the vehicle VE starts traveling on the nth link (step S712; Yes), the determination unit 134 determines whether the traveling of the vehicle VE satisfies a predetermined condition (step S801). For example, the determination unit 134 may determine whether the WL type of the vehicle VE (the degree of difficulty of the driver D) has changed based on the detection result by the detection unit 133 (detection result of a change in the traveling scene). As another example, the determination unit 134 may repeatedly determine whether a predetermined period has elapsed since the vehicle VE started traveling on the nth link, or whether the vehicle VE has traveled a predetermined distance since starting traveling on the nth link.
 判定部134は、車両VEの走行が所定の条件を満たしていない間は(ステップS801;No)、車両VEの走行が所定の条件を満たしたと判定できるまで待機する。 While the traveling of the vehicle VE does not satisfy the predetermined condition (step S801; No), the determination unit 134 waits until it can determine that the traveling of the vehicle VE satisfies the predetermined condition.
 一方、算出部137は、車両VEの走行が所定の条件を満たしたと判定された場合には(ステップS801;Yes)、車両VEがn番目リンクを現時点まで走行したことによる走行実績を取得する(ステップS802)。例えば、算出部137は、走行実績として、n番目リンク上の現在位置までの走行距離と、現在位置に到達するまでに要した時間とを取得する。 On the other hand, if the calculation unit 137 determines that the travel of the vehicle VE satisfies the predetermined condition (step S801; Yes), it acquires the travel performance of the vehicle VE traveling along the n-th link up to the current time (step S802). For example, the calculation unit 137 acquires, as the travel performance, the travel distance to the current position on the n-th link and the time required to reach the current position.
 そして、算出部137は、走行実績に基づいて、車両VEがn番目リンク上の現在位置(所定の条件を満たしたと判定された現在位置)に至った現時点での平均速度である累積平均速度SVnを算出する(ステップS803)。 Then, the calculation unit 137 calculates the cumulative average speed SVn, which is the average speed at the time when the vehicle VE reaches the current position on the nth link (the current position that is determined to satisfy the specified condition), based on the driving history (step S803).
 次に、算出部137は、先頭リンクの区間平均速度LV1およびn番目リンクの区間平均速度LVnに基づいて、累積平均速度SVnを補正することにより、n番目リンクに対応する予測平均速度PVnを算出する(ステップS804)。例えば、算出部137は、図6で説明した算出式(2)に対して、区間平均速度LV1と、区間平均速度LVnと、累積平均速度SVnとを当て嵌めて、予測平均速度PVnを算出する。 Then, the calculation unit 137 calculates the predicted average speed PVn corresponding to the nth link by correcting the cumulative average speed SVn based on the section average speed LV1 of the first link and the section average speed LVn of the nth link (step S804). For example, the calculation unit 137 calculates the predicted average speed PVn by applying the section average speed LV1, the section average speed LVn, and the cumulative average speed SVn to the calculation formula (2) described in FIG. 6.
 生成部135は、予測平均速度PVnに基づいて、コンテンツの出力に関するタイミングを示す第2のタイミング情報を生成する(ステップS805)。具体的には、生成部135は、予測平均速度PVnに基づいて、車両VEがn番目リンクを走行し終わる予想時刻TM2を算出し、予想時刻TM2を含む時刻範囲を第2のタイミング情報として生成する。 The generating unit 135 generates second timing information indicating the timing of the output of the content based on the predicted average speed PVn (step S805). Specifically, the generating unit 135 calculates the predicted time TM2 at which the vehicle VE finishes traveling the nth link based on the predicted average speed PVn, and generates a time range including the predicted time TM2 as the second timing information.
 配信部136は、第1のタイミング情報と、第2のタイミング情報とを比較し、双方のタイミングの間に閾値以上の乖離があるか否かを判定する(ステップS806)。なお、ここでいう第1のタイミング情報は、車両VEがn番目リンクを走行し終わる予想時刻TM1を含む時刻範囲であり、予想時刻TM1は、区間平均速度LVnに基づき算出される。 The distribution unit 136 compares the first timing information with the second timing information and determines whether there is a difference between the two timings that is equal to or greater than a threshold (step S806). Note that the first timing information here is a time range that includes the predicted time TM1 at which the vehicle VE will finish traveling the nth link, and the predicted time TM1 is calculated based on the average section speed LVn.
 配信部136は、乖離が閾値以上であると判定された場合には(ステップS806;Yes)、第2のタイミング情報を車両VEの車載装置200に配信する(ステップS807)。 If it is determined that the deviation is equal to or greater than the threshold (step S806; Yes), the distribution unit 136 distributes the second timing information to the in-vehicle device 200 of the vehicle VE (step S807).
 このような状態において、算出部137は、車両VEが次のn番目リンクの走行を開始したか否かを判定する(ステップS808)。車両VEが次のn番目リンクの走行を開始していない場合には(ステップS808;No)、ステップS801へと処理が戻される。また、図8に示すように、区間平均速度LVnと予測平均速度PVnとの速度差が閾値未満である場合にも(ステップS806;No)、ステップS801へと処理が戻されてよい。 In this state, the calculation unit 137 determines whether the vehicle VE has started traveling on the next n-th link (step S808). If the vehicle VE has not started traveling on the next n-th link (step S808; No), the process returns to step S801. Also, as shown in FIG. 8, if the speed difference between the section average speed LVn and the predicted average speed PVn is less than the threshold (step S806; No), the process may also return to step S801.
 一方、算出部137は、車両VEが次のn番目リンクの走行を開始した場合には(ステップS808;Yes)、ステップS802からの処理を繰り返す。 On the other hand, if the vehicle VE starts traveling on the next n-th link (step S808; Yes), the calculation unit 137 repeats the process from step S802.
〔9.限定解除〕
 上記実施形態において、サーバ装置100が行うものとして説明した処理は、車載装置200によって行われてもよい。具体的には、本開示の実施形態に係る情報処理として説明したタイミング情報の生成および配信に係る一連の処理は、車載装置200によって行われてもよい。
[9. Removal of restrictions]
In the above embodiment, the processes described as being performed by the server device 100 may be performed by the in-vehicle device 200. Specifically, a series of processes related to the generation and distribution of timing information described as the information processing according to the embodiment of the present disclosure may be performed by the in-vehicle device 200.
〔10.ハードウェア構成〕
 上述してきたサーバ装置100(情報処理装置の一例)は、例えば、図9に示すような構成のコンピュータ1000によって実現されてよい。図9は、サーバ装置100の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、及びメディアインターフェイス(I/F)1700を有する。
10. Hardware Configuration
The above-described server device 100 (an example of an information processing device) may be realized, for example, by a computer 1000 having a configuration as shown in Fig. 9. Fig. 9 is a hardware configuration diagram showing an example of a computer that realizes the functions of the server device 100. The computer 1000 has a CPU 1100, a RAM 1200, a ROM 1300, a HDD 1400, a communication interface (I/F) 1500, an input/output interface (I/F) 1600, and a media interface (I/F) 1700.
 CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400, and controls each component. The ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 starts up, and programs that depend on the hardware of the computer 1000, etc.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インターフェイス1500は、所定の通信網を介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータを所定の通信網を介して他の機器へ送信する。 HDD 1400 stores programs executed by CPU 1100 and data used by such programs. Communication interface 1500 receives data from other devices via a specified communication network and sends it to CPU 1100, and transmits data generated by CPU 1100 to other devices via the specified communication network.
 CPU1100は、入出力インターフェイス1600を介して、ディスプレイ等の出力装置、及び、キーボード等の入力装置を制御する。CPU1100は、入出力インターフェイス1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インターフェイス1600を介して出力装置へ出力する。 The CPU 1100 controls an output device such as a display and an input device such as a keyboard via the input/output interface 1600. The CPU 1100 acquires data from the input device via the input/output interface 1600. The CPU 1100 also outputs generated data to the output device via the input/output interface 1600.
 メディアインターフェイス1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインターフェイス1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The media interface 1700 reads a program or data stored in the recording medium 1800 and provides it to the CPU 1100 via the RAM 1200. The CPU 1100 loads the program from the recording medium 1800 onto the RAM 1200 via the media interface 1700 and executes the loaded program. The recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or a PD (Phase change rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
 例えば、コンピュータ1000が実施形態に係るサーバ装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部130の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the server device 100 according to the embodiment, the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200 to realize the functions of the control unit 130. The CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communication network.
〔11.その他〕
 また、上記各実施形態において説明した処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
11. Other
Furthermore, among the processes described in each of the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or all or part of the processes described as being performed manually can be performed automatically by a known method. In addition, the information including the processing procedures, specific names, various data and parameters shown in the above documents and drawings can be changed arbitrarily unless otherwise specified. For example, the various information shown in each drawing is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、サーバ装置100が行うものとして説明した処理の一部または全てが、車載装置200側で行われるよう構成されてもよい。 Furthermore, each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. In other words, the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc. For example, some or all of the processing described as being performed by the server device 100 may be configured to be performed on the in-vehicle device 200 side.
 また、上記各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 In addition, the above embodiments can be combined as appropriate to the extent that the processing content is not contradictory.
 以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。  Although several embodiments of the present application have been described in detail above with reference to the drawings, these are merely examples, and the present invention can be embodied in other forms that incorporate various modifications and improvements based on the knowledge of those skilled in the art, including the aspects described in the "present invention" section.
  1    システム
  100  サーバ装置
  120  記憶部
  121  地図情報記憶部
  122  制御結果記憶部
  130  制御部
  131  取得部
  132  推定部
  133  検出部
  134  判定部
  135  生成部
  136  配信部
  137  算出部
  200  車載装置
  231  状況把握エンジン
  232  情報整合エンジン
  233  出力制御部
REFERENCE SIGNS LIST 1 System 100 Server device 120 Storage unit 121 Map information storage unit 122 Control result storage unit 130 Control unit 131 Acquisition unit 132 Estimation unit 133 Detection unit 134 Determination unit 135 Generation unit 136 Distribution unit 137 Calculation unit 200 In-vehicle device 231 Situation grasping engine 232 Information matching engine 233 Output control unit

Claims (13)

  1.  コンテンツの出力に関するタイミングを示す第1のタイミング情報であって、所定の道路区間における車両の平均速度である区間平均速度に基づいて生成された第1のタイミング情報を、前記所定の道路区間を走行中の対象車両に配信する配信部と、
     前記第1のタイミング情報が配信された後において、前記対象車両が前記所定の道路区間を走行中の所定の時点での走行実績に基づく平均速度である累積平均速度と、前記区間平均速度とに基づいて、前記所定の時点で予測される、前記所定の道路区間における前記対象車両の平均速度である予測平均速度を算出する算出部と、
     を備え、
     前記配信部は、前記コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、前記予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する
     ことを特徴とする情報処理装置。
    a distribution unit that distributes first timing information indicating a timing related to an output of a content, the first timing information being generated based on a section average speed that is an average speed of a vehicle in a predetermined road section, to a target vehicle traveling on the predetermined road section;
    a calculation unit that calculates a predicted average speed, which is an average speed of the target vehicle in the specified road section predicted at the predetermined time point, based on a cumulative average speed, which is an average speed based on a driving record at a predetermined time point while the target vehicle is traveling in the specified road section, and the section average speed after the first timing information is distributed;
    Equipped with
    The information processing device is characterized in that the distribution unit determines whether or not to distribute second timing information indicating timing regarding the output of the content, the second timing information being newly generated using the predicted average speed, based on specified information based on the section average speed.
  2.  前記対象車両が走行する予定の経路である走行予定経路に基づいて、前記走行予定経路に含まれる道路区間ごとに運転負荷の種別を推定する推定部と、
     前記走行予定経路に含まれる道路区間のうち、互いに隣接関係にある道路区間の間において、異なる前記運転負荷の種別が推定されている場合に、前記対象車両の現在位置から、前記互いに隣接関係にある道路区間同士が接続される接続地点へと前記対象車両が到達する予想時刻に基づく範囲を示す前記第1のタイミング情報を、前記現在位置を含む道路区間に対応する前記区間平均速度に基づいて生成する生成部と
     をさらに備え、
     前記配信部は、前記生成部により生成された前記第1のタイミング情報を前記対象車両に配信する
     ことを特徴とする請求項1に記載の情報処理装置。
    an estimation unit that estimates a type of driving load for each road section included in a planned travel route, the road being a route that the target vehicle is scheduled to travel;
    a generating unit configured to generate, when different types of the driving load are estimated between adjacent road sections among road sections included in the planned travel route, the first timing information indicating a range based on a predicted time for the target vehicle to arrive at a connection point where the adjacent road sections are connected from a current position of the target vehicle, based on an average section speed corresponding to the road section including the current position,
    The information processing device according to claim 1 , wherein the distribution unit distributes the first timing information generated by the generation unit to the target vehicle.
  3.  前記対象車両の走行状況に基づいて、走行シーンの変化を検出する検出部と、
     前記走行シーンの変化を検出されたか否かに基づいて、現時点における前記対象車両の運転負荷の種別が変化したか否かを判定する判定部と
     をさらに備え、
     前記生成部は、前記走行予定経路に含まれる道路区間を前記対象車両が走行中に、前記対象車両の運転負荷の種別が変化したと判定された場合には、前記対象車両の現在位置を含む道路区間である現在道路区間に対応する前記区間平均速度に基づいて、前記第1のタイミング情報を生成する
     ことを特徴とする請求項2に記載の情報処理装置。
    A detection unit that detects a change in a driving scene based on a driving situation of the target vehicle;
    and a determination unit that determines whether a type of a driving load of the target vehicle at the current time has changed based on whether a change in the driving scene has been detected,
    The information processing device according to claim 2, characterized in that when it is determined that a type of driving load of the target vehicle has changed while the target vehicle is traveling on a road section included in the planned driving route, the generation unit generates the first timing information based on the section average speed corresponding to a current road section, which is a road section that includes a current position of the target vehicle.
  4.  前記生成部は、前記運転負荷の種別が変化したと判定された場合として、これまで走行していた道路区間とは異なる前記運転負荷の種別が推定されている道路区間に前記対象車両が進入した場合には、前記現在道路区間として、進入先の道路区間に対応する前記区間平均速度に基づいて、前記第1のタイミング情報を生成する
     ことを特徴とする請求項3に記載の情報処理装置。
    The information processing device according to claim 3, characterized in that when it is determined that the type of driving load has changed and the target vehicle has entered a road section in which the type of driving load is estimated to be different from the road section on which the target vehicle has been traveling until now, the generation unit generates the first timing information based on the section average speed corresponding to the road section to be entered as the current road section.
  5.  前記算出部は、前記対象車両が前記現在道路区間を走行中に前記運転負荷の種別が変化したと判定された場合には、前記運転負荷の種別が変化したと判定された現時点での走行実績であって前記現在道路区間に対する走行実績に基づく平均速度である累積平均速度と、前記現在道路区間に対応する前記区間平均速度とに基づいて、前記運転負荷の種別が変化したと判定された現時点で予測される、前記現在道路区間における前記対象車両の平均速度である予測平均速度を算出する
     ことを特徴とする請求項3に記載の情報処理装置。
    The information processing device according to claim 3, characterized in that when it is determined that the type of driving load has changed while the target vehicle is traveling on the current road section, the calculation unit calculates a predicted average speed, which is the average speed of the target vehicle in the current road section predicted at the current time when it is determined that the type of driving load has changed, based on a cumulative average speed, which is an average speed based on the driving performance for the current road section at the current time when it is determined that the type of driving load has changed, and the section average speed corresponding to the current road section.
  6.  前記算出部は、前記対象車両が前記現在道路区間を走行中に所定期間が経過した時点、または、前記対象車両が前記現在道路区間を所定距離進んだ時点での走行実績であって前記現在道路区間に対する走行実績に基づく平均速度である累積平均速度と、前記現在道路区間に対応する前記区間平均速度とに基づいて、現時点で予測される、前記現在道路区間における前記対象車両の平均速度である予測平均速度を算出する
     ことを特徴とする請求項3に記載の情報処理装置。
    The information processing device according to claim 3, characterized in that the calculation unit calculates a predicted average speed, which is an average speed of the target vehicle in the current road section predicted at the current time, based on a cumulative average speed, which is an average speed based on driving performance for the current road section at a point when a predetermined period has elapsed while the target vehicle is traveling on the current road section or at a point when the target vehicle has traveled a predetermined distance on the current road section, and the section average speed corresponding to the current road section.
  7.  前記算出部は、前記現在道路区間の距離に対する前記走行実績の割合を、前記累積平均速度が前記区間平均速度に及ぼす影響度を示す係数として用いて、前記区間平均速度を前記累積平均速度に近づけるよう補正する補正計算によって、前記予測平均速度を算出する
     ことを特徴とする請求項5または6に記載の情報処理装置。
    The information processing device according to claim 5 or 6, characterized in that the calculation unit calculates the predicted average speed by a correction calculation that uses a ratio of the actual driving performance to the distance of the current road section as a coefficient indicating a degree of influence of the cumulative average speed on the section average speed, and corrects the section average speed to approach the cumulative average speed.
  8.  前記算出部は、前記現在道路区間の距離に対する前記走行実績の割合である第1の係数で前記累積平均速度を補正した平均速度である第1の平均速度と、前記現在道路区間に対する残りの距離であって前記現在道路区間から前記走行実績を差し引いた距離の割合である第2の係数で前記累積平均速度と前記区間平均速度との平均値を補正した平均速度である第2の平均速度との足し合わせにより、前記予測平均速度を算出する
     ことを特徴とする請求項7に記載の情報処理装置。
    The information processing device according to claim 7, characterized in that the calculation unit calculates the predicted average speed by adding together a first average speed, which is an average speed obtained by correcting the cumulative average speed by a first coefficient that is a ratio of the actual driving performance to the distance of the current road section, and a second average speed, which is an average speed obtained by correcting an average value of the cumulative average speed and the section average speed by a second coefficient that is a ratio of the remaining distance for the current road section, which is the distance obtained by subtracting the actual driving performance from the current road section.
  9.  前記所定の情報は、前記第1のタイミング情報を含み、
     前記配信部は、前記第1のタイミング情報と、前記第2のタイミング情報とを比較した比較結果が所定の条件を満たす場合に、前記予測平均速度を用いて新たに生成された前記第2のタイミング情報を配信すると判定する
     ことを特徴とする請求項1に記載の情報処理装置。
    the predetermined information includes the first timing information;
    The information processing device according to claim 1, characterized in that the distribution unit determines to distribute the second timing information newly generated using the predicted average speed when a comparison result between the first timing information and the second timing information satisfies a predetermined condition.
  10.  前記所定の情報は、前記区間平均速度および前記予測平均速度を含み、
     前記配信部は、前記区間平均速度に基づく値と、前記予測平均速度に基づく値とを比較した比較結果が所定の条件を満たす場合に、前記予測平均速度を用いて新たに生成された前記第2のタイミング情報を配信すると判定する
     ことを特徴とする請求項1に記載の情報処理装置。
    the predetermined information includes the section average speed and the predicted average speed,
    The information processing device according to claim 1, characterized in that the distribution unit determines to distribute the second timing information newly generated using the predicted average speed when a comparison result between a value based on the section average speed and a value based on the predicted average speed satisfies a predetermined condition.
  11.  前記生成部は、前記第2のタイミング情報を配信すると判定された場合には、前記接続地点へと前記対象車両が到達する予想時刻に基づく範囲を示す前記第2のタイミング情報を、前記現在道路区間における前記対象車両の平均速度である予測平均速度に基づいて生成する
     ことを特徴とする請求項5または6に記載の情報処理装置。
    The information processing device according to claim 5 or 6, characterized in that, when it is determined that the second timing information is to be distributed, the generation unit generates the second timing information indicating a range based on a predicted time for the target vehicle to arrive at the connection point based on a predicted average speed, which is an average speed of the target vehicle in the current road section.
  12.  情報処理装置が実行する情報処理方法であって、
     コンテンツの出力に関するタイミングを示す第1のタイミング情報であって、所定の道路区間における車両の平均速度である区間平均速度に基づいて生成された第1のタイミング情報を、前記所定の道路区間を走行中の対象車両に配信する配信工程と、
     前記第1のタイミング情報が配信された後において、前記対象車両が前記所定の道路区間を走行中の所定の時点での走行実績に基づく平均速度である累積平均速度と、前記区間平均速度とに基づいて、前記所定の時点で予測される、前記所定の道路区間における前記対象車両の平均速度である予測平均速度を算出する算出工程と、
     を含み、
     前記配信工程は、前記コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、前記予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する
     ことを特徴とする情報処理方法。
    An information processing method executed by an information processing device,
    a distribution step of distributing, to a target vehicle traveling on a predetermined road section, first timing information indicating a timing related to an output of a content, the first timing information being generated based on a section average speed, which is an average speed of a vehicle on the predetermined road section;
    a calculation step of calculating a predicted average speed, which is an average speed of the target vehicle in the specified road section predicted at the predetermined time point, based on a cumulative average speed, which is an average speed based on a driving record of the target vehicle at the predetermined time point while the target vehicle is traveling in the specified road section, and the section average speed, after the first timing information is distributed;
    Including,
    The information processing method, characterized in that the distribution step includes determining whether or not to distribute second timing information indicating timing regarding the output of the content, the second timing information being newly generated using the predicted average speed, based on specified information based on the section average speed.
  13.  情報処理装置によって実行される情報処理プログラムであって、
     コンテンツの出力に関するタイミングを示す第1のタイミング情報であって、所定の道路区間における車両の平均速度である区間平均速度に基づいて生成された第1のタイミング情報を、前記所定の道路区間を走行中の対象車両に配信する配信手順と、
     前記第1のタイミング情報が配信された後において、前記対象車両が前記所定の道路区間を走行中の所定の時点での走行実績に基づく平均速度である累積平均速度と、前記区間平均速度とに基づいて、前記所定の時点で予測される、前記所定の道路区間における前記対象車両の平均速度である予測平均速度を算出する算出手順と、
     を前記情報処理装置に実行させ、
     前記配信手順は、前記コンテンツの出力に関するタイミングを示す第2のタイミング情報であって、前記予測平均速度を用いて新たに生成された第2のタイミング情報を、前記区間平均速度に基づく所定の情報に基づいて配信するか否かを判定する
     情報処理プログラム。
    An information processing program executed by an information processing device,
    a delivery procedure for delivering first timing information indicating a timing related to an output of a content, the first timing information being generated based on a section average speed, which is an average speed of a vehicle in a predetermined road section, to a target vehicle traveling on the predetermined road section;
    a calculation step of calculating a predicted average speed, which is an average speed of the target vehicle in the specified road section predicted at a predetermined time point, based on a cumulative average speed, which is an average speed based on a driving record of the target vehicle at a predetermined time point while the target vehicle is traveling in the specified road section, and the section average speed, after the first timing information is distributed;
    causing the information processing device to execute the above steps;
    The information processing program includes a step of determining whether or not to distribute second timing information, which indicates timing regarding the output of the content and is newly generated using the predicted average speed, based on predetermined information based on the section average speed.
PCT/JP2023/023180 2023-02-10 2023-06-22 Information processing device, information processing method, and information processing program WO2024166411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023019183 2023-02-10
JP2023-019183 2023-02-10

Publications (1)

Publication Number Publication Date
WO2024166411A1 true WO2024166411A1 (en) 2024-08-15

Family

ID=92262789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023180 WO2024166411A1 (en) 2023-02-10 2023-06-22 Information processing device, information processing method, and information processing program

Country Status (1)

Country Link
WO (1) WO2024166411A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047984A (en) * 1996-07-31 1998-02-20 Matsushita Electric Ind Co Ltd Car navigator
JP2004280320A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Traffic information display device and method for operating operation control center
JP2007155352A (en) * 2005-11-30 2007-06-21 Aisin Aw Co Ltd Route guide system and method
WO2009037752A1 (en) * 2007-09-19 2009-03-26 Pioneer Corporation Navigation apparatus, computational speed enhancing method, and program
JP2021149731A (en) * 2020-03-23 2021-09-27 株式会社アイシン Driving support system and driving support program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047984A (en) * 1996-07-31 1998-02-20 Matsushita Electric Ind Co Ltd Car navigator
JP2004280320A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Traffic information display device and method for operating operation control center
JP2007155352A (en) * 2005-11-30 2007-06-21 Aisin Aw Co Ltd Route guide system and method
WO2009037752A1 (en) * 2007-09-19 2009-03-26 Pioneer Corporation Navigation apparatus, computational speed enhancing method, and program
JP2021149731A (en) * 2020-03-23 2021-09-27 株式会社アイシン Driving support system and driving support program

Similar Documents

Publication Publication Date Title
JP7295036B2 (en) Use of telematics data to identify trip types
Feng et al. A real-time adaptive signal control in a connected vehicle environment
EP2806411B1 (en) Driving model generation device, driving model generation method, driving evaluation device, driving evaluation method, and driving support system
US11086322B2 (en) Identifying a route for an autonomous vehicle between an origin and destination location
JP3501773B2 (en) Traffic situation determination method based on reported vehicle data for a traffic network including traffic-controlled network nodes
US9068848B2 (en) Providing cost information associated with intersections
CN113167590B (en) System and method for map matching
JP6706826B2 (en) Judgment program, judgment method, and information processing apparatus
JP5867524B2 (en) Driving evaluation device, driving evaluation method, and driving support system
JP2021127106A (en) Cross platform profiling for autonomous vehicle control
WO2018180688A1 (en) Traffic congestion estimating device, traffic congestion estimating method, and recording medium storing program thereof
JP4677794B2 (en) Corner information providing device
US20220109726A1 (en) Moving body management device, control method, program and storage media
JP2017207388A (en) Automatic operation system and automatic operational state notification program
JP2006226824A (en) Information reporting device for vehicle
JP2016057880A (en) Merging assist system
WO2017130428A1 (en) Route analysis device, route analysis method, and computer-readable recording medium
JP4313457B2 (en) Travel time prediction system, program recording medium, travel time prediction method, information providing device, and information acquisition device
JP7137151B2 (en) Operation control device and vehicle
WO2024166411A1 (en) Information processing device, information processing method, and information processing program
WO2024127524A1 (en) Information processing device, information processing method, and information processing program
JP6656693B2 (en) Information output program, information output method, and in-vehicle device
WO2022254561A1 (en) Information processing device, information processing method, and information processing program
JP2024084534A (en) Information processing device, information processing method, and information processing program
US11087623B1 (en) Systems and methods for compensating for driver speed-tracking error

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23921238

Country of ref document: EP

Kind code of ref document: A1