WO2024149227A1 - 一种正极浆料及其制备方法和应用 - Google Patents
一种正极浆料及其制备方法和应用 Download PDFInfo
- Publication number
- WO2024149227A1 WO2024149227A1 PCT/CN2024/071290 CN2024071290W WO2024149227A1 WO 2024149227 A1 WO2024149227 A1 WO 2024149227A1 CN 2024071290 W CN2024071290 W CN 2024071290W WO 2024149227 A1 WO2024149227 A1 WO 2024149227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- manganese
- electrode slurry
- mixing
- weak base
- Prior art date
Links
- 239000011267 electrode slurry Substances 0.000 title claims abstract description 78
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- 239000011572 manganese Substances 0.000 claims abstract description 60
- 150000003839 salts Chemical class 0.000 claims abstract description 46
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 44
- 239000007774 positive electrode material Substances 0.000 claims abstract description 40
- 239000006258 conductive agent Substances 0.000 claims abstract description 28
- 239000011230 binding agent Substances 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 25
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 claims description 18
- 239000002033 PVDF binder Substances 0.000 claims description 17
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 17
- 239000002041 carbon nanotube Substances 0.000 claims description 17
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 17
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 16
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 12
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 8
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 8
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 8
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910000103 lithium hydride Inorganic materials 0.000 claims description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 2
- 229910001424 calcium ion Inorganic materials 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 229910001415 sodium ion Inorganic materials 0.000 claims description 2
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- BDKWOJYFHXPPPT-UHFFFAOYSA-N lithium dioxido(dioxo)manganese nickel(2+) Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Li+] BDKWOJYFHXPPPT-UHFFFAOYSA-N 0.000 claims 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 20
- 238000004090 dissolution Methods 0.000 abstract description 18
- 238000003860 storage Methods 0.000 abstract description 11
- 230000002401 inhibitory effect Effects 0.000 abstract description 7
- 238000007323 disproportionation reaction Methods 0.000 abstract description 5
- 238000003487 electrochemical reaction Methods 0.000 abstract description 5
- 229910001437 manganese ion Inorganic materials 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000010406 cathode material Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 229910013957 M1 y M2 z PO 4 Inorganic materials 0.000 description 3
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 3
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 159000000011 group IA salts Chemical class 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- 229910003176 Mn-O Inorganic materials 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the technical field of positive electrode materials, for example, a positive electrode slurry and a preparation method and application thereof.
- Lithium iron manganese phosphate (LiFe x Mn 1-x PO 4 , LFMP) cathode material is the next generation cathode material of the existing lithium iron phosphate (LiFePO 4 , LFP) cathode material.
- LFP lithium iron phosphate
- Mn ions replace part of the Fe ions in the crystal structure. This change not only increases the operating voltage of the LFMP cathode (2.0-4.3V), but also changes the conduction kinetics of Li ions in the cathode material. Therefore, compared with LFP materials, LFMP has a higher capacity, a higher capacity retention rate, and significantly improved low-temperature performance.
- LFMP has a fatal disadvantage, that is, Mn ions will undergo redox reactions in a higher voltage range and dissolve from the cathode material. This phenomenon will not only significantly reduce the cycle performance of LFMP, but also have a great impact on the storage and gas production of the battery cell. Therefore, how to effectively solve the problem of Mn ion dissolution in LFMP has become a severe scientific and engineering obstacle.
- the first is to coat the surface of LFMP, mainly including coating pure carbon and inorganic oxide materials on the surface of LFMP.
- the methods used are mainly liquid phase method (hydrothermal, solvent thermal coating, etc.) and solid phase method (coating during the sintering process of solid materials or after sintering);
- the second is to dope the surface of LFMP, mainly including doping Ti, Cr, Mg and other elements on its surface; the main purpose of the two methods is to reduce the potential of Mn ions in LFMP, inhibit its dissolution during the charge and discharge process of the battery cell by changing the dissolution potential of Mn ions, and greatly improve the cycle and storage performance of the battery cell.
- CN102694168A discloses a lithium manganese phosphate positive electrode material, comprising Li x Mn 1-yz M1 y M2 z PO 4 particles and a carbon layer coated on the surface of the Li x Mn 1-yz M1 y M2 z PO 4 particles, wherein 0.9 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.3, M1 and M2 are each independently selected from one or more of Mg, Ti, V, Co, Fe and Al, and the concentration of M2 gradually decreases from the surface to the center of the Li x Mn 1-yz M1 y M2 z PO 4 particles.
- CN114976025A discloses a positive electrode material and a preparation method thereof, a positive electrode sheet and a lithium-ion battery.
- the positive electrode material provided includes lithium iron manganese phosphate particles, the surface of which is coated with a carbon layer, and the carbon layer is doped with fluorine.
- the fluorine doped in the carbon layer can form an F-Mn chemical bond with the lithium iron manganese phosphate, and the F-Mn chemical bond is more stable than the Mn-O chemical bond, and can effectively inhibit the dissolution of Mn 3+ .
- the above methods are not effective in solving the problem of Mn ion dissolution in lithium manganese-based positive electrode materials.
- the main reason is that even if the lithium manganese-based positive electrode materials are modified by coating or doping methods, the lithium manganese-based positive electrode materials will still react with HF produced by the decomposition of the electrolyte, causing Mn ion dissolution.
- the present application provides a positive electrode slurry and a preparation method and application thereof.
- the present application adds a weak base salt to the positive electrode slurry, which can make the positive electrode slurry itself in a weak alkaline environment, thereby capturing the hydrofluoric acid generated in the electrochemical reaction and inhibiting the disproportionation reaction of hydrofluoric acid and manganese ions. Therefore, adding a weak base salt can effectively inhibit the dissolution of manganese in the positive electrode material and greatly improve the cycle and storage performance of the battery cell.
- the present application provides a positive electrode slurry, which includes a manganese-containing positive electrode active material, a binder, a conductive agent, a weak base salt and a solvent.
- the present application adds a weak base salt to the positive electrode slurry, which can make the positive electrode slurry itself in a weak alkaline environment, thereby capturing the hydrofluoric acid produced in the electrochemical reaction and inhibiting the disproportionation reaction of hydrofluoric acid and manganese ions. Therefore, the addition of a weak base salt can effectively inhibit the dissolution of manganese in the positive electrode material and greatly improve the cycle and storage performance of the battery cell.
- the weak base salt used in the present application can be a strong acid weak base salt or a weak acid weak base salt.
- the positive electrode slurry is placed in a strong alkaline environment, that is, a strong base and a weak acid salt are added, the slurry will gel quickly and be difficult to disperse because the strong alkaline salt has a great influence on the processability of the material.
- the cation in the weak base salt includes any one of lithium ion, calcium ion or sodium ion, or a combination of at least two thereof.
- the weak base salt includes any one of lithium carbonate, lithium hydride, calcium carbonate or sodium carbonate, or a combination of at least two thereof.
- the mass fraction of the weak base salt is 1-6%, for example, 1%, 2%, 3%, 4%, 5% or 6%.
- the mass fraction of the weak base salt if the mass fraction of the weak base salt is too large, it will enhance the processability of the slurry and the material, affecting the production efficiency of the battery cell; if the mass fraction of the weak base salt is too small, it will be difficult to achieve the inhibitory effect on the dissolution of transition metal manganese.
- the mass fraction ratio of the manganese-containing positive electrode active material, the binder and the conductive agent and the weak base salt is (85-92)%: (1-7)%: (1-7)%, wherein the selection range of the manganese-containing positive electrode active material is (86-92)%. For example, it can be 85%, 86%, 87%, 88%, 89%, 90%, 91% or 92%, etc.
- the selection range of the adhesive is (1-7)%, for example, it can be 1%, 2%, 3%, 4%, 5%, 6% or 7%, etc.
- the selection range of the conductive agent is (1-7)%, for example, it can be 1%, 2%, 3%, 4%, 5%, 6% or 7%, etc.
- the manganese-containing positive electrode active material includes any one of lithium manganese iron phosphate, lithium manganese oxide, lithium nickel manganese oxide, or lithium nickel cobalt manganese oxide, or a combination of at least two thereof.
- the binder includes polyvinylidene fluoride and/or carboxymethyl cellulose.
- the conductive agent includes any one of carbon nanotubes, carbon black, graphene or conductive graphite, or a combination of at least two thereof.
- the solvent includes any one of N-methylpyrrolidone, N-dimethylformamide or dimethyl sulfoxide, or a combination of at least two thereof.
- the present application provides a method for preparing the positive electrode slurry as described in the first aspect, the preparation method comprising:
- the manganese-containing positive electrode active material, a binder, a conductive agent, a weak base salt and a solvent are mixed to obtain the positive electrode slurry.
- the mixing temperature is room temperature.
- room temperature refers to a temperature within the selected range of 25°C ⁇ 5°C, for example, it can be 20°C, 21°C, 22°C, 23°C, 24°C, 25°C, 26°C, 27°C, 28°C, 29°C or 30°C, etc.
- the mixing time is 2-3 hours, for example, 2 hours, 2.2 hours, 2.4 hours, 2.6 hours, 2.8 hours or 3 hours.
- the mixing process is accompanied by stirring, and the stirring method includes planetary stirring.
- the mixing method includes one-step mixing or step-by-step mixing, and step-by-step mixing can be selected.
- the one-step mixing method is: directly mixing the manganese-containing positive electrode active material, the binder, the conductive agent, the weak base salt and the solvent to obtain the positive electrode slurry.
- the one-step mixing method may result in uneven coating of the binder or conductive agent on the slurry surface, which may affect the performance of the material.
- the stepwise mixing method is:
- step (1) The mixture of step (1) is mixed with a conductive agent and a binder and added into a solvent to obtain the manganese-containing positive electrode slurry.
- step-by-step mixing method provided in the present application, materials with different specific surface areas are first mixed, and then materials with smaller specific surface area differences are added.
- This mixing method can improve the uniformity and dispersibility of the slurry and obtain materials with excellent performance.
- the preparation method comprises the following steps:
- the manganese-containing positive electrode active material, a binder, a conductive agent, a weak base salt and a solvent are mixed and stirred to obtain the positive electrode slurry; wherein the mixing method includes one-step mixing or step-by-step mixing;
- the one-step mixing method specifically comprises: mixing a manganese-containing positive electrode active material, a binder, a conductive agent, a weak base salt and a solvent to obtain the positive electrode slurry;
- the step-by-step mixing method specifically includes:
- step (2) mixing the mixture of step (1) with a conductive agent and a binder and adding the mixture into a solvent to obtain the positive electrode slurry;
- the mass fraction of the weak base salt is 1-6%, and the mass fraction ratio of the manganese-containing positive electrode active material, the binder and the conductive agent is (85-92)%: (1-7)%: (1-7)%.
- the present application provides a positive electrode sheet, wherein the positive electrode sheet is formed by The electrode slurry is coated on a current collector and dried.
- the present application provides a lithium-ion battery, wherein the lithium-ion battery comprises the positive electrode sheet as described in the third aspect.
- the present application provides an electrical device, wherein the electrical device comprises the lithium-ion battery as described in the fourth aspect.
- the present application adds a weak base salt to the positive electrode slurry, which can make the positive electrode slurry itself in a weak alkaline environment, thereby achieving the capture of hydrofluoric acid produced in the electrochemical reaction and inhibiting the disproportionation reaction of hydrofluoric acid and manganese ions. Therefore, the addition of a weak base salt can effectively inhibit the dissolution of manganese in the positive electrode material and greatly improve the cycle and storage performance of the battery cell.
- This embodiment provides a positive electrode slurry, which includes lithium iron manganese phosphate, polyvinylidene fluoride, carbon nanotubes, lithium carbonate and N-methylpyrrolidone.
- the mass fraction ratio of lithium manganese iron phosphate, polyvinylidene fluoride, carbon nanotubes and lithium carbonate is 89%:4%:4%:3%.
- This embodiment also provides a method for preparing a positive electrode slurry, the preparation method comprising:
- step (1) The mixture of step (1) is mixed with polyvinylidene fluoride and carbon nanotubes and added into N-methylpyrrolidone, and the mixture is mixed and stirred at 25° C. for 2.5 hours to obtain the positive electrode slurry.
- This embodiment provides a positive electrode slurry, which includes lithium iron manganese phosphate, polyvinylidene fluoride, carbon nanotubes, lithium hydride and N-methylpyrrolidone.
- the mass fraction ratio of lithium manganese iron phosphate, polyvinylidene fluoride, carbon nanotubes and lithium hydride is 89%:4%:4%:3%.
- This embodiment also provides a method for preparing a positive electrode slurry, the preparation method comprising:
- step (1) The mixture of step (1) was mixed with polyvinylidene fluoride and carbon nanotubes and added into N-methylpyrrolidone, and the mixture was mixed and stirred at 23° C. for 2.8 h to obtain the positive electrode slurry.
- This embodiment provides a positive electrode slurry, which includes lithium manganese oxide, carboxymethyl cellulose, carbon black, calcium carbonate and N-dimethylamide.
- the mass fraction ratio of the lithium manganate, carboxymethyl cellulose, carbon black and calcium carbonate is 86%:1%:7%:6%.
- This embodiment also provides a method for preparing a positive electrode slurry, the preparation method comprising:
- step (1) The mixture of step (1) is mixed with carboxymethyl cellulose and carbon black and added into N-dimethylamide, and the mixture is mixed and stirred at 28° C. for 2.3 h to obtain the positive electrode slurry.
- This embodiment provides a positive electrode slurry, the positive electrode slurry includes lithium manganese oxide, polyvinylidene fluoride, Conductive graphite, sodium carbonate and dimethyl sulfoxide.
- the mass fraction ratio of lithium manganate, polyvinylidene fluoride, conductive graphite and sodium carbonate is 89%:7%:1%:3%.
- This embodiment also provides a method for preparing a positive electrode slurry, the preparation method comprising:
- step (1) The mixture of step (1) is mixed with polyvinylidene fluoride and conductive graphite and added into dimethyl sulfoxide, and the mixture is mixed and stirred at 20° C. for 3 h to obtain the positive electrode slurry.
- This embodiment provides a positive electrode slurry, which includes lithium iron manganese phosphate, carboxymethyl cellulose, carbon nanotubes, lithium carbonate and dimethyl sulfoxide.
- the mass fraction ratio of lithium manganese iron phosphate, carboxymethyl cellulose, carbon nanotubes and lithium carbonate is 92%:3.5%:3.5%:1%.
- This embodiment also provides a method for preparing a positive electrode slurry, the preparation method comprising:
- step (1) The mixture of step (1) is mixed with carboxymethyl cellulose and carbon nanotubes and added into dimethyl sulfoxide, and the mixture is mixed and stirred at 30° C. for 2 h to obtain the positive electrode slurry.
- the difference between this embodiment and embodiment 1 is that the mass fraction of lithium carbonate is 0.5%, and the mass fraction ratio of lithium iron manganese phosphate, polyvinylidene fluoride and carbon nanotubes is 91.5%:4%:4%.
- the difference between this embodiment and embodiment 1 is that the mass fraction of lithium carbonate is 7%, and the mass fraction ratio of lithium iron manganese phosphate, polyvinylidene fluoride and carbon nanotubes is 85%:4%:4%.
- lithium manganese iron phosphate, polyvinylidene fluoride, carbon nanotubes and lithium carbonate are mixed with N-methylpyrrolidone in one step, specifically including:
- Lithium iron manganese phosphate, polyvinylidene fluoride, carbon nanotubes and lithium carbonate are directly mixed and stirred with N-methyl pyrrolidone at 25° C. for 2.5 hours to obtain the manganese-containing positive electrode slurry.
- This application example provides a method for preparing a positive electrode sheet, and the preparation method comprises the following steps:
- Example 1 The positive electrode slurry provided in Example 1 was coated on both sides of a copper foil with a thickness of 13 ⁇ m. The surface density was controlled at 24 mg/cm 2 during the coating process, and a 20 mm tab area was reserved on both sides;
- the electrode sheet is rolled with a roller press to a compaction density of 2.85 g/cm 3 , and then the electrode sheet roll is divided into two equal rolls by laser cutting, and finally the positive electrode sheet is cut into 60 cm long and 30 cm wide by a mold to complete the production.
- Example 1 The difference between this comparative example and Example 1 is that lithium carbonate is not added to the positive electrode slurry, i.e., manganese phosphate
- the mass fraction ratio of lithium iron, polyvinylidene fluoride and carbon nanotubes is 92%:4%:4%.
- Example 1 The difference between this comparative example and Example 1 is that lithium carbonate is replaced by sodium acetate.
- the difference between this comparative example and application example 1 is that lithium carbonate is not added to the positive electrode slurry used in step (1), that is, the mass fraction ratio of lithium manganese iron phosphate, polyvinylidene fluoride and carbon nanotubes is 92%:4%:4%.
- the positive electrode sheets and negative electrode sheets provided in Application Examples 1-8 and Application Comparative Examples 1-2 were assembled and injected to form soft-pack batteries, wherein the manufacturing method of the negative electrode sheet was as follows: the negative electrode slurry was evenly coated on the front and back sides of a copper foil with a thickness of 8 um, the surface density was controlled at 17 mg/cm 2 during the coating process, and 20 mm of tab areas were reserved on both sides; the coated electrode sheet was passed through a 20-meter-long 110-degree oven at a speed of 3 m/s, and the negative electrode sheet was obtained after baking.
- the soft-pack battery manufactured as above is mounted on a fixture of corresponding size, and the battery cell is subjected to a cycle performance test at 45°C and a storage performance test at 55°C.
- the present application uses the above-mentioned embodiments to illustrate the process method of the present application, but the present application is not limited to the above-mentioned process steps, that is, it does not mean that the present application must rely on the above-mentioned process steps to be implemented.
- the technicians in the relevant technical field should understand that any improvement to the present application, the equivalent replacement of the raw materials selected in the present application, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present application.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种正极浆料及其制备方法和应用,所述正极浆料包括含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂。在正极浆料中加入弱碱盐,可以使得正极浆料自身处于弱碱性环境中,进而在电化学反应中实现对反应中产生的氢氟酸的捕捉,抑制氢氟酸与锰离子的歧化反应,因此添加弱碱盐可以有效抑制正极材料中的锰溶出,提高电芯的循环和存储性能。
Description
本申请要求了申请日为2023年1月13日,申请号为CN202310071281.9,发明名称为“一种正极浆料及其制备方法和应用”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及正极材料技术领域,例如一种正极浆料及其制备方法和应用。
磷酸铁锰锂(LiFexMn1-xPO4,LFMP)正极材料是现有磷酸铁锂(LiFePO4,LFP)正极材料的下一代正极材料。其与LFP最大的区别在于晶体结构中用Mn离子替代部分Fe离子,这种改变不仅提高了LFMP正极的使用电压(2.0-4.3V),也改变了Li离子在正极材料中的传导动力学。因此,LFMP相较LFP材料容量更高,容量的保持率也更高,低温性能提升明显。但LFMP有比较致命的缺点,即在于Mn离子在较高电压区间下会发生氧化还原反应,从正极材料中溶出,这个现象不仅会显著减低LFMP的循环性能,并对电芯的存储产气影响非常大。因此,如何有效解决LFMP中Mn离子的溶出问题成为了严峻的科学与工程障碍。
针对LFMP中Mn溶出的问题,当前解决方案主要分两类。第一类为对LFMP表面进行包覆,主要包括在LFMP表面包覆纯碳、无机氧化物类材料,所使用的方法主要为液相法(水热、溶剂热法包覆等)和固相法(固体材料烧结过程中或者烧结完以后进行包覆);第二类为对LFMP表面进行掺杂,主要包括在其表面掺杂Ti、Cr、Mg等元素;两类方法的主要目的在于降低LFMP中Mn离子的电位,通过改变Mn离子的溶出电位来抑制其在电芯充放电过程中的溶出,大幅度提高电芯的循环与存储性能。
对于第一类解决方案,CN102694168A公开了一种磷酸锰锂正极材料,包括LixMn1-y-zM1yM2zPO4颗粒和包覆在所述LixMn1-y-zM1yM2zPO4颗粒表面的碳层,其中,0.9≤x≤1.3,0≤y≤0.3,0<z≤0.3,M1和M2各自独立的选自Mg、Ti、V、Co、Fe和Al中的一种或几种,M2的浓度从LixMn1-y-zM1yM2zPO4颗粒表面向中心逐渐较小。
对于第二类解决方案,CN114976025A公开了一种正极材料及其制备方法与正极片和锂离子电池。提供的正极材料包括磷酸锰铁锂颗粒,所述磷酸锰铁锂颗粒的表面包覆有碳层,所述碳层中掺杂有氟。碳层中掺杂的氟能够与磷酸锰铁锂形成F-Mn化学键,F-Mn化学键比Mn-O化学键更稳定,能够有效抑制Mn3+的溶出。
然而,上述方法对锂锰基正极材料中Mn离子溶出问题的解决效果不明显,主要原因在于即使用包覆或掺杂的方法对锂锰基正极材料进行了改性,锂锰基正极材料仍会与电解液分解产生的HF反应,造成Mn离子溶出。
因此,如何有效的抑制正极材料中的Mn离子溶出,大幅度提高电芯循环和存储性能,是亟待解决的技术问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种正极浆料及其制备方法和应用。本申请在正极浆料中加入弱碱盐,可以使得正极浆料自身处于弱碱性环境,从而在电化学反应中实现对反应中产生的氢氟酸的捕捉,抑制氢氟酸与锰离子的歧化反应,因此添加弱碱盐可以有效抑制正极材料中的锰溶出,大幅度提升电芯的循环和存储性能。
第一方面,本申请提供一种正极浆料,所述正极浆料包括含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂。
本申请在正极浆料中加入弱碱盐,可以使得正极浆料自身处于弱碱性环境,从而在电化学反应中实现对反应中产生的氢氟酸的捕捉,抑制氢氟酸与锰离子的歧化反应,因此添加弱碱盐可以有效抑制正极材料中的锰溶出,大幅度提升电芯的循环和存储性能。
需要注意的是,本申请中采用的弱碱盐可以是强酸弱碱盐,也可以是弱酸弱碱盐。
本申请中,若使得正极浆料处于强碱性环境中,即添加的是强碱弱酸盐,则由于强碱性盐对材料的加工性有很大影响,因此浆料会快速凝胶难以分散。
在一个实施方式中,所述弱碱盐中的阳离子包括锂离子、钙离子或钠离子中的任意一种或至少两种的组合。
在一个实施方式中,所述弱碱盐包括碳酸锂、氢化锂、碳酸钙或碳酸钠中的任意一种或至少两种的组合。
在一个实施方式中,以所述含锰正极活性物质、粘结剂、导电剂和弱碱盐的总质量为100%计,所述弱碱盐的质量分数为1-6%,例如可以是1%、2%、3%、4%、5%或6%等。
本申请中,若弱碱盐的质量分数过大,则会增强浆料与材料的可加工性,影响电芯生产效率;若弱碱盐的质量分数过小,则难以实现对过渡金属锰溶出的抑制效果。
在一个实施方式中,以所述含锰正极活性物质、粘结剂、导电剂和弱碱盐的总质量为100%计,所述含锰正极活性物质、粘结剂和导电剂和弱碱盐的质量分数比为(85-92)%∶(1-7)%∶(1-7)%,其中含锰正极活性物质的选择范围(86-92)%
例如可以是85%、86%、87%、88%、89%、90%、91%或92%等,粘结剂的选择范围(1-7)%例如可以是1%、2%、3%、4%、5%、6%或7%等,导电剂的选择范围(1-7)%例如可以是1%、2%、3%、4%、5%、6%或7%等。
在一个实施方式中,所述含锰正极活性物质包括磷酸锰铁锂、锰酸锂、镍锰酸锂或镍钴锰酸锂中的任意一种或至少两种的组合。
在一个实施方式中,所述粘结剂包括聚偏氟乙烯和或羧甲基纤维素。
在一个实施方式中,所述导电剂包括碳纳米管、炭黑、石墨烯或导电石墨中的任意一种或至少两种的组合。
在一个实施方式中,所述溶剂包括N-甲基吡咯烷酮、N-二甲基酰胺或二甲基亚砜中的任意一种或至少两种的组合。
第二方面,本申请提供一种如第一方面所述的正极浆料的制备方法,所述制备方法包括:
将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂进行混合,得到所述正极浆料。
在一个实施方式中,所述混合的温度为室温。
本申请中,室温指的是温度在25℃±5℃的选择范围内,例如可以是20℃、21℃、22℃、23℃、24℃、25℃、26℃、27℃、28℃、29℃或30℃等。
在一个实施方式中,所述混合的时间为2-3h,例如可以是2h、2.2h、2.4h、2.6h、2.8h或3h等。
在一个实施方式中,所述混合的过程中伴有搅拌,所述搅拌的方式包括行星式搅拌。
在一个实施方式中,所述混合的方式包括一步混合或分步混合,可选为分步混合。
在一个实施方式中,所述一步混合的方式为:将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂直接混合,得到所述正极浆料。
本申请中,采用一步混合的方式可能会出现浆料表面包覆粘结剂或导电剂不均匀的情况,影响材料的性能。
在一个实施方式中,所述分步混合的方式为:
(1)将含锰正极活性材料与弱碱盐混合,得到混合物;
(2)将步骤(1)所述混合物与导电剂和粘结剂混合并加入到溶剂中,得到所述含锰正极浆料。
本申请中提供的分步混合方式中先将不同比表面积的材料先混合,然后再加入比表面积差异小的材料,采用这样的混合方式可以提高浆料的均匀性与分散性,得到性能优异的材料。
作为可选的技术方案,所述制备方法包括以下步骤:
将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂混合搅拌,得到所述正极浆料;其中,所述混合的方式包括一步混合或分步混合;
所述一步混合的方式具体包括:将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂混合,得到所述正极浆料;
所述分步混合的方式具体包括:
(1)将含锰正极活性材料与弱碱盐混合,得到混合物;
(2)将步骤(1)所述混合物与导电剂和粘结剂混合并加入到溶剂中,得到所述正极浆料;
其中,所述弱碱盐的质量分数为1-6%,所述含锰正极活性物质、粘结剂和导电剂的质量分数比为(85-92)%∶(1-7)%∶(1-7)%。
第三方面,本申请提供一种正极片,所述正极片通过将第一方面所述的正
极浆料涂覆在集流体上干燥得到。
第四方面,本申请提供一种锂离子电池,所述锂离子电池包括如第三方面所述的正极片。
第五方面,本申请提供一种用电装置,所述用电装置包括如第四方面所述的锂离子电池。
本申请所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
相对于相关技术,本申请具有以下有益效果:
本申请在正极浆料加入弱碱盐,可以使得正极浆料自身处于弱碱性环境,从而在电化学反应中实现对反应中产生的氢氟酸的捕捉,抑制氢氟酸与锰离子的歧化反应,因此添加弱碱盐可以有效抑制正极材料中的锰溶出,大幅度提升电芯的循环和存储性能。
在阅读并理解了详细描述后,可以明白其他方面。
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种正极浆料,所述正极浆料包括磷酸锰铁锂、聚偏氟乙烯、碳纳米管、碳酸锂和N-甲基吡咯烷酮。
其中,所述磷酸锰铁锂、聚偏氟乙烯、碳纳米管和碳酸锂的质量分数比为89%∶4%∶4%∶3%。
本实施例还提供了一种正极浆料的制备方法,所述制备方法包括:
(1)将磷酸锰铁锂与碳酸锂混合,得到混合物;
(2)将步骤(1)所述混合物与聚偏氟乙烯和碳纳米管混合并加入到N-甲基吡咯烷酮中,在25℃下混合搅拌2.5h后得到所述正极浆料。
实施例2
本实施例提供了一种正极浆料,所述正极浆料包括磷酸锰铁锂、聚偏氟乙烯、碳纳米管、氢化锂和N-甲基吡咯烷酮。
其中,所述磷酸锰铁锂、聚偏氟乙烯、碳纳米管和氢化锂的质量分数比为89%∶4%∶4%∶3%。
本实施例还提供了一种正极浆料的制备方法,所述制备方法包括:
(1)将磷酸锰铁锂与氢化锂混合,得到混合物;
(2)将步骤(1)所述混合物与聚偏氟乙烯和碳纳米管混合并加入到N-甲基吡咯烷酮中,在23℃下混合搅拌2.8h后得到所述正极浆料。
实施例3
本实施例提供了一种正极浆料,所述正极浆料包括锰酸锂、羧甲基纤维素、炭黑、碳酸钙和N-二甲基酰胺。
其中,所述锰酸锂、羧甲基纤维素、炭黑和碳酸钙的质量分数比为86%∶1%∶7%∶6%。
本实施例还提供了一种正极浆料的制备方法,所述制备方法包括:
(1)将锰酸锂与碳酸钙混合,得到混合物;
(2)将步骤(1)所述混合物与羧甲基纤维素和炭黑混合并加入到N-二甲基酰胺中,在28℃下混合搅拌2.3h后得到所述正极浆料。
实施例4
本实施例提供了一种正极浆料,所述正极浆料包括锰酸锂、聚偏氟乙烯、
导电石墨、碳酸钠和二甲基亚砜。
其中,所述锰酸锂、聚偏氟乙烯、导电石墨和碳酸钠的质量分数比为89%∶7%∶1%∶3%。
本实施例还提供了一种正极浆料的制备方法,所述制备方法包括:
(1)将镍锰酸锂与碳酸钠混合,得到混合物;
(2)将步骤(1)所述混合物与聚偏氟乙烯和导电石墨混合并加入到二甲基亚砜中,在20℃下混合搅拌3h后得到所述正极浆料。
实施例5
本实施例提供了一种正极浆料,所述正极浆料包括磷酸锰铁锂、羧甲基纤维素、碳纳米管、碳酸锂和二甲基亚砜。
其中,所述磷酸锰铁锂、羧甲基纤维素、碳纳米管和碳酸锂的质量分数比为92%∶3.5%∶3.5%∶1%。
本实施例还提供了一种正极浆料的制备方法,所述制备方法包括:
(1)将镍钴锰酸锂与碳酸锂混合,得到混合物;
(2)将步骤(1)所述混合物与羧甲基纤维素和碳纳米管混合并加入到二甲基亚砜中,在30℃下混合搅拌2h后得到所述正极浆料。
实施例6
本实施例与实施例1的不同之处为,碳酸锂的质量分数为0.5%,则磷酸锰铁锂、聚偏氟乙烯和碳纳米管的质量分数比为91.5%∶4%∶4%。
其余制备方法和参数与实施例1保持一致。
实施例7
本实施例与实施例1的不同之处为,碳酸锂的质量分数为7%,则磷酸锰铁锂、聚偏氟乙烯和碳纳米管质量分数比为85%∶4%∶4%。
其余制备方法和参数与实施例1保持一致。
实施例8
本实施例与实施例1的不同之处为,所述磷酸锰铁锂、聚偏氟乙烯、碳纳米管和碳酸锂与N-甲基吡咯烷酮混合的方式为一步混合,具体包括:
将磷酸锰铁锂、聚偏氟乙烯、碳纳米管和碳酸锂与N-甲基吡咯烷酮在25℃下直接混合搅拌2.5h,得到所述含锰正极浆料。
其余制备方法和参数与实施例1保持一致。
应用例1
本应用例提供了一种正极片的制备方法,所述制备方法包括以下步骤:
(1)将实施例1提供的正极浆料涂布在厚度为13um的铜箔正反两面,涂布过程控制面密度在24mg/cm2,同时两边预留20mm的极耳区;
(2)将涂布后的极片以3m/s的速度经过20米长的110℃烘箱,以除去溶剂N-甲基吡咯烷酮,得到正极极片;
(3)用辊压机辊压极片,使其压实密度达到2.85g/cm3,然后用激光分切使极片卷等分为上下两卷,最后用模具裁成60cm长30cm宽的正极极片即可制作完成。
应用例2
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例2制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
应用例3
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例3制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
应用例4
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例4制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
应用例5
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例5制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
应用例6
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例6制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
应用例7
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例7制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
应用例8
本应用例与应用例1的不同之处为,步骤(1)中的含锰正极浆料采用实施例8制备的正极浆料。
其余制备方法和参数与应用例1保持一致。
对比例1
本对比例与实施例1的不同之处为,正极浆料中不添加碳酸锂,即磷酸锰
铁锂、聚偏氟乙烯和碳纳米管的质量分数比为92%∶4%∶4%。
其余制备方法和参数与实施例1保持一致。
对比例2
本对比例与实施例1的不同之处为,碳酸锂替换为乙酸钠。
其余制备方法和参数与实施例1保持一致。
应用对比例1
本应用对比例与应用例1的不同之处为,步骤(1)采用的正极浆料中不添加碳酸锂,即磷酸锰铁锂、聚偏氟乙烯和碳纳米管的质量分数比为92%∶4%∶4%。
其余制备方法和参数与实施例1保持一致。
应用对比例2
本应用对比例与应用例1的不同之处为,步骤(1)采用的正极浆料中碳酸锂替换为乙酸钠。
其余制备方法和参数与实施例1保持一致。
性能测试
将应用例1-8和应用对比例1-2提供的正极片与负极片经过组装和注液化成等工序制成软包电池,其中负极片的制作方法为:将负极浆料均匀涂布在厚度为8um的铜箔正反两面,涂布过程控制面密度在17mg/cm2,同时两边预留20mm的极耳区;将涂布后的极片以3m/s的速度经过20米长的110度烘箱,烘烤后得到负极极片。
将上述制作完成的软包电池装上相应尺寸的夹具,对电芯进行45℃下的循环性能测试和55℃下的存储性能测试。
测试结果如表1所示。
表1
分析:
由应用例1-5的数据可知,本申请参数的保护范围内制备正极浆料,不仅可以有效抑制正极材料中的锰溶出,还可以大幅度提升电芯的循环和存储性能。
由应用例1和应用例6-7的数据结果对比可知,弱碱盐的质量分数过大时,虽然会对电芯的循环和存储性能产生有益效果,但过多的弱碱盐会增强浆料与材料的可加工性,影响电芯生产效率,成本升高;而弱碱盐的质量分数过小时,则难以实现对过渡金属锰溶出的抑制效果,循环稳定性差,且产气增大。
由应用例1和应用例8的数据结果对比可知,采用一步混合的方式,会出现浆料表面包覆粘结剂或导电剂不均匀的情况,导致材料的循环稳定性和产气增大,对过渡金属锰溶出的抑制效果较差。
由应用例1和应用对比例1的数据结果对比可知,若不添加弱碱盐来使得正极浆料自身处于弱碱性环境,则在电化学反应中难以实现对反应中产生的氢氟酸的捕捉,进而无法阻止氢氟酸与锰离子的歧化反应,因此不能有效抑制正极材料中的锰溶出,进而导致电芯的循环和存储性能大幅度下降。
由应用例1和应用对比例2的数据结果对比可知,强碱性盐对材料的加工性有很大影响,因此浆料会快速凝胶难以分散,起不到对过渡金属锰溶出的抑制效果。
申请人声明,本申请通过上述实施例来说明本申请的工艺方法,但本申请并不局限于上述工艺步骤,即不意味着本申请必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
Claims (15)
- 一种正极浆料,其中,所述正极浆料包括含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂。
- 根据权利要求1所述的正极浆料,其中,所述弱碱盐中的阳离子包括锂离子、钙离子或钠离子中的任意一种或至少两种的组合。
- 根据权利要求1或2所述的正极浆料,其中,所述弱碱盐包括碳酸锂、氢化锂、碳酸钙或碳酸钠中的任意一种或至少两种的组合。
- 根据权利要求1-3任一项所述的正极浆料,其中,以所述含锰正极活性物质、粘结剂、导电剂和弱碱盐的总质量为100%计,所述弱碱盐的质量分数为1-6%。
- 根据权利要求1-4任一项所述的正极浆料,其中,以所述含锰正极活性物质、粘结剂、导电剂和弱碱盐的总质量为100%计,所述含锰正极活性物质、粘结剂和导电剂的质量分数比为(85-92)%∶(1-7)%∶(1-7)%。
- 根据权利要求1-5任一项所述的正极浆料,其特征在于,所述含锰正极活性物质包括磷酸锰铁锂、锰酸锂、镍锰酸锂或镍钴锰酸锂中的任意一种或至少两种的组合;可选地,所述粘结剂包括聚偏氟乙烯和或羧甲基纤维素;可选地,所述导电剂包括碳纳米管、炭黑、石墨烯或导电石墨中的任意一种或至少两种的组合。
- 根据权利要求1-6任一项所述的正极浆料,其中,所述溶剂包括N-甲基吡咯烷酮、N-二甲基酰胺或二甲基亚砜中的任意一种或至少两种的组合。
- 一种如权利要求1-7任一项所述的正极浆料的制备方法,其中,所述制备方法包括:将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂进行混合,得到所述正极浆料。
- [根据细则26改正 04.02.2024]
根据权利要求8所述的制备方法,其中,所述混合的温度为室温;可选地,所述混合的时间为2-3h;可选地,所述混合的过程中伴有搅拌,所述搅拌的方式包括行星式搅拌。 - 根据权利要求8或9所述的制备方法,其中,所述混合的方式包括一步混合或分步混合,可选为分步混合;可选地,所述一步混合的方式为:将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂直接混合,得到所述正极浆料。
- 根据权利要求10所述的制备方法,其中,所述分步混合的方式为:(1)将含锰正极活性材料与弱碱盐混合,得到混合物;(2)将步骤(1)所述混合物与导电剂和粘结剂混合并加入到溶剂中,得到所述正极浆料。
- 根据权利要求8-11任一项所述的制备方法,其中,所述制备方法包括以下步骤:将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂混合搅拌,得到所述正极浆料;其中,所述混合的方式包括一步混合或分步混合;所述一步混合的方式具体包括:将含锰正极活性物质、粘结剂、导电剂、弱碱盐和溶剂混合,得到所述正极浆料;所述分步混合的方式具体包括:(1)将含锰正极活性材料与弱碱盐混合,得到混合物;(2)将步骤(1)所述混合物与导电剂和粘结剂混合并加入到溶剂中,得到正极浆料;其中,所述弱碱盐的质量分数为1-6%,所述含锰正极活性物质、粘结剂和导电剂的质量分数比为(85-92)%∶(1-7)%∶(1-7)%。
- 一种正极片,其中,所述正极片通过将权利要求1-7任一项所述的正极浆料涂覆在集流体上干燥得到。
- 一种锂离子电池,其中,所述锂离子电池包括如权利要求13所述的正极片。
- 一种用电装置,其中,所述用电装置包括如权利要求14所述的锂离子电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310071281.9A CN116053476A (zh) | 2023-01-13 | 2023-01-13 | 一种正极浆料及其制备方法和应用 |
CN202310071281.9 | 2023-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024149227A1 true WO2024149227A1 (zh) | 2024-07-18 |
Family
ID=86127653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/071290 WO2024149227A1 (zh) | 2023-01-13 | 2024-01-09 | 一种正极浆料及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116053476A (zh) |
WO (1) | WO2024149227A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116053476A (zh) * | 2023-01-13 | 2023-05-02 | 上海兰钧新能源科技有限公司 | 一种正极浆料及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6001325A (en) * | 1996-11-26 | 1999-12-14 | Fmc Corporation | Process for removing acids from lithium salt solutions |
CN105489882A (zh) * | 2016-01-14 | 2016-04-13 | 北京鼎能开源电池科技股份有限公司 | 正极极片及其制备方法、锂离子电池 |
WO2017032165A1 (zh) * | 2015-08-25 | 2017-03-02 | 田东 | 一种锰酸锂正极浆料的制备方法 |
CN111162247A (zh) * | 2018-11-07 | 2020-05-15 | 宁德时代新能源科技股份有限公司 | 正极极片及锂离子二次电池 |
CN111599984A (zh) * | 2019-02-21 | 2020-08-28 | 贝特瑞新材料集团股份有限公司 | 一种正极片和包含该正极片的锂离子电池及其制备方法 |
WO2021093810A1 (zh) * | 2019-11-14 | 2021-05-20 | 孚能科技(镇江)有限公司 | 正极浆料及其制备方法、正极片及其制备方法、锂离子电池及其应用、电芯 |
CN116053476A (zh) * | 2023-01-13 | 2023-05-02 | 上海兰钧新能源科技有限公司 | 一种正极浆料及其制备方法和应用 |
-
2023
- 2023-01-13 CN CN202310071281.9A patent/CN116053476A/zh active Pending
-
2024
- 2024-01-09 WO PCT/CN2024/071290 patent/WO2024149227A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6001325A (en) * | 1996-11-26 | 1999-12-14 | Fmc Corporation | Process for removing acids from lithium salt solutions |
WO2017032165A1 (zh) * | 2015-08-25 | 2017-03-02 | 田东 | 一种锰酸锂正极浆料的制备方法 |
CN105489882A (zh) * | 2016-01-14 | 2016-04-13 | 北京鼎能开源电池科技股份有限公司 | 正极极片及其制备方法、锂离子电池 |
CN111162247A (zh) * | 2018-11-07 | 2020-05-15 | 宁德时代新能源科技股份有限公司 | 正极极片及锂离子二次电池 |
CN111599984A (zh) * | 2019-02-21 | 2020-08-28 | 贝特瑞新材料集团股份有限公司 | 一种正极片和包含该正极片的锂离子电池及其制备方法 |
WO2021093810A1 (zh) * | 2019-11-14 | 2021-05-20 | 孚能科技(镇江)有限公司 | 正极浆料及其制备方法、正极片及其制备方法、锂离子电池及其应用、电芯 |
CN116053476A (zh) * | 2023-01-13 | 2023-05-02 | 上海兰钧新能源科技有限公司 | 一种正极浆料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN116053476A (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yi et al. | Enhanced electrochemical performance of Li-rich low-Co Li1. 2Mn0. 56Ni0. 16Co0. 08− xAlxO2 (0≤ x≤ 0.08) as cathode materials | |
CN110739427B (zh) | 电池隔膜材料及其制备方法与应用 | |
US20200140339A1 (en) | Doped titanium niobate and battery | |
CN110797530A (zh) | 一种高电压钴酸锂石墨电池及其制备方法 | |
EP3117474B1 (en) | Cathode for lithium batteries | |
Wang et al. | Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries | |
Yuan et al. | Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance | |
KR20140070259A (ko) | 리튬 이차 전지용 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지 | |
BR112012012518B1 (pt) | Catodo baseado em dois tipos de compostos e bateria secundária de lítio compreendendo o mesmo | |
CN113539694B (zh) | 一种降低负极预金属化氧化电势的方法及其应用、电化学储能装置 | |
CN109860584B (zh) | 一种高能量密度锂离子二次电池 | |
CN111559741B (zh) | 一种聚阴离子型复合材料的制备方法 | |
WO2024149227A1 (zh) | 一种正极浆料及其制备方法和应用 | |
JP2012054000A (ja) | 全固体型リチウム二次電池 | |
CN111916734A (zh) | 铬基硫硒化物正极材料及其制备方法和应用 | |
US20240266533A1 (en) | Sodium-Chromium-Titanium-Manganese Phosphate Self-Supporting Electrode Material, and Preparation Method Therefor and Use Thereof | |
WO2024183803A1 (zh) | 一种复合磷酸锰铁锂正极材料及其制备方法和应用 | |
WO2024153145A1 (zh) | 一种正极材料及包含该正极材料的电池 | |
JP7244626B2 (ja) | リチウム二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池 | |
CN118136801A (zh) | 含锂磷酸盐类正极材料及其制备方法和应用 | |
Yin et al. | Synthesis and electrochemical performance of Li3–2xMgxV2 (PO4) 3/C composite cathode materials for lithium-ion batteries | |
CN116632169A (zh) | 二次电池及电池包 | |
CN116666623A (zh) | 正极活性材料及其制备方法、正极极片及钠离子二次电池 | |
KR20140048010A (ko) | 리튬이온 이차전지용 양극 및 이를 포함하는 리튬이온 이차전지 | |
CN114906880A (zh) | 钠离子电池正极材料的制备方法及钠离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24741226 Country of ref document: EP Kind code of ref document: A1 |