WO2024143840A1 - Hydrogen fuel cell aircraft - Google Patents
Hydrogen fuel cell aircraft Download PDFInfo
- Publication number
- WO2024143840A1 WO2024143840A1 PCT/KR2023/017135 KR2023017135W WO2024143840A1 WO 2024143840 A1 WO2024143840 A1 WO 2024143840A1 KR 2023017135 W KR2023017135 W KR 2023017135W WO 2024143840 A1 WO2024143840 A1 WO 2024143840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- aircraft
- fuel cell
- tank
- hydrogen fuel
- Prior art date
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 212
- 239000001257 hydrogen Substances 0.000 title claims abstract description 209
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 209
- 239000000446 fuel Substances 0.000 title claims abstract description 103
- 230000005611 electricity Effects 0.000 claims abstract description 15
- 230000007257 malfunction Effects 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 238000004880 explosion Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 210000002445 nipple Anatomy 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/32—Supply or distribution of electrical power generated by fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/70—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/80—Parachutes in association with aircraft, e.g. for braking thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D37/00—Arrangements in connection with fuel supply for power plant
- B64D37/02—Tanks
- B64D37/04—Arrangement thereof in or on aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D37/00—Arrangements in connection with fuel supply for power plant
- B64D37/02—Tanks
- B64D37/14—Filling or emptying
- B64D37/20—Emptying systems
- B64D37/26—Jettisoning of fuel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D37/00—Arrangements in connection with fuel supply for power plant
- B64D37/32—Safety measures not otherwise provided for, e.g. preventing explosive conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D41/00—Power installations for auxiliary purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/20—Vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/80—Vertical take-off or landing, e.g. using rockets
- B64U70/83—Vertical take-off or landing, e.g. using rockets using parachutes, balloons or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
- H01M8/04208—Cartridges, cryogenic media or cryogenic reservoirs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/10—Air crafts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- Registration Patent No. 10-1904225 relates to a hydrogen fuel cell drone equipped with a hybrid controller.
- the drone In a drone that flies using a fuel cell, the drone is provided with a device that receives hydrogen from a fuel tank and produces electricity.
- a device that receives hydrogen from a fuel tank and produces electricity.
- the status information of the fuel cell and the secondary battery that supplies power to the drone and the status information of the secondary battery, it is possible to determine whether to use power from the fuel cell and the secondary battery or to determine whether or not the power of the secondary battery is used.
- It is composed of a hybrid controller that controls charging and a drive control system that operates according to the hybrid controller's judgment, and has the effect of efficiently managing the power of the fuel cell and secondary battery to increase flight time compared to weight.
- a hydrogen fuel cell drone equipped with a hybrid controller is launched.
- the present invention is to provide a hydrogen fuel cell aircraft equipped with a parachute, which can prevent accidents caused by explosion of hydrogen gas cylinders on the ground when the aircraft (drone, UAM) falls due to malfunction.
- the hydrogen tank is separated from the fuel cell unit (fuel electricity stack) (automatic separation of the hydrogen tank due to the external force of the parachute when falling) and electricity generation is stopped, causing the aircraft to fall (fall).
- the purpose is to provide a hydrogen fuel cell aircraft that can prevent the explosion of the high-temperature fuel cell unit (fuel electricity stack) (fire and explosiveness are stronger during electricity generation) and the explosion of the hydrogen tank due to collision.
- the hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft
- a hydrogen fuel cell unit 30 that is fixedly installed on the aircraft body 10 and receives hydrogen to produce electricity, and a hydrogen tank 40 that stores hydrogen supplied to the hydrogen fuel cell unit 30,
- the hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which the parachute 60 is connected to the hydrogen tank 40 with a first flexible connecting means (65, string), and a second flexible connecting means (66). It is connected to the aircraft body 10 by a string), and the aircraft is preferably one of a drone (unmanned aerial vehicle) with rotating wings (blade), a tilt rotor drone, a vertical takeoff and landing aircraft, or a tilt rotor type aircraft. .
- the hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which a parachute 60 is ejected when the aircraft fails (before or during an emergency fall), and a first flexible connection means connected to the hydrogen tank 40 ( 65, string) pulls the hydrogen tank 40 backward or upward with the buoyancy of the parachute 60, so that the hydrogen tank 40 is automatically disconnected from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. Alternatively, it is preferable to separate them.
- Figure 3 is a diagram showing the dropping state of a hydrogen fuel cell aircraft according to an embodiment of the present invention.
- the aerial body 10 has controls.
- Rotating blades (rotor blades, 20) provide lift and thrust.
- the aircraft is preferably one of a drone (unmanned aerial vehicle) with rotating wings (blade), a tilt-rotor drone, a vertical takeoff and landing aircraft, or a tilt-rotor type aircraft.
- 1A and 1B show a tilt-rotor type unmanned aerial vehicle (drone) with fixed wings and rear wings to ensure stability.
- the hydrogen fuel cell unit 30 is fixedly installed on the aircraft body 10 and receives hydrogen to produce electricity.
- the hydrogen tank 40 stores hydrogen supplied to the hydrogen fuel cell unit 30.
- the hydrogen tank holding part 50 is provided on the aircraft body 10 and fixes the hydrogen tank 40. The configuration of the hydrogen tank holding portion 50 will be described later.
- the parachute 60 is connected to the hydrogen tank 40 and is ejected and unfolded in the event of an emergency fall due to aircraft failure.
- the parachute 60 is intended to prevent damage to objects on the ground, including people and buildings, by significantly reducing the fall speed to the ground when the aircraft loses lift due to the rotation of the rotor blades (aircraft failure).
- the parachute 60 is an essential component for reducing the risk of a hydrogen tank explosion due to a collision between a ground object and a hydrogen tank when an aircraft (particularly an unmanned aerial vehicle or drone) crashes.
- the hydrogen tank 40 is connected to the hydrogen fuel cell unit 30 through a hydrogen connection part 70 to enable communication.
- the hydrogen tank 40 is preferably disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70.
- the hydrogen connection portion 70 may be a one-touch coupling means such as a nipple. At this time, as the hydrogen tank 40 moves forward, the neck part 43 of the hydrogen tank 40 is connected (communicated) with the hydrogen fuel cell unit 30, and as the hydrogen tank 40 moves backward, the neck part 43 of the hydrogen tank 40 is connected (communicated) with the hydrogen fuel cell unit 30. (43) may be disconnected from the hydrogen fuel cell unit 30.
- the hydrogen connection unit 70 blocks the connection (communication) between the hydrogen tank 40 and the hydrogen fuel cell unit 30.
- the hydrogen connection unit 70 is provided with an electronic translation or rotation means such as an actuator to move the hydrogen tank 40 backward using the translation or rotation force of the mechanism to release the coupling of the nipple, or to release the coupling of the nipple. By blocking, the connection (communication) between the hydrogen tank 40 and the hydrogen fuel cell unit 30 can be released.
- the hydrogen tank holding portion 50 includes at least two tank holders 51 spaced apart from each other at the rear of the aircraft body 10, a front hollow tank. holder and a rear hollow tank holder), and the hydrogen tank 40 is preferably fixed to the tank holder 51 so as to be attachable and detachable.
- the aircraft has fixed wings extending on both sides of the aircraft body, tilt rotors formed at both ends of the fixed wings, and tail wings to ensure stability. It is a tilt rotor type unmanned aerial vehicle (drone) formed at the rear end.
- the rear body bar 13 constitutes the aircraft body and extends straight rearward in the direction of the tail wing to form a frame, and the hydrogen tank grip portion 50 is formed to protrude downward from the rear body bar 13 and are spaced apart from each other. It has at least two tank holders 51 formed in .
- the rear body bar 13 is formed as a hollow ring, and the hydrogen tank 40 is interpolated and fixed to the rear body bar 13 and is connected to the hydrogen fuel cell unit 30 or the hydrogen connection unit by forward movement. It is combined with (70).
- the hydrogen tank 40 is guided by the hollow rear body bar 13 and is formed to be able to slide rearward.
- the hydrogen tank 40 is mounted horizontally so as to be parallel to the rear body bar 13.
- the parachute 60 is connected to the hydrogen tank 40 with a first flexible connection means (65, string), and the second flexible connection means (65) is connected to the hydrogen tank 40. It is connected to the aircraft body (10) by means of connection (66, string).
- the parachute 60 is mounted on the tail portion of the aircraft, and when the aircraft fails (before or during an emergency fall), the parachute 60 is ejected and connected to the hydrogen tank 40.
- the first flexible connection means (65, string) pulls the hydrogen tank 40 rearward with the buoyancy of the parachute 60, so that the hydrogen tank 40 is separated from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. It is desirable to automatically disconnect or disconnect.
- the first flexible connecting means (65, string, string or wire) connected to the hydrogen tank 40 is buoyant before the second flexible connecting means (66, string or wire, rope) connected to the aircraft body 10. It is provided to generate (shorten) a tensile force (tension), and when the parachute 60 is ejected, the first flexible connection means 65 pulls the hydrogen tank 40 backward (upward when falling), thereby ) is automatically disconnected or separated from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. At this time, the hydrogen tank 40 is guided by the hollow rear body bar 13 and slides backwards (in the opposite direction to gravity when falling, when a parachute is mounted on the tail).
- the hydrogen tank 40 when the aircraft malfunctions (before or during an emergency drop), the hydrogen tank 40 is disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70, and hydrogen The neck 43 of the tank 40 is opened so that hydrogen gas is automatically dispersed into the air, thereby preventing an explosion of the hydrogen tank.
- a hydrogen fuel cell aircraft is provided that is equipped with a parachute and can prevent accidents caused by explosions of hydrogen gas cylinders on the ground when falling due to a malfunction of the aircraft (drone, UAM).
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Remote Sensing (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Fuel Cell (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
The present invention relates to a hydrogen fuel cell aircraft, comprising: an aircraft body (10) having a control unit; rotor blades (20) that provide lift and thrust; a hydrogen fuel cell unit (30) that is fixedly installed on the aircraft body (10) and receives hydrogen to produce electricity; a hydrogen tank (40) that stores hydrogen supplied to the hydrogen fuel cell unit (30); a hydrogen tank holding unit (50) provided on the aircraft body (10) and fixing the hydrogen tank (40); and a parachute (60) connected to the hydrogen tank (40) and ejected and deployed in the event of an emergency fall due to aircraft failure.
Description
본 발명은 낙하산을 구비하여 항공체(드론, UAM) 고장에 의한 낙하(추락)시 수소 가스통의 지상 폭발에 의한 사고를 미연에 방지할 수 있는 수소 연료전지 항공체에 관한 것이다.The present invention relates to a hydrogen fuel cell aircraft that is equipped with a parachute and can prevent accidents due to explosion of hydrogen gas cylinders on the ground when the aircraft (drone, UAM) malfunctions.
등록특허 제10-1904225호는 본 발명은 하이브리드 컨트롤러를 구비한 수소연료전지 드론에 관한 것으로서, 연료전지를 사용하여 비행하는 드론에 있어서, 드론에 구비되어 연료탱크로부터 수소를 공급받아 전기를 생산하는 연료전지와 상기 드론에 구비되어 전력을 공급하는 2차 전지와 상기 연료전지의 상태정보와 상기 2차 전지의 상태정보를 입력받아 상기 연료전지와 상기 2차 전지의 전력 사용여부 또는 2차 전지의 충전여부를 제어하는 하이브리드 컨트롤러 및 상기 하이브리드 컨트롤러의 판단에 따라 작동하는 구동제어시스템을 포함하여 구성되어 연료전지와 2차 전지의 전력을 효율적으로 관리하여 무게대비 비행시간을 증가시킬 수 있는 효과를 갖는 하이브리드 컨트롤러를 구비한 수소연료전지 드론을 개시한다.Registration Patent No. 10-1904225 relates to a hydrogen fuel cell drone equipped with a hybrid controller. In a drone that flies using a fuel cell, the drone is provided with a device that receives hydrogen from a fuel tank and produces electricity. By receiving the status information of the fuel cell and the secondary battery that supplies power to the drone and the status information of the secondary battery, it is possible to determine whether to use power from the fuel cell and the secondary battery or to determine whether or not the power of the secondary battery is used. It is composed of a hybrid controller that controls charging and a drive control system that operates according to the hybrid controller's judgment, and has the effect of efficiently managing the power of the fuel cell and secondary battery to increase flight time compared to weight. A hydrogen fuel cell drone equipped with a hybrid controller is launched.
본 발명은 낙하산을 구비하여 항공체(드론, UAM) 고장에 의한 낙하(추락)시 수소 가스통의 지상 폭발에 의한 사고를 미연에 방지할 수 있는 수소 연료전지 항공체를 제공하기 위한 것이다.The present invention is to provide a hydrogen fuel cell aircraft equipped with a parachute, which can prevent accidents caused by explosion of hydrogen gas cylinders on the ground when the aircraft (drone, UAM) falls due to malfunction.
본 발명의 항공체(드론, UAM) 고장시 수소탱크를 연료전지부(연료전기 stack)로부터 분리(낙하시 낙하산의 외력 작용에 의한 수소 탱크의 자동 분리)하여 전기 생성을 중단함으로써 낙하(추락)시 충돌에 의해 고온의 연료전지부(연료전기 stack)의 폭발(전기 생성중 화재 및 폭발성이 더 강함) 및 수소 탱크의 폭발을 미연에 방지할 수 있는 수소 연료전지 항공체를 제공하기 위한 것이다.When the aircraft (drone, UAM) of the present invention breaks down, the hydrogen tank is separated from the fuel cell unit (fuel electricity stack) (automatic separation of the hydrogen tank due to the external force of the parachute when falling) and electricity generation is stopped, causing the aircraft to fall (fall). The purpose is to provide a hydrogen fuel cell aircraft that can prevent the explosion of the high-temperature fuel cell unit (fuel electricity stack) (fire and explosiveness are stronger during electricity generation) and the explosion of the hydrogen tank due to collision.
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서,The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft,
제어부를 구비한 항공 몸체(10)와, 양력 및 추력을 제공하는 회전 날개(로터 블레이드, 20)와,An aircraft body (10) with a control unit, rotor blades (20) that provide lift and thrust,
상기 항공 몸체(10)에 고정 설치되고 수소를 받아 전기를 생산하는 수소 연료 전지부(30)과, 상기 수소 연료 전지부(30)에 공급되는 수소를 저장하는 수소 탱크(40)와,A hydrogen fuel cell unit 30 that is fixedly installed on the aircraft body 10 and receives hydrogen to produce electricity, and a hydrogen tank 40 that stores hydrogen supplied to the hydrogen fuel cell unit 30,
상기 항공 몸체(10)에 구비되고 상기 수소 탱크(40)를 고정하는 수소 탱크 파지부(50)과, 상기 수소 탱크(40)와 연결되고 항공체 고장에 의한 비상 낙하시 사출되어 펼쳐지는 낙하산(60)을 포함하여 구성되는 것이 특징이다.A hydrogen tank holding portion 50 provided on the aircraft body 10 and fixing the hydrogen tank 40, and a parachute ( It is characterized by being composed of 60).
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 낙하산(60)은 제1 유연성 연결수단(65, 끈)으로 상기 수소 탱크(40)와 연결되고, 제2 유연성 연결수단(66, 끈)으로 상기 항공 몸체(10)와 연결되며, 상기 항공체는 회전 날개(블레이드)를 갖는 드론(무인 항공기), 틸트 로터 드론, 수직이착륙 항공기, 또는 틸트 로터형 항공기 중 하나인 것이 바람직하다.The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which the parachute 60 is connected to the hydrogen tank 40 with a first flexible connecting means (65, string), and a second flexible connecting means (66). It is connected to the aircraft body 10 by a string), and the aircraft is preferably one of a drone (unmanned aerial vehicle) with rotating wings (blade), a tilt rotor drone, a vertical takeoff and landing aircraft, or a tilt rotor type aircraft. .
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 수소 탱크(40)는 수소 연결부(70)을 매개로 하여 상기 수소 연료 전지부(30)와 연통 가능하게 연결되고, 항공체 고장시(비상 낙하 전 또는 낙하 중)에 수소 탱크(40)는 상기 수소 연료 전지부(30) 또는 수소 연결부(70)와 연결이 해제(분리)되는 것이 바람직하다.The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which the hydrogen tank 40 is connected to the hydrogen fuel cell unit 30 through a hydrogen connection part 70 to enable communication, and the hydrogen fuel cell aircraft is a hydrogen fuel cell aircraft. It is preferable that the hydrogen tank 40 is disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70 (before or during an emergency fall).
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 수소 탱크 파지부(50)는, 항공 몸체(10)의 후방에 이격되게 구비되는 적어도 2개 이상의 탱크 홀더(51)를 포함하고, 상기 수소 탱크(40)는 상기 탱크 홀더(51)에 장착 및 탈착 가능하게 고정되는 것이 바람직하다.In the hydrogen fuel cell aircraft of the present invention, the hydrogen tank holding portion 50 includes at least two tank holders 51 spaced apart from each other at the rear of the aircraft body 10. , the hydrogen tank 40 is preferably fixed to the tank holder 51 so as to be attachable and detachable.
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 항공체 고장시(비상 낙하 전 또는 낙하 중) 낙하산(60)이 사출되고, 수소 탱크(40)와 연결된 제1 유연성 연결수단(65, 끈)이 낙하산(60)의 부력으로 수소 탱크(40)를 후방 또는 상향으로 당김으로써, 상기 수소 탱크(40)가 수소 연료 전지부(30) 또는 수소 연결부(70)로부터 자동으로 연결 해제 또는 분리되는 것이 바람직하다.The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which a parachute 60 is ejected when the aircraft fails (before or during an emergency fall), and a first flexible connection means connected to the hydrogen tank 40 ( 65, string) pulls the hydrogen tank 40 backward or upward with the buoyancy of the parachute 60, so that the hydrogen tank 40 is automatically disconnected from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. Alternatively, it is preferable to separate them.
본 발명에 따르는 경우 낙하산을 구비하여 항공체(드론, UAM) 고장에 의한 낙하(추락)시 수소 가스통의 지상 폭발에 의한 사고를 미연에 방지할 수 있는 수소 연료전지 항공체가 제공된다.According to the present invention, a hydrogen fuel cell aircraft is provided that is equipped with a parachute and can prevent accidents caused by explosions of hydrogen gas cylinders on the ground when falling due to a malfunction of the aircraft (drone, UAM).
본 발명에 따르는 경우 항공체(드론, UAM) 고장시 수소탱크를 연료전지부(연료전기 stack)로부터 분리(낙하시 낙하산의 외력 작용에 의한 수소 탱크의 자동 분리)하여 전기 생성을 중단함으로써 낙하(추락)시 충돌에 의해 고온의 연료전지부(연료전기 stack)의 폭발(전기 생성중 화재 및 폭발성이 더 강함) 및 수소 탱크의 폭발을 미연에 방지할 수 있는 수소 연료전지 항공체가 제공된다.According to the present invention, when an aircraft (drone, UAM) breaks down, the hydrogen tank is separated from the fuel cell unit (fuel electricity stack) (automatic separation of the hydrogen tank due to the external force of the parachute when falling) and electricity generation is stopped, thereby causing the fall ( A hydrogen fuel cell aircraft is provided that can prevent the explosion of the high-temperature fuel cell unit (fuel electricity stack) (fire and explosiveness are stronger during electricity generation) and the explosion of the hydrogen tank due to collision in the event of a fall.
도 1a는 본 발명의 일실시예에 따른 수소 연료전지 항공체(틸트 로터 드론) 전체 외관도.Figure 1a is an overall exterior view of a hydrogen fuel cell aircraft (tilt rotor drone) according to an embodiment of the present invention.
도 1b는 본 발명의 일실시예에 따른 수소 연료전지 항공체(틸트 로터 드론) 내부 구성도.Figure 1b is a diagram showing the internal configuration of a hydrogen fuel cell aircraft (tilt rotor drone) according to an embodiment of the present invention.
도 2a, 도 2b는 본 발명의 일실시예에 따른 수소 연료전지 항공체 중요부(수소탱크, 파지수단, 후방 몸체바, 수소연료전지부) 사시도.Figures 2a and 2b are perspective views of important parts (hydrogen tank, gripping means, rear body bar, hydrogen fuel cell part) of a hydrogen fuel cell aircraft according to an embodiment of the present invention.
도 2c는 본 발명의 일실시예에 따른 수소 연료전지 항공체(수소탱크, 파지수단, 후방 몸체바, 수소연료전지부) 측면도.Figure 2c is a side view of a hydrogen fuel cell aircraft (hydrogen tank, gripping means, rear body bar, hydrogen fuel cell unit) according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 수소 연료전지 항공체 낙하 상태도.Figure 3 is a diagram showing the dropping state of a hydrogen fuel cell aircraft according to an embodiment of the present invention.
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서,The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft,
제어부를 구비한 항공 몸체(10)와, 양력 및 추력을 제공하는 회전 날개(로터 블레이드, 20)와,An aircraft body (10) with a control unit, rotor blades (20) that provide lift and thrust,
상기 항공 몸체(10)에 고정 설치되고 수소를 받아 전기를 생산하는 수소 연료 전지부(30)과, 상기 수소 연료 전지부(30)에 공급되는 수소를 저장하는 수소 탱크(40)와,A hydrogen fuel cell unit 30 that is fixedly installed on the aircraft body 10 and receives hydrogen to produce electricity, and a hydrogen tank 40 that stores hydrogen supplied to the hydrogen fuel cell unit 30,
상기 항공 몸체(10)에 구비되고 상기 수소 탱크(40)를 고정하는 수소 탱크 파지부(50)과, 상기 수소 탱크(40)와 연결되고 항공체 고장에 의한 비상 낙하시 사출되어 펼쳐지는 낙하산(60)을 포함하여 구성되는 것이 특징이다.A hydrogen tank holding portion 50 provided on the aircraft body 10 and fixing the hydrogen tank 40, and a parachute ( It is characterized by being composed of 60).
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 낙하산(60)은 제1 유연성 연결수단(65, 끈)으로 상기 수소 탱크(40)와 연결되고, 제2 유연성 연결수단(66, 끈)으로 상기 항공 몸체(10)와 연결되며, 상기 항공체는 회전 날개(블레이드)를 갖는 드론(무인 항공기), 틸트 로터 드론, 수직이착륙 항공기, 또는 틸트 로터형 항공기 중 하나인 것이 바람직하다.The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which the parachute 60 is connected to the hydrogen tank 40 with a first flexible connecting means (65, string), and a second flexible connecting means (66). It is connected to the aircraft body 10 by a string), and the aircraft is preferably one of a drone (unmanned aerial vehicle) with rotating wings (blade), a tilt rotor drone, a vertical takeoff and landing aircraft, or a tilt rotor type aircraft. .
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 수소 탱크(40)는 수소 연결부(70)을 매개로 하여 상기 수소 연료 전지부(30)와 연통 가능하게 연결되고, 항공체 고장시(비상 낙하 전 또는 낙하 중)에 수소 탱크(40)는 상기 수소 연료 전지부(30) 또는 수소 연결부(70)와 연결이 해제(분리)되는 것이 바람직하다.The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which the hydrogen tank 40 is connected to the hydrogen fuel cell unit 30 through a hydrogen connection part 70 to enable communication, and the hydrogen fuel cell aircraft is a hydrogen fuel cell aircraft. It is preferable that the hydrogen tank 40 is disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70 (before or during an emergency fall).
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 수소 탱크 파지부(50)는, 항공 몸체(10)의 후방에 이격되게 구비되는 적어도 2개 이상의 탱크 홀더(51)를 포함하고, 상기 수소 탱크(40)는 상기 탱크 홀더(51)에 장착 및 탈착 가능하게 고정되는 것이 바람직하다.In the hydrogen fuel cell aircraft of the present invention, the hydrogen tank holding portion 50 includes at least two tank holders 51 spaced apart from each other at the rear of the aircraft body 10. , the hydrogen tank 40 is preferably fixed to the tank holder 51 so as to be attachable and detachable.
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 항공체 고장시(비상 낙하 전 또는 낙하 중) 낙하산(60)이 사출되고, 수소 탱크(40)와 연결된 제1 유연성 연결수단(65, 끈)이 낙하산(60)의 부력으로 수소 탱크(40)를 후방 또는 상향으로 당김으로써, 상기 수소 탱크(40)가 수소 연료 전지부(30) 또는 수소 연결부(70)로부터 자동으로 연결 해제 또는 분리되는 것이 바람직하다.The hydrogen fuel cell aircraft of the present invention is a hydrogen fuel cell aircraft, in which a parachute 60 is ejected when the aircraft fails (before or during an emergency fall), and a first flexible connection means connected to the hydrogen tank 40 ( 65, string) pulls the hydrogen tank 40 backward or upward with the buoyancy of the parachute 60, so that the hydrogen tank 40 is automatically disconnected from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. Alternatively, it is preferable to separate them.
이하에서 본 발명의 일실시예에 따른 수소 연료전지 항공체에 대하여 첨부된 도면을 참조하여 상세하게 설명한다. 도 1a는 본 발명의 일실시예에 따른 수소 연료전지 항공체(틸트 로터 드론) 전체 외관도, 도 1b는 본 발명의 일실시예에 따른 수소 연료전지 항공체(틸트 로터 드론) 내부 구성도, 도 2a, 도 2b는 본 발명의 일실시예에 따른 수소 연료전지 항공체 중요부(수소탱크, 파지수단, 후방 몸체바, 수소연료전지부) 사시도, 도 2c는 본 발명의 일실시예에 따른 수소 연료전지 항공체 (수소 탱크, 파지수단, 후방 몸체바, 수소연료전지부) 측면도이고, 도 3은 본 발명의 일실시예에 따른 수소 연료전지 항공체 낙하 상태도이다.Hereinafter, a hydrogen fuel cell aircraft according to an embodiment of the present invention will be described in detail with reference to the attached drawings. FIG. 1A is an overall exterior view of a hydrogen fuel cell aircraft (tilt-rotor drone) according to an embodiment of the present invention, and FIG. 1B is an internal configuration diagram of a hydrogen fuel cell aircraft (tilt-rotor drone) according to an embodiment of the present invention. Figures 2a and 2b are perspective views of important parts of a hydrogen fuel cell aircraft (hydrogen tank, grip means, rear body bar, hydrogen fuel cell section) according to an embodiment of the present invention, and Figure 2c is a perspective view of important parts of a hydrogen fuel cell aircraft according to an embodiment of the present invention. This is a side view of the hydrogen fuel cell aircraft (hydrogen tank, grip means, rear body bar, hydrogen fuel cell unit), and Figure 3 is a diagram showing the dropping state of the hydrogen fuel cell aircraft according to an embodiment of the present invention.
도 1a, 도 1b, 도 2a, 도 2b, 도 2c에 도시된 바와 같이, 본 발명의 일실시예에 따른 수소 연료전지 항공체는 항공 몸체(10)와 회전 날개(로터 블레이드, 20)와 수소 연료 전지부(30)와 수소 탱크(40)와 수소 탱크 파지부(50)과 낙하산(60)을 포함하여 구성된다. As shown in FIGS. 1A, 1B, 2A, 2B, and 2C, the hydrogen fuel cell aircraft according to an embodiment of the present invention includes an aircraft body 10, rotor blades 20, and hydrogen It is composed of a fuel cell unit 30, a hydrogen tank 40, a hydrogen tank holding unit 50, and a parachute 60.
도시된 바와 같이, 항공 몸체(10)는 제어부를 구비한다. 회전 날개(로터 블레이드, 20)는 양력 및 추력을 제공한다. 항공체는 회전 날개(블레이드)를 갖는 드론(무인 항공기), 틸트 로터 드론, 수직이착륙 항공기, 또는 틸트 로터형 항공기 중 하나인 것이 바람직하다. 도 1a, 도 1b는 고정익, 안정성 확보를 위한 후방 날개를 갖는 틸트 로터형 무인기(드론)을 도시하고 있다. As shown, the aerial body 10 has controls. Rotating blades (rotor blades, 20) provide lift and thrust. The aircraft is preferably one of a drone (unmanned aerial vehicle) with rotating wings (blade), a tilt-rotor drone, a vertical takeoff and landing aircraft, or a tilt-rotor type aircraft. 1A and 1B show a tilt-rotor type unmanned aerial vehicle (drone) with fixed wings and rear wings to ensure stability.
도 2a, 도 2b, 도 2c에 도시된 바와 같이, 수소 연료 전지부(30)는 항공 몸체(10)에 고정 설치되고 수소를 받아 전기를 생산한다. 수소 탱크(40)는 수소 연료 전지부(30)에 공급되는 수소를 저장한다. 수소 탱크 파지부(50)는 상기 항공 몸체(10)에 구비되고 수소 탱크(40)를 고정한다. 수소 탱크 파지부(50)의 구성에 대하여 후술하기로 한다.As shown in FIGS. 2A, 2B, and 2C, the hydrogen fuel cell unit 30 is fixedly installed on the aircraft body 10 and receives hydrogen to produce electricity. The hydrogen tank 40 stores hydrogen supplied to the hydrogen fuel cell unit 30. The hydrogen tank holding part 50 is provided on the aircraft body 10 and fixes the hydrogen tank 40. The configuration of the hydrogen tank holding portion 50 will be described later.
도 1a, 도 2c, 도 3에 도시된 바와 같이, 낙하산(60)은 수소 탱크(40)와 연결되고 항공체 고장에 의한 비상 낙하시 사출되어 펼쳐진다. 낙하산(60)은 회전 날개의 회전 정지(항공체 고장)에 의한 항공체의 양력 상실시 지상 추락 속도를 현격히 감소시켜서 인간 건물을 포함하는 지상의 물체의 파손을 방지하기 위함이다. 또한, 낙하산(60)은 항공체(특히, 무인 항공체 또는 드론) 추락시 지상 구보물과 수소 탱크의 충돌에 의한 수소 탱크 폭발의 위험을 감소시키기 위한 필수 구성 요소이다. As shown in FIGS. 1A, 2C, and 3, the parachute 60 is connected to the hydrogen tank 40 and is ejected and unfolded in the event of an emergency fall due to aircraft failure. The parachute 60 is intended to prevent damage to objects on the ground, including people and buildings, by significantly reducing the fall speed to the ground when the aircraft loses lift due to the rotation of the rotor blades (aircraft failure). In addition, the parachute 60 is an essential component for reducing the risk of a hydrogen tank explosion due to a collision between a ground object and a hydrogen tank when an aircraft (particularly an unmanned aerial vehicle or drone) crashes.
<수소 연결부, 연결 해제, 전기 생성 중단><Hydrogen connection, disconnect, stop generating electricity>
도시된 바와 같이, 본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 수소 탱크(40)는 수소 연결부(70)을 매개로 하여 상기 수소 연료 전지부(30)와 연통 가능하게 연결되고, 항공체 고장시(비상 낙하 전 또는 낙하 중)에 수소 탱크(40)는 상기 수소 연료 전지부(30) 또는 수소 연결부(70)와 연결이 해제(분리)되는 것이 바람직하다.As shown, in the hydrogen fuel cell aircraft of the present invention, the hydrogen tank 40 is connected to the hydrogen fuel cell unit 30 through a hydrogen connection part 70 to enable communication. In the event of an aircraft failure (before or during an emergency drop), the hydrogen tank 40 is preferably disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70.
수소 연결부(70)는 니플과 같은 원터치 결합 수단일 수 있다. 이때 수소 탱크(40)의 전진에 의해 수소 탱크(40)의 넥부(43)가 수소 연료 전지부(30)와 연결(연통)되고 수소 탱크(40)의 후진에 의해 수소 탱크(40)의 넥부(43)가 수소 연료 전지부(30)와 연결이 해제될 수 있다.The hydrogen connection portion 70 may be a one-touch coupling means such as a nipple. At this time, as the hydrogen tank 40 moves forward, the neck part 43 of the hydrogen tank 40 is connected (communicated) with the hydrogen fuel cell unit 30, and as the hydrogen tank 40 moves backward, the neck part 43 of the hydrogen tank 40 is connected (communicated) with the hydrogen fuel cell unit 30. (43) may be disconnected from the hydrogen fuel cell unit 30.
항공체 고장시, 수소 연결부(70)는 수소 탱크(40)와 수소 연료 전지부(30)의 연결(연통)을 차단한다. 예를들어, 수소 연결부(70)는 액튜에이터와 같은 전자식 병진 또는 회전수단을 구비하여 기구의 병진 또는 회전 운동 힘을 이용하여 수소 탱크(40)를 후진시켜서 니플의 결합을 해제시키거나, 구비된 밸브를 차단하여 수소 탱크(40)와 수소 연료 전지부(30)의 연결(연통)을 해제할 수 있다. In the event of an aircraft failure, the hydrogen connection unit 70 blocks the connection (communication) between the hydrogen tank 40 and the hydrogen fuel cell unit 30. For example, the hydrogen connection unit 70 is provided with an electronic translation or rotation means such as an actuator to move the hydrogen tank 40 backward using the translation or rotation force of the mechanism to release the coupling of the nipple, or to release the coupling of the nipple. By blocking, the connection (communication) between the hydrogen tank 40 and the hydrogen fuel cell unit 30 can be released.
<수소 탱크 파지부><Hydrogen tank holding part>
본 발명의 수소 연료전지 항공체는 수소 연료전지 항공체에 있어서, 수소 탱크 파지부(50)는, 항공 몸체(10)의 후방에 이격되게 구비되는 적어도 2개 이상의 탱크 홀더(51, 전측 중공 탱크 홀더와 후측 중공 탱크 홀더)를 포함하고, 상기 수소 탱크(40)는 상기 탱크 홀더(51)에 장착 및 탈착 가능하게 고정되는 것이 바람직하다.In the hydrogen fuel cell aircraft of the present invention, the hydrogen tank holding portion 50 includes at least two tank holders 51 spaced apart from each other at the rear of the aircraft body 10, a front hollow tank. holder and a rear hollow tank holder), and the hydrogen tank 40 is preferably fixed to the tank holder 51 so as to be attachable and detachable.
도 1b, 도 2a, 도 2b에 도시된 바와 같이, 본 발명의 일실시예에서 항공체는 항공 몸체 양측으로 연장되는 고정익과, 고정익의 양단에 각각 형성되는 틸트 로터와, 안정성 확보를 위해 테일 날개가 후단에 형성된 틸트 로터형 무인기(드론)이다. 여기서 후방 몸체바(13)가 항공 몸체를 구성하면서 후방으로 테일 날개 방향으로 직선으로 연장되어 프레임을 형성하고 수소 탱크 파지부(50)는 후방 몸체바(13)에 하향 돌출 형성되고 서로 이격되는 위치에 형성된 적어도 2개 이상의 탱크 홀더(51)를 갖는다.As shown in FIGS. 1B, 2A, and 2B, in one embodiment of the present invention, the aircraft has fixed wings extending on both sides of the aircraft body, tilt rotors formed at both ends of the fixed wings, and tail wings to ensure stability. It is a tilt rotor type unmanned aerial vehicle (drone) formed at the rear end. Here, the rear body bar 13 constitutes the aircraft body and extends straight rearward in the direction of the tail wing to form a frame, and the hydrogen tank grip portion 50 is formed to protrude downward from the rear body bar 13 and are spaced apart from each other. It has at least two tank holders 51 formed in .
도시된 바와 같이, 후방 몸체바(13)는 중공 형상의 링으로 형성되고 수소 탱크(40)는 후방 몸체바(13)에 내삽되어 고정되고 전진 운동에 의해 수소 연료 전지부(30) 또는 수소 연결부(70)와 결합된다. 후방 방향의 외력이 작용하는 경우 수소 탱크(40)는 중공 형상의 후방 몸체바(13)에 의해 가이드 되면서 후방으로 슬라이딩 가능하게 형성된다. 일실시예에 있어서 수소 탱크(40)는 후방 몸체바(13)와 평행하도록 가로로 눕혀서 장착된다.As shown, the rear body bar 13 is formed as a hollow ring, and the hydrogen tank 40 is interpolated and fixed to the rear body bar 13 and is connected to the hydrogen fuel cell unit 30 or the hydrogen connection unit by forward movement. It is combined with (70). When an external force in the rear direction is applied, the hydrogen tank 40 is guided by the hollow rear body bar 13 and is formed to be able to slide rearward. In one embodiment, the hydrogen tank 40 is mounted horizontally so as to be parallel to the rear body bar 13.
<사출 연결 구조 및 낙하산 외력에 의한 수소 탱크 분리 메커니즘 ><Hydrogen tank separation mechanism by injection connection structure and parachute external force>
도 2c, 도 3에 도시된 바와 같이, 본 발명의 수소 연료전지 항공체에 있어서, 낙하산(60)은 제1 유연성 연결수단(65, 끈)으로 수소 탱크(40)와 연결되고, 제2 유연성 연결수단(66, 끈)으로 항공 몸체(10)와 연결된다. As shown in FIGS. 2C and 3, in the hydrogen fuel cell aircraft of the present invention, the parachute 60 is connected to the hydrogen tank 40 with a first flexible connection means (65, string), and the second flexible connection means (65) is connected to the hydrogen tank 40. It is connected to the aircraft body (10) by means of connection (66, string).
본 발명의 일실시예에 있어서, 낙하산(60)은 항공체의 테일 부분에 장착되고, 항공체 고장시(비상 낙하 전 또는 낙하 중) 낙하산(60)이 사출되고, 수소 탱크(40)와 연결된 제1 유연성 연결수단(65, 끈)이 낙하산(60)의 부력으로 수소 탱크(40)를 후방으로 당김으로써, 상기 수소 탱크(40)가 수소 연료 전지부(30) 또는 수소 연결부(70)로부터 자동으로 연결 해제 또는 분리되는 것이 바람직하다.In one embodiment of the present invention, the parachute 60 is mounted on the tail portion of the aircraft, and when the aircraft fails (before or during an emergency fall), the parachute 60 is ejected and connected to the hydrogen tank 40. The first flexible connection means (65, string) pulls the hydrogen tank 40 rearward with the buoyancy of the parachute 60, so that the hydrogen tank 40 is separated from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. It is desirable to automatically disconnect or disconnect.
좀더 구체적으로, 수소 탱크(40)와 연결된 제1 유연성 연결수단(65, 줄, 끈 또는 와이어)은 항공 몸체(10)와 연결된 제2 유연성 연결수단(66, 끈 또는 와이어, 줄)보다 먼저 부력에 의한 인장력(텐션)이 발생(짧게)하도록 구비되어, 낙하산(60)이 사출되면 제1 유연성 연결수단(65)이 수소 탱크(40)를 후방(낙하시 상향)으로 당김으로써 수소 탱크(40)가 수소 연료 전지부(30) 또는 수소 연결부(70)로부터 자동으로 연결 해제 또는 분리되는 것이다. 이때 수소 탱크(40)는 중공 형상의 후방 몸체바(13)에 의해 가이드 되면서 후방(낙하시 중력 반대방향, 낙하산이 테일 부분에 장착되는 경우)으로 슬라이딩 형성된다. More specifically, the first flexible connecting means (65, string, string or wire) connected to the hydrogen tank 40 is buoyant before the second flexible connecting means (66, string or wire, rope) connected to the aircraft body 10. It is provided to generate (shorten) a tensile force (tension), and when the parachute 60 is ejected, the first flexible connection means 65 pulls the hydrogen tank 40 backward (upward when falling), thereby ) is automatically disconnected or separated from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. At this time, the hydrogen tank 40 is guided by the hollow rear body bar 13 and slides backwards (in the opposite direction to gravity when falling, when a parachute is mounted on the tail).
본 발명의 일실시예에서 항공체 고장시(비상 낙하 전 또는 낙하 중)에 수소 탱크(40)는 상기 수소 연료 전지부(30) 또는 수소 연결부(70)와 연결이 해제(분리)되고, 수소 탱크(40)의 넥부(43)가 개방되어 수소 가스가 공기 중으로 자동 분산되도록 구성하여 수소 탱크의 폭발을 미연에 방지할 수 있다. In one embodiment of the present invention, when the aircraft malfunctions (before or during an emergency drop), the hydrogen tank 40 is disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70, and hydrogen The neck 43 of the tank 40 is opened so that hydrogen gas is automatically dispersed into the air, thereby preventing an explosion of the hydrogen tank.
본 발명은 상기에서 언급한 바람직한 실시예와 관련하여 설명됐지만, 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니며, 본 발명의 범위는 이하의 특허청구범위에 의하여 정하여지는 것으로 본 발명과 균등 범위에 속하는 다양한 수정 및 변형을 포함할 것이다.Although the present invention has been described in relation to the preferred embodiments mentioned above, the scope of the present invention is not limited to these embodiments, and the scope of the present invention is determined by the following claims, which are equivalent to the present invention. It will include various modifications and variations belonging to .
아래의 특허청구범위에 기재된 도면부호는 단순히 발명의 이해를 보조하기 위한 것으로 권리범위의 해석에 영향을 미치지 아니함을 밝히며 기재된 도면부호에 의해 권리범위가 좁게 해석되어서는 안될 것이다.It is stated that the drawing symbols used in the patent claims below are merely intended to aid understanding of the invention and do not affect the interpretation of the scope of rights. The scope of rights should not be narrowly interpreted based on the drawing symbols.
본 발명에 따르는 경우 낙하산을 구비하여 항공체(드론, UAM) 고장에 의한 낙하(추락)시 수소 가스통의 지상 폭발에 의한 사고를 미연에 방지할 수 있는 수소 연료전지 항공체가 제공된다.According to the present invention, a hydrogen fuel cell aircraft is provided that is equipped with a parachute and can prevent accidents caused by explosions of hydrogen gas cylinders on the ground when falling due to a malfunction of the aircraft (drone, UAM).
Claims (6)
- 수소 연료전지 항공체에 있어서,In a hydrogen fuel cell aircraft,제어부를 구비한 항공 몸체(10)와, An aircraft body (10) with a control unit,양력 및 추력을 제공하는 회전 날개(로터 블레이드, 20)와,Rotating blades (rotor blades, 20) that provide lift and thrust,상기 항공 몸체(10)에 고정 설치되고 수소를 받아 전기를 생산하는 수소 연료 전지부(30)과,A hydrogen fuel cell unit (30) fixed to the aircraft body (10) and receiving hydrogen to produce electricity;상기 수소 연료 전지부(30)에 공급되는 수소를 저장하는 수소 탱크(40)와,a hydrogen tank 40 that stores hydrogen supplied to the hydrogen fuel cell unit 30;상기 항공 몸체(10)에 구비되고 상기 수소 탱크(40)를 고정하는 수소 탱크 파지부(50)과,A hydrogen tank holding part (50) provided on the aircraft body (10) and fixing the hydrogen tank (40),상기 수소 탱크(40)와 연결되고 항공체 고장에 의한 비상 낙하시 사출되어 펼쳐지는 낙하산(60)을 포함하여 구성되는 것을 특징으로 하는 수소 연료전지 항공체.A hydrogen fuel cell aircraft, characterized in that it is connected to the hydrogen tank (40) and includes a parachute (60) that is ejected and unfolds in the event of an emergency drop due to a malfunction of the aircraft.
- 제1항에 있어서,According to paragraph 1,상기 낙하산(60)은 제1 유연성 연결수단(65, 끈 또는 와이어)으로 상기 수소 탱크(40)와 연결되고, 제2 유연성 연결수단(66, 끈 또는 와이어)으로 상기 항공 몸체(10)와 연결되며,The parachute 60 is connected to the hydrogen tank 40 by a first flexible connecting means (65, string or wire), and connected to the aircraft body 10 by a second flexible connecting means (66, string or wire). And상기 항공체는 회전 날개(블레이드)를 갖는 드론(무인 항공기), 틸트 로터 드론, 수직이착륙 항공기, 또는 틸트 로터형 항공기 중 하나인 것을 특징으로 하는 수소 연료전지 항공체The aircraft is a hydrogen fuel cell aircraft, characterized in that it is one of a drone (unmanned aerial vehicle) with rotating wings (blades), a tilt-rotor drone, a vertical takeoff and landing aircraft, or a tilt-rotor type aircraft.
- 제2항에 있어서,According to paragraph 2,상기 수소 탱크(40)는 수소 연결부(70)을 매개로 하여 상기 수소 연료 전지부(30)와 연통 가능하게 연결되고,The hydrogen tank 40 is connected in communication with the hydrogen fuel cell unit 30 via a hydrogen connection part 70,항공체 고장시(비상 낙하 전 또는 낙하 중)에 수소 탱크(40)는 상기 수소 연료 전지부(30) 또는 수소 연결부(70)와 연결이 해제(분리)되는 것을 특징으로 하는 수소 연료전지 항공체.A hydrogen fuel cell aircraft, wherein when the aircraft fails (before or during an emergency drop), the hydrogen tank 40 is disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70. .
- 제2항에 있어서,According to paragraph 2,상기 수소 탱크 파지부(50)는,The hydrogen tank holding part 50,항공 몸체(10)의 후방에 이격되게 구비되는 적어도 2개 이상의 탱크 홀더(51)를 포함하고, It includes at least two tank holders (51) spaced apart from each other at the rear of the aircraft body (10),상기 수소 탱크(40)는 상기 탱크 홀더(51)에 장착 및 탈착 가능하게 고정되는 것을 특징으로 하는 수소 연료전지 항공체.The hydrogen fuel cell aircraft is characterized in that the hydrogen tank (40) is fixed to the tank holder (51) so as to be attachable and detachable.
- 제3항에 있어서,According to clause 3,상기 항공체 고장시(비상 낙하 전 또는 낙하 중) 낙하산(60)이 사출되고,When the aircraft fails (before or during an emergency fall), the parachute 60 is ejected,수소 탱크(40)와 연결된 제1 유연성 연결수단(65, 끈)이 낙하산(60)의 부력으로 수소 탱크(40)를 후방 또는 상향으로 당김으로써,The first flexible connection means (65, string) connected to the hydrogen tank 40 pulls the hydrogen tank 40 backward or upward with the buoyancy of the parachute 60,상기 수소 탱크(40)가 수소 연료 전지부(30) 또는 수소 연결부(70)로부터 자동으로 연결 해제 또는 분리되는 것을 특징으로 하는 수소 연료전지 항공체.A hydrogen fuel cell aircraft, wherein the hydrogen tank (40) is automatically disconnected or separated from the hydrogen fuel cell unit (30) or the hydrogen connection unit (70).
- 제3항에 있어서,According to paragraph 3,항공체 고장시(비상 낙하 전 또는 낙하 중)에 수소 탱크(40)는 상기 수소 연료 전지부(30) 또는 수소 연결부(70)와 연결이 해제(분리)되고,When the aircraft malfunctions (before or during an emergency drop), the hydrogen tank 40 is disconnected (separated) from the hydrogen fuel cell unit 30 or the hydrogen connection unit 70,상기 제어부에 의해 항공 몸체(10)의 고도가 일정 이상이라고 판단되는 경우, 상기 수소 탱크(40)의 넥부(43)가 개방되어 수소 가스가 공기 중으로 자동 분출되는 것을 특징으로 하는 수소 연료전지 항공체. A hydrogen fuel cell aircraft, wherein when the control unit determines that the altitude of the aircraft body 10 is above a certain level, the neck 43 of the hydrogen tank 40 is opened and hydrogen gas is automatically ejected into the air. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0189455 | 2022-12-29 | ||
KR1020220189455A KR102771357B1 (en) | 2022-12-29 | 2022-12-29 | Hydrogen Fuel Cells Drone |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024143840A1 true WO2024143840A1 (en) | 2024-07-04 |
Family
ID=91718207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/017135 WO2024143840A1 (en) | 2022-12-29 | 2023-10-31 | Hydrogen fuel cell aircraft |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102771357B1 (en) |
WO (1) | WO2024143840A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220315223A1 (en) * | 2021-04-05 | 2022-10-06 | Alakai Technologies Corporation | Mobile emergency communication and vehicle propulsion power system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102816202B1 (en) * | 2024-09-11 | 2025-06-04 | 주식회사 나르마 | water and vibration proof good assemblability drone structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130002491A (en) * | 2011-06-29 | 2013-01-08 | 주식회사 네스앤텍 | Propelar tower and unmanned aerial vehicle having parachute |
KR101806261B1 (en) * | 2016-10-17 | 2017-12-07 | 하이리움산업(주) | Multi-Copter Having Fuel Tank Installation Part |
KR102011053B1 (en) * | 2018-02-12 | 2019-08-14 | (주)자이언트드론 | Unmanned aircraft with automatic removable fuel storing container |
KR20190118203A (en) * | 2017-03-01 | 2019-10-17 | 알피에스 에어로스페이스 에스.알.엘. | Aircraft with Second Flight Assembly |
KR20210147076A (en) * | 2019-04-23 | 2021-12-06 | 인텔리전트 에너지 리미티드 | Systems for forming components of UAVs |
-
2022
- 2022-12-29 KR KR1020220189455A patent/KR102771357B1/en active Active
-
2023
- 2023-10-31 WO PCT/KR2023/017135 patent/WO2024143840A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130002491A (en) * | 2011-06-29 | 2013-01-08 | 주식회사 네스앤텍 | Propelar tower and unmanned aerial vehicle having parachute |
KR101806261B1 (en) * | 2016-10-17 | 2017-12-07 | 하이리움산업(주) | Multi-Copter Having Fuel Tank Installation Part |
KR20190118203A (en) * | 2017-03-01 | 2019-10-17 | 알피에스 에어로스페이스 에스.알.엘. | Aircraft with Second Flight Assembly |
KR102011053B1 (en) * | 2018-02-12 | 2019-08-14 | (주)자이언트드론 | Unmanned aircraft with automatic removable fuel storing container |
KR20210147076A (en) * | 2019-04-23 | 2021-12-06 | 인텔리전트 에너지 리미티드 | Systems for forming components of UAVs |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220315223A1 (en) * | 2021-04-05 | 2022-10-06 | Alakai Technologies Corporation | Mobile emergency communication and vehicle propulsion power system |
Also Published As
Publication number | Publication date |
---|---|
KR20240106544A (en) | 2024-07-08 |
KR102771357B1 (en) | 2025-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024143840A1 (en) | Hydrogen fuel cell aircraft | |
WO2013162128A1 (en) | Cable connection unmanned aerial vehicle system | |
WO2020235744A1 (en) | Drone-attachable/detachable mission device and drone system | |
WO2020096254A1 (en) | Vertical takeoff and landing aircraft using hybrid electric propulsion system and control method therefor | |
WO2018021858A1 (en) | Home-delivered article loading device for drone | |
WO2017155348A1 (en) | Vertical takeoff and landing aircraft | |
WO2014204550A2 (en) | Helicopter-mediated system and method for launching and retrieving an aircraft | |
WO2018056484A1 (en) | Multipurpose air vehicle | |
EP4032811B1 (en) | Aircraft propulsion module and aircraft | |
US12291348B2 (en) | Aircraft propulsion module and aircraft | |
WO2020116826A1 (en) | Fall prevention device for drone | |
CN113492992B (en) | Throwing device and throwing method of folding wing unmanned aerial vehicle | |
WO2020204511A1 (en) | Drone and drone fall prevention system | |
WO2025023703A1 (en) | Reusable launch vehicle comprising non-separable fairing opening/closing structure, and operating method thereof | |
WO2023177228A1 (en) | Electrical umbilical system for space launch vehicle, using electromagnet | |
CN212448104U (en) | Folding wing patrols and flies ware air-drop and puts in a section of thick bamboo | |
CN112550719A (en) | Electric vertical take-off and landing aircraft capable of separating lift force component | |
CN108945465B (en) | Battery throwing and recycling positioning device for electric multi-rotor aircraft | |
WO2023140447A1 (en) | Unmanned aerial vehicle provided with detachable transport mission apparatus | |
CN114348275B (en) | Unmanned aerial vehicle modularized group umbrella recycling device and method | |
WO2021029492A1 (en) | Lifting apparatus for vertical takeoff and landing aircraft | |
CN110510126A (en) | A kind of protective device and guard method of airplane catapult | |
BR102022009170A2 (en) | SYSTEM FOR AN AIRCRAFT, AIRCRAFT, GROUND SERVICE SYSTEM, AND METHOD OF MAINTENANCE OF AN AIRCRAFT | |
WO2021261658A1 (en) | Charging connection device for drone | |
CN110588990B (en) | Parachute separation assembly and parachute system for aircraft recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23912520 Country of ref document: EP Kind code of ref document: A1 |