Nothing Special   »   [go: up one dir, main page]

WO2024148531A1 - Channel state information processing time for inter-frequency measurements associated with candidate cells - Google Patents

Channel state information processing time for inter-frequency measurements associated with candidate cells Download PDF

Info

Publication number
WO2024148531A1
WO2024148531A1 PCT/CN2023/071771 CN2023071771W WO2024148531A1 WO 2024148531 A1 WO2024148531 A1 WO 2024148531A1 CN 2023071771 W CN2023071771 W CN 2023071771W WO 2024148531 A1 WO2024148531 A1 WO 2024148531A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
network node
inter
csi
based mobility
Prior art date
Application number
PCT/CN2023/071771
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2023/071771 priority Critical patent/WO2024148531A1/en
Publication of WO2024148531A1 publication Critical patent/WO2024148531A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for channel state information (CSI) processing time for inter-frequency measurements associated with candidate cells.
  • CSI channel state information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more network nodes that support communication for wireless communication devices, such as a user equipment (UE) or multiple UEs.
  • a UE may communicate with a network node via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the network node to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the network node.
  • Some wireless networks may support device-to-device communication, such as via a local link (e.g., a sidelink (SL) , a wireless local area network (WLAN) link, and/or a wireless personal area network (WPAN) link, among other examples) .
  • SL sidelink
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a user equipment (UE) for wireless communication includes a memory; and one or more processors coupled with the memory and configured to cause the UE to: receive, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  • DCI downlink control information
  • L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies
  • CSI channel state information
  • a network node for wireless communication includes a memory; and one or more processors coupled with the memory and configured to cause the network node to: transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • a method of wireless communication performed by a UE includes receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • a method of wireless communication performed by a network node includes transmitting, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network node, cause the network node to: transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • an apparatus for wireless communication includes means for receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and means for transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • an apparatus for wireless communication includes means for transmitting, to a UE via an active cell associated with the apparatus, DCI that triggers an L1 measurement report; and means for receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the apparatus, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, network entity, network node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a network node in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example disaggregated base station architecture, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of a special cell (SpCell) change based on layer 1 measurements, in accordance with the present disclosure.
  • SpCell special cell
  • Fig. 5 is a diagram illustrating an example of layer 1 (L1) measurements for L1 or layer 2 (L2) (L1/L2) -based mobility, in accordance with the present disclosure.
  • Figs. 6-8 are diagrams illustrating examples associated with channel state information (CSI) processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
  • CSI channel state information
  • Figs. 9-10 are diagrams illustrating example processes associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
  • Figs. 11-12 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • 5G e.g., NR
  • 4G e.g., Long Term Evolution (LTE) network
  • the wireless network 100 may include one or more network nodes 110 (shown as a network node 110a, a network node 110b, a network node 110c, and a network node 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other entities.
  • a network node 110 is a network node that communicates with UEs 120. As shown, a network node 110 may include one or more network nodes.
  • a network node 110 may be an aggregated network node, meaning that the aggregated network node is configured to utilize a radio protocol stack that is physically or logically integrated within a single radio access network (RAN) node (e.g., within a single device or unit) .
  • RAN radio access network
  • a network node 110 may be a disaggregated network node (sometimes referred to as a disaggregated base station) , meaning that the network node 110 is configured to utilize a protocol stack that is physically or logically distributed among two or more nodes (such as one or more central units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
  • CUs central units
  • DUs distributed units
  • RUs radio units
  • a network node 110 is or includes a network node that communicates with UEs 120 via a radio access link, such as an RU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a fronthaul link or a midhaul link, such as a DU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a midhaul link or a core network via a backhaul link, such as a CU.
  • a network node 110 may include multiple network nodes, such as one or more RUs, one or more CUs, and/or one or more DUs.
  • a network node 110 may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, a transmission reception point (TRP) , a DU, an RU, a CU, a mobility element of a network, a core network node, a network element, a network equipment, a RAN node, or a combination thereof.
  • the network nodes 110 may be interconnected to one another or to one or more other network nodes 110 in the wireless network 100 through various types of fronthaul, midhaul, and/or backhaul interfaces, such as a direct physical connection, an air interface, or a virtual network, using any suitable transport network.
  • a network node 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a network node 110 and/or a network node subsystem serving this coverage area, depending on the context in which the term is used.
  • a network node 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscriptions.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • a network node 110 for a macro cell may be referred to as a macro network node.
  • a network node 110 for a pico cell may be referred to as a pico network node.
  • a network node 110 for a femto cell may be referred to as a femto network node or an in-home network node. In the example shown in Fig.
  • the network node 110a may be a macro network node for a macro cell 102a
  • the network node 110b may be a pico network node for a pico cell 102b
  • the network node 110c may be a femto network node for a femto cell 102c.
  • a network node may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a network node 110 that is mobile (e.g., a mobile network node) .
  • base station or “network node” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, or one or more components thereof.
  • base station or “network node” may refer to a CU, a DU, an RU, a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof.
  • the terms “base station” or “network node” may refer to one device configured to perform one or more functions, such as those described herein in connection with the network node 110.
  • the terms “base station” or “network node” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a quantity of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the terms “base station” or “network node” may refer to any one or more of those different devices.
  • the terms “base station” or “network node” may refer to one or more virtual base stations or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device.
  • the terms “base station” or “network node” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is a network node that can receive a transmission of data from an upstream node (e.g., a network node 110 or a UE 120) and send a transmission of the data to a downstream node (e.g., a UE 120 or a network node 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the network node 110d e.g., a relay network node
  • the network node 110a may communicate with the network node 110a (e.g., a macro network node) and the UE 120d in order to facilitate communication between the network node 110a and the UE 120d.
  • a network node 110 that relays communications may be referred to as a relay station, a relay base station, a relay network node, a relay node, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes network nodes 110 of different types, such as macro network nodes, pico network nodes, femto network nodes, relay network nodes, or the like. These different types of network nodes 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro network nodes may have a high transmit power level (e.g., 5 to 40 watts) whereas pico network nodes, femto network nodes, and relay network nodes may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • macro network nodes may have a high transmit power level (e.g., 5 to 40 watts)
  • pico network nodes, femto network nodes, and relay network nodes may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of network nodes 110 and may provide coordination and control for these network nodes 110.
  • the network controller 130 may communicate with the network nodes 110 via a backhaul communication link or a midhaul communication link.
  • the network nodes 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the network controller 130 may be a CU or a core network device, or may include a CU or a core network device.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a network node, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a network node 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the network node 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE may include a communication manager 140.
  • the communication manager 140 may receive, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  • the communication manager 140 may perform one or more other operations described herein.
  • a network node may include a communication manager 150.
  • the communication manager 150 may transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a network node 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the network node 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • the network node 110 of example 200 includes one or more radio frequency components, such as antennas 234 and a modem 232.
  • a network node 110 may include an interface, a communication component, or another component that facilitates communication with the UE 120 or another network node.
  • Some network nodes 110 may not include radio frequency components that facilitate direct communication with the UE 120, such as one or more CUs, or one or more DUs.
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the network node 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the network node 110 and/or other network nodes 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the network node 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the network node 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-12) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the network node 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the network node 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the network node 110 may include a modulator and a demodulator.
  • the network node 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-12) .
  • the controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with CSI processing time for inter-frequency measurements associated with candidate cells, as described in more detail elsewhere herein.
  • the controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the network node 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the network node 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the network node 110 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE (e.g., UE 120) includes means for receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and/or means for transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • a network node (e.g., network node 110) includes means for transmitting, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and/or means for receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • the means for the network node to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Deployment of communication systems may be arranged in multiple manners with various components or constituent parts.
  • a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, a base station, or a network equipment may be implemented in an aggregated or disaggregated architecture.
  • a base station such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples
  • NB Node B
  • eNB evolved NB
  • AP access point
  • TRP TRP
  • a cell a cell
  • a base station such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples
  • a base station such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples
  • AP access point
  • TRP TRP
  • a cell a cell, among other examples
  • Network entity or “network node”
  • An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node (e.g., within a single device or unit) .
  • a disaggregated base station e.g., a disaggregated network node
  • a CU may be implemented within a network node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other network nodes.
  • the DUs may be implemented to communicate with one or more RUs.
  • Each of the CU, DU, and RU also can be implemented as virtual units, such as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) , among other examples.
  • VCU virtual central unit
  • VDU virtual distributed unit
  • VRU virtual radio unit
  • Base station-type operation or network design may consider aggregation characteristics of base station functionality.
  • disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) to facilitate scaling of communication systems by separating base station functionality into one or more units that can be individually deployed.
  • a disaggregated base station may include functionality implemented across two or more units at various physical locations, as well as functionality implemented for at least one unit virtually, which can enable flexibility in network design.
  • the various units of the disaggregated base station can be configured for wired or wireless communication with at least one other unit of the disaggregated base station.
  • Fig. 3 is a diagram illustrating an example disaggregated base station architecture 300, in accordance with the present disclosure.
  • the disaggregated base station architecture 300 may include a CU 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated control units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) .
  • a CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as through F1 interfaces.
  • Each of the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links.
  • Each of the RUs 340 may communicate with one or more UEs 120 via respective radio frequency (RF) access links.
  • RF radio frequency
  • Each of the units may include one or more interfaces or be coupled with one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to one or multiple communication interfaces of the respective unit, can be configured to communicate with one or more of the other units via the transmission medium.
  • each of the units can include a wired interface, configured to receive or transmit signals over a wired transmission medium to one or more of the other units, and a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • the CU 310 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) functions, packet data convergence protocol (PDCP) functions, or service data adaptation protocol (SDAP) functions, among other examples.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310.
  • the CU 310 may be configured to handle user plane functionality (for example, Central Unit –User Plane (CU-UP) functionality) , control plane functionality (for example, Central Unit –Control Plane (CU-CP) functionality) , or a combination thereof.
  • the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • a CU-UP unit can communicate bidirectionally with a CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 310 can be implemented to communicate with a DU 330, as necessary, for network control and signaling.
  • Each DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340.
  • the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers depending, at least in part, on a functional split, such as a functional split defined by the 3GPP.
  • the one or more high PHY layers may be implemented by one or more modules for forward error correction (FEC) encoding and decoding, scrambling, and modulation and demodulation, among other examples.
  • FEC forward error correction
  • the DU 330 may further host one or more low PHY layers, such as implemented by one or more modules for a fast Fourier transform (FFT) , an inverse FFT (iFFT) , digital beamforming, or physical random access channel (PRACH) extraction and filtering, among other examples.
  • FFT fast Fourier transform
  • iFFT inverse FFT
  • PRACH physical random access channel
  • Each layer (which also may be referred to as a module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
  • Each RU 340 may implement lower-layer functionality.
  • an RU 340, controlled by a DU 330 may correspond to a logical node that hosts RF processing functions or low-PHY layer functions, such as performing an FFT, performing an iFFT, digital beamforming, or PRACH extraction and filtering, among other examples, based on a functional split (for example, a functional split defined by the 3GPP) , such as a lower layer functional split.
  • each RU 340 can be operated to handle over the air (OTA) communication with one or more UEs 120.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330.
  • this configuration can enable each DU 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements, which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) platform 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) platform 390
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340, non-RT RICs 315, and Near-RT RICs 325.
  • the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with each of one or more RUs 340 via a respective O1 interface.
  • the SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
  • the Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325.
  • the Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325.
  • the Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
  • the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via an O1 interface) or via creation of RAN management policies (such as A1 interface policies) .
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of a special cell (SpCell) change based on L1 measurements, in accordance with the present disclosure.
  • SpCell special cell
  • an SpCell may be updated via L1/L2 signaling based at least in part on L1 measurements.
  • the L1 measurements may be intra-frequency measurements and/or inter-frequency measurements.
  • a UE may perform a single SpCell change without carrier aggregation (CA) .
  • the UE may be connected to an old SpCell (e.g., an initial cell) .
  • the old SpCell may be a first SpCell.
  • the UE may perform L1 measurements associated with candidate SpCells.
  • the candidate SpCells may be associated with a preconfigured candidate SpCell set.
  • the UE may report the L1 measurements to a network node.
  • the UE may switch from the old SpCell to a new SpCell, which may be one of the candidate SpCells.
  • the new SpCell may be a second SpCell.
  • the L1/L2-based mobility may involve a handover of the UE from the old SpCell to the new SpCell.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • An L1/L2-based inter-cell mobility procedure may be defined to achieve mobility latency reduction.
  • the L1/L2-based inter-cell mobility procedure may involve configuration and maintenance for multiple candidate cells to allow for relatively fast application of configurations for candidate cells.
  • the L1/L2-based inter-cell mobility procedure may define a dynamic switch mechanism among candidate serving cells, including an SpCell and a serving cell (SCell) , for potential applicable scenarios based at least in part on L1/L2 signaling.
  • the L1/L2-based inter-cell mobility procedure may define L1 enhancements for inter-cell beam management, including L1 measurement and reporting and beam indications.
  • the L1/L2-based inter-cell mobility procedure may define timing advance (TA) management.
  • TA timing advance
  • the L1/L2-based inter-cell mobility procedure may define CU-DU interface signaling to support L1/L2-based mobility.
  • the L1/L2-based inter-cell mobility procedure may be applicable to a standalone scenario, a CA scenario, or an NR dual connectivity (NR-DC) scenario with a serving cell change within one configured grant (CG) .
  • the L1/L2-based inter-cell mobility procedure may be applicable to an intra-DU scenario and/or an intra-CU inter-DU scenario.
  • the L1/L2-based inter-cell mobility procedure may be applicable to both intra frequencies and inter frequencies.
  • the L1/L2-based inter-cell mobility procedure may be applicable to both FR1 and FR2.
  • the L1/L2-based inter-cell mobility procedure may be applicable to source cells and target cells, which may be synchronized or non-synchronized.
  • Fig. 5 is a diagram illustrating an example 500 of L1 measurements for L1/L2-based mobility, in accordance with the present disclosure.
  • a UE may be configured with an active SpCell.
  • the active SpCell may transmit, to the UE, DCI, which may trigger an L1 measurement and report for a candidate SpCell.
  • the active SpCell and the candidate SpCell may be associated with a network node.
  • the UE may receive the DCI from the active SpCell.
  • the DCI may trigger a measurement of a synchronization signal block (SSB) or channel state information reference signal (CSI-RS) associated with the candidate SpCell.
  • the candidate SpCell may transmit the SSB/CSI-RS.
  • the UE may receive and measure the SSB/CSI-RS, which may be based at least in part on the DCI.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the UE may generate an L1 measurement report, which may be based at least in part on a measurement associated with the SSB/CSI-RS.
  • the UE may transmit, to the active SpCell, the L1 measurement report via a physical uplink shared channel (PUSCH) .
  • PUSCH physical uplink shared channel
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • L1 inter-frequency measurements may be supported for L1/L2-based mobility.
  • an old cell e.g., an initial cell
  • a candidate cell may be associated with different frequencies, so measurements associated with the old cell and the candidate cell may be inter-frequency measurements.
  • candidate cell measurements for L1/L2-based mobility or lower layer triggered mobility (LTM)
  • LTM lower layer triggered mobility
  • SSB-based L1-RSRP may be supported for intra-frequency measurements
  • SSB-based L1-RSRP may be supported for inter-frequency measurements.
  • L1 signal-to-interference-plus-noise ratio (SINR) (L1-SINR) and CSI-RS based L1-RSRP may be supported for inter/intra-frequency measurements.
  • SINR signal-to-interference-plus-noise ratio
  • CSI-RS based L1-RSRP may be supported for inter/intra-frequency measurements.
  • a UE when a CSI request field on a DCI triggers a CSI report on a PUSCH, a UE may provide a valid CSI report for an n-th triggered report.
  • the CSI report When a first uplink symbol to carry a corresponding CSI report includes an effect of a TA, the CSI report may start no earlier than at symbol Z ref .
  • the CSI report When a first uplink symbol to carry an n-th CSI report includes the effect of the TA, the CSI report may start no earlier than at symbol Z′ ref (n) .
  • Z ref may be defined as a next uplink symbol with its cyclic prefix (CP) starting T proc
  • CSI (Z) (2048+144) ⁇ 2 - ⁇ ⁇ T C +T switch after an end of a last symbol of a physical downlink control channel (PDCCH) triggering the CSI report
  • Z, ⁇ , ⁇ , T C , and T switch are further defined in 3GPP Technical Specification (TS) 38.214 Section 5.4 (Release 17) .
  • Z′ ref (n) may be defined as a next uplink symbol with its CP starting T′ proc
  • CSI (Z′) (2048+144) ⁇ 2 - ⁇ ⁇ T C after an end of a last symbol in time of a latest of: an aperiodic CSI-RS resource for channel measurements, an aperiodic channel state information interference management (CSI-IM) resource used for interference measurements, and an aperiodic non-zero-power (NZP) CSI-RS resource for interference measurement, when an aperiodic CSI-RS is used for a channel measurement for the n-th triggered CSI report, and where T switch is a switching time.
  • a first processing timeline may be associated with the DCI indicated via the PDCCH and the CSI report
  • a second processing timeline may be associated with a measurement resource and the CSI report.
  • Inter-frequency L1 measurements may be supported for L1/L2-based mobility.
  • a UE may need to switch between frequencies in order to perform inter-frequency L1 measurements of candidate cells.
  • a legacy CSI processing timeline may be defined for a legacy L1 measurement.
  • the legacy CSI processing timeline may not be suitable for inter-frequency L1 measurements.
  • the legacy CSI processing timeline may not account for UE switching between frequencies in order to perform inter-frequency L1 measurements of candidate cells.
  • a new CSI processing timeline may need to be defined for inter-frequency L1 measurements for L1/L2-based mobility.
  • a UE may receive, from a network node via an active cell (e.g., an active SpCell) associated with the network node, DCI that triggers an L1 measurement report.
  • the UE may receive, from the network node via a candidate cell (e.g., a candidate SpCell) associated with the network node, an SSB or a CSI-RS.
  • the candidate cell and the active cell may be associated with different frequencies.
  • the UE may perform an inter-frequency L1 measurement of the SSB or the CSI-RS.
  • the inter-frequency L1 measurement may be associated with a handover of the UE from the active cell to the candidate cell.
  • the UE may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI.
  • the L1 measurement report may indicate the inter-frequency L1 measurement.
  • a CSI processing time associated with the inter-frequency L1 measurement may be based at least in part on an L1/L2-based mobility. The CSI processing time may be sufficient for the UE to process the inter-frequency L1 measurement, thereby improving a performance of the UE.
  • Fig. 6 is a diagram illustrating an example 600 associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
  • example 600 includes communication between a UE (e.g., UE 120) and a network node (e.g., network node 110) .
  • the UE and the network node may be included in a wireless network, such as wireless network 100.
  • the UE may receive, from the network node via an active cell associated with the network node, DCI that triggers an L1 measurement report.
  • the UE may receive the DCI via a physical downlink control channel (PDCCH) .
  • the active cell may be an active SpCell.
  • the L1 measurement report may be associated with a candidate cell.
  • the candidate cell may be a candidate SpCell.
  • the candidate cell may be associated with a preconfigured candidate cell set.
  • the active cell and the candidate cell may be associated with different frequencies.
  • the UE may receive, from the network node via the active cell associated with the network node, a medium access control control element (MAC-CE) or RRC signaling that triggers the L1 measurement report.
  • MAC-CE medium access control control element
  • the UE may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI.
  • the UE may transmit the L1 measurement report via a physical uplink control channel (PUCCH) .
  • the L1 measurement report may indicate an inter-frequency L1 measurement associated with the candidate cell associated with the network node.
  • the inter-frequency L1 measurement may be an SSB-based L1-RSRP measurement or a CSI-RS-based L1-RSRP measurement.
  • a CSI processing time associated with the inter-frequency L1 measurement may be based at least in part on an L1/L2-based mobility.
  • the CSI processing time may be a first processing time between an end of a last symbol of the PDCCH that carries the DCI and a first symbol of the PUSCH that carries the L1 measurement report.
  • the CSI processing time may be based at least in part on a switching time (T m, switch ) associated with the L1/L2-based mobility, and a first CSI processing parameter (Z m ) associated with the L1/L2-based mobility.
  • the switching time associated with the L1/L2-based mobility may be a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time (T switch ) plus a switching time offset ( ⁇ T switch ) .
  • the switching time defined for candidate cells associated with the L1/L2-based mobility and/or the switching time offset may be based at least in part on a UE capability.
  • the first CSI processing parameter associated with the L1/L2-based mobility may be a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter (Z) plus a delta parameter ( ⁇ Z) for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • the CSI processing time may be a second processing time between one of: an end of a last symbol in time associated with a measurement resource (e.g., an SSB/CSI-RS measurement resource) and a first symbol of the PUSCH that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report.
  • the CSI processing time may be based at least in part on a second CSI processing parameter (Z′ m ) associated with the L1/L2-based mobility.
  • the second CSI processing parameter associated with the L1/L2-based mobility may be a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter (Z) plus a delta parameter ( ⁇ Z) for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • a new CSI processing timing may be defined for candidate cells for L1/L2-based mobility.
  • the UE may be configured to report L1 measurements on resources, such as SSB/CSI-RS resources, associated with candidate cells, where a new switching time requirement may be defined for a corresponding CSI report.
  • a new switching time for mobility T m, switch may be defined in accordance with:
  • T switch is a switching time associated with an active cell (e.g., a source cell)
  • T m, switch is a switching time associated with a candidate cell (e.g., a target cell) .
  • the switching time may correspond to T switch
  • the switching time may correspond to T m, switch .
  • the switching time requirements for the active cell versus the candidate cell may be different.
  • the switching time for the candidate cell may be calculated by T switch + ⁇ T switch , where T m, switch and/or ⁇ T switch may be based at least in part on a UE capacity. In other words, the switching time for the candidate cell may be less than or greater than the switching time for the active cell, depending on the new switching time offset.
  • Fig. 7 is a diagram illustrating an example 700 associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
  • a UE in L1/L2-based mobility, may be configured to report L1 measurements on resources, such as SSB/CSI-RS resources, associated with candidate cells, where a new minimum time offset requirement (Z m ) may be defined between an end of a last symbol of a PDCCH which triggers a CSI report and a first symbol of CSI reporting.
  • the new minimum time offset requirement Z m may be associated with a CSI processing time (T proc, CSI ) for a candidate cell for L1/L2-based mobility, where the CSI processing time may be between a DCI associated with the PDCCH and the CSI reporting.
  • Z m may be a new parameter dedicated to L1 measurements in L1/L2-based mobility.
  • a UE may be configured with an active SpCell.
  • the active SpCell may transmit, to the UE, DCI, which may trigger an L1 measurement and report for a candidate SpCell.
  • the candidate SpCell may be associated with a different frequency as compared to the active SpCell. In other words, the candidate SpCell and the active SpCell may be associated with different frequencies.
  • the active SpCell and the candidate SpCell may be associated with a network node.
  • the UE may receive the DCI from the active SpCell.
  • the DCI may trigger a measurement of an SSB/CSI-RS associated with the candidate SpCell.
  • the candidate SpCell may transmit the SSB/CSI-RS.
  • the UE may receive and measure the SSB/CSI-RS, which may be based at least in part on the DCI.
  • a measurement associated with the SSB/CSI-RS may be an inter- frequency measurement because the active SpCell and the candidate SpCell may be associated with different frequencies, and the UE may need to switch to the frequency associated with the candidate SpCell in order to measure the SSB/CSI-RS.
  • the UE may generate an L1 measurement report, which may be based at least in part on a measurement associated with the SSB/CSI-RS.
  • the UE may transmit, to the active SpCell, the L1 measurement report via a PUSCH.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
  • a UE may provide a valid CSI report for an n-th triggered report.
  • Z m and T m swit h may be newly defined mobility-related parameters, which may be used for a handover.
  • Fig. 8 is a diagram illustrating an example 800 associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
  • a UE in L1/L2-based mobility, may be configured to report L1 measurements on resources, such as SSB/CSI-RS resources, associated with candidate cells, where a new minimum time offset requirement (Z′ m ) may be defined.
  • the new minimum time offset requirement (Z′ m ) may be associated with a CSI processing time (T′ proc, CSI ) for a candidate cell for L1/L2-based mobility, such that Z′ m may be introduced for a first option, a second option, or a third option.
  • the CSI processing time may be between an end of a last symbol in time of a latest measured resources (e.g., an SSB/CSI-RS resource) and a first symbol of CSI reporting.
  • the CSI processing time may be between an end of an SMTC window and the first symbol of CSI reporting.
  • the CSI processing time may be between an end of a measurement gap and the first symbol of CSI reporting.
  • Z′ m may be a new parameter dedicated to L1 measurements in L1/L2-based mobility.
  • a UE may be configured with an active SpCell.
  • the active SpCell may transmit, to the UE, DCI, which may trigger an L1 measurement and report for a candidate SpCell.
  • the candidate SpCell may be associated with a different frequency as compared to the active SpCell. In other words, the candidate SpCell and the active SpCell may be associated with different frequencies.
  • the active SpCell and the candidate SpCell may be associated with a network node.
  • the UE may receive the DCI from the active SpCell.
  • the DCI may trigger a measurement of an SSB/CSI-RS associated with the candidate SpCell.
  • the candidate SpCell may transmit the SSB/CSI-RS.
  • the UE may receive and measure the SSB/CSI-RS, which may be based at least in part on the DCI.
  • a measurement associated with the SSB-CSI-RS may be an inter-frequency measurement because the active SpCell and the candidate SpCell may be associated with different frequencies, and the UE may need to switch to the frequency associated with the candidate SpCell in order to measure the SSB/CSI-RS.
  • the UE may generate an L1 measurement report, which may be based at least in part on a measurement associated with the SSB/CSI-RS.
  • the UE may transmit, to the active SpCell, the L1 measurement report via a PUSCH.
  • a CSI processing time may correspond to a time between an end of a last symbol in time of a latest measured resources (e.g., an SSB/CSI-RS resource) and a first symbol of CSI reporting (e.g., Option 3)
  • the CSI processing time may correspond to a time between an end of an SMTC window and the first symbol of CSI reporting (e.g., Option 2)
  • the CSI processing timeline may correspond to a time between an end of a measurement gap and the first symbol of CSI reporting (e.g., Option 1) .
  • Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
  • a UE may provide a valid CSI report for an n-th triggered report.
  • Z′ m may be a newly-defined mobility-related parameter, which may be used for a handover.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 900 is an example where the UE (e.g., UE 120) performs operations associated with CSI processing time for inter-frequency measurements associated with candidate cells.
  • the UE e.g., UE 120
  • process 900 may include receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report (block 910) .
  • the UE e.g., using reception component 1102 and/or communication manager 1106, depicted in Fig. 11
  • process 900 may include transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility (block 920) .
  • the UE e.g., using transmission component 1104 and/or communication manager 1106, depicted in Fig.
  • the 11) may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility, as described above.
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the active cell and the candidate cell are special cells associated with the network node, and the candidate cell is associated with a preconfigured candidate cell set.
  • the CSI processing time is a first processing time between an end of a last symbol of a PDCCH that carries the DCI and a first symbol of a PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  • the switching time associated with the L1/L2-based mobility is a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  • the first CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • the CSI processing time is a second processing time between one of an end of a last symbol in time associated with a measurement resource and a first symbol of a PUSCH that carries the L1 measurement report, an end of an SMTC window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  • the second CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • the inter-frequency L1 measurement is one of an SSB-based L1-RSRP measurement, a CSI-RS-based L1-RSRP measurement.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a network node, in accordance with the present disclosure.
  • Example process 1000 is an example where the network node (e.g., network node 110) performs operations associated with CSI processing time for inter-frequency measurements associated with candidate cells.
  • the network node e.g., network node 110
  • process 1000 may include transmitting, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report (block 1010) .
  • the network node e.g., using transmission component 1204 and/or communication manager 1206, depicted in Fig. 12
  • process 1000 may include receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility (block 1020) .
  • the network node e.g., using reception component 1202 and/or communication manager 1206, depicted in Fig.
  • the 12) may receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility, as described above.
  • Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the CSI processing time is a first processing time between an end of a last symbol of a PDCCH that carries the DCI and a first symbol of a PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  • the switching time associated with the L1/L2-based mobility is a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  • the first CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • the CSI processing time is a second processing time between one of an end of a last symbol in time associated with a measurement resource and a first symbol of a PUSCH that carries the L1 measurement report, an end of an SMTC window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  • the second CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • the inter-frequency L1 measurement is one of an SSB-based L1-RSRP measurement, or a CSI-RS-based L1-RSRP measurement.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • Fig. 11 is a diagram of an example apparatus 1100 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1100 may be a UE, or a UE may include the apparatus 1100.
  • the apparatus 1100 includes a reception component 1102, a transmission component 1104, and/or a communication manager 1106, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the communication manager 1106 is the communication manager 140 described in connection with Fig. 1.
  • the apparatus 1100 may communicate with another apparatus 1108, such as a UE or a network node (such as a CU, a DU, an RU, or a base station) , using the reception component 1102 and the transmission component 1104.
  • another apparatus 1108 such as a UE or a network node (such as a CU, a DU, an RU, or a base station) , using the reception component 1102 and the transmission component 1104.
  • the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 6-8. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9.
  • the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1108.
  • the reception component 1102 may provide received communications to one or more other components of the apparatus 1100.
  • the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1100.
  • the reception component 1102 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1108.
  • one or more other components of the apparatus 1100 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1108.
  • the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1108.
  • the transmission component 1104 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
  • the communication manager 1106 may support operations of the reception component 1102 and/or the transmission component 1104. For example, the communication manager 1106 may receive information associated with configuring reception of communications by the reception component 1102 and/or transmission of communications by the transmission component 1104. Additionally, or alternatively, the communication manager 1106 may generate and/or provide control information to the reception component 1102 and/or the transmission component 1104 to control reception and/or transmission of communications.
  • the reception component 1102 may receive, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report.
  • the transmission component 1104 may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • Fig. 11 The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
  • Fig. 12 is a diagram of an example apparatus 1200 for wireless communication, in accordance with the present disclosure.
  • the apparatus 1200 may be a network node, or a network node may include the apparatus 1200.
  • the apparatus 1200 includes a reception component 1202, a transmission component 1204, and/or a communication manager 1206, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the communication manager 1206 is the communication manager 150 described in connection with Fig. 1.
  • the apparatus 1200 may communicate with another apparatus 1208, such as a UE or a network node (such as a CU, a DU, an RU, or a base station) , using the reception component 1202 and the transmission component 1204.
  • another apparatus 1208 such as a UE or a network node (such as a CU, a DU, an RU, or a base station) , using the reception component 1202 and the transmission component 1204.
  • the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 6-8. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10.
  • the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the network node described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1208.
  • the reception component 1202 may provide received communications to one or more other components of the apparatus 1200.
  • the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200.
  • the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network node described in connection with Fig. 2.
  • the reception component 1202 and/or the transmission component 1204 may include or may be included in a network interface.
  • the network interface may be configured to obtain and/or output signals for the apparatus 1200 via one or more communications links, such as a backhaul link, a midhaul link, and/or a fronthaul link.
  • the transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1208.
  • one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1208.
  • the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1208.
  • the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network node described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
  • the communication manager 1206 may support operations of the reception component 1202 and/or the transmission component 1204. For example, the communication manager 1206 may receive information associated with configuring reception of communications by the reception component 1202 and/or transmission of communications by the transmission component 1204. Additionally, or alternatively, the communication manager 1206 may generate and/or provide control information to the reception component 1202 and/or the transmission component 1204 to control reception and/or transmission of communications.
  • the transmission component 1204 may transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report.
  • the reception component 1202 may receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
  • Fig. 12 The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  • DCI downlink control information
  • L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies
  • CSI channel state information
  • Aspect 2 The method of Aspect 1, wherein the active cell and the candidate cell are special cells associated with the network node, and wherein the candidate cell is associated with a preconfigured candidate cell set.
  • Aspect 3 The method of any of Aspects 1-2, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • Aspect 4 The method of Aspect 3, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  • Aspect 5 The method of Aspect 3, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • Aspect 6 The method of any of Aspects 1-5, wherein the CSI processing time is a second processing time between one of: an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  • PUSCH physical uplink shared channel
  • SSB synchronization signal block
  • SMTC measurement timing configuration
  • Aspect 7 The method of Aspect 6, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • Aspect 8 The method of any of Aspects 1-7, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, or a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
  • SSB synchronization signal block
  • RSRP L1-reference signal received power
  • CSI-RS channel state information reference signal
  • a method of wireless communication performed by a network node comprising: transmitting, to a user equipment (UE) via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  • DCI downlink control information
  • L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies
  • CSI channel state information
  • Aspect 10 The method of Aspect 9, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • Aspect 11 The method of Aspect 10, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  • Aspect 12 The method of Aspect 10, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • Aspect 13 The method of any of Aspects 9-12, wherein the CSI processing time is a second processing time between one of: an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  • PUSCH physical uplink shared channel
  • SSB synchronization signal block
  • SMTC measurement timing configuration
  • Aspect 14 The method of Aspect 13, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  • Aspect 15 The method of any of Aspects 9-14, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
  • SSB synchronization signal block
  • RSRP L1-reference signal received power
  • CSI-RS channel state information reference signal
  • Aspect 16 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-8.
  • Aspect 17 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-8.
  • Aspect 18 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-8.
  • Aspect 19 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-8.
  • Aspect 20 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-8.
  • Aspect 21 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 9-15.
  • Aspect 22 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 9-15.
  • Aspect 23 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 9-15.
  • Aspect 24 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 9-15.
  • Aspect 25 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 9-15.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report. The UE may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility. Numerous other aspects are described.

Description

CHANNEL STATE INFORMATION PROCESSING TIME FOR INTER-FREQUENCY MEASUREMENTS ASSOCIATED WITH CANDIDATE CELLS
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for channel state information (CSI) processing time for inter-frequency measurements associated with candidate cells.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more network nodes that support communication for wireless communication devices, such as a user equipment (UE) or multiple UEs. A UE may communicate with a network node via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the network node to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the network node. Some wireless networks may support device-to-device communication, such as via a local link (e.g., a sidelink (SL) , a wireless local area network (WLAN) link, and/or a wireless personal area network (WPAN) link, among other examples) .
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs  to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some implementations, a user equipment (UE) for wireless communication includes a memory; and one or more processors coupled with the memory and configured to cause the UE to: receive, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
In some implementations, a network node for wireless communication includes a memory; and one or more processors coupled with the memory and configured to cause the network node to: transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated  with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
In some implementations, a method of wireless communication performed by a UE includes receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
In some implementations, a method of wireless communication performed by a network node includes transmitting, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
In some implementations, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
In some implementations, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network node, cause the network node to: transmit, to a UE via an active cell associated with the network node, DCI that  triggers an L1 measurement report; and receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
In some implementations, an apparatus for wireless communication includes means for receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and means for transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
In some implementations, an apparatus for wireless communication includes means for transmitting, to a UE via an active cell associated with the apparatus, DCI that triggers an L1 measurement report; and means for receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the apparatus, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, network entity, network node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same  purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the  description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a network node in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example disaggregated base station architecture, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example of a special cell (SpCell) change based on layer 1 measurements, in accordance with the present disclosure.
Fig. 5 is a diagram illustrating an example of layer 1 (L1) measurements for L1 or layer 2 (L2) (L1/L2) -based mobility, in accordance with the present disclosure.
Figs. 6-8 are diagrams illustrating examples associated with channel state information (CSI) processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
Figs. 9-10 are diagrams illustrating example processes associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
Figs. 11-12 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the  disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more network nodes 110 (shown as a network node 110a, a network node 110b, a network node 110c, and a network node 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other entities. A network node 110 is a network node that communicates with UEs 120. As shown, a network node 110 may include one or more network nodes. For example, a network node 110 may be an aggregated network node, meaning that the aggregated network node is configured to utilize a radio protocol stack that is physically or logically integrated within a single radio access network (RAN) node (e.g., within a single device or unit) . As another example, a network node 110 may be a disaggregated network node (sometimes referred to as a disaggregated base station) , meaning that the network node 110 is configured to utilize a protocol stack that is physically or logically distributed among two or more nodes (such as one or more central units (CUs) , one or more distributed units (DUs) , or one or more radio units (RUs) ) .
In some examples, a network node 110 is or includes a network node that communicates with UEs 120 via a radio access link, such as an RU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a fronthaul link or a midhaul link, such as a DU. In some examples, a network node 110 is or includes a network node that communicates with other network nodes 110 via a midhaul link or a core network via a backhaul link, such as a CU. In some examples, a network node 110 (such as an aggregated network node 110 or a disaggregated network node 110) may include multiple network nodes, such as one or more RUs, one or more CUs, and/or one or more DUs. A network node 110 may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, a transmission reception point (TRP) , a DU, an RU, a CU, a mobility element of a network, a core network node, a network element, a network equipment, a RAN node, or a combination thereof. In some examples, the network nodes 110 may be interconnected to one another or to one or more other network nodes 110 in the wireless network 100 through various types of fronthaul, midhaul, and/or backhaul interfaces, such as a direct physical connection, an air interface, or a virtual network, using any suitable transport network.
In some examples, a network node 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a network node 110 and/or a network node subsystem serving this coverage area, depending on the context in which the term is used. A network node 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscriptions. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A network node 110 for a macro cell may be referred to as a macro network node. A network node 110 for a pico cell may be referred to as a pico network node. A network node 110 for a femto cell may be referred to as a femto network node or an in-home network node. In the example shown in Fig. 1, the network node 110a may be a macro network node for a macro cell 102a, the network node 110b may be a pico network node for a pico cell 102b, and the  network node 110c may be a femto network node for a femto cell 102c. A network node may support one or multiple (e.g., three) cells. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a network node 110 that is mobile (e.g., a mobile network node) .
In some aspects, the terms “base station” or “network node” may refer to an aggregated base station, a disaggregated base station, an integrated access and backhaul (IAB) node, a relay node, or one or more components thereof. For example, in some aspects, “base station” or “network node” may refer to a CU, a DU, an RU, a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, or a combination thereof. In some aspects, the terms “base station” or “network node” may refer to one device configured to perform one or more functions, such as those described herein in connection with the network node 110. In some aspects, the terms “base station” or “network node” may refer to a plurality of devices configured to perform the one or more functions. For example, in some distributed systems, each of a quantity of different devices (which may be located in the same geographic location or in different geographic locations) may be configured to perform at least a portion of a function, or to duplicate performance of at least a portion of the function, and the terms “base station” or “network node” may refer to any one or more of those different devices. In some aspects, the terms “base station” or “network node” may refer to one or more virtual base stations or one or more virtual base station functions. For example, in some aspects, two or more base station functions may be instantiated on a single device. In some aspects, the terms “base station” or “network node” may refer to one of the base station functions and not another. In this way, a single device may include more than one base station.
The wireless network 100 may include one or more relay stations. A relay station is a network node that can receive a transmission of data from an upstream node (e.g., a network node 110 or a UE 120) and send a transmission of the data to a downstream node (e.g., a UE 120 or a network node 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the network node 110d (e.g., a relay network node) may communicate with the network node 110a (e.g., a macro network node) and the UE 120d in order to facilitate communication between the network node 110a and the UE 120d. A network node 110 that relays communications may be referred to as a relay station, a relay base station, a relay network node, a relay node, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes network nodes 110 of different types, such as macro network nodes, pico network nodes, femto network nodes, relay network nodes, or the like. These different types of network nodes 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro network nodes may have a high transmit power level (e.g., 5 to 40 watts) whereas pico network nodes, femto network nodes, and relay network nodes may have lower transmit power levels (e.g., 0.1 to 2 watts) .
A network controller 130 may couple to or communicate with a set of network nodes 110 and may provide coordination and control for these network nodes 110. The network controller 130 may communicate with the network nodes 110 via a backhaul communication link or a midhaul communication link. The network nodes 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link. In some aspects, the network controller 130 may be a CU or a core network device, or may include a CU or a core network device.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, a UE function of a network node, and/or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a network node, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT  (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a network node 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the network node 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being  different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE (e.g., UE 120) may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based  mobility. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein.
In some aspects, a network node (e.g., network node 110) may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a network node 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The network node 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥1) . The network node 110 of example 200 includes one or more radio frequency components, such as antennas 234 and a modem 232. In some examples, a network node 110 may include an interface, a communication component, or another component that facilitates communication with the UE 120 or another network node. Some network nodes 110 may not include radio frequency components that facilitate direct communication with the UE 120, such as one or more CUs, or one or more DUs.
At the network node 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The network node 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control  information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the network node 110 and/or other network nodes 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received  power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the network node 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the network node 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-12) .
At the network node 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236  if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The network node 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The network node 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the network node 110 may include a modulator and a demodulator. In some examples, the network node 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-12) .
The controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with CSI processing time for inter-frequency measurements associated with candidate cells, as described in more detail elsewhere herein. For example, the controller/processor 240 of the network node 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the network node 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the network node 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the network node 110 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., UE 120) includes means for receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report; and/or means for transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility. The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, a network node (e.g., network node 110) includes means for transmitting, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report; and/or means for receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility. The means for the network node to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Deployment of communication systems, such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts. In a 5G NR  system, or network, a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, a base station, or a network equipment may be implemented in an aggregated or disaggregated architecture. For example, a base station (such as a Node B (NB) , an evolved NB (eNB) , an NR base station, a 5G NB, an access point (AP) , a TRP, or a cell, among other examples) , or one or more units (or one or more components) performing base station functionality, may be implemented as an aggregated base station (also known as a standalone base station or a monolithic base station) or a disaggregated base station. “Network entity” or “network node” may refer to a disaggregated base station, or to one or more units of a disaggregated base station (such as one or more CUs, one or more DUs, one or more RUs, or a combination thereof) .
An aggregated base station (e.g., an aggregated network node) may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node (e.g., within a single device or unit) . A disaggregated base station (e.g., a disaggregated network node) may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more CUs, one or more DUs, or one or more RUs) . In some examples, a CU may be implemented within a network node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or multiple other network nodes. The DUs may be implemented to communicate with one or more RUs. Each of the CU, DU, and RU also can be implemented as virtual units, such as a virtual central unit (VCU) , a virtual distributed unit (VDU) , or a virtual radio unit (VRU) , among other examples.
Base station-type operation or network design may consider aggregation characteristics of base station functionality. For example, disaggregated base stations may be utilized in an IAB network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN Alliance) ) , or a virtualized radio access network (vRAN, also known as a cloud radio access network (C-RAN) ) to facilitate scaling of communication systems by separating base station functionality into one or more units that can be individually deployed. A disaggregated base station may include functionality implemented across two or more units at various physical locations, as well as functionality implemented for at least one unit virtually, which can enable flexibility in network design. The various units of the disaggregated base station can be  configured for wired or wireless communication with at least one other unit of the disaggregated base station.
Fig. 3 is a diagram illustrating an example disaggregated base station architecture 300, in accordance with the present disclosure. The disaggregated base station architecture 300 may include a CU 310 that can communicate directly with a core network 320 via a backhaul link, or indirectly with the core network 320 through one or more disaggregated control units (such as a Near-RT RIC 325 via an E2 link, or a Non-RT RIC 315 associated with a Service Management and Orchestration (SMO) Framework 305, or both) . A CU 310 may communicate with one or more DUs 330 via respective midhaul links, such as through F1 interfaces. Each of the DUs 330 may communicate with one or more RUs 340 via respective fronthaul links. Each of the RUs 340 may communicate with one or more UEs 120 via respective radio frequency (RF) access links. In some implementations, a UE 120 may be simultaneously served by multiple RUs 340.
Each of the units, including the CUs 310, the DUs 330, the RUs 340, as well as the Near-RT RICs 325, the Non-RT RICs 315, and the SMO Framework 305, may include one or more interfaces or be coupled with one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to one or multiple communication interfaces of the respective unit, can be configured to communicate with one or more of the other units via the transmission medium. In some examples, each of the units can include a wired interface, configured to receive or transmit signals over a wired transmission medium to one or more of the other units, and a wireless interface, which may include a receiver, a transmitter or transceiver (such as an RF transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 310 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) functions, packet data convergence protocol (PDCP) functions, or service data adaptation protocol (SDAP) functions, among other examples. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 310. The CU 310 may be configured to handle user plane functionality (for example, Central Unit –User Plane (CU-UP) functionality) , control plane functionality (for example, Central Unit –Control Plane (CU-CP) functionality) , or a combination  thereof. In some implementations, the CU 310 can be logically split into one or more CU-UP units and one or more CU-CP units. A CU-UP unit can communicate bidirectionally with a CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 310 can be implemented to communicate with a DU 330, as necessary, for network control and signaling.
Each DU 330 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 340. In some aspects, the DU 330 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers depending, at least in part, on a functional split, such as a functional split defined by the 3GPP. In some aspects, the one or more high PHY layers may be implemented by one or more modules for forward error correction (FEC) encoding and decoding, scrambling, and modulation and demodulation, among other examples. In some aspects, the DU 330 may further host one or more low PHY layers, such as implemented by one or more modules for a fast Fourier transform (FFT) , an inverse FFT (iFFT) , digital beamforming, or physical random access channel (PRACH) extraction and filtering, among other examples. Each layer (which also may be referred to as a module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 330, or with the control functions hosted by the CU 310.
Each RU 340 may implement lower-layer functionality. In some deployments, an RU 340, controlled by a DU 330, may correspond to a logical node that hosts RF processing functions or low-PHY layer functions, such as performing an FFT, performing an iFFT, digital beamforming, or PRACH extraction and filtering, among other examples, based on a functional split (for example, a functional split defined by the 3GPP) , such as a lower layer functional split. In such an architecture, each RU 340 can be operated to handle over the air (OTA) communication with one or more UEs 120. In some implementations, real-time and non-real-time aspects of control and user plane communication with the RU (s) 340 can be controlled by the corresponding DU 330. In some scenarios, this configuration can enable each DU 330 and the CU 310 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 305 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 305 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements, which  may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 305 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) platform 390) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 310, DUs 330, RUs 340, non-RT RICs 315, and Near-RT RICs 325. In some implementations, the SMO Framework 305 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 311, via an O1 interface. Additionally, in some implementations, the SMO Framework 305 can communicate directly with each of one or more RUs 340 via a respective O1 interface. The SMO Framework 305 also may include a Non-RT RIC 315 configured to support functionality of the SMO Framework 305.
The Non-RT RIC 315 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 325. The Non-RT RIC 315 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 325. The Near-RT RIC 325 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 310, one or more DUs 330, or both, as well as an O-eNB, with the Near-RT RIC 325.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 325, the Non-RT RIC 315 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 325 and may be received at the SMO Framework 305 or the Non-RT RIC 315 from non-network data sources or from network functions. In some examples, the Non-RT RIC 315 or the Near-RT RIC 325 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 315 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 305 (such as reconfiguration via an O1 interface) or via creation of RAN management policies (such as A1 interface policies) .
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of a special cell (SpCell) change based on L1 measurements, in accordance with the present disclosure.
As shown in Fig. 4, in L1/L2-based mobility, an SpCell may be updated via L1/L2 signaling based at least in part on L1 measurements. The L1 measurements may be intra-frequency measurements and/or inter-frequency measurements. A UE may perform a single SpCell change without carrier aggregation (CA) . The UE may be connected to an old SpCell (e.g., an initial cell) . The old SpCell may be a first SpCell. The UE may perform L1 measurements associated with candidate SpCells. The candidate SpCells may be associated with a preconfigured candidate SpCell set. The UE may report the L1 measurements to a network node. Depending on the L1 measurements, the UE may switch from the old SpCell to a new SpCell, which may be one of the candidate SpCells. The new SpCell may be a second SpCell. The L1/L2-based mobility may involve a handover of the UE from the old SpCell to the new SpCell.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
An L1/L2-based inter-cell mobility procedure may be defined to achieve mobility latency reduction. The L1/L2-based inter-cell mobility procedure may involve configuration and maintenance for multiple candidate cells to allow for relatively fast application of configurations for candidate cells. The L1/L2-based inter-cell mobility procedure may define a dynamic switch mechanism among candidate serving cells, including an SpCell and a serving cell (SCell) , for potential applicable scenarios based at least in part on L1/L2 signaling. The L1/L2-based inter-cell mobility procedure may define L1 enhancements for inter-cell beam management, including L1 measurement and reporting and beam indications. The L1/L2-based inter-cell mobility procedure may define timing advance (TA) management. The L1/L2-based inter-cell mobility procedure may define CU-DU interface signaling to support L1/L2-based mobility. The L1/L2-based inter-cell mobility procedure may be applicable to a standalone scenario, a CA scenario, or an NR dual connectivity (NR-DC) scenario with a serving cell change within one configured grant (CG) . The L1/L2-based inter-cell mobility procedure may be applicable to an intra-DU scenario and/or an intra-CU inter-DU scenario. The L1/L2-based inter-cell mobility procedure may be applicable to both intra frequencies  and inter frequencies. The L1/L2-based inter-cell mobility procedure may be applicable to both FR1 and FR2. The L1/L2-based inter-cell mobility procedure may be applicable to source cells and target cells, which may be synchronized or non-synchronized.
Fig. 5 is a diagram illustrating an example 500 of L1 measurements for L1/L2-based mobility, in accordance with the present disclosure.
As shown in Fig. 5, a UE may be configured with an active SpCell. The active SpCell may transmit, to the UE, DCI, which may trigger an L1 measurement and report for a candidate SpCell. The active SpCell and the candidate SpCell may be associated with a network node. The UE may receive the DCI from the active SpCell. The DCI may trigger a measurement of a synchronization signal block (SSB) or channel state information reference signal (CSI-RS) associated with the candidate SpCell. The candidate SpCell may transmit the SSB/CSI-RS. The UE may receive and measure the SSB/CSI-RS, which may be based at least in part on the DCI. The UE may generate an L1 measurement report, which may be based at least in part on a measurement associated with the SSB/CSI-RS. The UE may transmit, to the active SpCell, the L1 measurement report via a physical uplink shared channel (PUSCH) .
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
L1 inter-frequency measurements may be supported for L1/L2-based mobility. For example, an old cell (e.g., an initial cell) and a candidate cell may be associated with different frequencies, so measurements associated with the old cell and the candidate cell may be inter-frequency measurements. For candidate cell measurements for L1/L2-based mobility, or lower layer triggered mobility (LTM) , SSB-based L1-RSRP may be supported for intra-frequency measurements and SSB-based L1-RSRP may be supported for inter-frequency measurements. Further, L1 signal-to-interference-plus-noise ratio (SINR) (L1-SINR) and CSI-RS based L1-RSRP may be supported for inter/intra-frequency measurements.
Regarding a CSI processing timeline in NR, when a CSI request field on a DCI triggers a CSI report on a PUSCH, a UE may provide a valid CSI report for an n-th triggered report. When a first uplink symbol to carry a corresponding CSI report includes an effect of a TA, the CSI report may start no earlier than at symbol Zref. When a first uplink symbol to carry an n-th CSI report includes the effect of the TA, the CSI report may start no earlier than at symbol Z′ref (n) . Further, Zref may be defined as a next uplink symbol with its cyclic prefix (CP) starting Tproc, CSI= (Z) (2048+144) ·κ2· TC+Tswitch after an end of a last symbol of a physical downlink control channel (PDCCH) triggering the CSI report, where Z, κ, μ, TC, and Tswitch are further defined in 3GPP Technical Specification (TS) 38.214 Section 5.4 (Release 17) . Further, Z′ref (n) may be defined as a next uplink symbol with its CP starting T′proc, CSI= (Z′) (2048+144) ·κ2·TC after an end of a last symbol in time of a latest of: an aperiodic CSI-RS resource for channel measurements, an aperiodic channel state information interference management (CSI-IM) resource used for interference measurements, and an aperiodic non-zero-power (NZP) CSI-RS resource for interference measurement, when an aperiodic CSI-RS is used for a channel measurement for the n-th triggered CSI report, and where Tswitch is a switching time. Thus, a first processing timeline may be associated with the DCI indicated via the PDCCH and the CSI report, and a second processing timeline may be associated with a measurement resource and the CSI report.
Inter-frequency L1 measurements may be supported for L1/L2-based mobility. A UE may need to switch between frequencies in order to perform inter-frequency L1 measurements of candidate cells. A legacy CSI processing timeline may be defined for a legacy L1 measurement. However, the legacy CSI processing timeline may not be suitable for inter-frequency L1 measurements. The legacy CSI processing timeline may not account for UE switching between frequencies in order to perform inter-frequency L1 measurements of candidate cells. Thus, a new CSI processing timeline may need to be defined for inter-frequency L1 measurements for L1/L2-based mobility.
In various aspects of techniques and apparatuses described herein, a UE may receive, from a network node via an active cell (e.g., an active SpCell) associated with the network node, DCI that triggers an L1 measurement report. The UE may receive, from the network node via a candidate cell (e.g., a candidate SpCell) associated with the network node, an SSB or a CSI-RS. The candidate cell and the active cell may be associated with different frequencies. The UE may perform an inter-frequency L1 measurement of the SSB or the CSI-RS. The inter-frequency L1 measurement may be associated with a handover of the UE from the active cell to the candidate cell. The UE may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI. The L1 measurement report may indicate the inter-frequency L1 measurement. A CSI processing time associated with the inter-frequency L1 measurement may be based at least in part on an L1/L2-based mobility. The CSI processing time may be sufficient for the UE to process the inter-frequency L1 measurement, thereby improving a performance of the UE.
Fig. 6 is a diagram illustrating an example 600 associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure. As shown in Fig. 6, example 600 includes communication between a UE (e.g., UE 120) and a network node (e.g., network node 110) . In some aspects, the UE and the network node may be included in a wireless network, such as wireless network 100.
As shown by reference number 602, the UE may receive, from the network node via an active cell associated with the network node, DCI that triggers an L1 measurement report. The UE may receive the DCI via a physical downlink control channel (PDCCH) . The active cell may be an active SpCell. The L1 measurement report may be associated with a candidate cell. The candidate cell may be a candidate SpCell. The candidate cell may be associated with a preconfigured candidate cell set. The active cell and the candidate cell may be associated with different frequencies. In some other aspects, the UE may receive, from the network node via the active cell associated with the network node, a medium access control control element (MAC-CE) or RRC signaling that triggers the L1 measurement report.
As shown by reference number 604, the UE may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI. The UE may transmit the L1 measurement report via a physical uplink control channel (PUCCH) . The L1 measurement report may indicate an inter-frequency L1 measurement associated with the candidate cell associated with the network node. The inter-frequency L1 measurement may be an SSB-based L1-RSRP measurement or a CSI-RS-based L1-RSRP measurement. A CSI processing time associated with the inter-frequency L1 measurement may be based at least in part on an L1/L2-based mobility.
In some aspects, the CSI processing time may be a first processing time between an end of a last symbol of the PDCCH that carries the DCI and a first symbol of the PUSCH that carries the L1 measurement report. The CSI processing time may be based at least in part on a switching time (Tm, switch) associated with the L1/L2-based mobility, and a first CSI processing parameter (Zm) associated with the L1/L2-based mobility. The switching time associated with the L1/L2-based mobility may be a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time (Tswitch) plus a switching time offset (ΔTswitch) . The switching time defined for candidate cells associated with the L1/L2-based mobility and/or the  switching time offset may be based at least in part on a UE capability. The first CSI processing parameter associated with the L1/L2-based mobility may be a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter (Z) plus a delta parameter (ΔZ) for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
In some aspects, the CSI processing time may be a second processing time between one of: an end of a last symbol in time associated with a measurement resource (e.g., an SSB/CSI-RS measurement resource) and a first symbol of the PUSCH that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report. The CSI processing time may be based at least in part on a second CSI processing parameter (Z′m) associated with the L1/L2-based mobility. The second CSI processing parameter associated with the L1/L2-based mobility may be a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter (Z) plus a delta parameter (ΔZ) for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
In some aspects, a new CSI processing timing may be defined for candidate cells for L1/L2-based mobility. In L1/L2-based mobility, the UE may be configured to report L1 measurements on resources, such as SSB/CSI-RS resources, associated with candidate cells, where a new switching time requirement may be defined for a corresponding CSI report. In a first option, a new switching time for mobility Tm, switch may be defined in accordance with:
where Tswitch is a switching time associated with an active cell (e.g., a source cell) , and Tm, switch is a switching time associated with a candidate cell (e.g., a target cell) . When the UE uses a switching time for the active cell, the switching time may correspond to Tswitch, and when the UE uses a switching time for the candidate cell, the switching time may correspond to Tm, switch. The switching time requirements for the active cell versus the candidate cell may be different. In a second option, a new switching time  offset ΔTswitch may be defined in accordance with: Tm, switch= Tswitch+ ΔTswitch. The switching time for the candidate cell (Tm, switch) may be calculated by Tswitch+ΔTswitch, where Tm, switch and/or ΔTswitch may be based at least in part on a UE capacity. In other words, the switching time for the candidate cell may be less than or greater than the switching time for the active cell, depending on the new switching time offset.
Fig. 7 is a diagram illustrating an example 700 associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
In some aspects, in L1/L2-based mobility, a UE may be configured to report L1 measurements on resources, such as SSB/CSI-RS resources, associated with candidate cells, where a new minimum time offset requirement (Zm) may be defined between an end of a last symbol of a PDCCH which triggers a CSI report and a first symbol of CSI reporting. The new minimum time offset requirement Zm may be associated with a CSI processing time (Tproc, CSI) for a candidate cell for L1/L2-based mobility, where the CSI processing time may be between a DCI associated with the PDCCH and the CSI reporting. In a first option, Zm may be a new parameter dedicated to L1 measurements in L1/L2-based mobility. In a second option, Zm may be defined in accordance with Zm = Z + ΔZ, where Z is a legacy CSI processing parameter and ΔZ is a new parameter for additional processing delay associated with L1 measurements in L1/L2-based mobility. Further, the CSI processing time may be defined in accordance with: Tproc, CSI= (Zm) (2048+144) ·κ2·TC+Tm, switch, where Zm is a mobility-related parameter and is associated with a time between the DCI and the CSI reporting.
As shown in Fig. 7, a UE may be configured with an active SpCell. The active SpCell may transmit, to the UE, DCI, which may trigger an L1 measurement and report for a candidate SpCell. The candidate SpCell may be associated with a different frequency as compared to the active SpCell. In other words, the candidate SpCell and the active SpCell may be associated with different frequencies. The active SpCell and the candidate SpCell may be associated with a network node. The UE may receive the DCI from the active SpCell. The DCI may trigger a measurement of an SSB/CSI-RS associated with the candidate SpCell. The candidate SpCell may transmit the SSB/CSI-RS. The UE may receive and measure the SSB/CSI-RS, which may be based at least in part on the DCI. A measurement associated with the SSB/CSI-RS may be an inter- frequency measurement because the active SpCell and the candidate SpCell may be associated with different frequencies, and the UE may need to switch to the frequency associated with the candidate SpCell in order to measure the SSB/CSI-RS. The UE may generate an L1 measurement report, which may be based at least in part on a measurement associated with the SSB/CSI-RS. The UE may transmit, to the active SpCell, the L1 measurement report via a PUSCH. The CSI processing time (Tproc, CSI) between the DCI that triggers the L1 measurement and report and the PUSCH with the L1 report is in accordance with: Tproc, CSI= (Zm) (2048+144) ·κ2·TC+Tm, switch, where Tproc, CSI may correspond to a number of symbols, and where Zm is a new parameter dedicated to L1 measurements in L1/L2-based mobility, or is based at least in part on a legacy CSI processing parameter and a new parameter for additional processing delay for L1 measurements in L1/L2-based mobility.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
In some aspects, when a CSI request field on a DCI triggers a CSI report on a PUSCH for a candidate cell configured for mobility (e.g., a candidate cell associated with a handover) , a UE may provide a valid CSI report for an n-th triggered report. When a first uplink symbol to carry a corresponding CSI report includes an effect of a TA, a CSI report may start no earlier than at symbol Zref, where Zref is defined as a next uplink symbol with its CP starting Tproc, CSI= (Zm) (2048+144) ·κ2·TC+Tm, switch after an end of a last symbol of a PDCCH triggering the CSI report. For the candidate cell configured for mobility, Zm and Tm, swit h may be newly defined mobility-related parameters, which may be used for a handover.
Fig. 8 is a diagram illustrating an example 800 associated with CSI processing time for inter-frequency measurements associated with candidate cells, in accordance with the present disclosure.
In some aspects, in L1/L2-based mobility, a UE may be configured to report L1 measurements on resources, such as SSB/CSI-RS resources, associated with candidate cells, where a new minimum time offset requirement (Z′m) may be defined. The new minimum time offset requirement (Z′m) may be associated with a CSI processing time (T′proc, CSI) for a candidate cell for L1/L2-based mobility, such that Z′m may be introduced for a first option, a second option, or a third option. In the first option, the CSI processing time may be between an end of a last symbol in time of a  latest measured resources (e.g., an SSB/CSI-RS resource) and a first symbol of CSI reporting. In the second option, the CSI processing time may be between an end of an SMTC window and the first symbol of CSI reporting. In the third option, the CSI processing time may be between an end of a measurement gap and the first symbol of CSI reporting.
In some aspects, Z′m may be a new parameter dedicated to L1 measurements in L1/L2-based mobility. Alternatively, Z′m may be defined in accordance with Z′m = Z’ +ΔZ’, where Z’ is a legacy CSI processing parameter, and ΔZ’ is a new parameter for additional processing delay associated with L1 measurements in L1/L2-based mobility. Further, the CSI processing time (Tproc, CSI) may be defined in accordance with: T′proc, CSI= (Z′m) (2048+144) ·κ2·TC, where Z′m is a mobility-related parameter and is associated with a time between a measurement-related time instance (e.g., based at least in part on the first option, the second option, or the third option) and the CSI reporting.
As shown in Fig. 8, a UE may be configured with an active SpCell. The active SpCell may transmit, to the UE, DCI, which may trigger an L1 measurement and report for a candidate SpCell. The candidate SpCell may be associated with a different frequency as compared to the active SpCell. In other words, the candidate SpCell and the active SpCell may be associated with different frequencies. The active SpCell and the candidate SpCell may be associated with a network node. The UE may receive the DCI from the active SpCell. The DCI may trigger a measurement of an SSB/CSI-RS associated with the candidate SpCell. The candidate SpCell may transmit the SSB/CSI-RS. The UE may receive and measure the SSB/CSI-RS, which may be based at least in part on the DCI. A measurement associated with the SSB-CSI-RS may be an inter-frequency measurement because the active SpCell and the candidate SpCell may be associated with different frequencies, and the UE may need to switch to the frequency associated with the candidate SpCell in order to measure the SSB/CSI-RS. The UE may generate an L1 measurement report, which may be based at least in part on a measurement associated with the SSB/CSI-RS. The UE may transmit, to the active SpCell, the L1 measurement report via a PUSCH.
In some aspects, as shown in Fig. 8, a CSI processing time (Tproc, CSI) may correspond to a time between an end of a last symbol in time of a latest measured resources (e.g., an SSB/CSI-RS resource) and a first symbol of CSI reporting (e.g.,  Option 3) , the CSI processing time may correspond to a time between an end of an SMTC window and the first symbol of CSI reporting (e.g., Option 2) , or the CSI processing timeline may correspond to a time between an end of a measurement gap and the first symbol of CSI reporting (e.g., Option 1) . For Option 3, Option 2, or Option 1, the CSI processing time may be defined in accordance with: t′proc, CSI= (Z′m) (2048+144) ·κ2·TC, where Tproc, CSI may correspond to a number of symbols, and where Z′m is a new parameter dedicated to L1 measurements in L1/L2-based mobility, or is based at least in part on a legacy CSI processing parameter and a new parameter for additional processing delay for L1 measurements in L1/L2-based mobility.
As indicated above, Fig. 8 is provided as an example. Other examples may differ from what is described with regard to Fig. 8.
In some aspects, when a CSI request field on a DCI triggers a CSI report on a PUSCH for a candidate cell configured for mobility (e.g., a candidate cell associated with a handover) , a UE may provide a valid CSI report for an n-th triggered report. When a first uplink symbol to carry an n-th CSI report includes an effect of a TA, a CSI report may start no earlier than at a symbol Z′ref, where Z′ref is defined as a next uplink symbol with its CP starting T′proc, CSI= (Z′m) (2048+144) ·κ2·TC after an end of a last symbol in time of a latest of an aperiodic CSI-RS resource for channel measurements, an aperiodic CSI-IM resource used for interference measurements, or an aperiodic NZP CSI-RS for interference measurement, when an aperiodic CSI-RS may be used for channel measurement for the n-th triggered CSI report, after an end of an SMTC, or after an end of a measurement gap. For the candidate cell configured for mobility, Z′m may be a newly-defined mobility-related parameter, which may be used for a handover.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a UE, in accordance with the present disclosure. Example process 900 is an example where the UE (e.g., UE 120) performs operations associated with CSI processing time for inter-frequency measurements associated with candidate cells.
As shown in Fig. 9, in some aspects, process 900 may include receiving, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report (block 910) . For example, the UE (e.g., using reception component 1102 and/or communication manager 1106, depicted in Fig. 11) may  receive, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility (block 920) . For example, the UE (e.g., using transmission component 1104 and/or communication manager 1106, depicted in Fig. 11) may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the active cell and the candidate cell are special cells associated with the network node, and the candidate cell is associated with a preconfigured candidate cell set.
In a second aspect, alone or in combination with the first aspect, the CSI processing time is a first processing time between an end of a last symbol of a PDCCH that carries the DCI and a first symbol of a PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
In a third aspect, alone or in combination with one or more of the first and second aspects, the switching time associated with the L1/L2-based mobility is a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the first CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the CSI processing time is a second processing time between one of an end of a last symbol in time associated with a measurement resource and a first symbol of a PUSCH that carries the L1 measurement report, an end of an SMTC window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the second CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the inter-frequency L1 measurement is one of an SSB-based L1-RSRP measurement, a CSI-RS-based L1-RSRP measurement.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a network node, in accordance with the present disclosure. Example process 1000 is an example where the network node (e.g., network node 110) performs operations associated with CSI processing time for inter-frequency measurements associated with candidate cells.
As shown in Fig. 10, in some aspects, process 1000 may include transmitting, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report (block 1010) . For example, the network node (e.g., using  transmission component 1204 and/or communication manager 1206, depicted in Fig. 12) may transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility (block 1020) . For example, the network node (e.g., using reception component 1202 and/or communication manager 1206, depicted in Fig. 12) may receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility, as described above.
Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the CSI processing time is a first processing time between an end of a last symbol of a PDCCH that carries the DCI and a first symbol of a PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
In a second aspect, alone or in combination with the first aspect, the switching time associated with the L1/L2-based mobility is a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
In a third aspect, alone or in combination with one or more of the first and second aspects, the first CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based  mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the CSI processing time is a second processing time between one of an end of a last symbol in time associated with a measurement resource and a first symbol of a PUSCH that carries the L1 measurement report, an end of an SMTC window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the second CSI processing parameter associated with the L1/L2-based mobility is a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the inter-frequency L1 measurement is one of an SSB-based L1-RSRP measurement, or a CSI-RS-based L1-RSRP measurement.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
Fig. 11 is a diagram of an example apparatus 1100 for wireless communication, in accordance with the present disclosure. The apparatus 1100 may be a UE, or a UE may include the apparatus 1100. In some aspects, the apparatus 1100 includes a reception component 1102, a transmission component 1104, and/or a communication manager 1106, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . In some aspects, the communication manager 1106 is the communication manager 140 described in connection with Fig. 1. As shown, the apparatus 1100 may communicate with another apparatus 1108, such as a UE or a network node (such as a CU, a DU, an RU, or a base station) , using the reception component 1102 and the transmission component 1104.
In some aspects, the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 6-8. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9. In some aspects, the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1108. The reception component 1102 may provide received communications to one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1108. In some aspects, one or more other components of the apparatus 1100 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1108. In some aspects, the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1108. In some  aspects, the transmission component 1104 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
The communication manager 1106 may support operations of the reception component 1102 and/or the transmission component 1104. For example, the communication manager 1106 may receive information associated with configuring reception of communications by the reception component 1102 and/or transmission of communications by the transmission component 1104. Additionally, or alternatively, the communication manager 1106 may generate and/or provide control information to the reception component 1102 and/or the transmission component 1104 to control reception and/or transmission of communications.
The reception component 1102 may receive, from a network node via an active cell associated with the network node, DCI that triggers an L1 measurement report. The transmission component 1104 may transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
Fig. 12 is a diagram of an example apparatus 1200 for wireless communication, in accordance with the present disclosure. The apparatus 1200 may be a network node, or a network node may include the apparatus 1200. In some aspects, the apparatus 1200 includes a reception component 1202, a transmission component  1204, and/or a communication manager 1206, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . In some aspects, the communication manager 1206 is the communication manager 150 described in connection with Fig. 1. As shown, the apparatus 1200 may communicate with another apparatus 1208, such as a UE or a network node (such as a CU, a DU, an RU, or a base station) , using the reception component 1202 and the transmission component 1204.
In some aspects, the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 6-8. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10. In some aspects, the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the network node described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1208. The reception component 1202 may provide received communications to one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the network node described in connection with Fig. 2. In some aspects, the reception component 1202 and/or the transmission component 1204 may include or may be included in a network interface. The network interface may be  configured to obtain and/or output signals for the apparatus 1200 via one or more communications links, such as a backhaul link, a midhaul link, and/or a fronthaul link.
The transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1208. In some aspects, one or more other components of the apparatus 1200 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1208. In some aspects, the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1208. In some aspects, the transmission component 1204 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the network node described in connection with Fig. 2. In some aspects, the transmission component 1204 may be co-located with the reception component 1202 in a transceiver.
The communication manager 1206 may support operations of the reception component 1202 and/or the transmission component 1204. For example, the communication manager 1206 may receive information associated with configuring reception of communications by the reception component 1202 and/or transmission of communications by the transmission component 1204. Additionally, or alternatively, the communication manager 1206 may generate and/or provide control information to the reception component 1202 and/or the transmission component 1204 to control reception and/or transmission of communications.
The transmission component 1204 may transmit, to a UE via an active cell associated with the network node, DCI that triggers an L1 measurement report. The reception component 1202 may receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a CSI processing time associated with the inter-frequency L1 measurement being based at least in part on an L1/L2-based mobility.
The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components,  different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
Aspect 2: The method of Aspect 1, wherein the active cell and the candidate cell are special cells associated with the network node, and wherein the candidate cell is associated with a preconfigured candidate cell set.
Aspect 3: The method of any of Aspects 1-2, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
Aspect 4: The method of Aspect 3, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
Aspect 5: The method of Aspect 3, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
Aspect 6: The method of any of Aspects 1-5, wherein the CSI processing time is a second processing time between one of: an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
Aspect 7: The method of Aspect 6, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
Aspect 8: The method of any of Aspects 1-7, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, or a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
Aspect 9: A method of wireless communication performed by a network node, comprising: transmitting, to a user equipment (UE) via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
Aspect 10: The method of Aspect 9, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
Aspect 11: The method of Aspect 10, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
Aspect 12: The method of Aspect 10, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
Aspect 13: The method of any of Aspects 9-12, wherein the CSI processing time is a second processing time between one of: an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
Aspect 14: The method of Aspect 13, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
Aspect 15: The method of any of Aspects 9-14, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal  received power (RSRP) measurement, a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
Aspect 16: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-8.
Aspect 17: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-8.
Aspect 18: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-8.
Aspect 19: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-8.
Aspect 20: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-8.
Aspect 21: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 9-15.
Aspect 22: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 9-15.
Aspect 23: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 9-15.
Aspect 24: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 9-15.
Aspect 25: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 9-15.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors coupled with the memory and configured to cause the UE to:
    receive, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and
    transmit, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  2. The UE of claim 1, wherein the active cell and the candidate cell are special cells associated with the network node, and wherein the candidate cell is associated with a preconfigured candidate cell set.
  3. The UE of claim 1, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility and a first CSI processing parameter associated with the L1/L2-based mobility.
  4. The UE of claim 3, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and
    wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  5. The UE of claim 3, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  6. The UE of claim 1, wherein the CSI processing time is a second processing time between one of:
    an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or
    an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  7. The UE of claim 6, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  8. The UE of claim 1, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, or a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
  9. A network node for wireless communication, comprising:
    a memory; and
    one or more processors coupled with the memory and configured to cause the network node to:
    transmit, to a user equipment (UE) via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and
    receive, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  10. The network node of claim 9, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  11. The network node of claim 10, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and
    wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  12. The network node of claim 10, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  13. The network node of claim 9, wherein the CSI processing time is a second processing time between one of:
    an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or
    an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  14. The network node of claim 13, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  15. The network node of claim 9, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, or a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
  16. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a network node via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and
    transmitting, to the network node via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  17. The method of claim 16, wherein the active cell and the candidate cell are special cells associated with the network node, and wherein the candidate cell is associated with a preconfigured candidate cell set.
  18. The method of claim 16, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  19. The method of claim 18, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and
    wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  20. The method of claim 18, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  21. The method of claim 16, wherein the CSI processing time is a second processing time between one of:
    an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or
    an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  22. The method of claim 21, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  23. The method of claim 16, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, or a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
  24. A method of wireless communication performed by a network node, comprising:
    transmitting, to a user equipment (UE) via an active cell associated with the network node, downlink control information (DCI) that triggers a layer 1 (L1) measurement report; and
    receiving, from the UE via the active cell, the L1 measurement report based at least in part on the DCI, the L1 measurement report indicating an inter-frequency L1 measurement associated with a candidate cell associated with the network node, the candidate cell and the active cell being associated with different frequencies, and a channel state information (CSI) processing time associated with the inter-frequency L1 measurement being based at least in part on an L1 or a layer 2 (L2) (L1/L2) -based mobility.
  25. The method of claim 24, wherein the CSI processing time is a first processing time between an end of a last symbol of a physical downlink control channel (PDCCH) that carries the DCI and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, wherein the CSI processing time is based at least in part on: a switching time associated with the L1/L2-based mobility, and a first CSI processing parameter associated with the L1/L2-based mobility.
  26. The method of claim 25, wherein the switching time associated with the L1/L2-based mobility is: a switching time defined for candidate cells associated with the L1/L2-based mobility, or a legacy switching time plus a switching time offset, and
    wherein one or more of the switching time defined for candidate cells associated with the L1/L2-based mobility or the switching time offset is based at least in part on a UE capability.
  27. The method of claim 25, wherein the first CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  28. The method of claim 24, wherein the CSI processing time is a second processing time between one of:
    an end of a last symbol in time associated with a measurement resource and a first symbol of a physical uplink shared channel (PUSCH) that carries the L1 measurement report, an end of a synchronization signal block (SSB) measurement timing configuration (SMTC) window and the first symbol of the PUSCH that carries the L1 measurement report, or
    an end of a measurement gap and the first symbol of the PUSCH that carries the L1 measurement report, wherein the CSI processing time is based at least in part on a second CSI processing parameter associated with the L1/L2-based mobility.
  29. The method of claim 28, wherein the second CSI processing parameter associated with the L1/L2-based mobility is: a parameter dedicated to inter-frequency L1 measurements for L1/L2-based mobility, or a legacy CSI processing parameter plus a delta parameter for additional processing delay due to inter-frequency L1 measurements for L1/L2-based mobility.
  30. The method of claim 24, wherein the inter-frequency L1 measurement is one of: a synchronization signal block (SSB) -based L1-reference signal received power (RSRP) measurement, or a channel state information reference signal (CSI-RS) -based L1-RSRP measurement.
PCT/CN2023/071771 2023-01-11 2023-01-11 Channel state information processing time for inter-frequency measurements associated with candidate cells WO2024148531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/071771 WO2024148531A1 (en) 2023-01-11 2023-01-11 Channel state information processing time for inter-frequency measurements associated with candidate cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/071771 WO2024148531A1 (en) 2023-01-11 2023-01-11 Channel state information processing time for inter-frequency measurements associated with candidate cells

Publications (1)

Publication Number Publication Date
WO2024148531A1 true WO2024148531A1 (en) 2024-07-18

Family

ID=91897594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071771 WO2024148531A1 (en) 2023-01-11 2023-01-11 Channel state information processing time for inter-frequency measurements associated with candidate cells

Country Status (1)

Country Link
WO (1) WO2024148531A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842890A (en) * 2017-11-28 2019-06-04 华为技术有限公司 Signal measurement method, relevant apparatus and system
CN110381531A (en) * 2019-08-16 2019-10-25 北京展讯高科通信技术有限公司 Measuring configuration and report method, device and user equipment
US20200187067A1 (en) * 2017-08-10 2020-06-11 Nokia Technologies Oy Cell disambiguation using dedicated cell-specific measurements
US20210212091A1 (en) * 2019-12-20 2021-07-08 Qualcomm Incorporated Signaling of multiple candidate cells for l1/l2-centric inter-cell mobility
CN113453294A (en) * 2020-03-27 2021-09-28 维沃移动通信有限公司 Cell switching method, equipment and system
WO2022084955A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) L1/l2-centric mobility - neighbour cell measurements
WO2022236536A1 (en) * 2021-05-10 2022-11-17 Apple Inc. Neighbor cell measurements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200187067A1 (en) * 2017-08-10 2020-06-11 Nokia Technologies Oy Cell disambiguation using dedicated cell-specific measurements
CN109842890A (en) * 2017-11-28 2019-06-04 华为技术有限公司 Signal measurement method, relevant apparatus and system
CN110381531A (en) * 2019-08-16 2019-10-25 北京展讯高科通信技术有限公司 Measuring configuration and report method, device and user equipment
US20210212091A1 (en) * 2019-12-20 2021-07-08 Qualcomm Incorporated Signaling of multiple candidate cells for l1/l2-centric inter-cell mobility
CN113453294A (en) * 2020-03-27 2021-09-28 维沃移动通信有限公司 Cell switching method, equipment and system
WO2022084955A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) L1/l2-centric mobility - neighbour cell measurements
WO2022236536A1 (en) * 2021-05-10 2022-11-17 Apple Inc. Neighbor cell measurements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on configuration related issues for L1/L2 mobility", 3GPP DRAFT; R2-2209628, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20221001, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052262957 *

Similar Documents

Publication Publication Date Title
US20230354056A1 (en) Beam configuration reporting for hierarchical beam pair identification
WO2024148531A1 (en) Channel state information processing time for inter-frequency measurements associated with candidate cells
US20240284281A1 (en) Measurement and reporting for serving and candidate cells
WO2024092695A1 (en) Downlink reference timing for determining a timing advance for a candidate cell
WO2024168455A1 (en) Proactive channel state information measurement
WO2024168654A1 (en) Measurement resource configuration for layer 1 or layer 2 triggered mobility
WO2024168446A1 (en) Timing advance for layer 1 or layer 2 triggered mobility
WO2024207408A1 (en) Time domain channel properties (tdcp) reporting
US12088396B2 (en) Measurement reporting with delta values
US20240292293A1 (en) Event-based layer 1 measurement reporting
WO2024138612A1 (en) Transmission configuration indicator state configurations for layer 1 or layer 2 mobility
WO2024138640A1 (en) Cell switching command for transmission configuration indicator state indication
US20230403616A1 (en) Conditional handover conditions associated with a height of a user equipment
WO2024221378A1 (en) System frame number information for candidate cell
WO2024060175A1 (en) Timing for cross-link interference reporting
US20230308914A1 (en) Serving cell measurement objects associated with active bandwidth parts
US20240098593A1 (en) Capability signaling for layer 1 or layer 2 mobility
WO2024207398A1 (en) Hybrid automatic repeat request messages after cell switching
US20230127928A1 (en) Carrier switching for a physical uplink control channel
WO2024020987A1 (en) Non-active bandwidth parts for candidate cell operations in mobility
WO2024207140A1 (en) Random access response configuration for lower-layer triggered mobility
US20240284240A1 (en) Non-binding analytics-based information for a wireless link
WO2024092699A1 (en) Timing advance indications for candidate serving cells
WO2024040553A1 (en) Power control parameters for a configured grant physical uplink shared channel
WO2024229790A1 (en) Active resources or ports counting for time domain channel properties report

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915307

Country of ref document: EP

Kind code of ref document: A1