Nothing Special   »   [go: up one dir, main page]

WO2024148952A1 - 一种高电压镍锰酸锂正极材料及其制备方法以及应用 - Google Patents

一种高电压镍锰酸锂正极材料及其制备方法以及应用 Download PDF

Info

Publication number
WO2024148952A1
WO2024148952A1 PCT/CN2023/132218 CN2023132218W WO2024148952A1 WO 2024148952 A1 WO2024148952 A1 WO 2024148952A1 CN 2023132218 W CN2023132218 W CN 2023132218W WO 2024148952 A1 WO2024148952 A1 WO 2024148952A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
lithium
manganese oxide
source compound
Prior art date
Application number
PCT/CN2023/132218
Other languages
English (en)
French (fr)
Inventor
赛喜雅勒图
陈鹏鹛
陈静波
王剑锋
Original Assignee
安徽博石高科新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽博石高科新材料股份有限公司 filed Critical 安徽博石高科新材料股份有限公司
Publication of WO2024148952A1 publication Critical patent/WO2024148952A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of electrochemical energy storage, and in particular relates to a high-voltage lithium nickel manganese oxide positive electrode material and a preparation method and application thereof.
  • Lithium-ion batteries have the advantages of high discharge voltage, high energy density, and long cycle life, and have been widely used in mobile phones, laptops, power tools, electric vehicles, etc.
  • high-voltage nickel manganese oxide has a discharge voltage of 4.7V and a theoretical specific capacity of 147mAh/g, and an energy density of 650Wh/kg, which can meet the requirements of high energy density and high output power of lithium-ion batteries.
  • the surface coating method can avoid direct contact between the material and the electrolyte, reduce the dissolution of Mn by the electrolyte, and thus improve the cycle stability of lithium nickel manganese oxide.
  • the Chinese patent with publication number CN105374997B discloses a preparation method of composite material coated lithium nickel manganese oxide, wherein a calcium salt, zirconium salt, and titanium salt composite solution are added to a pure phase lithium nickel manganese oxide precursor suspension, and a mixed solution is prepared in a certain proportion, and PEG is added as a dispersant and citric acid as a complexing agent, and ammonia water is used to adjust the pH, mechanical stirring, constant temperature water bath reaction, and aging. After filtering, washing, and drying, CaO, ZrO 2 , and TiO 2 coated lithium nickel manganese oxide precursors are obtained; and then calcined and annealed in an air atmosphere to obtain composite material coated lithium nickel manganese oxide.
  • the coating layer will be destroyed and then fall off from the surface of the material, which greatly reduces the cycle performance of the battery.
  • the core-shell structure can improve the structural stability of the lithium nickel manganese oxide material, effectively prevent the material from breaking when subjected to roller pressure, and thus improve the compaction performance of the material.
  • the Chinese patent with publication number CN105024064B discloses a submicron yellow-shell structure lithium nickel manganese oxide and its preparation method, using lithium nitrate, nickel nitrate hexahydrate and homemade manganese trioxide as raw materials, and obtaining the lithium nickel manganese oxide positive electrode material after high-temperature sintering.
  • the influence of the holding time on the size of the nano-agglomerated particles and the pore size can be used to adjust the size of the material particles and the pore size.
  • the size of the pore size can be used to adjust the size of the material particles and the pore size.
  • the "shell” structure of the lithium nickel manganese oxide material prepared by this method has a large specific surface area, and the “shell” is cracked, with gaps between the “shell” and the “yellow”, which is easy to break when subjected to a large roller pressure, and has poor compaction performance.
  • the technical problem to be solved by the present invention is to provide a high-voltage lithium nickel manganese oxide positive electrode material and a preparation method and application thereof.
  • the high-voltage lithium nickel manganese oxide positive electrode material provided by the present invention will not break after rolling, and has good compaction performance, cycle performance and rate performance.
  • the present invention provides a high-voltage lithium nickel manganese oxide positive electrode material, which is a core-shell structure formed by the core of small-particle primary particles and the surface of large-particle primary particles.
  • the particle size of the large particles is 1 to 5 ⁇ m, and the particle size of the small particles is 50 to 800 nm.
  • the particle size of the positive electrode material is 6 to 15 ⁇ m
  • the size of the core is 1 to 10 ⁇ m
  • the thickness of the surface layer is 3 to 5 ⁇ m.
  • the positive electrode material has two charging platforms, charging platform I ranges from 4.6 to 4.74 V, and charging platform II ranges from 4.74 to 4.8 V.
  • the voltage difference between charging platforms I and II is 0.02 to 0.2 V, and the capacity ratio between charging platforms I and II is 0.1 to 1:1.
  • the present invention also provides a method for preparing the above-mentioned high-voltage lithium nickel manganese oxide positive electrode material, comprising the following steps:
  • the nickel source compound is selected from one or more of nickel sulfate, nickel nitrate and nickel chloride;
  • the manganese source compound is selected from one or more of manganese sulfate and manganese chloride;
  • the complexing agent is selected from ammonia water;
  • the precipitant is selected from sodium hydroxide solution.
  • the grain refiner is selected from niobium chloride, niobium oxalate, niobium fluoride, potassium hexafluoroniobate, One or more of molybdenum chloride, sodium molybdate, molybdenum oxalate, molybdenum fluoride, and molybdenum sulfide dihydrate.
  • the molar ratio of metal ions to grain refiner in the mixed solution of the nickel source compound and the manganese source compound is 1:0.001-0.05.
  • the molar ratio of the mixed solution of the nickel source compound and the manganese source compound in step A) to the mixed solution of the nickel source compound and the manganese source compound in step B) is 0.1 to 1:1.
  • the lithium source compound is selected from one or more of lithium carbonate, lithium hydroxide, lithium chloride, and lithium fluoride;
  • the sintering temperature is 750-950° C. and the sintering time is 6-24 hours.
  • the present invention also provides a lithium-ion battery, comprising the above-mentioned high-voltage lithium nickel manganese oxide positive electrode material.
  • the present invention provides a high-voltage nickel manganese oxide positive electrode material, which is a core-shell structure formed by the core of small-particle primary particles and the surface of large-particle primary particles.
  • the particle size of the large particles is 1 to 5 ⁇ m, and the particle size of the small particles is 50 to 800 nm.
  • the surface of the positive electrode material provided by the present invention is a shell-core structure of large-particle primary particles and the interior is a shell-core structure of small-particle primary particles.
  • the high-density structure of large particles on the surface prevents the nickel manganese oxide positive electrode material from breaking after rolling, and effectively avoids the electrolyte from entering the interior of the material and causing the dissolution of manganese, thereby improving the compaction performance and cycle performance of the material; the internal small particle structure has a high lithium ion mobility and conductivity, which can improve the rate performance of the material.
  • the preparation method of the positive electrode material provided by the present invention is simple and controllable, environmentally friendly, can be quickly mass-produced, and has low production costs.
  • FIG1 is a SEM image of the lithium nickel manganese oxide described in Example 1;
  • FIG2 is a SEM image of a cross section of the lithium nickel manganese oxide described in Example 1;
  • FIG3 is a SEM image of a cross section of the lithium nickel manganese oxide described in Comparative Example 1;
  • FIG4 is a comparison diagram of charging curves of batteries made in Example 1 and Comparative Example 1;
  • FIG5 is a comparison chart of the rate and cycle performance of the batteries made in Example 1 and Comparative Example 1.
  • the present invention provides a high-voltage lithium nickel manganese oxide positive electrode material, which is a core-shell structure formed by the core of small-particle primary particles and the surface of large-particle primary particles.
  • the particle size of the large particles is 1 to 5 ⁇ m, and the particle size of the small particles is 50 to 800 nm.
  • the high voltage lithium nickel manganese oxide positive electrode material provided by the present invention comprises a core of small primary particles,
  • the particle size of the small particles is 50 to 800 nm, preferably 100 to 500 nm, and more preferably 200 to 300 nm.
  • the high voltage lithium nickel manganese oxide positive electrode material provided by the present invention further comprises a surface layer coated on the core, wherein the surface layer is formed by large primary particles, wherein the particle size of the large particles is 1 to 5 ⁇ m, preferably 1 to 3 ⁇ m, and more preferably 2 to 3 ⁇ m.
  • the particle size of the positive electrode material is 6-15 ⁇ m, preferably 8-12 ⁇ m
  • the size of the core is 1-10 ⁇ m, preferably 3-8 ⁇ m, more preferably 5-7 ⁇ m
  • the thickness of the surface layer is 3-5 ⁇ m.
  • the positive electrode material has two charging platforms, charging platform I ranges from 4.6 to 4.74 V, preferably 4.62 to 4.74 V, more preferably 4.65 to 4.72 V; charging platform II ranges from 4.74 to 4.8 V, preferably 4.74 to 4.79 V, more preferably 4.75 to 4.78 V.
  • the voltage difference between charging platforms I and II is 0.02 to 0.2 V, preferably 0.03 to 0.1 V, more preferably 0.04 to 0.06 V; the capacity ratio between charging platforms I and II is 0.1 to 1:1, preferably 0.3 to 0.9:1, more preferably 0.6 to 0.8:1.
  • the present invention also provides a method for preparing the above-mentioned high-voltage lithium nickel manganese oxide positive electrode material, comprising the following steps:
  • the present invention firstly prepares a mixed solution of a nickel source compound and a manganese source compound and a grain refiner solution respectively.
  • the molar ratio of nickel to manganese is 1:3.
  • the nickel source compound is selected from one or more of nickel sulfate, nickel nitrate, and nickel chloride; the manganese source compound is selected from one or more of manganese sulfate and manganese chloride.
  • the grain refiner is selected from one or more of niobium chloride, niobium oxalate, niobium fluoride, potassium hexafluoroniobate, molybdenum chloride, sodium molybdate, molybdenum oxalate, molybdenum fluoride, and molybdenum sulfide dihydrate.
  • the present invention relates to a kind of niobium chloride, niobium fluoride, molybdenum chloride, molybdenum fluoride and molybdenum sulfide dihydrate, preferably one or more of niobium chloride, niobium fluoride, molybdenum chloride, molybdenum fluoride and molybdenum sulfide dihydrate.
  • the molar ratio of metal ions to grain refiners in the mixed solution of the nickel source compound and the manganese source compound is 1:0.001-0.05, and more preferably 1:0.002-0.02.
  • the present invention mixes a mixed solution of a nickel source compound and a manganese source compound, a grain refiner solution, a complexing agent and a precipitant, and performs a coprecipitation reaction to obtain a suspension I.
  • the complexing agent is selected from ammonia water; the precipitating agent is selected from sodium hydroxide solution.
  • the aging time of the coprecipitation reaction is 1 to 12 hours, preferably 2 to 10 hours, and more preferably 4 to 8 hours.
  • the mixed solution of the nickel source compound and the manganese source compound, the complexing agent, the precipitant and the suspension I are mixed to perform a coprecipitation reaction to obtain a suspension II;
  • the molar ratio of nickel to manganese is 1:2.5-3.5, preferably 1:3.
  • the nickel source compound is selected from one or more of nickel sulfate, nickel nitrate, and nickel chloride; the manganese source compound is selected from one or more of manganese sulfate and manganese chloride.
  • the complexing agent is selected from ammonia water; and the precipitant is selected from sodium hydroxide solution.
  • the aging time of the coprecipitation reaction is 2 to 24 hours, preferably 4 to 20 hours, and more preferably 6 to 18 hours.
  • the molar ratio of the mixed solution of the nickel source compound and the manganese source compound in step A) to the mixed solution of the nickel source compound and the manganese source compound in step B) is 0.1-1:1, preferably 0.2-0.6:1, and more preferably 0.3-0.5:1.
  • the suspension II After obtaining the suspension II, the suspension II is filtered, washed and dried to obtain a lithium nickel manganese oxide precursor.
  • the present invention has no particular limitation on the filtering, washing and drying methods, and any method known to those skilled in the art can be used.
  • the lithium nickel manganese oxide precursor is mixed with a lithium source compound and sintered to obtain a high-voltage lithium nickel manganese oxide positive electrode material.
  • the lithium source compound is selected from one or more of lithium carbonate, lithium hydroxide, lithium chloride, and lithium fluoride;
  • the molar ratio of the lithium source compound to the lithium nickel manganese oxide precursor is 1 to 1.1:2, preferably 1.02 to 1.08:2, and more preferably 1.04 to 1.06:2.
  • the sintering temperature is 750-950° C., preferably 800-900° C., and the sintering time is 6-24 hours, preferably 8-20 hours, and more preferably 10-18 hours.
  • the present invention also provides a lithium ion battery, comprising the above-mentioned high voltage nickel manganese oxide positive electrode material.
  • the positive electrode material provided by the present invention has a surface layer of large primary particles and an inner shell of small primary particles.
  • the core structure and the high-density structure of large particles on the surface prevent the nickel manganese oxide positive electrode material from breaking after rolling, and effectively prevent the electrolyte from entering the material and causing the dissolution of manganese, thereby improving the compaction performance and cycle performance of the material;
  • the internal small particle structure has a high lithium ion mobility and conductivity, which can improve the rate performance of the material.
  • the preparation method of the positive electrode material provided by the present invention has a simple and controllable process, is environmentally friendly, can be quickly mass-produced, and has a low production cost.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 12 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.45:1.
  • FIG1 is a SEM image of the lithium nickel manganese oxide prepared in Example 1
  • FIG2 is a SEM image of the cross section of the lithium nickel manganese oxide prepared in Example 1
  • FIG3 is a SEM image of the cross section of the lithium nickel manganese oxide prepared in Comparative Example 1.
  • the particle size of the large particles on the surface of the lithium nickel manganese oxide prepared in Example 1 is 3 to 5 ⁇ m; as can be seen from FIG2, the lithium nickel manganese oxide prepared in Example 1 has a shell-core structure with large particles on the surface and small particles inside, and the particle size of the small particles inside is 200 to 500 nm, the particle size of the positive electrode material is 18.3 ⁇ 1 ⁇ m, the size of the core is 11.2 ⁇ 2 ⁇ m, and the thickness of the surface is 4.0 ⁇ 1 ⁇ m; as can be seen from FIG3, the lithium nickel manganese oxide prepared in Comparative Example 1 has no obvious shell-core structural characteristics, and the particle size of the surface and the inside is basically the same. The particle size is 0.2 ⁇ 1 ⁇ m.
  • the positive electrode materials in Example 1 and Comparative Example 1 were made into lithium-ion batteries.
  • the specific method was as follows: 9 g of positive electrode material, 0.5 g of acetylene black and a polyvinylidene fluoride solution with a solid content of 5% were mixed at room temperature and pressure to form a slurry, which was evenly coated on the surface of an aluminum foil to obtain a pole piece.
  • the electrode obtained in the previous step was dried at 80°C and then pressed, cut into circular sheets with an area of 1.32 cm2 as the positive electrode, a pure lithium sheet as the negative electrode, and a 1 mol/L LiPF6 solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) as the electrolyte, where the volume ratio of EC to DMC was 1:1, and then assembled into a lithium-ion battery in a glove box filled with argon.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • FIG 4 is a comparison of the charging curves of the batteries prepared in Example 1 and Comparative Example 1.
  • the battery prepared in Example 1 has two obvious charging platforms, charging platform I is at 4.71V, charging platform II is in the range of 4.76V, the voltage difference between charging platforms I and II is 0.05V, and the capacity ratio between charging platforms I and II is 0.8; the battery prepared in Comparative Example 1 has an obvious charging platform, and the charging platform is 4.75V.
  • FIG5 is a comparison chart of the rate and cycle performance of the batteries made in Example 1 and Comparative Example 1.
  • the battery prepared in Example 1 has a 0.2C discharge capacity of 142.2 mAh/g, a 1C discharge capacity of 139.1 mAh/g, a 2C discharge capacity of 134.1 mAh/g, a 3C discharge capacity of 122.6 mAh/g, a 5C discharge capacity of 113.0 mAh/g, a 5C/0.2C ratio of 79.5%, and a 1C, 50 cycle capacity retention rate of 99.5%;
  • the battery prepared in Comparative Example 1 has a 0.2C discharge capacity of 138.3 mAh/g, a 1C discharge capacity of 130.5 mAh/g, a 2C discharge capacity of 121.6 mAh/g, a 3C discharge capacity of 98.9 mAh/g, a 5C discharge capacity of 85.0 mAh/g, a 3C/0.2C ratio of 61.4%, and a 1C, 50 cycle capacity retention rate of 91.
  • Table 1 is a comparison table of compaction densities of Examples 1 to 10 and Comparative Example 1. As can be seen from Table 1, the compaction densities of Examples 1 to 10 are significantly better than those of Comparative Example 1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 6 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.4:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 24 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.5:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 20 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.6:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 18 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.9:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 12 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.42:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 8 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.55:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 16 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 1:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 8 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.35:1.
  • step S3 adding the prepared mixed solution, ammonia solution and sodium hydroxide solution to suspension I, performing coprecipitation reaction again, and obtaining suspension II after aging for 24 hours; wherein the concentrations of the mixed solution, ammonia solution and sodium hydroxide solution are the same as those in step S1; and the molar ratio of the mixed solution in step S1 to the mixed solution in step S3 is 0.1:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种高电压镍锰酸锂正极材料,所述正极材料为由小颗粒一次粒子的核芯以及大颗粒一次粒子的表层形成的核壳结构,所述大颗粒的粒径为1~5μm,所述小颗粒的粒径为50~800nm。本发明提供的正极材料的表层为大颗粒一次粒子、内部为小颗粒一次粒子的壳-核结构,表层的大颗粒高密实结构使镍锰酸锂正极材料受到辊压之后不会破碎,同时有效避免了电解液进入材料内部、导致锰的溶解,从而提高了材料的压实性能和循环性能;内部小颗粒结构具有较高的锂离子迁移率和电导率,能够提高材料的倍率性能。另外,本发明提供的正极材料的制备方法,工艺简单可控、利于环保、可以快速地大规模生产、生产成本低。

Description

一种高电压镍锰酸锂正极材料及其制备方法以及应用
本申请要求于2023年01月13日提交中国专利局、申请号为202310071138.X、发明名称为“一种高电压镍锰酸锂正极材料及其制备方法以及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于电化学储能技术领域,具体涉及一种高电压镍锰酸锂正极材料及其制备方法以及应用。
背景技术
锂离子电池具有放电电压高、能量密度大、循环寿命长等优点,在手机、笔记本电脑、电动工具和电动汽车等领域得到了广泛的应用。和现有商业化的正极材料比较,高电压镍锰酸锂具有4.7V的放电电压和147mAh/g的理论比容量,能量密度达到650Wh/kg,能够满足锂离子电池高能量密度和高输出功率的需求。
但是在充放电过程中,高电压镍锰酸锂容易与电解液发生副反应,导致电池放电容量急剧衰减。通过表面包覆的方法可以避免材料与电解液直接接触,减少电解液对Mn的溶解,从而提高镍锰酸锂的循环稳定性。
公开号为CN105374997B的中国专利公开了一种复合材料包覆镍锰酸锂的制备方法,在纯相镍锰酸锂前驱体悬浮液中加入钙盐、锆盐、钛盐复合溶液,按照一定比例配制成混合溶液,同时加入PEG为分散剂、柠檬酸为络合剂,氨水调节pH,机械搅拌、恒温水浴反应,取出陈化,经过滤、洗涤、干燥后得到CaO、ZrO2、TiO2包覆镍锰酸锂前驱体;然后在空气气氛下煅烧及退火处理,即得复合材料包覆的镍锰酸锂。但是在极片辊压过程中,因为材料表面结构疏松、受到辊压力后材料颗粒破碎,会出现包覆层被破坏、然后从材料表面脱落等问题,使电池的循环性能大大降低。
核壳结构可以提高镍锰酸锂材料的结构稳定性,有效避免材料受到辊压力时的破碎,从而提高了材料的压实性能。公开号为CN105024064B的中国专利公开了一种亚微米级黄-壳结构镍锰酸锂及其制备方法,以硝酸锂、六水合硝酸镍和自制的三氧化二锰为原料,高温烧结后得到所述的镍锰酸锂正极材料。通过保温时间对纳米团聚颗粒尺寸及孔隙大小的影响,调节材料颗粒的大小及 孔隙尺寸的大小。但是这种方法制备的镍锰酸锂材料“壳”结构具有较大的比表面积,而且“壳”呈破裂状,“壳”和“黄”之间存在空隙,受到较大辊压力时容易破碎,压实性能较差。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种高电压镍锰酸锂正极材料及其制备方法以及应用,本发明提供的高电压镍锰酸锂正极材料受到辊压之后不会破碎,具有良好的压实性能、循环性能以及倍率性能。
本发明提供了一种高电压镍锰酸锂正极材料,所述正极材料为由小颗粒一次粒子的核芯以及大颗粒一次粒子的表层形成的核壳结构,所述大颗粒的粒径为1~5μm,所述小颗粒的粒径为50~800nm。
优选的,所述正极材料的粒径为6~15μm,核芯的尺寸为1~10μm,表层的厚度为3~5μm。
优选的,所述正极材料具有两个充电平台,充电平台Ⅰ范围在4.6~4.74V,充电平台Ⅱ范围在4.74~4.8V,充电平台Ⅰ、Ⅱ之间的电压差为0.02~0.2V,充电平台Ⅰ、Ⅱ之间的容量比为0.1~1:1。
本发明还提供了一种上述高电压镍锰酸锂正极材料的制备方法,包括以下步骤:
A)将镍源化合物和锰源化合物的混合溶液、晶粒细化剂溶液、络合剂和沉淀剂混合,进行共沉淀反应,得到悬浊液I;
B)将镍源化合物和锰源化合物的混合溶液、络合剂、沉淀剂以及所述悬浊液I混合,进行共沉淀反应,得到悬浊液II;
C)将所述悬浊液II过滤、洗涤和干燥后得到镍锰酸锂前驱体;
D)将所述镍锰酸锂前驱体与锂源化合物混合,进行烧结,得到高电压镍锰酸锂正极材料。
优选的,所述镍源化合物选自硫酸镍、硝酸镍、氯化镍的一种或多种;
所述锰源化合物选自硫酸锰、氯化锰的一种或多种;
所述络合剂选自氨水;
所述沉淀剂选自氢氧化钠溶液。
优选的,所述晶粒细化剂选自氯化铌、草酸铌胺、氟化铌、六氟铌酸钾、 氯化钼、钼酸钠、草酸钼、氟化钼、二水合硫化钼中的一种或多种。
优选的,步骤A)中,镍源化合物和锰源化合物的混合溶液中的金属离子与晶粒细化剂的摩尔比为1:0.001~0.05。
优选的,所述步骤A)中镍源化合物和锰源化合物的混合溶液和步骤B)中镍源化合物和锰源化合物的混合溶液用量的摩尔比为0.1~1:1。
优选的,步骤D)中,锂源化合物选自碳酸锂、氢氧化锂、氯化锂、氟化锂的一种或多种;
所述烧结的温度为750~950℃,时间为6~24h。
本发明还提供了一种锂离子电池,包括上述高电压镍锰酸锂正极材料。
与现有技术相比,本发明提供了一种高电压镍锰酸锂正极材料,所述正极材料为由小颗粒一次粒子的核芯以及大颗粒一次粒子的表层形成的核壳结构,所述大颗粒的粒径为1~5μm,所述小颗粒的粒径为50~800nm。本发明提供的正极材料的表层为大颗粒一次粒子、内部为小颗粒一次粒子的壳-核结构,表层的大颗粒高密实结构使镍锰酸锂正极材料受到辊压之后不会破碎,同时有效避免了电解液进入材料内部、导致锰的溶解,从而提高了材料的压实性能和循环性能;内部小颗粒结构具有较高的锂离子迁移率和电导率,能够提高材料的倍率性能。另外,本发明提供的正极材料的制备方法,工艺简单可控、利于环保、可以快速地大规模生产、生产成本低。
附图说明
图1为实施例1所述镍锰酸锂的SEM图;
图2为实施例1所述镍锰酸锂截面的SEM图;
图3为比较例1所述镍锰酸锂截面的SEM图;
图4为实施例1和比较例1制作电池的充电曲线对比图;
图5为实施例1和比较例1制作电池的倍率、循环性能对比图。
具体实施方式
本发明提供了一种高电压镍锰酸锂正极材料,所述正极材料为由小颗粒一次粒子的核芯以及大颗粒一次粒子的表层形成的核壳结构,所述大颗粒的粒径为1~5μm,所述小颗粒的粒径为50~800nm。
本发明提供的高电压镍锰酸锂正极材料包括小颗粒一次粒子的核芯,其 中,所述小颗粒的粒径为50~800nm,优选为100~500nm,进一步优选为200~300nm。
本发明提供的高电压镍锰酸锂正极材料还包括包覆于所述核芯的表层,所述表层由大颗粒一次粒子形成。所述大颗粒的粒径为1~5μm,优选为1~3μm,进一步优选为2~3μm。
在本发明中,所述正极材料的粒径为6~15μm,优选为8~12μm,核芯的尺寸为1~10μm,优选为3~8μm,进一步优选为5~7μm,表层的厚度为3~5μm。
所述正极材料具有两个充电平台,充电平台Ⅰ范围在4.6~4.74V,优选为4.62~4.74V,更优选为4.65~4.72V;充电平台Ⅱ范围在4.74~4.8V,优选为4.74~4.79V,更优选为4.75~4.78V。充电平台Ⅰ、Ⅱ之间的电压差为0.02~0.2V,优选为0.03~0.1V,更优选为0.04~0.06V;充电平台Ⅰ、Ⅱ之间的容量比为0.1~1:1,优选为0.3~0.9:1,更优选为0.6~0.8:1。
本发明还提供了一种上述高电压镍锰酸锂正极材料的制备方法,包括以下步骤:
A)将镍源化合物和锰源化合物的混合溶液、晶粒细化剂溶液、络合剂和沉淀剂混合,进行共沉淀反应,得到悬浊液I;
B)将镍源化合物和锰源化合物的混合溶液、络合剂、沉淀剂以及所述悬浊液I混合,进行共沉淀反应,得到悬浊液II;
C)将所述悬浊液II过滤、洗涤和干燥后得到镍锰酸锂前驱体;
D)将所述镍锰酸锂前驱体与锂源化合物混合,进行烧结,得到高电压镍锰酸锂正极材料。
本发明首先分别制备镍源化合物和锰源化合物的混合溶液以及晶粒细化剂溶液。
其中,所述镍源化合物和锰源化合物的混合溶液中,镍与锰的摩尔比为1:3。所述镍源化合物选自硫酸镍、硝酸镍、氯化镍的一种或多种;所述锰源化合物选自硫酸锰、氯化锰的一种或多种。
所述晶粒细化剂溶液中,所述晶粒细化剂选自氯化铌、草酸铌胺、氟化铌、六氟铌酸钾、氯化钼、钼酸钠、草酸钼、氟化钼、二水合硫化钼中的一种或多 种,优选为氯化铌、氟化铌、氯化钼、氟化钼、二水合硫化钼中的一种或多种。
在本发明中,所述镍源化合物和锰源化合物的混合溶液中的金属离子与晶粒细化剂的摩尔比为1:0.001~0.05,进一步优选为1:0.002~0.02。
本发明将镍源化合物和锰源化合物的混合溶液、晶粒细化剂溶液、络合剂和沉淀剂混合,进行共沉淀反应,得到悬浊液I。
其中,所述络合剂选自氨水;所述沉淀剂选自氢氧化钠溶液。所述共沉淀反应的陈化时间为1~12h,优选为2~10h,进一步优选为4~8h。
共沉淀反应完成后,将镍源化合物和锰源化合物的混合溶液、络合剂、沉淀剂以及所述悬浊液I混合,进行共沉淀反应,得到悬浊液II;
其中,所述镍源化合物和锰源化合物的混合溶液中,镍与锰的摩尔比为1:2.5~3.5,优选为1:3。所述镍源化合物选自硫酸镍、硝酸镍、氯化镍的一种或多种;所述锰源化合物选自硫酸锰、氯化锰的一种或多种。所述络合剂选自氨水;所述沉淀剂选自氢氧化钠溶液。
所述共沉淀反应的陈化时间为2~24h,优选为4~20h,进一步优选为6~18h。
步骤A)中镍源化合物和锰源化合物的混合溶液和步骤B)中镍源化合物和锰源化合物的混合溶液用量的摩尔比为0.1~1:1,优选为0.2~0.6:1,进一步优选为0.3~0.5:1。
得到悬浊液II后,将所述悬浊液II过滤、洗涤和干燥后得到镍锰酸锂前驱体。本发明对所述过滤、洗涤和干燥的方法并没有特殊限制,本领域技术人员公知的方法即可。
最后,将所述镍锰酸锂前驱体与锂源化合物混合,进行烧结,得到高电压镍锰酸锂正极材料。
其中,锂源化合物选自碳酸锂、氢氧化锂、氯化锂、氟化锂的一种或多种;
所述锂源化合物与镍锰酸锂前驱体的摩尔比为1~1.1:2,优选为1.02~1.08:2,进一步优选为1.04~1.06:2。
所述烧结的温度为750~950℃,优选为800~900℃,时间为6~24h,优选为8~20h,进一步优选为10~18h。
本发明还提供了一种锂离子电池,包括上述高电压镍锰酸锂正极材料。本发明提供的正极材料的表层为大颗粒一次粒子、内部为小颗粒一次粒子的壳- 核结构,表层的大颗粒高密实结构使镍锰酸锂正极材料受到辊压之后不会破碎,同时有效避免了电解液进入材料内部、导致锰的溶解,从而提高了材料的压实性能和循环性能;内部小颗粒结构具有较高的锂离子迁移率和电导率,能够提高材料的倍率性能。另外,本发明提供的正极材料的制备方法,工艺简单可控、利于环保、可以快速地大规模生产、生产成本低。
为了进一步理解本发明,下面结合实施例对本发明提供的高电压镍锰酸锂正极材料及其制备方法以及应用进行说明,本发明的保护范围不受以下实施例的限制。
实施例1
S1:按金属离子的摩尔比1:3配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.2mol/L的钼酸钠溶液,配置0.2mol/L的氨水溶液,配置4mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、钼酸钠溶液按照镍锰离子和钼离子的摩尔比为1:0.002混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化2h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化后12h得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.45:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1:2混合,以830℃烧结16h,得到本发明所述的高电压镍锰酸锂正极材料。
图1为实施例1制备的镍锰酸锂SEM图,图2为实施例1制备的镍锰酸锂截面的SEM图,图3为比较例1制备的镍锰酸锂截面的SEM图。从图1可以看,实施例1制备的镍锰酸锂表层的大颗粒的粒径为3~5μm;从图2可以看出,实施例1制备的镍锰酸锂表层为大颗粒、内部为小颗粒的壳—核结构,内部小颗粒的粒径为200~500nm,所述正极材料的粒径为18.3±1μm,核芯的尺寸为11.2±2μm,表层的厚度为4.0±1μm;从图3可以看出,比较例1制备的镍锰酸锂没有明显的壳—核结构特征,表面和内部的颗粒粒径基本一 致,粒径为0.2~1μm。
将实施例1、比较例1中的正极材料制作成锂离子电池,具体方法为:将9g正极材料、0.5g乙炔黑和固含量为5%的聚偏氟乙烯溶液在常温常压下混合形成浆料,均匀涂覆在铝箔表面制得极片。
将上一步骤中得到的极片在80℃下烘干后压紧,裁剪成面积为1.32cm2的圆形薄片作为正极,以纯锂片为负极,以1mol/L的LiPF6的碳酸乙烯酯(EC)和碳酸二甲酯(DMC)溶液为电解液,其中EC与DMC的体积比为1:1,然后在充满氩气的手套箱中组装成锂离子电池。
对制备得到的锂离子电池的循环性能进行测试,结果见图4,图4为实施例1和比较例1制作电池的充电曲线对比图。由图4可知,实施例1制备的电池具有两个明显的充电平台,充电平台Ⅰ在4.71V,充电平台Ⅱ范围在4.76V,充电平台Ⅰ、Ⅱ之间的电压差为0.05V,充电平台Ⅰ、Ⅱ之间的容量比为0.8;比较例1制备的电池具有一个明显的充电平台,充电平台为4.75V。
图5为实施例1和比较例1制作电池的倍率、循环性能对比图。由图5可知,实施例1制作电池0.2C放电比容量为142.2mAh/g,1C放电比容量为139.1mAh/g,2C放电比容量为134.1mAh/g,3C放电比容量为122.6mAh/g,5C放电比容量为113.0mAh/g,5C/0.2C的比值为79.5%,1C、50次循环容量保持率为99.5%;比较例1制作电池0.2C放电比容量为138.3mAh/g,1C放电比容量为130.5mAh/g,2C放电比容量为121.6mAh/g,3C放电比容量为98.9mAh/g,5C放电比容量为85.0mAh/g,3C/0.2C的比值为61.4%,1C、50次循环容量保持率为91.3%;实施例1的循环性能和倍率性能都优于比较例1。
表1为实施例1~10和比较例1压实密度的比较表。从表1可以看出,实施例1~10的压实密度明显优于比较例1。
表1
实施例2
S1:按金属离子的摩尔比1:3配置3mol/L的硫酸镍、硫酸锰混合溶液, 配置0.5mol/L的氯化钼溶液,配置0.5mol/L的氨水溶液,配置5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、氯化钼溶液按照镍锰离子和钼离子的摩尔比为1:0.001混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化1h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化6h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.4:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1.02:2混合,以850℃烧结12h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例3
S1:按金属离子的摩尔比1:3.1配置2.5mol/L的硫酸镍、硫酸锰混合溶液,配置0.4mol/L的氯化铌溶液,配置0.5mol/L的氨水溶液,配置5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、氯化铌溶液按照镍锰离子和铌离子的摩尔比为1:0.01混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化5h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化24h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.5:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1.01:2混合,以870℃烧结12h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例4
S1:按金属离子的摩尔比1:2.95配置2.5mol/L的硫酸镍、硫酸锰混合溶液,配置0.1mol/L的氟化铌溶液,配置2.5mol/L的氨水溶液,配置2.5mol/L 的氢氧化钠溶液;
S2:将配好的混合溶液、氟化铌溶液按照镍锰离子和铌离子的摩尔比为1:0.005混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化3h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化20h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.6:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1:2混合,以950℃烧结8h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例5
S1:按金属离子的摩尔比1:3.2配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.1mol/L的二水合硫化钼溶液,配置0.5mol/L的氨水溶液,配置5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、二水合硫化钼溶液按照镍锰离子和钼离子的摩尔比为1:0.02混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化6h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化18h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.9:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1.05:2混合,以780℃烧结20h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例6
S1:按金属离子的摩尔比1:3配置4mol/L的硫酸镍、硫酸锰混合溶液,配置0.5mol/L的草酸钼溶液,配置1mol/L的氨水溶液,配置4mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、草酸钼溶液按照镍锰离子和钼离子的摩尔比为1:0.003混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化2h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化12h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.42:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1.06:2混合,以920℃烧结18h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例7
S1:按金属离子的摩尔比1:3.5配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.6mol/L的氯化铌溶液,配置0.3mol/L的氨水溶液,配置5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、氯化铌溶液按照镍锰离子和铌离子的摩尔比为1:0.005混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化1h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化8h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.55:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1.05:2混合,以900℃烧结15h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例8
S1:按金属离子的摩尔比1:2.8配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.8mol/L的钼酸钠溶液,配置2.5mol/L的氨水溶液,配置2.5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、钼酸钠溶液按照镍锰离子和钼离子的摩尔比为1: 0.015混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化6h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化16h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为1:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1:2混合,以760℃烧结16h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例9
S1:按金属离子的摩尔比1:3.02配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.2mol/L的六氟铌酸钾溶液,配置0.25mol/L的氨水溶液,配置5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、六氟铌酸钾溶液按照镍锰离子和铌离子的摩尔比为1:0.004混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化2h后得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化8h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.35:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1.06:2混合,以830℃烧结12h,得到本发明所述的高电压镍锰酸锂正极材料。
实施例10
S1:按金属离子的摩尔比1:2.98配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.35mol/L的氟化钼溶液,配置0.5mol/L的氨水溶液,配置5mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、氟化钼溶液按照镍锰离子和钼离子的摩尔比为1:0.04混合均匀,与氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反 应,陈化后12h得到悬浊液Ⅰ;
S3:将配好的混合溶液、氨水溶液、氢氧化钠溶液加入悬浊液Ⅰ中,再次进行共沉淀反应,陈化24h后得到悬浊液Ⅱ;其中,混合溶液、氨水溶液以及氢氧化钠溶液的浓度均与S1步骤中的相同;步骤S1中混合溶液与步骤S3中混合溶液的摩尔比为0.1:1。
S4:将悬浊液Ⅱ洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1:2混合,以860℃烧结10h,得到本发明所述的高电压镍锰酸锂正极材料。
比较例1
S1:按金属离子的摩尔比1:3配置2mol/L的硫酸镍、硫酸锰混合溶液,配置0.2mol/L的氨水溶液,配置4mol/L的氢氧化钠溶液;
S2:将配好的混合溶液、氨水溶液、氢氧化钠溶液一起加入反应釜中,进行共沉淀反应,陈化后得到悬浊液;
S4:将悬浊液洗涤、过滤、烘干后到镍锰酸锂前驱体;
S5:将碳酸锂与获得的镍锰酸锂前驱体按照摩尔比1:2混合,以830℃烧结16h,得到本发明所述的高电压镍锰酸锂正极材料。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高电压镍锰酸锂正极材料,其特征在于,所述正极材料为由小颗粒一次粒子的核芯以及大颗粒一次粒子的表层形成的核壳结构,所述大颗粒的粒径为1~5μm,所述小颗粒的粒径为50~800nm。
  2. 根据权利要求1所述的正极材料,其特征在于,所述正极材料的粒径为6~15μm,核芯的尺寸为1~10μm,表层的厚度为3~5μm。
  3. 根据权利要求1所述的正极材料,其特征在于,所述正极材料具有两个充电平台,充电平台Ⅰ范围在4.6~4.74V,充电平台Ⅱ范围在4.74~4.8V,充电平台Ⅰ、Ⅱ之间的电压差为0.02~0.2V,充电平台Ⅰ、Ⅱ之间的容量比为0.1~1:1。
  4. 一种如权利要求1~3任意一项所述的高电压镍锰酸锂正极材料的制备方法,其特征在于,包括以下步骤:
    A)将镍源化合物和锰源化合物的混合溶液、晶粒细化剂溶液、络合剂和沉淀剂混合,进行共沉淀反应,得到悬浊液I;
    B)将镍源化合物和锰源化合物的混合溶液、络合剂、沉淀剂以及所述悬浊液I混合,进行共沉淀反应,得到悬浊液II;
    C)将所述悬浊液II过滤、洗涤和干燥后得到镍锰酸锂前驱体;
    D)将所述镍锰酸锂前驱体与锂源化合物混合,进行烧结,得到高电压镍锰酸锂正极材料。
  5. 根据权利要求4所述的制备方法,其特征在于,所述镍源化合物选自硫酸镍、硝酸镍、氯化镍的一种或多种;
    所述锰源化合物选自硫酸锰、氯化锰的一种或多种;
    所述络合剂选自氨水;
    所述沉淀剂选自氢氧化钠溶液。
  6. 根据权利要求4所述的制备方法,其特征在于,所述晶粒细化剂选自氯化铌、草酸铌胺、氟化铌、六氟铌酸钾、氯化钼、钼酸钠、草酸钼、氟化钼、二水合硫化钼中的一种或多种。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤A)中,镍源化 合物和锰源化合物的混合溶液中的金属离子与晶粒细化剂的摩尔比为1:0.001~0.05。
  8. 根据权利要求4所述的制备方法,其特征在于,所述步骤A)中镍源化合物和锰源化合物的混合溶液和步骤B)中镍源化合物和锰源化合物的混合溶液用量的摩尔比为0.1~1:1。
  9. 根据权利要求4所述的制备方法,其特征在于,步骤D)中,锂源化合物选自碳酸锂、氢氧化锂、氯化锂、氟化锂的一种或多种;
    所述烧结的温度为750~950℃,时间为6~24h。
  10. 一种锂离子电池,其特征在于,包括权利要求1~3任意一项所述的高电压镍锰酸锂正极材料。
PCT/CN2023/132218 2023-01-13 2023-11-17 一种高电压镍锰酸锂正极材料及其制备方法以及应用 WO2024148952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310071138.XA CN116093304B (zh) 2023-01-13 2023-01-13 一种高电压镍锰酸锂正极材料及其制备方法以及应用
CN202310071138.X 2023-01-13

Publications (1)

Publication Number Publication Date
WO2024148952A1 true WO2024148952A1 (zh) 2024-07-18

Family

ID=86213632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132218 WO2024148952A1 (zh) 2023-01-13 2023-11-17 一种高电压镍锰酸锂正极材料及其制备方法以及应用

Country Status (2)

Country Link
CN (1) CN116093304B (zh)
WO (1) WO2024148952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116093304B (zh) * 2023-01-13 2023-09-08 安徽博石高科新材料股份有限公司 一种高电压镍锰酸锂正极材料及其制备方法以及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794752A (zh) * 2014-03-07 2014-05-14 哈尔滨工业大学 一种核壳结构的高电压镍锰酸锂正极材料及其制备方法
JP2015037067A (ja) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 リチウムニッケルコバルトマンガン正極材料粉体
CN105304893A (zh) * 2015-09-25 2016-02-03 湖北宇电能源科技股份有限公司 一种锂离子电池正极活性材料镍锰酸锂的制备方法
CN111689528A (zh) * 2020-07-10 2020-09-22 湖北亿纬动力有限公司 一种三元材料前驱体及其制备方法和用途
CN111916713A (zh) * 2020-08-20 2020-11-10 黑龙江科技大学 一种核-多层壳结构的高电压镍锰酸锂正极材料及其制备方法
CN116093304A (zh) * 2023-01-13 2023-05-09 安徽博石高科新材料股份有限公司 一种高电压镍锰酸锂正极材料及其制备方法以及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969498B (zh) * 2012-12-11 2015-03-11 中国科学院宁波材料技术与工程研究所 一种高电压镍锰酸锂正极材料及其制备方法
CN103227323B (zh) * 2013-05-22 2015-06-17 哈尔滨工业大学 高压锂离子电池正极材料尖晶石型镍锰酸锂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037067A (ja) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 リチウムニッケルコバルトマンガン正極材料粉体
CN103794752A (zh) * 2014-03-07 2014-05-14 哈尔滨工业大学 一种核壳结构的高电压镍锰酸锂正极材料及其制备方法
CN105304893A (zh) * 2015-09-25 2016-02-03 湖北宇电能源科技股份有限公司 一种锂离子电池正极活性材料镍锰酸锂的制备方法
CN111689528A (zh) * 2020-07-10 2020-09-22 湖北亿纬动力有限公司 一种三元材料前驱体及其制备方法和用途
CN111916713A (zh) * 2020-08-20 2020-11-10 黑龙江科技大学 一种核-多层壳结构的高电压镍锰酸锂正极材料及其制备方法
CN116093304A (zh) * 2023-01-13 2023-05-09 安徽博石高科新材料股份有限公司 一种高电压镍锰酸锂正极材料及其制备方法以及应用

Also Published As

Publication number Publication date
CN116093304B (zh) 2023-09-08
CN116093304A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
CN109216688B (zh) 一种三元锂电材料、其制备方法与锂离子电池
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
US20230163290A1 (en) High-entropy positive electrode material, preparation method and application thereof
WO2020238968A1 (zh) 复合型锂离子电池正极材料及锂离子电池和车
EP4024519A1 (en) Positive electrode material, preparation method therefor and lithium ion battery
CN113363415B (zh) 一种含固态电解质的高镍三元复合正极及锂离子电池
CN105958038A (zh) 一种可快充的长寿命高电压钴酸锂正极材料及制备方法
WO2023040285A1 (zh) 层状钠离子电池正极材料及其制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN109841822A (zh) 一种锂离子电池用改性单晶三元正极材料的制备方法
WO2024148952A1 (zh) 一种高电压镍锰酸锂正极材料及其制备方法以及应用
CN101704681B (zh) 一种尖晶石结构钛酸锂的制备方法
WO2022198843A1 (zh) 一种锂离子电池三元正极材料及其制备方法
WO2024174673A1 (zh) 一种磷酸铁锂正极材料及其制备方法和应用
WO2024087387A1 (zh) 二次电池及用电设备
CN112701276A (zh) 一种四元多晶正极材料及其制备方法和应用
CN114784236A (zh) 一种包覆型Al、F共掺杂单晶锰酸锂正极材料及其制备方法和应用
CN110233261A (zh) 一种单晶三元锂电池正极材料的制备方法及锂离子电池
WO2024087568A1 (zh) 一种锰基固溶体正极材料及制备方法与用途
CN115241435A (zh) 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法
WO2024169226A1 (zh) 一种球形高电压镍锰酸锂正极材料及其制备方法、锂离子电池
WO2024153145A1 (zh) 一种正极材料及包含该正极材料的电池
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
WO2024109200A1 (zh) 包覆型正极材料及其制备方法、二次电池和正极、用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915710

Country of ref document: EP

Kind code of ref document: A1