Nothing Special   »   [go: up one dir, main page]

WO2024150444A1 - Switched reluctance motor apparatus - Google Patents

Switched reluctance motor apparatus Download PDF

Info

Publication number
WO2024150444A1
WO2024150444A1 PCT/JP2023/000895 JP2023000895W WO2024150444A1 WO 2024150444 A1 WO2024150444 A1 WO 2024150444A1 JP 2023000895 W JP2023000895 W JP 2023000895W WO 2024150444 A1 WO2024150444 A1 WO 2024150444A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
poles
magnet
switched reluctance
reluctance motor
Prior art date
Application number
PCT/JP2023/000895
Other languages
French (fr)
Japanese (ja)
Inventor
正一 田中
Original Assignee
正一 田中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正一 田中 filed Critical 正一 田中
Priority to PCT/JP2023/000895 priority Critical patent/WO2024150444A1/en
Publication of WO2024150444A1 publication Critical patent/WO2024150444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Definitions

  • the present invention relates to a switched reluctance motor device, and in particular to a single-phase switched reluctance motor device suitable for an aircraft motor.
  • the switched reluctance motor device of the present invention includes a switched reluctance generator.
  • SRMs Switched reluctance motors
  • PMSMs permanent magnet synchronous motors
  • T/kg torque-to-weight ratio
  • PMSMs permanent magnet synchronous motors
  • a hybrid SRM has been proposed, which is an SRM with an added permanent magnet.
  • This hybrid SRM has a magnet pole located in the rotor slot between two circumferentially adjacent rotor poles.
  • the rotor poles are salient poles made of soft magnetic material, and the magnet poles are salient poles made of permanent magnets.
  • Patent Document 1 proposes a three-phase hybrid SRM in which magnet poles are arranged in the rotor slots of a conventional three-phase SRM.
  • a conventional three-phase SRM has a different number of stator poles than the rotor poles.
  • the rotor slots of a conventional three-phase SRM have a wider circumferential width than the rotor poles. Therefore, the magnet poles are arranged in the circumferential center of the rotor slot. Two magnet poles adjacent to each other in the circumferential direction across the rotor pole have different polarities.
  • Patent document 2 filed by the present inventor, also proposes a three-phase hybrid SRM with magnet poles arranged in the rotor slots of a conventional three-phase SRM.
  • the magnet poles are arranged biased toward one side of the rotor slot in the circumferential direction.
  • the single-phase SRM has been proposed as another type of SRM. It has a number of stator poles equal to the number of rotor poles.
  • the disadvantages of the single-phase SRM are that it has high vibration and noise, and it is not easy to generate starting torque.
  • One object of the present invention is to provide a switched reluctance motor device having an excellent torque/weight ratio.
  • a single-phase SRM is employed.
  • the rotor core of this single-phase SRM has magnet poles made of permanent magnets.
  • the number of stator poles and the number of rotor poles are equal.
  • the number of magnet poles is also equal to the number of rotor poles.
  • Each magnet pole is arranged in a rotor slot, which is a recess between two circumferentially adjacent rotor poles.
  • the rotor of this single-phase SRM has a structure in which rotor poles, which are soft magnetic salient poles, and magnet poles, which are permanent magnet poles, are arranged alternately in the circumferential direction.
  • This single-phase SRM has a single-phase mode and a three-phase mode.
  • this single-phase mode which is the same as the operation of a conventional single-phase SRM, all stator poles are excited simultaneously during the period when the inductance of the phase winding increases. As a result, all stator poles attract all rotor poles.
  • stator poles generate magnet torque in addition to the reluctance torque.
  • This magnet torque is formed by the stator poles magnetically repelling the magnet poles.
  • the stator poles are excited with the same polarity as the closest magnet pole.
  • This magnet pole is positioned in front of the stator pole in the circumferential direction.
  • all stator poles generate magnet torque consisting of a magnetic repulsive force component in addition to the reluctance torque described above.
  • phase windings wound on the stator poles have alternating periods of increasing inductance and decreasing inductance.
  • a single-phase current is supplied to the phase winding during the periods of increasing inductance.
  • the single-phase mode of this single-phase SRM simultaneously generates both the reluctance torque and the repulsive force component of the magnet torque during the inductance increase period.
  • the stator poles are excited with alternating current to change magnetic polarity in response to the change in magnetic polarity of the nearest magnet pole.
  • the circumferential width of the rotor poles is essentially equal to the circumferential width of the rotor slots. Furthermore, the circumferential width of the magnet poles is equal to the circumferential width of the rotor slots. Therefore, the permanent magnets forming the magnet poles can be supported by two circumferentially adjacent rotor poles.
  • this single-phase SRM has a motor structure that can operate as a three-phase permanent magnet synchronous motor (three-phase PMSM).
  • the number of stator poles, rotor poles, and magnet poles are each equal to an integer multiple of six.
  • Three magnet poles arranged in sequence in the circumferential direction form an N-pole magnet set, and another three magnet poles arranged in sequence in the circumferential direction form an S-pole magnet set.
  • the N-pole magnet set and the S-pole magnet set are arranged alternately in the circumferential direction.
  • Three adjacent magnet poles with a north pole can be considered as one virtual north pole, and three adjacent magnet poles with a south pole can be considered as one virtual south pole. Therefore, these virtual north poles and virtual south poles are arranged alternately in the circumferential direction.
  • six different phase windings are wound in a concentrated manner around six stator poles in sequence.
  • six different phase currents each having a phase separated by an electrical angle of 60 degrees from the others, are supplied separately to the six different phase windings.
  • the stator pole is excited with the same polarity as the magnet pole that is closest to it. This allows the permanent magnet three-phase synchronous motor to utilize at least the repulsive force component of the magnet torque.
  • the power converter driving this single-phase SRM consists of three H-bridges that generate three phase currents separated by an electrical angle of 120 degrees.
  • the current directions of the three phase currents are switched in synchronization with the position of the rotating rotor pole.
  • the stator poles are excited in a direction that attracts the nearby magnet poles and repels the receding magnet poles by switching the current directions of the three phase currents.
  • Each phase current can have various waveforms such as sine waves, square waves, and trapezoidal waves. This allows the three-phase mode to generate stable synchronous torque.
  • the three-phase mode is implemented to start the single-phase SRM. This allows the single-phase SRM to be reliably started.
  • the three-phase mode is implemented during high-speed rotation.
  • the stator current in the three-phase mode has lower frequency components than the stator current in the single-phase mode, so that iron loss during high-speed rotation can be reduced.
  • this single-phase SRM has an outer rotor structure. This effectively prevents the permanent magnet from becoming detached from the rotor core rotating at high speed.
  • the housing of a single-phase SRM with an inner rotor structure has a cylindrical portion to which the stator core is fixed.
  • the outer peripheral surface of this cylindrical portion has a number of flanges that protrude radially outward. These flanges have a ring plate shape or a spiral coil shape. This makes it possible to improve both acoustic noise and heat dissipation.
  • Conventional inner rotor type switched reluctance motors have the disadvantage that the cylindrical portion of the housing to which the stator core is fixed is a strong source of acoustic noise. According to this embodiment, the flanges reduce radial vibration of the cylindrical portion.
  • ferrite magnets are used as permanent magnets forming the magnet poles.
  • a DC current is supplied to the phase windings.
  • Each stator pole of the single-phase SRM can overlap with each magnet pole in the circumferential direction. In other words, each stator pole and each magnet pole can have the same position in the circumferential direction.
  • a DC current is supplied to the phase windings of the single-phase SRM to restore the saturation magnetic flux of the magnet poles. This restores the magnetization of the magnet poles again.
  • FIG. 1 is a block circuit diagram showing a switched reluctance motor (SRM) device of the present invention.
  • FIG. 2 is a schematic development diagram for explaining the three-phase mode.
  • FIG. 3 is a schematic development diagram for explaining the three-phase mode.
  • FIG. 4 is a timing chart showing the inductance and the three-phase AC current supply period in the three-phase mode.
  • FIG. 5 is a timing chart showing a polarity change pattern of the stator poles in the three-phase mode.
  • FIG. 6 is a schematic development view for explaining the single-phase mode.
  • FIG. 7 is a schematic development view for explaining the single-phase mode.
  • FIG. 8 is a timing chart showing the inductance and the three-phase AC current supply period in the single-phase mode.
  • FIG. 1 is a block circuit diagram showing a switched reluctance motor (SRM) device of the present invention.
  • FIG. 2 is a schematic development diagram for explaining the three-phase mode.
  • FIG. 3 is
  • FIG. 9 is a timing chart showing a polarity change pattern of the stator poles in the single-phase mode.
  • FIG. 10 is a schematic development view for explaining the single-phase power generation mode.
  • FIG. 11 is a schematic development view for explaining the single-phase power generation mode.
  • FIG. 12 is a timing chart showing the inductance and the three-phase AC current supply period in the single-phase power generation mode.
  • FIG. 13 is a timing chart showing a polarity change pattern of the stator poles in the single-phase power generation mode.
  • FIG. 14 is a radial sectional view showing a schematic diagram of the switched reluctance motor of this embodiment.
  • FIG. 15 is a plan view of the switched reluctance motor shown in FIG. FIG.
  • FIG. 16 is a plan view showing another example of the switched reluctance motor shown in FIG.
  • FIG. 17 is a partially enlarged cross-sectional view showing a modification of the rotor shown in FIG.
  • FIG. 18 is a schematic axial cross-sectional view showing an outer rotor type switched reluctance motor.
  • FIG. 19 is a flow chart showing the operation of remagnetizing a magnet pole made of a hard ferrite material.
  • SRM switched reluctance motor
  • FIG. 1 is a block circuit diagram showing this SRM device.
  • This SRM device has a hybrid SRM 1, a power converter 2, and a controller 4.
  • the power converter 2 consists of a U-phase H-bridge 21, a V-phase H-bridge 22, and a W-phase H-bridge 23.
  • Each of the three H-bridges 21-23 consists of two half-bridges called legs.
  • the H-bridge 21 supplies a U-phase current IU to the U-phase windings 71 and 74.
  • the H-bridge 22 supplies a V-phase current IV to the V-phase windings 72 and 75.
  • the H-bridge 23 supplies a W-current IW to the W-phase windings 73 and 76.
  • the battery 3 supplies DC power to the three H-bridges.
  • the power converter 2 is controlled by a controller 4.
  • the controller 4 receives the rotor rotation angle and current value of the hybrid SRM 1 from sensors (not shown).
  • the smoothing capacitor 5 is connected in parallel with the battery 3.
  • the controller 4 has a three-phase mode and a single-phase mode.
  • the hybrid SRM 1 is operated as a permanent magnet synchronous motor (PMSM).
  • the hybrid SRM 1 is operated as a single-phase switched reluctance motor (single-phase SRM).
  • the three-phase mode is described with reference to Figures 2-5.
  • the single-phase mode is described with reference to Figures 6-9.
  • the single-phase power generation mode which is a power generation mode implemented by the single-phase mode, is described with reference to Figures 10-13.
  • FIGs 2-3, 6-7, and 10-11 are developments showing the change in the relative position of the stator core 11 and rotor core 12 in each mode.
  • the stator core 11 and rotor core 12 are each made of laminated electromagnetic steel sheets.
  • the stator core 11 and rotor core 12, which face each other across an electromagnetic gap, are each deformed into a linearly developed shape. Therefore, the back yoke 110 of the stator core 11 and the back yoke 120 of the rotor core 12 are shown linearly in Figures 2-3, 6-7, and 10-11.
  • the relative positions of the stator core 11 and rotor core 12 in phase periods P1, P2, and P3 are shown in Figures 2, 6, and 10.
  • the relative positions of the stator core 11 and rotor core 12 in phase periods P4, P5, and P6 are shown in Figures 3, 7, and 11.
  • One cycle period of this hybrid SRM 1 consists of these six phase periods P1-P6.
  • the rotor core 12 of this hybrid SRM 1 advances six pole pitches during one cycle period. In other words, the rotor core 12 advances one pole pitch in one phase period.
  • the stator core 11 has a stator pole set consisting of six stator poles 61-66.
  • the stator poles 61-66 are soft magnetic salient poles that protrude toward the rotor core 12.
  • the six stator poles 61-66 are arranged in sequence at equal intervals from one another.
  • a phase winding 71 is wound around the stator pole 61, and a phase winding 72 is wound around the stator pole 62.
  • a phase winding 73 is wound around the stator pole 63, and a phase winding 74 is wound around the stator pole 64.
  • a phase winding 75 is wound around the stator pole 65, and a phase winding 76 is wound around the stator pole 66.
  • phase winding 71 is opposite to that of phase winding 74. Therefore, when the tip of stator pole 61 is a north pole, the tip of stator pole 64 is a south pole.
  • the winding direction of phase winding 72 is opposite to that of phase winding 75. Therefore, when the tip of stator pole 62 is a north pole, the tip of stator pole 65 is a south pole.
  • the winding direction of phase winding 73 is opposite to that of phase winding 76. Therefore, when the tip of stator pole 63 is a north pole, the tip of stator pole 66 is a south pole.
  • the rotor core 12 has rotor poles 91-96, which are soft magnetic salient poles that protrude toward the stator core 11.
  • the rotor core 12 has rotor slots, which are gaps between two adjacent rotor poles.
  • Magnet poles 81-86 made of permanent magnets are housed in the rotor slots.
  • Magnet pole 81 is fixed between rotor poles 91 and 92
  • magnet pole 82 is fixed between rotor poles 92 and 93.
  • Magnet pole 83 is fixed between rotor poles 93 and 94
  • magnet pole 84 is fixed between rotor poles 94 and 95.
  • Magnet pole 85 is fixed between rotor poles 95 and 96
  • magnet pole 86 is fixed between rotor poles 96 and 91.
  • the hybrid SRM 1 has the numbers of stator poles, rotor poles, and magnet poles that are all equal and multiples of 6.
  • the hybrid SRM 1 operates as a three-phase permanent magnet synchronous motor (three-phase PMSM).
  • the power converter 2 supplies three phase currents IU, IV, and IW to the six phase windings 71-76.
  • Supplying the phase currents IU, IV, and IW to the phase windings 74-76 wound in opposite directions is equivalent to supplying the opposite phase currents -IU, -IV, and -IW to the phase windings 74-76.
  • the U-phase current IU is supplied to the phase winding 71
  • the V-phase current IV is supplied to the phase winding 75
  • the W-phase current IW is supplied to the phase winding 73.
  • the -U-phase current -IU which has the opposite phase to the U-phase current IU, is supplied to the phase winding 74.
  • the -V-phase current -IV which has the opposite phase to the V-phase current IV, is supplied to the phase winding 72.
  • the -W-phase current -IW which has the opposite phase to the W-phase current IW, is supplied to the phase winding 76.
  • phase currents IU, IV, and IW are alternating currents with phases that differ from each other by an electrical angle of 120 degrees.
  • phase magnetic fields that are 60 electrical degrees apart from each other are formed by the stator poles 61-66. Therefore, the phase currents IU, IV, and IW form a rotating magnetic field in the stator core 11 that rotates by 60 electrical degrees each.
  • Figure 2 shows the relative circumferential position of the rotor core 12 in three consecutive phase periods P1-P3.
  • Figure 3 shows the relative circumferential position of the rotor core 12 in three consecutive phase periods P4-P6.
  • the relative circumferential position of the rotor core 12 indicates the position at a phase angle of 0 degrees.
  • Each of these phase periods P1-P6 corresponds to a period in which the rotor core 12 moves circumferentially by one stator pole pitch.
  • Each of the phase periods P1-P6 corresponds to an electrical angle of 360 degrees.
  • an electrical angle of 0 degrees indicates that the magnet poles 81-86 are positioned to overlap the stator poles 61-66 in the circumferential direction. Therefore, at an electrical angle of 0 degrees, the rotor poles 91-96, which are soft magnetic poles, overlap the stator slots between the stator poles in the circumferential direction. Similarly, an electrical angle of 180 degrees indicates that the rotor poles 91-96 are positioned to overlap the stator poles 61-66 in the circumferential direction. Therefore, at an electrical angle of 180 degrees, the magnet poles 81-86 overlap the stator slots between the stator poles in the circumferential direction.
  • Phase windings 71 and 74 have an inductance LU
  • phase windings 75 and 72 have an inductance LV
  • phase windings 73 and 76 have an inductance LW.
  • Inductances LU, LV, and LW are at their minimum values at an electrical angle of 0 degrees and at their maximum values at an electrical angle of 180 degrees. For this reason, the period from an electrical angle of 0 degrees to an electrical angle of 180 degrees is called the inductance increase period, and the period from an electrical angle of 180 degrees to an electrical angle of 0 degrees is called the inductance decrease period.
  • the stator poles 61-66, rotor poles 91-96, and magnet poles 81-86 each have approximately the same circumferential width.
  • Each magnet pole 81-86 made of a ferrite magnet, is fixed in a space called a rotor slot.
  • the rotor slots exist between the rotor poles 91-96.
  • the rotor poles 91-96 are formed in a wedge shape that narrows the opening of the rotor slot. Furthermore, each permanent magnet that makes up the magnet poles 81-86 is fired to have a shape that matches these rotor slots. This allows the rotor poles 91-96 to strongly support the magnet poles 81-86.
  • the surfaces of magnet poles 81-83 facing stator poles 61-66 have a north pole.
  • the surfaces of magnet poles 84-86 facing stator poles 61-66 have a south pole.
  • magnet poles 81-83 adjacent to each other in the circumferential direction have the same polarity
  • magnet poles 84-86 adjacent to each other in the circumferential direction have the same polarity.
  • the three magnet poles 81-83 with north poles can be represented diagrammatically by a virtual north pole placed at the position of magnet pole 82.
  • the three magnet poles 84-86 with south poles can be represented diagrammatically by a virtual south pole placed at the position of magnet pole 85.
  • one set of stator poles 61-66 forms a rotating magnetic field with one N pole and one S pole.
  • the N pole of this rotating magnetic field advances the virtual N pole due to a repulsive force and advances the virtual S pole due to an attractive force.
  • the S pole of this rotating magnetic field advances the virtual S pole due to a repulsive force and advances the virtual N pole due to an attractive force.
  • the three-phase AC current is controlled so that the rotational speed and phase of the rotating magnetic field are synchronized with the rotational speed and phase of the rotor core 12.
  • This causes the hybrid SRM 1 to rotate as a three-phase PMSM.
  • Figure 4 is a timing diagram showing the three phase currents (IU, IV, and IW) supplied to phase windings 71-76, and the inductances (LU, LV, and LW) of phase windings 71-76.
  • U-phase current IU is supplied to phase windings 71 and 74
  • V-phase current IV is supplied to phase windings 75 and 72
  • W-phase current IW is supplied to phase windings 73 and 76.
  • Stator poles 61 and 64 have opposite polarities.
  • Stator poles 62 and 65 have opposite polarities.
  • Stator poles 63 and 66 have opposite polarities.
  • Phase windings 71 and 74 have an inductance LU
  • phase windings 72 and 75 have an inductance LV
  • phase windings 73 and 76 have an inductance LW.
  • Phase windings 71 and 74 may be connected in series or in parallel.
  • Phase windings 72 and 75 may be connected in series or in parallel.
  • Phase windings 73 and 76 may be connected in series or in parallel.
  • phase periods P1-P3 Three consecutive phase periods P1-P3 are shown in FIG. 2. Three consecutive phase periods P4-P6 are shown in FIG. 3. The passage of six phase periods P1-P6 means that the rotor core 12 rotates by six pole pitches.
  • one cycle period of the three-phase AC current (IU, IV, IW) consists of phase periods P1-P6.
  • the U-phase AC current IU shifts from a negative half-wave period to a positive half-wave period at time t1, and from a positive half-wave period to a negative half-wave period at time t4.
  • the V-phase AC current IV shifts from a positive half-wave period to a negative half-wave period at time t2, and from a negative half-wave period to a positive half-wave period at time t5.
  • the W-phase AC current IW shifts from a negative half-wave period to a positive half-wave period at time t3, and from a positive half-wave period to a negative half-wave period at time t6.
  • the waveform of the three-phase AC current (IU, IV, IW) can be selected from sine waves, trapezoidal waves, square waves, etc. as necessary.
  • the three-phase AC current (IU, IV, IW) has a square wave waveform.
  • FIG. 5 shows the polarity change of the stator poles 61-66 in each phase period P1-P6. This polarity refers to the polarity of the tip surfaces of the stator poles 61-66 facing the electromagnetic gap.
  • three consecutive magnet poles of the same polarity in the circumferential direction are regarded as one virtual magnetic pole.
  • This virtual magnetic pole is regarded as existing at the position of the middle magnet pole among the three magnet poles of the same polarity.
  • the six magnet poles 81-86 form a pair of north and south virtual magnetic poles.
  • the three-phase currents (IU, IV, and IW) sequentially change the polarity of the stator poles 61-66.
  • the rotor core 12 becomes the magnet rotor of a three-phase PMSM.
  • the hybrid SRM 1 operates as a single-phase SRM.
  • a U-phase current IU is supplied to the phase windings 71 and 74
  • a V-phase current IV is supplied to the phase windings 75 and 72
  • a W-phase current IW is supplied to the phase windings 73 and 76.
  • Figures 6 and 7 show the circumferential positions of the rotor poles 91-96 during phase periods P1-P6. In Figures 6 and 7, the rotor poles 91-96 are at angular positions corresponding to an electrical angle of 90 degrees.
  • stator poles 61-66 excited by the three-phase currents IU, IV, and IW, excite the rotor poles 91-96.
  • the rotor poles 91-96 are located to the left of the nearest stator pole in the circumferential direction. Therefore, the rotor poles 91-96 are attracted to the right in the circumferential direction.
  • stator poles 61-66 when three-phase currents IU, IV, and IW are supplied to the six-phase windings 71-76, the stator poles 61-66 have the same polarity as the closest magnet pole among the magnet poles 81-86. In other words, the stator poles 61-66 are each excited and have the same polarity as the magnet pole on the circumferential right side. As a result, the excited stator poles 61-66 during the inductance increase period of 0-180 electrical degrees repel the magnet poles 81-86 to the circumferential right side.
  • stator poles 61-66 In this single-phase mode, by switching the current direction of the phase currents IU, IV, and IW, the stator poles 61-66 always have the same polarity as the magnet poles 81-86 adjacent to them on the circumferential front side.
  • the double lines shown indicate the magnetic repulsive forces applied to the magnet poles
  • the single lines shown indicate the magnetic attractive forces applied to the rotor poles.
  • the stator poles 61-66 apply a reluctance torque to all of the rotor poles 91-96, and further apply a repulsive force component of the magnet torque to all of the magnet poles 81-86.
  • the hybrid SRM 1 driven in this single-phase mode can have a high torque/weight ratio.
  • Figure 8 is a timing chart showing the three-phase currents (IU, IV, and IW) supplied to the phase windings 71-76 and the inductances (LU, LV, and LW) of the phase windings 71-76.
  • the three-phase currents (IU, IV, and IW) become three-phase AC currents, as in the three-phase mode.
  • the phase windings 71 and 74 have an inductance LU
  • the phase windings 72 and 75 have an inductance LV
  • the phase windings 73 and 76 have an inductance LW.
  • the six phase periods P1-P6 correspond to one cycle period of the three-phase AC current.
  • Figure 6 shows the phase period P1-P3, and Figure 7 shows the phase period P4-P6.
  • this single-phase mode simultaneously supplies three-phase AC currents IU, IV, and IW to the phase windings 71-76.
  • This causes all stator poles 61-66 to attract all rotor poles 91-96 and repel all magnet poles 81-86.
  • This single-phase mode achieves a high torque/weight ratio.
  • Figure 9 shows the change in polarity of the stator poles 61-66 excited by the three phase currents (IU, IV, and IW).
  • This single-phase generating mode is an operating mode in which the hybrid SRM 1 operates as a single-phase switched reluctance generator (SRG). As is well known, a motor can operate as a generator.
  • This single-phase generating mode is essentially the same as the single-phase mode shown in Figs. 6-9.
  • Fig. 10 is essentially the same as Fig. 6,
  • Fig. 11 is essentially the same as Fig. 7,
  • Fig. 12 is essentially the same as Fig. 8, and
  • Fig. 13 is essentially the same as Fig. 9.
  • each of the stator poles 61-66 is positioned in front of the nearest magnet pole and behind the nearest rotor pole.
  • Figures 10 and 11 show positions at an electrical angle of 270 degrees in phase periods P1-P6.
  • Each excited stator pole 61-66 has the same polarity as the nearest magnet pole.
  • each excited stator pole 61-66 magnetizes the nearest rotor pole with the opposite polarity.
  • phase currents IU, IV, and IW flow through the phase windings 71-76 during the inductance reduction period having an angular range of 180 electrical degrees to 0 electrical degrees.
  • the phase currents IU, IV, and IW are supplied to the phase windings 71-76 at the beginning of the current conduction period. Thereafter, the supply of these phase currents is stopped, but the phase windings 71-76 continue to pass the generated current to the power converter 2.
  • the three phase currents IU, IV, and IW flowing through the phase windings 71-76 are each AC currents. This is because the polarity of the stator poles 61-66 is changed.
  • the single-phase power generation mode of this embodiment is essentially the same as the power generation mode of a conventional single-phase SRG. However, according to this embodiment, a high generated voltage can be obtained by using the magnet poles arranged in the rotor slots.
  • FIG. 14 is a radial cross-sectional view of this hybrid SRM 1.
  • the stator core 11 has two stator pole sets. Each stator pole set consists of stator poles 61-66. Therefore, the rotor core 12 also has two rotor pole sets, each of which consists of rotor poles 91-96.
  • the rotor core 12 has two magnet pole sets. Each magnet pole set consists of magnet poles 81-86.
  • the outer peripheral surface of the stator core 11 is fixed to the inner peripheral surface of the cylindrical portion 101 of the housing 100.
  • a ring-shaped flange portion 200 protrudes radially outward from the outer peripheral surface of the cylindrical portion 101.
  • the flange portion 200 is cast integrally with the housing 100 using an aluminum alloy. This flange portion 200 reduces radial vibration of the cylindrical portion 101. Furthermore, the flange portion 200 suppresses an increase in the weight of the housing 100.
  • Figure 15 is a plan view showing the details of the flange portion 200.
  • Nine flange portions 200 protrude radially outward from the outer circumferential surface of the cylindrical portion 101 of the housing 100.
  • Each of the flange portions 200 is formed around the entire circumference of the cylindrical portion 101.
  • An air passage of a predetermined width is formed between each of the flange portions 200.
  • the air flow for cooling the flange portions 200 flows perpendicular to the axial direction of the rotating shaft 13.
  • the cylindrical portion 101 is suppressed from vibrating radially due to the radial vibration of the stator core 11. In the single-phase mode, all of the stator poles 61-66 vibrate radially at the same time.
  • the flange portions 200 achieve the effects of vibration suppression, weight reduction, and improved heat dissipation.
  • the average height of the flange portions 200 is formed to be greater than the average thickness of the cylindrical portion 101.
  • FIG 16 is a plan view showing a modified example of the flange 200.
  • An aircraft propeller 400 is fixed to the rotating shaft 13 of a single-phase SRM 1 having an inner rotor structure.
  • the housing 100 has a cylindrical portion 101.
  • a spiral coil flange 300 is fixed to the outer circumferential surface of the cylindrical portion 101.
  • the cylindrical portion 101 and the flange 300 are cast together.
  • the air flow 401 formed by the propeller 400 flows into the spiral groove 301 between the spiral coil flanges 300.
  • the flange 300 is well cooled by the air flow 401.
  • the flange 300 is formed around the entire circumference of the cylindrical portion 101. Therefore, radial vibration of the cylindrical portion 101 is suppressed.
  • Figure 17 is a radial cross-sectional view partially showing a modified example of the rotor core 12.
  • the magnet poles 81-86 are formed of ferrite magnets.
  • the magnet poles 81-86 are housed separately in rotor slots 500, which are grooves formed between the rotor poles 91-96.
  • the side of the rotor poles 91-96 facing each rotor slot 500 has protrusions 501 and 502 that protrude toward the rotor slot 500.
  • the protrusions 501 and 502 are located in the radial middle of the rotor poles 91-96.
  • the circumferential width of the rotor slot 500 is narrowed by the protrusions 501 and 502. This prevents the magnet poles 81-86 from detaching radially outward from the rotor core 12 due to centrifugal force.
  • the rotor core 12 is fixed to the rotating shaft 13 via a cylinder member 120 made of an aluminum alloy. This reduces the weight of the rotor.
  • Figure 18 is an axial cross-sectional view showing an outer rotor type hybrid SRM 1.
  • the hybrid SRM 1 has a stator core 11 fixed to a stationary shaft 130 that protrudes upward from a fixed base 14.
  • a phase winding 7 is wound around the stator core 11.
  • a rotating rotor core 12 is disposed radially outside the stator core 11 with an electromagnetic gap between them.
  • the rotor core 12 is sandwiched vertically between rotor housings 15 and 16, which form the base of the propeller.
  • the rotor housings 15 and 16 are fastened together with bolts (not shown) to form a single unit.
  • the rotor housings 15 and 16 are rotatably supported by a stationary shaft 130 through bearings 18 and 19.
  • the outer periphery (not shown) of the rotor housings 15 and 16 has a predetermined number of rotor blades.
  • This hybrid SRM 1 which employs an outer rotor structure, has the advantage of being able to effectively prevent the permanent magnets from coming off the rotor core 12.
  • Figure 19 is a flowchart showing the remagnetization operation of the magnet poles 81-86 of the rotor core 12.
  • the circumferential positions of the stator poles 61-66 have a structure that allows them to be aligned with the circumferential positions of the magnet poles 81-86, for example as shown in FIG. 14. Therefore, when the magnet poles 81-86 are stationary at the same circumferential positions as the stator poles 61-66, the magnet poles 81-86 can be remagnetized by passing a remagnetization current through the stator poles 61-66.
  • the magnet poles 81-86 When the hybrid SRM 1 is stopped, the magnet poles 81-86 generally stop at the same circumferential position as the stator poles 61-66 due to permanent magnetic force.
  • the polarity of the magnet poles 81-86 facing the stator poles 61-66 is determined from the detected rotation angle of the rotor core 12.
  • the direction of the DC current supplied to the phase windings 71-76 is then determined according to the polarity of the magnet poles 81-86.
  • a direct current supplied to a phase winding wound around a stator pole facing magnet pole 81 which has a north pole on its surface, has a direction that magnetizes the end face of this stator pole facing magnet pole 81 into a south pole. This allows magnet poles 81-86 to be easily remagnetized.
  • the remagnetization subroutine shown in FIG. 19 is started after it is confirmed that the motor is stationary. First, based on the detected rotational position of the rotor core 12, it is determined whether the magnet poles 81-86 are stopped at the circumferential position of the stator poles 61-66 (S100). Next, if the magnet poles 81-86 are not stopped at the same circumferential position as the stator poles 61-66, the three-phase mode is implemented to rotate the rotor core 12 slightly (S102). Next, the alignment work is again carried out, consisting of determining the alignment state and implementing the three-phase mode.
  • step S100 When it is determined in step S100 that the magnet poles 81-86 are stopped in alignment with the stator poles 61-66, a DC current is supplied to the phase windings 71-76 for a predetermined period of time or more (S104). As a result, the residual magnetic field of the magnet poles 81-86 is strengthened, and the demagnetization problem of the ferrite magnets is solved.
  • the first advantage of this hybrid SRM 1 which can essentially operate as a single-phase switched reluctance motor, is that the number of poles of the motor can be easily increased. This advantage is particularly important in aircraft motors.
  • the force 'F' that the propeller exerts on the airflow is equal to 'mV'. Therefore, the propeller receives a thrust (-F) from the airflow. Furthermore, the kinetic energy 'E' that the propeller exerts on the airflow is equal to '0.5mVV'. Therefore, the thrust per unit of energy consumed '-F/E' is '2/V'. This means that the lower the speed 'V', the more efficiently the thrust can be obtained. In short, it can be understood that a large propeller rotating at a slow speed generates thrust more efficiently than a small propeller rotating at a high speed.
  • propellers are notorious for having a problem with wingtip stall. Therefore, the propeller's rotation speed is strictly limited. Conventional propellers on small aircraft have a rotation speed of about 25 rps.
  • a motor can increase its output per weight by increasing its rotational speed.
  • a reduction gear mechanism placed between the motor and the propeller increases the torque applied to the propeller.
  • the weight of the motor should be reduced as much as possible, and the weight increase due to the reduction gear mechanism is a serious problem.
  • loss in the reduction gear mechanism is also a serious problem.
  • a low-speed, high-torque motor is the best choice for an aircraft motor. It is well known that the torque of a motor can be increased by increasing the number of motor poles. However, the motor weight increases significantly with the increase in the number of poles in a conventional motor such as a three-phase PMSM.
  • a 24-pole three-phase synchronous motor requires 72 stator poles.
  • This problem is solved by adopting a single-phase switched reluctance motor.
  • a single-phase SRM with 12 stator poles has a number of poles that is substantially equal to a three-phase synchronous motor (PMSM) with 72 stator poles.
  • PMSM three-phase synchronous motor
  • a single-phase SRM is suitable as a direct-drive type aircraft motor for propellers.
  • the hybrid SRM 1 of this embodiment can be used in a variety of mobile devices other than aircraft, wind power generators, and other applications.
  • a three-phase mode instead of a single-phase mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

According to the present invention, a rotor core of a single-phase SRM has a magnet pole disposed among rotor poles. First to third magnet poles adjacent to one another in the axial direction have the N-pole, and fourth to sixth magnet poles adjacent to one another in the axial direction have the S-pole. The single-phase SRM has a single-phase mode and a three-phase mode. The single-phase mode generates single-phase reluctance torque, similar to conventional single-phase SRMs. The single-phase mode further generates magnet torque. In the three-phase mode, a magnet set composed of the first to third magnet poles is considered as a virtual magnet pole (N-pole), and another magnet set composed of the fourth to sixth magnet poles is considered as another virtual magnet pole (S-pole). Three-phase AC current is supplied to six kinds of phase windings sequentially wound around six stator poles. As a result, the single-phase SRM rotates as a three-phase permanent magnet synchronous motor in the three-phase mode.

Description

スイッチドリラクタンスモータ装置Switched reluctance motor device
本発明は、スイッチドリラクタンスモータ装置に関し、特に航空機用モータに好適な単相スイッチドリラクタンスモータ装置に関する。本発明のスイッチドリラクタンスモータ装置は、スイッチドリラクタンス発電機を含む。 The present invention relates to a switched reluctance motor device, and in particular to a single-phase switched reluctance motor device suitable for an aircraft motor. The switched reluctance motor device of the present invention includes a switched reluctance generator.
モータのトルク重量比は、航空機用途などにおいて重要である。スイッチドリラクタンスモータ(SRM)は、永久磁石同期モータ(PMSM)よりも低いトルク重量比(T/kg)をもつ。従来のSRMのこの問題を改善するために、永久磁石が追加されたSRMであるハイブリッドSRMが提案されている。このハイブリッドSRMは、周方向に隣接する2つのロータポールの間のロータスロットに配置されたマグネットポールをもつ。ロータポールは軟磁性の突極であり、マグネットポールは永久磁石からなる突極である。 The torque-to-weight ratio of a motor is important in aircraft applications and the like. Switched reluctance motors (SRMs) have a lower torque-to-weight ratio (T/kg) than permanent magnet synchronous motors (PMSMs). To improve this problem of conventional SRMs, a hybrid SRM has been proposed, which is an SRM with an added permanent magnet. This hybrid SRM has a magnet pole located in the rotor slot between two circumferentially adjacent rotor poles. The rotor poles are salient poles made of soft magnetic material, and the magnet poles are salient poles made of permanent magnets.
特許文献1は、マグネットポールが従来の3相SRMのロータスロットに配置された3相ハイブリッドSRMを提案している。従来の3相SRMは、ロータポールと異なる数のステータポールをもつ。このため、従来の3相SRMのロータスロットは、ロータポールよりも広い周方向幅をもつ。したがって、マグネットポールはロータスロットの周方向中央位置に配置される。ロータポールを挟んで周方向に隣接する2つのマグネットポールは互いに異なる極性をもつ。 Patent Document 1 proposes a three-phase hybrid SRM in which magnet poles are arranged in the rotor slots of a conventional three-phase SRM. A conventional three-phase SRM has a different number of stator poles than the rotor poles. As a result, the rotor slots of a conventional three-phase SRM have a wider circumferential width than the rotor poles. Therefore, the magnet poles are arranged in the circumferential center of the rotor slot. Two magnet poles adjacent to each other in the circumferential direction across the rotor pole have different polarities.
本発明者により出願された特許文献2も従来の3相SRMのロータスロットに配置されたマグネットポールをもつ3相ハイブリッドSRMを提案している。マグネットポールは、ロータスロットの周方向一方側に偏って配置されている。 Patent document 2, filed by the present inventor, also proposes a three-phase hybrid SRM with magnet poles arranged in the rotor slots of a conventional three-phase SRM. The magnet poles are arranged biased toward one side of the rotor slot in the circumferential direction.
単相SRMが他の形式のSRMとして提案されている。単相SRMは、ロータポールの数と等しい数のステータポールをもつ。しかし、この単相SRMの欠点は、高い振動及び騒音をもつこと、並びに、起動トルクの形成が容易ではないことである。 The single-phase SRM has been proposed as another type of SRM. It has a number of stator poles equal to the number of rotor poles. However, the disadvantages of the single-phase SRM are that it has high vibration and noise, and it is not easy to generate starting torque.
特開2004-248730号公報JP 2004-248730 A 特開2010-193700号公報JP 2010-193700 A
現実において、従来の3相ハイブリッドSRMは、特殊用途を除いて永久磁石同期モータ(PMSM)との競争において勝てなかった。しかしながら、従来の3相PMSMに使用されるレアアース材料は潜在的に不安定な供給環境下にある。 In reality, conventional three-phase hybrid SRMs cannot compete with permanent magnet synchronous motors (PMSMs) except for special applications. However, the rare earth materials used in conventional three-phase PMSMs are potentially subject to an unstable supply environment.
モータコストに占めるレアアースコストを低減するために、3相PMSMの最高回転数が増加している。しかし、この最高回転数の増加は、減速ギヤ機構の損失及び重量の増加を要求する。特に、航空機用モータは、減速ギヤ機構無しにプロペラに結合されることが望ましい。 To reduce the share of rare earth costs in motor costs, the maximum rotational speed of three-phase PMSMs is being increased. However, this increase in maximum rotational speed requires losses in the reduction gear mechanism and an increase in weight. In particular, it is desirable for aircraft motors to be coupled to propellers without a reduction gear mechanism.
本発明の一つの目的は、優れたトルク/重量比をもつスイッチドリラクタンスモータ装置を提供することである。 One object of the present invention is to provide a switched reluctance motor device having an excellent torque/weight ratio.
本発明の一つの様相において、単相SRMが採用される。ただし、この単相SRMのロータコアは、永久磁石からなるマグネットポールをもつ。ステータポール数及びロータポール数は等しい。さらに、マグネットポール数もロータポール数と等しい。マグネットポールはそれぞれ、周方向に隣接する2つのロータポールの間の凹部であるロータスロットに配置される。言い換えれば、この単相SRMのロータは、軟磁性突極であるロータポール、及び、永久磁石極であるマグネットポールが、周方向交互に配置された構造をもつ。 In one aspect of the present invention, a single-phase SRM is employed. However, the rotor core of this single-phase SRM has magnet poles made of permanent magnets. The number of stator poles and the number of rotor poles are equal. Furthermore, the number of magnet poles is also equal to the number of rotor poles. Each magnet pole is arranged in a rotor slot, which is a recess between two circumferentially adjacent rotor poles. In other words, the rotor of this single-phase SRM has a structure in which rotor poles, which are soft magnetic salient poles, and magnet poles, which are permanent magnet poles, are arranged alternately in the circumferential direction.
この単相SRMは単相モード及び3相モードをもつ。従来の単相SRMの動作と同じであるこの単相モードによれば、全てのステータポールは相巻線のインダクタンス増加期間において一斉に励磁される。これにより、全てのステータポールは、全てのロータポールを吸引する。 This single-phase SRM has a single-phase mode and a three-phase mode. In this single-phase mode, which is the same as the operation of a conventional single-phase SRM, all stator poles are excited simultaneously during the period when the inductance of the phase winding increases. As a result, all stator poles attract all rotor poles.
この単相モードによればさらに、全てのステータポールは、リラクタンストルクに加えてマグネットトルクも発生する。このマグネットトルクは、ステータポールがマグネットポールを磁気的に反発することにより形成される。ステータポールは、最も近接しているマグネットポールと同一極性に励磁される。このマグネットポールは周方向においてステータポールの前方に配置される。これにより、全てのステータポールは、上記したリラクタンストルクに加えて、磁気的反発力成分からなるマグネットトルクを発生する。 Furthermore, in this single-phase mode, all stator poles generate magnet torque in addition to the reluctance torque. This magnet torque is formed by the stator poles magnetically repelling the magnet poles. The stator poles are excited with the same polarity as the closest magnet pole. This magnet pole is positioned in front of the stator pole in the circumferential direction. As a result, all stator poles generate magnet torque consisting of a magnetic repulsive force component in addition to the reluctance torque described above.
単相SRMのロータが回転する時、ステータポールに巻かれた相巻線は、インダクタンス増加期間及びインダクタンス減少期間を交互にもつ。単相モードにおいて、単相電流はインダクタンス増加期間に相巻線に供給される。 When the rotor of a single-phase SRM rotates, the phase windings wound on the stator poles have alternating periods of increasing inductance and decreasing inductance. In single-phase mode, a single-phase current is supplied to the phase winding during the periods of increasing inductance.
結局、この単相SRMの単相モードは、リラクタンストルクとマグネットトルクの反発力成分との両方をインダクタンス増加期間に同時に発生する。これにより、この単相SRMは、従来の単相SRMよりも高いトルク/重量比及びトルク/電流比をもつことができる。なお、ステータポールは、最も近いマグネットポールの磁気極性の変更に応じて磁気極性を変更するために、交流電流により励磁される。 As a result, the single-phase mode of this single-phase SRM simultaneously generates both the reluctance torque and the repulsive force component of the magnet torque during the inductance increase period. This allows this single-phase SRM to have a higher torque/weight ratio and torque/current ratio than a conventional single-phase SRM. The stator poles are excited with alternating current to change magnetic polarity in response to the change in magnetic polarity of the nearest magnet pole.
この単相SRMによれば、永久磁石の支持が格段に容易となる。この効果がさらに説明される。単相SRMでは、ロータポールの周方向幅はロータスロットの周方向幅と本質的に等しい。さらに、マグネットポールの周方向幅は、ロータスロットの周方向幅と等しい。したがって、マグネットポールを形成する永久磁石は、周方向に隣接する2つのロータポールにより支持されることができる。 This single-phase SRM makes it much easier to support the permanent magnets. This effect is explained further. In a single-phase SRM, the circumferential width of the rotor poles is essentially equal to the circumferential width of the rotor slots. Furthermore, the circumferential width of the magnet poles is equal to the circumferential width of the rotor slots. Therefore, the permanent magnets forming the magnet poles can be supported by two circumferentially adjacent rotor poles.
一つの好適態様において、この単相SRMは、3相永久磁石同期モータ(3相PMSM)として動作可能なモータ構造をもつ。ステータポール、ロータポール、及びマグネットポールはそれぞれ、6の整数倍に等しい個数をもつ。周方向に順番に配置された3つのマグネットポールはN極磁石セットを形成し、周方向に順番に配置されたもう一つの3つのマグネットポールはS極磁石セットを形成する。N極磁石セット及びS極磁石セットは周方向に交互に配置される。 In one preferred embodiment, this single-phase SRM has a motor structure that can operate as a three-phase permanent magnet synchronous motor (three-phase PMSM). The number of stator poles, rotor poles, and magnet poles are each equal to an integer multiple of six. Three magnet poles arranged in sequence in the circumferential direction form an N-pole magnet set, and another three magnet poles arranged in sequence in the circumferential direction form an S-pole magnet set. The N-pole magnet set and the S-pole magnet set are arranged alternately in the circumferential direction.
N極をもつ隣接する3つのマグネットポールは一つの仮想N極と見なすことができ、S極をもつ隣接する3つのマグネットポールは一つの仮想S極と見なすことができる。したがって、これらの仮想N極及び仮想S極は周方向交互に配置される。 Three adjacent magnet poles with a north pole can be considered as one virtual north pole, and three adjacent magnet poles with a south pole can be considered as one virtual south pole. Therefore, these virtual north poles and virtual south poles are arranged alternately in the circumferential direction.
結局、ロータ回転と同期する3相交流電流がこの単相SRMに供給される時、この単相SRMは、3相永久磁石同期モータとなる。この運転モードは3相モードと呼ばれる。したがって、3相モードは安定な起動トルクを発生する。 In the end, when a three-phase AC current synchronized with the rotor rotation is supplied to this single-phase SRM, the single-phase SRM becomes a three-phase permanent magnet synchronous motor. This operating mode is called three-phase mode. Therefore, three-phase mode generates a stable starting torque.
もう一つの好適態様において、6種類の相巻線が6つのステータポールに順番に集中巻きされる。3相モードによれば、互いに電気角60度離れた位相をもつ6種類の相電流が6種類の相巻線に別々に供給される。この3相モードにおいて、ステータポールは、最も近接している前記マグネットポールと同一極性に励磁される。これにより、この永久磁石3相同期モータは、少なくともマグネットトルクの反発力成分を利用することができる。 In another preferred embodiment, six different phase windings are wound in a concentrated manner around six stator poles in sequence. According to the three-phase mode, six different phase currents, each having a phase separated by an electrical angle of 60 degrees from the others, are supplied separately to the six different phase windings. In this three-phase mode, the stator pole is excited with the same polarity as the magnet pole that is closest to it. This allows the permanent magnet three-phase synchronous motor to utilize at least the repulsive force component of the magnet torque.
もう一つの好適態様において、この単相SRMを駆動するパワーコンバータは、それぞれ電気角120度離れた3つの相電流を形成する3つのHブリッジからなる。3つの相電流の通電方向は、回転するロータポールの位置と同期して切り替えられる。この3相モードによれば、3つの相電流の通電方向切替により、ステータポールは、近接するマグネットポールを吸引し、遠ざかるマグネットポールと反発する向きに励磁される。各相電流は、正弦波、矩形波、及び台形波のような種々の波形をもつことができる。これにより、3相モードは安定した同期トルクを発生することができる。 In another preferred embodiment, the power converter driving this single-phase SRM consists of three H-bridges that generate three phase currents separated by an electrical angle of 120 degrees. The current directions of the three phase currents are switched in synchronization with the position of the rotating rotor pole. In this three-phase mode, the stator poles are excited in a direction that attracts the nearby magnet poles and repels the receding magnet poles by switching the current directions of the three phase currents. Each phase current can have various waveforms such as sine waves, square waves, and trapezoidal waves. This allows the three-phase mode to generate stable synchronous torque.
もう一つの好適態様において、3相モードは、単相SRMを起動するために実施される。これにより、単相SRMは確実に始動されることができる。好適な態様において、3相モードは、高速回転時に実施される。3相モードにおけるステータ電流は、単相モードにおけるステータ電流よりも低い周波数成分をもつため、高速回転時における鉄損を低減することができる。 In another preferred embodiment, the three-phase mode is implemented to start the single-phase SRM. This allows the single-phase SRM to be reliably started. In a preferred embodiment, the three-phase mode is implemented during high-speed rotation. The stator current in the three-phase mode has lower frequency components than the stator current in the single-phase mode, so that iron loss during high-speed rotation can be reduced.
もう一つの好適な態様において、この単相SRMはアウターロータ構造をもつ。これにより、永久磁石が高速回転するロータコアから離脱する事故を良好に防止することができる。 In another preferred embodiment, this single-phase SRM has an outer rotor structure. This effectively prevents the permanent magnet from becoming detached from the rotor core rotating at high speed.
もう一つの好適態様において、インナーロータ構造をもつ単相SRMのハウジングは、ステータコアが固定される円筒部をもつ。この円筒部の外周面は、径方向外側へ突出する多数の鍔部をもつ。これらの鍔部は輪板形状又は螺旋コイル形状をもつ。これにより、音響ノイズ及び放熱の両方を改善することができる。従来のインナーロータタイプのスイッチドリラクタンスモータは、ステータコアが固定されたハウジングの円筒部が強力な音響ノイズ源となるという欠点をもっていた。この態様によれば、鍔部は円筒部の径方向振動を低減する。 In another preferred embodiment, the housing of a single-phase SRM with an inner rotor structure has a cylindrical portion to which the stator core is fixed. The outer peripheral surface of this cylindrical portion has a number of flanges that protrude radially outward. These flanges have a ring plate shape or a spiral coil shape. This makes it possible to improve both acoustic noise and heat dissipation. Conventional inner rotor type switched reluctance motors have the disadvantage that the cylindrical portion of the housing to which the stator core is fixed is a strong source of acoustic noise. According to this embodiment, the flanges reduce radial vibration of the cylindrical portion.
もう一つの好適態様において、マグネットポールを形成する永久磁石としてフエライト磁石が採用される。このフエライト磁石の減磁問題を改善するために、直流電流が相巻線へ供給される。単相SRMの各ステータポールは各マグネットポールと周方向において重なることができる。言い換えれば、各ステータポール及び各マグネットポールは、周方向において同じ位置をもつことができる。マグネットポールがステータポールと同じ位置をもつ時、マグネットポールの飽和磁束を回復する直流電流が単相SRMの相巻線に供給される。これにより、マグネットポールの磁化は再び回復される。 In another preferred embodiment, ferrite magnets are used as permanent magnets forming the magnet poles. To improve the demagnetization problem of the ferrite magnets, a DC current is supplied to the phase windings. Each stator pole of the single-phase SRM can overlap with each magnet pole in the circumferential direction. In other words, each stator pole and each magnet pole can have the same position in the circumferential direction. When the magnet pole has the same position as the stator pole, a DC current is supplied to the phase windings of the single-phase SRM to restore the saturation magnetic flux of the magnet poles. This restores the magnetization of the magnet poles again.
図1は、本発明のスイッチドリラクタンスモータ(SRM)装置を示すブロック回路図である。FIG. 1 is a block circuit diagram showing a switched reluctance motor (SRM) device of the present invention. 図2は、3相モードを説明するための模式展開図である。FIG. 2 is a schematic development diagram for explaining the three-phase mode. 図3は、3相モードを説明するための模式展開図である。FIG. 3 is a schematic development diagram for explaining the three-phase mode. 図4は、3相モードにおけるインダクタンス及び3相交流電流通電期間を示すタイミングチャートである。FIG. 4 is a timing chart showing the inductance and the three-phase AC current supply period in the three-phase mode. 図5は、3相モードにおけるステータポールの極性変更パターンを示すタイミングチャートである。FIG. 5 is a timing chart showing a polarity change pattern of the stator poles in the three-phase mode. 図6は、単相モードを説明するための模式展開図である。FIG. 6 is a schematic development view for explaining the single-phase mode. 図7は、単相モードを説明するための模式展開図である。FIG. 7 is a schematic development view for explaining the single-phase mode. 図8は、単相モードにおけるインダクタンス及び3相交流電流通電期間を示すタイミングチャートである。FIG. 8 is a timing chart showing the inductance and the three-phase AC current supply period in the single-phase mode. 図9は、単相モードにおけるステータポールの極性変更パターンを示すタイミングチャートである。FIG. 9 is a timing chart showing a polarity change pattern of the stator poles in the single-phase mode. 図10は、単相発電モードを説明するための模式展開図である。FIG. 10 is a schematic development view for explaining the single-phase power generation mode. 図11は、単相発電モードを説明するための模式展開図である。FIG. 11 is a schematic development view for explaining the single-phase power generation mode. 図12は、単相発電モードにおけるインダクタンス及び3相交流電流通電期間を示すタイミングチャートである。FIG. 12 is a timing chart showing the inductance and the three-phase AC current supply period in the single-phase power generation mode. 図13は、単相発電モードにおけるステータポールの極性変更パターンを示すタイミングチャートである。FIG. 13 is a timing chart showing a polarity change pattern of the stator poles in the single-phase power generation mode. 図14は、この実施例のスイッチドリラクタンスモータを模式的に示す径方向断面図である。FIG. 14 is a radial sectional view showing a schematic diagram of the switched reluctance motor of this embodiment. 図15は、図14に示されるスイッチドリラクタンスモータの平面図である。FIG. 15 is a plan view of the switched reluctance motor shown in FIG. 図16は、図14に示されるスイッチドリラクタンスモータの他例を示す平面図である。FIG. 16 is a plan view showing another example of the switched reluctance motor shown in FIG. 図17は、図14に示されるロータの変形例を示す部分拡大断面図である。FIG. 17 is a partially enlarged cross-sectional view showing a modification of the rotor shown in FIG. 図18は、アウターロータタイプのスイッチドリラクタンスモータを示す軸方向模式断面図である。FIG. 18 is a schematic axial cross-sectional view showing an outer rotor type switched reluctance motor. 図19は、硬質フエライト材料製のマグネットポールを再着磁する動作を示すフローチャートである。FIG. 19 is a flow chart showing the operation of remagnetizing a magnet pole made of a hard ferrite material.
  本発明のスイッチドリラクタンスモータ(SRM)装置の好適な実施形態が図面を参照して説明される。図面において、’AX’は軸方向を示し、’RA’は径方向を示し、’PH’は周方向を示す。 A preferred embodiment of a switched reluctance motor (SRM) device of the present invention will be described with reference to the drawings. In the drawings, ’AX’ indicates the axial direction, ’RA’ indicates the radial direction, and ’PH’ indicates the circumferential direction.
図1は、このSRM装置を示すブロック回路図である。このSRM装置は、ハイブリッドSRM1、パワーコンバータ2、及びコントローラ4をもつ。単相SRMであるハイブリッドSRM1の相巻線は、U相巻線71及び74、V相巻線72及び75、及びW相巻線73及び76からなる。 Figure 1 is a block circuit diagram showing this SRM device. This SRM device has a hybrid SRM 1, a power converter 2, and a controller 4. The phase windings of the hybrid SRM 1, which is a single-phase SRM, consist of U-phase windings 71 and 74, V-phase windings 72 and 75, and W-phase windings 73 and 76.
パワーコンバータ2は、U相Hブリッジ21、V相Hブリッジ22、及びW相Hブリッジ23からなる。3つのHブリッジ21-23はそれぞれ、レグと呼ばれる2つのハーフブリッジからなる。Hブリッジ21は、U相巻線71及び74にU相電流IUを供給する。Hブリッジ22は、V相巻線72及び75にV相電流IVを供給する。Hブリッジ23は、W相巻線73及び76にW電流IWを供給する。 The power converter 2 consists of a U-phase H-bridge 21, a V-phase H-bridge 22, and a W-phase H-bridge 23. Each of the three H-bridges 21-23 consists of two half-bridges called legs. The H-bridge 21 supplies a U-phase current IU to the U-phase windings 71 and 74. The H-bridge 22 supplies a V-phase current IV to the V-phase windings 72 and 75. The H-bridge 23 supplies a W-current IW to the W-phase windings 73 and 76.
バッテリ3は3つのHブリッジに直流電力を供給する。パワーコンバータ2は、コントローラ4により制御される。コントローラ4は、ハイブリッドSRM1のロータ回転角度及び電流値を図略のセンサから受け取る。平滑キャパシタ5はバッテリ3と並列接続されている。 The battery 3 supplies DC power to the three H-bridges. The power converter 2 is controlled by a controller 4. The controller 4 receives the rotor rotation angle and current value of the hybrid SRM 1 from sensors (not shown). The smoothing capacitor 5 is connected in parallel with the battery 3.
コントローラ4は、3相モード及び単相モードをもつ。3相モードにおいて、ハイブリッドSRM1は、永久磁石同期モータ(PMSM)として運転される。単相モードにおいて、ハイブリッドSRM1は、単相スイッチドリラクタンスモータ(単相SRM)として運転される。3相モードが図2-図5を参照して説明される。単相モードが図6-図9を参照して説明される。さらに、単相モードにより実施される発電モードである単相発電モードが図10-図13を参照して説明される。 The controller 4 has a three-phase mode and a single-phase mode. In the three-phase mode, the hybrid SRM 1 is operated as a permanent magnet synchronous motor (PMSM). In the single-phase mode, the hybrid SRM 1 is operated as a single-phase switched reluctance motor (single-phase SRM). The three-phase mode is described with reference to Figures 2-5. The single-phase mode is described with reference to Figures 6-9. Furthermore, the single-phase power generation mode, which is a power generation mode implemented by the single-phase mode, is described with reference to Figures 10-13.
図2-図3、図6-図7、及び図10-図11は、各モードにおけるステータコア11及びロータコア12の相対位置の変化を示す展開図である。ステータコア11及びロータコア12はそれぞれ、積層された電磁鋼板からなる。これらの図において、電磁ギャップを挟んで対面するステータコア11及びロータコア12はそれぞれ、直線的に展開された形状に変形されている。したがって、ステータコア11のバックヨーク110及びロータコア12のバックヨーク120は図2-図3、図6-図7、及び図10-図11において直線状に図示されている。 Figures 2-3, 6-7, and 10-11 are developments showing the change in the relative position of the stator core 11 and rotor core 12 in each mode. The stator core 11 and rotor core 12 are each made of laminated electromagnetic steel sheets. In these figures, the stator core 11 and rotor core 12, which face each other across an electromagnetic gap, are each deformed into a linearly developed shape. Therefore, the back yoke 110 of the stator core 11 and the back yoke 120 of the rotor core 12 are shown linearly in Figures 2-3, 6-7, and 10-11.
位相期間P1、P2、及びP3におけるステータコア11及びロータコア12の相対位置が、図2、図6、及び図10に示されている。位相期間P4、P5、及びP6におけるステータコア11及びロータコア12の相対位置が、図3、図7、及び図11に示されている。このハイブリッドSRM1の1サイクル周期は、これら6つの位相期間P1-P6からなる。このハイブリッドSRM1のロータコア12は、1サイクル周期の間に6ポールピッチだけ前進する。言い換えれば、ロータコア12は一つの位相期間において1ポールピッチだけ前進する。 The relative positions of the stator core 11 and rotor core 12 in phase periods P1, P2, and P3 are shown in Figures 2, 6, and 10. The relative positions of the stator core 11 and rotor core 12 in phase periods P4, P5, and P6 are shown in Figures 3, 7, and 11. One cycle period of this hybrid SRM 1 consists of these six phase periods P1-P6. The rotor core 12 of this hybrid SRM 1 advances six pole pitches during one cycle period. In other words, the rotor core 12 advances one pole pitch in one phase period.
図2-図3、図6-図7、及び図10-図11において、ステータコア11は、6つのステータポール61-66からなるステータポールセットをもつ。ステータポール61-66はロータコア12に向けて突出する軟磁性の突極である。6つのステータポール61-66は、互いに等しい間隔を隔てて順番に配置されている。相巻線71がステータポール61に巻かれ、相巻線72がステータポール62に巻かれている。相巻線73がステータポール63に巻かれ、相巻線74がステータポール64に巻かれている。相巻線75がステータポール65に巻かれ、相巻線76がステータポール66に巻かれている。 In Figures 2-3, 6-7, and 10-11, the stator core 11 has a stator pole set consisting of six stator poles 61-66. The stator poles 61-66 are soft magnetic salient poles that protrude toward the rotor core 12. The six stator poles 61-66 are arranged in sequence at equal intervals from one another. A phase winding 71 is wound around the stator pole 61, and a phase winding 72 is wound around the stator pole 62. A phase winding 73 is wound around the stator pole 63, and a phase winding 74 is wound around the stator pole 64. A phase winding 75 is wound around the stator pole 65, and a phase winding 76 is wound around the stator pole 66.
相巻線71の巻方向は相巻線74の巻方向と反対である。したがって、ステータポール61の先端がN極となる時、ステータポール64の先端はS極となる。相巻線72の巻方向は相巻線75の巻方向と反対である。したがって、ステータポール62の先端がN極となる時、ステータポール65の先端はS極となる。相巻線73の巻方向は相巻線76の巻方向と反対である。したがって、ステータポール63の先端がN極となる時、ステータポール66の先端はS極となる。 The winding direction of phase winding 71 is opposite to that of phase winding 74. Therefore, when the tip of stator pole 61 is a north pole, the tip of stator pole 64 is a south pole. The winding direction of phase winding 72 is opposite to that of phase winding 75. Therefore, when the tip of stator pole 62 is a north pole, the tip of stator pole 65 is a south pole. The winding direction of phase winding 73 is opposite to that of phase winding 76. Therefore, when the tip of stator pole 63 is a north pole, the tip of stator pole 66 is a south pole.
ロータコア12は、ステータコア11に向けて突出する軟磁性の突極であるロータポール91-96をもつ。ロータコア12は、隣接する2つのロータポールの間の間隙を意味するロータスロットをもつ。永久磁石からなるマグネットポール81-86がロータスロットに収容されている。マグネットポール81は、ロータポール91及び92の間に固定され、マグネットポール82は、ロータポール92及び93の間に固定されている。マグネットポール83は、ロータポール93及び94の間に固定され、マグネットポール84は、ロータポール94及び95の間に固定されている。マグネットポール85は、ロータポール95及び96の間に固定され、マグネットポール86は、ロータポール96及び91の間に固定されている。ハイブリッドSRM1は、互いに等しい6の倍数であるステータポール数、ロータポール数、及びマグネットポール数をもつ。 The rotor core 12 has rotor poles 91-96, which are soft magnetic salient poles that protrude toward the stator core 11. The rotor core 12 has rotor slots, which are gaps between two adjacent rotor poles. Magnet poles 81-86 made of permanent magnets are housed in the rotor slots. Magnet pole 81 is fixed between rotor poles 91 and 92, and magnet pole 82 is fixed between rotor poles 92 and 93. Magnet pole 83 is fixed between rotor poles 93 and 94, and magnet pole 84 is fixed between rotor poles 94 and 95. Magnet pole 85 is fixed between rotor poles 95 and 96, and magnet pole 86 is fixed between rotor poles 96 and 91. The hybrid SRM 1 has the numbers of stator poles, rotor poles, and magnet poles that are all equal and multiples of 6.
次に、3相モードが説明される。ハイブリッドSRM1は3相永久磁石同期モータ(3相PMSM)として動作する。パワーコンバータ2は、3つの相電流IU、IV、及びIWを6つの相巻線71-76に供給する。反対方向に巻かれた相巻線74-76に相電流IU、IV、及びIWを供給することは、相巻線74-76に反対の相電流-IU、-IV、及び-IWを供給することと均等である。結局、U相電流IUは相巻線71に供給され、V相電流IVは相巻線75に供給され、W相電流IWは相巻線73に供給される。U相電流IUと反対位相をもつ-U相電流-IUが相巻線74に供給される。V相電流IVと反対位相をもつ-V相電流-IVが相巻線72に供給される。W相電流IWと反対位相をもつ-W相電流-IWが相巻線76に供給される。 Next, the three-phase mode is described. The hybrid SRM 1 operates as a three-phase permanent magnet synchronous motor (three-phase PMSM). The power converter 2 supplies three phase currents IU, IV, and IW to the six phase windings 71-76. Supplying the phase currents IU, IV, and IW to the phase windings 74-76 wound in opposite directions is equivalent to supplying the opposite phase currents -IU, -IV, and -IW to the phase windings 74-76. In effect, the U-phase current IU is supplied to the phase winding 71, the V-phase current IV is supplied to the phase winding 75, and the W-phase current IW is supplied to the phase winding 73. The -U-phase current -IU, which has the opposite phase to the U-phase current IU, is supplied to the phase winding 74. The -V-phase current -IV, which has the opposite phase to the V-phase current IV, is supplied to the phase winding 72. The -W-phase current -IW, which has the opposite phase to the W-phase current IW, is supplied to the phase winding 76.
3つの相電流IU、IV、及びIWは互いに電気角120度異なる位相をもつ交流電流である。これにより、互いに電気角60度離れた相磁界がステータポール61-66により形成される。したがって、相電流IU、IV、及びIWは、電気角度60度ずつ回転する回転磁界をステータコア11に形成する。 The three phase currents IU, IV, and IW are alternating currents with phases that differ from each other by an electrical angle of 120 degrees. As a result, phase magnetic fields that are 60 electrical degrees apart from each other are formed by the stator poles 61-66. Therefore, the phase currents IU, IV, and IW form a rotating magnetic field in the stator core 11 that rotates by 60 electrical degrees each.
図2は、連続する3つの位相期間P1-P3におけるロータコア12の周方向相対位置を示す。図3は、連続する3つの位相期間P4-P6におけるロータコア12の周方向相対位置を示す。図2及び図3において、ロータコア12の周方向相対位置は位相角0度における位置を示す。これらの位相期間P1-P6はそれぞれ、ロータコア12が一つのステータポールピッチだけ周方向に移動する期間に相当する。各位相期間P1-P6はそれぞれ、電気角360度に相当する。 Figure 2 shows the relative circumferential position of the rotor core 12 in three consecutive phase periods P1-P3. Figure 3 shows the relative circumferential position of the rotor core 12 in three consecutive phase periods P4-P6. In Figures 2 and 3, the relative circumferential position of the rotor core 12 indicates the position at a phase angle of 0 degrees. Each of these phase periods P1-P6 corresponds to a period in which the rotor core 12 moves circumferentially by one stator pole pitch. Each of the phase periods P1-P6 corresponds to an electrical angle of 360 degrees.
位相期間P1-P6において、電気角0度は、マグネットポール81-86がステータポール61-66と周方向において重なる位置に存在することを示す。したがって、電気角0度において、軟磁性極であるロータポール91-96は、ステータポールの間のステータスロットと周方向において重なる。同様に、電気角180度は、ロータポール91-96がステータポール61-66と周方向において重なる位置に存在することを示す。したがって、電気角180度において、マグネットポール81-86は、ステータポールの間のステータスロットと周方向において重なる。 In phase periods P1-P6, an electrical angle of 0 degrees indicates that the magnet poles 81-86 are positioned to overlap the stator poles 61-66 in the circumferential direction. Therefore, at an electrical angle of 0 degrees, the rotor poles 91-96, which are soft magnetic poles, overlap the stator slots between the stator poles in the circumferential direction. Similarly, an electrical angle of 180 degrees indicates that the rotor poles 91-96 are positioned to overlap the stator poles 61-66 in the circumferential direction. Therefore, at an electrical angle of 180 degrees, the magnet poles 81-86 overlap the stator slots between the stator poles in the circumferential direction.
相巻線71及び74はインダクタンスLUをもち、相巻線75及び72はインダクタンスLVをもち、相巻線73及び76はインダクタンスLWをもつ。インダクタンスLU、LV、及びLWは、電気角0度にて最小値となり、電気角180度にて最大値となる。このため、電気角0度から電気角180度までの期間はインダクタンス増加期間と呼ばれ、電気角180度から電気角0度までの期間はインダクタンス減少期間と呼ばれる。 Phase windings 71 and 74 have an inductance LU, phase windings 75 and 72 have an inductance LV, and phase windings 73 and 76 have an inductance LW. Inductances LU, LV, and LW are at their minimum values at an electrical angle of 0 degrees and at their maximum values at an electrical angle of 180 degrees. For this reason, the period from an electrical angle of 0 degrees to an electrical angle of 180 degrees is called the inductance increase period, and the period from an electrical angle of 180 degrees to an electrical angle of 0 degrees is called the inductance decrease period.
ステータポール61-66、ロータポール91-96、及びマグネットポール81-86はそれぞれ、ほぼ等しい周方向幅をもつ。フエライト磁石からなる各マグネットポール81-86はそれぞれ、ロータスロットと呼ばれるスペースに固定されている。ロータスロットは、ロータポール91-96の間に存在する。電磁ギャップを隔ててステータポール61-66と対面するロータポール91-96の先端表面は、ロータポール91-96の底部と比べてより広い周方向幅をもつ。 The stator poles 61-66, rotor poles 91-96, and magnet poles 81-86 each have approximately the same circumferential width. Each magnet pole 81-86, made of a ferrite magnet, is fixed in a space called a rotor slot. The rotor slots exist between the rotor poles 91-96. The tip surfaces of the rotor poles 91-96, which face the stator poles 61-66 across an electromagnetic gap, have a wider circumferential width than the bottoms of the rotor poles 91-96.
言い換えれば、ロータポール91-96はロータスロットの開口を狭める楔形状に形成されている。さらに、マグネットポール81-86をなす各永久磁石は、これらのロータスロットと一致する形状をもつように焼成されている。これにより、ロータポール91-96はマグネットポール81-86を強力に支持することができる。 In other words, the rotor poles 91-96 are formed in a wedge shape that narrows the opening of the rotor slot. Furthermore, each permanent magnet that makes up the magnet poles 81-86 is fired to have a shape that matches these rotor slots. This allows the rotor poles 91-96 to strongly support the magnet poles 81-86.
図2及び図3に示されるように、ステータポール61-66に対面するマグネットポール81-83の表面はN極をもつ。ステータポール61-66に対面するマグネットポール84-86の表面はS極をもつ。すなわち、互いに周方向に隣接するマグネットポール81-83は同一極性をもち、互いに周方向に隣接するマグネットポール84-86は同一極性をもつ。 As shown in Figures 2 and 3, the surfaces of magnet poles 81-83 facing stator poles 61-66 have a north pole. The surfaces of magnet poles 84-86 facing stator poles 61-66 have a south pole. In other words, magnet poles 81-83 adjacent to each other in the circumferential direction have the same polarity, and magnet poles 84-86 adjacent to each other in the circumferential direction have the same polarity.
3相モードにおいて、N極をもつ3つのマグネットポール81-83は、マグネットポール82の位置に設置された仮想N極により模式的に代表されることができる。同様に、S極をもつ3つのマグネットポール84-86は、マグネットポール85の位置に設置された仮想S極により模式的に代表されることができる。 In the three-phase mode, the three magnet poles 81-83 with north poles can be represented diagrammatically by a virtual north pole placed at the position of magnet pole 82. Similarly, the three magnet poles 84-86 with south poles can be represented diagrammatically by a virtual south pole placed at the position of magnet pole 85.
したがって、3相交流電流IU、IV、及びIWが相巻線71-76に供給される時、1セットのステータポール61-66は、一つのN極と一つのS極をもつ回転磁界を形成する。この回転磁界のN極が、仮想N極の後方かつ仮想S極の前方に位置する時、回転磁界のN極は、反発力により仮想N極を前進させ、吸引力により仮想S極を前進させる。同様に、この回転磁界のS極が、仮想S極の後方かつ仮想N極の前方に位置する時、回転磁界のS極は、反発力により仮想S極を前進させ、吸引力により仮想N極を前進させる。 Therefore, when three-phase AC currents IU, IV, and IW are supplied to the phase windings 71-76, one set of stator poles 61-66 forms a rotating magnetic field with one N pole and one S pole. When the N pole of this rotating magnetic field is located behind the virtual N pole and in front of the virtual S pole, the N pole of the rotating magnetic field advances the virtual N pole due to a repulsive force and advances the virtual S pole due to an attractive force. Similarly, when the S pole of this rotating magnetic field is located behind the virtual S pole and in front of the virtual N pole, the S pole of the rotating magnetic field advances the virtual S pole due to a repulsive force and advances the virtual N pole due to an attractive force.
結局、この3相モードによれば、回転磁界の回転速度及び位相がロータコア12の回転速度及び位相と同期するように、3相交流電流が制御される。これにより、ハイブリッドSRM1は、3相PMSMとして回転する。 In conclusion, in this three-phase mode, the three-phase AC current is controlled so that the rotational speed and phase of the rotating magnetic field are synchronized with the rotational speed and phase of the rotor core 12. This causes the hybrid SRM 1 to rotate as a three-phase PMSM.
図4は、相巻線71-76に供給される3相電流(IU、IV、及びIW)、及び相巻線71-76のインダクタンス(LU、LV、及びLW)を示すタイミングチャートである。U相電流IUは相巻線71及び74に供給され、V相電流IVは相巻線75及び72に供給され、W相電流IWは相巻線73及び76に供給される。ステータポール61及び64は互いに逆の極性をもつ。ステータポール62及び65は互いに逆の極性をもつ。ステータポール63及び66は互いに逆の極性をもつ。 Figure 4 is a timing diagram showing the three phase currents (IU, IV, and IW) supplied to phase windings 71-76, and the inductances (LU, LV, and LW) of phase windings 71-76. U-phase current IU is supplied to phase windings 71 and 74, V-phase current IV is supplied to phase windings 75 and 72, and W-phase current IW is supplied to phase windings 73 and 76. Stator poles 61 and 64 have opposite polarities. Stator poles 62 and 65 have opposite polarities. Stator poles 63 and 66 have opposite polarities.
相巻線71及び74はインダクタンスLUをもち、相巻線72及び75はインダクタンスLVをもち、相巻線73及び76はインダクタンスLWをもつ。相巻線71及び74は直列接続されてもよく、並列接続されてもよい。相巻線72及び75は直列接続されてもよく、並列接続されてもよい。相巻線73及び76は直列接続されてもよく、並列接続されてもよい。 Phase windings 71 and 74 have an inductance LU, phase windings 72 and 75 have an inductance LV, and phase windings 73 and 76 have an inductance LW. Phase windings 71 and 74 may be connected in series or in parallel. Phase windings 72 and 75 may be connected in series or in parallel. Phase windings 73 and 76 may be connected in series or in parallel.
互いに連続する3つの位相期間P1-P3は図2に示されている。互いに連続する3つの位相期間P4-P6は図3に示されている。6つの位相期間P1-P6の経過は、ロータコア12が6ポールピッチだけ回転することを意味する。 Three consecutive phase periods P1-P3 are shown in FIG. 2. Three consecutive phase periods P4-P6 are shown in FIG. 3. The passage of six phase periods P1-P6 means that the rotor core 12 rotates by six pole pitches.
この3相モードによれば、3相交流電流(IU、IV、IW)の1サイクル期間は位相期間P1-P6からなる。U相交流電流IUは、時点t1にて負半波期間から正半波期間にシフトし、時点t4にて正半波期間から負半波期間にシフトする。V相交流電流IVは、時点t2にて正半波期間から負半波期間にシフトし、時点t5にて負半波期間から正半波期間にシフトする。W相交流電流IWは、時点t3にて負半波期間から正半波期間にシフトし、時点t6にて正半波期間から負半波期間にシフトする。 According to this three-phase mode, one cycle period of the three-phase AC current (IU, IV, IW) consists of phase periods P1-P6. The U-phase AC current IU shifts from a negative half-wave period to a positive half-wave period at time t1, and from a positive half-wave period to a negative half-wave period at time t4. The V-phase AC current IV shifts from a positive half-wave period to a negative half-wave period at time t2, and from a negative half-wave period to a positive half-wave period at time t5. The W-phase AC current IW shifts from a negative half-wave period to a positive half-wave period at time t3, and from a positive half-wave period to a negative half-wave period at time t6.
3相交流電流(IU、IV、IW)の波形は、正弦波、台形波、矩形波などから必要に応じて選択可能である。図4において、3相交流電流(IU、IV、IW)は矩形波の波形をもつ。図5は、各位相期間P1-P6におけるステータポール61-66の極性変化を示す。この極性は、電磁ギャップに面するステータポール61-66の先端面の極性を意味する。 The waveform of the three-phase AC current (IU, IV, IW) can be selected from sine waves, trapezoidal waves, square waves, etc. as necessary. In FIG. 4, the three-phase AC current (IU, IV, IW) has a square wave waveform. FIG. 5 shows the polarity change of the stator poles 61-66 in each phase period P1-P6. This polarity refers to the polarity of the tip surfaces of the stator poles 61-66 facing the electromagnetic gap.
この3相モードによれば、周方向において連続する同極性の3つのマグネットポールは一つの仮想磁極と見なされる。この仮想磁極は、同じ極性をもつ3つのマグネットポールのうちの中間のマグネットポールの位置に存在すると見なされる。これにより、6個のマグネットポール81-86は、1対のN極仮想磁極及びS極仮想磁極を形成する。3相電流(IU、IV、及びIW)は、ステータポール61-66の極性を順次に変更する。 According to this three-phase mode, three consecutive magnet poles of the same polarity in the circumferential direction are regarded as one virtual magnetic pole. This virtual magnetic pole is regarded as existing at the position of the middle magnet pole among the three magnet poles of the same polarity. As a result, the six magnet poles 81-86 form a pair of north and south virtual magnetic poles. The three-phase currents (IU, IV, and IW) sequentially change the polarity of the stator poles 61-66.
これにより、回転磁界が形成される。この回転磁界のN極及びS極は、マグネットポール81-86により形成された仮想磁極に磁気吸引力及び磁気反発力を与える。結局、ロータコア12は3相PMSMの磁石ロータとなる。 This creates a rotating magnetic field. The north and south poles of this rotating magnetic field exert magnetic attraction and repulsion on the virtual magnetic poles formed by the magnet poles 81-86. Ultimately, the rotor core 12 becomes the magnet rotor of a three-phase PMSM.
次に、単相モードが図6-図9を参照して説明される。ハイブリッドSRM1は単相SRMとして動作する。この単相モードによれば、電気角0度から電気角180度の期間であるインダクタンス増加期間において、U相電流IUが相巻線71、74に供給され、V相電流IVが相巻線75、72に供給され、W相電流IWが相巻線73、76に供給される。図6及び図7は、位相期間P1-P6におけるロータポール91-96の周方向位置を示す。図6及び図7において、ロータポール91-96は、電気角90度に相当する角度位置に存在する。 Next, the single-phase mode will be described with reference to Figures 6 to 9. The hybrid SRM 1 operates as a single-phase SRM. According to this single-phase mode, during the inductance increase period, which is the period from electrical angle 0 degrees to electrical angle 180 degrees, a U-phase current IU is supplied to the phase windings 71 and 74, a V-phase current IV is supplied to the phase windings 75 and 72, and a W-phase current IW is supplied to the phase windings 73 and 76. Figures 6 and 7 show the circumferential positions of the rotor poles 91-96 during phase periods P1-P6. In Figures 6 and 7, the rotor poles 91-96 are at angular positions corresponding to an electrical angle of 90 degrees.
3相電流IU、IV、及びIWにより励磁されたステータポール61-66は、ロータポール91-96を励磁する。インダクタンス増加期間において、ロータポール91-96は、最も近接するステータポールよりも周方向左側に存在する。このため、ロータポール91-96は周方向右側へ吸引される。 The stator poles 61-66, excited by the three-phase currents IU, IV, and IW, excite the rotor poles 91-96. During the inductance increase period, the rotor poles 91-96 are located to the left of the nearest stator pole in the circumferential direction. Therefore, the rotor poles 91-96 are attracted to the right in the circumferential direction.
さらに、図6及び図7に示されるように、3相電流IU、IV、及びIWが6つの相巻線71-76に供給される時、ステータポール61-66がマグネットポール81-86のうち最も近接するマグネットポールと同一の極性をもつ。言い換えれば、ステータポール61-66はそれぞれ励磁されて、周方向右側のマグネットポールと同一極性をもつ。これにより、電気角0-180度のインダクタンス増加期間において励磁されたステータポール61-66は、マグネットポール81-86を周方向右側へ反発する。 Furthermore, as shown in Figures 6 and 7, when three-phase currents IU, IV, and IW are supplied to the six-phase windings 71-76, the stator poles 61-66 have the same polarity as the closest magnet pole among the magnet poles 81-86. In other words, the stator poles 61-66 are each excited and have the same polarity as the magnet pole on the circumferential right side. As a result, the excited stator poles 61-66 during the inductance increase period of 0-180 electrical degrees repel the magnet poles 81-86 to the circumferential right side.
この単相モードによれば、相電流IU、IV、及びIWの電流方向の切替により、ステータポール61-66が周方向前方側に近接するマグネットポール81-86と同じ極性を常にもつ。図6及び図7において、図示されたダブル線はマグネットポールに加えられる磁気反発力を示し、図示されたシングル線はロータポールに加えられる磁気吸引力を示す。 In this single-phase mode, by switching the current direction of the phase currents IU, IV, and IW, the stator poles 61-66 always have the same polarity as the magnet poles 81-86 adjacent to them on the circumferential front side. In Figures 6 and 7, the double lines shown indicate the magnetic repulsive forces applied to the magnet poles, and the single lines shown indicate the magnetic attractive forces applied to the rotor poles.
結局、単相交流電流が3相巻線71-76に供給される時、ステータポール61-66は、全てのロータポール91-96にリラクタンストルクを与え、さらに、全てのマグネットポール81-86にマグネットトルクの反発力成分を与える。その結果、この単相モードで駆動されるハイブリッドSRM1は、高いトルク/重量比をもつことができる。 In conclusion, when single-phase AC current is supplied to the three-phase windings 71-76, the stator poles 61-66 apply a reluctance torque to all of the rotor poles 91-96, and further apply a repulsive force component of the magnet torque to all of the magnet poles 81-86. As a result, the hybrid SRM 1 driven in this single-phase mode can have a high torque/weight ratio.
図8は、相巻線71-76に供給される3相電流(IU、IV、及びIW)と、相巻線71-76のインダクタンス(LU、LV、及びLW)を示すタイミングチャートである。この単相モードにおいて、3相電流(IU、IV、及びIW)は、3相モードと同様に3相交流電流となる。図8において、相巻線71及び74はインダクタンスLUをもち、相巻線72及び75はインダクタンスLVをもち、相巻線73及び76はインダクタンスLWをもつ。6つの位相期間P1-P6は、3相交流電流の1サイクル期間に相当する。図6は位相期間P1-P3を示し、図7は位相期間P4-P6を示す。6つの位相期間が経過する時、ロータコア12は6ポールピッチだけ回転する。 Figure 8 is a timing chart showing the three-phase currents (IU, IV, and IW) supplied to the phase windings 71-76 and the inductances (LU, LV, and LW) of the phase windings 71-76. In this single-phase mode, the three-phase currents (IU, IV, and IW) become three-phase AC currents, as in the three-phase mode. In Figure 8, the phase windings 71 and 74 have an inductance LU, the phase windings 72 and 75 have an inductance LV, and the phase windings 73 and 76 have an inductance LW. The six phase periods P1-P6 correspond to one cycle period of the three-phase AC current. Figure 6 shows the phase period P1-P3, and Figure 7 shows the phase period P4-P6. When the six phase periods have elapsed, the rotor core 12 rotates by six pole pitches.
言い換えれば、この単相モードは、相巻線71-76に3相交流電流IU、IV、及びIWを同時に供給する。これにより、全てのステータポール61-66は、全てのロータポール91-96を吸引し、全てのマグネットポール81-86を反発する。この単相モードは高いトルク/重量比を実現する。図9は、3つの相電流(IU、IV、及びIW)により励磁されたステータポール61-66の極性の変化を示す。 In other words, this single-phase mode simultaneously supplies three-phase AC currents IU, IV, and IW to the phase windings 71-76. This causes all stator poles 61-66 to attract all rotor poles 91-96 and repel all magnet poles 81-86. This single-phase mode achieves a high torque/weight ratio. Figure 9 shows the change in polarity of the stator poles 61-66 excited by the three phase currents (IU, IV, and IW).
次に、単相発電モードが図10-図13を参照して説明される。この単相発電モードは、ハイブリッドSRM1を単相スイッチドリラクタンス発電機(SRG)として動作させる動作モードである。良く知られているように、モータは発電機として動作することができる。この単相発電モードは、図6-図9に示される単相モードと本質的に同じである。図10は本質的に図6と同じであり、図11は本質的に図7と同じである。図12は本質的に図8と同じであり、図13は本質的に図9と同じである。 Next, the single-phase generating mode will be described with reference to Figs. 10-13. This single-phase generating mode is an operating mode in which the hybrid SRM 1 operates as a single-phase switched reluctance generator (SRG). As is well known, a motor can operate as a generator. This single-phase generating mode is essentially the same as the single-phase mode shown in Figs. 6-9. Fig. 10 is essentially the same as Fig. 6, Fig. 11 is essentially the same as Fig. 7, Fig. 12 is essentially the same as Fig. 8, and Fig. 13 is essentially the same as Fig. 9.
ただし、図10及び図11において、ステータポール61-66はそれぞれ、最も近接するマグネットポールの前方、かつ、最も近接するロータポールの後方に配置される。図10及び図11は、位相期間P1-P6における電気角270度の位置を示す。励磁されたステータポール61-66はそれぞれ、最も近接するマグネットポールと同じ極性をもつ。さらに、励磁されたステータポール61-66はそれぞれ、最も近接するロータポールを反対極性に磁化する。 However, in Figures 10 and 11, each of the stator poles 61-66 is positioned in front of the nearest magnet pole and behind the nearest rotor pole. Figures 10 and 11 show positions at an electrical angle of 270 degrees in phase periods P1-P6. Each excited stator pole 61-66 has the same polarity as the nearest magnet pole. Furthermore, each excited stator pole 61-66 magnetizes the nearest rotor pole with the opposite polarity.
図13に示されるように、3つの相電流IU、IV、IWは、電気角180度-0度の角度範囲をもつインダクタンス減少期間に相巻線71-76を流れる。この単相発電モードにおいて、通電期間の初期に相巻線71-76に相電流IU、IV、IWが供給される。その後、この相電流の供給が停止されるが、相巻線71-76は、パワーコンバータ2に発電電流を流す。 As shown in FIG. 13, three phase currents IU, IV, and IW flow through the phase windings 71-76 during the inductance reduction period having an angular range of 180 electrical degrees to 0 electrical degrees. In this single-phase power generation mode, the phase currents IU, IV, and IW are supplied to the phase windings 71-76 at the beginning of the current conduction period. Thereafter, the supply of these phase currents is stopped, but the phase windings 71-76 continue to pass the generated current to the power converter 2.
図12及び図13からわかるように、この単相発電モードにおいて、相巻線71-76を流れる3つの相電流IU、IV、及びIWはそれぞれ、交流電流となる。これは、ステータポール61-66の極性を変更するためである。この実施例の単相発電モードは、本質的に従来の単相SRGの発電モードと同じである。けれども、この実施例によれば、ロータスロットに配置されたマグネットポールにより、高い発電電圧を得ることができる。 As can be seen from Figures 12 and 13, in this single-phase power generation mode, the three phase currents IU, IV, and IW flowing through the phase windings 71-76 are each AC currents. This is because the polarity of the stator poles 61-66 is changed. The single-phase power generation mode of this embodiment is essentially the same as the power generation mode of a conventional single-phase SRG. However, according to this embodiment, a high generated voltage can be obtained by using the magnet poles arranged in the rotor slots.
インナーロータタイプのハイブリッドSRM1が図14を参照して説明される。図14はこのハイブリッドSRM1の径方向断面図である。ステータコア11は2組のステータポールセットをもつ。各ステータポールセットはステータポール61-66からなる。したがって、ロータコア12も2組のロータポールセットからなり、各ロータポールセットはロータポール91-96からなる。ロータコア12は2組のマグネットポールセットをもつ。各マグネットポールセットはマグネットポール81-86からなる。 An inner rotor type hybrid SRM 1 will be described with reference to FIG. 14. FIG. 14 is a radial cross-sectional view of this hybrid SRM 1. The stator core 11 has two stator pole sets. Each stator pole set consists of stator poles 61-66. Therefore, the rotor core 12 also has two rotor pole sets, each of which consists of rotor poles 91-96. The rotor core 12 has two magnet pole sets. Each magnet pole set consists of magnet poles 81-86.
このインナーロータタイプのハイブリッドSRM1において、ステータコア11の外周面は、ハウジング100の円筒部101の内周面に固定されている。輪板状の鍔部200が円筒部101の外周面から径方向外側に突出している。鍔部200はアルミ合金を使用することによりハウジング100と一体に鋳造されている。この鍔部200は、円筒部101の径方向振動を低減する。さらに、鍔部200はハウジング100の重量増加を抑制する。 In this inner rotor type hybrid SRM 1, the outer peripheral surface of the stator core 11 is fixed to the inner peripheral surface of the cylindrical portion 101 of the housing 100. A ring-shaped flange portion 200 protrudes radially outward from the outer peripheral surface of the cylindrical portion 101. The flange portion 200 is cast integrally with the housing 100 using an aluminum alloy. This flange portion 200 reduces radial vibration of the cylindrical portion 101. Furthermore, the flange portion 200 suppresses an increase in the weight of the housing 100.
図15は、鍔部200の詳細を示す平面図である。9枚の鍔部200がハウジング100の円筒部101の外周面から径方向外側に突出している。鍔部200はそれぞれ、円筒部101の全周にわたって形成されている。各鍔部200の間に所定幅の空気通路が形成されている。鍔部200を冷却するための空気流は、回転軸13の軸方向と直角に流れる。さらに、ステータコア11の径方向振動により円筒部101が径方向に振動することが抑制される。単相モードにおいて、ステータポール61-66の全ては同時に径方向に振動する。鍔部200は、振動抑制、重量低減、及び放熱改善の効果を実現する。好適態様において、これらの効果を実現するために、鍔部200の高さの平均値は、円筒部101の厚さの平均値よりも大きく形成される。さらに、少なくとも3枚以上の鍔部200が円筒部101に形成されることが好適である。 Figure 15 is a plan view showing the details of the flange portion 200. Nine flange portions 200 protrude radially outward from the outer circumferential surface of the cylindrical portion 101 of the housing 100. Each of the flange portions 200 is formed around the entire circumference of the cylindrical portion 101. An air passage of a predetermined width is formed between each of the flange portions 200. The air flow for cooling the flange portions 200 flows perpendicular to the axial direction of the rotating shaft 13. Furthermore, the cylindrical portion 101 is suppressed from vibrating radially due to the radial vibration of the stator core 11. In the single-phase mode, all of the stator poles 61-66 vibrate radially at the same time. The flange portions 200 achieve the effects of vibration suppression, weight reduction, and improved heat dissipation. In a preferred embodiment, in order to achieve these effects, the average height of the flange portions 200 is formed to be greater than the average thickness of the cylindrical portion 101. Furthermore, it is preferable that at least three or more flanges 200 are formed on the cylindrical portion 101.
図16は、鍔部200の変形例を示す平面図である。航空機のプロペラ400がインナーロータ構造をもつ単相SRM1の回転軸13に固定されている。ハウジング100は円筒部101をもつ。螺旋コイル状の鍔部300が円筒部101の外周面に固定されている。好適には、円筒部101及び鍔部300は一緒に鋳造されている。プロペラ400が回転し、プロペラ400により形成された空気流401は、螺旋コイル状の鍔部300の間の螺旋溝301に流入する。鍔部300は空気流401により良好に冷却される。さらに、鍔部300は円筒部101の全周にわたって形成されている。このため、円筒部101の径方向振動が抑制される。 Figure 16 is a plan view showing a modified example of the flange 200. An aircraft propeller 400 is fixed to the rotating shaft 13 of a single-phase SRM 1 having an inner rotor structure. The housing 100 has a cylindrical portion 101. A spiral coil flange 300 is fixed to the outer circumferential surface of the cylindrical portion 101. Preferably, the cylindrical portion 101 and the flange 300 are cast together. When the propeller 400 rotates, the air flow 401 formed by the propeller 400 flows into the spiral groove 301 between the spiral coil flanges 300. The flange 300 is well cooled by the air flow 401. Furthermore, the flange 300 is formed around the entire circumference of the cylindrical portion 101. Therefore, radial vibration of the cylindrical portion 101 is suppressed.
図17は、ロータコア12の変形例を部分的に示す径方向断面図である。マグネットポール81-86は、フエライト磁石により形成されている。マグネットポール81-86は、ロータポール91-96の間に形成された溝部であるロータスロット500に別々に収容されている。各ロータスロット500に面するロータポール91-96の側面は、ロータスロット500に向けて突出する突部501及び502をもつ。突部501及び502は、ロータポール91-96の径方向中間部に配置されている。 Figure 17 is a radial cross-sectional view partially showing a modified example of the rotor core 12. The magnet poles 81-86 are formed of ferrite magnets. The magnet poles 81-86 are housed separately in rotor slots 500, which are grooves formed between the rotor poles 91-96. The side of the rotor poles 91-96 facing each rotor slot 500 has protrusions 501 and 502 that protrude toward the rotor slot 500. The protrusions 501 and 502 are located in the radial middle of the rotor poles 91-96.
その結果、ロータスロット500の周方向幅は、突部501及び502により狭くなっている。これにより、マグネットポール81-86が遠心力によりロータコア12から径方向外側に離脱することが防止される。図17において、ロータコア12はアルミ合金により形成されたシリンダ部材120を介して回転軸13に固定されている。これにより、ロータの重量が軽減される。 As a result, the circumferential width of the rotor slot 500 is narrowed by the protrusions 501 and 502. This prevents the magnet poles 81-86 from detaching radially outward from the rotor core 12 due to centrifugal force. In FIG. 17, the rotor core 12 is fixed to the rotating shaft 13 via a cylinder member 120 made of an aluminum alloy. This reduces the weight of the rotor.
図18は、アウターロータタイプのハイブリッドSRM1を示す軸方向断面図である。ハイブリッドSRM1は、固定ベース14から上方へ突出する静止シャフト130に固定されたステータコア11をもつ。相巻線7がステータコア11に巻かれている。回転するロータコア12が電磁ギャップを挟んでステータコア11の径方向外側に配置されている。 Figure 18 is an axial cross-sectional view showing an outer rotor type hybrid SRM 1. The hybrid SRM 1 has a stator core 11 fixed to a stationary shaft 130 that protrudes upward from a fixed base 14. A phase winding 7 is wound around the stator core 11. A rotating rotor core 12 is disposed radially outside the stator core 11 with an electromagnetic gap between them.
ロータコア12は、プロペラの基部を形成するロータハウジング15及び16により上下方向に挟持されている。ロータハウジング15及び16は図略のボルトにより締結されて、一体となっている。ロータハウジング15及び16は、軸受け18及び19を通じて静止シャフト130により回転可能に支持されている。ロータハウジング15及び16の外周部(図示せず)は、所定枚数の回転翼をもつ。アウターロータ構造を採用するこのハイブリッドSRM1は、ロータコア12からの永久磁石の離脱を良好に抑止できる利点をもつ。 The rotor core 12 is sandwiched vertically between rotor housings 15 and 16, which form the base of the propeller. The rotor housings 15 and 16 are fastened together with bolts (not shown) to form a single unit. The rotor housings 15 and 16 are rotatably supported by a stationary shaft 130 through bearings 18 and 19. The outer periphery (not shown) of the rotor housings 15 and 16 has a predetermined number of rotor blades. This hybrid SRM 1, which employs an outer rotor structure, has the advantage of being able to effectively prevent the permanent magnets from coming off the rotor core 12.
図19は、ロータコア12のマグネットポール81-86の再着磁動作を示すフローチャートである。まず、この再着磁の必要性が説明される。ステータポール61-66の磁界によりフエライト磁石の残留磁束密度が不可逆的に低減されるケースは、フエライト磁石の減磁問題として知られている。この問題はマグネットポール81-86を再着磁により解決される。 Figure 19 is a flowchart showing the remagnetization operation of the magnet poles 81-86 of the rotor core 12. First, the necessity of this remagnetization will be explained. The case where the residual magnetic flux density of the ferrite magnet is irreversibly reduced by the magnetic field of the stator poles 61-66 is known as the demagnetization problem of the ferrite magnet. This problem is solved by remagnetizing the magnet poles 81-86.
本質的に単相スイッチドリラクタンスモータであるハイブリッドSRM1において、ステータポール61-66の周方向位置は、たとえば図14に示されるように、マグネットポール81-86の周方向位置と位置合わせ可能な構造を有する。したがって、マグネットポール81-86がステータポール61-66と同じ周方向位置に静止している時、ステータポール61-66に再着磁電流を流すことにより、マグネットポール81-86を再着磁することができる。 In the hybrid SRM1, which is essentially a single-phase switched reluctance motor, the circumferential positions of the stator poles 61-66 have a structure that allows them to be aligned with the circumferential positions of the magnet poles 81-86, for example as shown in FIG. 14. Therefore, when the magnet poles 81-86 are stationary at the same circumferential positions as the stator poles 61-66, the magnet poles 81-86 can be remagnetized by passing a remagnetization current through the stator poles 61-66.
ハイブリッドSRM1が停止される時、マグネットポール81-86は永久磁石力により一般的にステータポール61-66と同じ周方向位置に停止する。検出されたロータコア12の回転角から、ステータポール61-66に対面するマグネットポール81-86の極性が判定される。その後、相巻線71-76に供給される直流電流の方向がマグネットポール81-86の極性に合わせて決定される。 When the hybrid SRM 1 is stopped, the magnet poles 81-86 generally stop at the same circumferential position as the stator poles 61-66 due to permanent magnetic force. The polarity of the magnet poles 81-86 facing the stator poles 61-66 is determined from the detected rotation angle of the rotor core 12. The direction of the DC current supplied to the phase windings 71-76 is then determined according to the polarity of the magnet poles 81-86.
たとえば、表面にN極をもつマグネットポール81に対面するステータポールに巻かれた相巻線に供給される直流電流は、マグネットポール81に対面するこのステータポールの端面をS極に磁化する方向をもつ。これにより、マグネットポール81-86は簡単に再着磁される。 For example, a direct current supplied to a phase winding wound around a stator pole facing magnet pole 81, which has a north pole on its surface, has a direction that magnetizes the end face of this stator pole facing magnet pole 81 into a south pole. This allows magnet poles 81-86 to be easily remagnetized.
図19に示される再着磁サブルーチンは、モータの静止が確認された後、開始される。まず、検出されたロータコア12の回転位置に基づいてマグネットポール81-86がステータポール61-66の周方向位置に停止しているか否かが判定される(S100)。次に、マグネットポール81-86がステータポール61-66と同じ周方向位置に停止していない時、3相モードを実施してロータコア12を少し回す(S102)。次に、再び、アライン状態の判定及び3相モードの実施からなる位置合わせ作業を実施する。 The remagnetization subroutine shown in FIG. 19 is started after it is confirmed that the motor is stationary. First, based on the detected rotational position of the rotor core 12, it is determined whether the magnet poles 81-86 are stopped at the circumferential position of the stator poles 61-66 (S100). Next, if the magnet poles 81-86 are not stopped at the same circumferential position as the stator poles 61-66, the three-phase mode is implemented to rotate the rotor core 12 slightly (S102). Next, the alignment work is again carried out, consisting of determining the alignment state and implementing the three-phase mode.
ステップS100において、マグネットポール81-86がステータポール61-66とアライン状態に停止していると判定された時、相巻線71-76にDC電流を所定時間以上供給する(S104)。その結果、マグネットポール81-86の残留磁界が増強され、フエライト磁石の減磁問題が解決される。 When it is determined in step S100 that the magnet poles 81-86 are stopped in alignment with the stator poles 61-66, a DC current is supplied to the phase windings 71-76 for a predetermined period of time or more (S104). As a result, the residual magnetic field of the magnet poles 81-86 is strengthened, and the demagnetization problem of the ferrite magnets is solved.
この実施例のハイブリッドSRM1の主要な利点が要約される。まず、本質的に単相スイッチドリラクタンスモータとして動作可能なこのハイブリッドSRM1の第1の利点は、モータの極数を容易に増加できることである。この利点は、特に航空機用モータにおいて重要である。 The main advantages of the hybrid SRM 1 of this embodiment are summarized below. First, the first advantage of this hybrid SRM 1, which can essentially operate as a single-phase switched reluctance motor, is that the number of poles of the motor can be easily increased. This advantage is particularly important in aircraft motors.
たとえば航空機のプロペラが空気を後方に加速するケースが簡単に検討される。プロペラに流入する空気流の入り口速度がゼロであり、プロペラから後方へ吹き出される空気流の出口速度がVであることが仮定される。プロペラを単位時間に通過する空気流の質量はmであると仮定される。 For example, consider the simple case of an aircraft propeller accelerating air backwards. It is assumed that the inlet velocity of the airflow entering the propeller is zero, and that the exit velocity of the airflow blowing backwards from the propeller is V. The mass of the airflow passing the propeller per unit time is assumed to be m.
プロペラが空気流に与える力’F’は’mV’に等しい。したがって、プロペラは、空気流から推進力(-F)を受ける。さらに、プロペラが空気流に与える運動エネルギー’E’は’0.5mVV’に等しい。したがって、消費エネルギー当たりの推進力’-F/E’は、’2/V’となる。これは、速度’V’が低い程、推進力が効率よく得られることを意味する。要するに、低速回転する大型プロペラは、高速回転する小型プロペラよりも推進力を効率的に発生することが理解される。 The force 'F' that the propeller exerts on the airflow is equal to 'mV'. Therefore, the propeller receives a thrust (-F) from the airflow. Furthermore, the kinetic energy 'E' that the propeller exerts on the airflow is equal to '0.5mVV'. Therefore, the thrust per unit of energy consumed '-F/E' is '2/V'. This means that the lower the speed 'V', the more efficiently the thrust can be obtained. In short, it can be understood that a large propeller rotating at a slow speed generates thrust more efficiently than a small propeller rotating at a high speed.
しかし、プロペラは良く知られるように翼端失速問題をもつ。したがって、プロペラの回転数は厳しく制限される。従来の小型飛行機のプロペラは25rps程度の回転数をもつ。 However, propellers are notorious for having a problem with wingtip stall. Therefore, the propeller's rotation speed is strictly limited. Conventional propellers on small aircraft have a rotation speed of about 25 rps.
モータは、回転数の増加により重量当たりの出力を増加することができる。モータとプロペラとの間に配置された減速ギヤ機構はプロペラに与えられるトルクを増加する。しかし、航空機用途において、モータ重量は可能な限り低減されるべきであり、減速ギヤ機構による重量増加は深刻な問題となる。さらに、減速ギヤ機構の損失も深刻な問題となる。 A motor can increase its output per weight by increasing its rotational speed. A reduction gear mechanism placed between the motor and the propeller increases the torque applied to the propeller. However, in aircraft applications, the weight of the motor should be reduced as much as possible, and the weight increase due to the reduction gear mechanism is a serious problem. Furthermore, loss in the reduction gear mechanism is also a serious problem.
結局、低速高トルクモータが航空機用モータとして最善の選択となることが理解される。モータ極数の増加により、モータのトルク増加が可能なことは良く知られている。けれども、モータ重量は、3相PMSMのような従来のモータにおける極数増加により大幅に増加する。 In the end, it is understood that a low-speed, high-torque motor is the best choice for an aircraft motor. It is well known that the torque of a motor can be increased by increasing the number of motor poles. However, the motor weight increases significantly with the increase in the number of poles in a conventional motor such as a three-phase PMSM.
モータ極数増加のために、多数のステータポールを追加する必要がある。たとえば、24極の3相同期モータは72個のステータポールをもつ必要がある。この問題は、単相スイッチドリラクタンスモータを採用することにより解決される。たとえば12個のステータポールをもつ単相SRMは、72個のステータポールをもつ3相同期モータ(PMSM)と実質的に等しい極数をもつ。結局、単相SRMはプロペラは、ダイレクトドライブタイプの航空機用モータとして好適であることが理解される。 Increasing the number of motor poles requires the addition of a large number of stator poles. For example, a 24-pole three-phase synchronous motor requires 72 stator poles. This problem is solved by adopting a single-phase switched reluctance motor. For example, a single-phase SRM with 12 stator poles has a number of poles that is substantially equal to a three-phase synchronous motor (PMSM) with 72 stator poles. Ultimately, it is understood that a single-phase SRM is suitable as a direct-drive type aircraft motor for propellers.
この実施例のハイブリッドSRM1は、航空機以外の種々の移動装置や風力発電機などの用途において採用されることができる。静かな運転が要求される時、単相モードの代わりに3相モードを採用することも可能である。さらに、鉄損が増加する高速領域において、3相モードを採用することも好適である。3相モードにおいて、鉄損低減や騒音低減のために、正弦波波形の3相交流電流を採用することも好適である。 The hybrid SRM 1 of this embodiment can be used in a variety of mobile devices other than aircraft, wind power generators, and other applications. When quiet operation is required, it is also possible to use a three-phase mode instead of a single-phase mode. Furthermore, it is also preferable to use a three-phase mode in the high-speed range where iron loss increases. In the three-phase mode, it is also preferable to use a three-phase AC current with a sinusoidal waveform in order to reduce iron loss and noise.

Claims (17)

  1.  ステータポールをもつ軟磁性のステータコアと、ロータポールをもつ軟磁性のロータコアと、前記ステータポールに巻かれた相巻線とを備える単相スイッチドリラクタンスモータと、前記相巻線に相電圧を印加するパワーコンバータと、前記パワーコンバータを制御するコントローラとを備えるスイッチドリラクタンスモータ装置において、
     前記ロータコアは、前記ロータポールの間に配置されたロータスロットに固定された永久磁石からなるマグネットポールをさらに有し、
     前記ロータポールの数及び前記マグネットポールの数は、前記ステータポールの数と等しく形成され、
     前記相電圧は、交流電圧により本質的に構成されていることを特徴とするスイッチドリラクタンスモータ装置。
    A switched reluctance motor device comprising: a single-phase switched reluctance motor including a soft magnetic stator core having stator poles, a soft magnetic rotor core having rotor poles, and a phase winding wound around the stator poles; a power converter that applies a phase voltage to the phase winding; and a controller that controls the power converter,
    The rotor core further includes magnet poles each formed of a permanent magnet fixed to a rotor slot disposed between the rotor poles,
    The number of the rotor poles and the number of the magnet poles are equal to the number of the stator poles,
    13. A switched reluctance motor device, wherein the phase voltages are essentially composed of AC voltages.
  2.  前記パワーコンバータは3つのHブリッジからなり、前記3つのHブリッジは3つの前記相電圧を前記相巻線に印加し、前記3つの相電圧の位相は互いに電気角120度離れている請求項1記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device according to claim 1, wherein the power converter is composed of three H-bridges, the three H-bridges apply the three phase voltages to the phase windings, and the phases of the three phase voltages are spaced apart from each other by an electrical angle of 120 degrees.
  3.  前記コントローラは、前記ステータポールの全てを同時に励磁することにより単相リラクタンストルク値及び単相マグネットトルク値の両方を発生する単相モードを有する請求項1記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device of claim 1, wherein the controller has a single-phase mode in which both a single-phase reluctance torque value and a single-phase magnet torque value are generated by simultaneously exciting all of the stator poles.
  4.  前記単相モードは、最も近い前記マグネットポールと同一極性を前記ステータポールに与え、
     前記最も近いマグネットポールは、前記ステータポールよりも前方に位置する請求項3記載のスイッチドリラクタンスモータ装置。
    The single-phase mode gives the stator poles the same polarity as the nearest magnet poles,
    4. The switched reluctance motor device according to claim 3, wherein the nearest magnet pole is located forward of the stator pole.
  5.  前記コントローラは、前記ステータポールの全てを同時に励磁することにより負の単相リラクタンストルク値及び負の単相マグネットトルク値の両方を発生する単相発電モードを有する請求項1記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device of claim 1, wherein the controller has a single-phase power generation mode in which both a negative single-phase reluctance torque value and a negative single-phase magnet torque value are generated by simultaneously exciting all of the stator poles.
  6.  前記単相発電モードは、最も近い前記マグネットポールと同一極性を前記ステータポールに与え、
     前記最も近いマグネットポールは、前記ステータポールよりも後方に位置する請求項5記載のスイッチドリラクタンスモータ装置。
    The single-phase generating mode provides the stator pole with the same polarity as the nearest magnet pole;
    6. The switched reluctance motor device according to claim 5, wherein the nearest magnet pole is located rearward of the stator pole.
  7.  前記コントローラは、3相モードをもち、
     前記パワーコンバータは、3つの前記相電圧を前記相巻線に印加することにより、前記単相スイッチドリラクタンスモータを前記3相モードにおいて3相永久磁石同期モータとして運転する請求項1記載のスイッチドリラクタンスモータ装置。
    The controller has a three-phase mode,
    2. The switched reluctance motor apparatus according to claim 1, wherein the power converter operates the single-phase switched reluctance motor as a three-phase permanent magnet synchronous motor in the three-phase mode by applying the three phase voltages to the phase windings.
  8.  前記ステータポールの数、前記ロータポールの数、及び前記マグネットポールの数はそれぞれ、6の整数倍に等しく、
     連続する6つの前記マグネットポールは、第1グループ及び第2グループとからなり、
     前記第1グループは、連続する3つの前記マグネットポールからなり、
     前記第2グループは、連続する他の3つの前記マグネットポールからなり、
     前記第1グループの前記マグネットポールは、前記第2グループの前記マグネットポールと反対の極性をもつ請求項7記載のスイッチドリラクタンスモータ装置。
    the number of the stator poles, the number of the rotor poles, and the number of the magnet poles are each equal to an integer multiple of 6;
    The six consecutive magnet poles are divided into a first group and a second group,
    The first group is made up of three consecutive magnet poles,
    the second group is made up of three adjacent magnet poles,
    8. The switched reluctance motor arrangement of claim 7, wherein said magnet poles of said first group have an opposite polarity to said magnet poles of said second group.
  9.  前記コントローラは、前記3相モードにより前記単相スイッチドリラクタンスモータを始動する請求項7記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device of claim 7, wherein the controller starts the single-phase switched reluctance motor in the three-phase mode.
  10.  前記各マグネットポールはそれぞれ、隣接する2つの前記ロータポールの側面に支持されている請求項1記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device according to claim 1, wherein each of the magnet poles is supported on the side surfaces of two adjacent rotor poles.
  11.  前記単相スイッチドリラクタンスモータは、アウターロータ構造をもつ請求項1記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device of claim 1, wherein the single-phase switched reluctance motor has an outer rotor structure.
  12.  前記単相スイッチドリラクタンスモータは、インナーロータ構造をもち、
     前記ステータコアは、ハウジングの円筒部の内周面に固定され、
     前記ハウジングは、前記円筒部の外周面から径方向外側へ突出する多数の輪板状の鍔部をもち、
     前記鍔部の平均高さは、前記円筒部の平均厚さを超える請求項1記載のスイッチドリラクタンスモータ装置。
    The single-phase switched reluctance motor has an inner rotor structure,
    The stator core is fixed to an inner circumferential surface of a cylindrical portion of a housing,
    the housing has a number of annular plate-shaped flanges protruding radially outward from an outer circumferential surface of the cylindrical portion,
    The switched reluctance motor device according to claim 1 , wherein an average height of the flange portion exceeds an average thickness of the cylindrical portion.
  13.  前記単相スイッチドリラクタンスモータは、インナーロータ構造をもち、
     前記ステータコアは、ハウジングの円筒部の内周面に固定され、
     前記ハウジングは、前記円筒部の外周面から径方向外側へ突出する螺旋コイル状の鍔部をもつ請求項1記載のスイッチドリラクタンスモータ装置。
    The single-phase switched reluctance motor has an inner rotor structure,
    The stator core is fixed to an inner circumferential surface of a cylindrical portion of a housing,
    2. The switched reluctance motor device according to claim 1, wherein the housing has a flange portion in the form of a spiral coil protruding radially outward from an outer circumferential surface of the cylindrical portion.
  14.  前記コントローラは、前記マグネットポールの減磁を補償するための減磁補償モードを有し、
     前記減磁補償モードは、前記マグネットポール及び前記ステータポールが周方向において重なる期間に前記相巻線に直流電流を供給することにより、前記マグネットポールを再磁化する請求項1記載のスイッチドリラクタンスモータ装置。
    the controller has a demagnetization compensation mode for compensating for demagnetization of the magnet poles;
    2. The switched reluctance motor device according to claim 1, wherein the demagnetization compensation mode remagnetizes the magnet poles by supplying a direct current to the phase windings during a period in which the magnet poles and the stator poles overlap in the circumferential direction.
  15.  前記単相スイッチドリラクタンスモータは、12個以上のステータポールを有し、負荷としての回転機器に直結される請求項1記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device according to claim 1, wherein the single-phase switched reluctance motor has 12 or more stator poles and is directly connected to a rotating device as a load.
  16.  前記回転機器は、航空機のプロペラである請求項15記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device according to claim 15, wherein the rotating device is an aircraft propeller.
  17.  前記回転機器は、風力タービンである請求項15記載のスイッチドリラクタンスモータ装置。 The switched reluctance motor device according to claim 15, wherein the rotating device is a wind turbine.
PCT/JP2023/000895 2023-01-14 2023-01-14 Switched reluctance motor apparatus WO2024150444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000895 WO2024150444A1 (en) 2023-01-14 2023-01-14 Switched reluctance motor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000895 WO2024150444A1 (en) 2023-01-14 2023-01-14 Switched reluctance motor apparatus

Publications (1)

Publication Number Publication Date
WO2024150444A1 true WO2024150444A1 (en) 2024-07-18

Family

ID=91896743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000895 WO2024150444A1 (en) 2023-01-14 2023-01-14 Switched reluctance motor apparatus

Country Status (1)

Country Link
WO (1) WO2024150444A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191157A (en) * 2000-12-19 2002-07-05 Denso Corp Synchronous rotating electric machine with combined use of permanent magnet
JP2010193700A (en) * 2008-08-25 2010-09-02 Suri-Ai:Kk Switched reluctance motor apparatus
US20110284300A1 (en) * 2010-05-18 2011-11-24 The Hong Kong Polytechnic University In-wheel switched reluctance motor drive
WO2013120230A1 (en) * 2012-02-17 2013-08-22 国电联合动力技术有限公司 Double air-gap hybrid excitation direct-drive switch reluctance wind generator and assembly system thereof
CN203219090U (en) * 2013-04-20 2013-09-25 福安市理想电器有限公司 Novel low-noise and low-vibration electromotor
JP2013225997A (en) * 2012-04-23 2013-10-31 Hitachi Automotive Systems Ltd Permanent magnet rotary electric machine and electric vehicle employing the same
CN103390957A (en) * 2013-08-01 2013-11-13 湘潭电机股份有限公司 Motor casing and motor
US20160294236A1 (en) * 2015-04-01 2016-10-06 General Electric Company System and method for supporting laminations of synchronous reluctance motors
WO2017081900A1 (en) * 2015-11-12 2017-05-18 田中 正一 Winding count switchable electric machine
JP2019187058A (en) * 2018-04-09 2019-10-24 田中 正一 Pole change motor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191157A (en) * 2000-12-19 2002-07-05 Denso Corp Synchronous rotating electric machine with combined use of permanent magnet
JP2010193700A (en) * 2008-08-25 2010-09-02 Suri-Ai:Kk Switched reluctance motor apparatus
US20110284300A1 (en) * 2010-05-18 2011-11-24 The Hong Kong Polytechnic University In-wheel switched reluctance motor drive
WO2013120230A1 (en) * 2012-02-17 2013-08-22 国电联合动力技术有限公司 Double air-gap hybrid excitation direct-drive switch reluctance wind generator and assembly system thereof
JP2013225997A (en) * 2012-04-23 2013-10-31 Hitachi Automotive Systems Ltd Permanent magnet rotary electric machine and electric vehicle employing the same
CN203219090U (en) * 2013-04-20 2013-09-25 福安市理想电器有限公司 Novel low-noise and low-vibration electromotor
CN103390957A (en) * 2013-08-01 2013-11-13 湘潭电机股份有限公司 Motor casing and motor
US20160294236A1 (en) * 2015-04-01 2016-10-06 General Electric Company System and method for supporting laminations of synchronous reluctance motors
WO2017081900A1 (en) * 2015-11-12 2017-05-18 田中 正一 Winding count switchable electric machine
JP2019187058A (en) * 2018-04-09 2019-10-24 田中 正一 Pole change motor device

Similar Documents

Publication Publication Date Title
JP3212310B2 (en) Multi-phase switching type reluctance motor
JP4489002B2 (en) Hybrid excitation rotating electric machine and vehicle equipped with hybrid excitation rotating electric machine
JP6388611B2 (en) Hybrid field double gap synchronous machine
JP2010081782A (en) Switched reluctance motor
JP5543186B2 (en) Switched reluctance motor drive system
JP2010063196A (en) Axial gap motor and electromotive fluid drive unit
JP5543185B2 (en) Switched reluctance motor drive system
US20110074232A1 (en) Pulsed multi-rotor constant air gap switched reluctance motor
Gruber et al. Design of a novel bearingless permanent magnet vernier slice motor with external rotor
JP6083307B2 (en) Rotating machine
WO2024150444A1 (en) Switched reluctance motor apparatus
CN210405045U (en) Axial parallel composite motor
US20130234554A1 (en) Transverse flux machine apparatus
JP7325164B1 (en) Switched reluctance motor device
Kohara et al. Vibration comparison of current superimposition variable flux machine and switched reluctance machine
JP2803299B2 (en) Permanent magnet rotating machine
JP2020043655A (en) motor
EP4274061A1 (en) Electric machine having asymmetric magnet arrangement
US20240055962A1 (en) Bipolar induction electric machine
JPH09135545A (en) Electric motor
JPH09168265A (en) Synchronous/induction hybrid electric machine and synchronous electric machine
JP2005348590A (en) Drive control unit of permanent magnet synchronous motor, and drive control method of permanent magnet synchronous motor
JP2017169287A (en) Rotary electric machine
KR20230075074A (en) Single-Inverter-Controlled Brushless Technique for Wound Rotor Synchronous Machines
Gupta Studies on Design Modifications in Single-Tooth Winding Double-Stator Switched Reluctance Motor for Torque Ripple Mitigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916064

Country of ref document: EP

Kind code of ref document: A1