Nothing Special   »   [go: up one dir, main page]

WO2024154250A1 - Trajectory generation device and trajectory generation method - Google Patents

Trajectory generation device and trajectory generation method Download PDF

Info

Publication number
WO2024154250A1
WO2024154250A1 PCT/JP2023/001320 JP2023001320W WO2024154250A1 WO 2024154250 A1 WO2024154250 A1 WO 2024154250A1 JP 2023001320 W JP2023001320 W JP 2023001320W WO 2024154250 A1 WO2024154250 A1 WO 2024154250A1
Authority
WO
WIPO (PCT)
Prior art keywords
trajectory
time
movement
target point
candidates
Prior art date
Application number
PCT/JP2023/001320
Other languages
French (fr)
Japanese (ja)
Inventor
将吾 東
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2023/001320 priority Critical patent/WO2024154250A1/en
Publication of WO2024154250A1 publication Critical patent/WO2024154250A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • This specification discloses a trajectory generation device and a trajectory generation method.
  • Patent Document 1 describes a method for generating a trajectory for moving the tip of a robot arm from a starting point to a target point in such a way that the movement time is minimized while satisfying constraints on the speed and acceleration of the tip.
  • the primary objective of this disclosure is to quickly generate an appropriate trajectory that reduces the movement time of the robot arm's hand while minimizing the effects of hand vibration.
  • the trajectory generating device of the present disclosure is A trajectory generating device for generating a trajectory of a motion of a multi-joint robot arm, a generation unit that searches for possible waypoints from a start point of the motion to a target point, and generates a plurality of trajectory candidates that connect the points and have movement parameters between the points set; an optimization unit that optimizes the positions of the via points and the movement parameters for each of the plurality of trajectory candidates so as to shorten a total time of a movement time for the hand of the robot arm to move from the start point to the target point and a convergence time for the hand vibration to converge at the target point; an evaluation and selection unit that evaluates the plurality of trajectory candidates that have been optimized, including the total time, and selects the trajectory of the movement based on the evaluation;
  • the gist of the invention is to provide the following:
  • the positions of the via points and the movement parameters are optimized so as to shorten the total time of the movement time for the robot arm's hand to move from the start point to the target point and the convergence time for the hand vibration to converge at the target point.
  • the multiple optimized trajectory candidates are evaluated, including the total time, and the movement trajectory is selected based on the evaluation. This makes it possible to quickly generate an appropriate trajectory that reduces the effects of hand vibration while shortening the movement time of the robot arm's hand.
  • FIG. 1 is a diagram showing an outline of the configuration of a robot system 10.
  • 13 is a flowchart showing an example of a trajectory generation process.
  • FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated.
  • FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated.
  • FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated.
  • FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated.
  • FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated.
  • 11 is a flowchart showing an example of an optimization process.
  • FIG. 11 is an explanatory diagram showing an example of a moving time and a convergence time.
  • FIG. 1 is a schematic diagram showing the configuration of a robot system 10.
  • the robot system 10 includes a robot 20 and a trajectory generating device 40.
  • the robot 20 is configured as, for example, a six-axis vertical articulated robot, and performs a predetermined task, such as picking up a workpiece (not shown) and placing it in a predetermined position.
  • the robot 20 comprises a base 21 fixed to the workbench 11, a robot arm 22 including a plurality of links connected in series via six joint axes (first to sixth joint axes J1 to J6), and a control device 30 that controls the operation of the robot 20.
  • the robot arm 22 is provided with servo motors 23a to 23f that rotate the first to sixth joint axes J1 to J6, respectively, and encoders (rotary encoders) 24a to 24f that detect the rotation angles of the servo motors 23a to 23f, respectively.
  • the end effector 25 is detachably attached to the tip link of the robot arm 22 as a work tool, and a camera (not shown) can also be attached.
  • the end effector 25 is composed of a suction nozzle that attracts the workpiece by negative pressure, a mechanical chuck that grips the workpiece with a pair of claws, an electromagnetic chuck that attracts the workpiece with an electromagnet, etc., and is appropriately selected according to the shape and material of the workpiece to be worked on.
  • a mechanical chuck is shown as an example of the end effector 25.
  • the end effector 25 is provided with an actuator 26 that drives the pair of claws 25a to open and close, and an encoder (linear encoder) 27 that detects the open/close position of the actuator 26.
  • the robot 20 also includes a power supply circuit 32 that converts AC power from a commercial power source (not shown) into DC power and supplies it to each part of the robot 20, and amplifiers 34a to 34f that drive the servo motors 23a to 23f with power from the power supply circuit 32.
  • Each amplifier 34a to 34f drives each of the servo motors 23a to 23f by driving a switching element (not shown).
  • the control device 30 is configured as a microprocessor centered around a CPU (not shown), and in addition to the CPU, it is equipped with ROM, RAM, an input/output interface, etc. Detection signals from the encoders 24a to 24f of the servo motors 23a to 23f, detection signals from the encoder 27 of the actuator 26, etc. are input to the control device 30.
  • the control device 30 also outputs control signals to the amplifiers 34a to 34f, control signals to the actuator 26, etc.
  • the control device 30 is also configured to be able to communicate with the trajectory generating device 40, and controls the drive of the robot arm 22 based on the trajectory generated by the trajectory generating device 40.
  • the trajectory generating device 40 is a computer that includes a control device 41, a storage device 46, an input device 47, and a display device 48, and generates a trajectory for the robot arm 22 of the robot 20.
  • the control device 41 is configured as a microprocessor centered around a CPU (not shown), and in addition to the CPU, includes ROM, RAM, an input/output interface, etc.
  • the storage device 46 is configured, for example, by a HDD, and stores various data and programs required to generate the trajectory of the robot arm 22.
  • the input device 47 is, for example, a keyboard, a mouse, etc., through which the operator performs input operations.
  • the display device 48 is, for example, an LCD display, etc., that displays various information.
  • the control device 41 includes a condition setting unit 42, a generation unit 43, an optimization unit 44, and an evaluation and selection unit 45 as functional blocks for generating a trajectory of the movement of the robot arm 22.
  • the condition setting unit 42 sets various conditions such as constraint conditions when generating a trajectory.
  • the generation unit 43 searches for waypoints from the start point S of the movement to the target point G by changing search parameters under the constraint conditions set by the condition setting unit 42, and generates a base trajectory that serves as the basis for evaluation and selection by the evaluation and selection unit 45, and trajectory candidates based on the base trajectory.
  • the generation unit 43 uses, for example, an RRT-Connect-based search method that is an extension of RRT as a search method based on RRT (Rapidly exploring Random Tree).
  • the optimization unit 44 performs necessary trajectory adjustments and optimization on the base trajectory and trajectory candidates generated by the generation unit 43.
  • the evaluation and selection unit 45 evaluates the trajectory that has been subjected to necessary trajectory adjustments and optimization by the optimization unit 44, and selects a trajectory based on the evaluation.
  • the trajectory selected by the evaluation and selection unit 45 is transmitted to the robot 20, and the drive control of the robot arm 22 is performed based on the trajectory.
  • the optimization unit 44 may also optimize the trajectory selected by the evaluation and selection unit 45.
  • the trajectory generated in this manner is stored in the storage device 46.
  • FIG. 2 is a flowchart showing an example of the trajectory generation process. This trajectory generation process is executed by the control device 41 of the trajectory generation device 40 using the functions of each of the functional blocks described above.
  • FIGS 110 the control device 41 searches for waypoints using an RRT-Connect-based search method to generate a base trajectory (S110).
  • Figures 3 to 7 are schematic diagrams showing an example of how a trajectory is generated. As described above, each point is represented in joint angle space, but for convenience of illustration, the schematic diagrams are shown in a two-dimensional manner. As shown in the figure, for example, from a starting point S on the left to a target point G on the right, waypoints (white circles) are searched for so as not to interfere with three obstacles B, and a base trajectory is generated that connects each point. Note that the position of the waypoint indicates, for example, the position of the hand of the robot arm 22. Also, the space between each point connected by a straight line is called a section.
  • the control device 41 starts searching for waypoints from both the start point S side and the target point G side, and ends the search when one waypoint searched for on the start point S side can be connected with one waypoint searched for on the target point G side by a straight line (dotted lines in Figures 3 and 4).
  • a straight line dotted lines in Figures 3 and 4.
  • the control device 41 can change the search distance. Specifically, the control device 41 can change the search distance so that the longer the distance from the search source point to the obstacle B, the longer the search distance, and the shorter the distance from the search source point to the obstacle B, the shorter the search distance.
  • the control device 41 first calculates the distance from the search source point to each obstacle B, and derives the shortest distance among them. For example, when the search source point is the start point S, the control device 41 calculates the distance from the start point S to each obstacle B1, B2, and B3, and derives the distance to obstacle B1 as the shortest distance among them, and searches for waypoints with a search distance D1 according to that distance. Note that in the search direction from the start point S toward the obstacle B1, waypoints are searched for so as not to interfere with the obstacle B1, and as a result, the search distance D1' is shorter than the search distance D1.
  • the control device 41 When searching for the next via point from via point P in FIG. 5, the control device 41 calculates the distance from via point P to each of the obstacles B1, B2, and B3, derives the distance to obstacle B2 as the shortest distance, and searches for the via point at a search distance D2 corresponding to that distance. Similarly, when searching for a via point from target point G, the control device 41 searches for the via point at a search distance D3. Note that in the search direction from target point G to obstacle B2, the via point is searched for so as not to interfere with obstacle B2, and as a result, the search distance D3' is shorter than the search distance D3. In FIG. 5, search distances D1, D2, and D3 are illustrated, but the search distance is set steplessly according to the distance from the search source to obstacle B. Alternatively, the search distance may be set stepwise according to the distance from the search source to obstacle B. In this way, by making the search distance variable, the control device 41 can efficiently search for via points and quickly generate a base trajectory.
  • the control device 41 searches for waypoints in this way to generate one base trajectory, for example the base trajectory R0 in Figure 6.
  • the control device 41 generates multiple trajectory candidates based on the generated base trajectory (S120).
  • multiple trajectory candidates are generated by randomly changing the positions of the waypoints of the base trajectory and movement parameters such as speed, acceleration/deceleration, and synthesis rate.
  • each waypoint of the base trajectory R0 (dotted line) is changed and the movement parameters are changed to generate, for example, three trajectory candidates R1 to R3.
  • the control device 41 only needs to generate multiple trajectory candidates, and the trajectory candidates may include the base trajectory R0.
  • the moving average process is a process of deriving a command value by taking the moving average of the original speed for each calculation period within a section, for example, in order to make the speed change in each section gentle.
  • the original speed is determined to be a predetermined speed, such as the maximum speed of the robot arm 22 under constraint conditions.
  • the synthesis process is performed after the moving average process, and is a process of multiplying the command value of the previous section and the command value of the following section by a ratio (synthesis rate) respectively set so that the speed does not decrease in consecutive sections (connections between adjacent sections).
  • a ratio synthesis rate
  • FIG. 9 is an explanatory diagram showing an example of the movement time and convergence time, with the horizontal axis showing time and the vertical axis showing the position of the hand of the robot arm 22.
  • the movement time Ta is the time from when the hand of the robot arm 22 starts moving from the starting point S to when it reaches the target point G via each waypoint at time t0.
  • the convergence time Tb is the time from time t0 to when the vibration of the hand of the robot arm 22 at the target point G converges.
  • the issuance of the operation command value for the robot arm 22 is completed at time t0.
  • the convergence time Tb is the time from when the hand of the robot arm 22 reaches the target point G to when the vibration of the hand converges within the allowable range A, and is also called the stabilization time.
  • the time that combines the movement time Ta and the convergence time Tb is called the total time.
  • the movement of the robot arm 22 along the trajectory is completed in the time that combines the movement time Ta and the convergence time Tb, so the total time is also called the operation time.
  • the control device 41 calculates the total time by calculating the movement time Ta and the convergence time Tb when the positions of the via points and the movement parameters are changed, and optimizes the positions of the via points and the movement parameters so as to shorten the total time. Based on the changed via points and movement parameters, the control device 41 calculates the position from the start point S to the target point G for each predetermined time and the hand vibration at that position, and calculates the movement time Ta until the target point G is reached.
  • control device 41 judges in S240 that the total time is shorter without interference, it retains the way point and movement parameters searched for in S210 (S250).
  • the total time for the retained waypoints and movement parameters is the shortest total time for that trajectory candidate at that point in time, and is therefore compared with the total time when the determination in S240 is made thereafter. Note that the process of optimizing the trajectory by searching for waypoints and movement parameters so as not to interfere with obstacle B and to shorten the total time is also called trajectory adjustment.
  • the control device 41 judges whether the search for the trajectory candidates (each waypoint and movement parameter) to be processed has been completed based on whether a predetermined termination condition has been met (S260).
  • the predetermined termination condition may be, for example, a condition that the number of executions (repetitions) of S210 to S250 has reached a predetermined number, or a condition that the gradient has converged to a predetermined range when the gradient method is used in S210. If the control device 41 judges in S260 that the search has not been completed, it returns to S210 and executes the processing from S210 onwards again. As described above, in S240, it is judged whether the total time is shorter than the total time based on the waypoints and movement parameters held in the previous S250.
  • control device 41 judges in S260 that the search for the trajectory candidates to be processed has been completed, it judges whether the search for all the trajectory candidates has been completed (S270). If the search for all the trajectory candidates has not been completed, the control device 41 returns to S200, selects a trajectory candidate and performs processing. On the other hand, when the control device 41 determines in S270 that the search for all trajectory candidates has been completed, it ends the optimization process.
  • the control device 41 when the optimization process of S130 is performed, the control device 41 performs a trajectory selection process (S140).
  • S140 the control device 41 evaluates the total time of multiple optimized trajectory candidates and selects one trajectory candidate with the shortest total time as the trajectory of the robot arm 22's operation (S140). Note that if the hand is moved quickly to shorten the movement time Ta, the hand vibration increases when the target point G is reached, and the convergence time Tb increases, which may result in a longer total time. Conversely, if the hand is moved slowly to reduce the hand vibration when the target point G is reached in order to shorten the convergence time Tb, the movement time Ta may increase, which may result in a longer total time.
  • the control device 41 of this embodiment optimizes multiple trajectory candidates so that the total time of the travel time Ta and the convergence time Tb is shortened, and further selects the trajectory candidate with the shortest total time from the multiple trajectory candidates. This allows the control device 41 to select a trajectory that reliably shortens the total time.
  • the control device 41 stores the trajectory selected in S140 in the storage device 46 (S150), and ends the trajectory generation process.
  • the control device 41 also outputs the trajectory generated (selected) in the trajectory generation process to the control device 30 of the robot 20.
  • the robot 20 stores the trajectory in the storage unit of the control device 30, and performs drive control of the robot arm 22 based on the generated trajectory or trajectories to perform the above-mentioned predetermined task.
  • the generated trajectory may be used for simulating the operation of the robot arm 22. In other words, the generated trajectory is not limited to the actual operation of the robot 20 (robot arm 22), and may be used for evaluating or verifying the operation.
  • the trajectory generation device 40 may also have a function of executing such a simulation.
  • the control device 41 (generation unit 43) of the trajectory generation device 40 that executes S110 and S120 of the trajectory generation process of this embodiment corresponds to the generation unit of this disclosure
  • the control device 41 (optimization unit 44) that executes S130 of the trajectory generation process corresponds to the optimization unit
  • the control device 41 (evaluation selection unit 45) that executes S140 of the trajectory generation process corresponds to the evaluation selection unit.
  • this embodiment also clarifies an example of the trajectory generation method of this disclosure by explaining the processing of the trajectory generation device 40.
  • the trajectory generation device 40 (control device 41) of this embodiment described above optimizes the positions of the waypoints and the movement parameters for multiple trajectory candidates so that the total time of the movement time Ta of the hand of the robot arm 22 and the convergence time Tb of the hand vibration is shortened. Then, a movement trajectory is selected based on the result of evaluating the total time of the multiple trajectory candidates. This makes it possible to quickly generate an appropriate trajectory that reduces the effects of hand vibration while shortening the movement time of the hand of the robot arm.
  • the trajectory generation device 40 selects the trajectory candidate with the shortest total time of the movement time Ta and the convergence time Tb of the hand vibration, so that it can more reliably generate a trajectory with the shortest total time.
  • the trajectory generating device 40 also calculates the hand vibration and movement time Ta for each predetermined time period until the hand moves from the starting point S to the target point G, and calculates the time from when the hand reaches the target point G until the hand vibration converges to the allowable range A as the convergence time Tb. This makes it possible to prevent the convergence time Tb from becoming unnecessarily long and appropriately optimize the trajectory candidates.
  • the trajectory generating device 40 generates a base trajectory by searching for the positions of via points in the joint angle space, connecting each point and setting movement parameters, and generates multiple trajectory candidates by changing the positions of the via points in the base trajectory and the movement parameters, so that trajectory candidates can be generated quickly. Furthermore, the via points searched for in the joint angle space are in positions that the robot arm 22 can reach, so there is no need for an operator to adjust the positions of the via points.
  • the hand vibration is calculated for each predetermined time period until the hand moves from the starting point S to the target point G, but this is not limited to this, and in order to calculate the convergence time Tb, it is sufficient to calculate at least the hand vibration when the hand reaches the target point G.
  • the hand vibration at the target point G may be calculated without calculating the hand vibration during movement.
  • the trajectory candidate with the shortest total time is selected as the movement trajectory, but this is not limited to the above.
  • the movement trajectory may be selected based on the results of evaluation including the total time, such as selecting a trajectory with the shortest total time from among trajectory candidates without interference.
  • smaller vibrations may be preferable even if the total time is slightly longer.
  • the trajectory candidate with the shorter convergence time Tb may be selected. In other words, the time including the total time is evaluated, and one of the trajectory candidates may be selected as the movement trajectory based on the evaluation value.
  • the search for the waypoint is started from both the start point S and the target point G, but this is not limited, and the search for the waypoint may be started from either the start point S or the target point G.
  • the search distance is changed according to the distance to the obstacle B, but the search distance may be constant without being changed.
  • the search method is not limited to the RRT-Connect based search method, and other search methods such as the RRT method and the potential method may be used.
  • the waypoint is searched in the joint angle space, but this is not limited, and the waypoint may be searched in, for example, the XYZ space.
  • the position of the waypoint in the base trajectory and the movement parameters are randomly changed to generate multiple trajectory candidates, but multiple trajectory candidates may be generated by searching for the waypoints and the movement parameters respectively.
  • a six-axis vertical articulated robot is exemplified, but this is not limited to this and other vertical articulated robots such as a five-axis robot may be used, or a horizontal articulated robot may be used.
  • the trajectory generation device 40 generates the trajectory, but the control device 30 of the robot 20 may generate the trajectory.
  • the trajectory generation device 40 and the control device 30 may work together to generate the trajectory.
  • This disclosure can be used in the technical field of generating trajectories for multi-joint robot arms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Provided is a trajectory generation device that generates a trajectory of an operation of an articulated robot arm and comprises: a generation unit which searches for via points which can achieve an operation from a start point to a target point and generates a plurality of trajectory candidates each connecting these points with each other and having set movement parameters each between these points; an optimization unit which optimizes, for each of the plurality of trajectory candidates, the positions of the via points and the movement parameters such that a total time of a movement time of a hand tip of the robot arm to move from the start point to the target point and a convergence time for hand tip vibration to converge at the target point is shorter; and an evaluation/selection unit which evaluates the plurality of optimized trajectory candidates in consideration of the total time and selects the trajectory of the operation on the basis of the evaluation.

Description

軌道生成装置および軌道生成方法Trajectory generation device and trajectory generation method
 本明細書は、軌道生成装置および軌道生成方法を開示する。 This specification discloses a trajectory generation device and a trajectory generation method.
 従来、ロボットアームの動作の軌道を生成するものが提案されている。例えば特許文献1には、ロボットアームの手先を開始点から目標点に移動させるために、手先の速度や加速度についての拘束条件を満たしつつ移動時間が最短となるように軌道を生成することが記載されている。  Conventionally, there have been proposals for generating trajectories for the movements of robot arms. For example, Patent Document 1 describes a method for generating a trajectory for moving the tip of a robot arm from a starting point to a target point in such a way that the movement time is minimized while satisfying constraints on the speed and acceleration of the tip.
特開2015-58497号公報JP 2015-58497 A
 上述したように、ロボットアームの動作の軌道を生成する際に、移動時間をできるだけ短くすることが求められている。一方で、移動時間を短くすると手先の振動が大きくなり易く、手先が目標点に到達してから手先振動が収束するまでの収束時間が長くなるなどの影響が生じる場合がある。その場合、結果的にロボットアームの動作が完了するまでの時間が長くなってしまう。また、移動時間を短くしつつ手先振動の影響を抑えた軌道を作業者が作成するのは困難であり、多大な作成時間を要する。 As mentioned above, when generating a trajectory for the movement of a robot arm, it is required to make the movement time as short as possible. However, shortening the movement time can easily increase vibration in the hand, which can have effects such as lengthening the convergence time from when the hand reaches the target point until the hand vibration converges. In such cases, it ultimately takes longer to complete the movement of the robot arm. Also, it is difficult for an operator to create a trajectory that reduces the effects of hand vibration while shortening the movement time, and it takes a lot of time to create it.
 本開示は、ロボットアームの手先の移動時間をより短くしつつ手先振動の影響をより抑えた適切な軌道を迅速に生成することを主目的とする。 The primary objective of this disclosure is to quickly generate an appropriate trajectory that reduces the movement time of the robot arm's hand while minimizing the effects of hand vibration.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure takes the following steps to achieve the above-mentioned primary objective:
 本開示の軌道生成装置は、
 多関節のロボットアームの動作の軌道を生成する軌道生成装置であって、
 前記動作の開始点から目標点まで動作可能な経由点を探索し、各点を結ぶと共に各点間の移動パラメータが設定された軌道候補を複数生成する生成部と、
 複数の前記軌道候補の各々に対し、前記ロボットアームの手先が前記開始点から前記目標点に移動する移動時間と、前記目標点で手先振動が収束する収束時間との合計時間がより短くなるように前記経由点の位置と前記移動パラメータとの最適化を行う最適化部と、
 前記最適化が行われた複数の前記軌道候補について前記合計時間を含めて評価し、該評価に基づいて前記動作の軌道を選定する評価選定部と、
 を備えることを要旨とする。
The trajectory generating device of the present disclosure is
A trajectory generating device for generating a trajectory of a motion of a multi-joint robot arm,
a generation unit that searches for possible waypoints from a start point of the motion to a target point, and generates a plurality of trajectory candidates that connect the points and have movement parameters between the points set;
an optimization unit that optimizes the positions of the via points and the movement parameters for each of the plurality of trajectory candidates so as to shorten a total time of a movement time for the hand of the robot arm to move from the start point to the target point and a convergence time for the hand vibration to converge at the target point;
an evaluation and selection unit that evaluates the plurality of trajectory candidates that have been optimized, including the total time, and selects the trajectory of the movement based on the evaluation;
The gist of the invention is to provide the following:
 本開示の軌道生成装置では、複数の軌道候補の各々に対し、ロボットアームの手先が開始点から目標点に移動する移動時間と、目標点で手先振動が収束する収束時間との合計時間がより短くなるように経由点の位置と移動パラメータとの最適化を行う。また、最適化が行われた複数の軌道候補について合計時間を含めて評価し、評価に基づいて動作の軌道を選定する。これにより、ロボットアームの手先の移動時間をより短くしつつ手先振動の影響をより抑えた適切な軌道を迅速に生成することができる。 In the trajectory generation device disclosed herein, for each of a number of trajectory candidates, the positions of the via points and the movement parameters are optimized so as to shorten the total time of the movement time for the robot arm's hand to move from the start point to the target point and the convergence time for the hand vibration to converge at the target point. In addition, the multiple optimized trajectory candidates are evaluated, including the total time, and the movement trajectory is selected based on the evaluation. This makes it possible to quickly generate an appropriate trajectory that reduces the effects of hand vibration while shortening the movement time of the robot arm's hand.
ロボットシステム10の構成の概略を示す構成図。FIG. 1 is a diagram showing an outline of the configuration of a robot system 10. 軌道生成処理の一例を示すフローチャート。13 is a flowchart showing an example of a trajectory generation process. 軌道を生成する様子の一例を示す模式図。FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated. 軌道を生成する様子の一例を示す模式図。FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated. 軌道を生成する様子の一例を示す模式図。FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated. 軌道を生成する様子の一例を示す模式図。FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated. 軌道を生成する様子の一例を示す模式図。FIG. 13 is a schematic diagram showing an example of a manner in which a trajectory is generated. 最適化処理の一例を示すフローチャート。11 is a flowchart showing an example of an optimization process. 移動時間と収束時間の一例を示す説明図。FIG. 11 is an explanatory diagram showing an example of a moving time and a convergence time.
 本開示の実施形態について図面を用いて説明する。図1は、ロボットシステム10の構成の概略を示す構成図である。ロボットシステム10は、ロボット20と、軌道生成装置40とを備える。ロボット20は、例えば6軸の垂直多関節ロボットとして構成されており、例えば、図示しないワークをピッキングし、所定位置にプレースするなどの所定の作業を行う。 Embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a robot system 10. The robot system 10 includes a robot 20 and a trajectory generating device 40. The robot 20 is configured as, for example, a six-axis vertical articulated robot, and performs a predetermined task, such as picking up a workpiece (not shown) and placing it in a predetermined position.
 ロボット20は、作業台11に固定される基台21と、6つの関節軸(第1~第6関節軸J1~J6)を介して直列に接続された複数のリンクを含むロボットアーム22と、ロボット20の動作を制御する制御装置30とを備える。ロボットアーム22には、第1~第6関節軸J1~J6をそれぞれ回転駆動するサーボモータ23a~23fと、各サーボモータ23a~23fの回転角度をそれぞれ検出するエンコーダ(ロータリエンコーダ)24a~24fとが設けられている。 The robot 20 comprises a base 21 fixed to the workbench 11, a robot arm 22 including a plurality of links connected in series via six joint axes (first to sixth joint axes J1 to J6), and a control device 30 that controls the operation of the robot 20. The robot arm 22 is provided with servo motors 23a to 23f that rotate the first to sixth joint axes J1 to J6, respectively, and encoders (rotary encoders) 24a to 24f that detect the rotation angles of the servo motors 23a to 23f, respectively.
 ロボットアーム22の先端リンクには、作業ツールとしてのエンドエフェクタ25が着脱可能に取り付けられており、図示しないカメラなども取付可能である。エンドエフェクタ25は、負圧によりワークを吸着する吸着ノズルや、一対の爪によりワークを把持するメカニカルチャック、電磁石によりワークを吸着する電磁チャックなどで構成され、作業対象のワークの形状や素材に合わせて適宜選択される。図1では、エンドエフェクタ25としてメカニカルチャックを例示する。エンドエフェクタ25には、一対の爪25aを開閉駆動するアクチュエータ26と、アクチュエータ26の開閉位置を検出するエンコーダ(リニアエンコーダ)27とが設けられている。 The end effector 25 is detachably attached to the tip link of the robot arm 22 as a work tool, and a camera (not shown) can also be attached. The end effector 25 is composed of a suction nozzle that attracts the workpiece by negative pressure, a mechanical chuck that grips the workpiece with a pair of claws, an electromagnetic chuck that attracts the workpiece with an electromagnet, etc., and is appropriately selected according to the shape and material of the workpiece to be worked on. In FIG. 1, a mechanical chuck is shown as an example of the end effector 25. The end effector 25 is provided with an actuator 26 that drives the pair of claws 25a to open and close, and an encoder (linear encoder) 27 that detects the open/close position of the actuator 26.
 また、ロボット20は、図示しない商用電源からの交流電力を直流電力に変換してロボット20の各部へ供給する電源回路32と、電源回路32からの電力により各サーボモータ23a~23fを駆動するアンプ34a~34fとを備える。各アンプ34a~34fは、図示しないスイッチング素子の駆動により各サーボモータ23a~23fをそれぞれ駆動する。 The robot 20 also includes a power supply circuit 32 that converts AC power from a commercial power source (not shown) into DC power and supplies it to each part of the robot 20, and amplifiers 34a to 34f that drive the servo motors 23a to 23f with power from the power supply circuit 32. Each amplifier 34a to 34f drives each of the servo motors 23a to 23f by driving a switching element (not shown).
 制御装置30は、図示しないCPUを中心としたマイクロプロセッサとして構成され、CPUの他にROMやRAM、入出力インタフェースなどを備える。制御装置30には、サーボモータ23a~23fのエンコーダ24a~24fからの検知信号や、アクチュエータ26のエンコーダ27からの検知信号などが入力される。また、制御装置30は、各アンプ34a~34fへの制御信号や、アクチュエータ26への制御信号などを出力する。また、制御装置30は、軌道生成装置40と通信可能に構成されており、軌道生成装置40により生成された軌道に基づいてロボットアーム22の駆動制御を行う。 The control device 30 is configured as a microprocessor centered around a CPU (not shown), and in addition to the CPU, it is equipped with ROM, RAM, an input/output interface, etc. Detection signals from the encoders 24a to 24f of the servo motors 23a to 23f, detection signals from the encoder 27 of the actuator 26, etc. are input to the control device 30. The control device 30 also outputs control signals to the amplifiers 34a to 34f, control signals to the actuator 26, etc. The control device 30 is also configured to be able to communicate with the trajectory generating device 40, and controls the drive of the robot arm 22 based on the trajectory generated by the trajectory generating device 40.
 軌道生成装置40は、制御装置41と、記憶装置46と、入力装置47と、表示装置48とを備え、ロボット20のロボットアーム22の軌道を生成するコンピュータである。制御装置41は、図示しないCPUを中心としたマイクロプロセッサとして構成され、CPUの他にROMやRAM、入出力インタフェースなどを備える。記憶装置46は、例えばHDDなどで構成され、ロボットアーム22の軌道を生成するために必要な各種データや各種プログラムを記憶する。入力装置47は、例えばキーボードやマウス等、作業者が入力操作を行うものである。表示装置48は、例えば液晶ディスプレイ等、各種情報を表示するものである。 The trajectory generating device 40 is a computer that includes a control device 41, a storage device 46, an input device 47, and a display device 48, and generates a trajectory for the robot arm 22 of the robot 20. The control device 41 is configured as a microprocessor centered around a CPU (not shown), and in addition to the CPU, includes ROM, RAM, an input/output interface, etc. The storage device 46 is configured, for example, by a HDD, and stores various data and programs required to generate the trajectory of the robot arm 22. The input device 47 is, for example, a keyboard, a mouse, etc., through which the operator performs input operations. The display device 48 is, for example, an LCD display, etc., that displays various information.
 制御装置41は、ロボットアーム22の動作の軌道を生成するための機能ブロックとして、条件設定部42と、生成部43と、最適化部44と、評価選定部45とを備える。条件設定部42は、軌道生成時の拘束条件などの各種条件を設定する。生成部43は、条件設定部42により設定された拘束条件の下で、探索パラメータを変化させて動作の開始点Sから目標点Gまでの経由点を探索し、評価選定部45による評価や選定のベースとなるベース軌道や、ベース軌道に基づく軌道候補などを生成する。この生成部43は、RRT(Rapidly exploring Random Tree)に基づく探索手法として、例えばRRTを拡張したRRT-Connectベースの探索手法を用いる。最適化部44は、生成部43により生成されたベース軌道や軌道候補に対し、必要な軌道調整や最適化を行う。評価選定部45は、最適化部44により必要な軌道調整や最適化が行われた軌道を評価し、評価に基づいて軌道を選定する。評価選定部45により選定された軌道は、ロボット20に送信され、その軌道に基づいてロボットアーム22の駆動制御が行われる。最適化部44が、評価選定部45により選定された軌道に対して、最適化を行うこともある。こうして生成された軌道は、記憶装置46に記憶される。 The control device 41 includes a condition setting unit 42, a generation unit 43, an optimization unit 44, and an evaluation and selection unit 45 as functional blocks for generating a trajectory of the movement of the robot arm 22. The condition setting unit 42 sets various conditions such as constraint conditions when generating a trajectory. The generation unit 43 searches for waypoints from the start point S of the movement to the target point G by changing search parameters under the constraint conditions set by the condition setting unit 42, and generates a base trajectory that serves as the basis for evaluation and selection by the evaluation and selection unit 45, and trajectory candidates based on the base trajectory. The generation unit 43 uses, for example, an RRT-Connect-based search method that is an extension of RRT as a search method based on RRT (Rapidly exploring Random Tree). The optimization unit 44 performs necessary trajectory adjustments and optimization on the base trajectory and trajectory candidates generated by the generation unit 43. The evaluation and selection unit 45 evaluates the trajectory that has been subjected to necessary trajectory adjustments and optimization by the optimization unit 44, and selects a trajectory based on the evaluation. The trajectory selected by the evaluation and selection unit 45 is transmitted to the robot 20, and the drive control of the robot arm 22 is performed based on the trajectory. The optimization unit 44 may also optimize the trajectory selected by the evaluation and selection unit 45. The trajectory generated in this manner is stored in the storage device 46.
 以下は、軌道生成装置40の軌道生成処理についての説明である。図2は、軌道生成処理の一例を示すフローチャートである。この軌道生成処理は、軌道生成装置40の制御装置41が、上述した各機能ブロックの機能により実行する。 The following is an explanation of the trajectory generation process of the trajectory generation device 40. FIG. 2 is a flowchart showing an example of the trajectory generation process. This trajectory generation process is executed by the control device 41 of the trajectory generation device 40 using the functions of each of the functional blocks described above.
 軌道生成処理では、制御装置41は、まず、生成対象の軌道に関する各種情報として、関節角度空間における動作の開始点Sや目標点G、障害物Bの領域を示す情報、拘束条件などの各種情報を取得する(S100)。本実施形態では、開始点Sや目標点G、その間の経由点、障害物Bの領域を示す情報は、XYZ空間における位置座標ではなく、関節角度空間における各関節の関節角度(可動角度)で表される。ロボットアーム22が第1~第6関節軸J1~J6の6つの関節を有するため、関節角度空間における開始点Sや目標点G、経由点などの各点の位置情報は、6つの関節角度のパラメータで表される。このため、例えばロボットアーム22の手先の位置をXYZ空間で探索して経由点の設定が可能でも、その経由点に移動する間にロボットアーム22の関節の可動角度範囲外となるなどの問題が生じるのを防止することができる。また、拘束条件は、各関節の可動角度範囲やトルク制約、速度制約、加速度制約など、ロボット20の仕様やロボット20の周囲の環境等に基づく各種条件が定められている。 In the trajectory generation process, the control device 41 first acquires various information related to the trajectory to be generated, such as the start point S and target point G of the movement in the joint angle space, information indicating the area of the obstacle B, and constraint conditions (S100). In this embodiment, the start point S, target point G, waypoints between them, and information indicating the area of the obstacle B are expressed by the joint angles (movable angles) of each joint in the joint angle space, rather than by position coordinates in the XYZ space. Since the robot arm 22 has six joints, the first to sixth joint axes J1 to J6, the position information of each point, such as the start point S, target point G, and waypoints in the joint angle space, is expressed by the parameters of six joint angles. For this reason, even if it is possible to set a waypoint by searching for the position of the hand of the robot arm 22 in the XYZ space, it is possible to prevent problems such as going outside the movable angle range of the joints of the robot arm 22 while moving to the waypoint. In addition, various constraint conditions are defined based on the specifications of the robot 20 and the environment around the robot 20, such as the movable angle range of each joint, torque constraints, speed constraints, and acceleration constraints.
 次に、制御装置41は、RRT-Connectベースの探索手法により経由点を探索してベース軌道を生成する(S110)。図3~図7は、軌道を生成する様子の一例を示す模式図である。上述したように、各点は関節角度空間で表されるが、図示の都合上、模式図を平面的に示す。図示するように、例えば左側の開始点Sから右側の目標点Gまで、3つの障害物Bに干渉しないように経由点(白丸)を探索して各点を結ぶベース軌道が生成される。なお、経由点の位置は、例えばロボットアーム22の手先の位置を示す。また、直線で結ばれた各点の間を区間という。 Next, the control device 41 searches for waypoints using an RRT-Connect-based search method to generate a base trajectory (S110). Figures 3 to 7 are schematic diagrams showing an example of how a trajectory is generated. As described above, each point is represented in joint angle space, but for convenience of illustration, the schematic diagrams are shown in a two-dimensional manner. As shown in the figure, for example, from a starting point S on the left to a target point G on the right, waypoints (white circles) are searched for so as not to interfere with three obstacles B, and a base trajectory is generated that connects each point. Note that the position of the waypoint indicates, for example, the position of the hand of the robot arm 22. Also, the space between each point connected by a straight line is called a section.
 S110では、制御装置41は、開始点S側と目標点G側との双方から経由点の探索を開始し、開始点S側で探索した1の経由点と目標点G側で探索した1の経由点とを直線(図3,図4の点線)で結ぶことができた場合に、探索を終了する。これは、各点が関節角度空間で表されることで、各点およびその間でのロボットアーム22の動作が保証されているため、開始点S側の経由点と目標点G側の経由点とが直線で結ばれれば、その間をロボットアーム22が動作可能であることによる。このため、図4の例では、図3の例よりも途中の経由点の探索を省略したベース軌道の生成が可能となる。これにより、制御装置41は、経由点の探索時間を短くしてベース軌道を迅速に生成することができる。 In S110, the control device 41 starts searching for waypoints from both the start point S side and the target point G side, and ends the search when one waypoint searched for on the start point S side can be connected with one waypoint searched for on the target point G side by a straight line (dotted lines in Figures 3 and 4). This is because the operation of the robot arm 22 at each point and between them is guaranteed by representing each point in joint angle space, so if a waypoint on the start point S side and a waypoint on the target point G side are connected by a straight line, the robot arm 22 can operate between them. For this reason, in the example of Figure 4, it is possible to generate a base trajectory that omits the search for waypoints along the way compared to the example of Figure 3. This allows the control device 41 to shorten the time required to search for waypoints and quickly generate a base trajectory.
 また、S110では、制御装置41は、探索距離を変更可能である。具体的には、制御装置41は、探索元の点から障害物Bまでの距離が長いほど探索距離を長くし、探索元の点から障害物Bまでの距離が短いほど探索距離を短くするように、探索距離を変更可能である。制御装置41は、まず、探索元の点から各障害物Bまでの距離を算出し、そのうち最も短い距離を導出する。例えば探索元の点が開始点Sの場合、制御装置41は、開始点Sから各障害物B1,B2,B3までの距離をそれぞれ算出し、そのうち最も短い距離として障害物B1までの距離を導出し、その距離に応じた探索距離D1で経由点の探索を行う。なお、開始点Sから障害物B1に向かう探索方向では、障害物B1に干渉しないように経由点が探索されるため、結果的に探索距離D1より短い探索距離D1’となる。 Furthermore, in S110, the control device 41 can change the search distance. Specifically, the control device 41 can change the search distance so that the longer the distance from the search source point to the obstacle B, the longer the search distance, and the shorter the distance from the search source point to the obstacle B, the shorter the search distance. The control device 41 first calculates the distance from the search source point to each obstacle B, and derives the shortest distance among them. For example, when the search source point is the start point S, the control device 41 calculates the distance from the start point S to each obstacle B1, B2, and B3, and derives the distance to obstacle B1 as the shortest distance among them, and searches for waypoints with a search distance D1 according to that distance. Note that in the search direction from the start point S toward the obstacle B1, waypoints are searched for so as not to interfere with the obstacle B1, and as a result, the search distance D1' is shorter than the search distance D1.
 また、制御装置41は、図5の経由点Pから次の経由点を探索する場合、経由点Pから各障害物B1,B2,B3までの距離をそれぞれ算出し、そのうち最も短い距離として障害物B2までの距離を導出し、その距離に応じた探索距離D2で経由点の探索を行う。同様に、制御装置41は、目標点Gから経由点を探索する場合、探索距離D3で経由点の探索を行う。なお、目標点Gから障害物B2に向かう探索方向では、障害物B2に干渉しないように経由点が探索されるため、結果的に探索距離D3より短い探索距離D3’となる。図5では、探索距離D1,D2,D3を例示するが、探索距離は、探索元から障害物Bまでの距離に応じて無段階に定められるものとする。あるいは、探索距離が、探索元から障害物Bまでの距離に応じて段階的に設定されてもよい。このように、探索距離を可変とすることで、制御装置41は、経由点を効率よく探索してベース軌道を迅速に生成することができる。 When searching for the next via point from via point P in FIG. 5, the control device 41 calculates the distance from via point P to each of the obstacles B1, B2, and B3, derives the distance to obstacle B2 as the shortest distance, and searches for the via point at a search distance D2 corresponding to that distance. Similarly, when searching for a via point from target point G, the control device 41 searches for the via point at a search distance D3. Note that in the search direction from target point G to obstacle B2, the via point is searched for so as not to interfere with obstacle B2, and as a result, the search distance D3' is shorter than the search distance D3. In FIG. 5, search distances D1, D2, and D3 are illustrated, but the search distance is set steplessly according to the distance from the search source to obstacle B. Alternatively, the search distance may be set stepwise according to the distance from the search source to obstacle B. In this way, by making the search distance variable, the control device 41 can efficiently search for via points and quickly generate a base trajectory.
 制御装置41は、このように経由点を探索して1のベース軌道、例えば図6のベース軌道R0を生成する。次に、制御装置41は、生成したベース軌道を基に複数の軌道候補を生成する(S120)。本実施形態では、ベース軌道の経由点の位置や、速度や加減速度、合成率などの移動パラメータをランダムに変化させることで、複数の軌道候補を生成する。図7に示すように、ベース軌道R0(点線)の各経由点をそれぞれ変化させると共に、移動パラメータをそれぞれ変化させて、例えば3つの軌道候補R1~R3を生成する。なお、制御装置41は、複数の軌道候補を生成すればよく、軌道候補にベース軌道R0を含めてもよい。 The control device 41 searches for waypoints in this way to generate one base trajectory, for example the base trajectory R0 in Figure 6. Next, the control device 41 generates multiple trajectory candidates based on the generated base trajectory (S120). In this embodiment, multiple trajectory candidates are generated by randomly changing the positions of the waypoints of the base trajectory and movement parameters such as speed, acceleration/deceleration, and synthesis rate. As shown in Figure 7, each waypoint of the base trajectory R0 (dotted line) is changed and the movement parameters are changed to generate, for example, three trajectory candidates R1 to R3. Note that the control device 41 only needs to generate multiple trajectory candidates, and the trajectory candidates may include the base trajectory R0.
 ここで、速度や加減速度、合成率などの移動パラメータは、例えばベース軌道の経由点毎に各値が決められ、それらの値を用いて後述の移動平均処理と合成処理とを含む軌道調整が実行される。移動平均処理は、例えば各区間での速度変化を緩やかとするために区間内の演算周期毎に原速度を移動平均した指令値を導出する処理である。なお、原速度には、例えば拘束条件下でのロボットアーム22の最大速度などの所定速度が定められている。合成処理は、移動平均処理に続いて行われ、連続する区間(隣接する前後の区間の繋ぎ)での速度が低下しないように、前区間の指令値と後区間の指令値とにそれぞれ定められた割合(合成率)を乗じて合算する処理である。これらの処理は、周知の処理であるため詳細な説明は省略するが、合成処理後の軌道は、生成当初の軌道即ち経由点間を直線で結んだ軌道よりも内回りとなる箇所が生じることがある。 Here, the values of the movement parameters such as the speed, acceleration/deceleration, and synthesis rate are determined for each waypoint of the base trajectory, and these values are used to perform trajectory adjustment including the moving average process and synthesis process described below. The moving average process is a process of deriving a command value by taking the moving average of the original speed for each calculation period within a section, for example, in order to make the speed change in each section gentle. Note that the original speed is determined to be a predetermined speed, such as the maximum speed of the robot arm 22 under constraint conditions. The synthesis process is performed after the moving average process, and is a process of multiplying the command value of the previous section and the command value of the following section by a ratio (synthesis rate) respectively set so that the speed does not decrease in consecutive sections (connections between adjacent sections). These processes are well known, so detailed explanations are omitted, but the trajectory after the synthesis process may have some parts that are inwardly oriented compared to the original trajectory that was generated initially, i.e., a trajectory that connects the waypoints with a straight line.
 続いて、制御装置41は、生成した複数の軌道候補をそれぞれ最適化する最適化処理を実行する(S130)。図8は、最適化処理の一例を示すフローチャートである。最適化処理では、制御装置41は、処理対象の1の軌道候補を選定し(S200)、処理対象の軌道候補での移動時間と収束時間との合計時間がより短くなるように、例えば勾配法により各経由点の位置と各移動パラメータとを探索する(S210)。なお、制御装置41は、勾配法に限られず、粒子群最適化法や遺伝的アルゴリズムなどの他の手法を用いて、各経由点の位置や各移動パラメータを探索してもよい。 Then, the control device 41 executes an optimization process to optimize each of the generated trajectory candidates (S130). FIG. 8 is a flowchart showing an example of the optimization process. In the optimization process, the control device 41 selects one trajectory candidate to be processed (S200), and searches for the positions of each waypoint and each movement parameter by, for example, a gradient method so as to shorten the total time of movement time and convergence time on the trajectory candidate to be processed (S210). Note that the control device 41 is not limited to the gradient method, and may search for the positions of each waypoint and each movement parameter by using other methods such as particle swarm optimization or a genetic algorithm.
 ここで、図9は、移動時間と収束時間の一例を示す説明図であり、横軸に時間を示し、縦軸にロボットアーム22の手先の位置を示す。図示するように、ロボットアーム22の手先が開始点Sから移動を開始し、各経由点を経て目標点Gに到達する時刻t0までの時間を移動時間Taとする。また、時刻t0から目標点Gにおけるロボットアーム22の手先の振動が収束する時刻t1までの時間を収束時間Tbとする。なお、ロボットアーム22に対する動作の指令値の払い出しは、時刻t0で完了する。また、収束時間Tbは、ロボットアーム22の手先が目標点Gに到達してから、手先の振動が許容範囲A内に収束するまでの時間であり、安定化時間ともいう。移動時間Taと収束時間Tbとを合わせた時間を合計時間という。また、ロボットアーム22の軌道に沿った動作が、移動時間Taと収束時間Tbとを合わせた時間で完了するため、合計時間を動作時間ともいう。 Here, FIG. 9 is an explanatory diagram showing an example of the movement time and convergence time, with the horizontal axis showing time and the vertical axis showing the position of the hand of the robot arm 22. As shown in the figure, the movement time Ta is the time from when the hand of the robot arm 22 starts moving from the starting point S to when it reaches the target point G via each waypoint at time t0. The convergence time Tb is the time from time t0 to when the vibration of the hand of the robot arm 22 at the target point G converges. The issuance of the operation command value for the robot arm 22 is completed at time t0. The convergence time Tb is the time from when the hand of the robot arm 22 reaches the target point G to when the vibration of the hand converges within the allowable range A, and is also called the stabilization time. The time that combines the movement time Ta and the convergence time Tb is called the total time. The movement of the robot arm 22 along the trajectory is completed in the time that combines the movement time Ta and the convergence time Tb, so the total time is also called the operation time.
 制御装置41は、S210では、経由点の位置や移動パラメータを変化させた際の移動時間Taと収束時間Tbとをそれぞれ求めて合計時間を算出し、合計時間がより短くなるように経由点の位置と移動パラメータとを最適化する。制御装置41は、変化させた経由点および移動パラメータに基づいて、開始点Sから目標点Gまでの所定時間毎の位置とその位置における手先振動とを算出すると共に、目標点Gに到達するまでの移動時間Taを算出する。また、制御装置41は、ロボットアーム22の各要素のサイズや重量、エンドエフェクタ25で把持するワークのサイズや重量などをモデル化した周知の振動モデルを記憶装置46に記憶しておき、所定時間毎の位置や移動パラメータが与えられると、その振動モデルを用いて、所定時間毎の手先振動を算出する。そして、制御装置41は、振動モデルにおいて目標点Gで発生した手先振動が上述した許容範囲A内に収束するまでに要する時間を、収束時間Tbとして算出する。 In S210, the control device 41 calculates the total time by calculating the movement time Ta and the convergence time Tb when the positions of the via points and the movement parameters are changed, and optimizes the positions of the via points and the movement parameters so as to shorten the total time. Based on the changed via points and movement parameters, the control device 41 calculates the position from the start point S to the target point G for each predetermined time and the hand vibration at that position, and calculates the movement time Ta until the target point G is reached. The control device 41 also stores in the storage device 46 a well-known vibration model that models the size and weight of each element of the robot arm 22 and the size and weight of the workpiece to be grasped by the end effector 25, and when the positions and movement parameters for each predetermined time are given, the control device 41 uses the vibration model to calculate the hand vibration for each predetermined time. The control device 41 then calculates the time required for the hand vibration generated at the target point G in the vibration model to converge within the above-mentioned allowable range A as the convergence time Tb.
 続いて、制御装置41は、上述した移動平均処理と合成処理とを実行する(S220)。上述したように、これらの処理を実行することで軌道が内回りとなって障害物Bと干渉する場合がある。そのため、制御装置41は、移動平均処理と合成処理とを実行した軌道候補での障害物Bとの干渉を確認し(S230)、干渉なしで合計時間がより短いか否かを判定する(S240)。制御装置41は、S240で干渉ありと判定したり、干渉なしでも合計時間が短くないと判定したりすると、S210に戻る。制御装置41は、S210に戻ると、S210~S240の処理を実行するから、処理対象の軌道候補において障害物Bと干渉せず且つ合計時間がより短くなるように各経由点の位置と移動パラメータとを探索する処理を繰り返すことになる。一方、制御装置41は、S240で干渉なしで合計時間がより短いと判定すると、S210で探索した経由点と移動パラメータとを保持する(S250)。保持された経由点と移動パラメータでの合計時間は、当該軌道候補においてその時点での最短の合計時間であるから、以降にS240の判定が行われた際に合計時間の比較対象とされる。なお、障害物Bと干渉せず且つ合計時間がより短くなるように経由点と移動パラメータとを探索して軌道が最適化される処理を、軌道調整ともいう。 Then, the control device 41 executes the above-mentioned moving average processing and synthesis processing (S220). As described above, by executing these processing, the trajectory may turn inward and interfere with the obstacle B. Therefore, the control device 41 checks interference with the obstacle B in the trajectory candidate on which the moving average processing and synthesis processing have been executed (S230), and judges whether the total time is shorter without interference (S240). If the control device 41 judges in S240 that there is interference, or that the total time is not short even without interference, it returns to S210. When the control device 41 returns to S210, it executes the processing of S210 to S240, so that the processing of searching for the position and movement parameters of each way point so that the trajectory candidate to be processed does not interfere with the obstacle B and the total time is shorter is repeated. On the other hand, if the control device 41 judges in S240 that the total time is shorter without interference, it retains the way point and movement parameters searched for in S210 (S250). The total time for the retained waypoints and movement parameters is the shortest total time for that trajectory candidate at that point in time, and is therefore compared with the total time when the determination in S240 is made thereafter. Note that the process of optimizing the trajectory by searching for waypoints and movement parameters so as not to interfere with obstacle B and to shorten the total time is also called trajectory adjustment.
 次に、制御装置41は、所定の終了条件が成立したか否かに基づいて、処理対象の軌道候補(各経由点と移動パラメータ)の探索が終了したか否かを判定する(S260)。所定の終了条件は、例えば、S210~S250の実行回数(繰り返し回数)が予め定められた所定回数に到達した条件や、S210で勾配法が用いられる場合には勾配が所定範囲に収束した条件などとすればよい。制御装置41は、S260で探索が終了していないと判定すると、S210に戻り、再びS210以降の処理を実行する。なお、上述したようにS240では、以前のS250で保持した経由点と移動パラメータに基づく合計時間と比較して、合計時間がより短いか否かが判定される。一方、制御装置41は、S260で処理対象の軌道候補の探索が終了したと判定すると、全ての軌道候補の探索が終了したか否かを判定する(S270)。制御装置41は、全ての軌道候補の探索が終了してなければ、S200に戻り、軌道候補を選定して処理を行う。一方、制御装置41は、S270で全ての軌道候補の探索が終了したと判定すると、最適化処理を終了する。 Next, the control device 41 judges whether the search for the trajectory candidates (each waypoint and movement parameter) to be processed has been completed based on whether a predetermined termination condition has been met (S260). The predetermined termination condition may be, for example, a condition that the number of executions (repetitions) of S210 to S250 has reached a predetermined number, or a condition that the gradient has converged to a predetermined range when the gradient method is used in S210. If the control device 41 judges in S260 that the search has not been completed, it returns to S210 and executes the processing from S210 onwards again. As described above, in S240, it is judged whether the total time is shorter than the total time based on the waypoints and movement parameters held in the previous S250. On the other hand, when the control device 41 judges in S260 that the search for the trajectory candidates to be processed has been completed, it judges whether the search for all the trajectory candidates has been completed (S270). If the search for all the trajectory candidates has not been completed, the control device 41 returns to S200, selects a trajectory candidate and performs processing. On the other hand, when the control device 41 determines in S270 that the search for all trajectory candidates has been completed, it ends the optimization process.
 図2の軌道生成処理では、S130の最適化処理を実行すると、制御装置41は、軌道の選定処理を実行する(S140)。S140では、制御装置41は、最適化処理した複数の軌道候補の合計時間を評価して、合計時間が最も短い1の軌道候補をロボットアーム22の動作の軌道に選定する(S140)。なお、移動時間Taが短くなるように手先を速く移動させると、目標点Gに到達した際の手先振動が大きくなって収束時間Tbが長くなり、結果的に合計時間が長くなる場合がある。逆に、収束時間Tbを短くするため、目標点Gに到達した際の手先振動が小さくなるように手先をゆっくり移動させると、移動時間Taが長くなり、結果的に合計時間が長くなる場合がある。また、ロボットアーム22が伸びた状態であるか否か即ち通過する経由点の位置により手先振動が変化して収束時間Tbが大きく変動することもある。そこで、本実施形態の制御装置41は、移動時間Taと収束時間Tbとの合計時間がより短くなるように複数の軌道候補を最適化し、さらに複数の軌道候補の中から最も合計時間が短い軌道候補を選定するのである。これにより、制御装置41は、合計時間を確実に短くした軌道を選定することができる。 In the trajectory generation process of FIG. 2, when the optimization process of S130 is performed, the control device 41 performs a trajectory selection process (S140). In S140, the control device 41 evaluates the total time of multiple optimized trajectory candidates and selects one trajectory candidate with the shortest total time as the trajectory of the robot arm 22's operation (S140). Note that if the hand is moved quickly to shorten the movement time Ta, the hand vibration increases when the target point G is reached, and the convergence time Tb increases, which may result in a longer total time. Conversely, if the hand is moved slowly to reduce the hand vibration when the target point G is reached in order to shorten the convergence time Tb, the movement time Ta may increase, which may result in a longer total time. Also, depending on whether the robot arm 22 is in an extended state, i.e., depending on the position of the via point to be passed, the hand vibration may change and the convergence time Tb may vary greatly. Therefore, the control device 41 of this embodiment optimizes multiple trajectory candidates so that the total time of the travel time Ta and the convergence time Tb is shortened, and further selects the trajectory candidate with the shortest total time from the multiple trajectory candidates. This allows the control device 41 to select a trajectory that reliably shortens the total time.
 そして、制御装置41は、S140で選定した軌道を記憶装置46に記憶して(S150)、軌道生成処理を終了する。また、制御装置41は、軌道生成処理で生成(選定)した軌道をロボット20の制御装置30に出力する。ロボット20は、制御装置30の記憶部に軌道を記憶し、生成された1以上の軌道に基づいてロボットアーム22の駆動制御を行って上述した所定の作業を行う。生成された軌道は、ロボットアーム22の動作のシミュレーションに用いられてもよい。即ち、生成された軌道は、ロボット20(ロボットアーム22)の実際の動作に限られず、動作の評価や検証などに用いられてもよい。また、軌道生成装置40が、そのようなシミュレーションを実行する機能を備えてもよい。 Then, the control device 41 stores the trajectory selected in S140 in the storage device 46 (S150), and ends the trajectory generation process. The control device 41 also outputs the trajectory generated (selected) in the trajectory generation process to the control device 30 of the robot 20. The robot 20 stores the trajectory in the storage unit of the control device 30, and performs drive control of the robot arm 22 based on the generated trajectory or trajectories to perform the above-mentioned predetermined task. The generated trajectory may be used for simulating the operation of the robot arm 22. In other words, the generated trajectory is not limited to the actual operation of the robot 20 (robot arm 22), and may be used for evaluating or verifying the operation. The trajectory generation device 40 may also have a function of executing such a simulation.
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の軌道生成処理のS110,S120を実行する軌道生成装置40の制御装置41(生成部43)が本開示の生成部に相当し、軌道生成処理のS130を実行する制御装置41(最適化部44)が最適化部に相当し、軌道生成処理のS140を実行する制御装置41(評価選定部45)が評価選定部に相当する。なお、本実施形態では、軌道生成装置40の処理を説明することにより本開示の軌道生成方法の一例も明らかにしている。 Here, the correspondence between the components of this embodiment and the components of this disclosure will be clarified. The control device 41 (generation unit 43) of the trajectory generation device 40 that executes S110 and S120 of the trajectory generation process of this embodiment corresponds to the generation unit of this disclosure, the control device 41 (optimization unit 44) that executes S130 of the trajectory generation process corresponds to the optimization unit, and the control device 41 (evaluation selection unit 45) that executes S140 of the trajectory generation process corresponds to the evaluation selection unit. Note that this embodiment also clarifies an example of the trajectory generation method of this disclosure by explaining the processing of the trajectory generation device 40.
 以上説明した本実施形態の軌道生成装置40(制御装置41)は、複数の軌道候補に対し、ロボットアーム22の手先の移動時間Taと手先振動の収束時間Tbとの合計時間がより短くなるように経由点の位置と移動パラメータとを最適化する。そして、複数の軌道候補の合計時間を評価した結果に基づいて動作の軌道を選定する。これにより、ロボットアームの手先の移動時間をより短くしつつ手先振動の影響をより抑えた適切な軌道を迅速に生成することができる。 The trajectory generation device 40 (control device 41) of this embodiment described above optimizes the positions of the waypoints and the movement parameters for multiple trajectory candidates so that the total time of the movement time Ta of the hand of the robot arm 22 and the convergence time Tb of the hand vibration is shortened. Then, a movement trajectory is selected based on the result of evaluating the total time of the multiple trajectory candidates. This makes it possible to quickly generate an appropriate trajectory that reduces the effects of hand vibration while shortening the movement time of the hand of the robot arm.
 また、軌道生成装置40は、移動時間Taと手先振動の収束時間Tbとの合計時間が最も短い軌道候補を選定するから、合計時間が最短となる軌道をより確実に生成することができる。 In addition, the trajectory generation device 40 selects the trajectory candidate with the shortest total time of the movement time Ta and the convergence time Tb of the hand vibration, so that it can more reliably generate a trajectory with the shortest total time.
 また、軌道生成装置40は、手先が開始点Sから目標点Gに移動するまでの所定時間毎の手先振動と移動時間Taとを算出すると共に、手先が目標点Gに到達してから手先振動が許容範囲Aに収束するまでの時間を収束時間Tbとして算出する。このため、収束時間Tbが必要以上に長くなるのを防止して軌道候補の最適化を適切に行うことができる。 The trajectory generating device 40 also calculates the hand vibration and movement time Ta for each predetermined time period until the hand moves from the starting point S to the target point G, and calculates the time from when the hand reaches the target point G until the hand vibration converges to the allowable range A as the convergence time Tb. This makes it possible to prevent the convergence time Tb from becoming unnecessarily long and appropriately optimize the trajectory candidates.
 また、軌道生成装置40は、関節角度空間において経由点の位置を探索しながら各点を結ぶと共に移動パラメータを設定してベース軌道を生成し、ベース軌道における経由点の位置と移動パラメータとを変化させて複数の軌道候補を生成するから、軌道候補を迅速に生成することができる。また、関節角度空間で探索された経由点は、ロボットアーム22が到達可能な位置にあるから、作業者による経由点の位置の調整作業を不要とすることができる。 The trajectory generating device 40 generates a base trajectory by searching for the positions of via points in the joint angle space, connecting each point and setting movement parameters, and generates multiple trajectory candidates by changing the positions of the via points in the base trajectory and the movement parameters, so that trajectory candidates can be generated quickly. Furthermore, the via points searched for in the joint angle space are in positions that the robot arm 22 can reach, so there is no need for an operator to adjust the positions of the via points.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that this disclosure is in no way limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of this disclosure.
 例えば、実施形態では、手先が開始点Sから目標点Gに移動するまでの所定時間毎の手先振動を算出したが、これに限られず、収束時間Tbを算出するために、少なくとも手先が目標点Gに到達した際の手先振動を算出すればよい。即ち、移動中の手先振動を算出することなく、目標点Gでの手先振動を算出してもよい。 For example, in the embodiment, the hand vibration is calculated for each predetermined time period until the hand moves from the starting point S to the target point G, but this is not limited to this, and in order to calculate the convergence time Tb, it is sufficient to calculate at least the hand vibration when the hand reaches the target point G. In other words, the hand vibration at the target point G may be calculated without calculating the hand vibration during movement.
 実施形態では、合計時間が最短となる軌道候補を動作の軌道に選定したが、これに限られない。例えば干渉のない軌道候補のうち合計時間のより短い軌道に選定するなど、合計時間を含めて評価した結果に基づいて動作の軌道を選定すればよい。また、合計時間が僅かに長くても、対象物によっては振動がより小さい方が好ましい場合がある。そのような場合、合計時間の差が所定時間以内であれば、収束時間Tbがより短い軌道候補を選定してもよい。即ち、合計時間を含む時間を評価し、その評価値に基づいていずれかの軌道候補を動作の軌道に選定すればよい。 In the embodiment, the trajectory candidate with the shortest total time is selected as the movement trajectory, but this is not limited to the above. For example, the movement trajectory may be selected based on the results of evaluation including the total time, such as selecting a trajectory with the shortest total time from among trajectory candidates without interference. Also, depending on the object, smaller vibrations may be preferable even if the total time is slightly longer. In such a case, if the difference in total time is within a predetermined time, the trajectory candidate with the shorter convergence time Tb may be selected. In other words, the time including the total time is evaluated, and one of the trajectory candidates may be selected as the movement trajectory based on the evaluation value.
 実施形態では、開始点Sと目標点Gとの双方から経由点の探索を開始したが、これに限られず、開始点Sと目標点Gとのいずれか一方から経由点の探索を開始してもよい。実施形態では、障害物Bまでの距離に応じて探索距離を変更したが、探索距離を変更せずに一定の探索距離としてもよい。また、RRT-Connectベースの探索手法に限られず、RRT法やポテンシャル法などの他の探索手法を用いてもよい。実施形態では、関節角度空間で経由点を探索したが、これに限られず、例えばXYZ空間などで経由点を探索してもよい。実施形態では、ベース軌道における経由点の位置と移動パラメータをランダムに変化させて複数の軌道候補を生成したが、経由点と移動パラメータをそれぞれ探索することで複数の軌道候補を生成してもよい。 In the embodiment, the search for the waypoint is started from both the start point S and the target point G, but this is not limited, and the search for the waypoint may be started from either the start point S or the target point G. In the embodiment, the search distance is changed according to the distance to the obstacle B, but the search distance may be constant without being changed. In addition, the search method is not limited to the RRT-Connect based search method, and other search methods such as the RRT method and the potential method may be used. In the embodiment, the waypoint is searched in the joint angle space, but this is not limited, and the waypoint may be searched in, for example, the XYZ space. In the embodiment, the position of the waypoint in the base trajectory and the movement parameters are randomly changed to generate multiple trajectory candidates, but multiple trajectory candidates may be generated by searching for the waypoints and the movement parameters respectively.
 実施形態では、6軸の垂直多関節ロボットを例示したが、これに限られず、5軸などの他の垂直多関節ロボットなどでもよいし、水平多関節ロボットなどでもよい。実施形態では、軌道生成装置40が軌道を生成したが、ロボット20の制御装置30が軌道を生成してもよい。また、軌道生成装置40と制御装置30とが協働して軌道を生成してもよい。  In the embodiment, a six-axis vertical articulated robot is exemplified, but this is not limited to this and other vertical articulated robots such as a five-axis robot may be used, or a horizontal articulated robot may be used. In the embodiment, the trajectory generation device 40 generates the trajectory, but the control device 30 of the robot 20 may generate the trajectory. In addition, the trajectory generation device 40 and the control device 30 may work together to generate the trajectory.
 本明細書では、出願当初の請求項4において「請求項1または2に記載の軌道生成装置」を「請求項1ないし3のいずれか1項に記載の軌道生成装置」に変更した技術思想も開示されている。 This specification also discloses the technical idea of changing "the trajectory generating device according to claim 1 or 2" in claim 4, as originally filed, to "the trajectory generating device according to any one of claims 1 to 3."
 本開示は、多関節のロボットアームの軌道を生成する技術分野に利用可能である。 This disclosure can be used in the technical field of generating trajectories for multi-joint robot arms.
 10 ロボットシステム、11 作業台、20 ロボット、21 基台、22 ロボットアーム、23a~23f サーボモータ、24a~24f エンコーダ、25 エンドエフェクタ、25a 爪、26 アクチュエータ、27 エンコーダ、30 制御装置、32 電源回路、34a~34f アンプ、40 軌道生成装置、41 制御装置、42 条件設定部、43 生成部、44 最適化部、45 評価選定部、46 記憶装置、47 入力装置、48 表示装置、J1 第1関節軸、J2 第2関節軸、J3 第3関節軸、J4 第4関節軸、J5 第5関節軸、J6 第6関節軸、B 障害物、G 目標点、S 開始点。 10 robot system, 11 workbench, 20 robot, 21 base, 22 robot arm, 23a to 23f servo motors, 24a to 24f encoders, 25 end effector, 25a claw, 26 actuator, 27 encoder, 30 control device, 32 power supply circuit, 34a to 34f amplifier, 40 trajectory generator, 41 control device, 42 condition setting unit, 43 generation unit, 44 optimization unit, 45 evaluation and selection unit, 46 storage device, 47 input device, 48 display device, J1 first joint axis, J2 second joint axis, J3 third joint axis, J4 fourth joint axis, J5 fifth joint axis, J6 sixth joint axis, B obstacle, G target point, S start point.

Claims (5)

  1.  多関節のロボットアームの動作の軌道を生成する軌道生成装置であって、
     前記動作の開始点から目標点まで動作可能な経由点を探索し、各点を結ぶと共に各点間の移動パラメータが設定された軌道候補を複数生成する生成部と、
     複数の前記軌道候補の各々に対し、前記ロボットアームの手先が前記開始点から前記目標点に移動する移動時間と、前記目標点で手先振動が収束する収束時間との合計時間がより短くなるように前記経由点の位置と前記移動パラメータとの最適化を行う最適化部と、
     前記最適化が行われた複数の前記軌道候補について前記合計時間を含めて評価し、該評価に基づいて前記動作の軌道を選定する評価選定部と、
     を備える軌道生成装置。
    A trajectory generating device for generating a trajectory of a motion of a multi-joint robot arm,
    a generation unit that searches for possible waypoints from a start point of the motion to a target point, and generates a plurality of trajectory candidates that connect the points and have movement parameters between the points set;
    an optimization unit that optimizes the positions of the via points and the movement parameters for each of the plurality of trajectory candidates so as to shorten a total time of a movement time for the hand of the robot arm to move from the start point to the target point and a convergence time for the hand vibration to converge at the target point;
    an evaluation and selection unit that evaluates the plurality of trajectory candidates that have been optimized, including the total time, and selects the trajectory of the movement based on the evaluation;
    A trajectory generating device comprising:
  2.  前記評価選定部は、前記最適化が行われた複数の前記軌道候補のうち、前記合計時間が最も短い前記軌道候補を前記動作の軌道に選定する、
     請求項1に記載の軌道生成装置。
    the evaluation and selection unit selects, as the trajectory of the movement, the trajectory candidate having the shortest total time from among the plurality of trajectory candidates that have been optimized.
    The trajectory generating device according to claim 1 .
  3.  前記最適化部は、前記経由点の位置と前記移動パラメータとに基づいて、前記手先が前記開始点から前記目標点に移動するまでの所定時間毎の前記手先振動と前記移動時間とを算出すると共に、前記手先が前記目標点に到達してから前記手先振動が許容範囲に収束するまでの時間を前記収束時間として算出する、
     請求項1または2に記載の軌道生成装置。
    The optimization unit calculates the hand vibration and the movement time for each predetermined time period until the hand moves from the start point to the target point based on the position of the via point and the movement parameters, and calculates the time from when the hand reaches the target point until the hand vibration converges to an allowable range as the convergence time.
    The trajectory generating device according to claim 1 or 2.
  4.  前記生成部は、関節角度空間において前記経由点の位置を探索しながら各点を結ぶと共に前記移動パラメータを設定してベース軌道を生成し、該ベース軌道における前記経由点の位置と前記移動パラメータとを変化させて複数の前記軌道候補を生成する、
     請求項1または2に記載の軌道生成装置。
    the generation unit generates a base trajectory by searching for positions of the via points in a joint angle space, connecting the points and setting the movement parameters, and generates a plurality of the trajectory candidates by changing the positions of the via points and the movement parameters in the base trajectory.
    The trajectory generating device according to claim 1 or 2.
  5.  多関節のロボットアームの動作の軌道を生成する軌道生成方法であって、
    (a)前記動作の開始点から目標点まで動作可能な経由点を探索し、各点を結ぶと共に各点間の移動パラメータが設定された軌道候補を複数生成するステップと、
    (b)複数の前記軌道候補の各々に対し、前記ロボットアームの手先が前記開始点から前記目標点に移動する移動時間と、前記目標点で手先振動が収束する収束時間との合計時間がより短くなるように前記経由点の位置と前記移動パラメータとの最適化を行うステップと、
    (c)前記最適化が行われた複数の前記軌道候補について前記合計時間を含めて評価し、該評価に基づいて前記動作の軌道を選定するステップと、
     を含む軌道生成方法。
    A trajectory generation method for generating a trajectory of a motion of a multi-joint robot arm, comprising the steps of:
    (a) searching for possible waypoints from a start point of the motion to a target point, and generating a plurality of trajectory candidates in which each of the waypoints is connected and movement parameters between each of the points are set;
    (b) optimizing the position of the via point and the movement parameters for each of the plurality of trajectory candidates so as to shorten the total time of a movement time for the hand of the robot arm to move from the start point to the target point and a convergence time for the hand vibration to converge at the target point;
    (c) evaluating a plurality of the optimized trajectory candidates, including the total time, and selecting a trajectory for the movement based on the evaluation;
    A trajectory generation method comprising:
PCT/JP2023/001320 2023-01-18 2023-01-18 Trajectory generation device and trajectory generation method WO2024154250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001320 WO2024154250A1 (en) 2023-01-18 2023-01-18 Trajectory generation device and trajectory generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001320 WO2024154250A1 (en) 2023-01-18 2023-01-18 Trajectory generation device and trajectory generation method

Publications (1)

Publication Number Publication Date
WO2024154250A1 true WO2024154250A1 (en) 2024-07-25

Family

ID=91955594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001320 WO2024154250A1 (en) 2023-01-18 2023-01-18 Trajectory generation device and trajectory generation method

Country Status (1)

Country Link
WO (1) WO2024154250A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092981A1 (en) * 2009-02-12 2010-08-19 三菱電機株式会社 Industrial robot system
JP2012045641A (en) * 2010-08-24 2012-03-08 Sinfonia Technology Co Ltd Orbital information generating device of moving device
US20130238132A1 (en) * 2010-11-24 2013-09-12 Kuka Roboter Gmbh Method And Device For Controlling A Peripheral Component Of A Robot System
JP2015100877A (en) * 2013-11-25 2015-06-04 キヤノン株式会社 Robot control method, and robot control device
JP2016013613A (en) * 2014-06-11 2016-01-28 キヤノン株式会社 Robot control method, robot device, program, recording medium, and method for manufacturing assembled component
WO2018143003A1 (en) * 2017-01-31 2018-08-09 株式会社安川電機 Robot path-generating device and robot system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092981A1 (en) * 2009-02-12 2010-08-19 三菱電機株式会社 Industrial robot system
JP2012045641A (en) * 2010-08-24 2012-03-08 Sinfonia Technology Co Ltd Orbital information generating device of moving device
US20130238132A1 (en) * 2010-11-24 2013-09-12 Kuka Roboter Gmbh Method And Device For Controlling A Peripheral Component Of A Robot System
JP2015100877A (en) * 2013-11-25 2015-06-04 キヤノン株式会社 Robot control method, and robot control device
JP2016013613A (en) * 2014-06-11 2016-01-28 キヤノン株式会社 Robot control method, robot device, program, recording medium, and method for manufacturing assembled component
WO2018143003A1 (en) * 2017-01-31 2018-08-09 株式会社安川電機 Robot path-generating device and robot system

Similar Documents

Publication Publication Date Title
CN110198813B (en) Robot path generation device and robot system
EP2835228B1 (en) Robot apparatus and robot controlling method
KR101732902B1 (en) Path planning apparatus of robot and method thereof
US20220063099A1 (en) Framework of robotic online motion planning
US11433537B2 (en) Automatic path generation device
US20110224815A1 (en) Industrial Robot And Path Planning Method For Controlling The Movement Of An Industrial Robot
JP4941068B2 (en) Route creation method and route creation device
US20180229364A1 (en) Robot system having learning control function and learning control method
US20220126440A1 (en) Method of supporting adjustment of parameter set of robot, a non-transitory computer-readable storage medium, and information processing device
KR20110048330A (en) Path planning apparatus of robot and method thereof
JP7210201B2 (en) Information processing method, program, recording medium, information processing device, robot system, article manufacturing method
JP2019063912A (en) Robot control data processing method, robot control data processing device and robot system
JP6697544B2 (en) Optimizer and vertical articulated robot equipped with the same
JP4304495B2 (en) Route planning method
JP2005309990A (en) Path setting method
JP2007000954A (en) Robot teaching device and method
US20210245364A1 (en) Method And Control System For Controlling Movement Trajectories Of A Robot
WO2024154250A1 (en) Trajectory generation device and trajectory generation method
JP6926533B2 (en) Robot motion program generator
WO2024154247A1 (en) Trajectory generation device and trajectory generation method
WO2020149020A1 (en) Robot control device, robot control method, and robot control program
WO2024154249A1 (en) Trajectory generation device and trajectory generation method
WO2024154248A1 (en) Trajectory generation device and trajectory generation method
CN114367974B (en) Method for adjusting parameter set of robot, recording medium, and information processing device
KR102079122B1 (en) Control framework based on dynamic simulation for robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917464

Country of ref document: EP

Kind code of ref document: A1