WO2024145925A1 - Mécanisme de surveillance de performances de modèle pour positionnement ia/ml - Google Patents
Mécanisme de surveillance de performances de modèle pour positionnement ia/ml Download PDFInfo
- Publication number
- WO2024145925A1 WO2024145925A1 PCT/CN2023/071056 CN2023071056W WO2024145925A1 WO 2024145925 A1 WO2024145925 A1 WO 2024145925A1 CN 2023071056 W CN2023071056 W CN 2023071056W WO 2024145925 A1 WO2024145925 A1 WO 2024145925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- model
- pru
- positioning
- assistance data
- location
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 title abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000012549 training Methods 0.000 claims abstract description 5
- 238000004891 communication Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 2
- 238000002372 labelling Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000010801 machine learning Methods 0.000 description 17
- 238000013473 artificial intelligence Methods 0.000 description 15
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0236—Assistance data, e.g. base station almanac
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- This present disclosure relates generally to wireless communications, and more specifically, to techniques of positioning a user equipment (UE) with Artificial Intelligence (AI) /Machine Learning (ML) .
- UE user equipment
- AI Artificial Intelligence
- ML Machine Learning
- the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
- the following description and the annexed figures set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
- Figure 1 illustrates indoor factory deployment scenario.
- Figure 1 shows an example of indoor factory deployment scenario.
- UEs are random distributed in the factory.
- PRUs are deployed in known location for AI/ML assistance data. There are also some clutters in the factory.
- the high-level flow of this invention is shown in figure 2.
- the first step is network notify the PRU to monitor performance of one model. Network will send the model to PRU. If the model is not trained, network will send assistance data to PRU in the second step. PRU will train the model with received assistance data.
- the third step is PRU measure model input and inference model to get model output.
- the 4th step is PRU calculate the model loss. The last step is PRU reports the loss to network.
- Network don’t train model M1 or trained M1 with assistance data from PRU1, network will send un-trained model M1 and assistance data D2/D3/...to PRU1. These assistance data should not include assistance data D1 from PRU1.
- PRU1 train M1 based on received assistance data.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
La présente divulgation concerne un mécanisme pour surveiller les performances d'un modèle de positionnement IA/ML. La surveillance de modèle est un procédé important pour améliorer la capacité de généralisation d'IA/ML. Dans la présente invention, nous présentons un procédé pour surveiller un modèle avec PRU. Avec la PRU d'emplacement connu, une perte de modèle d'IA/ML peut être obtenue. La PRU peut fournir des données d'assistance pour un entraînement de modèle IA/ML. Les données d'assistance comprennent des données d'entrée de modèle et une étiquette de sortie de modèle. Le réseau peut envoyer un modèle à surveiller à la PRU. Ce modèle peut être entraîné ou non. Si le modèle n'est pas entraîné, le réseau envoie des données d'assistance à la PRU et la PRU entraîne le modèle. Ensuite, cette PRU infère le modèle pour obtenir un emplacement estimé et calcule la différence entre un emplacement connu et un emplacement estimé.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/071056 WO2024145925A1 (fr) | 2023-01-06 | 2023-01-06 | Mécanisme de surveillance de performances de modèle pour positionnement ia/ml |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/071056 WO2024145925A1 (fr) | 2023-01-06 | 2023-01-06 | Mécanisme de surveillance de performances de modèle pour positionnement ia/ml |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024145925A1 true WO2024145925A1 (fr) | 2024-07-11 |
Family
ID=91803542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/071056 WO2024145925A1 (fr) | 2023-01-06 | 2023-01-06 | Mécanisme de surveillance de performances de modèle pour positionnement ia/ml |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024145925A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022155244A2 (fr) * | 2021-01-12 | 2022-07-21 | Idac Holdings, Inc. | Procédés et appareil de positionnement basé sur l'apprentissage dans des systèmes de communication sans fil |
US20220317230A1 (en) * | 2021-04-01 | 2022-10-06 | Qualcomm Incorporated | Positioning reference signal (prs) processing window for low latency positioning measurement reporting |
-
2023
- 2023-01-06 WO PCT/CN2023/071056 patent/WO2024145925A1/fr unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022155244A2 (fr) * | 2021-01-12 | 2022-07-21 | Idac Holdings, Inc. | Procédés et appareil de positionnement basé sur l'apprentissage dans des systèmes de communication sans fil |
US20220317230A1 (en) * | 2021-04-01 | 2022-10-06 | Qualcomm Incorporated | Positioning reference signal (prs) processing window for low latency positioning measurement reporting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8818288B2 (en) | Statistical inversion method and system for device-free localization in RF sensor networks | |
EP2222053B1 (fr) | Système et procédé de prédiction de réunions futures d'utilisateurs sans fil | |
US8340022B2 (en) | Wireless location determination system and method | |
US9664770B2 (en) | Method and system for simultaneous receiver calibration and object localisation for multilateration | |
CN105738922B (zh) | 导航卫星星座系统的服务可靠性分析方法及系统 | |
US20180047174A1 (en) | Target monitoring system and target monitoring method | |
US20180283861A1 (en) | Altitude measurement system and altitude measurement method | |
WO2003001236A3 (fr) | Procedes et dispositifs pour estimations de position precises en cas de deterioration marquee de la precision | |
CN110557191B (zh) | 一种低轨卫星移动通信系统中的终端定位方法及装置 | |
CN109506647B (zh) | 一种基于神经网络的ins和磁力计组合定位方法 | |
US20190317221A1 (en) | Systems and methods for satellite-based navigation | |
Nguyen et al. | Applying time series analysis and neighbourhood voting in a decentralised approach for fault detection and classification in WSNs | |
CN110673168B (zh) | 异步多用户联合欺骗信号检测方法及装置 | |
JP2008014938A (ja) | 衛星ナビゲーション受信機の性能を高めるシステム及び方法 | |
US20160291121A1 (en) | Backtracking indoor trajectories using mobile sensors | |
WO2024145925A1 (fr) | Mécanisme de surveillance de performances de modèle pour positionnement ia/ml | |
Sheppard et al. | Bayesian diagnosis and prognosis using instrument uncertainty | |
CN115702590A (zh) | 位置估计 | |
WO2024148576A1 (fr) | Mécanisme de surveillance de scénario pour positionnement ia/ml | |
WO2024197735A1 (fr) | Mécanisme de surveillance de performances de modèle pour positionnement ia/ml | |
US20240097811A1 (en) | Method for identifying and diagnosing failures in pairwise time synchronization and frequency calibration in a mesh network | |
KR20190111587A (ko) | 딥 러닝 기반 사용자 단말 위치 추정 장치 및 방법 | |
US12015966B2 (en) | Method and apparatus for sensor selection for localization and tracking | |
WO2024164116A1 (fr) | Mécanisme d'unités de référence de positionnement auxiliaire pour le positionnement intelligence artificielle/apprentissage machine (ia/am) | |
Im et al. | Deep LSTM-based multimode pedestrian dead reckoning system for indoor localization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23914082 Country of ref document: EP Kind code of ref document: A1 |