WO2024159895A1 - 一种微流控检测装置以及核酸检测设备 - Google Patents
一种微流控检测装置以及核酸检测设备 Download PDFInfo
- Publication number
- WO2024159895A1 WO2024159895A1 PCT/CN2023/134758 CN2023134758W WO2024159895A1 WO 2024159895 A1 WO2024159895 A1 WO 2024159895A1 CN 2023134758 W CN2023134758 W CN 2023134758W WO 2024159895 A1 WO2024159895 A1 WO 2024159895A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- adsorption
- clamping plate
- plate
- detection device
- Prior art date
Links
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 75
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 75
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 75
- 238000012360 testing method Methods 0.000 title abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 140
- 238000001179 sorption measurement Methods 0.000 claims abstract description 134
- 238000002347 injection Methods 0.000 claims abstract description 106
- 239000007924 injection Substances 0.000 claims abstract description 106
- 239000012530 fluid Substances 0.000 claims abstract description 97
- 238000004891 communication Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 120
- 238000006243 chemical reaction Methods 0.000 claims description 117
- 238000003860 storage Methods 0.000 claims description 44
- 238000005070 sampling Methods 0.000 claims description 35
- 239000002699 waste material Substances 0.000 claims description 35
- 238000002156 mixing Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000002775 capsule Substances 0.000 claims description 13
- 230000000694 effects Effects 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 238000010521 absorption reaction Methods 0.000 abstract description 9
- 238000011002 quantification Methods 0.000 abstract description 6
- 238000010339 medical test Methods 0.000 abstract 1
- 230000003321 amplification Effects 0.000 description 43
- 238000003199 nucleic acid amplification method Methods 0.000 description 43
- 239000000523 sample Substances 0.000 description 35
- 239000003085 diluting agent Substances 0.000 description 27
- 239000012295 chemical reaction liquid Substances 0.000 description 23
- 239000000243 solution Substances 0.000 description 19
- 239000003153 chemical reaction reagent Substances 0.000 description 15
- 238000005842 biochemical reaction Methods 0.000 description 11
- 238000004587 chromatography analysis Methods 0.000 description 11
- 238000011068 loading method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 239000012472 biological sample Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000011841 epidemiological investigation Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011901 isothermal amplification Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 108091008104 nucleic acid aptamers Proteins 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/36—Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
Definitions
- the present application relates to the field of medical detection technology, and more specifically, to a microfluidic detection device and a nucleic acid detection equipment.
- the steps of nucleic acid extraction and purification, nucleic acid amplification, nucleic acid molecular hybridization, etc. are all carried out separately.
- the sample preparation instrument for nucleic acid extraction, the nucleic acid extraction instrument, the PCR instrument for amplification and other instruments and equipment need to be carried out separately.
- the entire nucleic acid test mainly includes the following steps: manually extracting samples or manually adding samples to a fully automatic nucleic acid extraction instrument to extract and purify nucleic acids, manually transferring the purified nucleic acid solution to a nucleic acid amplification instrument, using a nucleic acid amplification instrument to amplify nucleic acids, and finally transferring the amplified products to a fully automatic analysis.
- the equipment required for the entire detection process is complex, bulky, low in detection efficiency, poor in flexibility, and expensive in instruments and equipment, resulting in a complicated operation process that requires highly professional personnel to operate. Since the detection needs to be operated by skilled technicians, portable detection at home or other places cannot be achieved.
- the present application provides a microfluidic detection device and a nucleic acid detection equipment, which are used to solve the technical problems in the prior art that the nucleic acid detection process is cumbersome, the operation is complicated, and professional personnel are required to complete the detection.
- the present application provides a microfluidic detection device, which adopts the following technical solution:
- a microfluidic detection device comprises: a shell, wherein a functional chamber, a first sampling injection component, a second sampling injection component, a fluid quantitative pool, a capillary adsorption component and a result display component are arranged in the shell; the first sampling injection component and the second sampling injection component are both connected to the functional chamber, the functional chamber is connected to the fluid quantitative pool, the fluid quantitative pool is connected to the result display component through the capillary adsorption component, and the result display component is used to display the detection result.
- the housing comprises a containing shell, a clamping plate and a top plate, wherein the clamping plate is arranged on the containing shell, and the top plate is arranged on the clamping plate;
- the functional chamber is arranged on the accommodating shell and the clamping plate;
- the first sample injection assembly is arranged on the accommodating shell and the clamping plate, or the first sample injection assembly is arranged on the clamping plate, and the second sample injection assembly is arranged on the top plate;
- the fluid quantitative pool is arranged on a side of the clamping plate away from the accommodating shell;
- the capillary adsorption member is arranged on a side of the top plate facing the clamping plate, and the capillary adsorption member is connected to the fluid quantitative pool;
- the result display assembly is arranged on the top plate and the clamping plate.
- the capillary adsorption component includes a first adsorption plate and a second adsorption plate; the first adsorption plate and the second adsorption plate are spaced apart on a side of the top plate facing the clamping plate, and the gap between the first adsorption plate and the second adsorption plate forms an adsorption groove; one end of the first adsorption plate and the second adsorption plate extends downward to the fluid quantitative pool, and the other end of the first adsorption plate and the second adsorption plate abuts against the result display component.
- the surface of the top plate is a hydrophilic layer; or, the surface of the capillary adsorption element is a hydrophilic layer.
- the functional chamber includes a first chamber and a second chamber, the first chamber is arranged on the accommodating shell, and the second chamber is arranged on the splint; the first injection assembly is connected to the first chamber, the second injection assembly is connected to the second chamber, and the second chamber is connected to the first chamber and the fluid quantitative pool.
- the second chamber includes a first communicating cavity, a second communicating cavity and a third communicating cavity;
- the second injection assembly is provided with a second branch at one end close to the first communicating cavity, the second communicating cavity and the third communicating cavity, and the second branch corresponds to the number of the first communicating cavity, the second communicating cavity and the third communicating cavity and is connected respectively;
- the first chamber includes a first reaction chamber, a second reaction chamber and a waste liquid pool; one end of the first injection assembly close to the first reaction chamber, the second reaction chamber and the waste liquid pool is provided with a first branch, and the first branch corresponds to the number of the first reaction chamber, the second reaction chamber and the waste liquid pool and is connected to each other;
- the first connecting chamber is connected to the first reaction chamber
- the second connecting chamber is connected to the second reaction chamber
- the third connecting chamber is connected to the waste liquid pool
- the first connecting chamber and the second connecting chamber are connected to the fluid quantitative pool.
- the number of the fluid quantitative pools is two, and the two fluid quantitative pools are respectively connected to the first connecting cavity and the second connecting cavity; and/or,
- the total number of the first reaction chamber, the second reaction chamber and the waste liquid pool is an even number; and/or,
- the sum of the volumes of the first reaction chamber is consistent with the sum of the volumes of the second reaction chamber.
- a baffle is provided in the second chamber, the baffle extends into the first chamber and is spaced apart from the bottom of the first chamber; and/or,
- the clamping plate is provided with a mixing channel, and the mixing channel is communicated with the fluid quantitative tank and the second chamber.
- the second injection assembly includes a second puncture structure, a second injection hole, a second microchannel and a liquid capsule;
- the second puncture structure is arranged on a side of the top plate away from the clamping plate,
- the second injection hole passes through the top plate and is located in the second puncturing structure.
- the second microfluidic channel is arranged on a side of the top plate facing the clamping plate.
- the second microfluidic channel is connected to the second injection hole and the functional chamber.
- the liquid capsule is arranged on the top plate and is located above the second puncturing structure.
- the first injection assembly includes a first puncturing structure, an alignment structure, a first injection hole and a first microfluidic channel; the first puncturing structure and the alignment structure are arranged on a side of the clamping plate away from the accommodating shell, the alignment structure is provided with a positioning groove, the first puncturing structure is located in the alignment structure, and the first injection hole penetrates the clamping plate and is located in the first puncturing structure;
- the first microfluidic channel is arranged on a side of the accommodating shell facing the clamping plate, or the first microfluidic channel is arranged on a side of the clamping plate facing the accommodating shell, and the first microfluidic channel is connected with the first injection hole and the functional chamber; a mounting hole is arranged on the top plate, and the first puncturing structure and the alignment structure are located in the mounting hole.
- the result display component includes a accommodating groove, an observation window and a detection member; the accommodating groove is arranged on a side of the splint away from the accommodating shell, the detection member is arranged in the accommodating groove, the observation window is arranged on the top plate and corresponds to the accommodating groove, and one end of the capillary adsorption member abuts against the detection member.
- the accommodating shell includes a first shell and a second shell, the first shell is arranged on the second shell; the functional chamber and the first injection assembly are arranged on the clamping plate and the first shell.
- the microfluidic detection device also includes a heating component, a temperature sensor and a PCB board;
- the heating component includes a heating module and a temperature control module, the heating module is arranged on the side of the first shell facing the second shell, the heating module corresponds to the position of the functional chamber, the temperature control module and the PCB board are arranged on the first shell, the temperature sensor is arranged in the functional chamber, and the heating component, the temperature sensor and the PCB board are electrically connected.
- the present application provides a nucleic acid detection device, which adopts the following technical solution:
- a nucleic acid detection device comprising a quantitative sample addition device and the microfluidic detection device as described above;
- the microfluidic detection device comprises: a housing, in which a functional chamber, a first sampling assembly, a second sampling assembly, a fluid quantitative pool, a capillary adsorption component and a result display component are arranged; the first sampling assembly and the second sampling assembly are both connected to the functional chamber, the functional chamber is connected to the fluid quantitative pool, the fluid quantitative pool is connected to the result display component through the capillary adsorption component, and the result display component is used to display the detection result;
- the quantitative sample addition device includes a cylinder, a liquid storage tube, a tube cover and a piston rod;
- the cylinder includes a storage chamber and an active chamber which are interconnected, the cylinder wall of the cylinder is provided with a liquid inlet which is connected to the active chamber, and the liquid storage tube is arranged at the liquid inlet; one end of the piston rod passes through the active chamber, and the other end of the piston rod is used to seal the liquid inlet and is slidably arranged in the active chamber;
- the tube cover is movably connected to one end of the cylinder away from the piston rod, and is used to seal the storage chamber; the tube cover is connected to the first sample injection assembly.
- the housing comprises a containing shell, a clamping plate and a top plate, wherein the clamping plate is arranged on the containing shell, and the top plate is arranged on the clamping plate;
- the functional chamber is arranged on the accommodating shell and the clamping plate;
- the first sample injection assembly is arranged on the accommodating shell and the clamping plate, or the first sample injection assembly is arranged on the clamping plate, and the second sample injection assembly is arranged on the top plate;
- the fluid quantitative pool is arranged on a side of the clamping plate away from the accommodating shell;
- the capillary adsorption member is arranged on a side of the top plate facing the clamping plate, and the capillary adsorption member is connected to the fluid quantitative pool;
- the result display assembly is arranged on the top plate and the clamping plate.
- the capillary adsorption member includes a first adsorption plate and a second adsorption plate;
- the first adsorption plate and the second adsorption plate are spaced apart on a side of the top plate facing the clamping plate, and the gap between the first adsorption plate and the second adsorption plate forms an adsorption groove; one end of the first adsorption plate and the second adsorption plate extends downward to the fluid quantitative pool, and the other end of the first adsorption plate and the second adsorption plate abuts against the result display component.
- the surface of the top plate is a hydrophilic layer; or, the surface of the capillary adsorption element is a hydrophilic layer.
- the functional chamber includes a first chamber and a second chamber, the first chamber is arranged on the accommodating shell, and the second chamber is arranged on the clamping plate;
- the first injection assembly is in communication with the first chamber
- the second injection assembly is in communication with the second chamber
- the second chamber is in communication with the first chamber and the fluid quantitative pool.
- the second chamber includes a first communicating cavity, a second communicating cavity and a third communicating cavity;
- the second injection assembly is provided with a second branch at one end close to the first communicating cavity, the second communicating cavity and the third communicating cavity, and the second branch corresponds to the number of the first communicating cavity, the second communicating cavity and the third communicating cavity and is connected respectively;
- the first chamber includes a first reaction chamber, a second reaction chamber and a waste liquid pool; one end of the first injection assembly close to the first reaction chamber, the second reaction chamber and the waste liquid pool is provided with a first branch, and the first branch corresponds to the number of the first reaction chamber, the second reaction chamber and the waste liquid pool and is connected to each other;
- the first connecting chamber is connected to the first reaction chamber
- the second connecting chamber is connected to the second reaction chamber
- the third connecting chamber is connected to the waste liquid pool
- the first connecting chamber and the second connecting chamber are connected to the fluid quantitative pool.
- the number of the fluid quantitative pools is two, and the two fluid quantitative pools are respectively connected to the first connecting cavity and the second connecting cavity; and/or,
- the total number of the first reaction chamber, the second reaction chamber and the waste liquid pool is an even number; and/or,
- the sum of the volumes of the first reaction chamber is consistent with the sum of the volumes of the second reaction chamber.
- the water absorption of the result display component is controlled by the fluid quantitative pool, and the liquid in the fluid quantitative pool is slowly chromatographed to the result display component through the capillary adsorption component, thereby achieving the effect of accurately controlling the water absorption on the test strip.
- FIG1 is a schematic diagram of the structure of a nucleic acid detection device provided by the present application.
- FIG2 is a schematic structural diagram of the top plate in FIG1 ;
- FIG3 is a schematic structural diagram of the splint in FIG1 ;
- FIG4 is a schematic diagram of the structure of FIG3 from another perspective
- FIG5 is a schematic structural diagram of the first housing in FIG1 ;
- FIG6 is a schematic diagram of the structure of FIG5 from another perspective
- FIG. 7 is a schematic structural diagram of the second shell in FIG. 1 .
- an embodiment of the present application provides a microfluidic detection device 100, as shown in Figures 1 to 3, the microfluidic detection device 100 includes: a shell 1, and a functional chamber 2, a first injection component 3, a second injection component 4, a fluid quantitative pool 5, a capillary adsorption component 6 and a result display component 7 are arranged in the shell 1; the first injection component 3 and the second injection component 4 are both connected to the functional chamber 2, the functional chamber 2 is connected to the fluid quantitative pool 5, the fluid quantitative pool 5 is connected to the result display component 7 through the capillary adsorption component 6, and the result display component 7 is used to display the detection result.
- the first sampling component 3 and the second sampling component 4 can respectively perform nucleic acid amplification sampling and diluent sampling.
- the nucleic acid amplification reaction liquid flows into the functional chamber 2 through the first sampling component 3, and the nucleic acid amplification reaction liquid reacts biochemically with the pre-installed reaction reagent in the functional chamber 2; the diluent flows into the functional chamber 2 through the second sampling component 4, and the liquid flows into the fluid quantitative pool 5 after filling the functional chamber 2, and then the liquid is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, and finally the biochemical reaction result is viewed through the result display component 7.
- the microfluidic detection device 100 provided in this embodiment separates the addition of nucleic acid amplification samples and the dilution of the reaction solution through the first injection component 3 and the second injection component 4, thereby realizing precise control of the addition of samples and the detection, and has the advantages of simple operation, safety and reliability, high detection efficiency, high sensitivity, and low sample consumption; the addition of nucleic acid amplification samples can detect a variety of different biological samples and has a very wide range of applications.
- the water absorption of the result display component 7 is controlled by the fluid quantitative pool 5, and the liquid in the fluid quantitative pool 5 is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, thereby achieving the effect of accurately controlling the water absorption on the test strip.
- the entire reaction process is sealed, and there is no need to open the lid for adding samples, thereby avoiding aerosol contamination during nucleic acid amplification.
- the functional chamber 2 is a chamber where the detection reagent undergoes a biochemical reaction and is not limited by the detection type and detection object;
- the pre-installed reaction reagent in the functional chamber 2 refers to the reagent material used in biochemical detection, which is usually pre-installed in the functional chamber 2.
- the ingredients contained in the material and the pre-installation method can be determined in a variety of ways according to the environment required by the material, such as freeze-dried balls, cotton pads, etc.
- the housing 1 includes a housing shell 11 , a clamping plate 12 and a top plate 13 , wherein the clamping plate 12 is disposed on the housing shell 11 , and the top plate 13 is disposed on the clamping plate 12 ;
- the functional chamber 2 is provided on the accommodating shell 11 and the clamping plate 12;
- the first sample injection assembly 3 is disposed on the accommodating shell 11 and the clamping plate 12, or the first sample injection assembly 3 is disposed on the clamping plate 12, and the second sample injection assembly 4 is disposed on the top plate 13;
- the fluid quantitative pool 5 is disposed on a side of the clamping plate 12 away from the accommodating shell 11;
- the capillary adsorption member 6 is disposed on a side of the top plate 13 facing the clamping plate 12, and the capillary adsorption member 6 is connected to the fluid quantitative pool 5;
- the result display assembly 7 is disposed on the top plate 13 and the clamping plate 12 .
- the outer shell 1 is divided into a containing shell 11, a clamping plate 12 and a top plate 13, so that the first injection component 3 and the second injection component 4 are separated, so that the nucleic acid amplification sampling and the dilution of the reaction solution are carried out separately, and precise control of sampling and detection is achieved.
- the fluid quantitative pool 5 is arranged on a side of the splint 12 away from the accommodating shell 11, and the capillary adsorption component 6 is arranged on a side of the top plate 13 facing the splint 12 and is connected to the fluid quantitative pool 5.
- the position setting is reasonable, thereby reducing the volume of the microfluidic detection device 100 and ensuring that the liquid in the fluid quantitative pool 5 can be slowly chromatographed onto the result display component 7, thereby achieving the effect of accurately controlling the water absorption on the test strip.
- top plate 13 and the clamping plate 12 are bonded to form a sealing structure, and the top plate 13 and the clamping plate 12 are connected by laser welding, ultrasonic welding, hot pressing bonding, plasma bonding, solvent bonding or adhesive bonding.
- the accommodating shell 11 and the clamping plate 12 are fitted together to form a sealing structure, and the accommodating shell 11 and the clamping plate 12 are connected by interference fit or adhesive bonding.
- the capillary adsorption component 6 includes a first adsorption plate 61 and a second adsorption plate 62; the first adsorption plate 61 and the second adsorption plate 62 are spaced apart on the side of the top plate 13 facing the clamping plate 12, and the gap between the first adsorption plate 61 and the second adsorption plate 62 forms an adsorption groove 63; one end of the first adsorption plate 61 and the second adsorption plate 62 extends downward to the fluid quantitative pool 5, and the other end of the first adsorption plate 61 and the second adsorption plate 62 is abutted against the result display component 7.
- an adsorption groove 63 is formed by the first adsorption plate 61 and the second adsorption plate 62 which are arranged at intervals, so as to avoid grooving on the top plate 13 and reduce the difficulty of processing; one end of the first adsorption plate 61 and the second adsorption plate 62 is arranged to extend downward to the fluid quantitative pool 5, so as to ensure that the adsorption groove 63 can adsorb the liquid in the fluid quantitative pool 5, and the other end of the first adsorption plate 61 and the second adsorption plate 62 is in contact with the result display component 7, so that when the liquid fills the functional chamber 2 and flows into the fluid quantitative pool 5, the liquid can be slowly chromatographed to the result display component 7 through the adsorption groove 63.
- one end of the first adsorption plate 61 and the second adsorption plate 62 extends downward to the bottom of the fluid quantitative pool 5 to ensure that as the liquid in the fluid quantitative pool 5 decreases, the adsorption groove 63 can still adsorb the liquid in the fluid quantitative pool 5; since the adsorption groove 63 is formed by the first adsorption plate 61 and the second adsorption plate 62 arranged at intervals, the first adsorption plate 61 and the second adsorption plate 62 can also be adsorbed when one end extends downward to the bottom of the fluid quantitative pool 5.
- the width of the adsorption groove 63 is 10 ⁇ m-1.5 mm. That is, the gap between the first adsorption plate 61 and the second adsorption plate 62 is 10 ⁇ m-1.5 mm; the width of the adsorption groove 63 can be The present application is not limited to the range of any one or any two of 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 1mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, etc.
- the width of the adsorption groove 63 is 10 ⁇ m; the smaller the width of the adsorption groove 63 is, the better the capillary effect thereof is.
- the surface of the top plate 13 is a hydrophilic layer; or the surface of the capillary adsorption member 6 is a hydrophilic layer.
- the surface of the top plate 13 or the capillary adsorption member 6 is a hydrophilic layer to ensure that the liquid in the fluid quantitative pool 5 can be slowly chromatographed into the result display component 7 through the capillary adsorption member 6.
- the top plate 13 or the capillary adsorption member 6 is made of a hydrophilic material, so that the surface of the top plate 13 or the capillary adsorption member 6 is a hydrophilic layer.
- the hydrophilic material is polypropylene (PP) or polystyrene (PS), etc., which is not limited in the present application.
- the contact angle of the hydrophilic material is between 0 and 60 degrees.
- the functional chamber 2 includes a first chamber 21 and a second chamber 22, the first chamber 21 is arranged on the accommodating shell 11, and the second chamber 22 is arranged on the splint 12; the first injection assembly 3 is connected to the first chamber 21, the second injection assembly 4 is connected to the second chamber 22, and the second chamber 22 is connected to the first chamber 21 and the fluid quantitative pool 5.
- the nucleic acid amplification reaction liquid flows into the first chamber 21 through the first injection component 3, and the nucleic acid amplification reaction liquid undergoes a biochemical reaction with the pre-installed reaction reagent in the first chamber 21; the diluent flows into the second chamber 22 through the second injection component 4, and since the first chamber 21 is connected to the second chamber 22, the diluent is mixed with the nucleic acid amplification reaction liquid.
- the liquid After the liquid fills the first chamber 21 and the second chamber 22, it flows from the second chamber 22 to the fluid quantitative pool 5, and then the liquid is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, and finally the biochemical reaction result is viewed through the result display component 7.
- the nucleic acid amplification sampling and the dilution of the reaction solution are performed separately through the first sampling component 3 and the second sampling component 4, thereby achieving precise control of sampling and detection, and mixing of the nucleic acid amplification reaction solution and the diluent is achieved through the first chamber 21 and the second chamber 22.
- first chamber 21 and the second chamber 22 are connected by laser welding, ultrasonic welding, thermocompression bonding, plasma bonding, solvent bonding or adhesive bonding.
- the second chamber 22 includes a first communicating cavity 221, a second communicating cavity 222 and a third communicating cavity 223;
- the second injection assembly 4 is provided with a second branch 45 at one end close to the first communicating cavity 221, the second communicating cavity 222 and the third communicating cavity 223, and the number of the second branch 45 corresponds to the number of the first communicating cavity 221, the second communicating cavity 222 and the third communicating cavity 223 and they are connected respectively;
- the first chamber 21 includes a first reaction chamber 211, a second reaction chamber 212 and a waste liquid pool 213; one end of the first injection assembly 3 close to the first reaction chamber 211, the second reaction chamber 212 and the waste liquid pool 213 is provided with a first branch 35, and the first branch 35 corresponds to the number of the first reaction chamber 211, the second reaction chamber 212 and the waste liquid pool 213 and is connected to each other;
- the first connecting cavity 221 is connected to the first reaction cavity 211, and the second connecting cavity 222
- the third connecting chamber 223 is connected to the waste liquid pool 213 , and the first connecting chamber 221 and the second connecting chamber 222 are connected to the fluid quantitative pool 5 .
- the nucleic acid amplification reaction liquid is diverted to the first reaction chamber 211, the second reaction chamber 212 and the waste liquid pool 213 through the first branch 35 of the first injection component 3, and the nucleic acid amplification reaction liquid undergoes a biochemical reaction with the pre-installed reaction reagents in the first reaction chamber 211 and the second reaction chamber 212, while the nucleic acid amplification reaction liquid flowing into the waste liquid pool 213 does not participate in the reaction; the diluent is diverted to the first connecting chamber 221, the second connecting chamber 222 and the third connecting chamber 223 through the second branch 45 of the second injection component 4.
- the third connecting chamber 223 is connected with the waste liquid pool 213, so that the diluent is mixed with the nucleic acid amplification reaction liquid, and the diluent flowing into the third connecting chamber 223 enters the waste liquid pool 213; when the liquid fills the first chamber 21 and the second chamber 22, it flows from the first connecting chamber 221 and the second connecting chamber 222 to the fluid quantitative pool 5, and then the liquid is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, and finally the biochemical reaction result is viewed through the result display component 7.
- the waste liquid pool 213 makes the diversion more stable and uniform, and can also store excess nucleic acid amplification reaction solution and diluent. A large amount of nucleic acid amplification reaction solution and diluent flow into the fluid quantification pool 5, thereby achieving the effect of accurately controlling the amount of water absorbed on the test strip.
- the number of the fluid quantitative pools 5 is two, and the two fluid quantitative pools 5 are respectively connected to the first connecting cavity 221 and the second connecting cavity 222 to achieve flow diversion.
- the total number of the first reaction chamber 211 , the second reaction chamber 212 and the waste liquid pool 213 is an even number, such as 2, 4, 8, 16 . . . 2 n ; so that the flow of the first branch flow 35 of the first injection assembly 3 is more stable and uniform.
- the volume sum of the first reaction chamber 211 is consistent with the volume sum of the second reaction chamber 212, so as to ensure that the amount of liquid in the first reaction chamber 211 is consistent with the amount of liquid in the second reaction chamber 212, thereby making the flow splitting more stable and uniform.
- first reaction chamber 211 there is one first reaction chamber 211, two second reaction chambers 212, and one waste liquid pool 213; the sum of the volumes of the two second reaction chambers 212 is consistent with the sum of the volumes of one first reaction chamber 211; the two second reaction chambers 212 are connected to the second connecting chamber 222; and one first reaction chamber 211 is connected to the first connecting chamber 221.
- first tributaries 35 and second tributaries 45 there are four first tributaries 35 and second tributaries 45; the four first tributaries 35 are respectively connected to a first reaction chamber 211, two second reaction chambers 212 and a waste liquid pool 213; two of the four second tributaries 45 are connected to the second connecting chamber 222 connected to the two second reaction chambers 212, and the remaining two second tributaries 45 are respectively connected to the first connecting chamber 221 and the third connecting chamber 223.
- the nucleic acid amplification reaction liquid flows into a first reaction chamber 211, two second reaction chambers 212 and a waste liquid pool 213 through the first branch 35, so that the liquid can evenly flow into the functional chamber 2 in one-to-three parts, and the diversion is more stable and uniform;
- the diluent flows into the first connecting chamber 221, the third connecting chamber 223, and the second connecting chamber 222 connected to the two second reaction chambers 212 through the second branch 45, so that the liquid can evenly flow into the functional chamber 2 in one-to-three parts, and the diversion is more stable and uniform.
- a baffle 23 is provided in the second chamber 22 , and the baffle 23 extends into the first chamber 21 and is spaced apart from the bottom of the first chamber 21 .
- a mixing channel 121 is provided on the clamping plate 12 , and the mixing channel 121 is communicated with the fluid quantitative tank 5 and the second chamber 22 .
- the nucleic acid amplification reaction liquid flows into the side of the first chamber 21 away from the fluid quantitative pool 5 through the first injection component 3, and the nucleic acid amplification reaction liquid undergoes a biochemical reaction with the pre-installed reaction reagent in the first chamber 21.
- the nucleic acid amplification reaction liquid flows from the gap between the baffle 23 and the bottom of the first chamber 21 to the side of the first chamber 21 adjacent to the fluid quantitative pool 5; the diluent flows into the side of the second chamber 22 away from the fluid quantitative pool 5 through the second injection component 4. Since the first chamber 21 is connected to the second chamber 22, the diluent is mixed with the nucleic acid amplification reaction liquid.
- the mixed liquid flows from the gap between the baffle 23 and the bottom of the first chamber 21 to the side of the first chamber 21 adjacent to the fluid quantitative pool 5, and fills the side of the second chamber 22 adjacent to the fluid quantitative pool 5; subsequently, the mixed liquid flows into the fluid quantitative pool 5 from the mixing channel 121, and then the liquid is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, and finally the biochemical reaction result is viewed through the result display component 7.
- the baffle 23 prevents the diluent from entering and filling the second chamber 22 and flowing into the mixing channel 121 without being fully mixed with the nucleic acid amplification reaction solution.
- the liquid that has been mixed in the first chamber 21 and the second chamber 22 is further mixed after entering the mixing channel 121, and the reaction solution after the two-step mixing enters the fluid quantitative pool 5. If the reaction solution enters the fluid quantitative pool 5 without being fully mixed and is chromatographed by the capillary adsorption component 6 to the result display component 7, it will lead to poor detection accuracy.
- the design of the baffle 23 and the mixing channel 121 can improve the mixing effect of the nucleic acid amplification reaction solution and the diluent, so as to improve the detection accuracy.
- the mixing channel 121 prevents the liquid from flowing too fast, which causes the nucleic acid amplification reaction liquid to flow into the fluid quantitative pool 5 without being fully mixed with the diluent. After the fully mixed liquid enters the fluid quantitative pool 5 through the mixing channel 121, it is chromatographed by the capillary adsorption component 6 to the result display component 7, which will lead to poor detection accuracy.
- the mixing channel 121 further provides mixing time for the nucleic acid amplification reaction liquid and the diluent and can enhance the mixing effect, so as to improve the mixing effect of the nucleic acid amplification reaction liquid and the diluent, thereby improving the detection accuracy.
- the second injection component 4 includes a second puncturing structure 41, a second injection hole 42, a second microchannel 43 and a liquid capsule 44;
- the second puncturing structure 41 is arranged on the side of the top plate 13 away from the splint 12, the second injection hole 42 passes through the top plate 13 and is located in the second puncturing structure 41, the second microchannel 43 is arranged on the side of the top plate 13 facing the splint 12, the second microchannel 43 is connected to the second injection hole 42 and the functional chamber 2, and the liquid capsule 44 is arranged on the top plate 13 and is located above the second puncturing structure 41.
- the liquid capsule 44 is pre-filled with a diluent or other liquid.
- the second microchannel 43 is communicated with the second chamber 22 .
- the liquid capsule 44 is pressed to make the bottom of the liquid capsule 44 contact with the second puncture structure 41, and the diluent flows out after the liquid capsule 44 is punctured; when the liquid capsule 44 is pressed, the microfluidic detection device
- the air in 100 is squeezed, and the air enters the first chamber 21 connected to the second chamber 22 along the second microchannel 43.
- the nucleic acid amplification reaction liquid in the first chamber 21 rushes into the side of the first chamber 21 adjacent to the fluid quantitative pool 5 from the gap between the baffle 23 and the bottom of the first chamber 21, and flows into the mixing channel 121, thereby realizing pressure injection.
- the diluent passes through the second injection hole 42 along the second microchannel 43 on the lower surface of the top plate 13 and enters the side of the second chamber 22 of the functional chamber 2 away from the fluid quantitative pool 5.
- the diluent flows from the gap between the baffle 23 and the bottom of the first chamber 21 to the side of the first chamber 21 adjacent to the fluid quantitative pool 5, and fills the side of the second chamber 22 adjacent to the fluid quantitative pool 5.
- the diluent and the nucleic acid amplification reaction liquid are mixed in the mixing channel 121, and flow into the fluid quantitative pool 5, and then the liquid is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, and finally the biochemical reaction result is viewed through the result display component 7.
- the liquid capsule 44 is assembled on the top plate 13, and the user does not need to prepare additional liquids such as diluents, thereby reducing the number of detection steps.
- the detection process of this device is fully closed, avoiding nucleic acid aerosol contamination.
- one end of the second microchannel 43 close to the first connecting cavity 221 , the second connecting cavity 222 and the third connecting cavity 223 is connected to the second branch 45 .
- the first injection assembly 3 includes a first puncturing structure 31, an alignment structure 32, a first injection hole 33 and a first microfluidic channel 34; the first puncturing structure 31 and the alignment structure 32 are arranged on a side of the clamping plate 12 away from the accommodating shell 11, a positioning groove 321 is arranged on the alignment structure 32, the first puncturing structure 31 is located in the alignment structure 32, and the first injection hole 33 passes through the clamping plate 12 and is located in the first puncturing structure 31;
- the first microchannel 34 is arranged on a side of the accommodating shell 11 facing the splint 12, or the first microchannel 34 is arranged on a side of the splint 12 facing the accommodating shell 11, and the first microchannel 34 is connected to the first injection hole 33 and the functional chamber 2; a mounting hole 131 is provided on the top plate 13, and the first puncturing structure 31 and the alignment structure 32 are located in the mounting hole 131.
- the first microchannel 34 is in communication with the first chamber 21 .
- the reagent tube for loading samples is aligned with the alignment structure 32 and inserted into it.
- the quantitative loading device 200 containing samples mentioned below is aligned with the alignment structure 32 and inserted into it.
- the puncturing structure punctures the reagent tube or the quantitative loading device 200.
- the positioning groove 321 provides support and positioning for the reagent tube or the quantitative loading device 200.
- the liquid flows out and enters the first microchannel 34 on the accommodating shell 11 through the first injection hole 33, and enters the first chamber 21 of the functional chamber 2 along the first microchannel 34.
- the liquid undergoes a biochemical reaction with the pre-installed reagent in the functional chamber 2.
- the liquid is a nucleic acid amplification reaction liquid.
- the first microchannel 34 is disposed on a side of the accommodating shell 11 facing the clamping plate 12 .
- one end of the first microchannel 34 close to the first reaction chamber 211 , the second reaction chamber 212 and the waste liquid pool 213 is connected to the first branch 35 .
- the width of the first microchannel 34 and the second microchannel 43 is 0.005-50 mm
- the depth of the first microchannel 34 and the second microchannel 43 is 0.005-50 mm. It is understandable that the width of the first microchannel 34 and the second microchannel 43 can be 0.005 mm, 0.05 mm, 0.5 mm, 5 mm, 50 mm, or a value between two adjacent values above.
- the first microchannel 34 and the second microchannel 43 can be 0.005 mm, 0.05 mm, 0.5 mm, 5 mm, 50 mm, or a value between two adjacent values above.
- the depths of the microchannel 34 and the second microchannel 43 may be 0.005 mm, 0.05 mm, 0.5 mm, 5 mm, 50 mm, or values between two adjacent values mentioned above.
- the width of the first microchannel 34 and the second microchannel 43 is 0.01-10 mm, and the depth of the first microchannel 34 and the second microchannel 43 is 0.01-10 mm. It is understandable that the width of the first microchannel 34 and the second microchannel 43 can be 0.01 mm, 0.05 mm, 0.1 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, or a value between two adjacent values above, and similarly, the depth of the first microchannel 34 and the second microchannel 43 can be 0.01 mm, 0.05 mm, 0.1 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, or a value between two adjacent values above.
- the first microchannel 34 and the second microchannel 43 are formed by machine tool processing, laser ablation, 3D printing, injection molding or chemical etching.
- the result display component 7 includes a accommodating groove 71, an observation window 72 and a detection member (not shown); the accommodating groove 71 is arranged on a side of the splint 12 away from the accommodating shell 11, the detection member is arranged in the accommodating groove 71, the observation window 72 is arranged on the top plate 13 and corresponds to the accommodating groove 71, and one end of the capillary adsorption member 6 abuts against the detection member.
- the detection element includes a chromatography test paper and/or a visible dye test paper and/or an optical detector and/or an electrical signal detector.
- Different detection methods can be designed according to needs, and nucleic acid detection methods include hybridization fluorescence, isothermal amplification, real-time fluorescence PCR, high-resolution melting curve, electrochemical nucleic acid aptamer, etc. It can be understood that the corresponding detection element can be designed according to the detection method, whether it is a detection method or a detection device, as long as the product in which the reagent shows the result after the reaction is applicable to the present invention.
- the detection element includes a chromatography test paper, which is used to present the test results.
- the strip fiber chromatography material with fixed test lines and quality control lines is used as the stationary phase, the test liquid is used as the mobile phase, and the fluorescently labeled antibody or antigen is fixed on the strip fiber layer.
- the analyte is moved and captured on the chromatography strip through capillary action for detection; the chromatography test paper is pre-installed in the accommodating groove 71, and the accommodating groove 71 limits and fixes the chromatography test paper in the front, back, left and right directions.
- the top plate 13 and the splint 12 cooperate to press the upper surface of the chromatography test paper, and make one end of the capillary adsorption component 6 abut against the chromatography test paper to achieve the fixation of the chromatography test paper.
- the observation window 72 is located on the upper surface of the top plate 13.
- the observation window 72 is located above the receiving groove 71, corresponding to the color development area of the chromatography test paper.
- the detection result can be observed in the observation window 72.
- the chromatography test paper will change color, and the color change can be used to determine whether the detection result is negative or positive.
- the accommodating shell 11 includes a first shell 111 and a second shell 112 , wherein the first shell 111 is disposed on the second shell 112 ; the functional chamber 2 and the first injection assembly 3 are disposed on the splint 12 and the first shell 111 .
- first shell 111 is provided with a first buckle 1111 and a support column 1112
- second shell 112 is provided with a buckle groove 1121
- the support column 1112 abuts against the inner wall of the second shell 112
- the first buckle 1111 cooperates with the buckle groove 1121.
- the support column 1112 provides support for the second shell 112 to facilitate assembly; the first buckle 1111 and the buckle groove 1121 cooperate to form a dead buckle, so as to achieve fixed assembly of the first shell 111 and the second shell 112.
- the microfluidic detection device 100 also includes a heating component, a temperature sensor (not shown) and a PCB board (not shown);
- the heating component includes a heating module 8 and a temperature control module 9, the heating module 8 is arranged on the side of the first shell 111 facing the second shell 112, the heating module 8 corresponds to the position of the first chamber 21 of the functional chamber 2, the temperature control module 9 and the PCB board are arranged on the first shell 111, the temperature sensor is arranged in the first chamber 21 of the functional chamber 2, and the heating component, the temperature sensor and the PCB board are electrically connected.
- the temperature sensor is an NTC probe
- the temperature control module 9 supplies power to the heating module 8 through a built-in battery or USB. After power is turned on, the internal indicator light turns on, and the heating module 8 starts to work and generate heat.
- the NTC probe senses the temperature required for the reaction, the program enters the insulation stage, and the biochemical reaction in the functional chamber 2 begins.
- a USB interface 1114 is provided on the first housing 111 , and the detection reaction can be controlled by whether the USB line is connected or not, or by a power switch.
- the first shell 111 is provided with a first mounting groove 1113 at the position of the functional chamber 2, and the second shell 112 is provided with a fixing groove 1122 that cooperates with the first mounting groove 1113, and the upper end of the fixing groove 1122 is installed in the first mounting groove 1113, and the fixing groove 1122 is provided with thermal insulation cotton (not shown) to ensure the thermal insulation effect of the functional chamber 2.
- the first shell 111 is also provided with a second mounting groove 1117, and the second mounting groove 1117 is provided with a vibration motor (not shown), and the vibration motor is controlled by a PCB board. After power is turned on, the motor vibrates at a certain frequency, and the vibration motor can enhance the mixing effect of the reagent.
- the first shell 111 is provided with a second buckle 1115 and a positioning structure 1116 , and the PCB board is installed on the first shell 111 through the second buckle 1115 and the positioning structure 1116 .
- the nucleic acid detection device includes a quantitative sample addition device 200 and the microfluidic detection device 100 as described above;
- the quantitative sample addition device 200 includes a cylinder 201, a liquid storage tube 205, a tube cover 206 and a piston rod 207;
- the cylinder 201 includes a storage chamber 202 and an active chamber 203 that are interconnected, and the cylinder wall of the cylinder 201 is provided with a liquid inlet 204 that is connected to the active chamber 203, and the liquid storage tube 205 is arranged at the liquid inlet 204;
- one end of the piston rod 207 passes through the active chamber 203, and the other end of the piston rod 207 is used to seal the liquid inlet 204 and is slidably arranged in the active chamber 203;
- the tube cover 206 is movably connected to one end of the cylinder 201 away from the piston rod 207, and is used to seal the storage chamber 202;
- the tube cover 206 is connected to
- a quantitative sample addition device 200 provided in an embodiment of the present application is as follows: first, a quantitative first liquid is pre-loaded in a storage chamber 202, and a quantitative second liquid is pre-loaded in a liquid storage tube 205; when sampling, the storage chamber 202 is placed upward, and the tube cover 206 is unscrewed.
- the sampled nasal swab or throat swab is broken in the liquid storage tube 205, and the sample is stored in the storage chamber 202 pre-loaded with the first liquid; then the upper tube cover 206 is tightened to seal the storage chamber 202, and a biological reaction is carried out between the first liquid and the sample; then, the piston rod 207 is moved in a direction away from the storage chamber 202, so that the piston rod 207 cancels the seal on the liquid inlet 204, and the quantitative sample addition device 200 is shaken to make the second liquid in the liquid storage tube 205 flow out from the liquid inlet 204 and enter the active chamber 203.
- the second liquid is mixed with the first liquid in the storage chamber 202 in the active chamber 203. If the first liquid does not fill the storage chamber 202 , the second liquid flows into the storage chamber 202 and mixes with the first liquid in the storage chamber 202 . The first liquid after the second liquid has undergone biological reaction with the sample undergoes biological reaction again to obtain a nucleic acid amplification reaction solution.
- the quantitative sampling device 200 is connected to the first sampling component 3 of the microfluidic detection device 100, and the first sampling component 3 of the microfluidic detection device 100 passes through the tube cover 206 and is connected to the storage chamber 202; then, the piston rod 207 is moved toward the storage chamber 202, and the piston rod 207 pushes the nucleic acid amplification reaction liquid in the cylinder 201 into the microfluidic detection device 100, thereby realizing pressure sampling of the microfluidic detection device 100.
- the storage chamber 202 is used for storing the first liquid and the sample. After sampling, the sample can be directly placed in the storage chamber 202 for biological reaction, which reduces the steps in the detection process where the operator needs to externally extract a quantitative first liquid to perform biological reaction with the sample.
- the liquid storage tube 205 is integrated at the liquid inlet 204 on the side wall of the cylinder 201. In the initial state, the liquid inlet 204 is sealed by the piston rod 207 to prevent the second liquid pre-installed in the liquid storage tube 205 from entering the storage chamber 202.
- the quantitative sample addition device 200 is shaken to mix the second liquid with the first liquid after the sample undergoes biological reaction, which again reduces the steps in the detection process where the operator needs to externally extract a quantitative second liquid.
- the piston rod 207 applies pressure to the mixed liquid in the cylinder 201 , and the volume of the mixed liquid is quantitatively measured by controlling the moving distance of the piston rod 207 in the active cavity 203 toward the storage cavity 202 , thereby finally achieving quantitative pressure injection of the microfluidic detection device 100 .
- the present application does not need to perform multiple pipetting from the outside, but the loading of the second liquid and the loading of the mixed liquid can be achieved through the movement of the piston rod 207, thereby avoiding the use of complex and bulky instruments and equipment, reducing external pipetting operations, simplifying the operation, improving detection efficiency, and improving flexibility. It does not require professional training and learning and can be operated, thus realizing portable detection; the present application can accurately control the volume of the sample loading by controlling the moving distance of the piston rod 207 in the active cavity 203 toward the storage cavity 202, thereby realizing precise control of sample loading and detection, and can load a variety of different biological samples. It has a very wide range of applications and is suitable for rapid detection and home self-testing. The entire reaction process of the device is sealed throughout, and there is no need to open the cover for sample loading, thereby avoiding aerosol contamination during nucleic acid amplification.
- the microfluidic detection device 100 provided in this embodiment separates the addition of nucleic acid amplification samples and the dilution of the reaction solution through the first injection component 3 and the second injection component 4, thereby realizing precise control of the addition of samples and the detection, and has the advantages of simple operation, safety and reliability, high detection efficiency, high sensitivity, and low sample consumption; the addition of nucleic acid amplification samples can detect a variety of different biological samples and has a very wide range of applications.
- the water absorption of the result display component 7 is controlled by the fluid quantitative pool 5, and the liquid in the fluid quantitative pool 5 is slowly chromatographed to the result display component 7 through the capillary adsorption component 6, thereby achieving the effect of accurately controlling the water absorption on the test strip.
- the first liquid pre-installed in the storage chamber 202 of the cylinder 201 is a biological reaction reagent, such as a nucleic acid lysis solution, through which the viral nucleic acid in the sample is released and purified.
- the second liquid pre-installed in the storage tube 205 is a biological reaction reagent, such as a diluent, through which The second liquid dilutes the liquid after the first liquid and the viral nucleic acid react.
- the amount of the first liquid pre-loaded in the storage chamber 202 can be between 50ul and 5ml, and the size of the first liquid storage volume can be adjusted according to different biological reactions.
- the amount of the second liquid pre-loaded in the storage tube 205 can be determined according to the biological reaction, which is not limited in the present application.
- the tube cover 206 includes a cover body (not shown) and a sealing film (not shown), the cover body is hollow in the middle away from one end of the piston rod 207, the cover body is threadedly connected or interference fit with the cylinder 201, and the sealing film is arranged in the hollow part in the middle of the cover body.
- the quantitative sampling device 200 when the quantitative sampling device 200 is connected to the microfluidic detection device 100, there is no need to remove the tube cover 206 from the cylinder 201.
- the first sampling component 3 of the microfluidic detection device 100 passes through the sealing film and the storage chamber 202 to circulate, thereby realizing the sampling of the microfluidic detection device 100, thereby reducing the number of operating steps.
- the cover body is annular and is provided with an annular connecting groove, which is threadedly connected to the end of the cylinder 201 , thereby improving the sealing performance of the storage cavity 202 in the cylinder 201 .
- the sealing film is made of composite aluminum film, rubber or silicone.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
属于医学检测技术领域,涉及一种微流控检测装置以及核酸检测设备。所述微流控检测装置包括:外壳,所述外壳内设有功能腔室、第一进样组件、第二进样组件、流体定量池、毛细吸附件以及结果显示组件;所述第一进样组件和所述第二进样组件均与所述功能腔室连通,所述功能腔室与所述流体定量池连通,所述流体定量池通过所述毛细吸附件与所述结果显示组件连通,所述结果显示组件用于显示检测结果。通过流体定量池控制结果显示组件的吸水量,并通过毛细吸附件使流体定量池内的液体缓慢层析到结果显示组件,从而实现精确控制试纸条上的吸水量的效果。
Description
本申请要求申请日为2023年02月02日、申请号为202310077729.8,发明名称为“一种微流控检测装置以及核酸检测设备”的中国专利申请的优先权,以及申请日为2023年02月02日、申请号为202320147893.7,发明名称为“一种微流控检测装置以及核酸检测设备”的中国专利申请的优先权,此两件中国专利申请的全部内容通过用结合在本申请中。
本申请涉及医学检测技术领域,更具体地,涉及一种微流控检测装置以及核酸检测设备。
随着科学技术的发展,分子诊断技术已广泛应用于流行病调查、传染病诊断、食品卫生检查等方方面面,相应的也出现了一系列检测仪器,如恒温扩增仪,PCR仪已逐渐取代传统涂片或镜检的方式。
目前的核酸提取和纯化、核酸扩增、核酸分子杂交等步骤都是分开进行的,如提取核酸用的样本制备仪、核酸提取仪、扩增用的PCR仪等仪器设备需要分开进行。整个核酸检测主要包括以下步骤:手工提取样品或手动将样品加入全自动核酸提取仪提取核酸并纯化,人工把纯化之后的核酸溶液转移至核酸扩增仪器,利用核酸扩增仪对核酸进行扩增,最后将扩增产物转移至全自动进行分析。整个检测过程所需设备复杂,体积庞大,检测效率低,灵活性差,且仪器设备昂贵,导致整个操作过程繁杂,需要专业水平较高的人员来操作,又由于检测需要由熟练的技术人员来操作,故而不能实现家庭或其它场所的便携式检测。
发明内容
本申请提供一种微流控检测装置以及核酸检测设备,用于解决现有技术中核酸检测过程繁琐,操作复杂,需要专业人员来完成检测的技术问题。
为了解决上述技术问题,本申请提供一种微流控检测装置,采用了如下所述的技术方案:
一种微流控检测装置,包括:外壳,所述外壳内设有功能腔室、第一进样组件、第二进样组件、流体定量池、毛细吸附件以及结果显示组件;所述第一进样组件和所述第二进样组件均与所述功能腔室连通,所述功能腔室与所述流体定量池连通,所述流体定量池通过所述毛细吸附件与所述结果显示组件连通,所述结果显示组件用于显示检测结果。
进一步地,所述外壳包括容置壳、夹板和顶板,所述夹板设于所述容置壳上,所述顶板设于所述夹板上;
所述功能腔室设于所述容置壳和所述夹板上;
所述第一进样组件设于所述容置壳和所述夹板上,或者所述第一进样组件设于所述夹板上,所述第二进样组件设于所述顶板上;
所述流体定量池设于所述夹板远离所述容置壳的一面;
所述毛细吸附件设于所述顶板朝向所述夹板的一面,所述毛细吸附件与所述流体定量池连通;
所述结果显示组件设于所述顶板和所述夹板上。
进一步地,所述毛细吸附件包括第一吸附板和第二吸附板;所述第一吸附板和所述第二吸附板间隔设于所述顶板朝向所述夹板的一面,所述第一吸附板和所述第二吸附板之间的间隙形成吸附槽;所述第一吸附板和所述第二吸附板的一端向下延伸至所述流体定量池,所述第一吸附板和所述第二吸附板的另一端与所述结果显示组件抵接。
进一步地,所述顶板表面为亲水层;或者,所述毛细吸附件表面为亲水层。
进一步地,所述功能腔室包括第一腔室和第二腔室,所述第一腔室设于所述容置壳上,所述第二腔室设于所述夹板上;所述第一进样组件与所述第一腔室连通,所述第二进样组件与所述第二腔室连通,所述第二腔室与所述第一腔室和所述流体定量池连通。
进一步地,所述第二腔室包括第一连通腔、第二连通腔和第三连通腔;所述第二进样组件靠近所述第一连通腔、第二连通腔和第三连通腔的一端设有第二支流,所述第二支流与所述第一连通腔、第二连通腔和第三连通腔的数量对应且分别连通;
所述第一腔室包括第一反应腔、第二反应腔和废液池;所述第一进样组件靠近所述第一反应腔、第二反应腔和废液池的一端设有第一支流,所述第一支流与所述第一反应腔、第二反应腔和废液池的数量对应且分别连通;
所述第一连通腔与所述第一反应腔连通,所述第二连通腔与所述第二反应腔连通,所述第三连通腔与所述废液池连通,所述第一连通腔和第二连通腔与所述流体定量池连通。
进一步地,所述流体定量池的数量为两个,两个所述流体定量池分别与所述第一连通腔和所述第二连通腔连通;和/或,
所述第一反应腔、第二反应腔和废液池的总数量为偶数;和/或,
所述第一反应腔的体积和与所述第二反应腔的体积和一致。
进一步地,所述第二腔室内设有挡板,所述挡板延伸至所述第一腔室内,且与所述第一腔室的底部间隔设置;和/或,
所述夹板上设有混合通道,所述混合通道与所述流体定量池和第二腔室连通。
进一步地,所述第二进样组件包括第二刺破结构、第二进样孔、第二微流道以及液囊;所述第二刺破结构设于所述顶板远离所述夹板的一面,所述
第二进样孔贯穿所述顶板且位于所述第二刺破结构内,所述第二微流道设于所述顶板朝向所述夹板的一面,所述第二微流道与所述第二进样孔和功能腔室连通,所述液囊设于顶板上且位于所述第二刺破结构的上方。
进一步地,所述第一进样组件包括第一刺破结构、对准结构、第一进样孔和第一微流道;所述第一刺破结构和所述对准结构设于所述夹板远离所述容置壳的一面,所述对准结构上设有定位槽,所述第一刺破结构位于所述对准结构内,所述第一进样孔贯穿所述夹板且位于所述第一刺破结构内;
所述第一微流道设于所述容置壳朝向所述夹板的一面,或者所述第一微流道设于所述夹板朝向所述容置壳的一面,所述第一微流道与所述第一进样孔和功能腔室连通;所述顶板上设有安装孔,所述第一刺破结构和对准结构位于所述安装孔内。
进一步地,所述结果显示组件包括容置槽、观察窗和检测件;所述容置槽设于所述夹板远离所述容置壳的一面,所述检测件设于所述容置槽内,所述观察窗设于所述顶板上且与所述容置槽对应,所述毛细吸附件的一端与所述检测件抵接。
进一步地,所述容置壳包括第一壳体和第二壳体,所述第一壳体设于所述第二壳体上;所述功能腔室、所述第一进样组件设于所述夹板和第一壳体上。
进一步地,所述微流控检测装置还包括加热组件、温度传感器和PCB板;所述加热组件包括发热模块和温控模块,所述发热模块设于所述第一壳体朝向所述第二壳体的一面,所述发热模块与所述功能腔室的位置对应,所述温控模块和所述PCB板设于所述第一壳体上,所述温度传感器设于所述功能腔室内,所述加热组件、所述温度传感器与所述PCB板电连接。
为了解决上述技术问题,本申请提供一种核酸检测设备,采用了如下所述的技术方案:
一种核酸检测设备,包括定量加样装置以及如上所述的微流控检测装置;
所述微流控检测装置包括:外壳,所述外壳内设有功能腔室、第一进样组件、第二进样组件、流体定量池、毛细吸附件以及结果显示组件;所述第一进样组件和所述第二进样组件均与所述功能腔室连通,所述功能腔室与所述流体定量池连通,所述流体定量池通过所述毛细吸附件与所述结果显示组件连通,所述结果显示组件用于显示检测结果;
所述定量加样装置包括筒体、储液管、管盖和活塞杆;所述筒体包括互相连通的储存腔和活动腔,所述筒体的筒壁开设有连通所述活动腔的进液口,所述储液管设于所述进液口处;所述活塞杆的一端穿出所述活动腔,所述活塞杆的另一端用于密封所述进液口并滑设于所述活动腔内;所述管盖与所述筒体远离所述活塞杆的一端活动连接,用于密封所述储存腔;所述管盖与所述第一进样组件连接。
进一步地,所述外壳包括容置壳、夹板和顶板,所述夹板设于所述容置壳上,所述顶板设于所述夹板上;
所述功能腔室设于所述容置壳和所述夹板上;
所述第一进样组件设于所述容置壳和所述夹板上,或者所述第一进样组件设于所述夹板上,所述第二进样组件设于所述顶板上;
所述流体定量池设于所述夹板远离所述容置壳的一面;
所述毛细吸附件设于所述顶板朝向所述夹板的一面,所述毛细吸附件与所述流体定量池连通;
所述结果显示组件设于所述顶板和所述夹板上。
进一步地,所述毛细吸附件包括第一吸附板和第二吸附板;
所述第一吸附板和所述第二吸附板间隔设于所述顶板朝向所述夹板的一面,所述第一吸附板和所述第二吸附板之间的间隙形成吸附槽;所述第一吸附板和所述第二吸附板的一端向下延伸至所述流体定量池,所述第一吸附板和所述第二吸附板的另一端与所述结果显示组件抵接。
进一步地,所述顶板表面为亲水层;或者,所述毛细吸附件表面为亲水层。
进一步地,所述功能腔室包括第一腔室和第二腔室,所述第一腔室设于所述容置壳上,所述第二腔室设于所述夹板上;
所述第一进样组件与所述第一腔室连通,所述第二进样组件与所述第二腔室连通,所述第二腔室与所述第一腔室和所述流体定量池连通。
进一步地,所述第二腔室包括第一连通腔、第二连通腔和第三连通腔;所述第二进样组件靠近所述第一连通腔、第二连通腔和第三连通腔的一端设有第二支流,所述第二支流与所述第一连通腔、第二连通腔和第三连通腔的数量对应且分别连通;
所述第一腔室包括第一反应腔、第二反应腔和废液池;所述第一进样组件靠近所述第一反应腔、第二反应腔和废液池的一端设有第一支流,所述第一支流与所述第一反应腔、第二反应腔和废液池的数量对应且分别连通;
所述第一连通腔与所述第一反应腔连通,所述第二连通腔与所述第二反应腔连通,所述第三连通腔与所述废液池连通,所述第一连通腔和第二连通腔与所述流体定量池连通。
进一步地,所述流体定量池的数量为两个,两个所述流体定量池分别与所述第一连通腔和所述第二连通腔连通;和/或,
所述第一反应腔、第二反应腔和废液池的总数量为偶数;和/或,
所述第一反应腔的体积和与所述第二反应腔的体积和一致。
与现有技术相比,本申请主要有以下有益效果:
通过第一进样组件和第二进样组件进行两次进样,实现了精准操控,具有操作简单,安全可靠,检测效率高,灵敏度高,样品消耗少等优点;可对多种不同的生物样本进行检测,具有十分广泛的适用范围。
在本实施例中,通过流体定量池控制结果显示组件的吸水量,并通过毛细吸附件使流体定量池内的液体缓慢层析到结果显示组件,从而实现精确控制试纸条上的吸水量的效果。
为了更清楚地说明本申请的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的一种核酸检测设备的结构示意图;
图2是图1中顶板的结构示意图;
图3是图1中夹板的结构示意图;
图4是图3另一个视角的结构示意图;
图5是图1中第一壳体的结构示意图;
图6是图5另一个视角的结构示意图;
图7是图1中第二壳体的结构示意图。
附图标记:
100、微流控检测装置;
1、外壳;11、容置壳;111、第一壳体;1111、第一卡扣;1112、支撑
柱;1113、第一安装槽;1114、usb接口;1115、第二卡扣;1116、定位结构;1117、第二安装槽;112、第二壳体;1121、卡扣凹槽;1122、固定槽;12、夹板;121、混合通道;13、顶板;131、安装孔;
2、功能腔室;21、第一腔室;211、第一反应腔;212、第二反应腔;
213、废液池;22、第二腔室;221、第一连通腔;222、第二连通腔;223、第三连通腔;23、挡板;
3、第一进样组件;31、第一刺破结构;32、对准结构;321、定位槽;
33、第一进样孔;34、第一微流道;35、第一支流;
4、第二进样组件;41、第二刺破结构;42、第二进样孔;43、第二微
流道;44、液囊;45、第二支流;
5、流体定量池;6、毛细吸附件;61、第一吸附板;62、第二吸附板;
63、吸附槽;7、结果显示组件;71、容置槽;72、观察窗;8、发热模块;9、温控模块;
200、定量加样装置;
201、筒体;202、储存腔;203、活动腔;204、进液口;205、储液
管;206、管盖;207、活塞杆。
100、微流控检测装置;
1、外壳;11、容置壳;111、第一壳体;1111、第一卡扣;1112、支撑
柱;1113、第一安装槽;1114、usb接口;1115、第二卡扣;1116、定位结构;1117、第二安装槽;112、第二壳体;1121、卡扣凹槽;1122、固定槽;12、夹板;121、混合通道;13、顶板;131、安装孔;
2、功能腔室;21、第一腔室;211、第一反应腔;212、第二反应腔;
213、废液池;22、第二腔室;221、第一连通腔;222、第二连通腔;223、第三连通腔;23、挡板;
3、第一进样组件;31、第一刺破结构;32、对准结构;321、定位槽;
33、第一进样孔;34、第一微流道;35、第一支流;
4、第二进样组件;41、第二刺破结构;42、第二进样孔;43、第二微
流道;44、液囊;45、第二支流;
5、流体定量池;6、毛细吸附件;61、第一吸附板;62、第二吸附板;
63、吸附槽;7、结果显示组件;71、容置槽;72、观察窗;8、发热模块;9、温控模块;
200、定量加样装置;
201、筒体;202、储存腔;203、活动腔;204、进液口;205、储液
管;206、管盖;207、活塞杆。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上
述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了使本技术领域的人员更好地理解本申请方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供一种微流控检测装置100,如图1至图3所示,所述微流控检测装置100包括:外壳1,所述外壳1内设有功能腔室2、第一进样组件3、第二进样组件4、流体定量池5、毛细吸附件6以及结果显示组件7;所述第一进样组件3和所述第二进样组件4均与所述功能腔室2连通,所述功能腔室2与所述流体定量池5连通,所述流体定量池5通过所述毛细吸附件6与所述结果显示组件7连通,所述结果显示组件7用于显示检测结果。
本实施例提供的微流控检测装置100,第一进样组件3和第二进样组件4可分别进行核酸扩增加样和稀释剂加样,核酸扩增反应液通过第一进样组件3流入功能腔室2,核酸扩增反应液与功能腔室2中的预装的反应试剂发生生化反应;稀释剂通过第二进样组件4流入功能腔室2,液体装满功能腔室2后流入流体定量池5,再通过毛细吸附件6使液体缓慢层析到结果显示组件7,最后通过结果显示组件7查看生化反应结果。
本实施例提供的微流控检测装置100通过第一进样组件3和第二进样组件4将核酸扩增加样和反应液的稀释分开进行,实现了加样和检测的精准操控,具有操作简单,安全可靠,检测效率高,灵敏度高,样品消耗少等优点;核酸扩增加样可对多种不同的生物样本进行检测,具有十分广泛的适用范围。
在本实施例中,通过流体定量池5控制结果显示组件7的吸水量,并通过毛细吸附件6使流体定量池5内的液体缓慢层析到结果显示组件7,从而实现精确控制试纸条上的吸水量的效果。
在本实施例中,整个反应过程全程密封,无需开盖加样,避免了核酸扩增过程中的气溶胶污染。
需要说明的是,功能腔室2为检测试剂发生生物化学反应的腔室,不受检测类型和检测对象限制;功能腔室2中的预装的反应试剂指生化检测时所用的试剂物料,通常预置在功能腔室2之内,根据不同的检测靶标,物料所含成分和预装的方法可以有多种方式,根据物料所需环境来确定,例如冻干球、棉片等。
如图1至图7所示,进一步地,所述外壳1包括容置壳11、夹板12和顶板13,所述夹板12设于所述容置壳11上,所述顶板13设于所述夹板12上;
所述功能腔室2设于所述容置壳11和所述夹板12上;
所述第一进样组件3设于所述容置壳11和所述夹板12上,或者所述第一进样组件3设于所述夹板12上,所述第二进样组件4设于所述顶板13上;
所述流体定量池5设于所述夹板12远离所述容置壳11的一面;
所述毛细吸附件6设于所述顶板13朝向所述夹板12的一面,所述毛细吸附件6与所述流体定量池5连通;
所述结果显示组件7设于所述顶板13和所述夹板12上。
在本实施例中,将外壳1划分为容置壳11、夹板12和顶板13,使第一进样组件3和第二进样组件4分隔设置,使核酸扩增加样和反应液的稀释分开进行,实现了加样和检测的精准操控。
在本实施例中,所述流体定量池5设于所述夹板12远离所述容置壳11的一面,所述毛细吸附件6设于所述顶板13朝向所述夹板12的一面并与所述流体定量池5连通,位置设置合理,从而减少微流控检测装置100的体积,且保证了流体定量池5内的液体可以缓慢层析到结果显示组件7上,从而实现精确控制试纸条上的吸水量的效果。
进一步地,所述顶板13和夹板12之间贴合形成密封结构,所述顶板13和夹板12通过激光焊接、超声焊接、热压键合、等离子体键合、溶剂键合或胶粘接键合的方式连接。
进一步地,所述容置壳11和夹板12之间贴合形成密封结构,所述容置壳11和夹板12通过过盈扣合或胶粘接键合等方式连接。
如图2所示,进一步地,所述毛细吸附件6包括第一吸附板61和第二吸附板62;所述第一吸附板61和所述第二吸附板62间隔设于所述顶板13朝向所述夹板12的一面,所述第一吸附板61和所述第二吸附板62之间间隙形成吸附槽63;所述第一吸附板61和所述第二吸附板62的一端向下延伸至所述流体定量池5,所述第一吸附板61和所述第二吸附板62的另一端与所述结果显示组件7抵接。
在本实施例中,通过间隔设置的第一吸附板61和第二吸附板62形成吸附槽63,以避免在顶板13上开槽,减少加工难度;设置第一吸附板61和第二吸附板62的一端向下延伸至所述流体定量池5,则确保吸附槽63可以将流体定量池5中的液体吸附上来,且第一吸附板61和第二吸附板62的另一端与结果显示组件7抵接,可以在液体装满功能腔室2后流入流体定量池5时,通过吸附槽63使液体缓慢层析到结果显示组件7。
具体地,所述第一吸附板61和第二吸附板62的一端向下延伸至所述流体定量池5的底部。以保证随着流体定量池5中的液体减少,吸附槽63仍旧可以将流体定量池5中的液体吸附上来;由于吸附槽63由间隔设置的第一吸附板61和第二吸附板62形成,故而第一吸附板61和第二吸附板62的一端向下延伸至流体定量池5的底部也可以进行吸附。
在本实施例中,所述吸附槽63的宽度为10μm-1.5mm。即所述第一吸附板61和第二吸附板62之间的间隙为10μm-1.5mm;所述吸附槽63的宽度可
以是10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、1mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm等中的任一个或任意两个之间的范围,本申请在此不进行限制。
优选地,所述吸附槽63的宽度为10μm;所述吸附槽63的宽度越小,其毛细作用越佳。
进一步地,所述顶板13表面为亲水层;或者,所述毛细吸附件6表面为亲水层。在本实施例中,顶板13或毛细吸附件6的表面为亲水层,以确保流体定量池5中液体,可以通过毛细吸附件6缓慢层析到结果显示组件7中。
具体地,所述顶板13或所述毛细吸附件6由亲水材料制成;以使顶板13或毛细吸附件6的表面为亲水层。
具体地,所述亲水材料为聚丙烯(PP)或聚苯乙烯(PS)等,本申请在此不进行限制。
具体地,所述亲水材料的接触角在0-60度之间。
如图3至图6所示,进一步地,所述功能腔室2包括第一腔室21和第二腔室22,所述第一腔室21设于所述容置壳11上,所述第二腔室22设于所述夹板12上;所述第一进样组件3与所述第一腔室21连通,所述第二进样组件4与所述第二腔室22连通,所述第二腔室22与所述第一腔室21和所述流体定量池5连通。
在本实施例中,核酸扩增反应液通过第一进样组件3流入第一腔室21,核酸扩增反应液与第一腔室21中的预装的反应试剂发生生化反应;稀释剂通过第二进样组件4流入第二腔室22,由于第一腔室21与第二腔室22连通,使稀释剂与核酸扩增反应液混合,液体装满第一腔室21和第二腔室22后,从第二腔室22流向流体定量池5,再通过毛细吸附件6使液体缓慢层析到结果显示组件7,最后通过结果显示组件7查看生化反应结果。
在本实施例中,通过第一进样组件3和第二进样组件4将核酸扩增加样和反应液的稀释分开进行,实现了加样和检测的精准操控,并通过第一腔室21和第二腔室22实现核酸扩增反应液和稀释剂的混合。
进一步地,所述第一腔室21和第二腔室22通过激光焊接、超声焊接、热压键合、等离子体键合、溶剂键合或胶粘接键合的方式连接。
如图2至图6所示,进一步地,所述第二腔室22包括第一连通腔221、第二连通腔222和第三连通腔223;所述第二进样组件4靠近所述第一连通腔221、第二连通腔222和第三连通腔223的一端设有第二支流45,所述第二支流45与所述第一连通腔221、第二连通腔222和第三连通腔223的数量对应且分别连通;
所述第一腔室21包括第一反应腔211、第二反应腔212和废液池213;所述第一进样组件3靠近所述第一反应腔211、第二反应腔212和废液池213的一端设有第一支流35,所述第一支流35与所述第一反应腔211、第二反应腔212和废液池213的数量对应且分别连通;
所述第一连通腔221与所述第一反应腔211连通,所述第二连通腔222
与所述第二反应腔212连通,所述第三连通腔223与所述废液池213连通,所述第一连通腔221和第二连通腔222与所述流体定量池5连通。
在本实施例中,核酸扩增反应液通过第一进样组件3的第一支流35被分流至第一反应腔211、第二反应腔212和废液池213中,核酸扩增反应液与第一反应腔211、第二反应腔212中的预装的反应试剂发生生化反应,而流入废液池213中的核酸扩增反应液不参与反应;稀释剂通过第二进样组件4的第二支流45被分流至第一连通腔221、第二连通腔222和第三连通腔223,由于第一连通腔221与第一反应腔211连通、第二连通腔222与第二反应腔212连通、第三连通腔223与废液池213连通,使稀释剂与核酸扩增反应液混合,而流入第三连通腔223的稀释剂则进入废液池213中;当液体装满第一腔室21和第二腔室22后,从第一连通腔221和第二连通腔222流向流体定量池5,再通过毛细吸附件6使液体缓慢层析到结果显示组件7,最后通过结果显示组件7查看生化反应结果。
在本实施例中,通过废液池213使分流更加稳定和均匀,也可以存储多余的核酸扩增反应液和稀释剂,大量的核酸扩增反应液和稀释剂涌入流体定量池5,从而实现精确控制试纸条上的吸水量的效果。
如图3和图4所示,进一步地,所述流体定量池5的数量为两个,两个所述流体定量池5分别与所述第一连通腔221和所述第二连通腔222连通;以实现分流。
进一步地,所述第一反应腔211、第二反应腔212和废液池213的总数量为偶数,例如2、4、8、16…2n;以使第一进样组件3的第一支流35的分流更加稳定和均匀。
进一步地,所述第一反应腔211的体积和与所述第二反应腔212的体积和一致;以确保第一反应腔211内的液体量与第二反应腔212内的液体量一致,进而使分流更加稳定和均匀。
示例性地,第一反应腔211的数量为一个,第二反应腔212的数量为两个、废液池213的数量为一个,两个第二反应腔212的体积和与一个第一反应腔211的体积和一致,两个第二反应腔212与第二连通腔222连通,一个第一反应腔211与第一连通腔221连通。
示例性地,第一支流35和第二支流45为四个;四个第一支流35分别与一个第一反应腔211、两个第二反应腔212和一个废液池213连通;四个第二支流45中的两个与连通有两个第二反应腔212的第二连通腔222连通,剩余的两个第二支流45分别与第一连通腔221和第三连通腔223连通。
采用一分四取三的流道设计,核酸扩增反应液通过第一支流35流入一个第一反应腔211、两个第二反应腔212和一个废液池213中,使液体能够均匀一分三流入功能腔室2,分流更加稳定和均匀;稀释剂通过第二支流45流入第一连通腔221、第三连通腔223、以及连通有两个第二反应腔212的第二连通腔222中,使液体能够均匀一分三流入功能腔室2,分流更加稳定和均匀。
如图3和图4所示,进一步地,所述第二腔室22内设有挡板23,所述挡板23延伸至所述第一腔室21内,且与所述第一腔室21的底部间隔设置。
进一步地,所述夹板12上设有混合通道121,所述混合通道121与所述流体定量池5和第二腔室22连通。
在本实施例中,核酸扩增反应液通过第一进样组件3流入第一腔室21远离流体定量池5的一侧,核酸扩增反应液与第一腔室21中的预装的反应试剂发生生化反应,随着核酸扩增反应液的增多,核酸扩增反应液从挡板23与第一腔室21的底部空隙中,流入第一腔室21临近流体定量池5的一侧;稀释剂通过第二进样组件4流入第二腔室22远离流体定量池5的一侧,由于第一腔室21与第二腔室22连通,使稀释剂与核酸扩增反应液混合,随着稀释剂的增多,混合液体从挡板23与第一腔室21的底部空隙中流入第一腔室21临近流体定量池5的一侧,并充满第二腔室22临近流体定量池5的一侧;随后,混合液体从混合通道121流入流体定量池5,再通过毛细吸附件6使液体缓慢层析到结果显示组件7,最后通过结果显示组件7查看生化反应结果。
在本实施例中,挡板23避免稀释剂进入且充满第二腔室22后,未与核酸扩增反应液充分混合就流入混合通道121,在第一腔室21和第二腔室22内已经混合的液体进入混合通道121后进一步混合,两步混合后的反应液进入流体定量池5,若反应液未充分混匀就进入流体定量池5被毛细吸附件6层析到结果显示组件7,会导致检测精度差;设计挡板23和混合通道121可以提高核酸扩增反应液与稀释剂的混合效果,以提高检测精度。
在本实施例中,混合通道121避免液体的流速过快,导致核酸扩增反应液未与稀释剂充分混合就流入流体定量池5中,而未充分混合的液体通过混合通道121进入流体定量池5后,被毛细吸附件6层析到结果显示组件7,会导致检测精度差;混合通道121为核酸扩增反应液与稀释剂进一步提供混合时间且可以增强混合效果,以提高核酸扩增反应液与稀释剂的混合效果,从而提高检测精度。
如图1和图2所示,进一步地,所述第二进样组件4包括第二刺破结构41、第二进样孔42、第二微流道43以及液囊44;所述第二刺破结构41设于所述顶板13远离所述夹板12的一面,所述第二进样孔42贯穿所述顶板13且位于所述第二刺破结构41内,所述第二微流道43设于所述顶板13朝向所述夹板12的一面,所述第二微流道43与所述第二进样孔42和功能腔室2连通,所述液囊44设于顶板13上且位于所述第二刺破结构41的上方。
在本实施例中,液囊44中预装有稀释剂或其他液体。
在本实施例中,所述第二微流道43与所述第二腔室22连通。
在本实施例中,核酸扩增反应液通过第一进样组件3流入第一腔室21远离流体定量池5的一侧后,按压液囊44,使液囊44底部与第二刺破结构41接触,液囊44被刺破后流出稀释剂;在按压液囊44时,微流控检测装置
100中的空气被挤压,空气沿着第二微流道43进入与第二腔室22连通的第一腔室21中,第一腔室21中的核酸扩增反应液从挡板23与第一腔室21的底部空隙,冲入第一腔室21临近流体定量池5的一侧,并流入混合通道121中,实现了压力进样;与此同时,稀释剂通过第二进样孔42顺着顶板13下表面的第二微流道43,进入功能腔室2的第二腔室22远离流体定量池5的一侧,随着稀释剂的增多,稀释剂从挡板23与第一腔室21的底部空隙中流入第一腔室21临近流体定量池5的一侧,并充满第二腔室22临近流体定量池5的一侧;随后稀释剂与核酸扩增反应液在混合通道121中进行混合,并流入流体定量池5,再通过毛细吸附件6使液体缓慢层析到结果显示组件7,最后通过结果显示组件7查看生化反应结果。
在本实施例中,将液囊44集合在顶板13上,无需使用者额外准备稀释剂等液体,减少检测步骤,本装置检测过程全封闭,避免了核酸气溶胶污染。
在本实施例中,第二微流道43靠近所述第一连通腔221、第二连通腔222和第三连通腔223的一端与第二支流45连接。
如图1、3、4、5所示,进一步地,所述第一进样组件3包括第一刺破结构31、对准结构32、第一进样孔33和第一微流道34;所述第一刺破结构31和所述对准结构32设于所述夹板12远离所述容置壳11的一面,所述对准结构32上设有定位槽321,所述第一刺破结构31位于所述对准结构32内,所述第一进样孔33贯穿所述夹板12且位于所述第一刺破结构31内;
所述第一微流道34设于所述容置壳11朝向所述夹板12的一面,或者所述第一微流道34设于所述夹板12朝向所述容置壳11的一面,所述第一微流道34与所述第一进样孔33和功能腔室2连通;所述顶板13上设有安装孔131,所述第一刺破结构31和对准结构32位于所述安装孔131内。
在本实施例中,所述第一微流道34与所述第一腔室21连通。
在本实施例中,将用于加样的试剂管与对准结构32对准并插入,例如将下文提及的装有样品的定量加样装置200与对准结构32对准并插入,刺破结构刺破试剂管或定量加样装置200,定位槽321为试剂管或定量加样装置200提供支撑以及定位,在压力作用下液体流出并通过第一进样孔33进入容置壳11上的第一微流道34中,并顺着第一微流道34进入功能腔室2的第一腔室21,液体与功能腔室2中的预装试剂发生生化反应,可选的,液体为核酸扩增反应液。
具体地,所述第一微流道34设于所述容置壳11朝向所述夹板12的一面。
在本实施例中,第一微流道34靠近所述第一反应腔211、第二反应腔212和废液池213的一端与第一支流35连接。
在一些实施例中,所述第一微流道34和第二微流道43的宽度为0.005-50mm,所述第一微流道34和第二微流道43的深度为0.005-50mm。可以理解的,所述第一微流道34和第二微流道43的宽度可以为0.005mm、0.05mm、0.5mm、5mm、50mm,或者上述相邻两个数值之间的数值,同样的,所述第一
微流道34和第二微流道43的深度可以为0.005mm、0.05mm、0.5mm、5mm、50mm,或者上述相邻两个数值之间的数值。
更优选的,所述第一微流道34和第二微流道43的宽度为0.01-10mm,所述第一微流道34和第二微流道43的深度为0.01-10mm。可以理解的,所述第一微流道34和第二微流道43的宽度可以为0.01mm、0.05mm、0.1mm、0.5mm、1mm、5mm、10mm,或者上述相邻两个数值之间的数值,同样的,所述第一微流道34和第二微流道43的深度可以为0.01mm、0.05mm、0.1mm、0.5mm、1mm、5mm、10mm,或者上述相邻两个数值之间的数值。
在一些实施例中,所述第一微流道34和第二微流道43通过机床加工、激光烧蚀、3D打印、注塑成型或化学刻蚀加工而成。
如图2至图4所示,进一步地,所述结果显示组件7包括容置槽71、观察窗72和检测件(未示出);所述容置槽71设于所述夹板12远离所述容置壳11的一面,所述检测件设于所述容置槽71内,所述观察窗72设于所述顶板13上且与所述容置槽71对应,所述毛细吸附件6的一端与所述检测件抵接。
所述检测件包括层析试纸和/或可见染料检测试纸和/或光学检测仪和/或电信号检测仪。可以根据需求设计不同的检测方法,核酸检测方法包括杂交荧光、等温扩增、实时荧光PCR、高分辨率熔解曲线、电化学核酸适配体等。可以理解的,可根据检测方法设计相应的检测件,无论是检测方法还是检测设备不受限制,只要反应后试剂显示出结果的产品都适用于本发明。
在一些实施例中,所述检测件包括层析试纸,层析试纸用来呈现检测结果,以固定有检测线和质控线的条状纤维层析材料为固定相,测试液为流动相,荧光标记抗体或抗原固定于条状纤维层,通过毛细管作用使待分析物在层析条上移动和捕获从而进行检测;层析试纸预先安装在容置槽71内,容置槽71将层析试纸前后左右限位固定,顶板13与夹板12配合压住层析试纸的上表面,并使毛细吸附件6的一端与层析试纸抵接,实现层析试纸的固定。
在一些实施例中,观察窗72位于顶板13的上表面,当微流控芯片核酸检测方法及其装置完成组装后,观察窗72位于容置槽71的上方,与层析试纸显色区域一一对应。当使用微流控检测装置100检测时,可在观察窗72实现检测结果的观察,反应完成后,层析试纸会变色,通过颜色变化判断检测结果是阴性还是阳性。
如图1、5、6、7所示,进一步地,所述容置壳11包括第一壳体111和第二壳体112,所述第一壳体111设于所述第二壳体112上;所述功能腔室2、所述第一进样组件3设于所述夹板12和第一壳体111上。
进一步地,所述第一壳体111上设有第一卡扣1111和支撑柱1112,所述第二壳体112上设有卡扣凹槽1121,所述支撑柱1112与所述第二壳体112的内壁抵接,所述第一卡扣1111与所述卡扣凹槽1121配合。支撑柱1112为第二壳体112提供支撑,以方便装配;第一卡扣1111和卡扣凹槽1121配合形成死扣,实现第一壳体111和第二壳体112的固定组装。
如图1、6、7所示,进一步地,所述微流控检测装置100还包括加热组件、温度传感器(未示出)和PCB板(未示出);所述加热组件包括发热模块8和温控模块9,所述发热模块8设于所述第一壳体111朝向所述第二壳体112的一面,所述发热模块8与所述功能腔室2的第一腔室21的位置对应,所述温控模块9和所述PCB板设于所述第一壳体111上,所述温度传感器设于所述功能腔室2的第一腔室21内,所述加热组件、所述温度传感器与所述PCB板电连接。
可选的,温度传感器为ntc探头,温控模块9通过内置电池或usb给发热模块8供电,通电后内部指示灯亮,发热模块8开始工作发热,当ntc探头感应到反应所需温度时,程序进入保温,功能腔室2的生物化学反应开始进行。
进一步地,第一壳体111上设有usb接口1114,可通过usb线的连接与否来控制检测反应的进行,或者,通过电源开关来控制检测反应的进行。
进一步地,所述第一壳体111位于所述功能腔室2的位置设有第一安装槽1113,所述第二壳体112上设有与所述第一安装槽1113配合的固定槽1122,所述固定槽1122的上端安装于第一安装槽1113内,所述固定槽1122内设置有保温棉(未示出),保证了功能腔室2的保温效果,所述第一壳体111上还设有第二安装槽1117,所述第二安装槽1117内设有震动马达(未示出),所述震动马达通过PCB板控制,通电后马达按一定频率震动,震动马达可以增强试剂的混匀效果。
所述第一壳体111设有第二卡扣1115和定位结构1116,所述PCB板通过所述第二卡扣1115和定位结构1116安装于所述第一壳体111上。
本申请实施例还提供一种核酸检测设备,如图1所示,所述核酸检测设备包括定量加样装置200以及如上所述的微流控检测装置100;所述定量加样装置200包括筒体201、储液管205、管盖206和活塞杆207;所述筒体201包括互相连通的储存腔202和活动腔203,所述筒体201的筒壁开设有连通所述活动腔203的进液口204,所述储液管205设于所述进液口204处;所述活塞杆207的一端穿出所述活动腔203,所述活塞杆207的另一端用于密封所述进液口204并滑设于所述活动腔203内;所述管盖206与所述筒体201远离所述活塞杆207的一端活动连接,用于密封所述储存腔202;所述管盖206与所述第一进样组件3连接。
本申请实施例提供的一种定量加样装置200的工作原理为:首先,储存腔202内预装有定量的第一液体,储液管205内预装有定量的第二液体;采样时,将储存腔202朝上放置,旋开管盖206,采样完成后,将采样后的鼻拭子或咽拭子折断在储液管205中,将样本存放在预装了第一液体的储存腔202内;然后旋紧上管盖206,使储存腔202密封,通过第一液体与样本进行生物反应;再接着,将活塞杆207向远离储存腔202的方向移动,使活塞杆207取消对进液口204的密封,对定量加样装置200进行摇晃,使储液管205中的第二液体从进液口204处流出并进入活动腔203,若第一液体充满储存腔202,则第二液体在活动腔203中与储存腔202内的第一液体混合,
若第一液体未充满储存腔202,则第二液体流入储存腔202中并与储存腔202内的第一液体混合,第二液体与样本进行生物反应后的第一液体再次进行生物反应,得到核酸扩增反应液。
再接着,将定量加样装置200与微流控检测装置100的第一进样组件3连接,微流控检测装置100的第一进样组件3贯穿管盖206与储存腔202连通;接着,将活塞杆207朝向储存腔202的方向移动,活塞杆207推动筒体201内的核酸扩增反应液进入微流控检测装置100内,实现微流控检测装置100压力进样。
本申请实施例提供的一种核酸检测设备的有益效果为:储存腔202内用于第一液体和存放样本,采样后直接将样本放置在储存腔202内即可进行生物反应,减少了检测过程中需要操作人员在外部抽取定量的第一液体与样本进行生物反应的步骤。将储液管205集成在筒体201侧壁的进液口204处,初始状态下通过活塞杆207密封进液口204,防止储液管205内预装的第二液体进入储存腔202内,当活塞杆207向远离储存腔202的方向移动,取消对进液口204的密封时,对定量加样装置200进行摇晃,使第二液体与样本进行生物反应后的第一液体进行混合,再次减少检测过程中需要操作人员在外部抽取定量的第二液体的步骤。通过活塞杆207为筒体201内的混合液体施加压力,并通过控制活塞杆207在活动腔203中朝向储存腔202的移动距离实现定量混合液体的体积,最终实现微流控检测装置100的定量压力进样。
在对微流控检测装置100的整个加样过程,本申请无需从外部多次进行移液,而通过活塞杆207的移动即可实现第二液体的加样以及混合液体的加样,避免使用复杂且体积庞大的仪器设备,减少与外部进行移液操作使得操作简单,提升了检测效率,提高了灵活性,无需专业的培训和学习及可上手操作,实现了便携式检测;本申请通过控制活塞杆207在活动腔203中朝向储存腔202的移动距离能够精确控制加样量的体积大小,实现了加样和检测的精准操控,可对多种不同的生物样本进行加样,具有十分广泛的适用范围,适合快速检测和家庭自检,本设备整个反应过程全程密封,无需开盖加样,避免了核酸扩增过程中的气溶胶污染。
本实施例提供的微流控检测装置100通过第一进样组件3和第二进样组件4将核酸扩增加样和反应液的稀释分开进行,实现了加样和检测的精准操控,具有操作简单,安全可靠,检测效率高,灵敏度高,样品消耗少等优点;核酸扩增加样可对多种不同的生物样本进行检测,具有十分广泛的适用范围。
在本实施例中,通过流体定量池5控制结果显示组件7的吸水量,并通过毛细吸附件6使流体定量池5内的液体缓慢层析到结果显示组件7,从而实现精确控制试纸条上的吸水量的效果。
进一步地,所述筒体201的储存腔202内预装的第一液体为生物反应试剂,例如核酸裂解液,通过第一液体使样本的病毒核酸释放出来并实现纯化。所述储液管205内预装的第二液体为生物反应试剂,例如稀释液,通过
第二液体稀释第一液体和病毒核酸反应后液体。
进一步地,所述储存腔202内预装的第一液体的量可以在50ul到5ml之间,可根据不同的生物反应来调整第一液体储存量的大小,同样所述储液管205内预装的第二液体的量可以根据生物反应来确定,本申请在此不进行限定。
进一步地,所述管盖206包括盖体(未示出)和封口膜(未示出),所述盖体远离所述活塞杆207一端的中部中空,所述盖体与所述筒体201螺纹连接或过盈配合,所述封口膜设于所述盖体中部的中空处。
在本实施例中,定量加样装置200与微流控检测装置100连接时,无需将管盖206从筒体201上取下,由微流控检测装置100的第一进样组件3贯穿封口膜与储存腔202流通,即可实现微流控检测装置100的进样,减少了操作步骤。
进一步地,所述盖体为环形,所述盖体上开设有环形连接槽,所述连接槽与所述筒体201的端部螺纹连接;利于提高筒体201中储存腔202的密封性。
进一步地,所述封口膜的材质为复合铝膜、橡胶或硅胶。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。
Claims (20)
- 一种微流控检测装置,包括:外壳,所述外壳内设有功能腔室、第一进样组件、第二进样组件、流体定量池、毛细吸附件以及结果显示组件;所述第一进样组件和所述第二进样组件均与所述功能腔室连通,所述功能腔室与所述流体定量池连通,所述流体定量池通过所述毛细吸附件与所述结果显示组件连通,所述结果显示组件用于显示检测结果。
- 根据权利要求1所述的微流控检测装置,其中,所述外壳包括容置壳、夹板和顶板,所述夹板设于所述容置壳上,所述顶板设于所述夹板上;所述功能腔室设于所述容置壳和所述夹板上;所述第一进样组件设于所述容置壳和所述夹板上,或者所述第一进样组件设于所述夹板上,所述第二进样组件设于所述顶板上;所述流体定量池设于所述夹板远离所述容置壳的一面;所述毛细吸附件设于所述顶板朝向所述夹板的一面,所述毛细吸附件与所述流体定量池连通;所述结果显示组件设于所述顶板和所述夹板上。
- 根据权利要求2所述的微流控检测装置,其中,所述毛细吸附件包括第一吸附板和第二吸附板;所述第一吸附板和所述第二吸附板间隔设于所述顶板朝向所述夹板的一面,所述第一吸附板和所述第二吸附板之间的间隙形成吸附槽;所述第一吸附板和所述第二吸附板的一端向下延伸至所述流体定量池,所述第一吸附板和所述第二吸附板的另一端与所述结果显示组件抵接。
- 根据权利要求2所述的微流控检测装置,其中,所述顶板表面为亲水层;或者,所述毛细吸附件表面为亲水层。
- 根据权利要求2所述的微流控检测装置,其中,所述功能腔室包括第一腔室和第二腔室,所述第一腔室设于所述容置壳上,所述第二腔室设于所述夹板上;所述第一进样组件与所述第一腔室连通,所述第二进样组件与所述第二腔室连通,所述第二腔室与所述第一腔室和所述流体定量池连通。
- 根据权利要求5所述的微流控检测装置,其中,所述第二腔室包括第一连通腔、第二连通腔和第三连通腔;所述第二进样组件靠近所述第一连通腔、第二连通腔和第三连通腔的一端设有第二支流,所述第二支流与所述第一连通腔、第二连通腔和第三连通腔的数量对应且分别连通;所述第一腔室包括第一反应腔、第二反应腔和废液池;所述第一进样组件靠近所述第一反应腔、第二反应腔和废液池的一端设有第一支流,所述第一支流与所述第一反应腔、第二反应腔和废液池的数量对应且分别连通;所述第一连通腔与所述第一反应腔连通,所述第二连通腔与所述第二反 应腔连通,所述第三连通腔与所述废液池连通,所述第一连通腔和第二连通腔与所述流体定量池连通。
- 根据权利要求6所述的微流控检测装置,其中,所述流体定量池的数量为两个,两个所述流体定量池分别与所述第一连通腔和所述第二连通腔连通;和/或,所述第一反应腔、第二反应腔和废液池的总数量为偶数;和/或,所述第一反应腔的体积和与所述第二反应腔的体积和一致。
- 根据权利要求5所述的微流控检测装置,其中,所述第二腔室内设有挡板,所述挡板延伸至所述第一腔室内,且与所述第一腔室的底部间隔设置;和/或,所述夹板上设有混合通道,所述混合通道与所述流体定量池和第二腔室连通。
- 根据权利要求2至8任一项所述的微流控检测装置,其中,所述第二进样组件包括第二刺破结构、第二进样孔、第二微流道以及液囊;所述第二刺破结构设于所述顶板远离所述夹板的一面,所述第二进样孔贯穿所述顶板且位于所述第二刺破结构内,所述第二微流道设于所述顶板朝向所述夹板的一面,所述第二微流道与所述第二进样孔和功能腔室连通,所述液囊设于顶板上且位于所述第二刺破结构的上方。
- 根据权利要求2至8任一项所述的微流控检测装置,其中,所述第一进样组件包括第一刺破结构、对准结构、第一进样孔和第一微流道;所述第一刺破结构和所述对准结构设于所述夹板远离所述容置壳的一面,所述对准结构上设有定位槽,所述第一刺破结构位于所述对准结构内,所述第一进样孔贯穿所述夹板且位于所述第一刺破结构内;所述第一微流道设于所述容置壳朝向所述夹板的一面,或者所述第一微流道设于所述夹板朝向所述容置壳的一面,所述第一微流道与所述第一进样孔和功能腔室连通;所述顶板上设有安装孔,所述第一刺破结构和对准结构位于所述安装孔内。
- 根据权利要求2至8任一项所述的微流控检测装置,其中,所述结果显示组件包括容置槽、观察窗和检测件;所述容置槽设于所述夹板远离所述容置壳的一面,所述检测件设于所述容置槽内,所述观察窗设于所述顶板上且与所述容置槽对应,所述毛细吸附件的一端与所述检测件抵接。
- 根据权利要求2至8任一项所述的微流控检测装置,其中,所述容 置壳包括第一壳体和第二壳体,所述第一壳体设于所述第二壳体上;所述功能腔室、所述第一进样组件设于所述夹板和第一壳体上。
- 根据权利要求12所述的微流控检测装置,其中,所述微流控检测装置还包括加热组件、温度传感器和PCB板;所述加热组件包括发热模块和温控模块,所述发热模块设于所述第一壳体朝向所述第二壳体的一面,所述发热模块与所述功能腔室的位置对应,所述温控模块和所述PCB板设于所述第一壳体上,所述温度传感器设于所述功能腔室内,所述加热组件、所述温度传感器与所述PCB板电连接。
- 一种核酸检测设备,包括定量加样装置以及微流控检测装置;所述微流控检测装置包括:外壳,所述外壳内设有功能腔室、第一进样组件、第二进样组件、流体定量池、毛细吸附件以及结果显示组件;所述第一进样组件和所述第二进样组件均与所述功能腔室连通,所述功能腔室与所述流体定量池连通,所述流体定量池通过所述毛细吸附件与所述结果显示组件连通,所述结果显示组件用于显示检测结果;所述定量加样装置包括筒体、储液管、管盖和活塞杆;所述筒体包括互相连通的储存腔和活动腔,所述筒体的筒壁开设有连通所述活动腔的进液口,所述储液管设于所述进液口处;所述活塞杆的一端穿出所述活动腔,所述活塞杆的另一端用于密封所述进液口并滑设于所述活动腔内;所述管盖与所述筒体远离所述活塞杆的一端活动连接,用于密封所述储存腔;所述管盖与所述第一进样组件连接。
- 根据权利要求14所述的核酸检测设备,其中,所述外壳包括容置壳、夹板和顶板,所述夹板设于所述容置壳上,所述顶板设于所述夹板上;所述功能腔室设于所述容置壳和所述夹板上;所述第一进样组件设于所述容置壳和所述夹板上,或者所述第一进样组件设于所述夹板上,所述第二进样组件设于所述顶板上;所述流体定量池设于所述夹板远离所述容置壳的一面;所述毛细吸附件设于所述顶板朝向所述夹板的一面,所述毛细吸附件与所述流体定量池连通;所述结果显示组件设于所述顶板和所述夹板上。
- 根据权利要求15所述的核酸检测设备,其中,所述毛细吸附件包括第一吸附板和第二吸附板;所述第一吸附板和所述第二吸附板间隔设于所述顶板朝向所述夹板的一面,所述第一吸附板和所述第二吸附板之间的间隙形成吸附槽;所述第一吸附板和所述第二吸附板的一端向下延伸至所述流体定量池,所述第一吸附板和所述第二吸附板的另一端与所述结果显示组件抵接。
- 根据权利要求15所述的核酸检测设备,其中,所述顶板表面为亲水层;或者,所述毛细吸附件表面为亲水层。
- 根据权利要求15所述的核酸检测设备,其中,所述功能腔室包括第一腔室和第二腔室,所述第一腔室设于所述容置壳上,所述第二腔室设于所述夹板上;所述第一进样组件与所述第一腔室连通,所述第二进样组件与所述第二腔室连通,所述第二腔室与所述第一腔室和所述流体定量池连通。
- 根据权利要求18所述的核酸检测设备,其中,所述第二腔室包括第一连通腔、第二连通腔和第三连通腔;所述第二进样组件靠近所述第一连通腔、第二连通腔和第三连通腔的一端设有第二支流,所述第二支流与所述第一连通腔、第二连通腔和第三连通腔的数量对应且分别连通;所述第一腔室包括第一反应腔、第二反应腔和废液池;所述第一进样组件靠近所述第一反应腔、第二反应腔和废液池的一端设有第一支流,所述第一支流与所述第一反应腔、第二反应腔和废液池的数量对应且分别连通;所述第一连通腔与所述第一反应腔连通,所述第二连通腔与所述第二反应腔连通,所述第三连通腔与所述废液池连通,所述第一连通腔和第二连通腔与所述流体定量池连通。
- 根据权利要求19所述的核酸检测设备,其中,所述流体定量池的数量为两个,两个所述流体定量池分别与所述第一连通腔和所述第二连通腔连通;和/或,所述第一反应腔、第二反应腔和废液池的总数量为偶数;和/或,所述第一反应腔的体积和与所述第二反应腔的体积和一致。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202320147893.7 | 2023-02-02 | ||
CN202320147893.7U CN219326774U (zh) | 2023-02-02 | 2023-02-02 | 一种微流控检测装置以及核酸检测设备 |
CN202310077729.8A CN118421463A (zh) | 2023-02-02 | 2023-02-02 | 一种微流控检测装置以及核酸检测设备 |
CN202310077729.8 | 2023-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024159895A1 true WO2024159895A1 (zh) | 2024-08-08 |
Family
ID=92145757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/134758 WO2024159895A1 (zh) | 2023-02-02 | 2023-11-28 | 一种微流控检测装置以及核酸检测设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024159895A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108642148A (zh) * | 2018-07-09 | 2018-10-12 | 南京岚煜生物科技有限公司 | 一种核酸扩增检测微流控芯片及其检测方法 |
CN111644213A (zh) * | 2020-05-25 | 2020-09-11 | 清华大学 | 一种流体操控装置及流体控制方法 |
CN112611862A (zh) * | 2020-12-25 | 2021-04-06 | 重庆康巨全弘生物科技有限公司 | 一种纳米酶层析试剂卡盒 |
CN113512490A (zh) * | 2021-04-19 | 2021-10-19 | 杭州优思达生物技术有限公司 | 一种自驱动微流控检测装置及其用途 |
WO2021237397A1 (zh) * | 2020-05-25 | 2021-12-02 | 杭州梓晶生物有限公司 | 一种流体操控装置及流体控制方法 |
CN115155687A (zh) * | 2022-09-06 | 2022-10-11 | 广州达安基因股份有限公司 | 一种定量加样装置及微流控检测设备 |
CN217781144U (zh) * | 2022-06-06 | 2022-11-11 | 广州达安基因股份有限公司 | 一种微流控芯片检测卡盒 |
CN219326774U (zh) * | 2023-02-02 | 2023-07-11 | 广州达安基因股份有限公司 | 一种微流控检测装置以及核酸检测设备 |
-
2023
- 2023-11-28 WO PCT/CN2023/134758 patent/WO2024159895A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108642148A (zh) * | 2018-07-09 | 2018-10-12 | 南京岚煜生物科技有限公司 | 一种核酸扩增检测微流控芯片及其检测方法 |
CN111644213A (zh) * | 2020-05-25 | 2020-09-11 | 清华大学 | 一种流体操控装置及流体控制方法 |
WO2021237397A1 (zh) * | 2020-05-25 | 2021-12-02 | 杭州梓晶生物有限公司 | 一种流体操控装置及流体控制方法 |
CN112611862A (zh) * | 2020-12-25 | 2021-04-06 | 重庆康巨全弘生物科技有限公司 | 一种纳米酶层析试剂卡盒 |
CN113512490A (zh) * | 2021-04-19 | 2021-10-19 | 杭州优思达生物技术有限公司 | 一种自驱动微流控检测装置及其用途 |
CN217781144U (zh) * | 2022-06-06 | 2022-11-11 | 广州达安基因股份有限公司 | 一种微流控芯片检测卡盒 |
CN115155687A (zh) * | 2022-09-06 | 2022-10-11 | 广州达安基因股份有限公司 | 一种定量加样装置及微流控检测设备 |
CN219326774U (zh) * | 2023-02-02 | 2023-07-11 | 广州达安基因股份有限公司 | 一种微流控检测装置以及核酸检测设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020042050A (ja) | 統合された移送モジュールを有する試験カートリッジ | |
US20100075311A1 (en) | Cartridge system | |
WO2022242499A1 (zh) | 一种微流控核酸检测试剂盒及检测装置 | |
US20030073089A1 (en) | Companion cartridge for disposable diagnostic sensing platforms | |
JP5971256B2 (ja) | 少なくとも1つの検体溶液を少なくとも1つの試薬と混合する方法及び器具 | |
EP2810044B1 (en) | Mechanical washing and measuring device for performing analyses | |
CN219326774U (zh) | 一种微流控检测装置以及核酸检测设备 | |
AU2021200665A1 (en) | Device and method for collecting and detecting samples | |
EP4012408B1 (en) | Sample collection and detection device and method | |
JP2005172828A (ja) | 試料採取装置および試料液を検査するためのシステム | |
CN217781144U (zh) | 一种微流控芯片检测卡盒 | |
WO2024159895A1 (zh) | 一种微流控检测装置以及核酸检测设备 | |
WO2023236313A1 (zh) | 一种微流控芯片检测卡盒 | |
US12121892B2 (en) | Apparatus and method for collecting and testing sample | |
CN118421463A (zh) | 一种微流控检测装置以及核酸检测设备 | |
CN117229896A (zh) | 一种微流控芯片检测卡盒 | |
US20230390768A1 (en) | Microfluidic chip-equipped detection cassette | |
JP6190472B2 (ja) | 新規のPoC検査システムおよび方法 | |
CN113176401B (zh) | 生物芯片的基片 | |
CN115436618B (zh) | 一种样本处理和检测一体式检测管 | |
US20220099621A1 (en) | Nucleic acid detection kit and nucleic acid detection device | |
CN115007228A (zh) | Poct微流控芯片、检测系统、检测方法以及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23919459 Country of ref document: EP Kind code of ref document: A1 |