Nothing Special   »   [go: up one dir, main page]

WO2024154769A1 - Foam sheet, foam molded body, and method for producing foam sheet - Google Patents

Foam sheet, foam molded body, and method for producing foam sheet Download PDF

Info

Publication number
WO2024154769A1
WO2024154769A1 PCT/JP2024/001216 JP2024001216W WO2024154769A1 WO 2024154769 A1 WO2024154769 A1 WO 2024154769A1 JP 2024001216 W JP2024001216 W JP 2024001216W WO 2024154769 A1 WO2024154769 A1 WO 2024154769A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
foamed
foamed sheet
aliphatic polyester
resin composition
Prior art date
Application number
PCT/JP2024/001216
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 田井
皓平 田積
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023007392A external-priority patent/JP2024103194A/en
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2024154769A1 publication Critical patent/WO2024154769A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent

Definitions

  • the present invention relates to a foam sheet, a foam molded product, and a method for manufacturing a foam sheet, and more specifically to a foam sheet composed of a resin composition containing an aliphatic polyester resin, a foam molded product composed of such a foam sheet, and a method for manufacturing such a foam sheet.
  • foamed products made of a foamed resin composition have been widely used.
  • the foamed products are lightweight yet have excellent strength, cushioning properties, and heat insulation properties.
  • foamed sheets and foamed molded bodies produced by processing foamed sheets into three-dimensional shapes using a mold are known.
  • foamed beads and foamed molded bodies produced by processing foamed beads into three-dimensional shapes using a mold are also known.
  • Foamed sheets and foamed beads are obtained, for example, by heating and foaming non-foamed resin sheets or non-foamed resin beads impregnated with a foaming agent such as acetone or butane.
  • Foamed beads and foamed sheets can also be produced by an extrusion foaming method.
  • extrusion foam sheets are known, which are obtained by melt-kneading a foaming resin composition and a foaming agent in an extruder, and extruding the resulting molten mixture into a sheet shape from a sheeting die (flat die or circular die) attached to the tip of the extruder and foaming the mixture.
  • extruded foam sheet is used as a cushioning sheet in sheet form, or made into a bag for use as packaging material.
  • This type of extruded foam sheet is also used as a base sheet for producing foam molded products by thermoforming.
  • extruded foam sheets are also widely used in the form of laminated foam sheets with a film layer (non-foamed layer) laminated on one or both sides.
  • Patent Document 1 describes a foam sheet having a foam layer containing a biodegradable polyester resin with a mass average molecular weight of 150,000 to 400,000.
  • Foam sheets containing aliphatic polyester resins and molded products thereof are required to have low density from the viewpoint of cushioning properties.
  • foam sheets containing aliphatic polyester resins are required to have excellent moldability. If a foam sheet containing aliphatic polyester resins is prone to thermal deformation, the dimensional accuracy is likely to decrease when a foam molded product is manufactured by thermoforming, and it is difficult to ensure dimensional stability even when the sheet is used as is. For this reason, foam sheets are required to have heat deformation resistance. However, it is difficult to obtain a foam sheet containing aliphatic polyester resins that has low density but excellent heat deformation resistance and moldability, and the above-mentioned demands have not been met.
  • the present invention aims to provide a foam sheet that contains aliphatic polyester resins but has excellent heat deformation resistance and moldability and a low apparent density, and ultimately to provide a foam molded product that is easy to manufacture and has excellent light weight, cushioning properties, and dimensional accuracy.
  • a foamed sheet made of a resin composition containing one or more aliphatic polyester resins, The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less, The gel fraction measured using chloroform is 25% by mass or less, The foamed sheet has a calorific value of 5.0 J/g or less observed during the first heating step as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min.
  • the present invention provides a foamed molded article, which is a thermoformed article made of the foamed sheet as described above.
  • the present invention provides melt-kneading an aliphatic polyester resin with an organic peroxide to obtain a modified aliphatic polyester resin;
  • a method for producing a foamed sheet comprising extruding a resin composition containing the modified aliphatic polyester resin into a sheet together with a foaming agent, The foam sheet to be manufactured is The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less, The gel fraction measured using chloroform is 25% by mass or less,
  • the present invention provides a method for producing a foamed sheet in which the calorific value observed during the first heating step, as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min, is 5.0 J/g or less.
  • FIG. 1 is a schematic cross-sectional view showing a cross section of a foamed sheet of one embodiment cut along a plane parallel to the thickness direction.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a laminated foam sheet cut along a plane parallel to the thickness direction.
  • FIG. 3 is a graph showing the results (DSC curve) of differential scanning calorimetry (DSC) performed on the foamed sheet of Comparative Example 1.
  • FIG. 4 is a graph showing the results (DSC curve) of differential scanning calorimetry (DSC) performed on the foamed sheet of Example 1.
  • FIG. 1 is a schematic cross-sectional view showing a cross section of a foamed sheet of one embodiment cut along a plane parallel to the thickness direction.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a laminated foam sheet cut along a plane parallel to the thickness direction.
  • FIG. 3 is a graph showing the results (DSC curve) of differential scanning calorimetry
  • FIG. 5 is a graph showing the relationship between frequency and storage modulus (G′) in the dynamic viscoelasticity measurement of the foaming resin composition used in Example 1, with the graph being a double logarithmic axis and linearly approximated in the frequency range of 0.01 Hz to 0.1 Hz.
  • FIG. 6 is a graph showing the results of measuring the complex viscosity ( ⁇ * ) of the foaming resin composition used in Example 1.
  • FIG. 7 is a graph showing the relationship between frequency and storage modulus (G′) in the dynamic viscoelasticity measurement of the foaming resin composition used in Comparative Example 1, with the graph being a double logarithmic axis and linearly approximated in the frequency range of 0.01 Hz to 0.1 Hz.
  • FIG. 8 is a graph showing the results of measuring the complex viscosity ( ⁇ * ) of the foaming resin composition used in Comparative Example 1.
  • the foam sheet 1 of this embodiment will be described taking as an example a single-layer structure with only a single foam layer 10 as shown in FIG. 1.
  • the foam sheet 1 of this embodiment may also constitute the foam layer 10 in a laminated foam sheet 2 in which a non-foamed layer 20 is laminated on one or both sides of the foam layer 10 as shown in FIG. 2.
  • the embodiment of the present invention will be described taking as an example a case in which the foam sheet 1 is an extruded foam sheet obtained by an extrusion foaming method.
  • the foam sheet 1 and the laminated foam sheet 2 of this embodiment are not particularly limited in their applications, but may be used, for example, as a raw sheet when producing a foam molded body by thermoforming.
  • the foam sheet 1 and the laminated foam sheet 2 may be used as flat sheets and may be used as materials for forming folding boxes, buffer sheets, packaging bags, seedling sheets, heat insulating materials, etc.
  • the foam sheet 1 and the laminated foam sheet 2 of this embodiment may be used widely in applications other than these.
  • the foam sheet 1 (foam layer 10) has a low density, so that the foam sheet is not only excellent in lightness and cushioning properties, but also exhibits excellent lightness and cushioning properties for foam products such as foam molded bodies.
  • the foam sheet 1 (foam layer 10) has heat deformation resistance, so that it can exhibit heat deformation resistance for foam products and can exhibit high dimensional stability for foam products.
  • the foam molded body may be used for packaging/buffer trays, seedling trays, food containers, heat insulating materials, etc.
  • Packaging and cushioning trays can be used, for example, to hold agricultural products (fruits, vegetables, etc.) and industrial materials (cosmetic containers, etc.).
  • the foam sheet 1 of this embodiment is composed of a resin composition (aliphatic polyester resin composition) containing an aliphatic polyester resin such as polylactic acid (PLA) or polybutylene succinate (PBS).
  • the thickness of the foam sheet 1 of this embodiment is not particularly limited, but can be, for example, 0.5 mm or more.
  • the thickness of the foam sheet 1 may be 1 mm or more, or 1.5 mm or more.
  • the thickness of the foam sheet 1 can be, for example, 8 mm or less.
  • the thickness of the foam sheet 1 may be 6 mm or less, or 4 mm or less.
  • the thickness of the non-foamed layer 20 laminated on its surface can be, for example, 1 ⁇ m or more.
  • the thickness of the non-foamed layer 20 can be 5 ⁇ m or more, or 10 ⁇ m or more.
  • the thickness of the non-foamed layer 20 can be, for example, 500 ⁇ m or less.
  • the thickness of the non-foamed layer 20 can be 400 ⁇ m or less, 300 ⁇ m or less, or 200 ⁇ m or less.
  • the first non-foamed layer 20 (first non-foamed layer 21) laminated on one side of the foamed layer 10 and the second non-foamed layer 20 (second non-foamed layer 22) laminated on the other side do not need to have the same thickness, and may have different thicknesses.
  • the thickness of the foam sheet 1 can be measured using a constant pressure thickness gauge, for example, the "Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Manufacturing Co., Ltd. Specifically, the thickness of the foam sheet 1 can be obtained by measuring the thickness when a load of 100 g is applied to the foam sheet using a circular jig with a diameter of 35.7 mm using a constant pressure thickness gauge. The thickness of the foam sheet 1 can be obtained, for example, by measuring 10 or more points every 5 cm in the width direction (TD) except for 20 mm at both ends of the width direction (TD) perpendicular to the extrusion direction (MD) and taking the arithmetic mean of the measured values. In addition, if the width of the foam sheet 1 is narrow and it is not possible to secure 10 measurement points, the arithmetic mean of all the measured values can be obtained as the thickness of the foam sheet 1 after securing as many measurement points as possible.
  • a constant pressure thickness gauge for example, the "Peacock Digital Linear Gau
  • the thickness of the non-foamed layer 20 in the laminated foam sheet 2 can be found by taking a microscopic photograph of the cross section of the non-foamed layer 20 (a cross section in a plane perpendicular to the planar direction of the foam sheet 1), measuring the thickness of the non-foamed layer 20 at multiple randomly selected points (e.g., 10 points) on the photograph, and calculating the arithmetic mean of the measured values.
  • the thickness of the foamed layer 10 can be found by subtracting the thickness of the non-foamed layer 20 from the thickness of the foam sheet 1.
  • the foamed sheet 1 (foamed layer 10) of this embodiment has an apparent density of 30 kg/m 3 or more. In order to ensure high strength in a foamed product, it is advantageous for the apparent density to be a certain level or higher.
  • the apparent density may be 40 kg/m 3 or more, or 50 kg/m 3 or more.
  • the apparent density in order to ensure light weight and cushioning properties, it is desirable for the apparent density to be a certain level or lower.
  • the foamed sheet 1 (foamed layer 10) of this embodiment has an apparent density of 100 kg/m 3 or less. The apparent density may be 90 kg/m 3 or less, or 80 kg/m 3 or less.
  • the apparent density (kg/ m3 ) can be determined by dividing the mass (basis weight: g/ m2 ) of the foam sheet 1 (foam layer 10) per unit area by the thickness (mm) of the foam sheet 1 (foam layer 10).
  • the basis weight can be determined by arithmetically averaging values measured for a plurality of samples cut out from the foam sheet.
  • the basis weight of the foam sheet can be determined by cutting out six pieces of 10 cm x 10 cm at equal intervals in the width direction (TD) of the foam sheet 1, excluding 20 mm at both ends in the width direction (TD), and measuring the mass (g) of each piece.
  • the basis weight can be determined by converting the average value of the mass (g) of each piece into a mass per m2 .
  • Apparent density (kg/m 3 ) basis weight (g/m 2 ) ⁇ thickness (mm)
  • the apparent density of the foamed layer 10 in the laminated foamed sheet 2 can be calculated by measuring the overall apparent density and the density of the non-foamed layer 20.
  • the density of the non-foamed layer 20 can be determined by an underwater displacement method (Archimedes method) or the like.
  • the foamed sheet 1 (foamed layer 10) of this embodiment has a gel fraction of 25% by mass or less, measured using chloroform.
  • the resin composition constituting the foamed sheet 1 (foamed layer 10) has a low gel fraction, which allows it to exhibit good foamability and thermoformability during extrusion foaming, making it easy to produce a foamed sheet 1 (foamed layer 10) or a foamed molded article having the above-mentioned preferred apparent density.
  • the gel fraction may be 20% by mass or less, or 15% by mass or less.
  • the gel fraction may be, for example, 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more.
  • the gel fraction can be determined by taking a plurality of samples (e.g., 5 samples) each weighing about 0.5 g from the foamed sheet 1 (foamed layer 10) and arithmetically averaging the gel fractions of the respective samples.
  • the gel fraction of a sample can be measured, for example, by the following procedure. Accurately weigh the initial mass (Mo) of the sample. Prepare an 80 mesh wire screen (wire diameter ⁇ 0.12 mm) for filtering the solution in which the sample is dissolved, and accurately weigh the initial mass (Ms) of this wire screen.
  • the foamed sheet 1 (foamed layer 10) of this embodiment has a calorific value of 5.0 J/g or less observed during the first heating process as determined by heat flux differential scanning calorimetry (heat flux DSC) at a heating rate of 10°C/min.
  • the calorific value observed by heat flux differential scanning calorimetry is the amount of heat generated with the crystallization of the aliphatic polyester resin, and is usually observed as an exothermic peak having an apex between 65°C and 130°C on the DSC curve.
  • polyester resins among crystalline resins, have a relatively slow crystallization rate compared to polyolefin resins and the like. If the foamed sheet 1 (foamed layer 10) is not sufficiently crystallized, it may undergo shape changes accompanied by warping and undulations under high-temperature storage conditions, resulting in loss of dimensional accuracy. Furthermore, if the foamed sheet 1 (foamed layer 10) contains an aliphatic polyester resin in a state that allows it to crystallize, crystallization will occur at the above-mentioned temperatures, which will result in a similar shape change in the foamed sheet 1 and loss of dimensional accuracy.
  • the foamed sheet is heated and supplied to a mold while both ends of the sheet are held by a jig called a clamp, but in such a case, if the foamed sheet deforms, problems such as it coming off the clamps may occur.
  • the foam layer has a particularly thin bubble membrane, so cooling air is applied to the foam sheet immediately after extrusion to prevent bubbles from breaking during foaming. This can result in a foam sheet with a large amount of heat generation (containing many components that have not yet crystallized), especially in low-density foam sheets. Therefore, as described below, in this embodiment, it is desirable to adjust the air-cooling temperature and air volume to ease the cooling conditions of the foam sheet after extrusion and sufficiently crystallize the aliphatic polyester resin.
  • ⁇ crystals are formed at temperatures of 120°C or higher during the cooling process from the molten state, and ⁇ ' crystals are formed at temperatures below 90°C, and it is known that ⁇ crystals have better heat resistance than ⁇ ' crystals.
  • ⁇ crystals of polybutylene succinate change to ⁇ crystals when heated. Therefore, the foamed sheet 1 (foamed layer 10) can be made less susceptible to thermal deformation by slowing down the cooling during the manufacturing process to make the crystals contained therein ⁇ crystals.
  • the presence of ⁇ crystals can be confirmed by wide-angle X-ray diffraction (WAXD).
  • the crystals contained in the foamed sheet 1 are mostly ⁇ crystals by heating the foamed sheet under temperature conditions at which ⁇ crystals are formed, and comparing the intensities of the peaks derived from ⁇ crystals by performing wide-angle X-ray diffraction before and after heating.
  • the foam sheet 1 is made of a resin composition containing polybutylene succinate, a peak derived from the (020) plane of ⁇ crystal appears near 2 ⁇ of 13° in wide-angle X-ray diffraction, and the foam sheet 1 is heated under certain conditions (e.g., 100°C x 20 minutes).
  • the change in peak intensity near 13° before and after heating is, for example, about 1.2 times or less, it can be determined that the crystals of the foam sheet 1 are sufficiently ⁇ -crystallized.
  • the foam sheet 1 is preferably produced so that the change in strength is 1.1 times or less, and preferably produced so that no change in strength is observed (intensity after heating/intensity before heating ⁇ 1.0).
  • the amount of heat generated during the first heating process as determined by heat flux differential scanning calorimetry may be 4 J/g or less, 3 J/g or less, 2 J/g or less, or 1 J/g or less.
  • a peak showing endothermic heat is observed during the heating process in the heat flux differential scanning calorimetry.
  • the difference between the absolute value of the endothermic heat at the endothermic peak observed during the heating process and the heat generation amount is preferably 30 J/g or more and 90 J/g or less.
  • the endothermic heat observed in the heat flux differential scanning calorimetry is the amount of heat generated with the melting of the crystals of the aliphatic polyester resin, and is observed as an endothermic peak having an apex at a temperature several tens of degrees higher than the heat generation peak due to crystallization in the DSC curve.
  • the foamed sheet 1 (foamed layer 10) contains an appropriate amount of aliphatic polyester resin crystals, which can provide a foamed product with a good balance of heat deformation resistance and moldability.
  • the difference between the absolute value of the amount of heat absorption and the amount of heat generation may be 40 J/g or more, or 50 J/g or more.
  • the difference between the absolute value of the amount of heat absorption and the amount of heat generation may be 80 J/g or less, or 70 J/g or less.
  • the endothermic amount and the exothermic amount can be measured, for example, as follows.
  • the endothermic amount (a) (amount of heat of fusion) and the exothermic amount (b) (amount of heat of crystallization) can be measured by the methods described in JIS K7122: 1987 and JIS K7122: 2012. However, the sampling method and temperature conditions are as follows. A sample cut out from the foam sheet 1 (foam layer 10) is packed into the bottom of an aluminum measurement container in an amount of 5.5 ⁇ 0.5 mg so as to leave no gaps, and then the aluminum lid is placed. Differential scanning calorimetry is carried out using a differential scanning calorimeter (for example, "DSC7000X, AS-3" manufactured by Hitachi High-Tech Science Corporation).
  • Step 1 Decrease temperature from 30° C. to ⁇ 40° C. at a rate of 10° C./min.
  • Step 2 Heat the temperature from ⁇ 40° C. to 200° C. at a rate of 10° C./min (first heating process).
  • alumina is used as the reference material.
  • the endothermic amount (a) and the calorific value (b) can be calculated using analysis software attached to the device. Specifically, as shown in Fig.
  • the endothermic amount (a) is calculated from the area enclosed by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, and the DSC curve.
  • the calorific value (b) is calculated from the area enclosed by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, and the DSC curve. 4
  • the amount of heat generated (b) is set to 0 J/g.
  • the total amount of heat generated at each peak is set to the amount of heat endotherm (a) and the amount of heat generated (b).
  • the foam sheet 1 (foam layer 10) of this embodiment may exhibit thermal deformation during thermoforming for reasons other than crystallization, which may impair moldability.
  • the secondary foaming ratio of the foam sheet 1 (foam layer 10) of this embodiment is preferably 0.9 times or more and 1.5 times or less.
  • the secondary foaming ratio may be 1.4 times or less, 1.3 times or less, or 1.2 times or less.
  • the secondary expansion ratio of the foam sheet 1 is preferably as described above when the following measurements are performed on the foam sheet 1 or the laminated foam sheet 2 immediately after extrusion (for example, within 24 hours).
  • the secondary expansion ratio of the foamed sheet 1 can be determined as follows. - Cut out three test pieces measuring 100 mm in length and 100 mm in width from the foam sheet. The test pieces are conditioned for 168 hours under a standard atmosphere of grade 2 (temperature 23 ⁇ 2°C, relative humidity 50 ⁇ 5%) according to JIS K 7100:1999, and the thickness (T1) (mm) of the center of each test piece before heating is measured. The thickness (T1) of the center of each test piece before heating can be measured in the same manner as in the case of determining the thickness of the foamed sheet 1. The test pieces are placed on a platform in an oven set to 70° C.
  • the secondary expansion ratio (times) of each of the three test pieces is calculated using the following formula, and the arithmetic mean value is regarded as the secondary expansion ratio (times) of the foamed sheet.
  • the foamed sheet 1 (foamed layer 10) of this embodiment preferably has a heat loss of 0.1% by mass or more and 1.5% by mass or less.
  • the heat loss may be 1.3% by mass or less, 1.1% by mass or less, 0.9% by mass or less, or 0.7% by mass or less.
  • the heat loss of the foamed sheet 1 is preferably the value described above when the foamed sheet 1 or the laminated foamed sheet 2 is subjected to the following measurements immediately after extrusion (for example, within 24 hours).
  • the heat loss of the foamed sheet 1 can be determined as follows. Three samples are cut out from the foam sheet 1 (foam layer 10) so that each sample has a mass of about 10 g. Each sample is conditioned for 168 hours under a standard atmosphere of grade 2 (temperature 23 ⁇ 2° C., relative humidity 50 ⁇ 5%), code “23/50” of JIS K 7100:1999. After conditioning, each sample is wrapped in aluminum foil, and the mass (W1) (g) of each sample before heating is measured. - Each sample is heated stationary on a platform in an unhumidified oven set at 180°C for 30 minutes.
  • each sample is removed from the oven and allowed to cool for 30 minutes under a standard atmosphere of grade 2 (temperature 23 ⁇ 2°C, relative humidity 50 ⁇ 5%), as specified in JIS K 7100:1999, and the mass (W2) (g) of each sample after heating is measured.
  • the mass of the aluminum foil may be precisely weighed in advance, and the mass of each aluminum foil before and after heating may be measured.
  • the mass of each sample before heating (W1) and after heating (W2) may be calculated by subtracting the mass of the aluminum foil from each measured value.
  • the foam layer 10 it is advantageous for the foam layer 10 to have an open cell rate of a certain level or less in order to exhibit excellent moldability.
  • the open cell rate In the foam sheet 1 (foam layer 10) of this embodiment, it is preferable for the open cell rate to be 60% or less.
  • the open cell rate may be 50% or less, or may be 40% or less.
  • the foam layer 10 it is advantageous for the foam layer 10 to have an open cell rate of a certain level or more in order to exhibit excellent cushioning properties and excellent dimensional stability by suppressing excessive secondary foaming.
  • the open cell rate may be 10% or more, 15% or more, or 20% or more.
  • the open cell ratio of the foamed sheet 1 can be determined as follows. - Two or more sheet samples measuring 25 mm in length and 25 mm in width are cut out from the foam sheet, and the cut samples are stacked together so that there are no gaps, to create five test pieces with a thickness of approximately 25 mm. The length and width of the obtained test piece are measured using a vernier caliper (e.g., "Digimatic Caliper” manufactured by Mitutoyo Corporation). The thickness can be measured in the same manner as in measuring the thickness of the foamed sheet 1 using a constant pressure thickness measuring device (e.g., "Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Seisakusho Co., Ltd.).
  • a constant pressure thickness measuring device e.g., "Peacock Digital Linear Gauge PDN25” manufactured by Ozaki Seisakusho Co., Ltd.
  • the apparent volume (V1: cm3 ) is calculated from the measured dimensions. Using an air comparison type specific gravity meter (for example, "1000 type” manufactured by Tokyo Science Co., Ltd.), the volume of the test piece (V2: cm 3 ) is determined by the 1-1/2-1 atmospheric pressure method. The open cell rate (%) is calculated using the following formula, and the arithmetic mean value of the open cell rates of the five test pieces is obtained.
  • the test pieces are conditioned in advance for at least 24 hours in a standard atmosphere of class 2, JIS K 7100:1999, "23/50" (temperature 23 ⁇ 2°C, relative humidity 50 ⁇ 5%). Measurements are also carried out in the same standard atmosphere.
  • the resin composition (foamable resin composition) used to form the foamed layer 10 before extrusion foaming has a predetermined melting property.
  • the resin composition that constitutes the foamed layer 10 is described below.
  • the resin composition in this embodiment may contain one or more aliphatic polyester resins. It is preferable that the foaming resin composition is prepared so that it exhibits good foaming properties when producing a foamed product such as a foam sheet, and that the characteristic values of the resulting foamed product are within a certain range in order to exhibit characteristics such as cushioning.
  • the foaming resin composition exhibits a suitable fluidity when heated in order to exhibit good foamability.
  • the melt mass flow rate (MFR) of the foaming resin composition at 190°C before being used to form the foam sheet 1 (foam layer 10) can be, for example, 0.1 g/10 min or more and 5.0 g/10 min or less.
  • the MFR of the resin composition may be, for example, 0.2 g/10 min or more, 0.3 g/10 min or more, or 0.4 g/10 min or more.
  • the MFR of the resin composition may be, for example, 0.5 g/10 min or more, 0.6 g/10 min or more, 0.8 g/10 min or more, or 0.9 g/10 min or more.
  • the MFR of the resin composition may be, for example, 4.5 g/10 min or less, 4.0 g/10 min or less, 3.5 g/10 min or less, or 3.0 g/10 min or less.
  • the resin composition in the state in which the foamed sheet 1 (foamed layer 10) is formed (hereinafter also referred to as the "foamed resin composition") also has the above-mentioned MFR value.
  • the melt mass-flow rate (MFR) of the foaming resin composition before forming the foamed sheet 1 (foamed layer 10) or the foamed resin composition in the state of constituting the foamed sheet 1 (foamed layer 10) can be measured as follows.
  • the melt mass flow rate (MFR) of the resin composition can be measured using a commercially available measuring device (for example, "Melt Flow Index Tester (Automatic) 120-SAS" manufactured by Yasuda Seiki Seisakusho Co., Ltd.).
  • the MFR can be measured under the following conditions in accordance with JIS K 7210:1999.
  • the sample to be measured is vacuum dried at 70°C for 5 hours or more, and after drying, is vacuum-packed in a nylon polybag for vacuum packing and stored in a desiccator until immediately before the measurement.
  • the foaming resin composition preferably exhibits an appropriate melt tension when heated in order to exhibit good foamability.
  • the melt tension at 190°C of the resin composition used in this embodiment can be, for example, 30 cN or more and 100 cN or less.
  • the melt tension may be 35 cN or more, or 40 cN or more.
  • the melt tension may be 95 cN or less, or 90 cN or less.
  • the melt tension may be 80 cN or less, 70 cN or less, or 60 cN or less.
  • the melt tension may be 55 cN or less, or 50 cN or less. It is preferable that the foamed resin composition also has the above-mentioned melt tension.
  • the melt tension of the resin composition can be measured as follows.
  • the melt tension can be measured using a commercially available rheometer and extensional viscosity measuring device (for example, a capillary rheometer "Capillograph 1D" (special specification for heating furnace) manufactured by Toyo Seiki Seisakusho Co., Ltd., and "Rheotens 71.97" manufactured by Goettfert).
  • the melt tension can be measured under the following conditions.
  • the samples should be vacuum-dried at 70°C for at least 5 hours in advance, and after drying, they should be vacuum-packed in nylon plastic bags for vacuum packing and stored in a desiccator until immediately before measurement.
  • the sample is filled into a barrel heated to a test temperature of 190° C., and then preheated for 5 minutes.
  • the measurement time including the preheating time after filling the barrel with the sample, should not exceed 10 minutes.
  • a piston is inserted from the top of the barrel to extrude the molten resin into a string shape.
  • the piston descending speed (20 mm/min) is kept constant, and the extruded string shape is passed through a Rheotens wheel and taken up. After that, the take-up speed is gradually increased to measure the melt tension of the sample.
  • the melt tension of the sample is determined as the average of the maximum and minimum tension values immediately before the point at which the string breaks. If there is only one maximum point on the tension chart, that maximum value is used as the melt tension. If the string becomes thinner and the winding becomes idling, this point is regarded as the break point, and the average of the maximum and minimum tension values immediately before that point is used as the melt tension of the sample.
  • the foamed sheet 1 (foamed layer 10) in this embodiment has a gel fraction of 25% by mass or less, measured using chloroform as described above.
  • a shear force is applied to the resin composition. Therefore, even if the foamable resin composition contains more than 25% by mass of gel before being used to manufacture the foamed sheet 1, the gel fraction in the foamed sheet 1 (foamed layer 10) (gel fraction of the foamed resin composition) can be 25% by mass or less.
  • the gel fraction of the foamable resin composition be a certain amount or less.
  • the gel fraction of the foamable resin composition in this embodiment measured using chloroform, can be, for example, 40% by mass or less in order to obtain a foamed sheet with good elongation and low basis weight when produced as an extruded sheet.
  • the gel fraction of the foamable resin composition may be, for example, 30% by mass or less, 20% by mass or less, or 15% by mass or less.
  • the gel fraction of the foamable resin composition can be measured in the same manner as the gel fraction in the foamed sheet 1 (foam layer 10) (gel fraction of the foamed resin composition).
  • the foaming resin composition can be prepared so that the complex viscosity ( ⁇ * ) observed at a frequency of 0.01 Hz in dynamic viscoelasticity measurement is, for example, 10,000 Pa ⁇ s or more and 150,000 Pa ⁇ s or less in order to obtain a foamed sheet with good foamability.
  • the foaming resin composition can also be prepared so that the slope of the storage modulus (G') in the frequency range of 0.01 Hz to 0.1 Hz in dynamic viscoelasticity measurement is 0.35 to 1.5.
  • the complex viscosity ( ⁇ * ) may be 15,000 Pa ⁇ s or more, 20,000 Pa ⁇ s or more, or 25,000 Pa ⁇ s or more.
  • the complex viscosity ( ⁇ * ) may be 120,000 Pa ⁇ s or less, 100,000 Pa ⁇ s or less, 80,000 Pa ⁇ s or less, or 60,000 Pa ⁇ s or less.
  • the foaming resin composition exhibits good foaming properties and, in order to obtain a low-density foamed sheet, the slope of the storage modulus (G') at a frequency of 0.01 Hz to 0.1 Hz in dynamic viscoelasticity measurement may be 0.37 or more, 0.40 or more, or 0.45 or more.
  • the slope of the storage modulus (G') may be 1.4 or less, 1.3 or less, 1.2 or less, or 1.1 or less.
  • the "slope of the storage modulus (G')" refers to the slope of a straight line obtained by linearly approximating the graph in the frequency range of 0.01 Hz to 0.1 Hz when dynamic viscoelasticity measurement is performed while changing the frequency, the storage modulus (G') is measured at each frequency, and the measurement results of the storage modulus (G') are represented on a double logarithmic axis graph with the horizontal axis being frequency (Hz) and the vertical axis being storage modulus (G') (Pa).
  • the slope of the storage modulus (G') and the complex viscosity ( ⁇ * ) of the foamable resin composition can be determined by dynamic viscoelasticity measurement as described above. More specifically, the dynamic viscoelasticity can be measured using a commercially available viscoelasticity measuring device (e.g., manufactured by Anton Paar, product name "PHYSICA MCR301”) and a temperature control system (e.g., manufactured by Anton Paar, product name "CTD450”) according to the following procedure.
  • the samples should be vacuum-dried at 70°C for at least 5 hours in advance, and after drying, they should be vacuum-packed in nylon plastic bags for vacuum packing and stored in a desiccator until immediately before measurement.
  • the sample is placed on a 50 mm diameter parallel plate (lower side) of a viscoelasticity measuring device heated to 190° C., and heated for 5 minutes in a nitrogen atmosphere to melt the sample.
  • the molten sample is crushed between parallel plates (upper side) with a diameter of 25 mm until the distance between the parallel plates is 2 mm, any resin that protrudes from the plates is removed, and after the sample has reached the measurement temperature ⁇ 1°C and is heated for 5 minutes, dynamic viscoelasticity measurements are performed.
  • ⁇ Measurement conditions are as follows.
  • the slope of the storage modulus (G') is obtained from the results of dynamic viscoelasticity measurement, and is obtained from the change curve of the storage modulus (G') with respect to frequency.
  • a is the slope of the straight line
  • b is a constant.
  • the value of the exponent (a) of the power approximation formula is taken as the slope of the storage modulus (G').
  • the value of the complex viscosity ( ⁇ * ) can be obtained by reading the value at a frequency of 0.01 Hz from the results of dynamic viscoelasticity measurement.
  • the various characteristic values of the foamable resin composition as described above can be adjusted by selecting the type of aliphatic polyester resin used or by modifying the aliphatic polyester resin to impart the desired molecular structure.
  • the melting characteristics and gel fraction of the foamable resin composition can be easily adjusted by using a modified aliphatic polyester resin (hereinafter also referred to as "modified aliphatic polyester resin").
  • the foamable resin composition may be composed of only one or more aliphatic polyester-based resins, or may contain resins other than aliphatic polyester-based resins.
  • the content of resins other than aliphatic polyester-based resins is preferably less than 20% by mass of all resins contained in the foamable resin composition.
  • the proportion of aliphatic polyester-based resins in all resins contained in the foamable resin composition is preferably 80% by mass or more.
  • the proportion of aliphatic polyester-based resins may be 90% by mass or more, or may be 95% by mass or more.
  • Resins other than aliphatic polyester resins such as tackifiers and polymeric antistatic agents, can be introduced into the foaming resin composition.
  • the aliphatic polyester resin contained in the foaming resin composition may be a hydroxy acid polycondensate, a ring-opening polymer of lactone, or a polycondensate of a polyhydric alcohol component and a polycarboxylic acid component.
  • hydroxy acid polycondensates include polylactic acid and polycondensates of hydroxybutyric acid.
  • ring-opening polymers of lactone include polycaprolactone and polypropiolactone.
  • polycondensates of a polyhydric alcohol component and a polycarboxylic acid component examples include polyethylene succinate, polybutylene succinate, polybutylene adipate, polybutylene succinate adipate, and polybutylene adipate terephthalate.
  • the aliphatic polyester resin contained in the foaming resin composition is preferably either polybutylene succinate (PBS) or polybutylene succinate adipate (PBSA).
  • the foaming resin composition preferably contains modified polybutylene succinate (hereinafter also referred to as "modified polybutylene succinate") or modified polybutylene succinate adipate (hereinafter also referred to as "modified polybutylene succinate adipate").
  • the unmodified aliphatic polyester resin that is the starting material for modified aliphatic polyester resin preferably has diols and dicarbons, which are its constituent units, that are derived from plants.
  • unmodified aliphatic polyester resins such as polylactic acid (PLA), polybutylene succinate (PBS), and polybutylene succinate adipate (PBSA) is derived from plants.
  • the unmodified aliphatic polyester resin preferably has a biomass degree of 20% or more as measured by ASTM D 6866 (2004).
  • the biomass degree of the unmodified aliphatic polyester resin may be 30% or more, or 40% or more.
  • the unmodified aliphatic polyester resin preferably has a melt mass flow rate (MFR) at 190°C of 8 g/10 min or more and 40 g/10 min or less.
  • MFR melt mass flow rate
  • the MFR of the unmodified aliphatic polyester resin may be 10 g/10 min or more, 12 g/10 min or more, 15 g/10 min or more, or 20 g/10 min or more.
  • the MFR of the unmodified aliphatic polyester resin may be 35 g/10 min or less, or 30 g/10 min or less.
  • the MFR of unmodified aliphatic polyester resins can be measured using the same method as the MFR of resin compositions.
  • the number average molecular weight (Mn) of the unmodified aliphatic polyester resin is preferably 20,000 or more and 60,000 or less.
  • the number average molecular weight (Mn) of the unmodified aliphatic polyester resin may be 25,000 or more, 30,000 or more, or 35,000 or more.
  • the number average molecular weight (Mn) of the unmodified aliphatic polyester resin may be 55,000 or less, 50,000 or less, 45,000 or less, or 40,000 or less.
  • the unmodified aliphatic polyester resin preferably has a mass average molecular weight (Mw) of 100,000 or more and 200,000 or less.
  • the mass average molecular weight (Mw) of the unmodified aliphatic polyester resin may be 110,000 or more, or 120,000 or more.
  • the mass average molecular weight (Mw) of the unmodified aliphatic polyester resin may be 190,000 or less, 180,000 or less, 170,000 or less, or 160,000 or less.
  • the unmodified aliphatic polyester resin preferably has a dispersity (Mw/Mn), which is the ratio of the mass average molecular weight (Mw) to the number average molecular weight (Mn), of 2.2 or more and 5.0 or less.
  • the dispersity (Mw/Mn) may be 2.5 or more, 2.8 or more, 3.1 or more, or 3.4 or more.
  • the dispersity (Mw/Mn) may be 4.8 or less, 4.5 or less, 4.2 or less, or 3.9 or less.
  • the Z-average molecular weight (Mz) of the unmodified aliphatic polyester resin is preferably 100,000 or more and 500,000 or less.
  • the Z-average molecular weight (Mz) of the unmodified aliphatic polyester resin may be 140,000 or more, 180,000 or more, or 220,000 or more.
  • the Z-average molecular weight (Mz) of the unmodified aliphatic polyester resin may be 450,000 or less, 400,000 or less, 350,000 or less, or 300,000 or less.
  • the Z-average weight molecular weight (Mz) is preferably 100,000 or more and 300,000 or less.
  • the average molecular weight of the unmodified aliphatic polyester resin can be measured by gel permeation chromatography (GPC) using the following method in terms of standard polystyrene (PS) average molecular weight.
  • GPC gel permeation chromatography
  • PS standard polystyrene
  • the chloroform solution is filtered through a filter (non-aqueous 0.45 ⁇ m syringe filter, manufactured by Shimadzu GLC) to prepare a measurement sample.
  • the unmodified aliphatic polyester resin is measured under the following conditions, and the average molecular weight is calculated using a previously prepared standard polystyrene calibration curve.
  • Measurement device Gel permeation chromatograph (with built-in RI detector and UV detector) (HLC-8320GPC EcoSEC, manufactured by Tosoh Corporation) Column configuration: Sample side guard column TSKgel guardcolumn HXL-H (Tosoh Corporation; 6.0 mm I.D. x 4 cm) x 1 Measurement column TSKgel GMHXL (7.8 mm I.D.
  • the standard polystyrene samples used for the calibration curve are STANDARD SM-105 (Showa Denko K.K.) and STANDARD SH-75 (Showa Denko K.K.), polystyrene (PS) with mass average molecular weights (Mw) of 5,620,000, 3,120,000, 1,250,000, 442,000, 151,000, 53,500, 17,000, 7,660, 2,900, and 1,320.
  • STANDARD SM-105 Showa Denko K.K.
  • STANDARD SH-75 Showa Denko K.K.
  • Mw mass average molecular weights
  • a calibration curve is prepared by the following method.
  • One method for modifying such unmodified polyester resins is to crosslink (partially crosslink) them with an organic peroxide.
  • organic peroxides examples include peroxyesters, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyketals, and ketone peroxides.
  • peroxy ester examples include t-butylperoxy 2-ethylhexyl carbonate, t-hexylperoxy isopropyl monocarbonate, t-hexylperoxy benzoate, t-butylperoxy benzoate, t-butylperoxy laurate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy acetate, 2,5-dimethyl 2,5-di(benzoylperoxy)hexane, and t-butylperoxy isopropyl monocarbonate.
  • hydroperoxide examples include permethane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide.
  • dialkyl peroxide examples include dicumyl peroxide, di-t-butyl peroxide, and 2,5-dimethyl-2,5-di(t-butylperoxy)-hexyne-3.
  • diacyl peroxide examples include dibenzoyl peroxide, di(4-methylbenzoyl) peroxide, and di(3-methylbenzoyl) peroxide.
  • peroxydicarbonate examples include di(2-ethylhexyl) peroxydicarbonate and diisopropyl peroxydicarbonate.
  • peroxyketal examples include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di(t-butylperoxy)-butane, n-butyl 4,4-di-(t-butylperoxy)valerate, and 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane.
  • ketone peroxide examples include methyl ethyl ketone peroxide and acetylacetone peroxide.
  • an organic peroxide that is mildly reactive it is preferable to use an organic peroxide that has a high half-life temperature.
  • the one-minute half-life temperature of the organic peroxide is preferably 150°C or higher and 200°C or lower.
  • the one-minute half-life temperature can be measured using a 0.1 mol/L solution in benzene as a solvent. Since the decomposition reaction in a dilute solution of an organic peroxide can be regarded as a first-order reaction, the decomposition reaction can be expressed as the following formulas (1) and (2) where C is the initial concentration of the organic peroxide, ⁇ C is the amount of decomposition, k is the decomposition rate constant, and t is the time.
  • Formula (1): dx/dt k(C- ⁇ C)
  • Formula (2): ln C/(C- ⁇ C) kt If the half-life time is t 1/2 , then (C- ⁇ C) is C/2, and the above formula becomes as follows.
  • the decomposition rate constant k at each temperature is calculated at several points, and the activation energy ⁇ E is determined from the slope of the straight line obtained by plotting "lnk” versus "1/T".
  • the one-minute half-life temperature can be determined from the approximate straight line obtained by plotting the relationship between "lnt 1/2 " versus "1/T” instead of "lnk” using the determined activation energy ⁇ E.
  • a preferred organic peroxide having the half-life temperature described above is t-butylperoxyisopropyl carbonate (1-minute half-life temperature: 158.8°C).
  • the organic peroxide is preferably used in an amount of 0.02 parts by mass or more and 0.45 parts by mass or less when the amount of the unmodified aliphatic polyester resin to be modified is taken as 100 parts by mass.
  • the amount of the organic peroxide may be 0.05 parts by mass or more, or may be 0.08 parts by mass or more.
  • the amount of the organic peroxide may be 0.4 parts by mass or less, or may be 0.3 parts by mass or less.
  • the foamable resin composition of this embodiment may contain one or more modified aliphatic polyester resins modified as described above.
  • the foamable resin composition of this embodiment may contain modified polybutylene succinate and modified polybutylene succinate adipate.
  • the foamable resin composition of this embodiment may also contain one or more modified aliphatic polyester resins and one or more unmodified aliphatic polyester resins.
  • the foamable resin composition of this embodiment exhibits good foamability when it is melt-kneaded and extruded in an extruder together with components for foaming the foamable resin composition.
  • the components for foaming that are supplied to the extruder together with the foamable resin composition include a bubble regulator and a foaming agent.
  • various additives may be added to the foamable resin composition during extrusion foaming. Examples of such additives include fillers, colorants, flame retardants, antibacterial agents, weather resistance agents, and surfactants.
  • the proportion of additives other than resin in the foamable resin composition of this embodiment is usually 10% by mass or less.
  • the proportion of additives may be 8% by mass or less, or may be 6% by mass or less.
  • the foamed sheet 1 in this embodiment can be produced by carrying out a modification step in which an aliphatic polyester resin and an organic peroxide are melt-kneaded to obtain a modified aliphatic polyester resin, and a sheet production step in which a resin composition containing the modified aliphatic polyester resin is extruded together with a foaming agent into a sheet to produce a foamed sheet.
  • the foamable resin composition may be prepared using only the modified aliphatic polyester resin obtained in the modification step, or may be prepared by blending two or more types of modified aliphatic polyester resins, or blending one or more types of modified aliphatic polyester resins with one or more types of unmodified aliphatic polyester resins.
  • the modification step, the resin composition preparation step of preparing a foamable resin composition containing a modified aliphatic polyester resin, and the sheet preparation step using the foamable resin composition obtained in the resin composition preparation step may each be carried out in a batch manner, or these steps may be carried out continuously.
  • a lamination step of laminating a non-foamed layer on one or both sides of a foam sheet may be carried out after the sheet preparation step to produce a laminated foam sheet. This lamination step may also be carried out in a batch manner, or may be carried out continuously.
  • the above-mentioned steps can be carried out continuously using a tandem line equipped with a first extruder provided upstream in the direction of material movement and a second extruder connected downstream of the first extruder, with a sheeting die (flat die, circular die) attached to the tip of the second extruder.
  • the modification step can be carried out by supplying the unmodified aliphatic polyester resin and the organic peroxide to the first extruder and melt-kneading the unmodified aliphatic polyester resin and the organic peroxide in the first extruder.
  • the unmodified aliphatic polyester resin and the organic peroxide to the above-mentioned ratio (for example, unmodified aliphatic polyester resin 100:organic peroxide 0.02 to 0.45 (mass ratio)
  • a modified aliphatic polyester resin with a low gel content (gel fraction 40 mass% or less) suitable for foaming can be obtained, and a foaming resin composition suitable for producing a foamed product in a good foaming state can be easily obtained.
  • the foaming resin composition is prepared so that the gel fraction measured using chloroform is 40% by mass or less, and thus the composition is suitable for obtaining a foamed sheet having good foamability, low density, and low basis weight.
  • the foaming resin composition is prepared so that the melt mass flow rate (MFR) and melt tension at 190° C. are predetermined values, and thus the composition is suitable for obtaining a foamed sheet having good foamability, low density, and low basis weight.
  • the foaming resin composition has a storage modulus (G') with a predetermined slope in the frequency range of 0.01 Hz to 0.1 Hz in dynamic viscoelasticity measurement, and a complex viscosity ( ⁇ * ) at a frequency of 0.01 Hz is a predetermined value, and thus the composition is particularly suitable for obtaining a foamed sheet having good foamability, low density, and low basis weight.
  • G' storage modulus
  • ⁇ * complex viscosity
  • the resin composition preparation step for obtaining such a foaming resin composition may be carried out in a first extruder or a second extruder.
  • the resin composition preparation step may be carried out in parallel with the modification step by, for example, supplying other components such as a bubble control agent together with the unmodified aliphatic polyester resin from the middle of the first extruder.
  • the foaming agent may also be supplied from the middle of the first extruder or the second extruder.
  • the lamination step may be carried out by extruding a resin composition for forming a non-foamed layer (hereinafter also referred to as a "non-foamed layer resin composition") from the sheeting die by a co-extrusion method, and may be carried out in parallel with the sheet preparation step.
  • the lamination step may be carried out by a method of extrusion laminating or dry laminating the non-foamed layer resin composition on a foamed sheet that has already been prepared.
  • a foamed sheet or a laminated foamed sheet may be prepared by a conventionally known method.
  • the non-foamed layer is also composed of an aliphatic polyester-based resin composition.
  • the aliphatic polyester-based resin contained in the non-foamed layer and the aliphatic polyester-based resin contained in the foamed layer may be the same or different.
  • a foaming agent that is less likely to remain in the foamed sheet and is less likely to cause secondary foaming.
  • Carbon dioxide is preferable as the foaming agent used in this embodiment.
  • a hydrocarbon or nitrogen gas may be used as the foaming agent.
  • foaming agents may be used alone or in combination of two or more types.
  • a common agent such as talc may be used.
  • the foam sheet in the sheet production process, it is desirable to cool the foam sheet immediately after extrusion more slowly than in the past to allow the foam sheet to crystallize sufficiently. In terms of slowing down the cooling of the foam sheet (foam layer), it can be said that the co-extrusion method is more advantageous when producing a laminated foam sheet.
  • the foamed sheet thus produced has an apparent density of 30 kg/m 3 or more and 100 kg/m 3 or less, a gel fraction measured using chloroform of 25% by mass or less, and a calorific value observed during the first heating process measured by heat flux differential scanning calorimetry at a heating rate of 10 ° C./min of 5.0 J/g or less, and is excellent in lightness, cushioning properties, and dimensional accuracy.
  • the foamed sheet can also be suitable as a raw sheet for producing a foamed molded body (thermoformed body) by thermoforming or the like.
  • a thermoforming method for obtaining a thermoformed body a conventionally known method such as vacuum forming, pressure forming, and vacuum pressure forming can be adopted.
  • a foamed molded body excellent in lightness, cushioning properties, and dimensional accuracy can be easily produced by using the foamed sheet of this embodiment.
  • a foamed molded article which is a thermoformed article composed of the foamed sheet according to any one of (1) to (7).
  • a method for producing a foamed sheet comprising extruding a resin composition containing the modified aliphatic polyester resin into a sheet together with a foaming agent, The foam sheet to be manufactured is The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less, The gel fraction measured using chloroform is 25% by mass or less, A method for producing a foamed sheet, wherein the calorific value observed during a first heating step as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min is 5.0 J/g or less.
  • the resin composition comprises The melt mass flow rate (MFR) at 190°C measured by the method specified in JIS K 7210 is 0.1 g/10 min or more and 5.0 g/10 min or less.
  • the melt tension at 190°C measured using a rheometer and an extensional viscosity measuring device is 30 cN or more and 100 cN or less,
  • the method for producing a foamed sheet according to (9) or (10), wherein the gel fraction measured using chloroform is 40 mass% or less.
  • the storage modulus (G') of the resin composition obtained by measuring the dynamic viscoelasticity under the following conditions is: When the horizontal axis is frequency (Hz) and the vertical axis is storage modulus (G') on a double logarithmic scale, The frequency varies linearly in the range from 0.01 Hz to 0.1 Hz.
  • the method for producing a foamed sheet according to any one of (9) to (11), wherein a slope of a straight line obtained by linearly approximating a frequency range of 0.01 Hz to 0.1 Hz on the graph is 0.35 or more and 1.50 or less.
  • the above invention makes it possible to provide a foamed sheet that contains an aliphatic polyester resin but has excellent heat deformation resistance and moldability, and also has a low apparent density, and to provide a foamed molded product that is easy to manufacture, lightweight, has excellent cushioning properties, and is highly dimensionally accurate.
  • the organic peroxide used to modify the aliphatic polyester resin was as follows:
  • the cell regulator and foaming agent used to prepare the foamed sheet were as follows.
  • Organic peroxide (a): Chemical Nouryon Co., Ltd., trade name "Trigonox BPIC-C75", t-butylperoxyisopropyl monocarbonate, 1-minute half-life temperature 156°C
  • Organic peroxide (b): NOF Corp., trade name "Perbutyl P", ⁇ , ⁇ '-di-t-butylperoxydiisopropylbenzene, 1-minute half-life temperature 175°C
  • Talc Matsumura Sangyo Co., Ltd., product name "Crown Talc PP"
  • ⁇ Foaming Agent> Carbon dioxide Butane: a mixture of isobutane and normal butane. Isobutane: normal butane 35:65 (mass ratio)
  • the properties of the foaming resin composition and foam sheet were evaluated as follows:
  • the thickness of the foamed sheet in each example was measured using a constant pressure thickness gauge ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Manufacturing Co., Ltd.). Specifically, the thickness was measured by the constant pressure thickness gauge when a load of 100 g was applied to the foamed sheet using a circular jig with a diameter of 35.7 mm. The thickness of the foamed sheet was measured at 10 or more points every 5 cm in the width direction (TD) except for 20 mm at both ends of the width direction (TD) perpendicular to the extrusion direction (MD) of the foamed sheet, and the arithmetic mean value of the measured values was used. In addition, when the width of the foamed sheet is narrow and it is not possible to secure 10 measurement points, the arithmetic mean value of all the measured values was used as the thickness of the foamed sheet after securing as many measurement points as possible.
  • a constant pressure thickness gauge manufactured by Ozaki Manufacturing Co., Ltd.
  • the volume (V2: cm 3 ) of the test piece was obtained by the 1-1/2-1 atmospheric pressure method using an air comparison specific gravity meter "1000 type” manufactured by Tokyo Science Co. , Ltd.
  • the open cell ratio (%) was calculated using the following formula (s2), and the arithmetic mean value of the open cell ratios of the five test pieces was obtained.
  • the test pieces were conditioned in advance for 24 hours or more in a standard atmosphere of class 2, "23/50" (temperature 23 ⁇ 2°C, relative humidity 50 ⁇ 5%) according to JIS K 7100:1999, and then measured in the same standard atmosphere.
  • the air comparison specific gravity meter was calibrated using standard balls (large 28.96 cm3 , small 8.58 cm3 ).
  • Open cell ratio (%) (V1 - V2) / V1 x 100 ... (s2) (V1: apparent volume, V2: volume measured by air comparison type specific gravity meter)
  • Step 2 The temperature was increased from ⁇ 40° C. to 200° C. at a rate of 10° C./min (first temperature increase process) and held for 10 minutes.
  • Step 3 The temperature is decreased from 200° C. to ⁇ 40° C. at a rate of 10° C./min (cooling process), and held for 10 minutes.
  • Step 4 Heat the temperature from -40°C to 200°C at a rate of 10°C/min (second heating process).
  • Alumina was used as the reference material.
  • the top temperature of the melting peak observed during the second heating process was read as the melting point, as shown in Figures 3 and 4, and the top temperature of the crystallization peak during the cooling process was read as the crystallization temperature.
  • the higher temperatures were used as the melting point and crystallization temperature.
  • ⁇ Amount of heat absorbed (a) and amount of heat generated (b)> The endothermic amount (a) (amount of heat of fusion) and the exothermic amount (b) (amount of heat of crystallization) were measured according to the methods described in JIS K7122: 1987 and JIS K7122: 2012. However, the sampling method and temperature conditions were as follows. A sample cut out from the foamed sheet of each example was packed into the bottom of an aluminum measurement container at 5.5 ⁇ 0.5 mg without leaving any gaps, and then the container was covered with an aluminum lid. Differential scanning calorimetry was then carried out using a Hitachi High-Tech Science DSC7000X, AS-3 differential scanning calorimeter.
  • Step 1 Decrease temperature from 30° C. to ⁇ 40° C. at a rate of 10° C./min.
  • Step 2 Heat the temperature from ⁇ 40° C. to 200° C. at a rate of 10° C./min (first heating process).
  • Alumina was used as the reference material.
  • the endothermic amount (a) and the calorific value (b) were calculated using the analysis software attached to the device. Specifically, as shown in FIG.
  • the endothermic amount (a) was calculated from the area of the part surrounded by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, as well as the DSC curve.
  • the calorific value (b) was calculated from the area of the part surrounded by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, as well as the DSC curve.
  • the calorific value (b) when no crystallization (exothermic) peak was observed during the first heating process, the calorific value (b) was set to 0 J/g.
  • the total heat of each peak was set to the endothermic amount (a) and the calorific value (b).
  • test pieces measuring 100 mm long x 100 mm wide were cut out from the foamed sheet immediately after extrusion in each example.
  • the test pieces were conditioned for 168 hours under a standard atmosphere of grade 2, "23/50" (temperature 23 ⁇ 2°C, relative humidity 50 ⁇ 5%), as specified in JIS K 7100:1999, and the thickness (T1) (mm) of the center of each test piece before heating was measured. Thereafter, the test pieces were placed on a flat platform in an oven without humidity control set at 70°C and heated for 150 seconds, then removed from the oven and cooled at room temperature for 30 minutes, and the thickness (T2) (mm) of the center of each test piece after heating was measured.
  • the thicknesses (T1 and T2) of the center of the test pieces were measured in the same manner as in the case of determining the thickness of the foamed sheet in each example, using a constant pressure thickness measuring instrument ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Seisakusho Co., Ltd.).
  • the secondary expansion ratios (times) of the three test pieces were calculated by the following formula (s4), and the arithmetic mean value was regarded as the secondary expansion ratio (times) of the foamed sheet.
  • Secondary expansion ratio (times) T2/T1 ... (s4)
  • the thickness of the test piece was measured using a digital linear gauge manufactured by Peacock Co., Ltd., with a circular jig having a diameter of 35.7 mm and a load of 100 g applied to the test piece.
  • the number of test pieces was three or more.
  • the test pieces were conditioned for 16 hours in a standard atmosphere of the JIS K 7100:1999 symbol "23/50" class 2 and used for the measurement.
  • the measurement was performed under the same environment, using a ⁇ 100 mm compression plate, with an initial load of about 3.0 N and a compression speed of 5 mm/min. The point where the initial load was applied was set as the displacement origin.
  • the stress when compressed by 25% from the thickness at the time of applying the initial load was calculated, and the arithmetic mean value was defined as the 25% compression stress (kPa) of the foamed sheet and used as the evaluation standard for the cushioning property.
  • ⁇ Thermoformability (draw ratio) of foam sheet> A flat rectangular test piece measuring 700 mm long x 1050 mm wide was cut out from each foamed sheet.
  • a single shot molding machine manufactured by Tosei Sangyo Co., Ltd., product name "Unic Automatic Molding Machine FM-3A" was prepared, and the average temperature of the upper heater of this single shot molding machine was set to 250°C, the average temperature of the lower heater was set to 222°C, the upper atmosphere temperature was set to 190°C, and the lower atmosphere temperature was set to 185°C.
  • test piece was introduced into a single shot molding machine, heated for a predetermined time, and then molded using a mold (mold surface temperature 50°C) in which 22 truncated cones of 10 mm diameter (top) x 35 mm diameter (bottom) and different heights were arranged.
  • the heights and drawing ratios of the 22 truncated cones were as shown in Table 2.
  • the heating time was 4 to 30 seconds, and the heating time was changed at 2 second intervals, and molding was performed for each.
  • the molded bodies obtained at each heating time were visually observed, and the maximum drawing ratio at which the molded body was free of tears or holes and was molded into the shape of the mold was taken as the drawing ratio of the foamed sheet and was used as the evaluation criterion for thermoformability.
  • thermoformability ⁇ : The drawing ratio is 2.00 or more. ⁇ : The drawing ratio is 1.60 or more and less than 2.00. ⁇ : The drawing ratio is 1.30 or more and less than 1.60. ⁇ : The drawing ratio is less than 1.30 or molding is not possible.
  • unmoldable means that in the case of the No. 1 truncated cone in Table 2, the shape is significantly deviated from the shape of the mold, or tears or holes are found in the molded product.
  • each test piece was placed on a flat platform in an oven with no humidity control set at 70°C, heated for 150 seconds, and then removed from the oven and cooled at room temperature for 30 minutes. Thereafter, the straight line length (MD2, TD2) and thickness (VD2) in each direction of each test piece after heating were measured.
  • the lengths of the straight lines (MD1 and MD2, TD1 and TD2) were measured using a vernier caliper ("Digimatic Caliper” manufactured by Mitutoyo Corporation), and the thicknesses (VD1 and VD2) were measured using a constant pressure thickness measuring instrument ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Manufacturing Co., Ltd.) in the same manner as in the case of determining the thickness of the foamed sheet of each example.
  • the heat deformation rate (%) of each test piece was calculated by the following formula (s6), and the arithmetic mean value was regarded as the heat deformation rate (%) of the foamed sheet, which was used as the evaluation standard for heat deformation resistance.
  • /MD1) x 100 TD deformation rate (TDr) (%) (
  • /TD1) x 100 VD deformation rate (VDr) (%) (
  • the physical properties of the obtained foamable resin composition are shown in Table 3.
  • Example 1 According to the formulation in Table 4, the modified aliphatic polyester resin and the cell regulator were dry blended to prepare a formulation.
  • a compound was supplied to the hopper of the first extruder of a tandem extruder in which two extruders were connected (the first extruder on the upstream side was a single screw extruder (diameter 55 mm), and the second extruder on the downstream side was a single screw extruder (diameter 65 mm)).
  • the compound was melt-kneaded in the first extruder while a foaming agent was injected midway through the first extruder, to obtain a melt-kneaded compound.
  • the molten mixture was transferred to a second extruder, cooled, and extruded and foamed from a circular die (diameter 60 mm) attached to the tip of the second extruder to form a cylindrical body made of a foamed sheet.
  • the resin temperature and discharge rate at this time were as shown in Table 4. Cooling air was blown onto the inner and outer sides of the cylindrical foamed sheet, and then the inner surface of the cylinder was brought into sliding contact with the outer peripheral surface of a predetermined mandrel to cool the sheet from the inner surface of the cylinder. Thereafter, one portion of the cylinder was cut continuously along the extrusion direction to obtain a long strip-shaped foamed sheet, which was then wound into a roll. The physical properties and evaluation of the resulting foamed sheet are shown in Table 4.
  • Example 2 A foamed sheet was produced in the same manner as in Example 1, except that the extrusion conditions and the take-up speed of the take-up machine were adjusted according to the formulation in Table 4. The physical properties and evaluation of the obtained foamed sheet are shown in Table 4.
  • Example 1 A foamed sheet was produced in the same manner as in Example 1, except that an unmodified aliphatic polyester resin (B) (unmodified aliphatic polyester resin) was used instead of the modified aliphatic polyester resin, and the extrusion conditions and the take-up speed of the take-up machine were adjusted according to the formulation in Table 5. The physical properties and evaluation of the obtained foamed sheet are shown in Table 5.
  • B unmodified aliphatic polyester resin
  • the foamed sheets of Examples 1 to 9 to which the present invention was applied were evaluated as being “ ⁇ " to " ⁇ ”.
  • the foamed sheets of Comparative Examples 1 to 5 were evaluated as being “ ⁇ ” in any of the cushioning property, thermoformability, and heat deformation resistance. From the above results, it was confirmed that the foamed sheet according to the present invention is excellent in shock-absorbing properties, thermoformability and heat deformation resistance.
  • the slope of the storage modulus (G') of the foamable resin composition when plotted on a double logarithmic axis with frequency (Hz) on the horizontal axis and storage modulus (G') on the vertical axis, changes linearly in the frequency range of 0.01 Hz to 0.1 Hz, and was calculated from the slope of the straight line that approximated the frequency range of 0.01 Hz to 0.1 Hz on the graph.
  • melt mass-flow rate (MFR) of the foamable resin composition was measured under the following conditions as described above.
  • MFR Melt Mass Flow Rate
  • the melt mass flow rate (MFR) was measured using a "Melt Flow Index Tester (Automatic) 120-SAS" manufactured by Yasuda Seiki Seisakusho Co., Ltd.
  • the MFR was measured in accordance with JIS K 7210:1999 under the following measurement conditions.
  • the measurement samples were vacuum dried at 70°C for 5 hours or more, and after drying, they were placed in nylon polybags for vacuum packing, vacuum packed, and stored in a desiccator until immediately before the measurement.
  • melt tension of the foamable resin composition was measured under the following conditions as described above. ⁇ Melt tension> The melt tension was measured using a capillary rheometer "Capillograph 1D" (special specification for heating furnace) manufactured by Toyo Seiki Seisakusho Co., Ltd. and "Rheotens 71.97” manufactured by Goettfert GmbH. The melt tension was measured under the following conditions. The samples were vacuum-dried at 70° C. for 5 hours or more in advance, and after drying, they were vacuum-packed in nylon plastic bags for vacuum packing and stored in a desiccator until immediately before the measurement.
  • the Rheotens 71.97 was installed so that the distance from the die exit of the Capillograph 1D to the measurement part was 80 mm. (Note that, if the Rheotens could not be brought close to 80 mm due to interference, measures were taken to avoid interference and the Rheotens was set in a specified location.)
  • the sample was filled into a barrel heated to a test temperature of 190° C., and then preheated for 5 minutes. The measurement time was not longer than 10 minutes, including the preheating time, after the barrel was filled.
  • a piston was inserted from the top of the barrel and the molten resin was extruded into a string-like shape. At this time, the piston descending speed (20 mm/min) was kept constant, and the extruded string-like material was passed through a Rheotens wheel. Thereafter, the take-up speed was gradually increased to measure the melt tension of the sample.
  • the average of the maximum and minimum tension values just before the point at which the string broke was taken as the melt tension of the sample.
  • the maximum value was taken as the melt tension.
  • that point was taken as the breaking point, and the average of the maximum and minimum tension values immediately before that point was taken as the melt tension of the sample.
  • a compound was prepared by dry blending 100 parts by mass of a foamable resin composition that had been previously dried and dehumidified at 80° C. for 4 hours and 0.5 parts by mass of talc (manufactured by Matsumura Sangyo Co., Ltd., product name "Crown Talc PP") as a cell regulator.
  • the compound was supplied to the hopper of the first extruder of a tandem extruder in which two extruders were connected (the first extruder on the upstream side was a single-screw extruder (diameter 55 mm), and the second extruder on the downstream side was a single-screw extruder (diameter 65 mm)).
  • the compound was melt-kneaded in the first extruder while 4.3 parts by mass of carbon dioxide was injected as a foaming agent midway through the first extruder to obtain a melt-kneaded compound.
  • the molten mixture was transferred to a second extruder, and cooled so that the resin temperature of the molten mixture became 140° C., and then extruded and foamed at a discharge rate of 30 kg/h from a circular die (diameter 60 mm) attached to the tip of the second extruder to form a cylindrical body composed of a foamed sheet.
  • Cooling air was blown onto the inner and outer sides of the cylindrical foamed sheet, and then the inner surface of the cylinder was brought into sliding contact with the outer peripheral surface of a predetermined mandrel to cool the sheet from the inner surface of the cylinder. Thereafter, one portion of the cylinder was cut continuously along the extrusion direction to obtain a long strip-shaped foamed sheet, which was then wound into a roll.
  • foamed sheets having basis weights of 100 g/m 2 , 65 g/m 2 and 40 g/m 2 were produced.
  • foam sheets with a basis weight of 100 g/ m2 and 65 g/ m2 could be produced by changing the take-up speed of the winder (the "production possibility” in Table 6 is "yes").
  • the resin did not stretch well and the foam sheet broke, making it impossible to produce a foam sheet with a basis weight of 40 g/ m2 (the "production possibility" in Table 6 is "no").
  • ⁇ Evaluation criteria for basis weight> The results of the preparation of the foamed sheet of each basis weight were evaluated according to the following criteria. .circleincircle.: The feasibility of producing foamed sheets of all basis weights was "OK”. ⁇ : Possibility of producing a foamed sheet having a basis weight of 65 g/ m2 or more is "OK”. ⁇ : Only the foamed sheet having a basis weight of 100 g/ m2 is capable of being produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention addresses the problems of: providing a foam sheet that has a low apparent density and excellent heat deformation resistance and moldability despite containing an aliphatic polyester resin; and providing a foam molded body that is easy to produce, lightweight, cushioning, and has excellent dimensional accuracy. In order to solve these problems, the present invention provides a foam sheet made of a resin composition containing one or more types of aliphatic polyester resin, wherein the apparent density is 30 kg/m3 to 100 kg/m3, the gel fraction measured using chloroform is 25 mass% or less, and the calorific value observed in the first temperature elevation process determined by heat flux differential scanning calorimetry at a heating rate of 10°C/min is 5.0 J/g or less.

Description

発泡シート、発泡成形体及び発泡シートの製造方法Foam sheet, foam molded product, and method for producing foam sheet 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本願は、日本国特願2023-007392号及び日本国特願2023-007405号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims priority to Japanese Patent Application No. 2023-007392 and Japanese Patent Application No. 2023-007405, the disclosures of which are incorporated herein by reference.
 本発明は、発泡シートと、発泡成形体と、発泡シートの製造方法とに関し、より詳しくは、脂肪族ポリエステル系樹脂を含む樹脂組成物で構成された発泡シートと、そのような発泡シートで構成されている発泡成形体と、そのような発泡シートの製造方法とに関する。 The present invention relates to a foam sheet, a foam molded product, and a method for manufacturing a foam sheet, and more specifically to a foam sheet composed of a resin composition containing an aliphatic polyester resin, a foam molded product composed of such a foam sheet, and a method for manufacturing such a foam sheet.
 従来、発泡状態の樹脂組成物で構成された発泡製品が広く用いられている。該発泡製品は、軽量でありながら強度に優れ、緩衝性や断熱性に優れる。この種の発泡製品としては、発泡シートや発泡シートを成形型で3次元形状に加工するなどして作製される発泡成形体が知られている。発泡製品としては、発泡ビーズや発泡ビーズを成形型で3次元形状に加工するなどして作製される発泡成形体なども知られている。発泡シートや発泡ビーズは、例えば、アセトンやブタンなどの発泡剤を含浸させた非発泡な樹脂シートや非発泡な樹脂ビーズを加熱して発泡させることによって得られる。また、発泡ビーズや発泡シートは、押出発泡法によっても作製され得る。具体的には、発泡シートについては、発泡用の樹脂組成物と発泡剤とを押出機中で溶融混練し、得られた溶融混練物を押出機の先端に装着したシーティングダイ(フラットダイやサーキュラーダイ)よりシート状に押し出すとともに発泡させる方法で得られる押出発泡シートが知られている。 Conventionally, foamed products made of a foamed resin composition have been widely used. The foamed products are lightweight yet have excellent strength, cushioning properties, and heat insulation properties. As this type of foamed product, foamed sheets and foamed molded bodies produced by processing foamed sheets into three-dimensional shapes using a mold are known. As foamed products, foamed beads and foamed molded bodies produced by processing foamed beads into three-dimensional shapes using a mold are also known. Foamed sheets and foamed beads are obtained, for example, by heating and foaming non-foamed resin sheets or non-foamed resin beads impregnated with a foaming agent such as acetone or butane. Foamed beads and foamed sheets can also be produced by an extrusion foaming method. Specifically, as for foamed sheets, extrusion foam sheets are known, which are obtained by melt-kneading a foaming resin composition and a foaming agent in an extruder, and extruding the resulting molten mixture into a sheet shape from a sheeting die (flat die or circular die) attached to the tip of the extruder and foaming the mixture.
 この種の押出発泡シートは、シート状のままで緩衝シートとして利用されたり、袋状にされて包装材などに用いられたりしている。また、この種の押出発泡シートは、熱成形によって発泡成形体を作製するための原反シートとして用いられる。さらに、押出発泡シートは、そのもの自体で上記のような用途に用いられる以外にも片面又は両面にフィルム層(非発泡層)が積層された積層発泡シートの形態でも広く用いられている。 This type of extruded foam sheet is used as a cushioning sheet in sheet form, or made into a bag for use as packaging material. This type of extruded foam sheet is also used as a base sheet for producing foam molded products by thermoforming. In addition to being used for the above-mentioned applications by itself, extruded foam sheets are also widely used in the form of laminated foam sheets with a film layer (non-foamed layer) laminated on one or both sides.
 ところで、近年、自然環境下で分解可能な生分解性の樹脂製品が求められており、発泡シートや発泡ビーズの原材料として脂肪族ポリエステル系樹脂をベース樹脂とした樹脂組成物が用いられるようになってきている。発泡シートなどの発泡製品には緩衝性などの観点から低い見掛け密度を有することが求められるが脂肪族ポリエステル系樹脂は、一般的に発泡性に劣る。そのため、脂肪族ポリエステル系樹脂を含む発泡製品を作製する場合には、脂肪族ポリエステル系樹脂の分子構造中に架橋構造や長鎖分岐構造を持たせたり、高分子量化させたりして発泡適性を付与することが従来から検討されている。例えば、特許文献1には、質量平均分子量15万~40万の生分解性ポリエステル系樹脂を含む発泡層を有する発泡シートが記載されている。 In recent years, there has been a demand for biodegradable resin products that can be decomposed in the natural environment, and resin compositions based on aliphatic polyester resins have come to be used as raw materials for foam sheets and foam beads. Foam products such as foam sheets are required to have a low apparent density from the viewpoint of cushioning properties, but aliphatic polyester resins generally have poor foamability. For this reason, when producing foam products containing aliphatic polyester resins, it has been considered to impart foaming suitability by imparting a crosslinked structure or a long-chain branched structure to the molecular structure of the aliphatic polyester resin or by increasing the molecular weight. For example, Patent Document 1 describes a foam sheet having a foam layer containing a biodegradable polyester resin with a mass average molecular weight of 150,000 to 400,000.
日本国特開2020-164686号公報Japanese Patent Application Publication No. 2020-164686
 脂肪族ポリエステル系樹脂を含む発泡シートやその成形品については、緩衝性などの観点から低密度であることが求められている。また、脂肪族ポリエステル系樹脂を含む発泡シートには、成形性に優れることが要望されている。そして、脂肪族ポリエステル系樹脂を含む発泡シートは、熱変形が生じ易いと熱成形などによって発泡成形体を製造する際に寸法精度が低下し易く、シート状のままで利用される場合であっても寸法安定性が確保され難い。そのようなことから、発泡シートは、耐熱変形性を有することが求められている。しかしながら、脂肪族ポリエステル系樹脂を含む発泡シートについては、低密度でありながら優れた耐熱変形性と成形性とを有するものが得られ難く、上記のような要望は満たされるに至っていない。そこで、本発明は、脂肪族ポリエステル系樹脂を含みながらも耐熱変形性と成形性とに優れ、しかも、見掛け密度の低い発泡シートを提供し、ひいては、製造容易で軽量性、緩衝性、及び、寸法精度に優れた発泡成形体を提供することを課題としている。 Foam sheets containing aliphatic polyester resins and molded products thereof are required to have low density from the viewpoint of cushioning properties. In addition, foam sheets containing aliphatic polyester resins are required to have excellent moldability. If a foam sheet containing aliphatic polyester resins is prone to thermal deformation, the dimensional accuracy is likely to decrease when a foam molded product is manufactured by thermoforming, and it is difficult to ensure dimensional stability even when the sheet is used as is. For this reason, foam sheets are required to have heat deformation resistance. However, it is difficult to obtain a foam sheet containing aliphatic polyester resins that has low density but excellent heat deformation resistance and moldability, and the above-mentioned demands have not been met. Therefore, the present invention aims to provide a foam sheet that contains aliphatic polyester resins but has excellent heat deformation resistance and moldability and a low apparent density, and ultimately to provide a foam molded product that is easy to manufacture and has excellent light weight, cushioning properties, and dimensional accuracy.
 上記課題を解決するために本発明は、
 1種類以上の脂肪族ポリエステル系樹脂を含む樹脂組成物で構成された発泡シートであって、
 見掛け密度が30kg/m3以上100kg/m3以下で、
 クロロホルムを用いて測定されるゲル分率が25質量%以下であり、
 加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である発泡シート、を提供する。
In order to solve the above problems, the present invention provides:
A foamed sheet made of a resin composition containing one or more aliphatic polyester resins,
The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less,
The gel fraction measured using chloroform is 25% by mass or less,
The foamed sheet has a calorific value of 5.0 J/g or less observed during the first heating step as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min.
 上記課題を解決すべく、本発明は、
 上記のような発泡シートで構成された熱成形体である、発泡成形体、を提供する。
In order to solve the above problems, the present invention provides:
The present invention provides a foamed molded article, which is a thermoformed article made of the foamed sheet as described above.
 さらに、本発明は、
 脂肪族ポリエステル系樹脂と有機過酸化物とを溶融混練して改質脂肪族ポリエステル系樹脂を得ることと、
 前記改質脂肪族ポリエステル系樹脂を含む樹脂組成物を発泡剤とともにシート状に押出すこととを含む発泡シートの製造方法であって、
 製造する発泡シートは、
 見掛け密度が30kg/m3以上100kg/m3以下で、
 クロロホルムを用いて測定されるゲル分率が25質量%以下であり、
 加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である発泡シートの製造方法、を提供する。
Furthermore, the present invention provides
melt-kneading an aliphatic polyester resin with an organic peroxide to obtain a modified aliphatic polyester resin;
A method for producing a foamed sheet, comprising extruding a resin composition containing the modified aliphatic polyester resin into a sheet together with a foaming agent,
The foam sheet to be manufactured is
The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less,
The gel fraction measured using chloroform is 25% by mass or less,
The present invention provides a method for producing a foamed sheet in which the calorific value observed during the first heating step, as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min, is 5.0 J/g or less.
図1は、厚さ方向に平行な平面で一実施形態の発泡シートを切断した際の断面の様子を示した概略断面図である。FIG. 1 is a schematic cross-sectional view showing a cross section of a foamed sheet of one embodiment cut along a plane parallel to the thickness direction. 図2は、厚さ方向に平行な平面で積層発泡シートを切断した際の断面を示した概略断面図である。FIG. 2 is a schematic cross-sectional view showing a cross section of a laminated foam sheet cut along a plane parallel to the thickness direction. 図3は、比較例1の発泡シートに対して示差走査熱量測定(DSC)を実施した結果(DSC曲線)を示す図である。FIG. 3 is a graph showing the results (DSC curve) of differential scanning calorimetry (DSC) performed on the foamed sheet of Comparative Example 1. 図4は、実施例1の発泡シートに対して示差走査熱量測定(DSC)を実施した結果(DSC曲線)を示す図である。FIG. 4 is a graph showing the results (DSC curve) of differential scanning calorimetry (DSC) performed on the foamed sheet of Example 1. 図5は、実施例1で用いた発泡用樹脂組成物の動的粘弾性測定での周波数と貯蔵弾性率(G’)との関係を両対数軸のグラフで表して周波数0.01Hz~0.1Hzの範囲で直線近似した図である。FIG. 5 is a graph showing the relationship between frequency and storage modulus (G′) in the dynamic viscoelasticity measurement of the foaming resin composition used in Example 1, with the graph being a double logarithmic axis and linearly approximated in the frequency range of 0.01 Hz to 0.1 Hz. 図6は、実施例1で用いた発泡用樹脂組成物の複素粘度(η*)の測定結果を示す図である。FIG. 6 is a graph showing the results of measuring the complex viscosity (η * ) of the foaming resin composition used in Example 1. 図7は、比較例1で用いた発泡用樹脂組成物の動的粘弾性測定での周波数と貯蔵弾性率(G’)との関係を両対数軸のグラフで表して周波数0.01Hz~0.1Hzの範囲で直線近似した図である。FIG. 7 is a graph showing the relationship between frequency and storage modulus (G′) in the dynamic viscoelasticity measurement of the foaming resin composition used in Comparative Example 1, with the graph being a double logarithmic axis and linearly approximated in the frequency range of 0.01 Hz to 0.1 Hz. 図8は、比較例1で用いた発泡用樹脂組成物の複素粘度(η*)の測定結果を示す図である。FIG. 8 is a graph showing the results of measuring the complex viscosity (η * ) of the foaming resin composition used in Comparative Example 1.
 以下に本発明の一実施形態について説明する。以下においては、図1に示すように、単一の発泡層10のみを備えた単層構造である場合を例にして本実施形態の発泡シート1について説明する。尚、本実施形態の発泡シート1は、図2に示すように発泡層10の片面又は両面に非発泡層20の積層された積層発泡シート2における発泡層10を構成するものであってもよい。また、以下においては、発泡シート1が押出発泡法によって得られた押出発泡シートである場合を例に本発明の実施の形態について説明する。 One embodiment of the present invention will be described below. In the following, the foam sheet 1 of this embodiment will be described taking as an example a single-layer structure with only a single foam layer 10 as shown in FIG. 1. The foam sheet 1 of this embodiment may also constitute the foam layer 10 in a laminated foam sheet 2 in which a non-foamed layer 20 is laminated on one or both sides of the foam layer 10 as shown in FIG. 2. In addition, in the following, the embodiment of the present invention will be described taking as an example a case in which the foam sheet 1 is an extruded foam sheet obtained by an extrusion foaming method.
 本実施形態の発泡シート1や積層発泡シート2については、特にその用途が限定されるわけではないが、例えば、熱成形によって発泡成形体を作製する際の原反シートとして用いられ得る。また、発泡シート1や積層発泡シート2については、平坦なシート状のまま用いられてもよく、折箱、緩衝シート、包装袋、育苗シート、断熱材などの形成材料としても用いられ得る。本実施形態の発泡シート1や積層発泡シート2は、このような用途以外にも広く用いられ得る。本実施形態においては、発泡シート1(発泡層10)が低密度であることで、当該発泡シートが軽量性や緩衝性に優れるだけでなく、発泡成形体などの発泡製品に対しても優れた軽量性と緩衝性とを発揮させ得る。また、本実施形態においては、発泡シート1(発泡層10)が、耐熱変形性を有することから発泡製品に対しても耐熱変形性を発揮させることができ、発泡製品に対して高い寸法安定性を発揮させ得る。前記発泡成形体は、包装・緩衝トレー、育苗トレー、食品容器、断熱材などに用いられ得る。包装・緩衝トレーは、例えば、農産物(果物、野菜など)や産業資材(化粧容器など)を収容するのに用いられ得る。 The foam sheet 1 and the laminated foam sheet 2 of this embodiment are not particularly limited in their applications, but may be used, for example, as a raw sheet when producing a foam molded body by thermoforming. The foam sheet 1 and the laminated foam sheet 2 may be used as flat sheets and may be used as materials for forming folding boxes, buffer sheets, packaging bags, seedling sheets, heat insulating materials, etc. The foam sheet 1 and the laminated foam sheet 2 of this embodiment may be used widely in applications other than these. In this embodiment, the foam sheet 1 (foam layer 10) has a low density, so that the foam sheet is not only excellent in lightness and cushioning properties, but also exhibits excellent lightness and cushioning properties for foam products such as foam molded bodies. In this embodiment, the foam sheet 1 (foam layer 10) has heat deformation resistance, so that it can exhibit heat deformation resistance for foam products and can exhibit high dimensional stability for foam products. The foam molded body may be used for packaging/buffer trays, seedling trays, food containers, heat insulating materials, etc. Packaging and cushioning trays can be used, for example, to hold agricultural products (fruits, vegetables, etc.) and industrial materials (cosmetic containers, etc.).
 本実施形態の発泡シート1は、ポリ乳酸(PLA)やポリブチレンサクシネート(PBS)などの脂肪族ポリエステル系樹脂を含む樹脂組成物(脂肪族ポリエステル系樹脂組成物)で構成されている。本実施形態の発泡シート1の厚さは、特に限定されるものではないが、例えば、0.5mm以上とすることができる。発泡シート1の厚さは、1mm以上であってもよく、1.5mm以上であってもよい。発泡シート1の厚さは、例えば、8mm以下とすることができる。発泡シート1の厚さは、6mm以下であってもよく、4mm以下であってもよい。 The foam sheet 1 of this embodiment is composed of a resin composition (aliphatic polyester resin composition) containing an aliphatic polyester resin such as polylactic acid (PLA) or polybutylene succinate (PBS). The thickness of the foam sheet 1 of this embodiment is not particularly limited, but can be, for example, 0.5 mm or more. The thickness of the foam sheet 1 may be 1 mm or more, or 1.5 mm or more. The thickness of the foam sheet 1 can be, for example, 8 mm or less. The thickness of the foam sheet 1 may be 6 mm or less, or 4 mm or less.
 本実施形態の発泡シート1が、積層発泡シート2の発泡層10を構成する場合、その表面に積層される非発泡層20の厚さは、例えば、1μm以上とすることができる。非発泡層20の厚さは、5μm以上であってもよく10μm以上であってもよい。非発泡層20の厚さは、例えば、500μm以下とすることができる。非発泡層20の厚さは、400μm以下であってもよく、300μm以下であってもよく、200μm以下であってもよい。積層発泡シート2が発泡層10の両面に非発泡層20を有する場合、発泡層10の一面側に積層された第1の非発泡層20(第1非発泡層21)と他面側に積層された第2の非発泡層20(第2非発泡層22)とのそれぞれは、同じ厚さを有する必要はなく、異なる厚さを有していてもよい。 When the foamed sheet 1 of this embodiment constitutes the foamed layer 10 of the laminated foamed sheet 2, the thickness of the non-foamed layer 20 laminated on its surface can be, for example, 1 μm or more. The thickness of the non-foamed layer 20 can be 5 μm or more, or 10 μm or more. The thickness of the non-foamed layer 20 can be, for example, 500 μm or less. The thickness of the non-foamed layer 20 can be 400 μm or less, 300 μm or less, or 200 μm or less. When the laminated foamed sheet 2 has non-foamed layers 20 on both sides of the foamed layer 10, the first non-foamed layer 20 (first non-foamed layer 21) laminated on one side of the foamed layer 10 and the second non-foamed layer 20 (second non-foamed layer 22) laminated on the other side do not need to have the same thickness, and may have different thicknesses.
 発泡シート1の厚さは、定圧厚み測定機、例えば、(株)尾崎製作所製「ピーコックデジタルリニアゲージ PDN25」を用いて測定することができる。具体的には、発泡シート1の厚さは、直径35.7mmの円形状の治具で100gの荷重を発泡シートにかけたときの厚さを定圧厚み測定機にて測定して求めることができる。尚、発泡シート1の厚さは、例えば、押出方向(MD)と直交する幅方向(TD)の両端20mmを除き、幅方向(TD)に5cmごとに10点以上測定し、その測定値の相加平均値として求めることができる。また、発泡シート1の幅が狭く10点分の測定箇所を確保出来ない場合には、可能な限りの測定点数を確保した上で全ての測定値の相加平均値を発泡シート1の厚さとすることができる。 The thickness of the foam sheet 1 can be measured using a constant pressure thickness gauge, for example, the "Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Manufacturing Co., Ltd. Specifically, the thickness of the foam sheet 1 can be obtained by measuring the thickness when a load of 100 g is applied to the foam sheet using a circular jig with a diameter of 35.7 mm using a constant pressure thickness gauge. The thickness of the foam sheet 1 can be obtained, for example, by measuring 10 or more points every 5 cm in the width direction (TD) except for 20 mm at both ends of the width direction (TD) perpendicular to the extrusion direction (MD) and taking the arithmetic mean of the measured values. In addition, if the width of the foam sheet 1 is narrow and it is not possible to secure 10 measurement points, the arithmetic mean of all the measured values can be obtained as the thickness of the foam sheet 1 after securing as many measurement points as possible.
 積層発泡シート2での非発泡層20の厚さは、非発泡層20の断面(発泡シート1の平面方向に直交する平面での断面)の顕微鏡写真を撮影し、該写真において無作為に選択した複数箇所(例えば、10箇所)において非発泡層20の厚さを測定して得られた測定値の相加平均値を計算することで求めることができる。発泡層10の厚さは発泡シート1の厚さから非発泡層20の厚さを減じることで求めることができる。 The thickness of the non-foamed layer 20 in the laminated foam sheet 2 can be found by taking a microscopic photograph of the cross section of the non-foamed layer 20 (a cross section in a plane perpendicular to the planar direction of the foam sheet 1), measuring the thickness of the non-foamed layer 20 at multiple randomly selected points (e.g., 10 points) on the photograph, and calculating the arithmetic mean of the measured values. The thickness of the foamed layer 10 can be found by subtracting the thickness of the non-foamed layer 20 from the thickness of the foam sheet 1.
 本実施形態の発泡シート1(発泡層10)は、見掛け密度が30kg/m3以上である。発泡製品に高い強度を発揮させる上において見掛け密度は一定以上である方が有利である。見掛け密度は、40kg/m3以上であってもよく、50kg/m3以上であってもよい。一方で軽量性と緩衝性とをより確実に発揮させる上において見掛け密度は一定以下であることが望ましい。本実施形態の発泡シート1(発泡層10)の見掛け密度は、100kg/m3以下である。見掛け密度は、90kg/m3以下であってもよく、80kg/m3以下であってもよい。 The foamed sheet 1 (foamed layer 10) of this embodiment has an apparent density of 30 kg/m 3 or more. In order to ensure high strength in a foamed product, it is advantageous for the apparent density to be a certain level or higher. The apparent density may be 40 kg/m 3 or more, or 50 kg/m 3 or more. On the other hand, in order to ensure light weight and cushioning properties, it is desirable for the apparent density to be a certain level or lower. The foamed sheet 1 (foamed layer 10) of this embodiment has an apparent density of 100 kg/m 3 or less. The apparent density may be 90 kg/m 3 or less, or 80 kg/m 3 or less.
 見掛け密度(kg/m3)は、単位面積当たりの発泡シート1(発泡層10)の質量(坪量:g/m2)を発泡シート1(発泡層10)の厚さ(mm)で除して求めることができる。坪量は、発泡シートから切り出した複数の試料について測定した値を相加平均して求めることができる。発泡シートの坪量は、発泡シート1の幅方向(TD)の両端20mmを除き、幅方向に等間隔に、10cm×10cmの切片6個を切り出し、各切片の質量(g)を測定して求めることができる。坪量は、各切片の質量(g)の平均値を1m2当たりの質量に換算して求めることができる。
 見掛け密度(kg/m3)=坪量(g/m2)÷厚さ(mm)
 積層発泡シート2での発泡層10の見掛け密度は、全体の見掛け密度と非発泡層20の密度とを測定して算出することができる。非発泡層20の密度は水中置換法(アルキメデス法)などによって求めることができる。
The apparent density (kg/ m3 ) can be determined by dividing the mass (basis weight: g/ m2 ) of the foam sheet 1 (foam layer 10) per unit area by the thickness (mm) of the foam sheet 1 (foam layer 10). The basis weight can be determined by arithmetically averaging values measured for a plurality of samples cut out from the foam sheet. The basis weight of the foam sheet can be determined by cutting out six pieces of 10 cm x 10 cm at equal intervals in the width direction (TD) of the foam sheet 1, excluding 20 mm at both ends in the width direction (TD), and measuring the mass (g) of each piece. The basis weight can be determined by converting the average value of the mass (g) of each piece into a mass per m2 .
Apparent density (kg/m 3 ) = basis weight (g/m 2 ) ÷ thickness (mm)
The apparent density of the foamed layer 10 in the laminated foamed sheet 2 can be calculated by measuring the overall apparent density and the density of the non-foamed layer 20. The density of the non-foamed layer 20 can be determined by an underwater displacement method (Archimedes method) or the like.
 本実施形態の発泡シート1(発泡層10)は、クロロホルムを用いて測定されるゲル分率が25質量%以下である。発泡シート1(発泡層10)を構成している樹脂組成物は、ゲル分率が低いことで押出発泡時において良好な発泡性と熱成形性を示し、上記のような好ましい見掛け密度の発泡シート1(発泡層10)や発泡成形体を作製するのを容易にする。ゲル分率は、20質量%以下であってもよく、15質量%以下であってもよい。ゲル分率は、例えば、0.1質量%以上であってもよく、0.2質量%以上であってもよく、0.3質量%以上であってもよい。 The foamed sheet 1 (foamed layer 10) of this embodiment has a gel fraction of 25% by mass or less, measured using chloroform. The resin composition constituting the foamed sheet 1 (foamed layer 10) has a low gel fraction, which allows it to exhibit good foamability and thermoformability during extrusion foaming, making it easy to produce a foamed sheet 1 (foamed layer 10) or a foamed molded article having the above-mentioned preferred apparent density. The gel fraction may be 20% by mass or less, or 15% by mass or less. The gel fraction may be, for example, 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more.
 ゲル分率は、発泡シート1(発泡層10)から約0.5gの試料を複数個(例えば、5個)採取して、それぞれの試料でのゲル分率を相加平均して求めることができる。試料のゲル分率は、例えば、次の手順で測定することができる。
・試料の初期質量(Mo)を精秤する。
・試料を溶解させた溶解液をろ過するための80メッシュ金網(線径φ0.12mm)を用意し、この金網の初期の質量(Ms)も精秤する。
・ビーカー(容量:100cc)に試料とクロロホルム50ccとスターラーバーとを入れ、アルミニウム箔で蓋をし、スターラーにセットして2時間攪拌を行い、常温にて試料を溶解させる。
・2時間後、蓋を外し、ビーカー内の溶解物を前記金網でろ過し、樹脂不溶物を前記金網上に採取する。
・樹脂不溶物をろ過後の金網ごとドラフトチャンバー内で自然乾燥してクロロホルムを蒸発させる。
・樹脂不溶物をろ過後の金網ごと恒温乾燥器を使って120℃の温度で2時間乾燥し、乾燥後はデシケーター内で放冷する。
・放冷後の樹脂不溶物と金網との合計質量(Mx)を測定する。
・下記式によりゲル分率(質量%)を計算する。
 ゲル分率(質量%)=(Mx-Ms)/Mo×100
The gel fraction can be determined by taking a plurality of samples (e.g., 5 samples) each weighing about 0.5 g from the foamed sheet 1 (foamed layer 10) and arithmetically averaging the gel fractions of the respective samples. The gel fraction of a sample can be measured, for example, by the following procedure.
Accurately weigh the initial mass (Mo) of the sample.
Prepare an 80 mesh wire screen (wire diameter φ0.12 mm) for filtering the solution in which the sample is dissolved, and accurately weigh the initial mass (Ms) of this wire screen.
Put the sample, 50 cc of chloroform, and a stir bar into a beaker (volume: 100 cc), cover with aluminum foil, set on the stirrer and stir for 2 hours to dissolve the sample at room temperature.
After 2 hours, remove the lid, filter the soluble matter in the beaker through the wire mesh, and collect the insoluble resin matter on the wire mesh.
· After filtering the insoluble resin, let the wire mesh and other parts dry naturally in a draft chamber to evaporate the chloroform.
After filtering the insoluble resin, dry the wire mesh at 120°C for 2 hours in a thermostatic dryer, then leave to cool in a desiccator.
After cooling, the total mass (Mx) of the insoluble resin and the wire mesh is measured.
- Calculate the gel fraction (mass%) using the following formula.
Gel fraction (mass%)=(Mx−Ms)/Mo×100
 本実施形態の発泡シート1(発泡層10)は、加熱速度10℃/分での熱流束示差走査熱量測定(熱流束DSC)によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である。熱流束示差走査熱量測定で観察される発熱量とは、脂肪族ポリエステル系樹脂の結晶化に伴って発生する熱量であり、通常、DSC曲線において65℃~130℃の間に頂点を有する発熱ピークとなって観察される。 The foamed sheet 1 (foamed layer 10) of this embodiment has a calorific value of 5.0 J/g or less observed during the first heating process as determined by heat flux differential scanning calorimetry (heat flux DSC) at a heating rate of 10°C/min. The calorific value observed by heat flux differential scanning calorimetry is the amount of heat generated with the crystallization of the aliphatic polyester resin, and is usually observed as an exothermic peak having an apex between 65°C and 130°C on the DSC curve.
 ポリエステル系樹脂は、結晶性樹脂の中でもポリオレフィン系樹脂などと比べると比較的結晶化速度が遅いことが知られている。発泡シート1(発泡層10)が十分に結晶化していない状態であると、高温の保管環境下では、反り・うねりなどを伴う形状変化が起きて寸法精度が損なわれかねない。また、発泡シート1(発泡層10)に結晶化が可能な状態で脂肪族ポリエステル系樹脂が含まれていると上記のような温度において結晶化が生じ、それに伴って発泡シート1に同様の形状変化が起きて寸法精度が損なわれかねない。さらに、熱成形などに際しては、発泡シートの両端をクランプと称される治具で保持して当該発泡シートを加熱して成形型に供給するようなことが行われるが、そのような場合においては発泡シートが変形するとクランプから外れてしまうようなトラブルが生じかねない。  It is known that polyester resins, among crystalline resins, have a relatively slow crystallization rate compared to polyolefin resins and the like. If the foamed sheet 1 (foamed layer 10) is not sufficiently crystallized, it may undergo shape changes accompanied by warping and undulations under high-temperature storage conditions, resulting in loss of dimensional accuracy. Furthermore, if the foamed sheet 1 (foamed layer 10) contains an aliphatic polyester resin in a state that allows it to crystallize, crystallization will occur at the above-mentioned temperatures, which will result in a similar shape change in the foamed sheet 1 and loss of dimensional accuracy. Furthermore, during thermoforming, the foamed sheet is heated and supplied to a mold while both ends of the sheet are held by a jig called a clamp, but in such a case, if the foamed sheet deforms, problems such as it coming off the clamps may occur.
 押出発泡法で低密度の発泡シートを製造する場合は、特に発泡層の気泡膜が薄くなるので、発泡時の破泡を抑制するために押出直後に冷却風が発泡シートに当てられて空冷が行われる。そのため、特に低密度の発泡シートにおいては発熱量が大きな(いまだに結晶化できていない成分を多く含んだ)発泡シートが出来てしまう可能性がある。そこで、後述するように本実施形態では、空冷の温度や風量を調節したりして押出後の発泡シートの冷却状況を緩和して脂肪族ポリエステル系樹脂を十分に結晶化させることが望ましい。 When manufacturing a low-density foam sheet by the extrusion foaming method, the foam layer has a particularly thin bubble membrane, so cooling air is applied to the foam sheet immediately after extrusion to prevent bubbles from breaking during foaming. This can result in a foam sheet with a large amount of heat generation (containing many components that have not yet crystallized), especially in low-density foam sheets. Therefore, as described below, in this embodiment, it is desirable to adjust the air-cooling temperature and air volume to ease the cooling conditions of the foam sheet after extrusion and sufficiently crystallize the aliphatic polyester resin.
 ポリ乳酸では、溶融状態からの冷却過程で、120℃以上の温度においてα晶が形成され、90℃以下になるとα’晶が形成されることが知られており、α’晶に比べてα晶の方が耐熱性に優れることが知られている。また、ポリブチレンサクシネートについては、加熱によってβ晶がα晶に変化することが知られている。したがって、発泡シート1(発泡層10)は、製造過程での冷却を緩慢にして含有される結晶をα晶とすることで熱変形を起こし難くなり得る。α晶が存在することは、広角X線回折(WAXD)によって確認することができる。そして、発泡シート1(発泡層)に含まれる結晶が概ねα晶になっていることは、α晶が形成される温度条件で発泡シートを加熱し、加熱前後で広角X線回折を行ってα晶に由来のピークの強度を比較することで確かめられる。例えば、発泡シート1がポリブチレンサクシネートを含む樹脂組成物で構成されている場合、広角X線回折では、2θが13°となる付近にα晶の(020)面に由来のピークが現れるため、当該発泡シート1を一定条件(例えば、100℃×20分)で加熱し、加熱前後の13°付近のピーク強度の変化(加熱後強度/加熱前強度)が、例えば、1.2倍以下程度であれば当該発泡シート1の結晶が十分にα晶化されていると判断することができる。発泡シート1は、該強度変化が1.1倍以下となるように作製されることが好ましく、強度変化が観察されない(加熱後強度/加熱前強度≒1.0)となるように作製されることが好ましい。 In polylactic acid, it is known that α crystals are formed at temperatures of 120°C or higher during the cooling process from the molten state, and α' crystals are formed at temperatures below 90°C, and it is known that α crystals have better heat resistance than α' crystals. It is also known that β crystals of polybutylene succinate change to α crystals when heated. Therefore, the foamed sheet 1 (foamed layer 10) can be made less susceptible to thermal deformation by slowing down the cooling during the manufacturing process to make the crystals contained therein α crystals. The presence of α crystals can be confirmed by wide-angle X-ray diffraction (WAXD). And, it can be confirmed that the crystals contained in the foamed sheet 1 (foamed layer) are mostly α crystals by heating the foamed sheet under temperature conditions at which α crystals are formed, and comparing the intensities of the peaks derived from α crystals by performing wide-angle X-ray diffraction before and after heating. For example, when the foam sheet 1 is made of a resin composition containing polybutylene succinate, a peak derived from the (020) plane of α crystal appears near 2θ of 13° in wide-angle X-ray diffraction, and the foam sheet 1 is heated under certain conditions (e.g., 100°C x 20 minutes). If the change in peak intensity near 13° before and after heating (intensity after heating/intensity before heating) is, for example, about 1.2 times or less, it can be determined that the crystals of the foam sheet 1 are sufficiently α-crystallized. The foam sheet 1 is preferably produced so that the change in strength is 1.1 times or less, and preferably produced so that no change in strength is observed (intensity after heating/intensity before heating ≒ 1.0).
 熱流束示差走査熱量測定(熱流束DSC)によって求められる1回目の昇温過程で観察される発熱量は、4J/g以下であってもよく、3J/g以下であってもよく、2J/g以下であってもよく、1J/g以下であってもよい。 The amount of heat generated during the first heating process as determined by heat flux differential scanning calorimetry (heat flux DSC) may be 4 J/g or less, 3 J/g or less, 2 J/g or less, or 1 J/g or less.
 本実施形態の発泡シート1(発泡層10)は、前記熱流束示差走査熱量測定での前記昇温過程で吸熱を示すピークが観察される。該昇温過程で観察される吸熱ピークでの吸熱量の絶対値と前記発熱量との差は、30J/g以上90J/g以下であることが好ましい。熱流束示差走査熱量測定で観察される吸熱量とは、脂肪族ポリエステル系樹脂の結晶の融解に伴って発生する熱量であり、DSC曲線において結晶化による発熱ピークよりも数十度高い温度に頂点を有する吸熱ピークとなって観察される。 In the foamed sheet 1 (foamed layer 10) of this embodiment, a peak showing endothermic heat is observed during the heating process in the heat flux differential scanning calorimetry. The difference between the absolute value of the endothermic heat at the endothermic peak observed during the heating process and the heat generation amount is preferably 30 J/g or more and 90 J/g or less. The endothermic heat observed in the heat flux differential scanning calorimetry is the amount of heat generated with the melting of the crystals of the aliphatic polyester resin, and is observed as an endothermic peak having an apex at a temperature several tens of degrees higher than the heat generation peak due to crystallization in the DSC curve.
 発泡シート1(発泡層10)が適度な量で脂肪族ポリエステル系樹脂の結晶を含むことで発泡製品に耐熱変形性と成形性とがバランス良く付与され得る。吸熱量の絶対値と発熱量との差は、40J/g以上であってもよく、50J/g以上であってもよい。吸熱量の絶対値と発熱量との差は、80J/g以下であってもよく、70J/g以下であってもよい。 The foamed sheet 1 (foamed layer 10) contains an appropriate amount of aliphatic polyester resin crystals, which can provide a foamed product with a good balance of heat deformation resistance and moldability. The difference between the absolute value of the amount of heat absorption and the amount of heat generation may be 40 J/g or more, or 50 J/g or more. The difference between the absolute value of the amount of heat absorption and the amount of heat generation may be 80 J/g or less, or 70 J/g or less.
 該吸熱量や前記発熱量については、例えば、以下の要領で測定することができる。
 吸熱量(a)(融解熱量)及び発熱量(b)(結晶化熱量)はJIS K7122:1987、JIS K7122:2012に記載されている方法で測定できる。但し、サンプリング方法及び温度条件に関しては以下の通りとする。
・発泡シート1(発泡層10)から切り出した試料をアルミニウム製測定容器の底に、すきまのないように5.5±0.5mg充填後、アルミニウム製の蓋をする。
・示差走査熱量計(例えば、(株)日立ハイテクサイエンス製、「DSC7000X、AS-3」)を用い、示差走査熱量分析を実施する。
・示差走査熱量分析では、窒素ガス流量20mL/分のもと、以下のステップ1~2で試料の加熱及び冷却を施して、DSC曲線を得る。
 (ステップ1)速度10℃/分で30℃から-40℃まで降温。
 (ステップ2)速度10℃/分で-40℃から200℃まで昇温(1回目昇温過程)。
 尚、この時の基準物質にはアルミナを用いる。
・吸熱量(a)及び発熱量(b)は、装置付属の解析ソフトを用いて算出することができる。具体的には、図3に示すように、吸熱量(a)は、低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出する。発熱量(b)は、低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側へ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出する。
・図4に示すように1回目昇温過程に結晶化(発熱)ピークが観察されない場合は、発熱量(b)は0J/gとする。吸熱量(a)についても同じ。但し、複数の融解(吸熱)ピークや結晶化(発熱)ピークが観察される場合は、各ピークの熱量の合計を吸熱量(a)及び発熱量(b)とする。
The endothermic amount and the exothermic amount can be measured, for example, as follows.
The endothermic amount (a) (amount of heat of fusion) and the exothermic amount (b) (amount of heat of crystallization) can be measured by the methods described in JIS K7122: 1987 and JIS K7122: 2012. However, the sampling method and temperature conditions are as follows.
A sample cut out from the foam sheet 1 (foam layer 10) is packed into the bottom of an aluminum measurement container in an amount of 5.5±0.5 mg so as to leave no gaps, and then the aluminum lid is placed.
Differential scanning calorimetry is carried out using a differential scanning calorimeter (for example, "DSC7000X, AS-3" manufactured by Hitachi High-Tech Science Corporation).
In differential scanning calorimetry, a sample is heated and cooled in the following steps 1 and 2 under a nitrogen gas flow rate of 20 mL/min to obtain a DSC curve.
(Step 1) Decrease temperature from 30° C. to −40° C. at a rate of 10° C./min.
(Step 2) Heat the temperature from −40° C. to 200° C. at a rate of 10° C./min (first heating process).
In this case, alumina is used as the reference material.
The endothermic amount (a) and the calorific value (b) can be calculated using analysis software attached to the device. Specifically, as shown in Fig. 3, the endothermic amount (a) is calculated from the area enclosed by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, and the DSC curve. The calorific value (b) is calculated from the area enclosed by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, and the DSC curve.
4, if no crystallization (exothermic) peak is observed during the first heating process, the amount of heat generated (b) is set to 0 J/g. The same applies to the amount of heat endotherm (a). However, if multiple melting (endothermic) peaks or crystallization (exothermic) peaks are observed, the total amount of heat generated at each peak is set to the amount of heat endotherm (a) and the amount of heat generated (b).
 本実施形態の発泡シート1(発泡層10)は、過大な二次発泡性を有すると、熱成形時に結晶化とは別の理由から熱変形を示してしまい成形性が損なわれる可能性がある。本実施形態の発泡シート1(発泡層10)の二次発泡倍率は、0.9倍以上1.5倍以下であることが好ましい。二次発泡倍率は、1.4倍以下であってもよく、1.3倍以下であってもよく、1.2倍以下であってもよい。 If the foam sheet 1 (foam layer 10) of this embodiment has excessive secondary foaming properties, it may exhibit thermal deformation during thermoforming for reasons other than crystallization, which may impair moldability. The secondary foaming ratio of the foam sheet 1 (foam layer 10) of this embodiment is preferably 0.9 times or more and 1.5 times or less. The secondary foaming ratio may be 1.4 times or less, 1.3 times or less, or 1.2 times or less.
 発泡シート1(発泡層10)の二次発泡倍率は、押出直後(例えば、24時間以内)の発泡シート1や積層発泡シート2に下記のような測定を実施した場合に上記のような倍率となることが好ましい。 The secondary expansion ratio of the foam sheet 1 (foam layer 10) is preferably as described above when the following measurements are performed on the foam sheet 1 or the laminated foam sheet 2 immediately after extrusion (for example, within 24 hours).
 発泡シート1(発泡層10)の二次発泡倍率は、次のようにして求めることができる。
・発泡シートから、縦100mm×横100mmの試験片を3枚切り出す。
・JIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で168時間かけて試験片を状態調整し、加熱前の各試験片の中央部の厚さ(T1)(mm)を測定する。加熱前の各試験片の中央部の厚さ(T1)は発泡シート1の厚さを求める場合と同様にして測定できる。
・試験片を70℃に設定した湿度調整無しのオーブン中の平台に静置して、150秒間加熱した後、オーブンから取り出して室温にて30分間冷却し、加熱後の各試験片の中央部の厚さ(T2)(mm)を測定する。加熱後の各試験片の中央部の厚さ(T2)は発泡シート1の厚さを求める場合と同様にして測定できる。
・下記式により3つの試験片の二次発泡倍率(倍)をそれぞれ計算し、その相加平均値を発泡シートの二次発泡倍率(倍)とする。
 二次発泡倍率(倍)=T2/T1
・積層発泡シート2の状態において発泡層10の二次発泡倍率を求める場合は、上記と同様に加熱前後の積層発泡シートの厚さを測定し、それぞれから非発泡層20の厚さを差し引くことで加熱前の発泡層の厚さ(T1)と加熱後の発泡層の厚さ(T2)とを求めて二次発泡倍率を算出することができる。
The secondary expansion ratio of the foamed sheet 1 (foamed layer 10) can be determined as follows.
- Cut out three test pieces measuring 100 mm in length and 100 mm in width from the foam sheet.
The test pieces are conditioned for 168 hours under a standard atmosphere of grade 2 (temperature 23±2°C, relative humidity 50±5%) according to JIS K 7100:1999, and the thickness (T1) (mm) of the center of each test piece before heating is measured. The thickness (T1) of the center of each test piece before heating can be measured in the same manner as in the case of determining the thickness of the foamed sheet 1.
The test pieces are placed on a platform in an oven set to 70° C. without humidity control, heated for 150 seconds, removed from the oven and cooled at room temperature for 30 minutes, and the thickness (T2) (mm) of the central part of each test piece after heating is measured. The thickness (T2) of the central part of each test piece after heating can be measured in the same manner as in the case of determining the thickness of the foamed sheet 1.
The secondary expansion ratio (times) of each of the three test pieces is calculated using the following formula, and the arithmetic mean value is regarded as the secondary expansion ratio (times) of the foamed sheet.
Secondary expansion ratio (times) = T2/T1
When determining the secondary expansion ratio of the foam layer 10 in the state of the laminated foam sheet 2, the thickness of the laminated foam sheet is measured before and after heating in the same manner as described above, and the thickness of the non-foamed layer 20 is subtracted from each of them to determine the thickness (T1) of the foam layer before heating and the thickness (T2) of the foam layer after heating, and the secondary expansion ratio can be calculated.
 本実施形態の発泡シート1(発泡層10)は、加熱減量が0.1質量%以上1.5質量%以下であることが好ましい。加熱減量は、1.3質量%以下であってもよく、1.1質量%以下であってもよく、0.9質量%以下であってもよく、0.7質量%以下であってもよい。 The foamed sheet 1 (foamed layer 10) of this embodiment preferably has a heat loss of 0.1% by mass or more and 1.5% by mass or less. The heat loss may be 1.3% by mass or less, 1.1% by mass or less, 0.9% by mass or less, or 0.7% by mass or less.
 発泡シート1(発泡層10)の加熱減量は、押出直後(例えば、24時間以内)の発泡シート1や積層発泡シート2に下記のような測定を実施した場合に上記のような値となることが好ましい。 The heat loss of the foamed sheet 1 (foamed layer 10) is preferably the value described above when the foamed sheet 1 or the laminated foamed sheet 2 is subjected to the following measurements immediately after extrusion (for example, within 24 hours).
 発泡シート1(発泡層10)の加熱減量は、次のようにして求めることができる。
・発泡シート1(発泡層10)から、1つの試料の質量が約10gとなるように3つの試料を切り出す。
・JIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で168時間かけて各試料を状態調整する。
・状態調整後の各試料をアルミニウム箔で包み、加熱前の各試料の質量(W1)(g)を測定する。
・各試料を180℃に設定した湿度調整無しのオーブン中の平台に静置して30分間加熱する。
・加熱後の各試料をオーブンから取り出してJIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で30分間放冷し、加熱後の各試料の質量(W2)(g)を測定する。
・下記式により3つの試料の加熱減量(質量%)をそれぞれ計算し、その相加平均値を発泡シートの加熱減量(質量%)とする。
 加熱減量(質量%)=(W1-W2)/W1×100
・加熱後の試料がアルミニウム箔に付着して正確な測定が困難となる場合、予めアルミニウム箔の質量を精秤しておいて、加熱前後の質量をアルミニウム箔ごと測定し、それぞれの測定値からアルミニウム箔の質量を減じて加熱前の各試料の質量(W1)と加熱後の各試料の質量(W2)とを求めるようにしてもよい。
The heat loss of the foamed sheet 1 (foamed layer 10) can be determined as follows.
Three samples are cut out from the foam sheet 1 (foam layer 10) so that each sample has a mass of about 10 g.
Each sample is conditioned for 168 hours under a standard atmosphere of grade 2 (temperature 23±2° C., relative humidity 50±5%), code “23/50” of JIS K 7100:1999.
After conditioning, each sample is wrapped in aluminum foil, and the mass (W1) (g) of each sample before heating is measured.
- Each sample is heated stationary on a platform in an unhumidified oven set at 180°C for 30 minutes.
After heating, each sample is removed from the oven and allowed to cool for 30 minutes under a standard atmosphere of grade 2 (temperature 23±2°C, relative humidity 50±5%), as specified in JIS K 7100:1999, and the mass (W2) (g) of each sample after heating is measured.
The heat loss (mass%) of each of the three samples is calculated using the following formula, and the arithmetic mean value is regarded as the heat loss (mass%) of the foamed sheet.
Heating loss (mass%) = (W1-W2)/W1×100
In cases where the sample adheres to the aluminum foil after heating, making accurate measurement difficult, the mass of the aluminum foil may be precisely weighed in advance, and the mass of each aluminum foil before and after heating may be measured. The mass of each sample before heating (W1) and after heating (W2) may be calculated by subtracting the mass of the aluminum foil from each measured value.
 本実施形態の発泡シート1は、発泡層10の連続気泡率が一定以下である方が優れた成形性を発揮させる上で有利となり得る。本実施形態の発泡シート1(発泡層10)は、連続気泡率が60%以下であることが好ましい。該連続気泡率は、50%以下であってもよく、40%以下であってもよい。本実施形態の発泡シート1は、発泡層10の連続気泡率が一定以上である方が優れた緩衝性や過度な二次発泡を抑制して優れた寸法安定性を発揮させる上で有利となり得る。前記連続気泡率は、10%以上であってもよく、15%以上であってもよく、20%以上であってもよい。 In the foam sheet 1 of this embodiment, it is advantageous for the foam layer 10 to have an open cell rate of a certain level or less in order to exhibit excellent moldability. In the foam sheet 1 (foam layer 10) of this embodiment, it is preferable for the open cell rate to be 60% or less. The open cell rate may be 50% or less, or may be 40% or less. In the foam sheet 1 of this embodiment, it is advantageous for the foam layer 10 to have an open cell rate of a certain level or more in order to exhibit excellent cushioning properties and excellent dimensional stability by suppressing excessive secondary foaming. The open cell rate may be 10% or more, 15% or more, or 20% or more.
 発泡シート1(発泡層10)の連続気泡率は、次のようにして求めることができる。
・発泡シートから、縦25mm×横25mmのシート状サンプル2枚以上を切り出し、切り出したサンプルを空間があかないよう重ね合わせて厚さ約25mmの試験片を5つ作製する。
・得られた試験片の縦と横の寸法は、ノギス(例えば、(株)ミツトヨ製「デジマチックキャリパ」)を用いて測定する。厚みの寸法は、定圧厚み測定機(例えば、(株)尾崎製作所製「ピーコックデジタルリニアゲージ PDN25」)を用いて発泡シート1の厚さを求める場合と同様にして測定できる。測定した寸法から見掛け上の体積(V1:cm3)を求める。
・空気比較式比重計(例えば、東京サイエンス製(株)「1000型」)を用いて、1-1/2-1気圧法により試験片の体積(V2:cm3)を求める。
・下記式により連続気泡率(%)を計算し、5つの試験片の連続気泡率の相加平均値を求める。尚、試験片は予め、JIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で24時間以上かけて状態調整する。また、測定は、同じ標準雰囲気下にて実施する。さらに、空気比較式比重計は、標準球(大28.96cm3、小8.58cm3)にて補正を行った上で用いる。
 連続気泡率(%)=(V1-V2)/V1×100
(V1:見掛け上の体積、V2:空気比較式比重計で測定される体積)
The open cell ratio of the foamed sheet 1 (foamed layer 10) can be determined as follows.
- Two or more sheet samples measuring 25 mm in length and 25 mm in width are cut out from the foam sheet, and the cut samples are stacked together so that there are no gaps, to create five test pieces with a thickness of approximately 25 mm.
The length and width of the obtained test piece are measured using a vernier caliper (e.g., "Digimatic Caliper" manufactured by Mitutoyo Corporation). The thickness can be measured in the same manner as in measuring the thickness of the foamed sheet 1 using a constant pressure thickness measuring device (e.g., "Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Seisakusho Co., Ltd.). The apparent volume (V1: cm3 ) is calculated from the measured dimensions.
Using an air comparison type specific gravity meter (for example, "1000 type" manufactured by Tokyo Science Co., Ltd.), the volume of the test piece (V2: cm 3 ) is determined by the 1-1/2-1 atmospheric pressure method.
The open cell rate (%) is calculated using the following formula, and the arithmetic mean value of the open cell rates of the five test pieces is obtained. The test pieces are conditioned in advance for at least 24 hours in a standard atmosphere of class 2, JIS K 7100:1999, "23/50" (temperature 23±2°C, relative humidity 50±5%). Measurements are also carried out in the same standard atmosphere. The air comparison specific gravity meter is used after correction using standard balls (large 28.96 cm3 , small 8.58 cm3 ).
Open cell ratio (%) = (V1 - V2) / V1 x 100
(V1: apparent volume, V2: volume measured by air comparison type specific gravity meter)
 本実施形態の発泡シート1は、上記のような特性を発揮する上で、発泡層10の形成に用いる押出発泡前の樹脂組成物(発泡用樹脂組成物)が所定の溶融特性を有していることが好ましい。以下に発泡層10を構成する樹脂組成物について説明する。 In order for the foamed sheet 1 of this embodiment to exhibit the above-mentioned properties, it is preferable that the resin composition (foamable resin composition) used to form the foamed layer 10 before extrusion foaming has a predetermined melting property. The resin composition that constitutes the foamed layer 10 is described below.
 本実施形態での樹脂組成物には1種又は複数種の脂肪族ポリエステル系樹脂が含まれ得る。発泡用樹脂組成物は、発泡シートなどの発泡製品を製造する際に良好な発泡性を発揮し、得られる発泡製品に対して緩衝性などの特性を発揮させる上で特性値が一定の範囲内となるように調製されることが好ましい。 The resin composition in this embodiment may contain one or more aliphatic polyester resins. It is preferable that the foaming resin composition is prepared so that it exhibits good foaming properties when producing a foamed product such as a foam sheet, and that the characteristic values of the resulting foamed product are within a certain range in order to exhibit characteristics such as cushioning.
 発泡用樹脂組成物は、良好な発泡性を発現する上で加熱時に適度な流動性を示すことが好ましい。具体的には、本実施形態において発泡シート1(発泡層10)の形成に用いられる前の段階での発泡用樹脂組成物の190℃におけるメルトマスフローレイト(MFR)は、例えば、0.1g/10min以上5.0g/10min以下とすることができる。樹脂組成物のMFRは、例えば、0.2g/10min以上であってもよく、0.3g/10min以上であってもよく、0.4g/10min以上であってもよい。樹脂組成物のMFRは、例えば、0.5g/10min以上であってもよく、0.6g/10min以上であってもよく、0.8g/10min以上であってもよく、0.9g/10min以上であってもよい。樹脂組成物のMFRは、例えば、4.5g/10min以下であってもよく、4.0g/10min以下であってもよく、3.5g/10min以下であってもよく、3.0g/10min以下であってもよい。 It is preferable that the foaming resin composition exhibits a suitable fluidity when heated in order to exhibit good foamability. Specifically, in this embodiment, the melt mass flow rate (MFR) of the foaming resin composition at 190°C before being used to form the foam sheet 1 (foam layer 10) can be, for example, 0.1 g/10 min or more and 5.0 g/10 min or less. The MFR of the resin composition may be, for example, 0.2 g/10 min or more, 0.3 g/10 min or more, or 0.4 g/10 min or more. The MFR of the resin composition may be, for example, 0.5 g/10 min or more, 0.6 g/10 min or more, 0.8 g/10 min or more, or 0.9 g/10 min or more. The MFR of the resin composition may be, for example, 4.5 g/10 min or less, 4.0 g/10 min or less, 3.5 g/10 min or less, or 3.0 g/10 min or less.
 本実施形態では、発泡シート1(発泡層10)を構成している状態での樹脂組成物(以下「発泡後樹脂組成物」ともいう)においてもMFRが上記のような値であることが好ましい。 In this embodiment, it is preferable that the resin composition in the state in which the foamed sheet 1 (foamed layer 10) is formed (hereinafter also referred to as the "foamed resin composition") also has the above-mentioned MFR value.
 発泡シート1(発泡層10)を形成する前の段階での発泡用樹脂組成物や発泡シート1(発泡層10)を構成している状態での発泡後樹脂組成物のメルトマスフローレイト(MFR)は、次のようにして測定することができる。
・樹脂組成物のメルトマスフローレイト(MFR)は、市販の測定器(例えば、(株)安田精機製作所製「メルトフローインデックステスター(自動)120-SAS」)を用いて測定することができる。
・MFRは、JIS K 7210:1999に準拠し、以下の測定条件で測定することができる。尚、測定用の試料は70℃、5時間以上真空乾燥し、乾燥後は測定直前まで真空パック用のナイロンポリ袋に入れて真空包装した上でデシケーターに保存した上で測定に用いる。
The melt mass-flow rate (MFR) of the foaming resin composition before forming the foamed sheet 1 (foamed layer 10) or the foamed resin composition in the state of constituting the foamed sheet 1 (foamed layer 10) can be measured as follows.
The melt mass flow rate (MFR) of the resin composition can be measured using a commercially available measuring device (for example, "Melt Flow Index Tester (Automatic) 120-SAS" manufactured by Yasuda Seiki Seisakusho Co., Ltd.).
The MFR can be measured under the following conditions in accordance with JIS K 7210:1999. The sample to be measured is vacuum dried at 70°C for 5 hours or more, and after drying, is vacuum-packed in a nylon polybag for vacuum packing and stored in a desiccator until immediately before the measurement.
(測定条件)
試料:3~8g
予熱1:200秒
予熱2:30秒
試験温度:190℃
試験荷重:21.18N
ピストン移動距離(インターバル):25mm
試験回数:3回
各試験で得られた測定値の相加平均をMFR(g/10min)の値とする。
(Measurement condition)
Sample: 3 to 8 g
Preheat 1: 200 seconds Preheat 2: 30 seconds Test temperature: 190°C
Test load: 21.18N
Piston travel distance (interval): 25mm
Number of tests: 3 times. The arithmetic mean of the measured values obtained in each test is taken as the MFR (g/10 min).
 発泡用樹脂組成物は、良好な発泡性を発現する上で加熱時に適度な溶融張力を示すことが好ましい。本実施形態において用いられる樹脂組成物の190℃における溶融張力は、例えば、30cN以上100cN以下とすることができる。該溶融張力は、35cN以上であってもよく、40cN以上であってもよい。該溶融張力は、95cN以下であってもよく、90cN以下であってもよい。該溶融張力は、80cN以下であってもよく、70cN以下であってもよく、60cN以下であってもよい。該溶融張力は、55cN以下であってもよく、50cN以下であってもよい。発泡後樹脂組成物についても上記のような溶融張力を有することが好ましい。 The foaming resin composition preferably exhibits an appropriate melt tension when heated in order to exhibit good foamability. The melt tension at 190°C of the resin composition used in this embodiment can be, for example, 30 cN or more and 100 cN or less. The melt tension may be 35 cN or more, or 40 cN or more. The melt tension may be 95 cN or less, or 90 cN or less. The melt tension may be 80 cN or less, 70 cN or less, or 60 cN or less. The melt tension may be 55 cN or less, or 50 cN or less. It is preferable that the foamed resin composition also has the above-mentioned melt tension.
 樹脂組成物(発泡用樹脂組成物、発泡後樹脂組成物)の溶融張力は、次のようにして測定することができる。
・溶融張力は、市販のレオメータと伸長粘度測定器(例えば、株式会社東洋精機製作所製「キャピログラフ1D」(加熱炉特殊仕様)キャピラリーレオメータ、及び、Goettfert社製「Rheotens71.97」)を用いて測定することができる。溶融張力の測定は、下記条件で実施することができる。
・試料は事前に70℃の温度で5時間以上真空乾燥し、乾燥後は測定直前まで真空パック用のナイロンポリ袋に入れて真空包装した上でデシケーターに保存する。
・「Rheotens71.97」を「キャピログラフ1D」のダイ出口から測定部までの距離が80mmとなるよう設置する(尚、そのままでは干渉してしまい80mmまでレオテンスを接近させることができない場合は、干渉を回避する策を講じて所定の場所にレオテンスをセットする)。
・まず、試験温度190℃に加熱されたバレルに試料を充填後、5分間予熱する。尚、測定時間についてはバレルに試料を充填してから予熱時間を含めて10分を超えないようにする。
・次に、バレルの上部からピストンを挿入し溶融樹脂を紐状に押出す。このとき、ピストン降下速度(20mm/min)を一定に保持し、押出された紐状物をレオテンスのホイールに通して引取る。その後、その引取速度を徐々に増加させて試料の溶融張力を測定する。
The melt tension of the resin composition (foamable resin composition, foamed resin composition) can be measured as follows.
The melt tension can be measured using a commercially available rheometer and extensional viscosity measuring device (for example, a capillary rheometer "Capillograph 1D" (special specification for heating furnace) manufactured by Toyo Seiki Seisakusho Co., Ltd., and "Rheotens 71.97" manufactured by Goettfert). The melt tension can be measured under the following conditions.
The samples should be vacuum-dried at 70°C for at least 5 hours in advance, and after drying, they should be vacuum-packed in nylon plastic bags for vacuum packing and stored in a desiccator until immediately before measurement.
- Install the "Rheotens 71.97" so that the distance from the die exit of the "Capilograph 1D" to the measurement part is 80 mm (if it is not possible to bring the Rheotens within 80 mm due to interference, take measures to avoid interference and set the Rheotens in the specified location).
First, the sample is filled into a barrel heated to a test temperature of 190° C., and then preheated for 5 minutes. The measurement time, including the preheating time after filling the barrel with the sample, should not exceed 10 minutes.
Next, a piston is inserted from the top of the barrel to extrude the molten resin into a string shape. At this time, the piston descending speed (20 mm/min) is kept constant, and the extruded string shape is passed through a Rheotens wheel and taken up. After that, the take-up speed is gradually increased to measure the melt tension of the sample.
 測定結果については、紐状物が破断した点の直前の張力の極大値と極小値の平均を試料の溶融張力とする。尚、張力チャートに極大点が1個しかない場合はその極大値を溶融張力とする。また、当紐状物が細くなり、巻取りが空回り状態になった場合は、その時点を破断点と捉えて、直前の張力の極大値と極小値の平均を試料の溶融張力とする。 The melt tension of the sample is determined as the average of the maximum and minimum tension values immediately before the point at which the string breaks. If there is only one maximum point on the tension chart, that maximum value is used as the melt tension. If the string becomes thinner and the winding becomes idling, this point is regarded as the break point, and the average of the maximum and minimum tension values immediately before that point is used as the melt tension of the sample.
(キャピログラフ1Dの測定条件)
ダイ:直径2.095mm、長さ8mm、流入角度90度(コニカル)
バレル径:9.55mm
ピストンスピード:20mm/min
測定温度:190℃
(Measurement conditions for Capillograph 1D)
Die: diameter 2.095 mm, length 8 mm, inlet angle 90 degrees (conical)
Barrel diameter: 9.55mm
Piston speed: 20 mm/min
Measurement temperature: 190°C
(レオテンスの測定条件)
ホイール間隔:上0.6mm、下1.0mm
加速度:10mm/s2
引取スピード:初速 6.92mm/s
(Conditions for measuring Rheotensibility)
Wheel spacing: Top 0.6mm, bottom 1.0mm
Acceleration: 10mm/s 2
Pulling speed: Initial speed 6.92 mm/s
 本実施形態での発泡シート1(発泡層10)は、前記のようにクロロホルムを用いて測定されるゲル分率が25質量%以下である。樹脂組成物を用いて発泡シート1を製造する際には、樹脂組成物にせん断力が加わる。そのため、発泡シート1の製造に用いる前の段階での発泡用樹脂組成物に25質量%を超えるゲルが含まれていたとしても、発泡シート1(発泡層10)でのゲル分率(発泡後樹脂組成物のゲル分率)は、25質量%以下となり得る。発泡後樹脂組成物のゲル分率を25質量%以下にする上で発泡用樹脂組成物のゲル分率は一定以下であることが好ましい。 The foamed sheet 1 (foamed layer 10) in this embodiment has a gel fraction of 25% by mass or less, measured using chloroform as described above. When the foamed sheet 1 is manufactured using the resin composition, a shear force is applied to the resin composition. Therefore, even if the foamable resin composition contains more than 25% by mass of gel before being used to manufacture the foamed sheet 1, the gel fraction in the foamed sheet 1 (foamed layer 10) (gel fraction of the foamed resin composition) can be 25% by mass or less. In order to make the gel fraction of the foamed resin composition 25% by mass or less, it is preferable that the gel fraction of the foamable resin composition be a certain amount or less.
 本実施形態での発泡用樹脂組成物のクロロホルムを用いて測定されるゲル分率は、押出シート作製時に良好な伸びを発揮し低坪量の発泡シートを得る上で、例えば、40質量%以下とすることができる。発泡用樹脂組成物のゲル分率は、例えば、30質量%以下であってもよく、20質量%以下であってもよく、15質量%以下であってもよい。発泡用樹脂組成物のゲル分率は、発泡シート1(発泡層10)でのゲル分率(発泡後樹脂組成物のゲル分率)と同じ方法で測定することができる。 The gel fraction of the foamable resin composition in this embodiment, measured using chloroform, can be, for example, 40% by mass or less in order to obtain a foamed sheet with good elongation and low basis weight when produced as an extruded sheet. The gel fraction of the foamable resin composition may be, for example, 30% by mass or less, 20% by mass or less, or 15% by mass or less. The gel fraction of the foamable resin composition can be measured in the same manner as the gel fraction in the foamed sheet 1 (foam layer 10) (gel fraction of the foamed resin composition).
 発泡用樹脂組成物は、良好な発泡性を発揮し低密度な発泡シートを得る上で、動的粘弾性測定で周波数0.01Hzにおいて観察される複素粘度(η*)が、例えば、10000Pa・s以上150000Pa・s以下となるように調製され得る。また、発泡用樹脂組成物は、動的粘弾性測定における周波数0.01Hz~0.1Hzの範囲における貯蔵弾性率(G’)の傾きが0.35~1.5となるように調製され得る。 The foaming resin composition can be prepared so that the complex viscosity (η * ) observed at a frequency of 0.01 Hz in dynamic viscoelasticity measurement is, for example, 10,000 Pa·s or more and 150,000 Pa·s or less in order to obtain a foamed sheet with good foamability. The foaming resin composition can also be prepared so that the slope of the storage modulus (G') in the frequency range of 0.01 Hz to 0.1 Hz in dynamic viscoelasticity measurement is 0.35 to 1.5.
 前記複素粘度(η*)は、15000Pa・s以上であってもよく、20000Pa・s以上であってもよく、25000Pa・s以上であってもよい。該複素粘度(η*)は、120000Pa・s以下であってもよく、100000Pa・s以下であってもよく、80000Pa・s以下であってもよく、60000Pa・s以下であってもよい。 The complex viscosity (η * ) may be 15,000 Pa·s or more, 20,000 Pa·s or more, or 25,000 Pa·s or more. The complex viscosity (η * ) may be 120,000 Pa·s or less, 100,000 Pa·s or less, 80,000 Pa·s or less, or 60,000 Pa·s or less.
 発泡用樹脂組成物は、良好な発泡性を発揮し、低密度な発泡シートを得る上で、動的粘弾性測定で周波数0.01Hz~0.1Hzにおける貯蔵弾性率(G’)の傾きは、0.37以上であってもよく、0.40以上であってもよく、0.45以上であってもよい。貯蔵弾性率(G’)の傾きは、1.4以下であってもよく、1.3以下であってもよく、1.2以下であってもよく、1.1以下であってもよい。尚、本実施形態での「貯蔵弾性率(G’)の傾き」とは、周波数を変えて動的粘弾性測定を実施し、各周波数での貯蔵弾性率(G’)を測定し、該貯蔵弾性率(G’)の測定結果を横軸が周波数(Hz)、縦軸が貯蔵弾性率(G’)(Pa)となっている両対数軸のグラフで表し、周波数0.01Hz~0.1Hzの範囲において前記グラフを直線近似した際の当該直線の傾きを意味する。 The foaming resin composition exhibits good foaming properties and, in order to obtain a low-density foamed sheet, the slope of the storage modulus (G') at a frequency of 0.01 Hz to 0.1 Hz in dynamic viscoelasticity measurement may be 0.37 or more, 0.40 or more, or 0.45 or more. The slope of the storage modulus (G') may be 1.4 or less, 1.3 or less, 1.2 or less, or 1.1 or less. In this embodiment, the "slope of the storage modulus (G')" refers to the slope of a straight line obtained by linearly approximating the graph in the frequency range of 0.01 Hz to 0.1 Hz when dynamic viscoelasticity measurement is performed while changing the frequency, the storage modulus (G') is measured at each frequency, and the measurement results of the storage modulus (G') are represented on a double logarithmic axis graph with the horizontal axis being frequency (Hz) and the vertical axis being storage modulus (G') (Pa).
 発泡用樹脂組成物の貯蔵弾性率(G’)の傾きや前記複素粘度(η*)は、上記の通り動的粘弾性測定より求めることができる。より詳しくは、動的粘弾性測定は、市販の粘弾性測定装置(例えば、Anton Paar社製、商品名「PHYSICA MCR301」)及び温度制御システム(例えば、Anton Paar社製、商品名「CTD450」)にて以下のような手順で測定することができる。
・試料は事前に70℃の温度で5時間以上真空乾燥し、乾燥後は測定直前まで真空パック用のナイロンポリ袋に入れて真空包装した上でデシケーターに保存する。
・試料を190℃に加熱した粘弾性測定装置の直径50mmのパラレルプレート(下側)上にセットし窒素雰囲気下にて5分間に亘って加熱し溶融させる。
・溶融させた試料を、直径25mmのパラレルプレート(上側)にて該パラレルプレートの間隔が2mmとなるまで押しつぶし、プレートからはみ出した樹脂を取り除き、さらに測定温度±1℃に達してから5分間加熱後、動的粘弾性測定を行う。
・測定条件は次の通りとする。
(測定条件)
歪み:5%
周波数:0.01~100(Hz)(低周波数(0.01Hz)から測定を開始)
測定点数:21(5点/桁)
測定温度:190℃
雰囲気ガス:窒素
The slope of the storage modulus (G') and the complex viscosity (η * ) of the foamable resin composition can be determined by dynamic viscoelasticity measurement as described above. More specifically, the dynamic viscoelasticity can be measured using a commercially available viscoelasticity measuring device (e.g., manufactured by Anton Paar, product name "PHYSICA MCR301") and a temperature control system (e.g., manufactured by Anton Paar, product name "CTD450") according to the following procedure.
The samples should be vacuum-dried at 70°C for at least 5 hours in advance, and after drying, they should be vacuum-packed in nylon plastic bags for vacuum packing and stored in a desiccator until immediately before measurement.
The sample is placed on a 50 mm diameter parallel plate (lower side) of a viscoelasticity measuring device heated to 190° C., and heated for 5 minutes in a nitrogen atmosphere to melt the sample.
The molten sample is crushed between parallel plates (upper side) with a diameter of 25 mm until the distance between the parallel plates is 2 mm, any resin that protrudes from the plates is removed, and after the sample has reached the measurement temperature ±1°C and is heated for 5 minutes, dynamic viscoelasticity measurements are performed.
・Measurement conditions are as follows.
(Measurement condition)
Distortion: 5%
Frequency: 0.01 to 100 (Hz) (measurement starts from low frequency (0.01 Hz))
Number of measurement points: 21 (5 points/digit)
Measurement temperature: 190°C
Atmosphere gas: Nitrogen
 貯蔵弾性率(G’)の傾きは、動的粘弾性測定の結果から求め、周波数に対する貯蔵弾性率(G’)の変化曲線から求める。具体的には、図5、図7に示すように、貯蔵弾性率(G’)における各測定点について、周波数(x軸)に対する貯蔵弾性率(G’)(y軸)の値を両対数軸のグラフとしてプロットし、周波数0.01Hz~0.1Hzにおける測定点について累乗近似式(y=bxa)にて直線を描く。ここで、aは前記直線の傾きであり、bは定数となる。即ち、累乗近似式のべき指数(a)の値を貯蔵弾性率(G’)の傾きとする。また、複素粘度(η*)の値は、動的粘弾性測定の結果から、周波数0.01Hzにおける数値を読み取って求めることができる。 The slope of the storage modulus (G') is obtained from the results of dynamic viscoelasticity measurement, and is obtained from the change curve of the storage modulus (G') with respect to frequency. Specifically, as shown in FIG. 5 and FIG. 7, for each measurement point of the storage modulus (G'), the value of the storage modulus (G') (y-axis) with respect to the frequency (x-axis) is plotted as a graph on both logarithmic axes, and a straight line is drawn with a power approximation formula (y=bx a ) for the measurement points at frequencies of 0.01 Hz to 0.1 Hz. Here, a is the slope of the straight line, and b is a constant. That is, the value of the exponent (a) of the power approximation formula is taken as the slope of the storage modulus (G'). In addition, the value of the complex viscosity (η * ) can be obtained by reading the value at a frequency of 0.01 Hz from the results of dynamic viscoelasticity measurement.
 上記のような発泡用樹脂組成物における各種の特性値は、使用する脂肪族ポリエステル系樹脂の種類を選択したり、該脂肪族ポリエステル系樹脂を改質して所望の分子構造を付与したりすることで調整可能である。なかでも発泡用樹脂組成物の溶融特性やゲル分率などは、改質された脂肪族ポリエステル系樹脂(以下「改質脂肪族ポリエステル系樹脂」ともいう)を利用することで調整容易となる。 The various characteristic values of the foamable resin composition as described above can be adjusted by selecting the type of aliphatic polyester resin used or by modifying the aliphatic polyester resin to impart the desired molecular structure. In particular, the melting characteristics and gel fraction of the foamable resin composition can be easily adjusted by using a modified aliphatic polyester resin (hereinafter also referred to as "modified aliphatic polyester resin").
 発泡用樹脂組成物は、1又は2以上の脂肪族ポリエステル系樹脂のみで構成されてもよく、脂肪族ポリエステル系樹脂以外の樹脂を含むことも可能である。尚、脂肪族ポリエステル系樹脂以外の樹脂の含有量は、発泡用樹脂組成物に含まれる全ての樹脂に占める割合が20質量%未満であることが好ましい。即ち、発泡用樹脂組成物に含まれる全ての樹脂に占める脂肪族ポリエステル系樹脂の割合は、80質量%以上であることが好ましい。脂肪族ポリエステル系樹脂の割合は、90質量%以上であってもよく、95質量%以上であってもよい。 The foamable resin composition may be composed of only one or more aliphatic polyester-based resins, or may contain resins other than aliphatic polyester-based resins. The content of resins other than aliphatic polyester-based resins is preferably less than 20% by mass of all resins contained in the foamable resin composition. In other words, the proportion of aliphatic polyester-based resins in all resins contained in the foamable resin composition is preferably 80% by mass or more. The proportion of aliphatic polyester-based resins may be 90% by mass or more, or may be 95% by mass or more.
 脂肪族ポリエステル系樹脂以外の樹脂は、例えば、粘着付与剤(タッキファイヤー)や高分子型帯電防止剤などのものが発泡用樹脂組成物に導入され得る。 Resins other than aliphatic polyester resins, such as tackifiers and polymeric antistatic agents, can be introduced into the foaming resin composition.
 発泡用樹脂組成物に含有される脂肪族ポリエステル系樹脂は、ヒドロキシ酸重縮合物、ラクトンの開環重合物、及び、多価アルコール成分と多価カルボン酸成分との重縮合体などであってもよい。ヒドロキシ酸重縮合物としては、例えば、ポリ乳酸、ヒドロキシ酪酸の重縮合物などが挙げられる。ラクトンの開環重合物としては、例えば、ポリカプロラクトン、ポリプロピオラクトンなどが挙げられる。多価アルコール成分と多価カルボン酸成分との重縮合体としては、例えば、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネートアジペート、ポリブチレンアジペートテレフタレートなどが挙げられる。なかでも発泡用樹脂組成物に含有される脂肪族ポリエステル系樹脂は、ポリブチレンサクシネート(PBS)又はポリブチレンサクシネートアジペート(PBSA)のいずれかであることが好ましい。発泡用樹脂組成物は、改質されているポリブチレンサクシネート(以下「改質ポリブチレンサクシネート」ともいう)や改質されたポリブチレンサクシネートアジペート(以下「改質ポリブチレンサクシネートアジペート」ともいう)を含むことが好ましい。 The aliphatic polyester resin contained in the foaming resin composition may be a hydroxy acid polycondensate, a ring-opening polymer of lactone, or a polycondensate of a polyhydric alcohol component and a polycarboxylic acid component. Examples of hydroxy acid polycondensates include polylactic acid and polycondensates of hydroxybutyric acid. Examples of ring-opening polymers of lactone include polycaprolactone and polypropiolactone. Examples of polycondensates of a polyhydric alcohol component and a polycarboxylic acid component include polyethylene succinate, polybutylene succinate, polybutylene adipate, polybutylene succinate adipate, and polybutylene adipate terephthalate. Of these, the aliphatic polyester resin contained in the foaming resin composition is preferably either polybutylene succinate (PBS) or polybutylene succinate adipate (PBSA). The foaming resin composition preferably contains modified polybutylene succinate (hereinafter also referred to as "modified polybutylene succinate") or modified polybutylene succinate adipate (hereinafter also referred to as "modified polybutylene succinate adipate").
 改質脂肪族ポリエステル系樹脂の出発材料となる改質前の脂肪族ポリエステル系樹脂(以下、「非改質脂肪族ポリエステル系樹脂」ともいう)は、その構成単位であるジオールやジカルボンが植物由来であることが好ましい。即ち、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)などの非改質脂肪族ポリエステル系樹脂は、その少なくとも一部が植物由来であることが好ましい。 The unmodified aliphatic polyester resin (hereinafter also referred to as "unmodified aliphatic polyester resin") that is the starting material for modified aliphatic polyester resin preferably has diols and dicarbons, which are its constituent units, that are derived from plants. In other words, it is preferable that at least a portion of unmodified aliphatic polyester resins such as polylactic acid (PLA), polybutylene succinate (PBS), and polybutylene succinate adipate (PBSA) is derived from plants.
 非改質脂肪族ポリエステル系樹脂は、ASTM D 6866(2004)によって測定されるバイオマス度が20%以上であることが好ましい。非改質脂肪族ポリエステル系樹脂のバイオマス度は30%以上であってもよく40%以上であってもよい。 The unmodified aliphatic polyester resin preferably has a biomass degree of 20% or more as measured by ASTM D 6866 (2004). The biomass degree of the unmodified aliphatic polyester resin may be 30% or more, or 40% or more.
 非改質脂肪族ポリエステル系樹脂は、190℃におけるメルトマスフローレイト(MFR)が、8g/10min以上40g/10min以下であることが好ましい。非改質脂肪族ポリエステル系樹脂のMFRは、10g/10min以上であってもよく、12g/10min以上であってもよく、15g/10min以上であってもよく、20g/10min以上であってもよい。非改質脂肪族ポリエステル系樹脂のMFRは、35g/10min以下であってもよく、30g/10min以下であってもよい。 The unmodified aliphatic polyester resin preferably has a melt mass flow rate (MFR) at 190°C of 8 g/10 min or more and 40 g/10 min or less. The MFR of the unmodified aliphatic polyester resin may be 10 g/10 min or more, 12 g/10 min or more, 15 g/10 min or more, or 20 g/10 min or more. The MFR of the unmodified aliphatic polyester resin may be 35 g/10 min or less, or 30 g/10 min or less.
 非改質脂肪族ポリエステル系樹脂のMFRは、樹脂組成物のMFRと同じ方法によって測定することができる。 The MFR of unmodified aliphatic polyester resins can be measured using the same method as the MFR of resin compositions.
 非改質脂肪族ポリエステル系樹脂は、数平均分子量(Mn)が20000以上60000以下であることが好ましい。非改質脂肪族ポリエステル系樹脂の数平均分子量(Mn)は、25000以上であってもよく、30000以上であってもよく、35000以上であってもよい。非改質脂肪族ポリエステル系樹脂の数平均分子量(Mn)は、55000以下であってもよく、50000以下であってもよく、45000以下であってもよく、40000以下であってもよい。 The number average molecular weight (Mn) of the unmodified aliphatic polyester resin is preferably 20,000 or more and 60,000 or less. The number average molecular weight (Mn) of the unmodified aliphatic polyester resin may be 25,000 or more, 30,000 or more, or 35,000 or more. The number average molecular weight (Mn) of the unmodified aliphatic polyester resin may be 55,000 or less, 50,000 or less, 45,000 or less, or 40,000 or less.
 非改質脂肪族ポリエステル系樹脂は、質量平均分子量(Mw)が100000以上200000以下であることが好ましい。非改質脂肪族ポリエステル系樹脂の質量平均分子量(Mw)は、110000以上であってもよく、120000以上であってもよい。非改質脂肪族ポリエステル系樹脂の質量平均分子量(Mw)は、190000以下であってもよく、180000以下であってもよく、170000以下であってもよく、160000以下であってもよい。 The unmodified aliphatic polyester resin preferably has a mass average molecular weight (Mw) of 100,000 or more and 200,000 or less. The mass average molecular weight (Mw) of the unmodified aliphatic polyester resin may be 110,000 or more, or 120,000 or more. The mass average molecular weight (Mw) of the unmodified aliphatic polyester resin may be 190,000 or less, 180,000 or less, 170,000 or less, or 160,000 or less.
 非改質脂肪族ポリエステル系樹脂は、数平均分子量(Mn)に対する質量平均分子量(Mw)の比率である分散度(Mw/Mn)が、2.2以上5.0以下であることが好ましい。分散度(Mw/Mn)は、2.5以上であってもよく、2.8以上であってもよく、3.1以上であってもよく、3.4以上であってもよい。分散度(Mw/Mn)は、4.8以下であってもよく、4.5以下であってもよく、4.2以下であってもよく、3.9以下であってもよい。 The unmodified aliphatic polyester resin preferably has a dispersity (Mw/Mn), which is the ratio of the mass average molecular weight (Mw) to the number average molecular weight (Mn), of 2.2 or more and 5.0 or less. The dispersity (Mw/Mn) may be 2.5 or more, 2.8 or more, 3.1 or more, or 3.4 or more. The dispersity (Mw/Mn) may be 4.8 or less, 4.5 or less, 4.2 or less, or 3.9 or less.
 非改質脂肪族ポリエステル系樹脂は、Z平均分子量(Mz)が100000以上500000以下であることが好ましい。非改質脂肪族ポリエステル系樹脂のZ平均分子量(Mz)は、140000以上であってもよく、180000以上であってもよく、220000以上であってもよい。非改質脂肪族ポリエステル系樹脂のZ平均分子量(Mz)は、450000以下であってもよく、400000以下であってもよく、350000以下であってもよく、300000以下であってもよい。なかでもZ平均重量分子量(Mz)は100000以上300000以下であることが好ましい。 The Z-average molecular weight (Mz) of the unmodified aliphatic polyester resin is preferably 100,000 or more and 500,000 or less. The Z-average molecular weight (Mz) of the unmodified aliphatic polyester resin may be 140,000 or more, 180,000 or more, or 220,000 or more. The Z-average molecular weight (Mz) of the unmodified aliphatic polyester resin may be 450,000 or less, 400,000 or less, 350,000 or less, or 300,000 or less. In particular, the Z-average weight molecular weight (Mz) is preferably 100,000 or more and 300,000 or less.
 非改質脂肪族ポリエステル系樹脂の平均分子量は、ゲル浸透クロマトグラフィー(GPC)を用いて標準ポリスチレン(PS)換算平均分子量として、以下方法で測定することができる。
・非改質脂肪族ポリエステル系樹脂15mgをクロロホルム6mLに溶解する(浸透時間:6.0±1.0時間(完全溶解))。
・クロロホルム溶液をフィルター(非水系0.45μmシリンジフィルター、島津ジーエルシー社製)でろ過して測定サンプルとする。
・標準ポリスチレンを以下の測定条件により分析し、標準ポリスチレン検量線を作成する。
・非改質脂肪族ポリエステル系樹脂を以下の条件にて測定し、予め作成しておいた標準ポリスチレン検量線により、平均分子量を算出する。
The average molecular weight of the unmodified aliphatic polyester resin can be measured by gel permeation chromatography (GPC) using the following method in terms of standard polystyrene (PS) average molecular weight.
Dissolve 15 mg of unmodified aliphatic polyester resin in 6 mL of chloroform (permeation time: 6.0±1.0 hours (complete dissolution)).
The chloroform solution is filtered through a filter (non-aqueous 0.45 μm syringe filter, manufactured by Shimadzu GLC) to prepare a measurement sample.
- Analyze standard polystyrene under the following measurement conditions and create a standard polystyrene calibration curve.
The unmodified aliphatic polyester resin is measured under the following conditions, and the average molecular weight is calculated using a previously prepared standard polystyrene calibration curve.
(測定条件)
測定装置:ゲル浸透クロマトグラフ(RI検出器・UV検出器内蔵)(HLC-8320GPC EcoSEC、東ソー社製)
カラム構成:サンプル側 ガードカラム TSKgel guardcolumn HXL-H(東ソー社製;6.0mmI.D.×4cm)×1本 測定カラム TSKgel GMHXL(7.8mmI.D.×30cm)×2本直列 リファレンス側 抵抗管(内径0.1mm×2m)×2本直列
カラム温度:40℃
移動相:クロロホルム
移動相流量:サンプル側 1.0mL/分 リファレンス側 0.5mL/分
検出器:示差屈折率(RI)検出器
標準試料:検量線用標準ポリスチレン
試料注入量:50μL
測定時間:26分
サンプリングピッチ:500m秒
(Measurement condition)
Measurement device: Gel permeation chromatograph (with built-in RI detector and UV detector) (HLC-8320GPC EcoSEC, manufactured by Tosoh Corporation)
Column configuration: Sample side guard column TSKgel guardcolumn HXL-H (Tosoh Corporation; 6.0 mm I.D. x 4 cm) x 1 Measurement column TSKgel GMHXL (7.8 mm I.D. x 30 cm) x 2 in series Reference side resistance tube (inner diameter 0.1 mm x 2 m) x 2 in series Column temperature: 40°C
Mobile phase: chloroform Mobile phase flow rate: sample side 1.0 mL/min, reference side 0.5 mL/min Detector: differential refractive index (RI) detector Standard sample: standard polystyrene for calibration curve Sample injection volume: 50 μL
Measurement time: 26 minutes Sampling pitch: 500 ms
 検量線用標準ポリスチレン試料は、STANDARD SM-105(昭和電工社製)及びSTANDARD SH-75(昭和電工社製)で、質量平均分子量(Mw)が5620000、3120000、1250000、442000、151000、53500、17000、7660、2900、1320のポリスチレン(PS)を用いる。 The standard polystyrene samples used for the calibration curve are STANDARD SM-105 (Showa Denko K.K.) and STANDARD SH-75 (Showa Denko K.K.), polystyrene (PS) with mass average molecular weights (Mw) of 5,620,000, 3,120,000, 1,250,000, 442,000, 151,000, 53,500, 17,000, 7,660, 2,900, and 1,320.
 以下の方法によって検量線を作成する。
・検量線用標準ポリスチレンを、Aグループ(Mw=5620000のPS、Mw=1250000のPS、Mw=151000のPS、Mw=17000のPS、Mw=2900のPS)とBグループ(Mw=3120000のPS、Mw=442000のPS、Mw=53500のPS、Mw=7660のPS、Mw=1320のPS)にグループ分けする。
・Aグループから、Mw=5620000のPSを2mg、Mw=1250000のPSを3mg、Mw=151000のPSを4mg、Mw=17000のPSを4mg、Mw=2900のPSを4mg、それぞれ秤量し、クロロホルム30mLに全量を溶解する。
・Bグループから、Mw=3120000のPSを3mg、Mw=442000のPSを4mg、Mw=53500のPSを4mg、Mw=7660のPSを4mg、Mw=1320のPSを4mg、それぞれ秤量し、クロロホルム30mLに全量を溶解する。
・標準ポリスチレン検量線は、Aグループ及びBグループの溶解液を50μL注入して測定後に得られた保持時間から校正曲線(3次式)を作成することにより得る。
A calibration curve is prepared by the following method.
The standard polystyrene for the calibration curve is divided into group A (PS with Mw=5,620,000, PS with Mw=1,250,000, PS with Mw=151,000, PS with Mw=17,000, PS with Mw=2,900) and group B (PS with Mw=3,120,000, PS with Mw=442,000, PS with Mw=53,500, PS with Mw=7,660, PS with Mw=1,320).
From group A, weigh out 2 mg of PS with Mw = 5,620,000, 3 mg of PS with Mw = 1,250,000, 4 mg of PS with Mw = 151,000, 4 mg of PS with Mw = 17,000, and 4 mg of PS with Mw = 2,900, and dissolve the entire amount in 30 mL of chloroform.
From group B, weigh out 3 mg of PS with Mw = 3,120,000, 4 mg of PS with Mw = 442,000, 4 mg of PS with Mw = 53,500, 4 mg of PS with Mw = 7,660, and 4 mg of PS with Mw = 1,320, and dissolve the entire amount in 30 mL of chloroform.
The standard polystyrene calibration curve is obtained by injecting 50 μL of the solutions of groups A and B and creating a calibration curve (cubic equation) from the retention times obtained after measurement.
 このような非改質ポリエステル系樹脂の改質方法としては、有機過酸化物によって架橋(部分架橋)を施す方法が挙げられる。 One method for modifying such unmodified polyester resins is to crosslink (partially crosslink) them with an organic peroxide.
 前記有機過酸化物としては、例えば、パーオキシエステル、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、及び、ケトンパーオキサイド等が挙げられる。 Examples of the organic peroxides include peroxyesters, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyketals, and ketone peroxides.
 前記パーオキシエステルとしては、例えば、t-ブチルパーオキシ2-エチルヘキシルカーボネート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシアセテート、2,5-ジメチル2,5-ジ(ベンゾイルパーオキシ)ヘキサン、及び、t-ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。 Examples of the peroxy ester include t-butylperoxy 2-ethylhexyl carbonate, t-hexylperoxy isopropyl monocarbonate, t-hexylperoxy benzoate, t-butylperoxy benzoate, t-butylperoxy laurate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy acetate, 2,5-dimethyl 2,5-di(benzoylperoxy)hexane, and t-butylperoxy isopropyl monocarbonate.
 前記ハイドロパーオキサイドとしては、例えば、パーメタンハイドロパーオキシド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、及び、t-ブチルハイドロパーオキサイド等が挙げられる。 Examples of the hydroperoxide include permethane hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide.
 前記ジアルキルパーオキサイドとしては、例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、及び、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3等が挙げられる。 Examples of the dialkyl peroxide include dicumyl peroxide, di-t-butyl peroxide, and 2,5-dimethyl-2,5-di(t-butylperoxy)-hexyne-3.
 前記ジアシルパーオキサイドとしては、例えば、ジベンゾイルパーキサイド、ジ(4-メチルベンゾイル)パーオキサイド、及び、ジ(3-メチルベンゾイル)パーオキサイド等が挙げられる。 Examples of the diacyl peroxide include dibenzoyl peroxide, di(4-methylbenzoyl) peroxide, and di(3-methylbenzoyl) peroxide.
 前記パーオキシジカーボネートとしては、例えば、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等が挙げられる。 Examples of the peroxydicarbonate include di(2-ethylhexyl) peroxydicarbonate and diisopropyl peroxydicarbonate.
 前記パーオキシケタールとしては、例えば、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、1,1-ジ-t-ブチルパーオキシシクロヘキサン、2,2-ジ(t-ブチルパーオキシ)-ブタン、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレレート、及び、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン等が挙げられる。 Examples of the peroxyketal include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di(t-butylperoxy)-butane, n-butyl 4,4-di-(t-butylperoxy)valerate, and 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane.
 前記ケトンパーオキサイドとしては、例えば、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等が挙げられる。 Examples of the ketone peroxide include methyl ethyl ketone peroxide and acetylacetone peroxide.
 本実施形態では、反応性が緩やかな有機過酸化物を用いることが好ましく、半減期温度が高い有機過酸化物を用いることが好ましい。有機過酸化物の1分間半減期温度は、150℃以上200℃以下であることが好ましい。 In this embodiment, it is preferable to use an organic peroxide that is mildly reactive, and it is preferable to use an organic peroxide that has a high half-life temperature. The one-minute half-life temperature of the organic peroxide is preferably 150°C or higher and 200°C or lower.
 前記1分間半減期温度は、ベンゼンを溶媒とした0.1mol/Lの溶液を用いて測定することができる。有機過酸化物の希薄な溶液での分解反応は一次反応としてみなすことができるため、有機過酸化物の初期濃度をC、分解量をΔC、分解速度定数をk、時間をtとすると、分解反応については下記の式(1)、(2)のようにあらわすことができる。
式(1): dx/dt=k(C-ΔC)
式(2): ln C/(C-ΔC)=kt
 半減期時間をt1/2とすると(C-ΔC)がC/2となるので上記式は以下のようになる。
式(3): k・t1/2=ln2
 したがって、ある一定温度(T)で有機過酸化物を熱分解させて時間(t)と「ln C/(C-ΔC)」との関係をグラフでプロットすればその近似直線の傾きから分解速度定数(k)が求まり、その温度での半減期時間(t1/2)が求まる。
 そして、分解速度定数kは、アレニウスの式より下記のようにしてあらわされる。
式(4): k=Aexp(-ΔE/RT)
式(5): lnk=lnA-ΔE/RT
(A:頻度因子、ΔE:活性化エネルギー、R:気体定数、T:絶対温度)
 数点の温度で各温度における分解速度定数kを算出し、「lnk」と「1/T」とをプロットして得られた直線の傾きから活性化エネルギーΔEが求まる。求めた活性化エネルギーΔEを用いて「lnk」の代わりに「lnt1/2」と「1/T」との関係をプロットして得られた近似直線から1分間半減期温度を求めることができる。
The one-minute half-life temperature can be measured using a 0.1 mol/L solution in benzene as a solvent. Since the decomposition reaction in a dilute solution of an organic peroxide can be regarded as a first-order reaction, the decomposition reaction can be expressed as the following formulas (1) and (2) where C is the initial concentration of the organic peroxide, ΔC is the amount of decomposition, k is the decomposition rate constant, and t is the time.
Formula (1): dx/dt=k(C-ΔC)
Formula (2): ln C/(C-ΔC)=kt
If the half-life time is t 1/2 , then (C-ΔC) is C/2, and the above formula becomes as follows.
Formula (3): k・t 1/2 = ln2
Therefore, if an organic peroxide is thermally decomposed at a certain temperature (T) and the relationship between time (t) and "ln C/(C-ΔC)" is plotted on a graph, the decomposition rate constant (k) can be found from the slope of the approximate line, and from this the half-life time (t 1/2 ) at that temperature can be calculated.
The decomposition rate constant k is expressed by the Arrhenius equation as follows:
Formula (4): k=Aexp(-ΔE/RT)
Formula (5): lnk=lnA-ΔE/RT
(A: frequency factor, ΔE: activation energy, R: gas constant, T: absolute temperature)
The decomposition rate constant k at each temperature is calculated at several points, and the activation energy ΔE is determined from the slope of the straight line obtained by plotting "lnk" versus "1/T". The one-minute half-life temperature can be determined from the approximate straight line obtained by plotting the relationship between "lnt 1/2 " versus "1/T" instead of "lnk" using the determined activation energy ΔE.
 上記のような半減期温度を有する有機過酸化物としては、t-ブチルパーオキシイソプロピルカーボネート(1分間半減期温度:158.8℃)が好ましい。 A preferred organic peroxide having the half-life temperature described above is t-butylperoxyisopropyl carbonate (1-minute half-life temperature: 158.8°C).
 有機過酸化物は、改質を行う非改質脂肪族ポリエステル系樹脂の量を100質量部としたときに0.02質量部以上0.45質量部以下となるように用いられることが好ましい。有機過酸化物の量は、0.05質量部以上であってもよく、0.08質量部以上であってもよい。有機過酸化物の量は、0.4質量部以下であってもよく、0.3質量部以下であってもよい。 The organic peroxide is preferably used in an amount of 0.02 parts by mass or more and 0.45 parts by mass or less when the amount of the unmodified aliphatic polyester resin to be modified is taken as 100 parts by mass. The amount of the organic peroxide may be 0.05 parts by mass or more, or may be 0.08 parts by mass or more. The amount of the organic peroxide may be 0.4 parts by mass or less, or may be 0.3 parts by mass or less.
 本実施形態の発泡用樹脂組成物は、上記のような改質が施された改質脂肪族ポリエステル系樹脂を1種単独で含んでいても2種以上含んでいてもよい。例えば、本実施形態の発泡用樹脂組成物は、改質ポリブチレンサクシネートと改質ポリブチレンサクシネートアジペートとを含んでいてもよい。また、本実施形態の発泡用樹脂組成物は、1種類以上の改質脂肪族ポリエステル系樹脂と1種類以上の非改質脂肪族ポリエステル系樹脂とを含んでいてもよい。 The foamable resin composition of this embodiment may contain one or more modified aliphatic polyester resins modified as described above. For example, the foamable resin composition of this embodiment may contain modified polybutylene succinate and modified polybutylene succinate adipate. The foamable resin composition of this embodiment may also contain one or more modified aliphatic polyester resins and one or more unmodified aliphatic polyester resins.
 本実施形態の発泡用樹脂組成物は、当該発泡用樹脂組成物を発泡させるための成分とともに押出機で溶融混練して押出されることで良好な発泡性を示す。発泡用樹脂組成物とともに押出機に供給される発泡のための前記成分としては、気泡調整剤や発泡剤などが挙げられる。押出発泡に際しては、それら以外に各種の添加剤が発泡用樹脂組成物に添加されてもよい。該添加剤としては、充填剤、着色剤、難燃剤、抗菌剤、耐候剤、界面活性剤などが挙げられる。本実施形態の発泡用樹脂組成物での樹脂以外の添加剤の割合は、通常、10質量%以下とされる。添加剤の割合は、8質量%以下であってもよく、6質量%以下であってもよい。 The foamable resin composition of this embodiment exhibits good foamability when it is melt-kneaded and extruded in an extruder together with components for foaming the foamable resin composition. Examples of the components for foaming that are supplied to the extruder together with the foamable resin composition include a bubble regulator and a foaming agent. In addition to these, various additives may be added to the foamable resin composition during extrusion foaming. Examples of such additives include fillers, colorants, flame retardants, antibacterial agents, weather resistance agents, and surfactants. The proportion of additives other than resin in the foamable resin composition of this embodiment is usually 10% by mass or less. The proportion of additives may be 8% by mass or less, or may be 6% by mass or less.
 本実施形態での発泡シート1は、脂肪族ポリエステル系樹脂と有機過酸化物とを溶融混練して改質脂肪族ポリエステル系樹脂を得る改質工程と、前記改質脂肪族ポリエステル系樹脂を含む樹脂組成物を発泡剤とともにシート状に押出して発泡シートを作製するシート作製工程とを実施して作製することができる。発泡用樹脂組成物は、改質工程で得られる改質脂肪族ポリエステル系樹脂のみによって調製されてもよく、2種類以上の改質脂肪族ポリエステル系樹脂をブレンドしたり、1種類以上の改質脂肪族ポリエステル系樹脂と1種類以上の非改質脂肪族ポリエステル系樹脂とをブレンドしたりすることで調製されてもよい。 The foamed sheet 1 in this embodiment can be produced by carrying out a modification step in which an aliphatic polyester resin and an organic peroxide are melt-kneaded to obtain a modified aliphatic polyester resin, and a sheet production step in which a resin composition containing the modified aliphatic polyester resin is extruded together with a foaming agent into a sheet to produce a foamed sheet. The foamable resin composition may be prepared using only the modified aliphatic polyester resin obtained in the modification step, or may be prepared by blending two or more types of modified aliphatic polyester resins, or blending one or more types of modified aliphatic polyester resins with one or more types of unmodified aliphatic polyester resins.
 本実施形態では、前記改質工程と、改質脂肪族ポリエステル系樹脂を含む発泡用樹脂組成物を調製する樹脂組成物調製工程と、該樹脂組成物調製工程で得られた発泡用樹脂組成物によるシート作製工程とをそれぞれバッチ式で実施してもよく、これらを連続的に実施してもよい。また、本実施形態では、発泡シートの片面又は両面に非発泡層を積層する積層工程をシート作製工程の後に実施して積層発泡シートを作製することもできる。この積層工程もバッチ式で実施してもよく、連続的に実施してもよい。 In this embodiment, the modification step, the resin composition preparation step of preparing a foamable resin composition containing a modified aliphatic polyester resin, and the sheet preparation step using the foamable resin composition obtained in the resin composition preparation step may each be carried out in a batch manner, or these steps may be carried out continuously. In this embodiment, a lamination step of laminating a non-foamed layer on one or both sides of a foam sheet may be carried out after the sheet preparation step to produce a laminated foam sheet. This lamination step may also be carried out in a batch manner, or may be carried out continuously.
 上記のような工程を連続的に実施する場合、全ての工程を1つの押出ラインで実施してもよい。例えば、材料の移動方向上流側に設けた第1押出機と、該第1押出機の下流側に接続された第2押出機とを備え、該第2押出機の先端にシーティングダイ(フラットダイ、サーキュラーダイ)が装着されているタンデムラインを用いて上記工程を連続的に実施することができる。その場合、例えば、改質工程は、第1押出機に非改質脂肪族ポリエステル系樹脂と有機過酸化物とを供給するとともに該第1押出機で非改質脂肪族ポリエステル系樹脂と有機過酸化物とを溶融混練するような方法で実施することができる。このとき非改質脂肪族ポリエステル系樹脂と有機過酸化物とを前述の比率(例えば、非改質脂肪族ポリエステル系樹脂100:有機過酸化物0.02~0.45(質量比))とすることでゲルの含有量が少なく(ゲル分率40質量%以下)、発泡に適した改質脂肪族ポリエステル系樹脂を得ることができ、良好な発泡状態の発泡製品を作製するのに好適な発泡用樹脂組成物が得られ易くなる。 When the above-mentioned steps are carried out continuously, all the steps may be carried out in one extrusion line. For example, the above-mentioned steps can be carried out continuously using a tandem line equipped with a first extruder provided upstream in the direction of material movement and a second extruder connected downstream of the first extruder, with a sheeting die (flat die, circular die) attached to the tip of the second extruder. In this case, for example, the modification step can be carried out by supplying the unmodified aliphatic polyester resin and the organic peroxide to the first extruder and melt-kneading the unmodified aliphatic polyester resin and the organic peroxide in the first extruder. In this case, by setting the unmodified aliphatic polyester resin and the organic peroxide to the above-mentioned ratio (for example, unmodified aliphatic polyester resin 100:organic peroxide 0.02 to 0.45 (mass ratio)), a modified aliphatic polyester resin with a low gel content (gel fraction 40 mass% or less) suitable for foaming can be obtained, and a foaming resin composition suitable for producing a foamed product in a good foaming state can be easily obtained.
 前述のようにこの発泡用樹脂組成物は、クロロホルムを用いて測定されるゲル分率が40質量%以下となるように調製されることで発泡性が良好で低密度かつ低坪量の発泡シートを得る上で好適なものとなり得る。また、発泡用樹脂組成物は、190℃におけるメルトマスフローレイト(MFR)や溶融張力が所定の値となるように調製されることで発泡性が良好で低密度かつ低坪量の発泡シートを得る上でより好適なものとなり得る。さらに発泡用樹脂組成物は、動的粘弾性測定で周波数0.01Hz~0.1Hzの範囲において貯蔵弾性率(G’)が所定の傾きとなり、周波数0.01Hzにおける複素粘度(η*)が所定の値となることで発泡性が良好で低密度かつ低坪量の発泡シートを得る上で特に好適なものとなり得る。 As described above, the foaming resin composition is prepared so that the gel fraction measured using chloroform is 40% by mass or less, and thus the composition is suitable for obtaining a foamed sheet having good foamability, low density, and low basis weight. The foaming resin composition is prepared so that the melt mass flow rate (MFR) and melt tension at 190° C. are predetermined values, and thus the composition is suitable for obtaining a foamed sheet having good foamability, low density, and low basis weight. Furthermore, the foaming resin composition has a storage modulus (G') with a predetermined slope in the frequency range of 0.01 Hz to 0.1 Hz in dynamic viscoelasticity measurement, and a complex viscosity (η * ) at a frequency of 0.01 Hz is a predetermined value, and thus the composition is particularly suitable for obtaining a foamed sheet having good foamability, low density, and low basis weight.
 このような発泡用樹脂組成物を得るための前記樹脂組成物調製工程は、第1押出機で実施してもよく、第2押出機で実施してもよい。樹脂組成物調製工程は、例えば、気泡調整剤などの他の成分を非改質脂肪族ポリエステル系樹脂などともに第1押出機の途中から供給して改質工程と並行されるように実施してもよい。前記発泡剤についても第1押出機の途中や第2押出機において供給することができる。前記積層工程は、非発泡層を形成するための樹脂組成物(以下「非発泡層用樹脂組成物」ともいう)を共押出法によって前記シーティングダイから押出して実施することができ、シート作製工程と並行して実施することができる。該積層工程は、一旦作製された発泡シートに対して非発泡層用樹脂組成物を押出ラミネートしたりドライラミネートしたりする方法によって実施してもよい。また、このような方法に限らず発泡シートや積層発泡シートについては従来公知の方法によって作製することができる。 The resin composition preparation step for obtaining such a foaming resin composition may be carried out in a first extruder or a second extruder. The resin composition preparation step may be carried out in parallel with the modification step by, for example, supplying other components such as a bubble control agent together with the unmodified aliphatic polyester resin from the middle of the first extruder. The foaming agent may also be supplied from the middle of the first extruder or the second extruder. The lamination step may be carried out by extruding a resin composition for forming a non-foamed layer (hereinafter also referred to as a "non-foamed layer resin composition") from the sheeting die by a co-extrusion method, and may be carried out in parallel with the sheet preparation step. The lamination step may be carried out by a method of extrusion laminating or dry laminating the non-foamed layer resin composition on a foamed sheet that has already been prepared. In addition to the above method, a foamed sheet or a laminated foamed sheet may be prepared by a conventionally known method.
 非発泡層の形成材料は、発泡製品のマテリアルリサイクル性、生分解性などを考慮すると、非発泡層も脂肪族ポリエステル系樹脂組成物で構成されることが好ましい。その場合、非発泡層に含まれる脂肪族ポリエステル系樹脂と発泡層に含まれる脂肪族ポリエステル系樹脂とは同じものであってもよく、異なっていてもよい。 In consideration of the material recyclability and biodegradability of the foamed product, it is preferable that the non-foamed layer is also composed of an aliphatic polyester-based resin composition. In that case, the aliphatic polyester-based resin contained in the non-foamed layer and the aliphatic polyester-based resin contained in the foamed layer may be the same or different.
 熱変形が生じ難い発泡シートを得る上では、発泡シートに残留し難く二次発泡を生じさせ難い発泡剤を用いることが好ましい。本実施形態で用いる発泡剤としては二酸化炭素が好ましい。本実施形態では、該二酸化炭素に加えて、又は、二酸化炭素に代えて、炭化水素や窒素ガスなどを発泡剤として用いてもよい。これらの発泡剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。前記気泡調整剤としては、タルクなどの一般的なものを用いることができる。 In order to obtain a foamed sheet that is less likely to undergo thermal deformation, it is preferable to use a foaming agent that is less likely to remain in the foamed sheet and is less likely to cause secondary foaming. Carbon dioxide is preferable as the foaming agent used in this embodiment. In this embodiment, in addition to the carbon dioxide, or instead of carbon dioxide, a hydrocarbon or nitrogen gas may be used as the foaming agent. These foaming agents may be used alone or in combination of two or more types. As the bubble regulator, a common agent such as talc may be used.
 前記シート作製工程では、前述の通り押出直後の発泡シートに対する冷却を従来よりも緩慢なものにして発泡シートを十分に結晶化させることが望ましい。発泡シート(発泡層)の冷却を緩慢にさせるという点において、積層発泡シートを作製する場合は、共押出法を採用する方が有利であると言える。 As mentioned above, in the sheet production process, it is desirable to cool the foam sheet immediately after extrusion more slowly than in the past to allow the foam sheet to crystallize sufficiently. In terms of slowing down the cooling of the foam sheet (foam layer), it can be said that the co-extrusion method is more advantageous when producing a laminated foam sheet.
 このようにして作製される発泡シートは、見掛け密度が30kg/m3以上100kg/m3以下で、クロロホルムを用いて測定されるゲル分率が25質量%以下であり、加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下となるように作製されることで、軽量性、緩衝性、及び、寸法精度に優れたものとなる。また、該発泡シートは、熱成形などによって発泡成形体(熱成形体)を作製するための原反シートとして好適なものとなり得る。熱成形体を得るための熱成形の方法としては、真空成形、圧空成形、真空圧空成形などの従来公知の方法を採用することができる。軽量性、緩衝性、及び、寸法精度に優れた発泡成形体は、本実施形態の発泡シートを用いることで作製することが容易となり得る。 The foamed sheet thus produced has an apparent density of 30 kg/m 3 or more and 100 kg/m 3 or less, a gel fraction measured using chloroform of 25% by mass or less, and a calorific value observed during the first heating process measured by heat flux differential scanning calorimetry at a heating rate of 10 ° C./min of 5.0 J/g or less, and is excellent in lightness, cushioning properties, and dimensional accuracy. The foamed sheet can also be suitable as a raw sheet for producing a foamed molded body (thermoformed body) by thermoforming or the like. As a thermoforming method for obtaining a thermoformed body, a conventionally known method such as vacuum forming, pressure forming, and vacuum pressure forming can be adopted. A foamed molded body excellent in lightness, cushioning properties, and dimensional accuracy can be easily produced by using the foamed sheet of this embodiment.
 尚、本実施形態においては、上記のような例示を行っているが、本発明は上記例示に何等限定されるものではない。上記のように本実施形態においては、下記のような発明を開示している。 In addition, although the above-mentioned examples are given in this embodiment, the present invention is in no way limited to the above-mentioned examples. As described above, the following inventions are disclosed in this embodiment.
(1)
 1種類以上の脂肪族ポリエステル系樹脂を含む樹脂組成物で構成された発泡シートであって、
 見掛け密度が30kg/m3以上100kg/m3以下で、
 クロロホルムを用いて測定されるゲル分率が25質量%以下であり、
 加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である発泡シート。
(1)
A foamed sheet made of a resin composition containing one or more aliphatic polyester resins,
The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less,
The gel fraction measured using chloroform is 25% by mass or less,
A foamed sheet having a calorific value of 5.0 J/g or less observed during a first temperature rise as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min.
(2)
 前記熱流束示差走査熱量測定での前記昇温過程では吸熱ピークが観察され、
 該吸熱ピークでの吸熱量の絶対値と前記発熱量との差が30J/g以上90J/g以下である(1)記載の発泡シート。
(2)
An endothermic peak is observed during the temperature rise process in the heat flux differential scanning calorimetry,
The foamed sheet according to (1), wherein the difference between the absolute value of the amount of heat absorbed at the endothermic peak and the amount of heat generated is 30 J/g or more and 90 J/g or less.
(3)
 加熱減量が0.1質量%以上1.5質量%以下である(1)又は(2)記載の発泡シート。
(3)
The foamed sheet according to (1) or (2), having a heat loss of 0.1% by mass or more and 1.5% by mass or less.
(4)
 二次発泡倍率が0.9倍以上1.5倍以下である(1)~(3)の何れかに記載の発泡シート。
(4)
The foamed sheet according to any one of (1) to (3), having a secondary expansion ratio of 0.9 to 1.5 times.
(5)
 連続気泡率が60%以下である(1)~(4)の何れかに記載の発泡シート。
(5)
5. The foamed sheet according to any one of (1) to (4), having an open cell ratio of 60% or less.
(6)
 前記脂肪族ポリエステル系樹脂は、ポリブチレンサクシネート及び/又はポリブチレンサクシネートアジペートである(1)~(5)の何れかに記載の発泡シート。
(6)
The foamed sheet according to any one of (1) to (5), wherein the aliphatic polyester-based resin is polybutylene succinate and/or polybutylene succinate adipate.
(7)
 前記脂肪族ポリエステル系樹脂は、少なくとも一部が植物由来のポリブチレンサクシネート及び/又は少なくとも一部が植物由来のポリブチレンサクシネートアジペートである(1)~(6)の何れかに記載の発泡シート。
(7)
The foamed sheet according to any one of (1) to (6), wherein the aliphatic polyester-based resin is at least partially plant-derived polybutylene succinate and/or at least partially plant-derived polybutylene succinate adipate.
(8)
 (1)~(7)の何れかに記載の発泡シートで構成された熱成形体である、発泡成形体。
(8)
A foamed molded article, which is a thermoformed article composed of the foamed sheet according to any one of (1) to (7).
(9)
 脂肪族ポリエステル系樹脂と有機過酸化物とを溶融混練して改質脂肪族ポリエステル系樹脂を得ることと、
 前記改質脂肪族ポリエステル系樹脂を含む樹脂組成物を発泡剤とともにシート状に押出すこととを含む発泡シートの製造方法であって、
 製造する発泡シートは、
 見掛け密度が30kg/m3以上100kg/m3以下で、
 クロロホルムを用いて測定されるゲル分率が25質量%以下であり、
 加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である、発泡シートの製造方法。
(9)
melt-kneading an aliphatic polyester resin with an organic peroxide to obtain a modified aliphatic polyester resin;
A method for producing a foamed sheet, comprising extruding a resin composition containing the modified aliphatic polyester resin into a sheet together with a foaming agent,
The foam sheet to be manufactured is
The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less,
The gel fraction measured using chloroform is 25% by mass or less,
A method for producing a foamed sheet, wherein the calorific value observed during a first heating step as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min is 5.0 J/g or less.
(10)
 前記発泡剤が二酸化炭素である(9)に記載の発泡シートの製造方法。
(10)
The method for producing a foamed sheet according to (9), wherein the foaming agent is carbon dioxide.
(11)
 前記樹脂組成物は、
 JIS K 7210に規定の方法で測定される190℃でのメルトマスフローレイト(MFR)が0.1g/10min以上5.0g/10min以下で、
 レオメータと伸長粘度測定器とを用いて測定される190℃における溶融張力が30cN以上100cN以下であり、
 クロロホルムを用いて測定されるゲル分率が40質量%以下である(9)又は(10)に記載の発泡シートの製造方法。
(11)
The resin composition comprises
The melt mass flow rate (MFR) at 190°C measured by the method specified in JIS K 7210 is 0.1 g/10 min or more and 5.0 g/10 min or less.
The melt tension at 190°C measured using a rheometer and an extensional viscosity measuring device is 30 cN or more and 100 cN or less,
The method for producing a foamed sheet according to (9) or (10), wherein the gel fraction measured using chloroform is 40 mass% or less.
(12)
 下記条件で動的粘弾性を測定して求められる前記樹脂組成物の貯蔵弾性率(G’)は、
 横軸が周波数(Hz)、縦軸が貯蔵弾性率(G’)の両対数軸のグラフで表した際に、
 周波数0.01Hzから0.1Hzまでの範囲において直線的に変化し、
 前記グラフの周波数0.01Hzから0.1Hzまでの範囲を直線近似した際の該直線の傾きが0.35以上1.50以下である(9)~(11)の何れかに記載の発泡シートの製造方法。
<測定条件>
歪み:5%
周波数:0.01~100(Hz)(低周波数(0.01Hz)から測定を開始)
測定点数:21(5点/桁)
測定温度:190℃
雰囲気ガス:窒素
(12)
The storage modulus (G') of the resin composition obtained by measuring the dynamic viscoelasticity under the following conditions is:
When the horizontal axis is frequency (Hz) and the vertical axis is storage modulus (G') on a double logarithmic scale,
The frequency varies linearly in the range from 0.01 Hz to 0.1 Hz.
The method for producing a foamed sheet according to any one of (9) to (11), wherein a slope of a straight line obtained by linearly approximating a frequency range of 0.01 Hz to 0.1 Hz on the graph is 0.35 or more and 1.50 or less.
<Measurement conditions>
Distortion: 5%
Frequency: 0.01 to 100 (Hz) (measurement starts from low frequency (0.01 Hz))
Number of measurement points: 21 (5 points/digit)
Measurement temperature: 190°C
Atmosphere gas: Nitrogen
(13)
 下記条件で動的粘弾性を測定して求められる前記樹脂組成物の複素粘度(η*)は、周波数0.01Hzにおいて10000Pa・s以上150000Pa・s以下である(9)~(12)の何れかに記載の発泡シートの製造方法。
<測定条件>
歪み:5%
周波数:0.01~100(Hz)(低周波数(0.01Hz)から測定を開始)
測定点数:21(5点/桁)
測定温度:190℃
雰囲気ガス:窒素
(13)
The method for producing a foamed sheet according to any one of (9) to (12), wherein the complex viscosity (η * ) of the resin composition, which is determined by measuring the dynamic viscoelasticity under the following conditions, is 10,000 Pa·s or more and 150,000 Pa·s or less at a frequency of 0.01 Hz.
<Measurement conditions>
Distortion: 5%
Frequency: 0.01 to 100 (Hz) (measurement starts from low frequency (0.01 Hz))
Number of measurement points: 21 (5 points/digit)
Measurement temperature: 190°C
Atmosphere gas: Nitrogen
  上記の発明によれば脂肪族ポリエステル系樹脂を含みながらも耐熱変形性と成形性とに優れ、しかも、見掛け密度の低い発泡シートが提供でき、製造容易で軽量性、緩衝性、及び、寸法精度に優れた発泡成形体を提供することができる。 The above invention makes it possible to provide a foamed sheet that contains an aliphatic polyester resin but has excellent heat deformation resistance and moldability, and also has a low apparent density, and to provide a foamed molded product that is easy to manufacture, lightweight, has excellent cushioning properties, and is highly dimensionally accurate.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these.
<評価実験1>
 実施例、比較例の発泡シートを作製するために脂肪族ポリエステル系樹脂として以下のものを用意した。
<脂肪族ポリエステル系樹脂>
・脂肪族ポリエステル系樹脂(A):PTT MCC BIOCHEM社製、商品名「BioPBS FZ71PM」、樹脂の一部が植物由来のPBS。
・脂肪族ポリエステル系樹脂(B):PTT MCC BIOCHEM社製、商品名「BioPBS FZ91PM」、樹脂の一部が植物由来のPBS。
・脂肪族ポリエステル系樹脂(C):PTT MCC BIOCHEM社製、商品名「BioPBS FD92PM」、樹脂の一部が植物由来のPBSA。
・脂肪族ポリエステル系樹脂(D):Nature Works社製、商品名「Biopolymer Ingeo6202D」、樹脂の全部が植物由来のPLA。
 上記の脂肪族ポリエステル系樹脂の物性を表1に示す。
<Evaluation Experiment 1>
The following aliphatic polyester resins were prepared for producing the foamed sheets of the Examples and Comparative Examples.
<Aliphatic polyester resin>
Aliphatic polyester resin (A): manufactured by PTT MCC BIOCHEM, product name "BioPBS FZ71PM", PBS in which part of the resin is derived from plants.
Aliphatic polyester resin (B): manufactured by PTT MCC BIOCHEM, product name "BioPBS FZ91PM", PBS in which part of the resin is derived from plants.
Aliphatic polyester resin (C): manufactured by PTT MCC BIOCHEM, product name "BioPBS FD92PM", PBSA in which part of the resin is derived from plants.
Aliphatic polyester resin (D): manufactured by Nature Works, product name "Biopolymer Ingeo 6202D", all resins are plant-derived PLA.
The physical properties of the above aliphatic polyester resin are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記脂肪族ポリエステル系樹脂を改質するための有機過酸化物としては、以下のものを用いた。また、発泡シートを作製する際の気泡調整剤と発泡剤とは下記のものを使用した。
<有機過酸化物>
・有機過酸化物(a):化薬ヌーリオン社製、商品名「Trigonox BPIC-C75」、t-ブチルパーオキシイソプロピルモノカーボネート、1分間半減期温度156℃
・有機過酸化物(b):日油社製、商品名「パーブチルP」、α,α’-ジ-t-ブチルパーオキシジイソプロピルベンゼン、1分間半減期温度175℃
<気泡調整剤>
・タルク:松村産業社製、商品名「クラウンタルクPP」
<発泡剤>
・二酸化炭素
・ブタン:イソブタンとノルマルブタンとの混合物。イソブタン:ノルマルブタン=35:65(質量比)
The organic peroxide used to modify the aliphatic polyester resin was as follows: The cell regulator and foaming agent used to prepare the foamed sheet were as follows.
<Organic Peroxide>
Organic peroxide (a): Chemical Nouryon Co., Ltd., trade name "Trigonox BPIC-C75", t-butylperoxyisopropyl monocarbonate, 1-minute half-life temperature 156°C
Organic peroxide (b): NOF Corp., trade name "Perbutyl P", α,α'-di-t-butylperoxydiisopropylbenzene, 1-minute half-life temperature 175°C
<Foam Regulator>
Talc: Matsumura Sangyo Co., Ltd., product name "Crown Talc PP"
<Foaming Agent>
Carbon dioxide Butane: a mixture of isobutane and normal butane. Isobutane: normal butane = 35:65 (mass ratio)
 発泡用樹脂組成物や発泡シートの特性については次のように評価した。 The properties of the foaming resin composition and foam sheet were evaluated as follows:
(発泡用樹脂組成物及び発泡シートの物性の評価方法)
<坪量>
 各例の発泡シートの幅方向(TD)の両端20mmを除き、幅方向に等間隔に、10cm×10cmの切片6個を切り出し、各切片の質量(g)を測定した。各切片の質量(g)の平均値を1m2当たりの質量に換算した値を、発泡シートの坪量(g/m2)とした。
(Method of Evaluating the Physical Properties of the Foamable Resin Composition and the Foamed Sheet)
<Basance weight>
For each foam sheet, 6 pieces of 10 cm x 10 cm were cut out at equal intervals in the width direction (TD) of the foam sheet, excluding 20 mm at both ends, and the mass (g) of each piece was measured. The average value of the mass (g) of each piece was converted to the mass per m2 and used as the basis weight (g/ m2 ) of the foam sheet.
<厚さ>
 各例の発泡シートの厚さについては、定圧厚み測定機((株)尾崎製作所製「ピーコックデジタルリニアゲージ PDN25」)を用いて測定した。具体的には、直径35.7mmの円形状の治具で100gの荷重を発泡シートにかけたときの厚さを定圧厚み測定機にて測定して求めた。尚、発泡シートの厚さは、発泡シートの押出方向(MD)に直交する幅方向(TD)の両端20mmを除き、幅方向(TD)に5cmごとに10点以上測定し、その測定値の相加平均値とした。また、発泡シートの幅が狭く10点分の測定箇所を確保出来ない場合には、可能な限りの測定点数を確保した上で全ての測定値の相加平均値を発泡シートの厚さとした。
<Thickness>
The thickness of the foamed sheet in each example was measured using a constant pressure thickness gauge ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Manufacturing Co., Ltd.). Specifically, the thickness was measured by the constant pressure thickness gauge when a load of 100 g was applied to the foamed sheet using a circular jig with a diameter of 35.7 mm. The thickness of the foamed sheet was measured at 10 or more points every 5 cm in the width direction (TD) except for 20 mm at both ends of the width direction (TD) perpendicular to the extrusion direction (MD) of the foamed sheet, and the arithmetic mean value of the measured values was used. In addition, when the width of the foamed sheet is narrow and it is not possible to secure 10 measurement points, the arithmetic mean value of all the measured values was used as the thickness of the foamed sheet after securing as many measurement points as possible.
<見掛け密度>
 各例の発泡シートの坪量と厚さから、下記(s1)式にて算出した。
見掛け密度(kg/m3)=坪量(g/m2)÷厚さ(mm)・・・(s1)
<Apparent density>
The calculation was performed from the basis weight and thickness of the foamed sheet of each example using the following formula (s1).
Apparent density (kg/m 3 )=basis weight (g/m 2 )÷thickness (mm) (s1)
<連続気泡率>
 各例の発泡シートから、縦25mm×横25mmのシート状サンプル2枚以上を切り出し、切り出したサンプルを空間があかないよう重ね合わせて厚さ25mmとして試験片を得た。得られた試験片の縦と横の寸法は、ノギス((株)ミツトヨ製「デジマチックキャリパ」)を用いて測定した。厚みの寸法は、定圧厚み測定機((株)尾崎製作所製「ピーコックデジタルリニアゲージ PDN25」)を用いて発泡シート1の厚さを求める場合と同様にして、1/100mmまで測定し、見掛け上の体積(V1:cm3)を求めた。次に、東京サイエンス製(株)「1000型」空気比較式比重計を用いて、1-1/2-1気圧法により試験片の体積(V2:cm3)を求めた。下記(s2)式により連続気泡率(%)を計算し、5つの試験片の連続気泡率の相加平均値を求めた。試験片は予め、JIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で24時間以上かけて状態調整した後、同じ標準雰囲気下にて測定した。尚、空気比較式比重計は、標準球(大28.96cm3、小8.58cm3)にて補正を行った。
連続気泡率(%)=(V1-V2)/V1×100・・・(s2)
(V1:見掛け上の体積、V2:空気比較式比重計で測定される体積)
<Open cell ratio>
From each foamed sheet, two or more sheet-like samples measuring 25 mm long x 25 mm wide were cut out, and the cut out samples were stacked so as not to leave any gaps to obtain a test piece having a thickness of 25 mm. The length and width of the obtained test piece were measured using a caliper ("Digimatic Caliper" manufactured by Mitutoyo Corporation). The thickness was measured to 1/100 mm using a constant pressure thickness measuring instrument ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Seisakusho Co., Ltd.) in the same manner as in the case of determining the thickness of the foamed sheet 1, and the apparent volume (V1: cm 3 ) was obtained. Next, the volume (V2: cm 3 ) of the test piece was obtained by the 1-1/2-1 atmospheric pressure method using an air comparison specific gravity meter "1000 type" manufactured by Tokyo Science Co. , Ltd. The open cell ratio (%) was calculated using the following formula (s2), and the arithmetic mean value of the open cell ratios of the five test pieces was obtained. The test pieces were conditioned in advance for 24 hours or more in a standard atmosphere of class 2, "23/50" (temperature 23±2°C, relative humidity 50±5%) according to JIS K 7100:1999, and then measured in the same standard atmosphere. The air comparison specific gravity meter was calibrated using standard balls (large 28.96 cm3 , small 8.58 cm3 ).
Open cell ratio (%) = (V1 - V2) / V1 x 100 ... (s2)
(V1: apparent volume, V2: volume measured by air comparison type specific gravity meter)
<融点、結晶化温度>
 融点及び結晶化温度は、JIS K7121:1987、JIS K7121:2012に記載されている方法で測定した。但し、サンプリング方法及び温度条件に関しては以下の通りとした。
 各例の発泡用樹脂組成物及び発泡シートから切り出した試料をアルミニウム製測定容器の底に、すきまのないように5.5±0.5mg充填後、アルミニウム製の蓋をした。次いで(株)日立ハイテクサイエンス製「DSC7000X、AS-3」示差走査熱量計を用い、示差走査熱量分析を実施した。窒素ガス流量20mL/分のもと、以下のステップ1~4で試料の加熱と冷却とを施して、DSC曲線を得た。
(ステップ1)10℃/分の速度で30℃から-40℃まで降温。
(ステップ2)10℃/分の速度で-40℃から200℃まで昇温し(1回目昇温過程)、10分間保持。
(ステップ3)10℃/分の速度で200℃から-40℃まで降温し(冷却過程)、10分間保持。
(ステップ4)10℃/分の速度で-40℃から200℃まで昇温(2回目昇温過程)。
 この時の基準物質にはアルミナを用いた。装置付属の解析ソフトを用いて、図3、図4に示すように2回目昇温過程にみられる融解ピークのトップの温度を読みとって融点とし、冷却過程における結晶化ピークのトップの温度を読みとって結晶化温度とした。但し、複数の融解ピークや結晶化ピークが観察される場合は、温度が高い方を融点及び結晶化温度した。
<Melting point, crystallization temperature>
The melting point and crystallization temperature were measured by the methods described in JIS K7121: 1987 and JIS K7121: 2012. However, the sampling method and temperature conditions were as follows.
The foaming resin composition and the sample cut out from the foamed sheet of each example were packed in the bottom of an aluminum measuring container at 5.5±0.5 mg without leaving any gaps, and then the aluminum lid was placed on the container. Differential scanning calorimetry was then carried out using a Hitachi High-Tech Science DSC7000X, AS-3 differential scanning calorimeter. The sample was heated and cooled in the following steps 1 to 4 under a nitrogen gas flow rate of 20 mL/min to obtain a DSC curve.
(Step 1) The temperature is decreased from 30° C. to −40° C. at a rate of 10° C./min.
(Step 2) The temperature was increased from −40° C. to 200° C. at a rate of 10° C./min (first temperature increase process) and held for 10 minutes.
(Step 3) The temperature is decreased from 200° C. to −40° C. at a rate of 10° C./min (cooling process), and held for 10 minutes.
(Step 4) Heat the temperature from -40°C to 200°C at a rate of 10°C/min (second heating process).
Alumina was used as the reference material. Using the analysis software attached to the device, the top temperature of the melting peak observed during the second heating process was read as the melting point, as shown in Figures 3 and 4, and the top temperature of the crystallization peak during the cooling process was read as the crystallization temperature. However, when multiple melting peaks or crystallization peaks were observed, the higher temperatures were used as the melting point and crystallization temperature.
<吸熱量(a)、発熱量(b)>
 吸熱量(a)(融解熱量)及び発熱量(b)(結晶化熱量)はJIS K7122:1987、JIS K7122:2012に記載されている方法で測定した。但し、サンプリング方法及び温度条件に関しては以下の通りとした。
 各例の発泡シートから切り出した試料をアルミニウム製測定容器の底に、すきまのないように5.5±0.5mg充填後、アルミニウム製の蓋をした。次いで(株)日立ハイテクサイエンス製「DSC7000X、AS-3」示差走査熱量計を用い、示差走査熱量分析を実施した。窒素ガス流量20mL/分のもと、以下のステップ1~2で試料の加熱及び冷却を施して、DSC曲線を得た。
(ステップ1)速度10℃/分で30℃から-40℃まで降温。
(ステップ2)速度10℃/分で-40℃から200℃まで昇温(1回目昇温過程)。
 この時の基準物質にはアルミナを用いた。吸熱量(a)及び発熱量(b)は、装置付属の解析ソフトを用いて算出した。具体的には、図3に示すように、吸熱量(a)は低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。発熱量(b)は低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側へ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。尚、図4に示すように1回目昇温過程に結晶化(発熱)ピークが観察されない場合は、発熱量(b)は0J/gとした。但し、複数の融解(吸熱)ピークや結晶化(発熱)ピークが観察される場合は、各ピークの熱量の合計を吸熱量(a)及び発熱量(b)とした。
<Amount of heat absorbed (a) and amount of heat generated (b)>
The endothermic amount (a) (amount of heat of fusion) and the exothermic amount (b) (amount of heat of crystallization) were measured according to the methods described in JIS K7122: 1987 and JIS K7122: 2012. However, the sampling method and temperature conditions were as follows.
A sample cut out from the foamed sheet of each example was packed into the bottom of an aluminum measurement container at 5.5±0.5 mg without leaving any gaps, and then the container was covered with an aluminum lid. Differential scanning calorimetry was then carried out using a Hitachi High-Tech Science DSC7000X, AS-3 differential scanning calorimeter. The sample was heated and cooled in the following steps 1 and 2 under a nitrogen gas flow rate of 20 mL/min to obtain a DSC curve.
(Step 1) Decrease temperature from 30° C. to −40° C. at a rate of 10° C./min.
(Step 2) Heat the temperature from −40° C. to 200° C. at a rate of 10° C./min (first heating process).
Alumina was used as the reference material. The endothermic amount (a) and the calorific value (b) were calculated using the analysis software attached to the device. Specifically, as shown in FIG. 3, the endothermic amount (a) was calculated from the area of the part surrounded by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, as well as the DSC curve. The calorific value (b) was calculated from the area of the part surrounded by the line connecting the point where the DSC curve leaves the low-temperature baseline and the point where the DSC curve returns to the high-temperature baseline, as well as the DSC curve. In addition, as shown in FIG. 4, when no crystallization (exothermic) peak was observed during the first heating process, the calorific value (b) was set to 0 J/g. However, when multiple melting (endothermic) peaks or crystallization (exothermic) peaks were observed, the total heat of each peak was set to the endothermic amount (a) and the calorific value (b).
<加熱減量>
 各例の押出直後の発泡シートから、1つの試料の質量が約10gとなるように3つの試料を切り出した。JIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で168時間かけて各試料を状態調整した。その後、各試料をアルミニウム箔で包み、加熱前の各試料の質量(W1)(g)を測定した。その後、各試料を180℃に設定した湿度調整無しのオーブン中の平台に静置して30分間加熱した。各試料をオーブンから取り出してJIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で30分間放冷した。その後、加熱後の各試料の質量(W2)(g)を測定した。
 下記(s3)式により3つの試料の加熱減量(質量%)をそれぞれ計算し、その相加平均値を発泡シートの加熱減量(質量%)とした。
 加熱減量(質量%)=(W1-W2)/W1×100・・・(s3)
<Loss on heating>
Three samples were cut out from the foamed sheet immediately after extrusion in each example so that the mass of each sample was about 10 g. Each sample was conditioned for 168 hours under the standard atmosphere of JIS K 7100:1999, "23/50" (temperature 23±2°C, relative humidity 50±5%), class 2. Then, each sample was wrapped in aluminum foil, and the mass (W1) (g) of each sample before heating was measured. Then, each sample was placed on a flat platform in an oven set to 180°C without humidity control and heated for 30 minutes. Each sample was removed from the oven and allowed to cool for 30 minutes under the standard atmosphere of JIS K 7100:1999, "23/50" (temperature 23±2°C, relative humidity 50±5%), class 2. Then, the mass (W2) (g) of each sample after heating was measured.
The heat loss (mass%) of each of the three samples was calculated by the following formula (s3), and the arithmetic mean value was determined as the heat loss (mass%) of the foamed sheet.
Heating loss (mass%) = (W1-W2)/W1×100...(s3)
<二次発泡倍率>
 各例の押出直後の発泡シートから、縦100mm×横100mmの試験片を3枚切り出した。JIS K 7100:1999の記号「23/50」(温度23±2℃、相対湿度50±5%)、2級の標準雰囲気下で168時間かけて試験片を状態調整し、加熱前の各試験片の中央部の厚さ(T1)(mm)を測定した。その後、試験片を70℃に設定した湿度調整無しのオーブン中の平台に静置して、150秒間加熱した後、オーブンから取り出して室温にて30分間冷却し、加熱後の各試験片の中央部の厚さ(T2)(mm)を測定した。尚、試験片の中央部の厚さ(T1及びT2)は、定圧厚み測定機((株)尾崎製作所製「ピーコックデジタルリニアゲージ PDN25」)を用い、各例の発泡シートの厚さを求めた場合と同様にして測定した。
 下記(s4)式により3つの試験片の二次発泡倍率(倍)をそれぞれ計算し、その相加平均値を発泡シートの二次発泡倍率(倍)とした。
 二次発泡倍率(倍)=T2/T1・・・(s4)
<Secondary expansion ratio>
Three test pieces measuring 100 mm long x 100 mm wide were cut out from the foamed sheet immediately after extrusion in each example. The test pieces were conditioned for 168 hours under a standard atmosphere of grade 2, "23/50" (temperature 23±2°C, relative humidity 50±5%), as specified in JIS K 7100:1999, and the thickness (T1) (mm) of the center of each test piece before heating was measured. Thereafter, the test pieces were placed on a flat platform in an oven without humidity control set at 70°C and heated for 150 seconds, then removed from the oven and cooled at room temperature for 30 minutes, and the thickness (T2) (mm) of the center of each test piece after heating was measured. The thicknesses (T1 and T2) of the center of the test pieces were measured in the same manner as in the case of determining the thickness of the foamed sheet in each example, using a constant pressure thickness measuring instrument ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Seisakusho Co., Ltd.).
The secondary expansion ratios (times) of the three test pieces were calculated by the following formula (s4), and the arithmetic mean value was regarded as the secondary expansion ratio (times) of the foamed sheet.
Secondary expansion ratio (times) = T2/T1 ... (s4)
<ゲル分率>
 各例の改質脂肪族ポリエステル系樹脂及び発泡シートから約0.5gの試料を用意し、試料の初期質量(Mo)を精秤した。また、試料を溶解させた溶解液をろ過するための80メッシュ金網(線径φ0.12mm)を用意し、この金網の初期の質量(Ms)も精秤した。ビーカー(容量:100cc)に試料とクロロホルム50ccとスターラーバーを入れ、アルミニウム箔で蓋をし、スターラーにセットし2時間攪拌行い、常温にて試料を溶解させた。2時間後、蓋を外し、ビーカー内の溶解物を前記金網でろ過し、樹脂不溶物を前記金網上に採取した。樹脂不溶物をろ過後の金網ごとドラフトチャンバー内で自然乾燥させクロロホルムを蒸発させた。次いで、ろ過後の金網ごと恒温乾燥器を使って樹脂不溶物を120℃の温度で2時間乾燥し、乾燥後はデシケーター内で放冷させた。放冷後の樹脂不溶物と金網との合計質量(Mx)を測定した。
 下記(s5)式によりゲル分率(質量%)を計算し、発泡シートのゲル分率とした。
 ゲル分率(質量%)=(Mx-Ms)/Mo×100・・・(s5)
<Gel Fraction>
About 0.5 g of sample was prepared from the modified aliphatic polyester resin and the foamed sheet of each example, and the initial mass (Mo) of the sample was precisely weighed. In addition, an 80-mesh wire net (wire diameter φ0.12 mm) was prepared for filtering the solution in which the sample was dissolved, and the initial mass (Ms) of this wire net was also precisely weighed. The sample, 50 cc of chloroform, and a stirrer bar were placed in a beaker (volume: 100 cc), covered with aluminum foil, set on a stirrer, and stirred for 2 hours to dissolve the sample at room temperature. After 2 hours, the lid was removed, the dissolved matter in the beaker was filtered through the wire net, and the resin insoluble matter was collected on the wire net. The resin insoluble matter was naturally dried together with the wire net after filtration in a draft chamber to evaporate the chloroform. Next, the resin insoluble matter was dried at a temperature of 120 ° C. for 2 hours using a thermostatic dryer together with the wire net after filtration, and allowed to cool in a desiccator after drying. The total mass (Mx) of the resin insoluble matter and the wire net after cooling was measured.
The gel fraction (mass%) was calculated by the following formula (s5) and was regarded as the gel fraction of the foamed sheet.
Gel fraction (mass%)=(Mx-Ms)/Mo×100 (s5)
(発泡シートの性能の評価方法)
<発泡シートの緩衝性(25%圧縮応力)>
25%圧縮応力は、JIS K6767:1999に準拠し測定した。25%圧縮応力は、(株)島津製作所製「オートグラフ AG-X plus 100kN」万能試験機、(株)島津製作所製「TRAPEZIUM X」万能試験機データ処理を用いて測定した。
 各例の発泡シートから縦50mm×横50mmの切片を切り出し、重ね合わせて試験片の厚さ10~13mmとなるようにした。尚、試験片の厚さはピーコック社製デジタルリニアゲージを用いて、直径35.7mmの円形状の治具で試験片に100gの荷重をかけて試験片の厚さを測定した。試験片の数は3個以上とした。試験片は、JIS K 7100:1999の記号「23/50」2級の標準雰囲気下で16時間かけて状態調節して測定に用いた。測定は同じ環境下で行い、φ100mm圧縮盤を用い、初荷重を約3.0Nとし、圧縮速度を5mm/minとした。尚、初荷重がかかった点を変位原点とした。
 各試験片について得られたグラフから、初荷重をかけた時の厚さから25%圧縮した時の応力を計算し、その相加平均値を発泡シートの25%圧縮応力(kPa)とし緩衝性の評価基準とした。
(Method of Evaluating the Performance of Foam Sheet)
<Cushioning properties of foam sheet (25% compression stress)>
The 25% compressive stress was measured in accordance with JIS K6767: 1999. The 25% compressive stress was measured using a universal testing machine "Autograph AG-X plus 100kN" manufactured by Shimadzu Corporation and a universal testing machine data processing machine "TRAPEZIUM X" manufactured by Shimadzu Corporation.
A piece of 50 mm long x 50 mm wide was cut out from each foam sheet and stacked to give a thickness of 10 to 13 mm. The thickness of the test piece was measured using a digital linear gauge manufactured by Peacock Co., Ltd., with a circular jig having a diameter of 35.7 mm and a load of 100 g applied to the test piece. The number of test pieces was three or more. The test pieces were conditioned for 16 hours in a standard atmosphere of the JIS K 7100:1999 symbol "23/50" class 2 and used for the measurement. The measurement was performed under the same environment, using a φ100 mm compression plate, with an initial load of about 3.0 N and a compression speed of 5 mm/min. The point where the initial load was applied was set as the displacement origin.
From the graph obtained for each test piece, the stress when compressed by 25% from the thickness at the time of applying the initial load was calculated, and the arithmetic mean value was defined as the 25% compression stress (kPa) of the foamed sheet and used as the evaluation standard for the cushioning property.
≪緩衝性の評価基準≫
◎:25%圧縮応力が40kPa未満である。
〇:25%圧縮応力40kPa以上80kPa未満である。
△:25%圧縮応力が80kPa以上200kPa未満である。
×:25%圧縮応力が200kPa以上である。
<Cushioning evaluation criteria>
⊚: 25% compressive stress is less than 40 kPa.
◯: 25% compressive stress is 40 kPa or more and less than 80 kPa.
Δ: The 25% compressive stress is 80 kPa or more and less than 200 kPa.
×: 25% compressive stress is 200 kPa or more.
<発泡シートの熱成形性(絞り比)>
 各例の発泡シートから縦700mm×横1050mmの平面長方形状の試験片を切り出した。そして、単発成形機(東成産業(株)製、商品名「ユニック自動成形機 FM-3A」)を用意し、この単発成形機の上側ヒーターの平均温度を250℃、下側ヒーターの平均温度を222℃、上側雰囲気温度を190℃、下側雰囲気温度を185℃にした。
 次に、上記試験片を単発成形機に導入し、所定時間加熱した後に、直径10mm(上面)×直径35mm(底面)で高さが違う円錐台を22個配置した金型(金型表面温度50℃)を用いて、成形を行った。22個の円錐台の高さ及び絞り比は、表2に示す通りであった。前記加熱時間4~30秒とし2秒間隔で加熱時間を変えて、それぞれ成形を行った。各加熱時間において得られた成形体を目視で観察し、成形体に裂けや穴あきが無く、形状が金型の通りに成形される最大の絞り比を、発泡シートの絞り比とし熱成形性の評価基準とした。
<Thermoformability (draw ratio) of foam sheet>
A flat rectangular test piece measuring 700 mm long x 1050 mm wide was cut out from each foamed sheet. A single shot molding machine (manufactured by Tosei Sangyo Co., Ltd., product name "Unic Automatic Molding Machine FM-3A") was prepared, and the average temperature of the upper heater of this single shot molding machine was set to 250°C, the average temperature of the lower heater was set to 222°C, the upper atmosphere temperature was set to 190°C, and the lower atmosphere temperature was set to 185°C.
Next, the test piece was introduced into a single shot molding machine, heated for a predetermined time, and then molded using a mold (mold surface temperature 50°C) in which 22 truncated cones of 10 mm diameter (top) x 35 mm diameter (bottom) and different heights were arranged. The heights and drawing ratios of the 22 truncated cones were as shown in Table 2. The heating time was 4 to 30 seconds, and the heating time was changed at 2 second intervals, and molding was performed for each. The molded bodies obtained at each heating time were visually observed, and the maximum drawing ratio at which the molded body was free of tears or holes and was molded into the shape of the mold was taken as the drawing ratio of the foamed sheet and was used as the evaluation criterion for thermoformability.
≪熱成形性の評価基準≫
◎:絞り比が2.00以上。
○:絞り比が1.60以上2.00未満。
△:絞り比が1.30以上1.60未満。
×:絞り比が1.30未満又は成形不可。
 ここで、「成形不可」とは、表2中No.1の円錐台において、形状が金型の形状から著しくずれているか、成形体に裂けや穴あきがみられることをいう。
<Evaluation criteria for thermoformability>
◎: The drawing ratio is 2.00 or more.
◯: The drawing ratio is 1.60 or more and less than 2.00.
Δ: The drawing ratio is 1.30 or more and less than 1.60.
×: The drawing ratio is less than 1.30 or molding is not possible.
Here, "unmoldable" means that in the case of the No. 1 truncated cone in Table 2, the shape is significantly deviated from the shape of the mold, or tears or holes are found in the molded product.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<発泡シートの耐熱変形性の評価(加熱変形率)>
 各例の発泡シートから各辺が前記発泡シートの押出方向(MD)又は幅方向(TD)に平行な状態となるように一辺が約10cmの平面正方形状の試験片を3個切り出した。次いで、各試験片の発泡シート上に、互いに対向する辺の中央部同士を結ぶ直線を二本、十字状に描いた。このとき、加熱前の押出方向の前記直線の長さ(MD1)、幅方向の前記直線の長さ(TD1)、十文状の交差点の発泡シートの厚さ(VD1)をそれぞれ測定した。次に、各試験片を70℃に設定した湿度調整無しのオーブン中の平台に静置して、150秒間加熱した後、オーブンから取り出して室温にて30分間冷却した。その後、各試験片の加熱後の各方向の直線長さ(MD2、TD2)及び厚さ(VD2)を測定した。尚、前記直線の長さ(MD1及びMD2、TD1及びTD2)はノギス((株)ミツトヨ製「デジマチックキャリパ」)を用いて測定し、前記厚さ(VD1及びVD2)は、定圧厚み測定機((株)尾崎製作所製「ピーコックデジタルリニアゲージ PDN25」)を用いて各例の発泡シートの厚さを求めた場合と同様にして測定した。
下記(s6)式により各試験片の加熱変形率(%)を計算し、その相加平均値を発泡シートの加熱変形率(%)とし、耐熱変形性の評価基準とした。
 加熱変形率(%)=(MDr+TDr+VDr)/3・・・(s6)
 MD変形率(MDr)(%)=(|MD2-MD1|/MD1)×100
 TD変形率(TDr)(%)=(|TD2-TD1|/TD1)×100
 VD変形率(VDr)(%)=(|VD2-VD1|/VD1)×100
<Evaluation of Heat Deformation Resistance of Foam Sheet (Heat Deformation Rate)>
Three flat square test pieces with sides of about 10 cm each were cut out from the foamed sheet of each example so that each side was parallel to the extrusion direction (MD) or width direction (TD) of the foamed sheet. Next, two straight lines were drawn on the foamed sheet of each test piece in the shape of a cross, connecting the centers of the opposing sides. At this time, the length of the straight line in the extrusion direction (MD1), the length of the straight line in the width direction (TD1), and the thickness of the foamed sheet at the intersection of the cross (VD1) were measured before heating. Next, each test piece was placed on a flat platform in an oven with no humidity control set at 70°C, heated for 150 seconds, and then removed from the oven and cooled at room temperature for 30 minutes. Thereafter, the straight line length (MD2, TD2) and thickness (VD2) in each direction of each test piece after heating were measured. The lengths of the straight lines (MD1 and MD2, TD1 and TD2) were measured using a vernier caliper ("Digimatic Caliper" manufactured by Mitutoyo Corporation), and the thicknesses (VD1 and VD2) were measured using a constant pressure thickness measuring instrument ("Peacock Digital Linear Gauge PDN25" manufactured by Ozaki Manufacturing Co., Ltd.) in the same manner as in the case of determining the thickness of the foamed sheet of each example.
The heat deformation rate (%) of each test piece was calculated by the following formula (s6), and the arithmetic mean value was regarded as the heat deformation rate (%) of the foamed sheet, which was used as the evaluation standard for heat deformation resistance.
Heat deformation rate (%) = (MDr + TDr + VDr) / 3 ... (s6)
MD deformation ratio (MDr) (%) = (|MD2-MD1|/MD1) x 100
TD deformation rate (TDr) (%) = (|TD2-TD1|/TD1) x 100
VD deformation rate (VDr) (%) = (|VD2-VD1|/VD1) x 100
≪耐熱変形性の評価基準≫
◎:加熱変形率が3%未満である。
〇:加熱変形率が3%以上10%未満である。
△:加熱変形率が10%以上15%未満である。
×:加熱変形率が15%以上である。
<Evaluation criteria for heat deformation resistance>
⊚: Heat deformation rate is less than 3%.
Good: The heat deformation rate is 3% or more and less than 10%.
Δ: The heat deformation rate is 10% or more and less than 15%.
×: Heat deformation rate is 15% or more.
≪発泡シートの総合評価≫
 各例の発泡シートの各特性項目より以下の評価基準で総合評価を行った。
◎:全ての項目の評価が「◎」であった。
〇:全ての項目の評価が「◎」か「〇」であり、1つ以上が「〇」であった。
△:全ての項目の評価で「×」がなく、かついずれかの項目の評価で「△」が1つ以上であった。
×:いずれかの項目の評価が「×」であった。
<Overall evaluation of foam sheets>
The foamed sheets of each example were comprehensively evaluated based on the various characteristics according to the following evaluation criteria.
: All items were rated as 'A'.
◯: All items were rated as either "◎" or "◯", with at least one being "◯".
Δ: There were no "x" marks in the evaluation of any item, and at least one "Δ" mark was given in the evaluation of any item.
×: Any of the items was rated as “×”.
<改質脂肪族ポリエステル系樹脂の作製>
(製造例1)
 始めに、表3の配合に従い、前もって80℃で4時間除湿乾燥した脂肪族ポリエステル系樹脂と有機過酸化物をドライブレンドして混合ペレットを得た。
 次に、前記混合ペレットを二軸押出機(口径57mm、L/D=32)のホッパーに供給し、表3に示した押出条件となるように溶融混練し、二軸押出機先端に装着されたストランドダイより改質脂肪族ポリエステル系樹脂のストランドを押出し、水槽で冷却して、ペレタイザーでペレット状に裁断することで発泡用樹脂組成物のペレットを得た。得られた発泡用樹脂組成物の物性を表3に示す。
<Preparation of modified aliphatic polyester resin>
(Production Example 1)
First, according to the formulation in Table 3, an aliphatic polyester resin that had been previously dried and dehumidified at 80° C. for 4 hours and an organic peroxide were dry-blended to obtain mixed pellets.
Next, the mixed pellets were fed to the hopper of a twin-screw extruder (diameter 57 mm, L/D=32), melt-kneaded under the extrusion conditions shown in Table 3, and strands of the modified aliphatic polyester resin were extruded from a strand die attached to the tip of the twin-screw extruder, cooled in a water tank, and cut into pellets with a pelletizer to obtain pellets of the foamable resin composition. The physical properties of the obtained foamable resin composition are shown in Table 3.
(製造例2~9)
 表3の配合及び押出条件で製造例1と同様にして発泡用樹脂組成物のペレットを得た。得られた発泡用樹脂組成物の物性を表3に示す。
(Production Examples 2 to 9)
Pellets of a foamable resin composition were obtained using the blending and extrusion conditions shown in Table 3 in the same manner as in Production Example 1. The physical properties of the obtained foamable resin composition are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<発泡シートの作製>
(実施例1)
 表4の配合に従い、改質脂肪族ポリエステル系樹脂と気泡調整剤とをドライブレンドして配合物とした。
 2台の押出機が接続されたタンデム押出機(上流側の第1押出機は単軸押出機(口径55mm)、下流側の第2押出機は単軸押出機(口径65mm))の第1押出機のホッパーに配合物を供給し、第1押出機内で溶融混練しつつ第1押出機の途中で発泡剤を圧入し溶融混練物を得た。
 該溶融混練物を第2押出機に移送して溶融混練物を冷却し、第2押出機の先端に装着されたサーキュラーダイ(口径60mm)から押出発泡して発泡シートで構成された円筒体を形成した。このときの樹脂温度及び吐出量は表4に記載の通りとした。
 円筒状の発泡シートの内方側及び外方側に冷却空気を吹きつけ、ついで所定のマンドレルの外周面に円筒体の内面を摺接させ、円筒体の内面から冷却した。その後、円筒体の1箇所を押出方向に沿って連続的に切断し長尺帯状の発泡シートを得、ロール状に巻取りを行った。
 得られた発泡シートの物性及び評価を表4に示す。
<Preparation of foam sheet>
Example 1
According to the formulation in Table 4, the modified aliphatic polyester resin and the cell regulator were dry blended to prepare a formulation.
A compound was supplied to the hopper of the first extruder of a tandem extruder in which two extruders were connected (the first extruder on the upstream side was a single screw extruder (diameter 55 mm), and the second extruder on the downstream side was a single screw extruder (diameter 65 mm)). The compound was melt-kneaded in the first extruder while a foaming agent was injected midway through the first extruder, to obtain a melt-kneaded compound.
The molten mixture was transferred to a second extruder, cooled, and extruded and foamed from a circular die (diameter 60 mm) attached to the tip of the second extruder to form a cylindrical body made of a foamed sheet. The resin temperature and discharge rate at this time were as shown in Table 4.
Cooling air was blown onto the inner and outer sides of the cylindrical foamed sheet, and then the inner surface of the cylinder was brought into sliding contact with the outer peripheral surface of a predetermined mandrel to cool the sheet from the inner surface of the cylinder. Thereafter, one portion of the cylinder was cut continuously along the extrusion direction to obtain a long strip-shaped foamed sheet, which was then wound into a roll.
The physical properties and evaluation of the resulting foamed sheet are shown in Table 4.
(実施例2~9)
 表4の配合に従い、押出条件と引取機の引取速度を調整した以外は、実施例1と同様にして発泡シートを作製した。得られた発泡シートの物性及び評価を表4に示す。
(Examples 2 to 9)
A foamed sheet was produced in the same manner as in Example 1, except that the extrusion conditions and the take-up speed of the take-up machine were adjusted according to the formulation in Table 4. The physical properties and evaluation of the obtained foamed sheet are shown in Table 4.
(比較例1)
 改質脂肪族ポリエステル系樹脂の代わりに、改質していない脂肪族ポリエステル系樹脂(B)(非改質脂肪族ポリエステル系樹脂)を用いて表5の配合に従い、押出条件と引取機の引取速度を調整した以外は、実施例1と同様にして発泡シートを作製した。得られた発泡シートの物性及び評価を表5に示す。
(Comparative Example 1)
A foamed sheet was produced in the same manner as in Example 1, except that an unmodified aliphatic polyester resin (B) (unmodified aliphatic polyester resin) was used instead of the modified aliphatic polyester resin, and the extrusion conditions and the take-up speed of the take-up machine were adjusted according to the formulation in Table 5. The physical properties and evaluation of the obtained foamed sheet are shown in Table 5.
(比較例2~5)
 表5の配合に従い、押出条件と引取機の引取速度を調整した以外は、実施例1と同様にして発泡シートを作製した。得られた発泡シートの物性及び評価を表5に示す。
(Comparative Examples 2 to 5)
A foamed sheet was produced in the same manner as in Example 1, except that the extrusion conditions and the take-up speed of the take-up machine were adjusted according to the formulation in Table 5. The physical properties and evaluation of the obtained foamed sheet are shown in Table 5.
 尚、比較例1の発泡シートの示差走査熱量分析の結果を図3に、実施例1の発泡シートの示差走査熱量分析の結果を図4に示す。そして、実施例1で用いた発泡用樹脂組成物の動的粘弾性測定での周波数と貯蔵弾性率(G’)との関係を両対数軸のグラフで表して周波数0.01Hz~0.1Hzの範囲で直線近似した様子を図5に示し、その複素粘度(η*)の測定結果を図6に示す。さらに比較例1で用いた発泡用樹脂組成物の動的粘弾性測定での周波数と貯蔵弾性率(G’)との関係を両対数軸のグラフで表して周波数0.01Hz~0.1Hzの範囲で直線近似した様子を図7に示し、その複素粘度(η*)の測定結果を図8に示す。
 図5での近似直線は、「y=28252x0.7015」という関数で表され、図7での近似直線は、「y=5283.5x1.7274」という関数で表され、両対数グラフ上で、それぞれ、0.7015と1.7274との傾きを示すものである。
The results of differential scanning calorimetry of the foamed sheet of Comparative Example 1 are shown in Fig. 3, and the results of differential scanning calorimetry of the foamed sheet of Example 1 are shown in Fig. 4. The relationship between frequency and storage modulus (G') in the dynamic viscoelasticity measurement of the foamable resin composition used in Example 1 is shown in a double logarithmic axis graph and linearly approximated in the frequency range of 0.01 Hz to 0.1 Hz in Fig. 5, and the measurement results of the complex viscosity (η * ) are shown in Fig. 6. The relationship between frequency and storage modulus (G') in the dynamic viscoelasticity measurement of the foamable resin composition used in Comparative Example 1 is shown in a double logarithmic axis graph and linearly approximated in the frequency range of 0.01 Hz to 0.1 Hz in Fig. 7, and the measurement results of the complex viscosity (η * ) are shown in Fig. 8.
The approximation line in FIG. 5 is expressed by the function "y = 28252x 0.7015 ", and the approximation line in FIG. 7 is expressed by the function "y = 5283.5x 1.7274 ", which show gradients of 0.7015 and 1.7274, respectively, on a double logarithmic graph.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明を適用した実施例1~9の発泡シートの総合評価は、「△」~「◎」であった。一方、比較例1~5の発泡シートの評価は緩衝性、熱成形性及び耐熱変形性のいずれかに「×」があり、総合評価はいずれも「×」であった。
 以上の結果から、本発明を適用した発泡シートは緩衝性、熱成形性及び耐熱変形性に優れることが確認された。
The foamed sheets of Examples 1 to 9 to which the present invention was applied were evaluated as being "△" to "◎". On the other hand, the foamed sheets of Comparative Examples 1 to 5 were evaluated as being "×" in any of the cushioning property, thermoformability, and heat deformation resistance.
From the above results, it was confirmed that the foamed sheet according to the present invention is excellent in shock-absorbing properties, thermoformability and heat deformation resistance.
<評価実験2>
(製造例A~F、K~M)
 評価実験1での製造例1と同様にして製造例A~F、K~Mの発泡用樹脂組成物のペレットを作製した。尚、脂肪族ポリエステル系樹脂の種類や有機過酸化物の種類を示す符号は評価実験1と同じであるためここでは繰り返して説明しない。また、製造例A~F、K~Mの発泡用樹脂組成物のペレットを作製する際には、下記の表6に示すように、有機過酸化物の使用量、樹脂温度などの条件を変更した。作製した発泡用樹脂組成物の物性を併せて表6に示す。
<Evaluation Experiment 2>
(Production examples A to F, K to M)
Pellets of the foamable resin composition of Production Examples A to F and K to M were prepared in the same manner as in Production Example 1 in Evaluation Experiment 1. The symbols indicating the type of aliphatic polyester resin and the type of organic peroxide are the same as those in Evaluation Experiment 1, and therefore will not be described again here. When preparing pellets of the foamable resin composition of Production Examples A to F and K to M, the amount of organic peroxide used, the resin temperature, and other conditions were changed as shown in Table 6 below. The physical properties of the prepared foamable resin compositions are also shown in Table 6.
(製造例G~J)
 口径51mm、L/D=48の二軸押出機を用いたこと以外は、製造例A~F、K~Mと同様にして製造例G~Jの発泡用樹脂組成物のペレットを得た。また、製造例G~Jの発泡用樹脂組成物のペレットを作製する際には、下記の表6に示すように、有機過酸化物の使用量、樹脂温度などの条件を変更した。作製した発泡用樹脂組成物の物性を併せて表6に示す。
(Production Examples G to J)
Except for using a twin-screw extruder with a bore of 51 mm and L/D=48, pellets of the foamable resin composition of Production Examples G to J were obtained in the same manner as in Production Examples A to F and K to M. When producing pellets of the foamable resin composition of Production Examples G to J, conditions such as the amount of organic peroxide used and the resin temperature were changed as shown in Table 6 below. The physical properties of the produced foamable resin compositions are also shown in Table 6.
 尚、この評価実験2では、評価実験1での評価項目に加え、前述のように下記条件で発泡用樹脂組成物の動的粘弾性を測定し、貯蔵弾性率(G’)の傾きと複素粘度(η*)についても測定した。
<測定条件>
歪み:5%
周波数:0.01~100(Hz)(低周波数(0.01Hz)から測定を開始)
測定点数:21(5点/桁)
測定温度:190℃
雰囲気ガス:窒素
In addition, in this evaluation experiment 2, in addition to the evaluation items in evaluation experiment 1, the dynamic viscoelasticity of the foamable resin composition was measured under the following conditions as described above, and the slope of the storage modulus (G') and the complex viscosity (η * ) were also measured.
<Measurement conditions>
Distortion: 5%
Frequency: 0.01 to 100 (Hz) (measurement starts from low frequency (0.01 Hz))
Number of measurement points: 21 (5 points/digit)
Measurement temperature: 190°C
Atmosphere gas: Nitrogen
 尚、発泡用樹脂組成物の貯蔵弾性率(G’)の傾きは、横軸が周波数(Hz)、縦軸が貯蔵弾性率(G’)の両対数軸のグラフで表した際に、周波数0.01Hzから0.1Hzまでの範囲において直線的に変化しており、前記グラフの周波数0.01Hzから0.1Hzまでの範囲を直線近似し、該直線の傾きから算出した。 The slope of the storage modulus (G') of the foamable resin composition, when plotted on a double logarithmic axis with frequency (Hz) on the horizontal axis and storage modulus (G') on the vertical axis, changes linearly in the frequency range of 0.01 Hz to 0.1 Hz, and was calculated from the slope of the straight line that approximated the frequency range of 0.01 Hz to 0.1 Hz on the graph.
 また、この評価実験2では、評価実験1での評価項目に加え、前述のように下記条件で発泡用樹脂組成物のメルトマスフローレイト(MFR)を測定した。
<メルトマスフローレイト(MFR)>
 メルトマスフローレイト(MFR)は、(株)安田精機製作所製「メルトフローインデックステスター(自動)120-SAS」を用いて測定した。MFRは、JIS K 7210:1999に準拠し、以下の測定条件で測定した。尚、測定用の試料は70℃、5時間以上真空乾燥し、乾燥後は測定直前まで真空パック用のナイロンポリ袋に入れて真空包装した上でデシケーターに保存した。
In addition to the evaluation items in Evaluation Experiment 1, in Evaluation Experiment 2, the melt mass-flow rate (MFR) of the foamable resin composition was measured under the following conditions as described above.
<Melt Mass Flow Rate (MFR)>
The melt mass flow rate (MFR) was measured using a "Melt Flow Index Tester (Automatic) 120-SAS" manufactured by Yasuda Seiki Seisakusho Co., Ltd. The MFR was measured in accordance with JIS K 7210:1999 under the following measurement conditions. The measurement samples were vacuum dried at 70°C for 5 hours or more, and after drying, they were placed in nylon polybags for vacuum packing, vacuum packed, and stored in a desiccator until immediately before the measurement.
(測定条件)
試料:3~8g
予熱1:200秒
予熱2:30秒
試験温度:190℃
試験荷重:21.18N
ピストン移動距離(インターバル):25mm
試験回数:3回
各試験で得られた測定値の相加平均をMFR(g/10min)の値とした。
(Measurement condition)
Sample: 3 to 8 g
Preheat 1: 200 seconds Preheat 2: 30 seconds Test temperature: 190°C
Test load: 21.18N
Piston travel distance (interval): 25mm
Number of tests: 3 times. The arithmetic mean of the measured values obtained in each test was taken as the MFR (g/10 min).
 また、この評価実験2では、評価実験1での評価項目に加え、前述のように下記条件で発泡用樹脂組成物の溶融張力を測定した。
<溶融張力>
 溶融張力は、株式会社東洋精機製作所製「キャピログラフ1D」(加熱炉特殊仕様)キャピラリーレオメータ、及びGoettfert社製「Rheotens71.97」を用いて測定した。溶融張力の測定は、下記の条件にて実施した。
 試料は事前に70℃×5時間以上真空乾燥し、乾燥後は測定直前まで真空パック用のナイロンポリ袋に入れて真空包装した上でデシケーターに保存した。
 Rheotens71.97は、キャピログラフ1Dのダイ出口から測定部までの距離が80mmとなるよう設置した。(尚、そのままでは干渉してしまい80mmまでレオテンスを接近させることができない場合は、干渉を回避する策を講じて所定の場所にレオテンスをセットした。)
 まず、試験温度190℃に加熱されたバレルに試料を充填後、5分間予熱した。
 尚、測定時間についてはバレルに充填してから予熱時間を含めて10分を超えないようにした。
 次に、バレルの上部からピストンを挿入し溶融樹脂を紐状に押し出した。
 このとき、ピストン降下速度(20mm/min)を一定に保持し、押出された紐状物をレオテンスのホイールに通過させた。その後、その引取速度を徐々に増加させて試料の溶融張力を測定した。
In addition to the evaluation items in Evaluation Experiment 1, in Evaluation Experiment 2, the melt tension of the foamable resin composition was measured under the following conditions as described above.
<Melt tension>
The melt tension was measured using a capillary rheometer "Capillograph 1D" (special specification for heating furnace) manufactured by Toyo Seiki Seisakusho Co., Ltd. and "Rheotens 71.97" manufactured by Goettfert GmbH. The melt tension was measured under the following conditions.
The samples were vacuum-dried at 70° C. for 5 hours or more in advance, and after drying, they were vacuum-packed in nylon plastic bags for vacuum packing and stored in a desiccator until immediately before the measurement.
The Rheotens 71.97 was installed so that the distance from the die exit of the Capillograph 1D to the measurement part was 80 mm. (Note that, if the Rheotens could not be brought close to 80 mm due to interference, measures were taken to avoid interference and the Rheotens was set in a specified location.)
First, the sample was filled into a barrel heated to a test temperature of 190° C., and then preheated for 5 minutes.
The measurement time was not longer than 10 minutes, including the preheating time, after the barrel was filled.
Next, a piston was inserted from the top of the barrel and the molten resin was extruded into a string-like shape.
At this time, the piston descending speed (20 mm/min) was kept constant, and the extruded string-like material was passed through a Rheotens wheel. Thereafter, the take-up speed was gradually increased to measure the melt tension of the sample.
 測定結果について、紐状物が破断した点の直前の張力の極大値と極小値の平均を試料の溶融張力とした。
 尚、張力チャートに極大点が1個しかない場合はその極大値を溶融張力とした。
 また、当紐状物が細くなり、巻取りが空回り状態になった場合は、その時点を破断点と捉えて、直前の張力の極大値と極小値の平均を試料の溶融張力とした。
Regarding the measurement results, the average of the maximum and minimum tension values just before the point at which the string broke was taken as the melt tension of the sample.
When there was only one maximum point on the tension chart, the maximum value was taken as the melt tension.
When the string-like material became thinner and the winding started to rotate freely, that point was taken as the breaking point, and the average of the maximum and minimum tension values immediately before that point was taken as the melt tension of the sample.
(キャピログラフ1Dの測定条件)
ダイ:直径2.095mm、長さ8mm、流入角度90度(コニカル)
バレル径:9.55mm
ピストンスピード:20mm/min測定温度:190℃
(Measurement conditions for Capillograph 1D)
Die: diameter 2.095 mm, length 8 mm, inlet angle 90 degrees (conical)
Barrel diameter: 9.55mm
Piston speed: 20 mm/min Measurement temperature: 190° C.
(レオテンスの測定条件)
ホイール間隔:上0.6mm、下1.0mm
加速度:10mm/s2
引取スピード:初速 6.92mm/s
(Conditions for measuring Rheotensibility)
Wheel spacing: Top 0.6mm, bottom 1.0mm
Acceleration: 10mm/s 2
Pulling speed: Initial speed 6.92 mm/s
(発泡シートの作製)
 前もって80℃で4時間除湿乾燥した発泡用樹脂組成物100質量部と気泡調整剤としてタルク(松村産業社製、商品名「クラウンタルクPP」)0.5質量部とをドライブレンドして配合物とした。
 2台の押出機が接続されたタンデム押出機(上流側の第1押出機は単軸押出機(口径55mm)、下流側の第2押出機は単軸押出機(口径65mm))の第1押出機のホッパーに配合物を供給し、第1押出機内で溶融混練しつつ第1押出機の途中で発泡剤として二酸化炭素4.3質量部を圧入し溶融混練物を得た。
 該溶融混練物を第2押出機に移送して溶融混練物を樹脂温度が140℃となるように冷却し、第2押出機の先端に装着されたサーキュラーダイ(口径60mm)から吐出量30kg/hにて押出発泡して発泡シートで構成された円筒体を形成した。
 円筒状の発泡シートの内方側及び外方側に冷却空気を吹きつけ、ついで所定のマンドレルの外周面に円筒体の内面を摺接させ、円筒体の内面から冷却した。その後、円筒体の1箇所を押出方向に沿って連続的に切断し長尺帯状の発泡シートを得、ロール状に巻取りを行った。
 巻取機の引取速度を変えて、坪量100g/m2、坪量65g/m2、坪量40g/m2の発泡シートをそれぞれ作製した。
(Preparation of foam sheet)
A compound was prepared by dry blending 100 parts by mass of a foamable resin composition that had been previously dried and dehumidified at 80° C. for 4 hours and 0.5 parts by mass of talc (manufactured by Matsumura Sangyo Co., Ltd., product name "Crown Talc PP") as a cell regulator.
The compound was supplied to the hopper of the first extruder of a tandem extruder in which two extruders were connected (the first extruder on the upstream side was a single-screw extruder (diameter 55 mm), and the second extruder on the downstream side was a single-screw extruder (diameter 65 mm)). The compound was melt-kneaded in the first extruder while 4.3 parts by mass of carbon dioxide was injected as a foaming agent midway through the first extruder to obtain a melt-kneaded compound.
The molten mixture was transferred to a second extruder, and cooled so that the resin temperature of the molten mixture became 140° C., and then extruded and foamed at a discharge rate of 30 kg/h from a circular die (diameter 60 mm) attached to the tip of the second extruder to form a cylindrical body composed of a foamed sheet.
Cooling air was blown onto the inner and outer sides of the cylindrical foamed sheet, and then the inner surface of the cylinder was brought into sliding contact with the outer peripheral surface of a predetermined mandrel to cool the sheet from the inner surface of the cylinder. Thereafter, one portion of the cylinder was cut continuously along the extrusion direction to obtain a long strip-shaped foamed sheet, which was then wound into a roll.
By changing the take-up speed of the winder, foamed sheets having basis weights of 100 g/m 2 , 65 g/m 2 and 40 g/m 2 were produced.
 このとき製造例C、製造例D、製造例E、及び、製造例Fの発泡用樹脂組成物を用いた場合、巻取機の引取速度を変えて、坪量100g/m2、坪量65g/m2の発泡シートは作製できたが(表6中の作製可否は「可」)、さらに巻取機の引取速度を上げて発泡シート作製しようとすると、樹脂の伸びが悪く発泡シートが切断し、坪量40g/m2の発泡シートは作製できなかった(表6中の作製可否は「不可」)。また、製造例L、及び、製造例Mの発泡用樹脂組成物を用いた場合、巻取機の引取速度を変えて、坪量100g/m2、発泡シートは作製できたが(表6中の作製可否は「可」)、さらに巻取機の引取速度を上げて発泡シート作製しようとすると、樹脂の伸びが悪く発泡シートが切断し、坪量65g/m2及び坪量40g/m2の発泡シートは作製できなかった(表6中の作製可否は「不可」)。 In this case, when the foaming resin compositions of Production Examples C, D, E, and F were used, foam sheets with a basis weight of 100 g/ m2 and 65 g/ m2 could be produced by changing the take-up speed of the winder (the "production possibility" in Table 6 is "yes"). However, when an attempt was made to produce a foam sheet by further increasing the take-up speed of the winder, the resin did not stretch well and the foam sheet broke, making it impossible to produce a foam sheet with a basis weight of 40 g/ m2 (the "production possibility" in Table 6 is "no"). In addition, when the foaming resin compositions of Production Examples L and M were used, a foam sheet with a basis weight of 100 g/ m2 could be produced by changing the take-up speed of the winder (the "Production possibility" in Table 6 is "Yes"). However, when an attempt was made to produce a foam sheet by further increasing the take-up speed of the winder, the resin did not stretch well and the foam sheet broke, and foam sheets with a basis weight of 65 g/ m2 and 40 g/ m2 could not be produced (the "Production possibility" in Table 6 is "No").
≪坪量の評価基準≫
 各坪量の発泡シートの作製における作製可否の結果から、以下の基準で評価した。
◎:全ての坪量の発泡シートの作製可否が全て「可」である。
〇:坪量65g/m2以上の発泡シートの作製可否が「可」である。
×:坪量100g/m2の発泡シートのみ作製可否が「可」である。
<Evaluation criteria for basis weight>
The results of the preparation of the foamed sheet of each basis weight were evaluated according to the following criteria.
.circleincircle.: The feasibility of producing foamed sheets of all basis weights was "OK".
◯: Possibility of producing a foamed sheet having a basis weight of 65 g/ m2 or more is "OK".
×: Only the foamed sheet having a basis weight of 100 g/ m2 is capable of being produced.
≪見掛け密度の評価基準≫
 作製した坪量100g/m2の発泡シートの見掛け密度を以下の基準で評価した。
◎:見掛け密度が60kg/m3未満である。
〇:見掛け密度が60kg/m3以上200kg/m3未満である。
×:見掛け密度が200kg/m3以上である
<Evaluation criteria for apparent density>
The apparent density of the foamed sheet having a basis weight of 100 g/ m2 thus produced was evaluated according to the following criteria.
A: Apparent density is less than 60 kg/ m3 .
A: The apparent density is 60 kg/ m3 or more and less than 200 kg/ m3 .
×: Apparent density is 200 kg/ m3 or more
≪発泡シートの総合評価≫
 各例の発泡シートの坪量及び見掛け密度の評価より、以下の基準で総合評価を行った。
◎:坪量及び見掛け密度の評価で「◎」のみであった。
〇:坪量及び見掛け密度の評価で「◎」と「〇」が1つずつであった。
△:坪量及び見掛け密度の評価で「○」のみであった。
×:坪量及び見掛け密度の評価のいずれかが「×」であった。
<Overall evaluation of foam sheets>
Based on the evaluation of the basis weight and apparent density of each foamed sheet, a comprehensive evaluation was made according to the following criteria.
: Only "A" was given in the evaluation of basis weight and apparent density.
◯: One each of "◎" and "◯" was given in the evaluations of basis weight and apparent density.
Δ: Only "◯" was given in the evaluation of basis weight and apparent density.
×: Either the basis weight or the apparent density was evaluated as "×".
 以上の評価結果を下記の表6に示す。 The above evaluation results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この評価実験2での結果から、脂肪族ポリエステル系樹脂を含む樹脂組成物を発泡させて用いる場合、発泡前の樹脂組成物がMFR、溶融張力、ゲル分率や複素粘度などといった特性値が所定の範囲内であることで発泡性に優れ、軽量性(低密度、低坪量)に優れた発泡シートの製造に有利になりうることがわかる。 The results of Evaluation Experiment 2 show that when a resin composition containing an aliphatic polyester resin is foamed and used, if the properties of the resin composition before foaming, such as MFR, melt tension, gel fraction, and complex viscosity, are within the specified ranges, this can be advantageous for producing a foamed sheet that has excellent foamability and is lightweight (low density, low basis weight).
1:発泡シート、10:発泡層
2:積層発泡シート、20:非発泡層
1: foamed sheet, 10: foamed layer, 2: laminated foamed sheet, 20: non-foamed layer

Claims (13)

  1.  1種類以上の脂肪族ポリエステル系樹脂を含む樹脂組成物で構成された発泡シートであって、
     見掛け密度が30kg/m3以上100kg/m3以下で、
     クロロホルムを用いて測定されるゲル分率が25質量%以下であり、
     加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である発泡シート。
    A foamed sheet made of a resin composition containing one or more aliphatic polyester resins,
    The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less,
    The gel fraction measured using chloroform is 25% by mass or less,
    A foamed sheet having a calorific value of 5.0 J/g or less observed during a first temperature rise as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min.
  2.  前記熱流束示差走査熱量測定での前記昇温過程では吸熱ピークが観察され、
     該吸熱ピークでの吸熱量の絶対値と前記発熱量との差が30J/g以上90J/g以下である請求項1記載の発泡シート。
    An endothermic peak is observed during the temperature rise process in the heat flux differential scanning calorimetry,
    2. The foamed sheet according to claim 1, wherein the difference between the absolute value of the amount of heat absorbed at the endothermic peak and the amount of heat generated is 30 J/g or more and 90 J/g or less.
  3.  加熱減量が0.1質量%以上1.5質量%以下である請求項1又は2記載の発泡シート。 The foamed sheet according to claim 1 or 2, which has a heat loss of 0.1% to 1.5% by mass.
  4.  二次発泡倍率が0.9倍以上1.5倍以下である請求項1乃至3の何れか1項に記載の発泡シート。 The foamed sheet according to any one of claims 1 to 3, wherein the secondary expansion ratio is 0.9 to 1.5 times.
  5.  連続気泡率が60%以下である請求項1乃至4の何れか1項に記載の発泡シート。 The foamed sheet according to any one of claims 1 to 4, having an open cell rate of 60% or less.
  6.  前記脂肪族ポリエステル系樹脂は、ポリブチレンサクシネート及び/又はポリブチレンサクシネートアジペートである請求項1乃至5の何れか1項に記載の発泡シート。 The foamed sheet according to any one of claims 1 to 5, wherein the aliphatic polyester resin is polybutylene succinate and/or polybutylene succinate adipate.
  7.  前記脂肪族ポリエステル系樹脂は、少なくとも一部が植物由来のポリブチレンサクシネート及び/又は少なくとも一部が植物由来のポリブチレンサクシネートアジペートである請求項1乃至6の何れか1項に記載の発泡シート。 The foam sheet according to any one of claims 1 to 6, wherein the aliphatic polyester resin is at least partially plant-derived polybutylene succinate and/or at least partially plant-derived polybutylene succinate adipate.
  8.  請求項1乃至7の何れか1項に記載の発泡シートで構成された熱成形体である、発泡成形体。 A foamed molded product, which is a thermoformed product made of the foamed sheet according to any one of claims 1 to 7.
  9.  脂肪族ポリエステル系樹脂と有機過酸化物とを溶融混練して改質脂肪族ポリエステル系樹脂を得ることと、
     前記改質脂肪族ポリエステル系樹脂を含む樹脂組成物を発泡剤とともにシート状に押出すこととを含む発泡シートの製造方法であって、
     製造する発泡シートは、
     見掛け密度が30kg/m3以上100kg/m3以下で、
     クロロホルムを用いて測定されるゲル分率が25質量%以下であり、
     加熱速度10℃/分での熱流束示差走査熱量測定によって求められる1回目の昇温過程で観察される発熱量が5.0J/g以下である、発泡シートの製造方法。
    melt-kneading an aliphatic polyester resin with an organic peroxide to obtain a modified aliphatic polyester resin;
    A method for producing a foamed sheet, comprising extruding a resin composition containing the modified aliphatic polyester resin into a sheet together with a foaming agent,
    The foam sheet to be manufactured is
    The apparent density is 30 kg/ m3 or more and 100 kg/ m3 or less,
    The gel fraction measured using chloroform is 25% by mass or less,
    A method for producing a foamed sheet, wherein the calorific value observed during a first heating step as determined by heat flux differential scanning calorimetry at a heating rate of 10° C./min is 5.0 J/g or less.
  10.  前記発泡剤が二酸化炭素である請求項9記載の発泡シートの製造方法。 The method for producing a foamed sheet according to claim 9, wherein the foaming agent is carbon dioxide.
  11.  前記樹脂組成物は、
     JIS K 7210に規定の方法で測定される190℃でのメルトマスフローレイト(MFR)が0.1g/10min以上5.0g/10min以下で、
     レオメータと伸長粘度測定器とを用いて測定される190℃における溶融張力が30cN以上100cN以下であり、
     クロロホルムを用いて測定されるゲル分率が40質量%以下である請求項9又は10記載の発泡シートの製造方法。
    The resin composition comprises
    The melt mass flow rate (MFR) at 190°C measured by the method specified in JIS K 7210 is 0.1 g/10 min or more and 5.0 g/10 min or less.
    The melt tension at 190°C measured using a rheometer and an extensional viscosity measuring device is 30 cN or more and 100 cN or less,
    The method for producing a foamed sheet according to claim 9 or 10, wherein the gel fraction measured using chloroform is 40% by mass or less.
  12.  下記条件で動的粘弾性を測定して求められる前記樹脂組成物の貯蔵弾性率(G’)は、
     横軸が周波数(Hz)、縦軸が貯蔵弾性率(G’)の両対数軸のグラフで表した際に、
     周波数0.01Hzから0.1Hzまでの範囲において直線的に変化し、
     前記グラフの周波数0.01Hzから0.1Hzまでの範囲を直線近似した際の該直線の傾きが0.35以上1.50以下である請求項9乃至11の何れか1項に記載の発泡シートの製造方法。
    <測定条件>
    歪み:5%
    周波数:0.01~100(Hz)(低周波数(0.01Hz)から測定を開始)
    測定点数:21(5点/桁)
    測定温度:190℃
    雰囲気ガス:窒素
    The storage modulus (G') of the resin composition obtained by measuring the dynamic viscoelasticity under the following conditions is:
    When the horizontal axis is frequency (Hz) and the vertical axis is storage modulus (G') on a double logarithmic scale,
    The frequency varies linearly in the range from 0.01 Hz to 0.1 Hz.
    12. The method for producing a foamed sheet according to claim 9, wherein a gradient of a straight line obtained by linearly approximating a frequency range of 0.01 Hz to 0.1 Hz on the graph is 0.35 or more and 1.50 or less.
    <Measurement conditions>
    Distortion: 5%
    Frequency: 0.01 to 100 (Hz) (measurement starts from low frequency (0.01 Hz))
    Number of measurement points: 21 (5 points/digit)
    Measurement temperature: 190°C
    Atmosphere gas: Nitrogen
  13.  下記条件で動的粘弾性を測定して求められる前記樹脂組成物の複素粘度(η*)は、周波数0.01Hzにおいて10000Pa・s以上150000Pa・s以下である請求項9乃至12の何れか1項に記載の発泡シートの製造方法。
    <測定条件>
    歪み:5%
    周波数:0.01~100(Hz)(低周波数(0.01Hz)から測定を開始)
    測定点数:21(5点/桁)
    測定温度:190℃
    雰囲気ガス:窒素
    13. The method for producing a foamed sheet according to claim 9, wherein the complex viscosity (η * ) of the resin composition determined by measuring dynamic viscoelasticity under the following conditions is 10,000 Pa·s or more and 150,000 Pa·s or less at a frequency of 0.01 Hz.
    <Measurement conditions>
    Distortion: 5%
    Frequency: 0.01 to 100 (Hz) (measurement starts from low frequency (0.01 Hz))
    Number of measurement points: 21 (5 points/digit)
    Measurement temperature: 190°C
    Atmosphere gas: Nitrogen
PCT/JP2024/001216 2023-01-20 2024-01-18 Foam sheet, foam molded body, and method for producing foam sheet WO2024154769A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-007405 2023-01-20
JP2023007392A JP2024103194A (en) 2023-01-20 2023-01-20 Foam sheet, foam molded product, and method for producing foam sheet
JP2023007405 2023-01-20
JP2023-007392 2023-01-20

Publications (1)

Publication Number Publication Date
WO2024154769A1 true WO2024154769A1 (en) 2024-07-25

Family

ID=91956165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001216 WO2024154769A1 (en) 2023-01-20 2024-01-18 Foam sheet, foam molded body, and method for producing foam sheet

Country Status (1)

Country Link
WO (1) WO2024154769A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305471A (en) * 1997-03-05 1998-11-17 Jsp Corp Manufacture of aliphatic polyester resin foam
JP2003128901A (en) * 2001-08-10 2003-05-08 Unitika Ltd Biodegradable polyester resin composition, method for producing the same and foam and molded article obtained therefrom
WO2003046060A1 (en) * 2001-11-29 2003-06-05 Toray Industries, Inc. Crosslinked biodegradable resin continuous foamed sheet and method for production thereof
JP2004107615A (en) * 2002-07-23 2004-04-08 Mitsui Chemicals Inc Aliphatic polyester composition foamed material,its preparation process and aliphatic polyester composition foam molded article
WO2008078413A1 (en) * 2006-12-22 2008-07-03 Unitika Ltd. Biodegradable polyester resin composition, and molded body, foamed body and molded container obtained from the biodegradable polyester resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305471A (en) * 1997-03-05 1998-11-17 Jsp Corp Manufacture of aliphatic polyester resin foam
JP2003128901A (en) * 2001-08-10 2003-05-08 Unitika Ltd Biodegradable polyester resin composition, method for producing the same and foam and molded article obtained therefrom
WO2003046060A1 (en) * 2001-11-29 2003-06-05 Toray Industries, Inc. Crosslinked biodegradable resin continuous foamed sheet and method for production thereof
JP2004107615A (en) * 2002-07-23 2004-04-08 Mitsui Chemicals Inc Aliphatic polyester composition foamed material,its preparation process and aliphatic polyester composition foam molded article
WO2008078413A1 (en) * 2006-12-22 2008-07-03 Unitika Ltd. Biodegradable polyester resin composition, and molded body, foamed body and molded container obtained from the biodegradable polyester resin composition

Similar Documents

Publication Publication Date Title
JP2006103098A (en) Foamed multi-layer polylactic acid resin and foamed multi-layer polylactic acid resin molding
WO2011122626A1 (en) Polylactic acid composition, foam-molded article thereof and method for producing same
US9023470B2 (en) Polylactic acid resin expanded beads and molded article of polylactic acid resin expanded beads
US10184038B2 (en) Polylactic acid-based resin expanded beads and molded article thereof
US20110263732A1 (en) Polylactic Acid Foam Composition
US9637606B2 (en) Molded article of polylactic acid-based resin expanded beads
JP4820623B2 (en) Method for producing foamable polylactic acid resin
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
JP5717204B2 (en) Polylactic acid resin foamed particles and molded article of the foamed particles
JP4258758B2 (en) Polylactic acid resin foam sheet for thermoforming
JP5044337B2 (en) Polylactic acid-based resin expanded particles and the expanded particles molded body
JP5620733B2 (en) Method for producing foamed polylactic acid resin particles
WO2024154769A1 (en) Foam sheet, foam molded body, and method for producing foam sheet
JP5517280B2 (en) Polylactic acid resin foam molding
JP6583909B2 (en) Polylactic acid resin foamed molded article
JP2024103194A (en) Foam sheet, foam molded product, and method for producing foam sheet
JP2024103461A (en) Foamable resin composition, method for producing foamed sheet, and method for producing foamable resin composition
JP6971947B2 (en) Polylactic acid resin foam
JP6968118B2 (en) Manufacturing method of modified polylactic acid resin
JP4570033B2 (en) Method for producing polylactic acid resin foamed molded article and polylactic acid resin foamed sheet for thermoforming
JP7492893B2 (en) Polylactic acid resin foam sheet and sheet molded product
WO2024204489A1 (en) Foamed polylactic acid resin sheet and method for producing formed sheet
JP2024135979A (en) Aliphatic polyester resin foam sheet
JP6928592B2 (en) Manufacturing method of modified polylactic acid resin, polylactic acid resin and polylactic acid resin foam sheet
JP2012153907A (en) Method of producing expandable polylactic acid-based resin particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24744690

Country of ref document: EP

Kind code of ref document: A1