Nothing Special   »   [go: up one dir, main page]

WO2024034303A1 - High frequency module, communication device and method for producing high frequency module - Google Patents

High frequency module, communication device and method for producing high frequency module Download PDF

Info

Publication number
WO2024034303A1
WO2024034303A1 PCT/JP2023/025305 JP2023025305W WO2024034303A1 WO 2024034303 A1 WO2024034303 A1 WO 2024034303A1 JP 2023025305 W JP2023025305 W JP 2023025305W WO 2024034303 A1 WO2024034303 A1 WO 2024034303A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
wiring
high frequency
frequency module
module according
Prior art date
Application number
PCT/JP2023/025305
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 上田
崇弥 根本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024034303A1 publication Critical patent/WO2024034303A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present invention relates to a high frequency module, a communication device, and a method for manufacturing a high frequency module.
  • Patent Document 2 An electronic component package in which multiple electronic components are supported by a common mold resin without using a general interposer substrate is known (see Patent Document 2).
  • Patent Document 1 An electronic component package in which multiple electronic components are supported by a common mold resin without using a general interposer substrate is known (see Patent Document 2).
  • Patent Document 1 When using an interposer board, by applying the technique described in Patent Document 1 to the wiring within the interposer board, it is possible to substantially thicken the wiring that connects a plurality of electronic components.
  • An object of the present invention is to provide a high-frequency module in which an electronic component package including a plurality of electronic components is mounted on a substrate and a DC resistance of wiring interconnecting the plurality of electronic components can be reduced, and a method for manufacturing the same. It is to be.
  • Another object of the present invention is to provide a communication device equipped with this high frequency module.
  • an electronic component package having a first side; a substrate having a component mounting surface opposite to the first surface and having the electronic component package mounted thereon; one or more conductive connecting members for fixing the electronic component package to the substrate
  • the electronic component package includes: A first electronic component and a second electronic component; a support member that covers the first electronic component and the second electronic component to support the first electronic component and the second electronic component, and one surface of which constitutes the first surface; a first wiring disposed on the first surface, supported by the support member, and electrically connecting the first electronic component to the second electronic component;
  • the board includes a second wiring arranged on the component mounting surface, A high frequency module is provided in which at least one of the conductive connection members interconnects the first wiring and the second wiring.
  • the above-mentioned high frequency module Equipped with a baseband signal processing circuit,
  • the second electronic component of the high frequency module up-converts the intermediate frequency signal or baseband signal from the baseband signal processing circuit to generate a high frequency signal, and down converts the high frequency signal to generate an intermediate frequency signal or baseband signal.
  • a communication device is provided that generates a signal and inputs it to the baseband signal processing circuit.
  • electrically connecting and fixing a first electronic component and a second electronic component to the first wiring of a temporary substrate on which a first wiring is arranged Covering and sealing the first electronic component and the second electronic component fixed to the temporary substrate with a support member, Grinding or polishing the temporary substrate to expose the first wiring and the first surface of the support member that was in close contact with the temporary substrate; Prepare a board with second wiring arranged on the component mounting surface, The supporting member, the first electronic component, and the second electronic component are mounted on the substrate by electrically connecting the first wiring to the second wiring with one or more conductive connecting members.
  • a method of manufacturing a high frequency module is provided.
  • the direct current of the wiring connecting the first electronic component and the second electronic component is reduced. Resistance can be reduced. Since the first wiring is arranged on the first surface of the support member, the first electronic component and the second electronic component are mounted on the interposer board, and the first electronic component and the second electronic component are connected by the wiring inside the interposer board.
  • the electronic component package can be made thinner than the electronic component package to which it is connected.
  • FIG. 1A is a sectional view of the high frequency module according to the first embodiment
  • FIG. 1B is a plan view of the first wiring when the first surface of the electronic component package is viewed from above
  • FIG. 1C is a plan view of the components of the board.
  • FIG. 7 is a plan view of the second wiring when the mounting surface is viewed from above.
  • FIGS. 2A, 2B, and 2C are cross-sectional views of an electronic component package to be mounted on a high-frequency module according to the first embodiment, at a stage in the middle of manufacturing.
  • FIG. 3 is a block diagram of a communication device equipped with a high frequency module according to the first embodiment.
  • FIG. 4 is a sectional view of a high frequency module according to a modification of the first embodiment.
  • FIG. 5A is a cross-sectional view of a high-frequency module according to the second embodiment
  • FIG. 5B is a perspective view of the shield member seen from the bottom side
  • FIG. 5C is a cross-sectional view of a part of the edge of the top plate of the shield member, It is a perspective view of a part of leg part B and 1st wiring.
  • FIG. 6 is a sectional view of a high frequency module according to a third embodiment.
  • FIG. 7 is a sectional view of a high frequency module according to a modification of the third embodiment.
  • FIG. 8 is a sectional view of a high frequency module according to another modification of the third embodiment.
  • FIG. 9 is a sectional view of a high frequency module according to a fourth embodiment.
  • FIG. 10 is a block diagram of a communication device equipped with a high frequency module according to a fourth embodiment.
  • FIG. 11 is a sectional view of a high frequency module according to a modification of the fourth embodiment.
  • FIG. 12 is a sectional view of a high frequency module according to a fifth embodiment.
  • FIG. 13 is a block diagram of a communication device equipped with a high frequency module according to a fifth embodiment.
  • FIG. 14 is a sectional view of a high frequency module according to a sixth embodiment.
  • FIG. 15 is a sectional view of a high frequency module according to a modification of the sixth embodiment.
  • FIG. 16 is a sectional view of a high frequency module according to a seventh embodiment.
  • FIG. 17A is a cross-sectional view of the high frequency module according to the eighth embodiment, and
  • FIG. 17B is a plan view of the region where the second wiring is arranged on the component mounting surface of the board.
  • FIG. 1A is a sectional view of a high frequency module according to a first embodiment.
  • the high frequency module according to the first embodiment includes an electronic component package 20, a substrate 60, and a plurality of conductive connection members 70.
  • An electronic component package 20 is mounted on a component mounting surface 60A of a board 60.
  • a plurality of conductive connecting members 70 secure electronic component package 20 to substrate 60 .
  • solder is used as the conductive connecting member 70.
  • the electronic component package 20 includes a first electronic component 30, a second electronic component 40, and a support member 50.
  • the electronic component package 20 has a first surface 20A facing the substrate 60 and a second surface 20B facing in the opposite direction to the first surface 20A.
  • the first electronic component 30 and the second electronic component 40 are supported by the support member 50 by being covered by the support member 50.
  • the support member 50 is exposed on the first surface 20A.
  • a first wiring 51 and a plurality of pads 31 and 41 are arranged on the first surface 20A of the electronic component package 20, and are supported by the support member 50.
  • the first wiring 51 and the plurality of pads 31 and 41 are exposed on the first surface 20A.
  • a plurality of first wirings 51 may be arranged.
  • the surfaces of the plurality of pads 31 and 41 and the first wiring 51 facing the substrate 60 are located on substantially the same plane as the surface of the support member 50 facing the substrate 60.
  • the plurality of pads 31 are electrically connected to the plurality of terminals of the first electronic component 30 via the plurality of solders 32, respectively.
  • the plurality of pads 41 are electrically connected to the plurality of terminals of the second electronic component 40 via the plurality of solders 42, respectively.
  • the first wiring 51 electrically connects the first electronic component 30 and the second electronic component 40 to each other. More specifically, one end of the first wiring 51 is connected to at least one terminal of the first electronic component 30 via the solder 32, and the other end is connected to the second electronic component 40 via the solder 42. is connected to one terminal of the The first electronic component 30 is a power management circuit, and power is supplied from the first electronic component 30 to the second electronic component 40 through the first wiring 51.
  • a plurality of lands 61 and second wiring 62 are arranged on the component mounting surface 60A of the board 60.
  • the plurality of pads 31 and 41 of the electronic component package 20 are connected to the plurality of lands 61 via the plurality of conductive connecting members 70, respectively.
  • the first wiring 51 is connected to the second wiring 62 via one conductive connecting member 70a among the plurality of conductive connecting members 70.
  • the conductive connection member 70a is arranged over almost the entire area of the first wiring 51 and the second wiring 62 from one end to the other end.
  • a plurality of ground conductors 63 and wiring 64 are arranged on the inner layer of the substrate 60. Further, a ground conductor 63 is also arranged on the component mounting surface 60A and the opposite surface.
  • the ground conductor 63 is connected to the first electronic component 30 via at least one land 61 and a conductive connecting member 70, and is connected to the second electronic component 40 via at least one land 61 and the conductive connecting member 70.
  • the wiring 64 is connected to the second electronic component 40 via at least one land 61 and a conductive connecting member 70.
  • FIG. 1B is a plan view of the first wiring 51 when the first surface 20A of the electronic component package 20 is viewed from above.
  • the first wiring 51 and the support member 50 are exposed on the first surface 20A.
  • the exposed surface of the first wiring 51 is surrounded by the exposed surface of the support member 50.
  • FIG. 1C is a plan view of the second wiring 62 when the component mounting surface 60A of the board 60 is viewed from above.
  • a component mounting surface 60A (FIG. 1A) is covered with a solder resist 80.
  • FIG. 1A the illustration of the solder resist 80 is omitted.
  • An opening 81 is provided in the solder resist 80 to expose the second wiring 62.
  • the solder resist 80 covers the peripheral edge of the second wiring 62, and the opening 81 is continuous from one end of the second wiring 62 to the other end.
  • FIGS. 2A, 2B, and 2C are cross-sectional views of the electronic component package 20 to be mounted on the high-frequency module according to the first embodiment at an intermediate stage of manufacture.
  • a first wiring 51 and a plurality of pads 31 and 41 are formed on one surface 90A of the temporary substrate 90.
  • the first electronic component 30 and the second electronic component 40 are mounted on the surface 90A of the temporary board 90 with solders 32 and 42, respectively.
  • At least one terminal of the first electronic component 30 is connected to one end of the first wiring 51 via the solder 32
  • at least one terminal of the second electronic component 40 is connected to one end of the first wiring 51 via the solder 42. Connected to the other terminal.
  • the first electronic component 30 and the second electronic component 40 are molded using the support member 50.
  • a transfer molding method can be used to form the support member 50.
  • the top and side surfaces of each of the first electronic component 30 and the second electronic component 40 are covered with the support member 50, and the space between the first electronic component 30 and the temporary board 90 and the second electronic component
  • the space between the component 40 and the temporary substrate 90 is also filled with the support member 50.
  • the surface facing the same direction as the component mounting surface 60A of the board 60 is referred to as the "top surface”.
  • the temporary substrate 90 is ground or polished until the support member 50, the first wiring 51, and the plurality of pads 31 and 41 are exposed.
  • the temporary substrate 90 before grinding or polishing is represented by a broken line.
  • FIG. 3 is a block diagram of a communication device equipped with a high frequency module according to the first embodiment.
  • This communication device includes an electronic component package 20, a baseband signal processing circuit 100 (BBIC), and a plurality of radiating elements 110 according to the first embodiment.
  • the electronic component package 20 includes a first electronic component 30 that is a power management circuit (PMIC) and a second electronic component 40 that is a radio frequency integrated circuit (RFIC).
  • PMIC power management circuit
  • RFIC radio frequency integrated circuit
  • DC power is supplied from an external power supply 101 to the first electronic component 30 .
  • the voltage of the DC power supply is, for example, 3.3V or more and 5V or less.
  • the second electronic component 40 includes an intermediate frequency amplifier 401, an up-down converter mixer 402, a transmission/reception changeover switch 403, a power divider 404, a plurality of phase shifters 405, a plurality of attenuators 406, a plurality of transmission/reception changeover switches 407, a plurality of power It includes an amplifier 408, a plurality of low noise amplifiers 409, and a plurality of transmission/reception changeover switches 410.
  • a plurality of transmission/reception changeover switches 410 are connected to a plurality of radiating elements 110 via a plurality of feed lines 111, respectively.
  • An intermediate frequency signal is input from the baseband signal processing circuit 100 to an up-down converting mixer 402 via an intermediate frequency amplifier 401.
  • the up-down converting mixer 402 up-converts the intermediate frequency signal to generate a high frequency signal.
  • the generated high frequency signal is input to the power divider 404 via the transmission/reception changeover switch 403.
  • Each of the high-frequency signals distributed by the power divider 404 is transmitted to each of the plurality of radiating elements 110 via a phase shifter 405, an attenuator 406, a transmission/reception changeover switch 407, a power amplifier 408, a transmission/reception changeover switch 410, and a feed line 111. is input.
  • the high frequency signal received by each of the radiating elements 110 is input to the power divider 404 via the feed line 111, the transmission/reception changeover switch 410, the low noise amplifier 409, the transmission/reception changeover switch 407, the attenuator 406, and the phase shifter 405.
  • the high frequency signal synthesized by the power divider 404 is input to the up/down converting mixer 402 via the transmission/reception changeover switch 403 .
  • the up-down converting mixer 402 down-converts the high frequency signal to generate an intermediate frequency signal.
  • the generated intermediate frequency signal is input to the baseband signal processing circuit 100 via the intermediate frequency amplifier 401.
  • the up-down converting mixer 402 may employ a direct conversion method in which the high-frequency signal is directly down-converted to a baseband signal.
  • the first electronic component 30 includes a DCDC converter circuit and the like, and steps down the DC voltage supplied from the external power supply 101 and supplies it to the second electronic component 40 .
  • the first electronic component 30 includes a low noise amplifier 409, an attenuator 406, a phase shifter 405, a power divider 404, a transmission/reception selector switch 403, an up/down converter mixer 402, and an amplification circuit for the received signal of the intermediate frequency amplifier 401. , supplies a DC power supply with a voltage of 1V.
  • a DC power supply with a voltage of 1 V or more and 3 V or less is supplied to the transmission signal amplifier circuit of the intermediate frequency amplifier 401 and the power amplifier 408 .
  • a DC power supply with a voltage of 1.8V is supplied to the digital circuit of the second electronic component 40.
  • Each of the plurality of power supply wirings for supplying these DC power sources is composed of three layers: a first wiring 51, a second wiring 62, and a conductive connection member 70a (FIG. 1A).
  • the first electronic component 30 and the second electronic component 40 are packaged without using an interposer substrate. Therefore, the height dimension of the electronic component package 20 can be reduced compared to a configuration using an interposer substrate.
  • a second wiring 62 and a conductive connecting member 70a are connected in parallel to the first wiring 51 that connects the first electronic component 30 and the second electronic component 40. Therefore, the current capacity of the wiring connecting the first electronic component 30 and the second electronic component 40 can be increased, and the DC resistance can be reduced. Further, in order to achieve the same DC resistance, the width of the first wiring 51 can be made narrower. This makes it possible to increase the wiring density.
  • the conductive connecting member 70 that connects the pad 31 of the electronic component package 20 and the land 61 of the substrate 60 shown in FIG. 1A has the function of mechanically fixing the electronic component package 20 to the substrate 60, and It has a function of transmitting current or electric signals sent and received between the component 30 and the wiring within the board 60.
  • the conductive connecting member 70a that connects the first wiring 51 and the second wiring 62 has the function of mechanically fixing the electronic component package 20 to the substrate 60 and the function of connecting the first electronic component inside the electronic component package 20. It functions as a path for current flowing from the second electronic component 30 to the second electronic component 40 .
  • the conductive connecting member 70a made of solder or the like for mechanically fixing the electronic component package 20 to the substrate 60 is used as a current path between two electronic components in the electronic component package 20, the first The DC resistance of the first wiring 51 can be reduced without adding a special member for reducing the DC resistance of the wiring 51.
  • FIG. 4 is a sectional view of a high frequency module according to a modification of the first embodiment.
  • the top surfaces of the first electronic component 30 and the second electronic component 40 are also covered with a support member 50.
  • the top surface of the first electronic component 30 and the top surface of the second electronic component 40 are exposed from the support member 50.
  • the height from the component mounting surface 60A of the board 60 to the top surface of the first electronic component 30 and the second electronic component 40 is equal to the height to the top surface of the support member 50.
  • the height of the electronic component package 20 it is possible to further reduce the height of the electronic component package 20 compared to the first embodiment.
  • one of the top surfaces of the first electronic component 30 and the second electronic component 40 may be exposed from the support member 50, and the other top surface may be covered with the support member 50.
  • the first electronic component 30 is an inductor
  • the second electronic component 40 is a high-frequency integrated circuit
  • the top surface of the first electronic component 30 is exposed, the heat generated by the second electronic component 40 The heat is conducted to the first electronic component 30 via the first wiring 51, the conductive connection member 70a, and the second wiring 62, and is radiated to the outside from the top surface of the first electronic component 30.
  • the heat dissipation characteristics from the second electronic component 40 can be improved.
  • the conductive connecting member 70a is arranged continuously from the location where it overlaps with the first electronic component 30 to the location where it overlaps with the second electronic component 40. There is.
  • at least a part of the route from the part of the first wiring 51 connected to the first electronic component 30 by the solder 32 to the part connected to the second electronic component 40 by the solder 42 is provided.
  • a conductive connecting member 70a may also be provided. This configuration also provides the excellent effect of reducing the DC resistance in the range where the conductive connection member 70a is arranged.
  • the support member 50 may support a plurality of electronic components to which power is supplied from the first electronic component 30, which is a power management circuit. In this case, it is preferable to connect the first electronic component 30 and each of the plurality of electronic components using a plurality of first wirings 51.
  • a power management circuit is used as the first electronic component 30, but the first electronic component 30 may be an electronic component that constitutes a part of the power management circuit.
  • the first electronic component 30 may be a chip inductor that functions as a power inductor of a DC/DC converter.
  • the first wiring 51 may also be used to connect the first electronic component 30, which is a chip inductor, and the switching element that constitutes the DC/DC converter.
  • FIGS. 5A, 5B, and 5C a high frequency module according to a second embodiment will be described with reference to FIGS. 5A, 5B, and 5C.
  • a description of the common configuration of the high frequency module according to the first embodiment described with reference to the drawings from FIG. 1A to FIG. 3 will be omitted.
  • FIG. 5A is a cross-sectional view of a high frequency module according to the second embodiment.
  • a first electronic component 30 and a second electronic component 40 are supported by a support member 50.
  • a conductive shield member 55 is supported by the support member 50.
  • FIG. 5B is a perspective view of the shield member 55 viewed from the bottom side.
  • the shield member 55 includes a flat top plate 55A and a plurality of legs 55B protruding in one direction from the peripheral edge of the bottom surface of the top plate 55A.
  • the bottom surface of the top plate 55A faces the top surface of the first electronic component 30.
  • the second electronic component 40 is disposed outside the shield member 55.
  • a plurality of shielding pads 56 are arranged on the first surface 20A of the electronic component package 20, and the plurality of shielding pads 56 are supported by the support member 50.
  • a plurality of legs 55B of the shield member 55 extend from the top plate 55A toward the shield pad 56. The lower ends of the plurality of legs 55B are each fixed to the plurality of shielding pads 56 with solder 57 and are electrically connected.
  • FIG. 5C is a perspective view of a portion of the edge of the top plate 55A of the shield member 55, a portion of the plurality of legs 55B, and the first wiring 51.
  • the first wiring 51 passes between two mutually adjacent leg portions 55B. Thereby, the first electronic component 30 and the second electronic component 40 can be connected to each other by the first wiring 51 without the first wiring 51 being short-circuited to the shield member 55.
  • the shield member 55 is mounted on the temporary substrate 90 together with the first electronic component 30 and the second electronic component 40, as shown in FIG. 2A. Thereafter, the first electronic component 30, the second electronic component 40, and the shield member 55 are molded with the support member 50. During molding, the liquid support member 50 passes between the legs 55B of the shield member 55 and fills the space between the top plate 55A and the temporary substrate 90. After forming the support member 50, the temporary substrate 90 is removed as in the first embodiment (FIG. 2C).
  • the excellent effects of the second embodiment will be explained.
  • the second embodiment by covering the first electronic component 30 with the shield member 55, radiation of electromagnetic noise from the first electronic component 30 to the outside is reduced, so that the second electronic component 40 is covered with the shield member 55. It becomes less susceptible to the effects of electromagnetic noise generated in 30. For example, radiation of switching noise generated from the first electronic component 30 including the DCDC converter circuit can be reduced.
  • the first wiring 51 thinner while suppressing an increase in DC resistance. Therefore, the interval between the leg portions 55B at the portion where the first wiring 51 (FIG. 5C) passes can be narrowed. This suppresses deterioration in shielding performance at the portion through which the first wiring 51 passes.
  • FIG. 6 is a sectional view of a high frequency module according to the third embodiment.
  • the first electronic component 30 is covered with the shield member 55, but the second electronic component 40 is not covered with the shield member 55.
  • both the first electronic component 30 and the second electronic component 40 are covered with a shield member 55.
  • the first wiring 51 connecting the first electronic component 30 and the second electronic component 40 is also covered with a shield member 55.
  • At least one of the plurality of shield pads 56 to which the shield member 55 is connected is connected to the ground pad 31 of the plurality of pads 31 via the ground wiring 58 arranged on the first surface 20A of the electronic component package 20. It is connected to the. That is, the shield member 55 is connected to the ground terminal of the first electronic component 30. Note that the shield member 55 may be connected to the ground terminal of the second electronic component 40.
  • the grounding pad 31 is connected to the grounding land 61 of the substrate 60 via a conductive connecting member 70 .
  • a ground land 61 is connected to a ground conductor 63.
  • a shield member 55 shields the first electronic component 30, the second electronic component 40, and the first wiring 51. Electromagnetic noise is likely to be generated from the first electronic component 30 including the DCDC converter circuit, the first wiring 51 functioning as a power supply wiring, and the second electronic component 40 connected to the power supply wiring.
  • the shield member 55 By arranging the shield member 55, it is possible to reduce the influence of electromagnetic noise radiated from the first electronic component 30, the first wiring 51, and the second electronic component 40 on surrounding circuits.
  • the shield member 55 is connected to the ground pad 31 and the ground conductor 63 of the board 60 via the ground wiring 58. It is also possible to adopt a configuration that does not. For example, if the configuration is such that electromagnetic noise is likely to be superimposed on the ground conductor 63, it may be preferable not to connect the shield member 55 to the ground conductor 63. Whether or not to connect the shield member 55 to the ground conductor 63 may be determined depending on the manner in which electromagnetic noise is generated.
  • the shield member 55 covers the first electronic component 30 and the second electronic component 40, but may be configured to cover other electronic components supported by the support member 50.
  • a power inductor, a bypass capacitor, a resistor element, an oscillator that generates a reference clock, etc. used in a DCDC converter circuit may be covered.
  • the up-down converter mixer 402, the power amplifier 408, the low noise amplifier 409 (FIG. 3), etc. are configured with individual electronic components, and these electronic components are covered with the shielding member 55.
  • the baseband signal processing circuit 100 (FIG. 3) may be supported by the support member 50 and the baseband signal processing circuit 100 may be covered by the shield member 55.
  • FIG. 7 is a sectional view of a high frequency module according to a modification of the third embodiment.
  • a shield member 55 is connected to a ground pad 31 via a shield pad 56 provided on an electronic component package 20 and a ground wiring 58. Furthermore, the shield member 55 is connected to the ground conductor 63 of the substrate 60 by connecting the grounding pad 31 to the grounding land 61 of the substrate 60 via the conductive connecting member 70 .
  • a shielding pad 56 connected to a shielding member 55 is connected to a grounding land 61 of a substrate 60 via a conductive connecting member 70.
  • the shield member 55 may be connected to the ground land 61 of the board 60 without going through the ground wiring 58 (FIG. 6) arranged on the electronic component package 20.
  • FIG. 8 is a sectional view of a high frequency module according to another modification of the third embodiment.
  • the top surface of the shield member 55 is covered with the support member 50.
  • the top surface of the shield member 55 is exposed to the second surface 20B of the electronic component package 20.
  • the top surface of the shield member 55 is exposed from the support member 50.
  • the height from the component mounting surface 60A of the board 60 to the top surface of the shield member 55 is equal to the height from the top surface of the support member 50.
  • FIG. 9 is a sectional view of a high frequency module according to the fourth embodiment.
  • a plurality of radiating elements 110 are arranged on the substrate 60 of the high frequency module according to the modification of the third embodiment shown in FIG. Note that in FIG. 9, only one radiating element 110 is shown.
  • the radiating element 110 is arranged on the component mounting surface 60A of the board 60.
  • the ground conductor 63 and the radiating element 110 arranged on the inner layer of the substrate 60 constitute a patch antenna.
  • the radiation element 110 is connected to the second electronic component 40 via a power supply line 111, a land 61, a conductive connection member 70, a pad 41, and a solder 42 arranged on the substrate 60.
  • FIG. 10 is a block diagram of a communication device equipped with a high-frequency module according to a fourth embodiment.
  • a description of the configuration common to the block diagram (FIG. 3) of the communication device equipped with the high frequency module according to the first embodiment will be omitted.
  • a plurality of radiating elements 110 are arranged on the substrate 60.
  • the plurality of radiating elements 110 constitute an array antenna.
  • the plurality of radiating elements 110 are connected to the plurality of transmission/reception changeover switches 410 via the plurality of feeder lines 111, respectively.
  • a baseband signal processing circuit 100 is mounted on the board 60.
  • Baseband signal processing circuit 100 is connected to intermediate frequency amplifier 401 via wiring arranged on substrate 60.
  • the fourth embodiment including the radiating element 110, it can be modularized. Thereby, the number of parts of the communication device can be reduced.
  • FIG. 11 is a sectional view of a high frequency module according to a modification of the fourth embodiment.
  • a radiating element 110 is arranged on a component mounting surface 60A of a board 60.
  • a plurality of radiating elements 110 are arranged on the surface of the substrate 60 opposite to the component mounting surface 60A.
  • a patch antenna is configured by the radiating element 110 and the ground conductor 63 on the inner layer of the substrate 60.
  • the radiation element 110 may be arranged on the surface of the substrate 60 opposite to the component mounting surface 60A.
  • a plurality of radiating elements 110 may be arranged on both the component mounting surface 60A and the opposite surface of the board 60.
  • the fourth embodiment power is supplied to the electronic component package 20 from an external power source 101, and a DC power with a voltage of 3.3 V or more and 5 V or less is supplied to the electronic component package 20 from the baseband signal processing circuit 100. It may also be a configuration.
  • the radiating element 110 constitutes a patch antenna, but the radiating element 110 may constitute an antenna other than a patch antenna, such as a dipole antenna.
  • FIG. 12 is a sectional view of a high frequency module according to the fifth embodiment.
  • the radiating element 110 (FIG. 9) is arranged on the component mounting surface 60A of the board 60, but in the fifth embodiment, a plurality of radiating elements 110 (FIG. 9) are arranged on the component mounting surface 60A of the board 60.
  • a radiating element 110 is arranged on the surface of the substrate 60 opposite to the component mounting surface 60A.
  • the baseband signal processing circuit 100 is mounted on the board 60, but in the fifth embodiment, the connector 65 is mounted on the component mounting surface 60A of the board 60.
  • a cable 67 is detachably connected to the connector 65.
  • a high frequency multi-pole connector is used as the connector 65
  • a high frequency multi-core cable is used as the cable 67.
  • FIG. 13 is a block diagram of a communication device equipped with a high frequency module according to the fifth embodiment.
  • a connector 65 is mounted on the board 60.
  • a connector 65 is connected to the first electronic component 30 and the second electronic component 40 via connector connection wirings 64a and 64b arranged on the board 60, respectively.
  • a cable 67 connected to the connector 65 is connected to the baseband signal processing circuit 100 and an external power supply 101.
  • An intermediate frequency signal is transmitted and received between the baseband signal processing circuit 100 and the intermediate frequency amplifier 401 via the cable 67 and the connector 65.
  • a DC power with a voltage of 3.3 V or more and 5 V or less is supplied from the external power source 101 to the first electronic component 30 (power management circuit) via the cable 67 and the connector 65.
  • signals can be transmitted and received between the second electronic component 40, which is a high frequency integrated circuit, and the baseband signal processing circuit 100 via the cable 67. Furthermore, power can be supplied to the electronic component package 20 via the cable 67.
  • a high frequency multipolar connector is used as the connector 65, but a coaxial connector may also be used.
  • a coaxial connector is used as the connector 65, a coaxial cable is used as the cable 67.
  • FIG. 14 is a sectional view of a high frequency module according to the sixth embodiment.
  • a third wiring 53 is arranged on the first surface 20A of the electronic component package 20. Additionally, external connection terminals 22 are supported.
  • the third wiring 53 extends from the inner region to the outer region of the shield member 55 when the first surface 20A is viewed from above.
  • the third wiring 53 passes between the plurality of legs 55B (FIG. 5B) of the shield member 55.
  • One end of the third wiring 53 is connected to a terminal of the second electronic component 40 via solder 42 .
  • the external connection terminal 22 is fixed to the other end of the third wiring 53 with solder 43.
  • the external connection terminal 22 extends from the third wiring 53 toward the second surface 20B of the electronic component package 20, which is opposite to the first surface 20A, and is exposed on the second surface 20B.
  • the exposed end surface of the external connection terminal 22 is connected to a substrate 68 such as a motherboard via solder 44.
  • a baseband signal processing circuit 100 (for example, FIG. 3) is mounted on the board 68. Intermediate frequency signals are transmitted and received between the baseband signal processing circuit 100 and the second electronic component 40 through the external connection terminal 22.
  • a substrate 60 on which a radiation element 110 is arranged is attached to a first surface 20A of an electronic component package 20, and another substrate such as a motherboard is attached to a second surface 20B facing in the opposite direction to the first surface 20A.
  • 68 can be installed. Furthermore, intermediate frequency signals can be transmitted and received between the board 68 and the electronic component package 20 without using a cable.
  • FIG. 15 is a sectional view of a high frequency module according to a modification of the sixth embodiment.
  • the external connection terminal 22 and the second electronic component 40 are connected to each other via a third wiring 53 provided in the electronic component package 20.
  • the external connection terminal 22 and the second electronic component 40 are connected to each other via a wiring 64c arranged in the inner layer of the board 60.
  • Pads 41a and 41b are arranged on the first surface 20A of the electronic component package 20.
  • one pad 41a overlaps with the second electronic component 40, and the other pad 41b does not overlap with the second electronic component 40.
  • External connection terminal 22 is fixed to pad 41b by solder 43, extends to second surface 20B, and is exposed on second surface 20B.
  • Lands 61a and 61b are arranged on the component mounting surface 60A of the board 60.
  • a wiring 64c arranged in the inner layer of the substrate 60 interconnects the land 61a and the land 61b.
  • the lands 61a and 61b overlap the pads 41a and 41b, respectively, when the first surface 20A is viewed from above.
  • One of the plurality of conductive connection members 70 mutually connects the pad 41a and the land 61a, and the other one mutually connects the pad 41b and the land 61b.
  • the external connection terminal 22 connects to the second electron via the solder 43, the pad 41b, one conductive connection member 70, the land 61b, the wiring 64c, the land 61a, another conductive connection member 70, and one solder 42. It is connected to the terminal of component 40.
  • the wiring arranged on the electronic component package 20 is An excellent effect can be obtained in that the impedance of the transmission line can be easily managed compared to the case where the transmission line is used.
  • FIG. 16 is a cross-sectional view of a high frequency module according to the seventh embodiment.
  • the conductive connecting member 70a is arranged over almost the entire area of the first wiring 51 from one end to the other end.
  • two conductive connecting members 70a are arranged to connect the first wiring 51 and the second wiring 62 to each other.
  • One conductive connecting member 70a connects one end of the first wiring 51 and one end of the second wiring 62, and the other conductive connecting member 70a connects the other end of the first wiring 51. and the other end of the second wiring 62 are connected.
  • a second wiring 62 is connected in parallel to the first wiring 51. Therefore, it is possible to increase the current capacity of the wiring that interconnects the first electronic component 30 and the second electronic component 40, and to reduce the DC resistance.
  • the size of the conductive connection member 70a is larger than the size of each of the other conductive connection members 70.
  • the size of each conductive connection member 70a is approximately equal to the size of each of the other conductive connection members 70. Therefore, it is easy to align the heights of the solder bumps before mounting the electronic component package 20 on the board 60. This provides an excellent effect in that connection failures are less likely to occur during flip-chip mounting.
  • FIG. 17A is a cross-sectional view of a high-frequency module according to the eighth embodiment
  • FIG. 17B is a plan view of a region of the component mounting surface 60A of the board 60 where the second wiring 62 is arranged.
  • two conductive connecting members 70a are connected to both ends of the first wiring 51, respectively.
  • a plurality of conductive connection members 70a are also connected to locations in the middle of the path from one end of the first wiring 51 to the other end.
  • a plurality of openings 81 are provided in the solder resist 80 (FIG. 17B) that covers the component mounting surface 60A of the board 60 to expose a portion of the second wiring 62.
  • the plurality of openings 81 are discretely arranged in two rows, for example, from one end of the second wiring 62 to the other end.
  • a plurality of conductive connection members 70a are arranged in each of the plurality of openings 81.
  • the second interconnect 62 is connected in parallel to the first interconnect 51. Therefore, it is possible to increase the current capacity of the wiring that interconnects the first electronic component 30 and the second electronic component 40, and to reduce the DC resistance.
  • a plurality of conductive connection members 70a are also arranged at locations other than the ends of the first wiring 51 and the second wiring 62. Therefore, the effect of increasing current capacity and the effect of reducing direct current resistance can be enhanced.
  • the eighth embodiment also provides the excellent effect of easily aligning the heights of the solder bumps before the electronic component package 20 is mounted on the board 60.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

According to the present invention, a substrate has a component mounting surface that faces a first surface of an electronic component package, and the electronic component package is mounted on the substrate. One or a plurality of conductive connection members fix the electronic component package to the substrate. The electronic component package comprises: a first electronic component and a second electronic component; a support member which covers and supports the first electronic component and the second electronic component, while having one surface that forms the first surface; and a first wiring line which is arranged on the first surface so as to be supported by the support member, and which electrically connects the first electronic component to the second electronic component. The substrate comprises a second wiring line that is arranged on the component mounting surface. At least one of the conductive connection members connects the first wiring line and the second wiring line to each other.

Description

高周波モジュール、通信装置、及び高周波モジュールの製造方法High frequency module, communication device, and manufacturing method of high frequency module
 本発明は、高周波モジュール、通信装置、及び高周波モジュールの製造方法に関する。 The present invention relates to a high frequency module, a communication device, and a method for manufacturing a high frequency module.
 多層基板内の配線の電流容量を増加させるために、配線を太くかつ厚くすることが望まれている。近年、多層基板内の配線を高密度に配置する要請が高まっているため、配線を無制限に太くすることは困難である。異なる配線層内の2本の配線を複数のビアで相互に接続し、配線を実質的に厚くする技術が公知である(特許文献1参照)。配線が実質的に厚くなるため、配線の電流容量を増加させるとともに、直流抵抗を低減させることができる。 In order to increase the current capacity of wiring within a multilayer substrate, it is desired to make the wiring thicker and thicker. In recent years, there has been an increasing demand for high-density arrangement of wiring within multilayer substrates, making it difficult to increase the thickness of wiring without limit. A technique is known in which two wires in different wiring layers are interconnected with a plurality of vias to substantially thicken the wires (see Patent Document 1). Since the wiring becomes substantially thicker, the current capacity of the wiring can be increased and the direct current resistance can be reduced.
 一般的なインターポーザ基板を用いることなく複数の電子部品を共通のモールド樹脂で支持した電子部品パッケージが公知である(特許文献2参照)。インターポーザ基板を用いる場合には、インターポーザ基板内の配線に、特許文献1に記載の技術を適用することにより、複数の電子部品を接続する配線を実質的に厚くすることができる。 An electronic component package in which multiple electronic components are supported by a common mold resin without using a general interposer substrate is known (see Patent Document 2). When using an interposer board, by applying the technique described in Patent Document 1 to the wiring within the interposer board, it is possible to substantially thicken the wiring that connects a plurality of electronic components.
特開2009-206324号公報JP2009-206324A 国際公開第2018/084143号International Publication No. 2018/084143
 特許文献2に記載されたインターポーザ基板を用いない電子部品パッケージにおいては、特許文献1に記載の技術を用いてインターポーザ基板内の配線を実質的に厚くする構成を採用することはできない。本発明の目的は、複数の電子部品を含む電子部品パッケージを基板に実装し、複数の電子部品を相互に接続する配線の直流抵抗を低減させることが可能な高周波モジュール、及びその製造方法を提供することである。本発明の他の目的は、この高周波モジュールを搭載した通信装置を提供することである。 In the electronic component package described in Patent Document 2 that does not use an interposer board, it is not possible to adopt a configuration in which the wiring within the interposer board is substantially thickened using the technique described in Patent Document 1. An object of the present invention is to provide a high-frequency module in which an electronic component package including a plurality of electronic components is mounted on a substrate and a DC resistance of wiring interconnecting the plurality of electronic components can be reduced, and a method for manufacturing the same. It is to be. Another object of the present invention is to provide a communication device equipped with this high frequency module.
 本発明の一観点によると、
 第1面を有する電子部品パッケージと、
 前記第1面に対向する部品実装面を有し、前記電子部品パッケージが実装された基板と、
 前記電子部品パッケージを前記基板に固定する1つまたは複数の導電性接続部材と
を備え、
 前記電子部品パッケージは、
 第1電子部品及び第2電子部品と、
 前記第1電子部品及び前記第2電子部品を覆って前記第1電子部品及び前記第2電子部品を支持し、1つの面が前記第1面を構成している支持部材と、
 前記第1面に配置されて前記支持部材に支持され、前記第1電子部品を前記第2電子部品に電気的に接続する第1配線と
を含み、
 前記基板は、前記部品実装面に配置された第2配線を含み、
 前記導電性接続部材のうち少なくとも1つは、前記第1配線と前記第2配線とを相互に接続する高周波モジュールが提供される。
According to one aspect of the invention:
an electronic component package having a first side;
a substrate having a component mounting surface opposite to the first surface and having the electronic component package mounted thereon;
one or more conductive connecting members for fixing the electronic component package to the substrate,
The electronic component package includes:
A first electronic component and a second electronic component;
a support member that covers the first electronic component and the second electronic component to support the first electronic component and the second electronic component, and one surface of which constitutes the first surface;
a first wiring disposed on the first surface, supported by the support member, and electrically connecting the first electronic component to the second electronic component;
The board includes a second wiring arranged on the component mounting surface,
A high frequency module is provided in which at least one of the conductive connection members interconnects the first wiring and the second wiring.
 本発明の他の観点によると、
 上述の高周波モジュールと、
 ベースバンド信号処理回路と
を備え、
 前記高周波モジュールの前記第2電子部品は、前記ベースバンド信号処理回路からの中間周波信号またはベースバンド信号をアップコンバートして高周波信号を生成し、高周波信号をダウンコンバートして中間周波信号またはベースバンド信号を生成して前記ベースバンド信号処理回路に入力する通信装置が提供される。
According to another aspect of the invention:
The above-mentioned high frequency module,
Equipped with a baseband signal processing circuit,
The second electronic component of the high frequency module up-converts the intermediate frequency signal or baseband signal from the baseband signal processing circuit to generate a high frequency signal, and down converts the high frequency signal to generate an intermediate frequency signal or baseband signal. A communication device is provided that generates a signal and inputs it to the baseband signal processing circuit.
 本発明のさらに他の観点によると、
 表面に第1配線が配置された仮基板の前記第1配線に、第1電子部品及び第2電子部品を電気的に接続して固定し、
 前記仮基板に固定された前記第1電子部品及び前記第2電子部品を支持部材で覆って封止し、
 前記仮基板を研削または研磨して前記第1配線、及び前記仮基板に密着していた前記支持部材の第1面を露出させ、
 部品実装面に第2配線が配置された基板を準備し、
 前記第1配線を前記第2配線に、1つまたは複数の導電性接続部材で電気的に接続することにより、前記支持部材、前記第1電子部品、及び前記第2電子部品を前記基板に実装する高周波モジュールの製造方法が提供される。
According to yet another aspect of the invention,
electrically connecting and fixing a first electronic component and a second electronic component to the first wiring of a temporary substrate on which a first wiring is arranged;
Covering and sealing the first electronic component and the second electronic component fixed to the temporary substrate with a support member,
Grinding or polishing the temporary substrate to expose the first wiring and the first surface of the support member that was in close contact with the temporary substrate;
Prepare a board with second wiring arranged on the component mounting surface,
The supporting member, the first electronic component, and the second electronic component are mounted on the substrate by electrically connecting the first wiring to the second wiring with one or more conductive connecting members. A method of manufacturing a high frequency module is provided.
 電子部品パッケージに配置された第1配線と基板に配置された第2配線とを、導電性接続部材で相互に接続することにより、第1電子部品と第2電子部品とを接続する配線の直流抵抗を低減させることができる。支持部材の第1面に第1配線が配置されているため、第1電子部品及び第2電子部品をインターポーザ基板に実装し、インターポーザ基板内の配線で第1電子部品と第2電子部品とを接続する電子部品パッケージと比べて、電子部品パッケージの薄型化を図ることができる。 By interconnecting the first wiring placed on the electronic component package and the second wiring placed on the board with a conductive connecting member, the direct current of the wiring connecting the first electronic component and the second electronic component is reduced. Resistance can be reduced. Since the first wiring is arranged on the first surface of the support member, the first electronic component and the second electronic component are mounted on the interposer board, and the first electronic component and the second electronic component are connected by the wiring inside the interposer board. The electronic component package can be made thinner than the electronic component package to which it is connected.
図1Aは、第1実施例による高周波モジュールの断面図であり、図1Bは、電子部品パッケージの第1面を平面視したときの第1配線の平面図であり、図1Cは、基板の部品実装面を平面視したときの第2配線の平面図である。FIG. 1A is a sectional view of the high frequency module according to the first embodiment, FIG. 1B is a plan view of the first wiring when the first surface of the electronic component package is viewed from above, and FIG. 1C is a plan view of the components of the board. FIG. 7 is a plan view of the second wiring when the mounting surface is viewed from above. 図2A、図2B、及び図2Cは、第1実施例による高周波モジュールに搭載される電子部品パッケージの製造途中段階における断面図である。FIGS. 2A, 2B, and 2C are cross-sectional views of an electronic component package to be mounted on a high-frequency module according to the first embodiment, at a stage in the middle of manufacturing. 図3は、第1実施例による高周波モジュールを搭載した通信装置のブロック図である。FIG. 3 is a block diagram of a communication device equipped with a high frequency module according to the first embodiment. 図4は、第1実施例の変形例による高周波モジュールの断面図である。FIG. 4 is a sectional view of a high frequency module according to a modification of the first embodiment. 図5Aは、第2実施例による高周波モジュールの断面図であり、図5Bは、シールド部材を底面側から見た斜視図であり、図5Cは、シールド部材の天板の縁の一部分、複数の脚部Bの一部、及び第1配線の斜視図である。FIG. 5A is a cross-sectional view of a high-frequency module according to the second embodiment, FIG. 5B is a perspective view of the shield member seen from the bottom side, and FIG. 5C is a cross-sectional view of a part of the edge of the top plate of the shield member, It is a perspective view of a part of leg part B and 1st wiring. 図6は、第3実施例による高周波モジュールの断面図である。FIG. 6 is a sectional view of a high frequency module according to a third embodiment. 図7は、第3実施例の変形例による高周波モジュールの断面図である。FIG. 7 is a sectional view of a high frequency module according to a modification of the third embodiment. 図8は、第3実施例の他の変形例による高周波モジュールの断面図である。FIG. 8 is a sectional view of a high frequency module according to another modification of the third embodiment. 図9は、第4実施例による高周波モジュールの断面図である。FIG. 9 is a sectional view of a high frequency module according to a fourth embodiment. 図10は、第4実施例による高周波モジュールが搭載された通信装置のブロック図である。FIG. 10 is a block diagram of a communication device equipped with a high frequency module according to a fourth embodiment. 図11は、第4実施例の変形例による高周波モジュールの断面図である。FIG. 11 is a sectional view of a high frequency module according to a modification of the fourth embodiment. 図12は、第5実施例による高周波モジュールの断面図である。FIG. 12 is a sectional view of a high frequency module according to a fifth embodiment. 図13は、第5実施例による高周波モジュールを搭載した通信装置のブロック図である。FIG. 13 is a block diagram of a communication device equipped with a high frequency module according to a fifth embodiment. 図14は、第6実施例による高周波モジュールの断面図である。FIG. 14 is a sectional view of a high frequency module according to a sixth embodiment. 図15は、第6実施例の変形例による高周波モジュールの断面図である。FIG. 15 is a sectional view of a high frequency module according to a modification of the sixth embodiment. 図16は、第7実施例による高周波モジュールの断面図である。FIG. 16 is a sectional view of a high frequency module according to a seventh embodiment. 図17Aは、第8実施例による高周波モジュールの断面図であり、図17Bは、基板の部品実装面の、第2配線が配置された領域の平面図である。FIG. 17A is a cross-sectional view of the high frequency module according to the eighth embodiment, and FIG. 17B is a plan view of the region where the second wiring is arranged on the component mounting surface of the board.
 [第1実施例]
 図1から図3までの図面を参照して、第1実施例による高周波モジュールについて説明する。
 図1Aは、第1実施例による高周波モジュールの断面図である。第1実施例による高周波モジュールは、電子部品パッケージ20、基板60、及び複数の導電性接続部材70を含む。電子部品パッケージ20が基板60の部品実装面60Aに実装されている。複数の導電性接続部材70が、電子部品パッケージ20を基板60に固定している。導電性接続部材70として、例えばハンダが用いられる。
[First example]
A high frequency module according to a first embodiment will be described with reference to the drawings from FIG. 1 to FIG. 3.
FIG. 1A is a sectional view of a high frequency module according to a first embodiment. The high frequency module according to the first embodiment includes an electronic component package 20, a substrate 60, and a plurality of conductive connection members 70. An electronic component package 20 is mounted on a component mounting surface 60A of a board 60. A plurality of conductive connecting members 70 secure electronic component package 20 to substrate 60 . For example, solder is used as the conductive connecting member 70.
 電子部品パッケージ20は、第1電子部品30、第2電子部品40、及び支持部材50を含む。電子部品パッケージ20は、基板60に対向する第1面20A、及び第1面20Aとは反対方向を向く第2面20Bを有する。第1電子部品30及び第2電子部品40は、支持部材50に覆われることによって支持部材50に支持されている。支持部材50は第1面20Aに露出している。 The electronic component package 20 includes a first electronic component 30, a second electronic component 40, and a support member 50. The electronic component package 20 has a first surface 20A facing the substrate 60 and a second surface 20B facing in the opposite direction to the first surface 20A. The first electronic component 30 and the second electronic component 40 are supported by the support member 50 by being covered by the support member 50. The support member 50 is exposed on the first surface 20A.
 電子部品パッケージ20の第1面20Aに、第1配線51、複数のパッド31、41が配置されており、支持部材50に支持されている。第1配線51、複数のパッド31、41は、第1面20Aに露出している。図1Aでは、1本の第1配線51を示しているが、複数の第1配線51を配置してもよい。複数のパッド31、41、及び第1配線51の基板60の側を向く面は、支持部材50の基板60の側向く面とほぼ同一の平面上に位置する。複数のパッド31は、それぞれ複数のハンダ32を介して第1電子部品30の複数の端子に電気的に接続されている。複数のパッド41は、それぞれ複数のハンダ42を介して第2電子部品40の複数の端子に電気的に接続されている。 A first wiring 51 and a plurality of pads 31 and 41 are arranged on the first surface 20A of the electronic component package 20, and are supported by the support member 50. The first wiring 51 and the plurality of pads 31 and 41 are exposed on the first surface 20A. Although one first wiring 51 is shown in FIG. 1A, a plurality of first wirings 51 may be arranged. The surfaces of the plurality of pads 31 and 41 and the first wiring 51 facing the substrate 60 are located on substantially the same plane as the surface of the support member 50 facing the substrate 60. The plurality of pads 31 are electrically connected to the plurality of terminals of the first electronic component 30 via the plurality of solders 32, respectively. The plurality of pads 41 are electrically connected to the plurality of terminals of the second electronic component 40 via the plurality of solders 42, respectively.
 第1配線51は、第1電子部品30と第2電子部品40とを電気的に相互に接続している。より具体的には、第1配線51の一方の端部がハンダ32を介して第1電子部品30の少なくとも1つの端子に接続され、他方の端部がハンダ42を介して第2電子部品40の1つの端子に接続されている。第1電子部品30はパワーマネジメント回路であり、第1電子部品30から第1配線51を通って第2電子部品40に電源が供給される。 The first wiring 51 electrically connects the first electronic component 30 and the second electronic component 40 to each other. More specifically, one end of the first wiring 51 is connected to at least one terminal of the first electronic component 30 via the solder 32, and the other end is connected to the second electronic component 40 via the solder 42. is connected to one terminal of the The first electronic component 30 is a power management circuit, and power is supplied from the first electronic component 30 to the second electronic component 40 through the first wiring 51.
 基板60の部品実装面60Aに、複数のランド61及び第2配線62が配置されている。電子部品パッケージ20の複数のパッド31、41が、それぞれ複数の導電性接続部材70を介して複数のランド61に接続されている。第1配線51が、複数の導電性接続部材70のうち1つの導電性接続部材70aを介して第2配線62に接続されている。部品実装面60Aを平面視したとき、第1配線51は第2配線62にほぼ重なっている。導電性接続部材70aは、第1配線51及び第2配線62の一方の端部から他方の端部までのほぼ全域に亘って配置されている。 A plurality of lands 61 and second wiring 62 are arranged on the component mounting surface 60A of the board 60. The plurality of pads 31 and 41 of the electronic component package 20 are connected to the plurality of lands 61 via the plurality of conductive connecting members 70, respectively. The first wiring 51 is connected to the second wiring 62 via one conductive connecting member 70a among the plurality of conductive connecting members 70. When the component mounting surface 60A is viewed from above, the first wiring 51 substantially overlaps the second wiring 62. The conductive connection member 70a is arranged over almost the entire area of the first wiring 51 and the second wiring 62 from one end to the other end.
 基板60の内層に、複数のグランド導体63及び配線64が配置されている。さらに、部品実装面60A及びその反対側の面にもグランド導体63が配置されている。グランド導体63は、少なくとも1つのランド61、導電性接続部材70を介して第1電子部品30に接続され、少なくとも1つのランド61、導電性接続部材70を介して第2電子部品40に接続されている。配線64は、少なくとも1つのランド61及び導電性接続部材70を介して第2電子部品40に接続されている。 A plurality of ground conductors 63 and wiring 64 are arranged on the inner layer of the substrate 60. Further, a ground conductor 63 is also arranged on the component mounting surface 60A and the opposite surface. The ground conductor 63 is connected to the first electronic component 30 via at least one land 61 and a conductive connecting member 70, and is connected to the second electronic component 40 via at least one land 61 and the conductive connecting member 70. ing. The wiring 64 is connected to the second electronic component 40 via at least one land 61 and a conductive connecting member 70.
 図1Bは、電子部品パッケージ20の第1面20Aを平面視したときの第1配線51の平面図である。第1面20Aに第1配線51及び支持部材50が露出している。第1配線51の露出した面が、支持部材50の露出した面で取り囲まれている。 FIG. 1B is a plan view of the first wiring 51 when the first surface 20A of the electronic component package 20 is viewed from above. The first wiring 51 and the support member 50 are exposed on the first surface 20A. The exposed surface of the first wiring 51 is surrounded by the exposed surface of the support member 50.
 図1Cは、基板60の部品実装面60Aを平面視したときの第2配線62の平面図である。部品実装面60A(図1A)がソルダーレジスト80で覆われている。図1Aでは、ソルダーレジスト80の記載が省略されている。ソルダーレジスト80に、第2配線62を露出させる開口81が設けられている。ソルダーレジスト80は、第2配線62の周縁部を覆っており、開口81は、第2配線62の一方の端部から他方の端部まで連続している。 FIG. 1C is a plan view of the second wiring 62 when the component mounting surface 60A of the board 60 is viewed from above. A component mounting surface 60A (FIG. 1A) is covered with a solder resist 80. In FIG. 1A, the illustration of the solder resist 80 is omitted. An opening 81 is provided in the solder resist 80 to expose the second wiring 62. The solder resist 80 covers the peripheral edge of the second wiring 62, and the opening 81 is continuous from one end of the second wiring 62 to the other end.
 次に、図2A、図2B、及び図2Cを参照して、電子部品パッケージ20の製造方法について説明する。図2A、図2B、及び図2Cは、第1実施例による高周波モジュールに搭載される電子部品パッケージ20の製造途中段階における断面図である。 Next, a method for manufacturing the electronic component package 20 will be described with reference to FIGS. 2A, 2B, and 2C. 2A, 2B, and 2C are cross-sectional views of the electronic component package 20 to be mounted on the high-frequency module according to the first embodiment at an intermediate stage of manufacture.
 図2Aに示すように、仮基板90の一方の表面90Aに、第1配線51、複数のパッド31、41を形成する。第1電子部品30及び第2電子部品40を、それぞれハンダ32、42により仮基板90の表面90Aに実装する。第1電子部品30の少なくとも1つの端子はハンダ32を介して第1配線51の一方の端部に接続され、第2電子部品40の少なくとも1つの端子はハンダ42を介して第1配線51の他方の端子に接続される。 As shown in FIG. 2A, a first wiring 51 and a plurality of pads 31 and 41 are formed on one surface 90A of the temporary substrate 90. The first electronic component 30 and the second electronic component 40 are mounted on the surface 90A of the temporary board 90 with solders 32 and 42, respectively. At least one terminal of the first electronic component 30 is connected to one end of the first wiring 51 via the solder 32, and at least one terminal of the second electronic component 40 is connected to one end of the first wiring 51 via the solder 42. Connected to the other terminal.
 図2Bに示すように、支持部材50により第1電子部品30及び第2電子部品40をモールドする。支持部材50の形成には、例えばトランスファーモールド法を用いることができる。これにより、第1電子部品30及び第2電子部品40のそれぞれの天面と側面とが支持部材50で覆われるとともに、第1電子部品30と仮基板90との間の空間、及び第2電子部品40と仮基板90との間の空間にも、支持部材50が充填される。本明細書において、基板60の部品実装面60Aが向く方向と同一の方向を向く面を「天面」ということとする。 As shown in FIG. 2B, the first electronic component 30 and the second electronic component 40 are molded using the support member 50. For example, a transfer molding method can be used to form the support member 50. As a result, the top and side surfaces of each of the first electronic component 30 and the second electronic component 40 are covered with the support member 50, and the space between the first electronic component 30 and the temporary board 90 and the second electronic component The space between the component 40 and the temporary substrate 90 is also filled with the support member 50. In this specification, the surface facing the same direction as the component mounting surface 60A of the board 60 is referred to as the "top surface".
 図2Cに示すように、支持部材50、第1配線51、複数のパッド31、41が露出するまで仮基板90を研削または研磨する。図2Cにおいて、研削または研磨前の仮基板90を破線で表している。ここまでの工程で、電子部品パッケージ20が完成する。 As shown in FIG. 2C, the temporary substrate 90 is ground or polished until the support member 50, the first wiring 51, and the plurality of pads 31 and 41 are exposed. In FIG. 2C, the temporary substrate 90 before grinding or polishing is represented by a broken line. Through the steps up to this point, the electronic component package 20 is completed.
 図3は、第1実施例による高周波モジュールを搭載した通信装置のブロック図である。この通信装置は、第1実施例による電子部品パッケージ20、ベースバンド信号処理回路100(BBIC)、複数の放射素子110を含む。電子部品パッケージ20が、パワーマネジメント回路(PMIC)である第1電子部品30及び高周波集積回路(RFIC)である第2電子部品40を含む。外部の電源101から第1電子部品30に直流電源が供給される。直流電源の電圧は、例えば3.3V以上5V以下である。 FIG. 3 is a block diagram of a communication device equipped with a high frequency module according to the first embodiment. This communication device includes an electronic component package 20, a baseband signal processing circuit 100 (BBIC), and a plurality of radiating elements 110 according to the first embodiment. The electronic component package 20 includes a first electronic component 30 that is a power management circuit (PMIC) and a second electronic component 40 that is a radio frequency integrated circuit (RFIC). DC power is supplied from an external power supply 101 to the first electronic component 30 . The voltage of the DC power supply is, for example, 3.3V or more and 5V or less.
 第2電子部品40は、中間周波増幅器401、アップダウンコンバート用ミキサ402、送受信切替スイッチ403、パワーディバイダ404、複数の移相器405、複数のアッテネータ406、複数の送受信切替スイッチ407、複数のパワーアンプ408、複数のローノイズアンプ409、及び複数の送受信切替スイッチ410を含む。複数の送受信切替スイッチ410が、それぞれ複数の給電線111を介して複数の放射素子110に接続されている。 The second electronic component 40 includes an intermediate frequency amplifier 401, an up-down converter mixer 402, a transmission/reception changeover switch 403, a power divider 404, a plurality of phase shifters 405, a plurality of attenuators 406, a plurality of transmission/reception changeover switches 407, a plurality of power It includes an amplifier 408, a plurality of low noise amplifiers 409, and a plurality of transmission/reception changeover switches 410. A plurality of transmission/reception changeover switches 410 are connected to a plurality of radiating elements 110 via a plurality of feed lines 111, respectively.
 まず、送信機能について説明する。ベースバンド信号処理回路100から、中間周波増幅器401を介してアップダウンコンバート用ミキサ402に、中間周波信号が入力される。アップダウンコンバート用ミキサ402は、中間周波信号をアップコンバートして高周波信号を生成する。生成された高周波信号は、送受信切替スイッチ403を介してパワーディバイダ404に入力される。パワーディバイダ404で分配された高周波信号の各々が、移相器405、アッテネータ406、送受信切替スイッチ407、パワーアンプ408、送受信切替スイッチ410、給電線111を経由して複数の放射素子110の各々に入力される。 First, the sending function will be explained. An intermediate frequency signal is input from the baseband signal processing circuit 100 to an up-down converting mixer 402 via an intermediate frequency amplifier 401. The up-down converting mixer 402 up-converts the intermediate frequency signal to generate a high frequency signal. The generated high frequency signal is input to the power divider 404 via the transmission/reception changeover switch 403. Each of the high-frequency signals distributed by the power divider 404 is transmitted to each of the plurality of radiating elements 110 via a phase shifter 405, an attenuator 406, a transmission/reception changeover switch 407, a power amplifier 408, a transmission/reception changeover switch 410, and a feed line 111. is input.
 次に、受信機能について説明する。放射素子110の各々で受信された高周波信号が、給電線111、送受信切替スイッチ410、ローノイズアンプ409、送受信切替スイッチ407、アッテネータ406、移相器405を経由してパワーディバイダ404に入力される。パワーディバイダ404で合成された高周波信号が、送受信切替スイッチ403を経由して、アップダウンコンバート用ミキサ402に入力される。アップダウンコンバート用ミキサ402は、高周波信号をダウンコンバートして中間周波信号を生成する。生成された中間周波信号は、中間周波増幅器401を経由してベースバンド信号処理回路100に入力される。なお、アップダウンコンバート用ミキサ402が、高周波信号を直接ベースバンド信号にダウンコンバートするダイレクトコンバージョン方式を採用してもよい。 Next, the receiving function will be explained. The high frequency signal received by each of the radiating elements 110 is input to the power divider 404 via the feed line 111, the transmission/reception changeover switch 410, the low noise amplifier 409, the transmission/reception changeover switch 407, the attenuator 406, and the phase shifter 405. The high frequency signal synthesized by the power divider 404 is input to the up/down converting mixer 402 via the transmission/reception changeover switch 403 . The up-down converting mixer 402 down-converts the high frequency signal to generate an intermediate frequency signal. The generated intermediate frequency signal is input to the baseband signal processing circuit 100 via the intermediate frequency amplifier 401. Note that the up-down converting mixer 402 may employ a direct conversion method in which the high-frequency signal is directly down-converted to a baseband signal.
 第1電子部品30は、DCDCコンバータ回路等を含み、外部の電源101から供給された直流電圧を降圧して、第2電子部品40に供給する。例えば、第1電子部品30は、ローノイズアンプ409、アッテネータ406、移相器405、パワーディバイダ404、送受信切替スイッチ403、アップダウンコンバート用ミキサ402、及び中間周波増幅器401の受信信号用の増幅回路に、電圧1Vの直流電源を供給する。中間周波増幅器401の送信信号用の増幅回路及びパワーアンプ408に、電圧1V以上3V以下の直流電源を供給する。さらに、第2電子部品40のデジタル系の回路に電圧1.8Vの直流電源を供給する。 The first electronic component 30 includes a DCDC converter circuit and the like, and steps down the DC voltage supplied from the external power supply 101 and supplies it to the second electronic component 40 . For example, the first electronic component 30 includes a low noise amplifier 409, an attenuator 406, a phase shifter 405, a power divider 404, a transmission/reception selector switch 403, an up/down converter mixer 402, and an amplification circuit for the received signal of the intermediate frequency amplifier 401. , supplies a DC power supply with a voltage of 1V. A DC power supply with a voltage of 1 V or more and 3 V or less is supplied to the transmission signal amplifier circuit of the intermediate frequency amplifier 401 and the power amplifier 408 . Furthermore, a DC power supply with a voltage of 1.8V is supplied to the digital circuit of the second electronic component 40.
 これらの直流電源を供給するための複数の電源配線のそれぞれは、第1配線51、第2配線62、及び導電性接続部材70a(図1A)の3層で構成される。 Each of the plurality of power supply wirings for supplying these DC power sources is composed of three layers: a first wiring 51, a second wiring 62, and a conductive connection member 70a (FIG. 1A).
 次に、第1実施例の優れた効果について説明する。
 第1実施例では、第1電子部品30及び第2電子部品40が、インターポーザ基板を用いることなく、パッケージ化されている。このため、インターポーザ基板を用いる構成と比べて、電子部品パッケージ20の高さ方向の寸法を小さくすることができる。
Next, the excellent effects of the first embodiment will be explained.
In the first embodiment, the first electronic component 30 and the second electronic component 40 are packaged without using an interposer substrate. Therefore, the height dimension of the electronic component package 20 can be reduced compared to a configuration using an interposer substrate.
 さらに、第1電子部品30と第2電子部品40とを接続する第1配線51に、第2配線62及び導電性接続部材70aが並列に接続されている。このため、第1電子部品30と第2電子部品40とを接続する配線の電流容量を増大させ、かつ直流抵抗を低減させることができる。また、同一の直流抵抗を実現するために、第1配線51の幅を狭くすることができる。これにより、配線の高密度化を図ることが可能になる。 Further, a second wiring 62 and a conductive connecting member 70a are connected in parallel to the first wiring 51 that connects the first electronic component 30 and the second electronic component 40. Therefore, the current capacity of the wiring connecting the first electronic component 30 and the second electronic component 40 can be increased, and the DC resistance can be reduced. Further, in order to achieve the same DC resistance, the width of the first wiring 51 can be made narrower. This makes it possible to increase the wiring density.
 例えば、図1Aに示した電子部品パッケージ20のパッド31と基板60のランド61とを接続する導電性接続部材70は、電子部品パッケージ20を基板60に機械的に固定する機能と、第1電子部品30と基板60内の配線との間で送受される電流または電気信号を伝送する機能を有する。これに対して第1配線51と第2配線62とを接続する導電性接続部材70aは、電子部品パッケージ20を基板60に機械的に固定する機能と、電子部品パッケージ20内の第1電子部品30から第2電子部品40に流れる電流の経路としての機能を有する。 For example, the conductive connecting member 70 that connects the pad 31 of the electronic component package 20 and the land 61 of the substrate 60 shown in FIG. 1A has the function of mechanically fixing the electronic component package 20 to the substrate 60, and It has a function of transmitting current or electric signals sent and received between the component 30 and the wiring within the board 60. On the other hand, the conductive connecting member 70a that connects the first wiring 51 and the second wiring 62 has the function of mechanically fixing the electronic component package 20 to the substrate 60 and the function of connecting the first electronic component inside the electronic component package 20. It functions as a path for current flowing from the second electronic component 30 to the second electronic component 40 .
 このように、電子部品パッケージ20を基板60に機械的に固定するためのハンダ等からなる導電性接続部材70aを、電子部品パッケージ20内の2つの電子部品間の電流経路として用いるため、第1配線51の直流抵抗を低減させるための専用の部材を追加することなく、第1配線51の直流抵抗を低減させることができる。 In this way, since the conductive connecting member 70a made of solder or the like for mechanically fixing the electronic component package 20 to the substrate 60 is used as a current path between two electronic components in the electronic component package 20, the first The DC resistance of the first wiring 51 can be reduced without adding a special member for reducing the DC resistance of the wiring 51.
 次に、図4を参照して第1実施例の変形例について説明する。
 図4は、第1実施例の変形例による高周波モジュールの断面図である。第1実施例(図1A)では、第1電子部品30及び第2電子部品40の天面も、支持部材50で覆われている。これに対して本変形例では、第1電子部品30の天面及び第2電子部品40の天面が、支持部材50から露出している。例えば、基板60の部品実装面60Aから第1電子部品30及び第2電子部品40の天面までの高さが、支持部材50の天面までの高さと等しい。
Next, a modification of the first embodiment will be described with reference to FIG. 4.
FIG. 4 is a sectional view of a high frequency module according to a modification of the first embodiment. In the first embodiment (FIG. 1A), the top surfaces of the first electronic component 30 and the second electronic component 40 are also covered with a support member 50. In contrast, in this modification, the top surface of the first electronic component 30 and the top surface of the second electronic component 40 are exposed from the support member 50. For example, the height from the component mounting surface 60A of the board 60 to the top surface of the first electronic component 30 and the second electronic component 40 is equal to the height to the top surface of the support member 50.
 本変形例では、第1実施例と比べて、さらに電子部品パッケージ20の低背化を図ることが可能である。なお、第1電子部品30及び第2電子部品40の一方の天面が支持部材50から露出し、他方の天面は支持部材50で覆われた構成としてもよい。例えば、第1電子部品30がインダクタであり、第2電子部品40が高周波集積回路であり、第1電子部品30の天面が露出している場合、第2電子部品40で発生した熱が、第1配線51、導電性接続部材70a、及び第2配線62を介して第1電子部品30まで伝導し、第1電子部品30の天面から外部に放熱される。これにより、第2電子部品40からの放熱特性を高めることができる。 In this modification, it is possible to further reduce the height of the electronic component package 20 compared to the first embodiment. Note that one of the top surfaces of the first electronic component 30 and the second electronic component 40 may be exposed from the support member 50, and the other top surface may be covered with the support member 50. For example, when the first electronic component 30 is an inductor, the second electronic component 40 is a high-frequency integrated circuit, and the top surface of the first electronic component 30 is exposed, the heat generated by the second electronic component 40 The heat is conducted to the first electronic component 30 via the first wiring 51, the conductive connection member 70a, and the second wiring 62, and is radiated to the outside from the top surface of the first electronic component 30. Thereby, the heat dissipation characteristics from the second electronic component 40 can be improved.
 次に、第1実施例の他の変形例について説明する。
 第1実施例(図1A)では、第1面20Aを平面視したとき、導電性接続部材70aが第1電子部品30と重なる箇所から第2電子部品40と重なる箇所まで連続して配置されている。その他の構成として、第1配線51のうちハンダ32によって第1電子部品30に接続された箇所から、ハンダ42によって第2電子部品40に接続された箇所までの経路のうち少なくとも一部の範囲に導電性接続部材70aを配置してもよい。この構成においても、導電性接続部材70aが配置された範囲の直流抵抗が低減するという優れた効果が得られる。
Next, another modification of the first embodiment will be described.
In the first embodiment (FIG. 1A), when the first surface 20A is viewed from above, the conductive connecting member 70a is arranged continuously from the location where it overlaps with the first electronic component 30 to the location where it overlaps with the second electronic component 40. There is. As another configuration, at least a part of the route from the part of the first wiring 51 connected to the first electronic component 30 by the solder 32 to the part connected to the second electronic component 40 by the solder 42 is provided. A conductive connecting member 70a may also be provided. This configuration also provides the excellent effect of reducing the DC resistance in the range where the conductive connection member 70a is arranged.
 第1実施例(図1A)では、支持部材50に第1電子部品30及び第2電子部品40の2個の電子部品が支持されているが、3個以上の電子部品が支持される構成としてもよい。例えば、パワーマネジメント回路である第1電子部品30から電源が供給される複数の電子部品を支持部材50で支持してもよい。この場合、第1電子部品30と、複数の電子部品のそれぞれとを複数の第1配線51で接続するとよい。 In the first embodiment (FIG. 1A), two electronic components, the first electronic component 30 and the second electronic component 40, are supported by the support member 50, but a configuration in which three or more electronic components are supported may be used. Good too. For example, the support member 50 may support a plurality of electronic components to which power is supplied from the first electronic component 30, which is a power management circuit. In this case, it is preferable to connect the first electronic component 30 and each of the plurality of electronic components using a plurality of first wirings 51.
 また、第1実施例では、第1電子部品30としてパワーマネジメント回路が用いられているが、第1電子部品30は、パワーマネジメント回路の一部分を構成する電子部品であってもよい。例えば、第1電子部品30は、DCDCコンバータのパワーインダクタとして機能するチップインダクタであってもよい。この場合、チップインダクタである第1電子部品30と、DCDCコンバータを構成するスイッチング素子との間も、第1配線51によって接続するとよい。 Furthermore, in the first embodiment, a power management circuit is used as the first electronic component 30, but the first electronic component 30 may be an electronic component that constitutes a part of the power management circuit. For example, the first electronic component 30 may be a chip inductor that functions as a power inductor of a DC/DC converter. In this case, the first wiring 51 may also be used to connect the first electronic component 30, which is a chip inductor, and the switching element that constitutes the DC/DC converter.
 [第2実施例]
 次に、図5A、図5B、及び図5Cを参照して第2実施例による高周波モジュールについて説明する。以下、図1Aから図3までの図面を参照して説明した第1実施例による高周波モジュールを共通の構成については説明を省略する。
[Second example]
Next, a high frequency module according to a second embodiment will be described with reference to FIGS. 5A, 5B, and 5C. Hereinafter, a description of the common configuration of the high frequency module according to the first embodiment described with reference to the drawings from FIG. 1A to FIG. 3 will be omitted.
 図5Aは、第2実施例による高周波モジュールの断面図である。第1実施例(図1A)では、支持部材50に第1電子部品30及び第2電子部品40が支持されている。これに対して第2実施例では、第1電子部品30及び第2電子部品40の他に、導電性のシールド部材55が支持部材50に支持されている。 FIG. 5A is a cross-sectional view of a high frequency module according to the second embodiment. In the first embodiment (FIG. 1A), a first electronic component 30 and a second electronic component 40 are supported by a support member 50. On the other hand, in the second embodiment, in addition to the first electronic component 30 and the second electronic component 40, a conductive shield member 55 is supported by the support member 50.
 図5Bは、シールド部材55を底面側から見た斜視図である。シールド部材55は、平板状の天板55A、及び天板55Aの底面の周縁部から一方向に突出する複数の脚部55Bを含む。 FIG. 5B is a perspective view of the shield member 55 viewed from the bottom side. The shield member 55 includes a flat top plate 55A and a plurality of legs 55B protruding in one direction from the peripheral edge of the bottom surface of the top plate 55A.
 図5Aに示すように、天板55Aの底面が第1電子部品30の天面に対向する。第1面20Aを平面視したとき、第2電子部品40はシールド部材55の外側に配置されている。電子部品パッケージ20の第1面20Aに、複数のシールド用パッド56が配置されており、複数のシールド用パッド56が支持部材50に支持されている。シールド部材55の複数の脚部55Bが、天板55Aからシールド用パッド56に向かって延びる。複数の脚部55Bの下端が、それぞれハンダ57によって複数のシールド用パッド56に固定され、電気的に接続されている。 As shown in FIG. 5A, the bottom surface of the top plate 55A faces the top surface of the first electronic component 30. When the first surface 20A is viewed from above, the second electronic component 40 is disposed outside the shield member 55. A plurality of shielding pads 56 are arranged on the first surface 20A of the electronic component package 20, and the plurality of shielding pads 56 are supported by the support member 50. A plurality of legs 55B of the shield member 55 extend from the top plate 55A toward the shield pad 56. The lower ends of the plurality of legs 55B are each fixed to the plurality of shielding pads 56 with solder 57 and are electrically connected.
 図5Cは、シールド部材55の天板55Aの縁の一部分、複数の脚部55Bの一部、及び第1配線51の斜視図である。第1配線51は、相互に隣り合う2つの脚部55Bの間を通過している。これにより、第1配線51がシールド部材55に短絡されることなく、第1電子部品30と第2電子部品40とを第1配線51で相互に接続することができる。 FIG. 5C is a perspective view of a portion of the edge of the top plate 55A of the shield member 55, a portion of the plurality of legs 55B, and the first wiring 51. The first wiring 51 passes between two mutually adjacent leg portions 55B. Thereby, the first electronic component 30 and the second electronic component 40 can be connected to each other by the first wiring 51 without the first wiring 51 being short-circuited to the shield member 55.
 次に、第5実施例による高周波モジュールの製造方法について説明する。第1実施例による高周波モジュールの製造方法において、図2Aに示したように仮基板90に第1電子部品30及び第2電子部品40とともに、シールド部材55を実装する。その後、第1電子部品30、第2電子部品40、及びシールド部材55を支持部材50でモールドする。モールド時に、液状の支持部材50がシールド部材55の脚部55Bの間を通って、天板55Aと仮基板90との間の空間に充填される。支持部材50を形成した後、第1実施例(図2C)と同様に、仮基板90を除去する。 Next, a method for manufacturing a high frequency module according to a fifth embodiment will be described. In the method for manufacturing a high frequency module according to the first embodiment, the shield member 55 is mounted on the temporary substrate 90 together with the first electronic component 30 and the second electronic component 40, as shown in FIG. 2A. Thereafter, the first electronic component 30, the second electronic component 40, and the shield member 55 are molded with the support member 50. During molding, the liquid support member 50 passes between the legs 55B of the shield member 55 and fills the space between the top plate 55A and the temporary substrate 90. After forming the support member 50, the temporary substrate 90 is removed as in the first embodiment (FIG. 2C).
 次に、第2実施例の優れた効果について説明する。
 第2実施例では、第1電子部品30をシールド部材55で覆うことにより、第1電子部品30から外部への電磁ノイズの放射が低減されるため、第2電子部品40が、第1電子部品30で発生した電磁ノイズの影響を受けにくくなる。例えば、DCDCコンバータ回路を含む第1電子部品30から発生するスイッチングノイズの放射を低減させることができる。
Next, the excellent effects of the second embodiment will be explained.
In the second embodiment, by covering the first electronic component 30 with the shield member 55, radiation of electromagnetic noise from the first electronic component 30 to the outside is reduced, so that the second electronic component 40 is covered with the shield member 55. It becomes less susceptible to the effects of electromagnetic noise generated in 30. For example, radiation of switching noise generated from the first electronic component 30 including the DCDC converter circuit can be reduced.
 また、第1実施例と同様に、直流抵抗の増大を抑制しつつ第1配線51を細くすることが可能である。このため、第1配線51(図5C)が通過する箇所の脚部55Bの間隔を狭めることができる。これにより、第1配線51が通過する箇所のシールド性の低下が抑制される。 Furthermore, similarly to the first embodiment, it is possible to make the first wiring 51 thinner while suppressing an increase in DC resistance. Therefore, the interval between the leg portions 55B at the portion where the first wiring 51 (FIG. 5C) passes can be narrowed. This suppresses deterioration in shielding performance at the portion through which the first wiring 51 passes.
 [第3実施例]
 次に、図6を参照して第3実施例による高周波モジュールについて説明する。以下、図5A、図5B、及び図5Cを参照して説明した第2実施例による高周波モジュールと共通の構成については説明を省略する。
[Third example]
Next, a high frequency module according to a third embodiment will be described with reference to FIG. Hereinafter, a description of the configuration common to the high frequency module according to the second embodiment described with reference to FIGS. 5A, 5B, and 5C will be omitted.
 図6は、第3実施例による高周波モジュールの断面図である。第2実施例(図5A)では、第1電子部品30がシールド部材55で覆われているが、第2電子部品40はシールド部材55で覆われていない。これに対して第3実施例では、第1電子部品30及び第2電子部品40の両方がシールド部材55で覆われている。また、第1電子部品30と第2電子部品40とを接続する第1配線51も、シールド部材55で覆われている。 FIG. 6 is a sectional view of a high frequency module according to the third embodiment. In the second embodiment (FIG. 5A), the first electronic component 30 is covered with the shield member 55, but the second electronic component 40 is not covered with the shield member 55. In contrast, in the third embodiment, both the first electronic component 30 and the second electronic component 40 are covered with a shield member 55. Further, the first wiring 51 connecting the first electronic component 30 and the second electronic component 40 is also covered with a shield member 55.
 シールド部材55が接続された複数のシールド用パッド56のうち少なくとも1つが、電子部品パッケージ20の第1面20Aに配置されたグランド配線58を介して、複数のパッド31のうちグランド用のパッド31に接続されている。すなわち、シールド部材55は、第1電子部品30のグランド端子に接続されている。なお、シールド部材55を、第2電子部品40のグランド端子に接続してもよい。グランド用のパッド31は、導電性接続部材70を介して基板60のグランド用のランド61に接続されている。グランド用のランド61はグランド導体63に接続されている。 At least one of the plurality of shield pads 56 to which the shield member 55 is connected is connected to the ground pad 31 of the plurality of pads 31 via the ground wiring 58 arranged on the first surface 20A of the electronic component package 20. It is connected to the. That is, the shield member 55 is connected to the ground terminal of the first electronic component 30. Note that the shield member 55 may be connected to the ground terminal of the second electronic component 40. The grounding pad 31 is connected to the grounding land 61 of the substrate 60 via a conductive connecting member 70 . A ground land 61 is connected to a ground conductor 63.
 次に、第3実施例の優れた効果について説明する。
 第3実施例においては、シールド部材55が、第1電子部品30、第2電子部品40、及び第1配線51をシールドする。電磁ノイズは、DCDCコンバータ回路を含む第1電子部品30、電源配線として機能する第1配線51、及び電源配線に接続される第2電子部品40から発生しやすい。シールド部材55を配置することにより、第1電子部品30、第1配線51、及び第2電子部品40から放射される電磁ノイズが周囲の回路に与える影響を軽減することができる。
Next, the excellent effects of the third embodiment will be explained.
In the third embodiment, a shield member 55 shields the first electronic component 30, the second electronic component 40, and the first wiring 51. Electromagnetic noise is likely to be generated from the first electronic component 30 including the DCDC converter circuit, the first wiring 51 functioning as a power supply wiring, and the second electronic component 40 connected to the power supply wiring. By arranging the shield member 55, it is possible to reduce the influence of electromagnetic noise radiated from the first electronic component 30, the first wiring 51, and the second electronic component 40 on surrounding circuits.
 次に、第3実施例の変形例について説明する。
 第3実施例では、シールド部材55を、グランド配線58を介してグランド用のパッド31及び基板60のグランド導体63に接続しているが、グランド用のパッド31及び基板60のグランド導体63に接続しない構成を採用することも可能である。例えば、グランド導体63に電磁ノイズが重畳されやすい構成の場合、シールド部材55をグランド導体63に接続しない方が好ましい場合もある。シールド部材55をグランド導体63に接続するか否かは、電磁ノイズの発生の態様に応じて決定するとよい。
Next, a modification of the third embodiment will be described.
In the third embodiment, the shield member 55 is connected to the ground pad 31 and the ground conductor 63 of the board 60 via the ground wiring 58. It is also possible to adopt a configuration that does not. For example, if the configuration is such that electromagnetic noise is likely to be superimposed on the ground conductor 63, it may be preferable not to connect the shield member 55 to the ground conductor 63. Whether or not to connect the shield member 55 to the ground conductor 63 may be determined depending on the manner in which electromagnetic noise is generated.
 第3実施例では、シールド部材55が第1電子部品30及び第2電子部品40を覆っているが、支持部材50に支持されたその他の電子部品を覆う構成としてもよい。例えば、DCDCコンバータ回路に用いられるパワーインダクタ、バイパスコンデンサ、抵抗素子、基準クロックを生成する発振子等を覆ってもよい。また、第2電子部品40の代わりに、アップダウンコンバート用ミキサ402、パワーアンプ408、ローノイズアンプ409(図3)等を個別の電子部品で構成し、これらの電子部品をシールド部材55で覆ってもよい。その他の構成として、ベースバンド信号処理回路100(図3)を支持部材50で支持し、ベースバンド信号処理回路100をシールド部材55で覆ってもよい。 In the third embodiment, the shield member 55 covers the first electronic component 30 and the second electronic component 40, but may be configured to cover other electronic components supported by the support member 50. For example, a power inductor, a bypass capacitor, a resistor element, an oscillator that generates a reference clock, etc. used in a DCDC converter circuit may be covered. Further, instead of the second electronic component 40, the up-down converter mixer 402, the power amplifier 408, the low noise amplifier 409 (FIG. 3), etc. are configured with individual electronic components, and these electronic components are covered with the shielding member 55. Good too. As another configuration, the baseband signal processing circuit 100 (FIG. 3) may be supported by the support member 50 and the baseband signal processing circuit 100 may be covered by the shield member 55.
 次に、図7を参照して第3実施例の変形例について説明する。
 図7は、第3実施例の変形例による高周波モジュールの断面図である。第3実施例(図6)では、シールド部材55が、電子部品パッケージ20に設けられたシールド用パッド56、グランド配線58を介してグランド用のパッド31に接続されている。さらに、グランド用のパッド31が導電性接続部材70を介して基板60のグランド用のランド61に接続されることにより、シールド部材55が基板60のグランド導体63に接続されている。これに対して図7に示した変形例では、シールド部材55に接続されたシールド用パッド56が導電性接続部材70を介して基板60のグランド用のランド61に接続されている。
Next, a modification of the third embodiment will be described with reference to FIG.
FIG. 7 is a sectional view of a high frequency module according to a modification of the third embodiment. In the third embodiment (FIG. 6), a shield member 55 is connected to a ground pad 31 via a shield pad 56 provided on an electronic component package 20 and a ground wiring 58. Furthermore, the shield member 55 is connected to the ground conductor 63 of the substrate 60 by connecting the grounding pad 31 to the grounding land 61 of the substrate 60 via the conductive connecting member 70 . On the other hand, in the modification shown in FIG. 7, a shielding pad 56 connected to a shielding member 55 is connected to a grounding land 61 of a substrate 60 via a conductive connecting member 70.
 本変形例のように、電子部品パッケージ20に配置されたグランド配線58(図6)を経由することなく、シールド部材55を基板60のグランド用のランド61に接続してもよい。 As in this modification, the shield member 55 may be connected to the ground land 61 of the board 60 without going through the ground wiring 58 (FIG. 6) arranged on the electronic component package 20.
 次に、図8を参照して第3実施例の他の変形例について説明する。図8は、第3実施例の他の変形例による高周波モジュールの断面図である。図7に示した変形例では、シールド部材55の天面が支持部材50で覆われている。言い換えると、シールド部材55の天面が、電子部品パッケージ20の第2面20Bに露出している。これに対して図8に示した変形例では、シールド部材55の天面が支持部材50から露出している。例えば、基板60の部品実装面60Aからシールド部材55の天面までの高さと、支持部材50の天面までの高さとが等しい。 Next, another modification of the third embodiment will be described with reference to FIG. 8. FIG. 8 is a sectional view of a high frequency module according to another modification of the third embodiment. In the modification shown in FIG. 7, the top surface of the shield member 55 is covered with the support member 50. In other words, the top surface of the shield member 55 is exposed to the second surface 20B of the electronic component package 20. In contrast, in the modification shown in FIG. 8, the top surface of the shield member 55 is exposed from the support member 50. For example, the height from the component mounting surface 60A of the board 60 to the top surface of the shield member 55 is equal to the height from the top surface of the support member 50.
 シールド部材55の天面を露出させることにより、電子部品パッケージ20のさらなる低背化を図ることが可能である。 By exposing the top surface of the shield member 55, it is possible to further reduce the height of the electronic component package 20.
 [第4実施例]
 次に、図9及び図10を参照して第4実施例による高周波モジュールについて説明する。以下、図8に示した第3実施例の変形例による高周波モジュールと共通の構成については説明を省略する。
[Fourth example]
Next, a high frequency module according to a fourth embodiment will be described with reference to FIGS. 9 and 10. Hereinafter, description of the configuration common to the high frequency module according to the modified example of the third embodiment shown in FIG. 8 will be omitted.
 図9は、第4実施例による高周波モジュールの断面図である。第4実施例による高周波モジュールでは、図8に示した第3実施例の変形例による高周波モジュールの基板60に複数の放射素子110が配置されている。なお、図9では、1つの放射素子110のみを示している。放射素子110は、基板60の部品実装面60Aに配置されている。基板60の内層に配置されたグランド導体63と放射素子110とでパッチアンテナが構成される。 FIG. 9 is a sectional view of a high frequency module according to the fourth embodiment. In the high frequency module according to the fourth embodiment, a plurality of radiating elements 110 are arranged on the substrate 60 of the high frequency module according to the modification of the third embodiment shown in FIG. Note that in FIG. 9, only one radiating element 110 is shown. The radiating element 110 is arranged on the component mounting surface 60A of the board 60. The ground conductor 63 and the radiating element 110 arranged on the inner layer of the substrate 60 constitute a patch antenna.
 放射素子110は、基板60に配置された給電線111、ランド61、導電性接続部材70、パッド41、及びハンダ42を介して第2電子部品40に接続されている。 The radiation element 110 is connected to the second electronic component 40 via a power supply line 111, a land 61, a conductive connection member 70, a pad 41, and a solder 42 arranged on the substrate 60.
 図10は、第4実施例による高周波モジュールが搭載された通信装置のブロック図である。以下、第1実施例による高周波モジュールを搭載した通信装置のブロック図(図3)と共通の構成については説明を省略する。 FIG. 10 is a block diagram of a communication device equipped with a high-frequency module according to a fourth embodiment. Hereinafter, a description of the configuration common to the block diagram (FIG. 3) of the communication device equipped with the high frequency module according to the first embodiment will be omitted.
 図10に示すように、基板60に複数の放射素子110が配置されている。複数の放射素子110は、アレイアンテナを構成する。複数の放射素子110は、それぞれ複数の給電線111を介して複数の送受信切替スイッチ410に接続されている。さらに、基板60にベースバンド信号処理回路100が実装されている。ベースバンド信号処理回路100は、基板60に配置された配線を介して中間周波増幅器401に接続されている。 As shown in FIG. 10, a plurality of radiating elements 110 are arranged on the substrate 60. The plurality of radiating elements 110 constitute an array antenna. The plurality of radiating elements 110 are connected to the plurality of transmission/reception changeover switches 410 via the plurality of feeder lines 111, respectively. Furthermore, a baseband signal processing circuit 100 is mounted on the board 60. Baseband signal processing circuit 100 is connected to intermediate frequency amplifier 401 via wiring arranged on substrate 60.
 次に、第4実施例の優れた効果について説明する。
 第4実施例においては、放射素子110を含めて、モジュール化することができる。これにより、通信装置の部品点数を削減することができる。
Next, the excellent effects of the fourth embodiment will be explained.
In the fourth embodiment, including the radiating element 110, it can be modularized. Thereby, the number of parts of the communication device can be reduced.
 次に、図11を参照して第4実施例の変形例について説明する。
 図11は、第4実施例の変形例による高周波モジュールの断面図である。第4実施例(図9)では、基板60の部品実装面60Aに放射素子110が配置されている。図11に示した変形例では、基板60の、部品実装面60Aとは反対側の面に複数の放射素子110が配置されている。放射素子110と、基板60の内層のグランド導体63とによりパッチアンテナが構成される。本変形例のように、放射素子110を、基板60の部品実装面60Aとは反対側の面に配置してもよい。また、基板60の部品実装面60A、及びその反対側の面の両方に、それぞれ複数の放射素子110を配置してもよい。
Next, a modification of the fourth embodiment will be described with reference to FIG. 11.
FIG. 11 is a sectional view of a high frequency module according to a modification of the fourth embodiment. In the fourth embodiment (FIG. 9), a radiating element 110 is arranged on a component mounting surface 60A of a board 60. In the modification shown in FIG. 11, a plurality of radiating elements 110 are arranged on the surface of the substrate 60 opposite to the component mounting surface 60A. A patch antenna is configured by the radiating element 110 and the ground conductor 63 on the inner layer of the substrate 60. As in this modification, the radiation element 110 may be arranged on the surface of the substrate 60 opposite to the component mounting surface 60A. Further, a plurality of radiating elements 110 may be arranged on both the component mounting surface 60A and the opposite surface of the board 60.
 次に、第4実施例の他の変形例について説明する。第4実施例では、外部の電源101から電子部品パッケージ20に電源を供給しているが、ベースバンド信号処理回路100から電圧が3.3V以上5V以下の直流電源を電子部品パッケージ20に供給する構成としてもよい。第4実施例では、放射素子110がパッチアンテナを構成しているが、放射素子110が、パッチアンテナ以外のアンテナ、例えばダイポールアンテナ等を構成するようにしてもよい。 Next, another modification of the fourth embodiment will be described. In the fourth embodiment, power is supplied to the electronic component package 20 from an external power source 101, and a DC power with a voltage of 3.3 V or more and 5 V or less is supplied to the electronic component package 20 from the baseband signal processing circuit 100. It may also be a configuration. In the fourth embodiment, the radiating element 110 constitutes a patch antenna, but the radiating element 110 may constitute an antenna other than a patch antenna, such as a dipole antenna.
 [第5実施例]
 次に、図12及び図13を参照して第5実施例による高周波モジュールについて説明する。以下、図9及び図10に示した第4実施例による高周波モジュールと共通の構成については説明を省略する。
[Fifth example]
Next, a high frequency module according to a fifth embodiment will be described with reference to FIGS. 12 and 13. Hereinafter, description of the configuration common to the high frequency module according to the fourth embodiment shown in FIGS. 9 and 10 will be omitted.
 図12は、第5実施例による高周波モジュールの断面図である。第4実施例では、放射素子110(図9)が基板60の部品実装面60Aに配置されているが、第5実施例では、第4実施例の変形例(図11)と同様に、複数の放射素子110が基板60の部品実装面60Aとは反対側の面に配置されている。また、第4実施例(図10)では、ベースバンド信号処理回路100が基板60に実装されているが、第5実施例では、基板60の部品実装面60Aにコネクタ65が実装されている。コネクタ65にケーブル67が着脱可能に接続される。例えば、コネクタ65として高周波多極コネクタが用いられ、ケーブル67として高周波多芯ケーブルが用いられる。 FIG. 12 is a sectional view of a high frequency module according to the fifth embodiment. In the fourth embodiment, the radiating element 110 (FIG. 9) is arranged on the component mounting surface 60A of the board 60, but in the fifth embodiment, a plurality of radiating elements 110 (FIG. 9) are arranged on the component mounting surface 60A of the board 60. A radiating element 110 is arranged on the surface of the substrate 60 opposite to the component mounting surface 60A. Further, in the fourth embodiment (FIG. 10), the baseband signal processing circuit 100 is mounted on the board 60, but in the fifth embodiment, the connector 65 is mounted on the component mounting surface 60A of the board 60. A cable 67 is detachably connected to the connector 65. For example, a high frequency multi-pole connector is used as the connector 65, and a high frequency multi-core cable is used as the cable 67.
 図13は、第5実施例による高周波モジュールを搭載した通信装置のブロック図である。基板60にコネクタ65が実装されている。コネクタ65が、基板60に配置されたコネクタ接続配線64a、64bのそれぞれを介して、第1電子部品30及び第2電子部品40に接続されている。 FIG. 13 is a block diagram of a communication device equipped with a high frequency module according to the fifth embodiment. A connector 65 is mounted on the board 60. A connector 65 is connected to the first electronic component 30 and the second electronic component 40 via connector connection wirings 64a and 64b arranged on the board 60, respectively.
 コネクタ65に接続されるケーブル67が、ベースバンド信号処理回路100及び外部の電源101に接続される。ベースバンド信号処理回路100と中間周波増幅器401との間で、ケーブル67及びコネクタ65を介して中間周波信号が送受される。外部の電源101から、ケーブル67及びコネクタ65を介して、第1電子部品30(パワーマネジメント回路)に、電圧3.3V以上5V以下の直流電源が供給される。 A cable 67 connected to the connector 65 is connected to the baseband signal processing circuit 100 and an external power supply 101. An intermediate frequency signal is transmitted and received between the baseband signal processing circuit 100 and the intermediate frequency amplifier 401 via the cable 67 and the connector 65. A DC power with a voltage of 3.3 V or more and 5 V or less is supplied from the external power source 101 to the first electronic component 30 (power management circuit) via the cable 67 and the connector 65.
 次に、第5実施例の優れた効果について説明する。
 第5実施例では、高周波集積回路である第2電子部品40とベースバンド信号処理回路100との間で、ケーブル67を介して信号の送受信を行うことができる。さらに、ケーブル67を介して電子部品パッケージ20に電源を供給することができる。
Next, the excellent effects of the fifth embodiment will be explained.
In the fifth embodiment, signals can be transmitted and received between the second electronic component 40, which is a high frequency integrated circuit, and the baseband signal processing circuit 100 via the cable 67. Furthermore, power can be supplied to the electronic component package 20 via the cable 67.
 次に、第5実施例の変形例について説明する。第5実施例では、コネクタ65として高周波多極コネクタを用いているが、同軸コネクタを用いてもよい。コネクタ65に同軸コネクタを用いる場合には、ケーブル67として同軸ケーブルが用いられる。 Next, a modification of the fifth embodiment will be described. In the fifth embodiment, a high frequency multipolar connector is used as the connector 65, but a coaxial connector may also be used. When a coaxial connector is used as the connector 65, a coaxial cable is used as the cable 67.
 [第6実施例]
 次に、図14を参照して第6実施例による高周波モジュールについて説明する。以下、図9及び図10に示した第4実施例による高周波モジュールと共通の構成については説明を省略する。
[Sixth Example]
Next, a high frequency module according to a sixth embodiment will be described with reference to FIG. 14. Hereinafter, description of the configuration common to the high frequency module according to the fourth embodiment shown in FIGS. 9 and 10 will be omitted.
 図14は、第6実施例による高周波モジュールの断面図である。電子部品パッケージ20の第1面20Aに、第1配線51の他に第3配線53が配置されており、支持部材50に、第1電子部品30、第2電子部品40、及びシールド部材55の他に、外部接続端子22が支持されている。 FIG. 14 is a sectional view of a high frequency module according to the sixth embodiment. In addition to the first wiring 51, a third wiring 53 is arranged on the first surface 20A of the electronic component package 20. Additionally, external connection terminals 22 are supported.
 第3配線53は、第1面20Aを平面視したとき、シールド部材55の内側の領域から外側の領域まで延びている。第3配線53は、シールド部材55の複数の脚部55B(図5B)の間を通過する。第3配線53の一方の端部が、ハンダ42を介して第2電子部品40の端子に接続されている。 The third wiring 53 extends from the inner region to the outer region of the shield member 55 when the first surface 20A is viewed from above. The third wiring 53 passes between the plurality of legs 55B (FIG. 5B) of the shield member 55. One end of the third wiring 53 is connected to a terminal of the second electronic component 40 via solder 42 .
 第3配線53の他方の端部に、ハンダ43により外部接続端子22が固定されている。外部接続端子22は、第3配線53から、電子部品パッケージ20の第1面20Aとは反対側の第2面20Bに向かって延び、第2面20Bに露出している。外部接続端子22の露出した端面が、ハンダ44を介してマザーボード等の基板68に接続されている。 The external connection terminal 22 is fixed to the other end of the third wiring 53 with solder 43. The external connection terminal 22 extends from the third wiring 53 toward the second surface 20B of the electronic component package 20, which is opposite to the first surface 20A, and is exposed on the second surface 20B. The exposed end surface of the external connection terminal 22 is connected to a substrate 68 such as a motherboard via solder 44.
 基板68にベースバンド信号処理回路100(例えば図3)が実装されている。ベースバンド信号処理回路100と第2電子部品40との間で、外部接続端子22を通して中間周波信号の送受が行われる。 A baseband signal processing circuit 100 (for example, FIG. 3) is mounted on the board 68. Intermediate frequency signals are transmitted and received between the baseband signal processing circuit 100 and the second electronic component 40 through the external connection terminal 22.
 次に、第6実施例の優れた効果について説明する。
 第6実施例では、電子部品パッケージ20の第1面20Aに、放射素子110が配置された基板60を取り付け、第1面20Aとは反対方向を向く第2面20Bにマザーボード等の他の基板68を取り付けることができる。さらに、ケーブルを用いることなく、基板68と電子部品パッケージ20との間で中間周波信号の送受を行うことができる。
Next, the excellent effects of the sixth embodiment will be explained.
In the sixth embodiment, a substrate 60 on which a radiation element 110 is arranged is attached to a first surface 20A of an electronic component package 20, and another substrate such as a motherboard is attached to a second surface 20B facing in the opposite direction to the first surface 20A. 68 can be installed. Furthermore, intermediate frequency signals can be transmitted and received between the board 68 and the electronic component package 20 without using a cable.
 次に、図15を参照して第6実施例の変形例について説明する。図15は、第6実施例の変形例による高周波モジュールの断面図である。 Next, a modification of the sixth embodiment will be described with reference to FIG. 15. FIG. 15 is a sectional view of a high frequency module according to a modification of the sixth embodiment.
 第6実施例(図14)では、外部接続端子22と第2電子部品40とが、電子部品パッケージ20に設けられている第3配線53を介して相互に接続されている。これに対して本変形例では、外部接続端子22と第2電子部品40とが、基板60の内層に配置された配線64cを介して相互に接続されている。 In the sixth embodiment (FIG. 14), the external connection terminal 22 and the second electronic component 40 are connected to each other via a third wiring 53 provided in the electronic component package 20. In contrast, in this modification, the external connection terminal 22 and the second electronic component 40 are connected to each other via a wiring 64c arranged in the inner layer of the board 60.
 次に、外部接続端子22と第2電子部品40との接続構造について説明する。電子部品パッケージ20の第1面20Aにパッド41a、41bが配置されている。第1面20Aを平面視したとき、1つのパッド41aは第2電子部品40と重なり、他のパッド41bは第2電子部品40と重ならない。外部接続端子22がハンダ43によりパッド41bに固定されるとともに、第2面20Bまで延び、第2面20Bに露出している。 Next, the connection structure between the external connection terminal 22 and the second electronic component 40 will be explained. Pads 41a and 41b are arranged on the first surface 20A of the electronic component package 20. When the first surface 20A is viewed in plan, one pad 41a overlaps with the second electronic component 40, and the other pad 41b does not overlap with the second electronic component 40. External connection terminal 22 is fixed to pad 41b by solder 43, extends to second surface 20B, and is exposed on second surface 20B.
 基板60の部品実装面60Aに、ランド61a、61bが配置されている。基板60の内層に配置された配線64cが、ランド61aとランド61bとを相互に接続する。ランド61a、61bは、それぞれ第1面20Aを平面視したとき、パッド41a、41bと重なる。複数の導電性接続部材70のうち1つが、パッド41aとランド61aとを相互に接続し、他の1つが、パッド41bとランド61bとを相互に接続する。外部接続端子22は、ハンダ43、パッド41b、1つの導電性接続部材70、ランド61b、配線64c、ランド61a、他の1つの導電性接続部材70、及び1つのハンダ42を介して第2電子部品40の端子に接続される。 Lands 61a and 61b are arranged on the component mounting surface 60A of the board 60. A wiring 64c arranged in the inner layer of the substrate 60 interconnects the land 61a and the land 61b. The lands 61a and 61b overlap the pads 41a and 41b, respectively, when the first surface 20A is viewed from above. One of the plurality of conductive connection members 70 mutually connects the pad 41a and the land 61a, and the other one mutually connects the pad 41b and the land 61b. The external connection terminal 22 connects to the second electron via the solder 43, the pad 41b, one conductive connection member 70, the land 61b, the wiring 64c, the land 61a, another conductive connection member 70, and one solder 42. It is connected to the terminal of component 40.
 図15に示した変形例のように、外部接続端子22と第2電子部品40とを、基板60に配置された配線64cを介して相互に接続すると、電子部品パッケージ20に配置された配線を用いる場合と比べて、伝送線路のインピーダンス管理を行いやすいという優れた効果が得られる。 As in the modification shown in FIG. 15, when the external connection terminal 22 and the second electronic component 40 are connected to each other via the wiring 64c arranged on the substrate 60, the wiring arranged on the electronic component package 20 is An excellent effect can be obtained in that the impedance of the transmission line can be easily managed compared to the case where the transmission line is used.
 [第7実施例]
 次に、図16を参照して第7実施例による高周波モジュールについて説明する。以下、図1Aから図3までの図面を参照して説明した第1実施例による高周波モジュールを共通の構成については説明を省略する。
[Seventh Example]
Next, a high frequency module according to a seventh embodiment will be described with reference to FIG. Hereinafter, a description of the common configuration of the high frequency module according to the first embodiment described with reference to the drawings from FIG. 1A to FIG. 3 will be omitted.
 図16は、第7実施例による高周波モジュールの断面図である。第1実施例(図1A)では、導電性接続部材70aが、第1配線51の一方の端部から他方の端部までのほぼ全域に亘って配置されている。これに対して第7実施例では、第1配線51と第2配線62とを相互に接続する導電性接続部材70aが2つ配置されている。一方の導電性接続部材70aは、第1配線51の一方の端部と第2配線62の一方の端部とを接続し、他方の導電性接続部材70aは、第1配線51の他方の端部と第2配線62の他方の端部とを接続する。 FIG. 16 is a cross-sectional view of a high frequency module according to the seventh embodiment. In the first embodiment (FIG. 1A), the conductive connecting member 70a is arranged over almost the entire area of the first wiring 51 from one end to the other end. On the other hand, in the seventh embodiment, two conductive connecting members 70a are arranged to connect the first wiring 51 and the second wiring 62 to each other. One conductive connecting member 70a connects one end of the first wiring 51 and one end of the second wiring 62, and the other conductive connecting member 70a connects the other end of the first wiring 51. and the other end of the second wiring 62 are connected.
 次に、第7実施例の優れた効果について説明する。
 第7実施例では、第1配線51に対して第2配線62が並列に接続される。このため、第1電子部品30と第2電子部品40とを相互に接続する配線の電流容量を増大させるとともに、直流抵抗を低減させることができる。第1実施例(図1A)では、導電性接続部材70aの大きさが、他の導電性接続部材70のそれぞれの大きさより大きい。これに対して第7実施例では、導電性接続部材70aのそれぞれの大きさが、他の導電性接続部材70のそれぞれの大きさとほぼ等しい。このため、電子部品パッケージ20を基板60に実装する前のハンダバンプの高さを揃えやすい。これにより、フリップチップ実装時の接続不良が生じにくいというすぐれた効果が得られる。
Next, the excellent effects of the seventh embodiment will be explained.
In the seventh embodiment, a second wiring 62 is connected in parallel to the first wiring 51. Therefore, it is possible to increase the current capacity of the wiring that interconnects the first electronic component 30 and the second electronic component 40, and to reduce the DC resistance. In the first embodiment (FIG. 1A), the size of the conductive connection member 70a is larger than the size of each of the other conductive connection members 70. On the other hand, in the seventh embodiment, the size of each conductive connection member 70a is approximately equal to the size of each of the other conductive connection members 70. Therefore, it is easy to align the heights of the solder bumps before mounting the electronic component package 20 on the board 60. This provides an excellent effect in that connection failures are less likely to occur during flip-chip mounting.
 [第8実施例]
 次に、図17A及び図17Bを参照して第8実施例による高周波モジュールについて説明する。以下、図16を参照して説明した第7実施例による高周波モジュールと共通の構成については説明を省略する。
[Eighth Example]
Next, a high frequency module according to an eighth embodiment will be described with reference to FIGS. 17A and 17B. Hereinafter, a description of the configuration common to the high frequency module according to the seventh embodiment described with reference to FIG. 16 will be omitted.
 図17Aは、第8実施例による高周波モジュールの断面図であり、図17Bは、基板60の部品実装面60Aの、第2配線62が配置された領域の平面図である。第7実施例(図1)では、2つの導電性接続部材70aが、それぞれ第1配線51の両端に接続されている。これに対して第8実施例では、第1配線51の一方の端部から他方の端部に至る経路の途中の箇所にも、複数の導電性接続部材70aが接続されている。 FIG. 17A is a cross-sectional view of a high-frequency module according to the eighth embodiment, and FIG. 17B is a plan view of a region of the component mounting surface 60A of the board 60 where the second wiring 62 is arranged. In the seventh embodiment (FIG. 1), two conductive connecting members 70a are connected to both ends of the first wiring 51, respectively. On the other hand, in the eighth embodiment, a plurality of conductive connection members 70a are also connected to locations in the middle of the path from one end of the first wiring 51 to the other end.
 基板60の部品実装面60Aを覆うソルダーレジスト80(図17B)に、第2配線62の一部を露出させる複数の開口81が設けられている。複数の開口81は、例えば第2配線62の一方の端部から他方の端部まで、2列に離散的に並んでいる。複数の開口81のそれぞれに、複数の導電性接続部材70aが配置される。 A plurality of openings 81 are provided in the solder resist 80 (FIG. 17B) that covers the component mounting surface 60A of the board 60 to expose a portion of the second wiring 62. The plurality of openings 81 are discretely arranged in two rows, for example, from one end of the second wiring 62 to the other end. A plurality of conductive connection members 70a are arranged in each of the plurality of openings 81.
 次に、第8実施例の優れた効果について説明する。
 第8実施例においても第7実施例と同様に、第1配線51に対して第2配線62が並列に接続される。このため、第1電子部品30と第2電子部品40とを相互に接続する配線の電流容量を増大させるとともに、直流抵抗を低減させることができる。なお、第8実施例では、第1配線51及び第2配線62の端部以外の箇所にも複数の導電性接続部材70aが配置されている。このため、電流容量を増大させる効果、及び直流抵抗を低減させる効果を高めることができる。
Next, the excellent effects of the eighth embodiment will be explained.
In the eighth embodiment, as in the seventh embodiment, the second interconnect 62 is connected in parallel to the first interconnect 51. Therefore, it is possible to increase the current capacity of the wiring that interconnects the first electronic component 30 and the second electronic component 40, and to reduce the DC resistance. In the eighth embodiment, a plurality of conductive connection members 70a are also arranged at locations other than the ends of the first wiring 51 and the second wiring 62. Therefore, the effect of increasing current capacity and the effect of reducing direct current resistance can be enhanced.
 第8実施例においても第7実施例と同様に、電子部品パッケージ20を基板60に実装する前のハンダバンプの高さを揃えやすいという優れた効果が得られる。 Similarly to the seventh embodiment, the eighth embodiment also provides the excellent effect of easily aligning the heights of the solder bumps before the electronic component package 20 is mounted on the board 60.
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 It goes without saying that each of the above-mentioned embodiments is merely an illustration, and that the configurations shown in the different embodiments can be partially replaced or combined. Similar effects due to similar configurations in a plurality of embodiments will not be mentioned for each embodiment. Furthermore, the invention is not limited to the embodiments described above. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.
20 電子部品パッケージ
20A 第1面
20B 第2面
22 外部接続端子
30 第1電子部品
31 パッド
32 ハンダ
40 第2電子部品
41、41a、41b パッド
42、43、44 ハンダ
50 支持部材
51 第1配線
53 第3配線
55 シールド部材
55A 天板
55B 脚部
56 シールド用パッド
57 ハンダ
58 グランド配線
60 基板
60A 部品実装面
61、61a、61b ランド
62 第2配線
63 グランド導体
64 配線
64a、64b コネクタ接続配線
64c 配線
65 コネクタ
67 ケーブル
68 基板
70 導電性接続部材(ハンダ)
70a 第1配線と第2配線とを接続する導電性接続部材
80 ソルダーレジスト
81 開口
90 仮基板
90A 仮基板の表面
100 ベースバンド信号処理回路
101 電源
110 放射素子
111 給電線
401 中間周波増幅器
402 アップダウンコンバート用ミキサ
403 送受信切替スイッチ
404 パワーディバイダ
405 移相器
406 アッテネータ
407 送受信切替スイッチ
408 パワーアンプ
409 ローノイズアンプ
410 送受信切替スイッチ
 
20 Electronic component package 20A First surface 20B Second surface 22 External connection terminal 30 First electronic component 31 Pad 32 Solder 40 Second electronic component 41, 41a, 41b Pads 42, 43, 44 Solder 50 Support member 51 First wiring 53 Third wiring 55 Shield member 55A Top plate 55B Legs 56 Shielding pad 57 Solder 58 Ground wiring 60 Board 60A Component mounting surface 61, 61a, 61b Land 62 Second wiring 63 Ground conductor 64 Wiring 64a, 64b Connector connection wiring 64c Wiring 65 Connector 67 Cable 68 Board 70 Conductive connecting member (solder)
70a Conductive connecting member 80 that connects the first wiring and the second wiring Solder resist 81 Opening 90 Temporary substrate 90A Temporary substrate surface 100 Baseband signal processing circuit 101 Power supply 110 Radiating element 111 Power supply line 401 Intermediate frequency amplifier 402 Up/down Converter mixer 403 Transmission/reception selection switch 404 Power divider 405 Phase shifter 406 Attenuator 407 Transmission/reception selection switch 408 Power amplifier 409 Low noise amplifier 410 Transmission/reception selection switch

Claims (16)

  1.  第1面を有する電子部品パッケージと、
     前記第1面に対向する部品実装面を有し、前記電子部品パッケージが実装された基板と、
     前記電子部品パッケージを前記基板に固定する1つまたは複数の導電性接続部材と
    を備え、
     前記電子部品パッケージは、
     第1電子部品及び第2電子部品と、
     前記第1電子部品及び前記第2電子部品を覆って前記第1電子部品及び前記第2電子部品を支持し、1つの面が前記第1面を構成している支持部材と、
     前記第1面に配置されて前記支持部材に支持され、前記第1電子部品を前記第2電子部品に電気的に接続する第1配線と
    を含み、
     前記基板は、前記部品実装面に配置された第2配線を含み、
     前記導電性接続部材のうち少なくとも1つは、前記第1配線と前記第2配線とを相互に接続する高周波モジュール。
    an electronic component package having a first side;
    a substrate having a component mounting surface opposite to the first surface and having the electronic component package mounted thereon;
    one or more conductive connecting members for fixing the electronic component package to the substrate,
    The electronic component package includes:
    A first electronic component and a second electronic component;
    a support member that covers the first electronic component and the second electronic component to support the first electronic component and the second electronic component, and one surface of which constitutes the first surface;
    a first wiring disposed on the first surface, supported by the support member, and electrically connecting the first electronic component to the second electronic component;
    The board includes a second wiring arranged on the component mounting surface,
    At least one of the conductive connection members is a high frequency module that interconnects the first wiring and the second wiring.
  2.  前記第1配線及び前記第2配線の各々は、前記第1面を平面視したとき、前記第1電子部品の一部分及び前記第2電子部品の一部分と重なり
     前記導電性接続部材のうち少なくとも1つは、前記第1面を平面視したとき、少なくとも、前記第1電子部品の一部分と重なる箇所、及び前記第2電子部品の一部分と重なる箇所において前記第1配線と前記第2配線とを相互に接続する請求項1に記載の高周波モジュール。
    Each of the first wiring and the second wiring overlaps a portion of the first electronic component and a portion of the second electronic component when the first surface is viewed from above; and at least one of the conductive connection members. When the first surface is viewed in plan, the first wiring and the second wiring are connected to each other at least in a portion overlapping with a portion of the first electronic component and a portion overlapping with a portion of the second electronic component. The high frequency module according to claim 1, which is connected to the high frequency module.
  3.  前記第1配線と前記第2配線とを相互に接続する前記導電性接続部材は、前記第1面を平面視したとき、前記第1電子部品の一部分と重なる箇所から前記第2電子部品の一部分と重なる箇所まで連続している請求項2に記載の高周波モジュール。 The conductive connecting member that interconnects the first wiring and the second wiring connects a portion of the second electronic component from a portion that overlaps with a portion of the first electronic component when the first surface is viewed in plan. 3. The high frequency module according to claim 2, which is continuous up to the point where it overlaps with the high frequency module.
  4.  前記第1配線と前記第2配線とを相互に接続する前記導電性接続部材は複数個配置されている請求項2に記載の高周波モジュール。 The high-frequency module according to claim 2, wherein a plurality of the conductive connecting members that interconnect the first wiring and the second wiring are arranged.
  5.  前記第1電子部品はパワーマネジメント回路の少なくとも一部分を構成し、前記第1配線を通して、前記第1電子部品から前記第2電子部品に直流電源が供給される請求項1乃至4のいずれか1項に記載の高周波モジュール。 5. The first electronic component constitutes at least a part of a power management circuit, and DC power is supplied from the first electronic component to the second electronic component through the first wiring. High frequency module described in.
  6.  前記基板は、さらに、
     放射素子と、
     前記放射素子を前記第2電子部品に接続する給電線と
    をさらに含む請求項1乃至5のいずれか1項に記載の高周波モジュール。
    The substrate further includes:
    a radiating element;
    The high frequency module according to any one of claims 1 to 5, further comprising a feed line connecting the radiating element to the second electronic component.
  7.  前記基板に実装されたコネクタを、さらに備え、
     前記基板は、さらに、前記コネクタを前記第1電子部品及び前記第2電子部品の一方に接続するコネクタ接続配線を含む請求項1乃至6のいずれか1項に記載の高周波モジュール。
    further comprising a connector mounted on the board,
    The high frequency module according to any one of claims 1 to 6, wherein the board further includes connector connection wiring that connects the connector to one of the first electronic component and the second electronic component.
  8.  前記電子部品パッケージは、さらに、
     前記第1面に配置されたシールド用パッドと、
     前記支持部材に支持され、前記シールド用パッドに電気的に接続され、前記第1面を平面視したとき、前記第1電子部品及び前記第2電子部品の少なくとも一方と重なるシールド部材と
    を含む請求項1乃至7のいずれか1項に記載の高周波モジュール。
    The electronic component package further includes:
    a shielding pad disposed on the first surface;
    A shield member supported by the support member, electrically connected to the shielding pad, and overlapping with at least one of the first electronic component and the second electronic component when the first surface is viewed from above. The high frequency module according to any one of items 1 to 7.
  9.  前記シールド用パッドは、前記第1電子部品及び前記第2電子部品の少なくとも一方のグランド端子に接続されている請求項8に記載の高周波モジュール。 The high frequency module according to claim 8, wherein the shielding pad is connected to a ground terminal of at least one of the first electronic component and the second electronic component.
  10.  前記基板は、さらに、前記部品実装面に配置されたグランド用のランドを含み、
     前記導電性接続部材のうち1つは、前記シールド用パッドと前記グランド用のランドとを相互に接続する請求項8または9に記載の高周波モジュール。
    The board further includes a ground land arranged on the component mounting surface,
    10. The high frequency module according to claim 8, wherein one of the conductive connecting members connects the shielding pad and the grounding land to each other.
  11.  前記電子部品パッケージは、前記第1面とは反対方向を向く第2面を含み、
     前記シールド部材は、前記第2面に露出している請求項8乃至10のいずれか1項に記載の高周波モジュール。
    The electronic component package includes a second surface facing in a direction opposite to the first surface,
    The high frequency module according to any one of claims 8 to 10, wherein the shield member is exposed on the second surface.
  12.  前記電子部品パッケージは、さらに、
     前記第1面に配置され、前記第2電子部品に接続された第3配線と、
     前記第3配線から前記第2面に向かって延び、前記第2面に露出した外部接続端子と
    を含む請求項11に記載の高周波モジュール。
    The electronic component package further includes:
    a third wiring arranged on the first surface and connected to the second electronic component;
    The high frequency module according to claim 11, further comprising an external connection terminal extending from the third wiring toward the second surface and exposed on the second surface.
  13.  前記電子部品パッケージは、さらに、
     前記第1面を平面視したとき前記第2電子部品と重なる位置に配置された第1パッドと、
     前記第1面を平面視したとき前記第2電子部品と重ならない位置に配置された第2パッドと、
     前記第2パッドに接続され、前記支持部材に支持されて前記第2面まで延び、前記第2面に露出する外部接続端子と
    を含み、
     前記基板は、さらに、
     前記部品実装面に配置された第1ランド及び第2ランドと、
     前記第1ランドを前記第2ランドに接続する内層の配線と
    を含み、
     前記第1ランド及び前記第2ランドは、それぞれ前記第1面を平面視したとき、前記第1パッド及び前記第2パッドに重なり、
     前記導電性接続部材のうち1つは前記第1パッドと前記第1ランドとを相互に接続し、他の1つは、前記第2パッドと前記第2ランドとを相互に接続する請求項11または12に記載の高周波モジュール。
    The electronic component package further includes:
    a first pad disposed at a position overlapping the second electronic component when the first surface is viewed from above;
    a second pad disposed at a position that does not overlap with the second electronic component when the first surface is viewed from above;
    an external connection terminal connected to the second pad, supported by the support member, extending to the second surface, and exposed on the second surface;
    The substrate further includes:
    a first land and a second land arranged on the component mounting surface;
    an inner layer wiring connecting the first land to the second land,
    The first land and the second land each overlap the first pad and the second pad when the first surface is viewed from above,
    11. One of the conductive connecting members mutually connects the first pad and the first land, and the other one mutually connects the second pad and the second land. Or the high frequency module according to 12.
  14.  請求項1乃至13のいずれか1項に記載の高周波モジュールと、
     ベースバンド信号処理回路と
    を備え、
     前記高周波モジュールの前記第2電子部品は、前記ベースバンド信号処理回路からの中間周波信号またはベースバンド信号をアップコンバートして高周波信号を生成し、高周波信号をダウンコンバートして中間周波信号またはベースバンド信号を生成して前記ベースバンド信号処理回路に入力する通信装置。
    The high frequency module according to any one of claims 1 to 13,
    Equipped with a baseband signal processing circuit,
    The second electronic component of the high frequency module up-converts the intermediate frequency signal or baseband signal from the baseband signal processing circuit to generate a high frequency signal, and down converts the high frequency signal to generate an intermediate frequency signal or baseband signal. A communication device that generates a signal and inputs it to the baseband signal processing circuit.
  15.  表面に第1配線が配置された仮基板の前記第1配線に、第1電子部品及び第2電子部品を電気的に接続して固定し、
     前記仮基板に固定された前記第1電子部品及び前記第2電子部品を支持部材で覆って封止し、
     前記仮基板を研削または研磨して前記第1配線、及び前記仮基板に密着していた前記支持部材の第1面を露出させ、
     部品実装面に第2配線が配置された基板を準備し、
     前記第1配線を前記第2配線に、1つまたは複数の導電性接続部材で電気的に接続することにより、前記支持部材、前記第1電子部品、及び前記第2電子部品を前記基板に実装する高周波モジュールの製造方法。
    electrically connecting and fixing a first electronic component and a second electronic component to the first wiring of a temporary substrate on which a first wiring is arranged;
    Covering and sealing the first electronic component and the second electronic component fixed to the temporary substrate with a support member,
    Grinding or polishing the temporary substrate to expose the first wiring and the first surface of the support member that was in close contact with the temporary substrate;
    Prepare a board with second wiring arranged on the component mounting surface,
    The supporting member, the first electronic component, and the second electronic component are mounted on the substrate by electrically connecting the first wiring to the second wiring with one or more conductive connecting members. A method for manufacturing high frequency modules.
  16.  前記第2配線は、前記第1面を平面視したとき、前記第1電子部品の一部分及び前記第2電子部品の一部分と重なり、
     前記導電性接続部材は、前記第1面を平面視したとき、少なくとも、前記第1電子部品の一部分と重なる箇所、及び前記第2電子部品の一部分と重なる箇所に配置されている請求項15に記載の高周波モジュールの製造方法。
     
    The second wiring overlaps a portion of the first electronic component and a portion of the second electronic component when the first surface is viewed from above,
    16. The conductive connection member according to claim 15, wherein the conductive connecting member is disposed at least at a portion overlapping with a portion of the first electronic component and a portion overlapping with a portion of the second electronic component when the first surface is viewed from above. A method of manufacturing the described high frequency module.
PCT/JP2023/025305 2022-08-10 2023-07-07 High frequency module, communication device and method for producing high frequency module WO2024034303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022127796 2022-08-10
JP2022-127796 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034303A1 true WO2024034303A1 (en) 2024-02-15

Family

ID=89851412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025305 WO2024034303A1 (en) 2022-08-10 2023-07-07 High frequency module, communication device and method for producing high frequency module

Country Status (1)

Country Link
WO (1) WO2024034303A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195026A1 (en) * 2015-06-04 2016-12-08 株式会社村田製作所 High frequency module
JP2018032890A (en) * 2016-08-22 2018-03-01 株式会社村田製作所 Wireless module
JP2018514082A (en) * 2015-03-19 2018-05-31 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Package structure with integrated waveguide, semiconductor wafer and waveguide for high speed communication
JP2022003679A (en) * 2020-06-23 2022-01-11 インテル・コーポレーション Scalable and interoperable phy-less die-to-die io solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514082A (en) * 2015-03-19 2018-05-31 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Package structure with integrated waveguide, semiconductor wafer and waveguide for high speed communication
WO2016195026A1 (en) * 2015-06-04 2016-12-08 株式会社村田製作所 High frequency module
JP2018032890A (en) * 2016-08-22 2018-03-01 株式会社村田製作所 Wireless module
JP2022003679A (en) * 2020-06-23 2022-01-11 インテル・コーポレーション Scalable and interoperable phy-less die-to-die io solution

Similar Documents

Publication Publication Date Title
US11081804B2 (en) Antenna-integrated type communication module and manufacturing method for the same
US10925149B2 (en) High frequency module, board equipped with antenna, and high frequency circuit board
KR100891763B1 (en) Semiconductor device
KR101397748B1 (en) Radio frequency(rf) integated circuit(ic) packages with integrated aperture-coupled patch antenna(s)
US7514774B2 (en) Stacked multi-chip package with EMI shielding
JPWO2019026595A1 (en) Antenna module and communication device
JP6915745B2 (en) Antenna module and communication device equipped with it
JP7115568B2 (en) Antenna module and communication device
JP5909707B2 (en) Wireless module
KR20010110421A (en) Multiple chip module with integrated rf capabilities
JP6602326B2 (en) Wireless device
JPWO2017099145A1 (en) Microwave module and high frequency module
JP2018117215A (en) Wireless device
KR20150050469A (en) System and method for a millimeter wave circuit board
TW202207414A (en) Semiconductor device
WO2024034303A1 (en) High frequency module, communication device and method for producing high frequency module
JP2019097026A (en) Radio communication module
WO2020153283A1 (en) Antenna module and communication device
JPWO2020261806A1 (en) Antenna module and communication device equipped with it
JP7129499B2 (en) Substrate and antenna module
JP7151456B2 (en) Impedance compensation circuit
JP7059385B2 (en) Antenna module and communication device equipped with it
JP2003218472A (en) Module and surface-mounted module
WO2020218289A1 (en) Module component, antenna module, and communication device
CN115332765B (en) Multi-beam laminate assembly for phased array antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852286

Country of ref document: EP

Kind code of ref document: A1