Nothing Special   »   [go: up one dir, main page]

WO2024034293A1 - 光学装置 - Google Patents

光学装置 Download PDF

Info

Publication number
WO2024034293A1
WO2024034293A1 PCT/JP2023/024894 JP2023024894W WO2024034293A1 WO 2024034293 A1 WO2024034293 A1 WO 2024034293A1 JP 2023024894 W JP2023024894 W JP 2023024894W WO 2024034293 A1 WO2024034293 A1 WO 2024034293A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
substrate
transparent electrode
angle
Prior art date
Application number
PCT/JP2023/024894
Other languages
English (en)
French (fr)
Inventor
幸次朗 池田
健夫 小糸
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2024034293A1 publication Critical patent/WO2024034293A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • One embodiment of the present invention relates to an optical device that controls the distribution of light emitted from a light source.
  • the electrodes that apply voltage to the liquid crystal have the same shape and arrangement in a plurality of stacked liquid crystal cells, interference fringes, moiré, or coloring may occur in the diffused light.
  • the electrode shapes are all different, the number of types of liquid crystal cells to be manufactured increases, which increases manufacturing costs.
  • an embodiment of the present invention aims to provide an optical device with reduced manufacturing costs and reduced moiré.
  • An optical device includes a light source and an optical element that includes a plurality of stacked liquid crystal cells and controls the distribution of light emitted from the light source, and each of the plurality of liquid crystal cells is a first substrate on which first electrodes and second electrodes are arranged alternately, a second substrate on which third electrodes and fourth electrodes are arranged alternately, and a first substrate. and a second substrate, each of the first electrode and the second electrode extending at an angle ⁇ ° (0 ⁇ 90) with respect to the first direction.
  • the plurality of liquid crystal cells include a first liquid crystal cell disposed closest to the light source and a second liquid crystal cell disposed in a stacked manner on the first liquid crystal cell.
  • the first substrate of the second liquid crystal cell faces the second substrate of the first liquid crystal cell, and the second liquid crystal cell is arranged in a first direction of the first liquid crystal cell and a second liquid crystal cell. The liquid crystal cell is placed so as to overlap the first liquid crystal cell so that the angle formed with the first direction of the cell is 180°.
  • FIG. 1 is a schematic perspective view of an optical device according to an embodiment of the present invention.
  • FIG. 1 is a schematic exploded perspective view of an optical element of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the properties of light transmitted through a first liquid crystal cell of the optical device 1 according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of an optical device according to an embodiment of the present invention.
  • FIG. 1 is a schematic exploded perspective view of an optical element of an optical device according to an embodiment of the present invention.
  • FIG. 2 is
  • FIG. 2 is a schematic cross-sectional view illustrating the properties of light transmitted through a first liquid crystal cell of the optical device 1 according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a planar pattern of a transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a planar pattern of a transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a planar pattern of a transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a planar pattern of a transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating an angle in an extending direction of a transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating an angle in an extending direction of a transparent electrode of a second liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating an angle in an extending direction of a transparent electrode of a second liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating an angle in an extending direction of a transparent electrode of a second liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a superimposed state of transparent electrodes extending in the x-axis direction in an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a superimposed state of transparent electrodes extending in the y-axis direction in an optical device according to an embodiment of the present invention.
  • FIG. 1 is a schematic exploded perspective view of an optical element of an optical device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating an angle in an extending direction of a transparent electrode of a third liquid crystal cell of an optical element included in an optical device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating an angle in an extending direction of a transparent electrode of a fourth liquid crystal cell of an optical element included in an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a planar pattern of a first transparent electrode and a second transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a planar pattern of a first transparent electrode and a second transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a planar pattern of a first transparent electrode and a second transparent electrode of a first liquid crystal cell of an optical device according to an embodiment of the present invention.
  • drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual aspect, but this is just an example, and the shape itself is not the same as the original. It does not limit the interpretation of the invention.
  • elements with the same functions as those explained in relation to the drawings already mentioned in the specification may be given the same reference numerals even if they are in separate drawings, and redundant explanations may be omitted. .
  • each structure When a single film is processed to form a plurality of structures, each structure may have a different function or role, and each structure may have a different base on which it is formed.
  • these multiple structures are derived from a film formed as the same layer in the same process and have the same material. Therefore, these multiple films are defined as existing in the same layer.
  • FIG. 1 is a schematic perspective view of an optical device 1 according to an embodiment of the present invention.
  • the optical device 1 includes an optical element 10 and a light source 20.
  • the optical element 10 includes a plurality of liquid crystal cells 100.
  • the optical element 10 can change the shape of the light that passes through the optical element 10, that is, the light distribution, by controlling the diffusion of the light emitted from the light source 20 using a plurality of liquid crystal cells 100.
  • the light source 20 is not particularly limited as long as it can emit light.
  • a light emitting diode (LED) or the like can be used as the light source 20.
  • FIG. 2 is a schematic exploded perspective view of the optical element 10 of the optical device 1 according to an embodiment of the present invention.
  • the optical element 10 includes four liquid crystal cells 100 (a first liquid crystal cell 100-1, a second liquid crystal cell 100-2, a third liquid crystal cell 100-3, and a fourth liquid crystal cell cell 100-4).
  • the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell are stacked in this order in the z-axis direction from the light source 20 side, and are superimposed. are doing.
  • the first liquid crystal cell 100-1 is closest to the light source 20, and the fourth liquid crystal cell 100-4 is farthest from the light source 20.
  • the number of liquid crystal cells 100 included in the optical element 10 is not limited to four.
  • the optical element 10 only needs to include at least two liquid crystal cells 100.
  • Each of the four liquid crystal cells 100 includes a connection terminal described below.
  • a flexible printed circuit board (FPCs) 210 is connected to the connection terminal, and a control signal is input to the liquid crystal cell 100 via the flexible printed circuit board 210.
  • An optical elastic resin layer 200 is provided between two adjacent liquid crystal cells 100. That is, the optical element 10 is located between the first liquid crystal cell 100-1 and the second liquid crystal cell 100-2, between the second liquid crystal cell 100-2 and the third liquid crystal cell 100-3, and An optical elastic resin layer 200 is provided between each of the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100-4.
  • the optical elastic resin layer 200 can adhere and fix two adjacent liquid crystal cells 100.
  • an adhesive containing a translucent acrylic resin can be used as the optical elastic resin layer 200.
  • the x-axis, y-axis, and z-axis shown in FIGS. 1 and 2 are defined with the optical element 10 as a reference, and are orthogonal to each other.
  • the z-axis direction is the stacking direction of the plurality of liquid crystal cells 100, and the direction away from the light source 20 is the + direction.
  • Each of the x-axis direction and the y-axis direction is one direction in a plane perpendicular to the z-axis.
  • the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100-4 have the same configuration. That is, in the optical element 10, four liquid crystal cells 100 having the same configuration are stacked with their orientations changed. As shown in FIG. 2, the first direction D1 and the second direction D2 of the first liquid crystal cell 100-1 are the x-axis direction (+x direction) and the y-axis direction (+y direction) of the optical element 10, respectively.
  • the first direction D1 and the second direction D2 of the second liquid crystal cell 100-2 are the -x direction and the -y direction, respectively.
  • the angle formed by the first direction D1 of the first liquid crystal cell 100-1 and the first direction D1 of the second liquid crystal cell 100-2 is 180°
  • the first liquid crystal cell 100- is arranged such that the angle between the second direction D2 of the first liquid crystal cell 100-1 and the second direction D2 of the second liquid crystal cell 100-2 is 180°. It is located on 1.
  • the first direction D1 and the second direction D2 of the third liquid crystal cell 100-3 are the ⁇ x direction and the +y direction, respectively.
  • the third liquid crystal cell 100-3 has an angle of 180° between the first direction D1 of the first liquid crystal cell 100-1 and the first direction D1 of the third liquid crystal cell 100-3.
  • the second liquid crystal cell 100- is arranged so that the angle between the second direction D2 of the first liquid crystal cell 100-1 and the second direction D2 of the third liquid crystal cell 100-3 is 0°. It is located on 2.
  • the first direction D1 and the second direction D2 of the fourth liquid crystal cell 100-4 are the +x direction and the ⁇ y direction, respectively.
  • the angle between the first direction D1 of the first liquid crystal cell 100-1 and the first direction D1 of the fourth liquid crystal cell 100-4 is 0°
  • the third liquid crystal cell 100- is arranged so that the angle between the second direction D2 of the first liquid crystal cell 100-1 and the second direction D2 of the fourth liquid crystal cell 100-4 is 180°. It is located on 3.
  • the optical element 10 a plurality of liquid crystal cells 100 having the same configuration are stacked so that the directions of arrangement are different from each other, and moiré can be reduced. Furthermore, since the optical element 10 can be manufactured using one type of liquid crystal cell 100, the manufacturing cost of the optical device 1 can be reduced. Note that the optical element 10 may include liquid crystal cells having the same arrangement direction.
  • the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100-4 are liquid crystal cells having the same configuration. It is 100. Therefore, below, the configuration of the liquid crystal cell 100 will be explained using the first liquid crystal cell 100-1 as an example.
  • FIG. 3 is a schematic perspective view of the first liquid crystal cell 100-1 of the optical device 1 according to an embodiment of the present invention.
  • FIGS. 4A and 4B is a schematic cross-sectional view of the first liquid crystal cell 100-1 of the optical device 1 according to an embodiment of the present invention.
  • FIG. 4A is a cross-sectional view of the first liquid crystal cell 100-1 in the zx plane taken along the line A1-A2 in FIG. 3
  • FIG. 4B is a cross-sectional view taken along the line B1-B2 in FIG.
  • FIG. 2 is a cross-sectional view of the first liquid crystal cell 100-1 in the yz plane.
  • the first liquid crystal cell 100-1 includes a first substrate 110-1, a second substrate 110-2, a first transparent electrode 120-1, a second transparent electrode 120-2, and a third transparent electrode 120. -3, a fourth transparent electrode 120-4, a first alignment film 130-1, a second alignment film 130-2, a sealant 140, and a liquid crystal layer 150.
  • the first substrate 110-1 and the second substrate 110-2 may be referred to as the substrate 110 unless they are particularly distinguished.
  • the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 are not particularly distinguished, they are described as the transparent electrode 120. There are cases where
  • first transparent electrode 120-1 On the first substrate 110-1, a first transparent electrode 120-1, a second transparent electrode 120-2, and a second transparent electrode covering the first transparent electrode 120-1 and the second transparent electrode 120-2 are disposed.
  • One alignment film 130-1 is provided.
  • second substrate 110-2 On the second substrate 110-2, a third transparent electrode 120-3, a fourth transparent electrode 120-4, and a third transparent electrode 120-3 and a fourth transparent electrode 120-4 are provided.
  • a second covering alignment film 130-2 is provided.
  • the first substrate 110-1 and the second substrate 110-2 are the first transparent electrode 120-1 and the second transparent electrode 120-2 on the first substrate 110-1, and the second substrate 110-1 and the second substrate 110-2.
  • a third transparent electrode 120-3 and a fourth transparent electrode 120-4 on 110-2 are arranged to face each other.
  • first substrate 110-1 and the second substrate 110-2 are bonded together via a sealant 140 provided around the first substrate 110-1 and the second substrate 110-2. has been done.
  • first substrate 110-1 more specifically, the first alignment film 130-1
  • second substrate 110-2 more specifically, the second alignment film 130-2
  • a liquid crystal is sealed in a space surrounded by the sealant 140, and a liquid crystal layer 150 is provided between the first substrate 110-1 and the second substrate 110-2.
  • each of the first substrate 110-1 and the second substrate for example, a rigid substrate having light-transmitting properties such as a glass substrate, a quartz substrate, or a sapphire substrate is used.
  • each of the first substrate 110-1 and the second substrate 110-2 may be a flexible substrate having light-transmitting properties, such as a polyimide resin substrate, an acrylic resin substrate, a siloxane resin substrate, or a fluororesin substrate. You can also use
  • Each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 is used for forming an electric field in the liquid crystal layer 150. Functions as an electrode.
  • Each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 is made of, for example, indium tin oxide (ITO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • an opaque metal material may be used as each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4. can.
  • first transparent electrode 120-1, second transparent electrode 120-2, third transparent electrode 120-3, and fourth transparent electrode 120-4 Details of the planar patterns of the first transparent electrode 120-1, second transparent electrode 120-2, third transparent electrode 120-3, and fourth transparent electrode 120-4 will be described later, but FIG. 4A And as shown in FIG. 4B, the first transparent electrode 120-1 and the second transparent electrode 120-2 extend generally along the x-axis direction, and the third transparent electrode 120-3 and the fourth transparent electrode Electrode 120-4 extends generally along the y-axis direction.
  • the liquid crystal layer 150 can refract the transmitted light or change the polarization state of the transmitted light, depending on the alignment state of the liquid crystal molecules.
  • the liquid crystal of the liquid crystal layer 150 nematic liquid crystal or the like is used.
  • the liquid crystal described in this embodiment is of a positive type, a configuration in which a negative type is applied is also possible by changing the orientation direction of liquid crystal molecules in a state where no voltage is applied to the transparent electrode 120.
  • the liquid crystal contains a chiral agent that imparts twist to the liquid crystal molecules.
  • Each of the first alignment film 130-1 and the second alignment film 130-2 aligns liquid crystal molecules in the liquid crystal layer 150 in a predetermined direction.
  • Polyimide resin or the like is used as each of the first alignment film 130-1 and the second alignment film 130-2.
  • each of the first alignment film 130-1 and the second alignment film 130-2 may be given alignment characteristics by an alignment treatment such as a rubbing method or a photo alignment method.
  • the rubbing method is a method of rubbing the surface of an alignment film in one direction.
  • the photo-alignment method is a method in which an alignment film is irradiated with linearly polarized ultraviolet light.
  • the first alignment film 130-1 is subjected to a rubbing process in the y-axis direction, and has an alignment property that aligns the long axes of liquid crystal molecules on the first substrate 110-1 side of the liquid crystal layer 150 in the y-axis direction.
  • the second alignment film 130-2 is subjected to a rubbing process in the x-axis direction, and has an alignment property that aligns the long axes of liquid crystal molecules on the second substrate 110-2 side of the liquid crystal layer 150 in the x-axis direction.
  • the orientation direction (y-axis direction) of the first alignment film 130-1 and the orientation direction (x-axis direction) of the second alignment film 130-2 are described as being orthogonal.
  • the angle between the alignment direction of the first alignment film 130-1 and the alignment direction of the second alignment film 130-2 is not limited to 90°.
  • the angle between the alignment direction of the first alignment film 130-1 and the alignment direction of the second alignment film 130-2 may be around 90°, for example, 80° or more and less than 90°.
  • an adhesive containing epoxy resin or acrylic resin is used as the sealant 140.
  • the adhesive may be of an ultraviolet curing type or a thermosetting type.
  • the configuration of the first liquid crystal cell 100-1 has been described above, but in the optical element 10, four liquid crystal cells having the same configuration are stacked with their orientations changed.
  • the first substrate 110-1 of the second liquid crystal cell 100-2 faces the second substrate 110-2 of the first liquid crystal cell 100-1. It is arranged on the first liquid crystal cell 100-1 so as to.
  • the third liquid crystal cell 100-3 is configured such that the second substrate 110-2 of the third liquid crystal cell 100-3 faces the second substrate of the second liquid crystal cell 100-2. is arranged on the liquid crystal cell 100-2.
  • the fourth liquid crystal cell 100-4 is arranged so that the second substrate of the fourth liquid crystal cell 100-4 faces the first substrate 110-1 of the third liquid crystal cell. It is located on 100-3.
  • FIGS. 5A and 5B are schematic cross-sectional views illustrating the properties of light transmitted through the first liquid crystal cell 100-1 of the optical device 1 according to an embodiment of the present invention. Specifically, FIG. 5A shows the first liquid crystal cell 100-1 in a state where no voltage is applied to the transparent electrode 120, and FIG. 5B shows the first liquid crystal cell 100-1 in a state where a voltage is applied to the transparent electrode 120. A liquid crystal cell 100-1 is shown.
  • a voltage is applied to each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4.
  • the liquid crystal molecules in the liquid crystal layer 150 are oriented so as to be twisted by 90° along the z-axis direction as they go from the first substrate 110-1 to the second substrate 110-2. Therefore, the plane of polarization (the polarization axis or the direction of the polarization component) of the light transmitted through the liquid crystal layer 150 is rotated by 90 degrees according to the orientation direction of the liquid crystal molecules. That is, the light that passes through the liquid crystal layer 150 undergoes optical rotation.
  • a voltage is applied so that a potential difference is generated between two adjacent transparent electrodes 120.
  • a High voltage (H) is applied to the first transparent electrode 120-1 and the third transparent electrode 120-3
  • a Low voltage (H) is applied to the second transparent electrode 120-2 and the fourth transparent electrode 120-4.
  • L is applied.
  • the electric field generated between two adjacent transparent electrodes 120 may be referred to as a transverse electric field.
  • the liquid crystal molecules near the first substrate 110-1 are caused to move in the y direction with respect to the first substrate 110-1 due to the transverse electric field between the first transparent electrode 120-1 and the second transparent electrode 120-2. It is oriented in a convex arc shape in the axial direction, producing a refractive index distribution. Further, the liquid crystal molecules near the second substrate 110-2 are caused to move toward the second substrate 110-2 by the transverse electric field between the third transparent electrode 120-3 and the fourth transparent electrode 120-4. and is oriented in a convex arc shape in the x-axis direction, resulting in a refractive index distribution.
  • the cell gap d which is the distance between the first substrate 110-1 and the second substrate 110-2, is sufficiently larger than the distance between two adjacent transparent electrodes (for example, 10 ⁇ m ⁇ d ⁇ 30 ⁇ m). Therefore, the orientation of liquid crystal molecules located near the center between the first substrate 110-1 and the second substrate 110-2 hardly changes.
  • the light emitted from the light source 20 includes a polarized light component in the x-axis direction (hereinafter referred to as "P-polarized light component”) and a polarized light component in the y-axis direction (hereinafter referred to as "S-polarized light component").
  • P-polarized light component a polarized light component in the x-axis direction
  • S-polarized light component a polarized light component in the y-axis direction
  • first polarized light 1000-1 having a P polarized light component
  • second polarized light 1000-2 having an S polarized light component ((1) in FIG. 5B). reference).
  • the first polarized light 1000-1 Since the P-polarized light component of the first polarized light 1000-1 incident on the liquid crystal cell 100 is different from the alignment direction of the liquid crystal molecules on the first substrate 110-1 side, the first polarized light 1000-1 is not diffused (FIG. 5B (see (2)). In the process of passing through the liquid crystal layer 150, the first polarized light 1000-1 changes the direction of its polarized light component to the angle formed by the alignment direction of the first alignment film 130-1 and the second alignment film 130-2. In the embodiment, the light is rotated by 90° (this phenomenon is sometimes referred to as optical rotation), and the polarization component changes from the P polarization component to the S polarization component.
  • the first polarized light 1000-1 Since the S-polarized light component of the first polarized light 1000-1 is different from the orientation direction of the liquid crystal molecules on the second substrate 110-2 side, the first polarized light 1000-1 is not diffused (see (3) in FIG. 5B). . Furthermore, the first polarized light 1000-1 emitted from the liquid crystal cell 100 has an S-polarized light component (see (4) in FIG. 5B).
  • the second polarized light 1000-2 incident on the liquid crystal cell 100 is the same as the alignment direction of the liquid crystal molecules on the first substrate 110-1 side, the second polarized light 1000-2 is It is diffused in the y-axis direction according to the refractive index distribution of liquid crystal molecules (see (2) in FIG. 5B).
  • the second polarized light 1000-2 rotates while passing through the liquid crystal layer 150, and its polarized light component changes from an S polarized light component to a P polarized light component.
  • the second polarized light 1000-2 Since the P-polarized light component of the second polarized light 1000-2 is the same as the orientation direction of the liquid crystal molecules on the second substrate 110-2 side, the second polarized light 1000-2 follows the refractive index distribution of the liquid crystal molecules. It is diffused in the x-axis direction (see (3) in FIG. 5B). Further, the second polarized light 1000-2 emitted from the liquid crystal cell 100 has a P polarized light component (see (4) in FIG. 5B).
  • first liquid crystal cell 100-1 The characteristics of the first liquid crystal cell 100-1 have been described above, but in the optical element 10, four liquid crystal cells having the same configuration are stacked with their orientations changed.
  • the diffusion characteristics of each of 100-4 are shown in Table 1. Note that Table 1 shows a case where a voltage is applied to all the transparent electrodes 120 (that is, a potential difference is generated between two adjacent transparent electrodes 120 on the substrate 110).
  • FIG. 6A and 6B are each a schematic plan view showing a planar pattern of the transparent electrode 120 of the first liquid crystal cell 100-1 of the optical device 1 according to an embodiment of the present invention. Specifically, FIG. 6A shows a planar pattern of the first transparent electrode 120-1 and the second transparent electrode 120-2 on the first substrate 110-1, and FIG. -2 shows a planar pattern of the third transparent electrode 120-3 and the fourth transparent electrode 120-4.
  • a plurality of first transparent electrodes 120-1, a plurality of second transparent electrodes 120-2, a wiring WL11, a wiring WL12, a first connection A terminal T11 and a second connection terminal T12 are provided on the first substrate 110-1.
  • Each of the plurality of first transparent electrodes 120-1 is electrically connected to a first connection terminal T11 via a wiring WL11.
  • each of the plurality of second transparent electrodes 120-2 is electrically connected to a second connection terminal T12 via a wiring WL12.
  • a third connection terminal T13, a fourth connection terminal T14, a wiring WL13, a wiring WL14, a first connection pad PD11, and a second connection pad PD12 are provided on the first substrate 110-1. ing.
  • the first connection pad PD11 is electrically connected to the third connection terminal T13 via a wiring WL13.
  • the second connection pad PD12 is electrically connected to the fourth connection terminal T14 via a wiring WL14.
  • a flexible printed circuit board is connected to the first connection terminal T11, the second connection terminal T12, the third connection terminal T13, and the fourth connection terminal T14, and controls the first liquid crystal cell 100-1.
  • a voltage is supplied as a control signal.
  • connection terminal T14 A transparent conductive material or a metal material may be used as the connection terminal T14.
  • Each of the plurality of first transparent electrodes 120-1 includes a first straight part LP11, a second straight part LP12, and a first bent part CP11.
  • the first linear portion LP11 and the second linear portion LP12 are not parallel, but are connected at a predetermined angle at the first bent portion CP11.
  • each of the plurality of second transparent electrodes 120-2 also includes a first straight portion LP11, a second straight portion LP12, and a first bent portion CP11.
  • the first transparent electrode 120-1 the first straight part LP11 is connected to the wiring WL11, and the second straight part LP12 has an end, whereas in the second transparent electrode 120-2, The second linear portion LP12 is connected to the wiring WL12, and the first linear portion LP11 has an end.
  • the first transparent electrode 120-1 and the second transparent electrode 120-2 have different configurations.
  • each of the plurality of third transparent electrodes 120-3 is electrically connected to a third connection pad PD23 via a wiring WL23.
  • each of the plurality of fourth transparent electrodes 120-4 is electrically connected to a fourth connection pad PD24 via a wiring WL24.
  • the third connection pad PD23 and the fourth connection pad PD24 are electrically connected to the first connection pad PD11 and the second connection pad PD12, respectively, using a conductive material. Therefore, each of the plurality of third transparent electrodes 120-3 is electrically connected to the third connection terminal T13, and each of the plurality of fourth transparent electrodes 120-4 is electrically connected to the fourth connection terminal T14. electrically connected.
  • Each of the plurality of third transparent electrodes 120-3 includes a third straight portion LP23, a fourth straight portion LP24, and a second bent portion CP22.
  • the third linear portion LP23 and the fourth linear portion LP24 are not parallel, but are connected at a predetermined angle at the second bent portion CP22.
  • each of the plurality of fourth transparent electrodes 120-4 also includes a third straight portion LP23, a fourth straight portion LP24, and a second bent portion CP22.
  • the third transparent electrode 120-3 the third straight part LP23 is connected to the wiring WL23, and the fourth straight part LP24 has an end, whereas in the fourth transparent electrode 120-4, The fourth straight part LP24 is connected to the wiring WL24, and the third straight part LP23 has an end.
  • the third transparent electrode 120-3 and the fourth transparent electrode 120-4 have different configurations.
  • FIG. 7 is a plan view showing a planar pattern of the transparent electrode 120 of the first liquid crystal cell 100-1 of the optical device 1 according to an embodiment of the present invention.
  • each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 has a dogleg shape.
  • the third transparent electrode 120-3 overlaps the first transparent electrode 120-1 and the second transparent electrode 120-2.
  • the fourth transparent electrode 120-4 also overlaps with the first transparent electrode 120-1 and the second transparent electrode 120-2.
  • FIG. 8A is a schematic diagram illustrating the angle of the extending direction of the transparent electrode 120 of the first liquid crystal cell 100-1 of the optical device 1 according to an embodiment of the present invention.
  • FIG. 8A shows the first linear portion LP11, the second linear portion LP12, and the The extending directions of the third linear portion LP23 and the fourth linear portion LP24 are shown.
  • the center line in the length direction of the straight portion is defined as the extending direction.
  • the first straight portion LP11 extends at an angle ⁇ ° (0 ⁇ 90) with respect to the x-axis direction.
  • the second straight portion LP12 extends at an angle ⁇ ° (0 ⁇ 90 and ⁇ ) with respect to the x-axis direction.
  • the third straight portion LP23 extends at an angle (90+ ⁇ )° with respect to the x-axis direction.
  • the fourth straight portion LP24 extends at an angle (90+ ⁇ )° with respect to the x-axis direction.
  • the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant include:
  • the second straight part LP12, the third straight part LP23, the first straight part LP11, and the fourth straight part LP24 belong to each of them. That is, in a plan view of the first liquid crystal cell 100-1, the first linear portion LP11, the second linear portion LP12, the third linear portion LP23, and the fourth linear portion LP24 are located in different quadrants. belongs to
  • FIG. 8B is a schematic diagram illustrating the angle of the extending direction of the transparent electrode 120 of the second liquid crystal cell 100-2 of the optical device 1 according to an embodiment of the present invention.
  • FIG. 8B shows the first straight part LP11 and the second straight part in the second liquid crystal cell 100-2, with the first bent part CP11 and the second bent part CP22 as the origin of the x-axis and the y-axis.
  • LP12, third straight portion LP23, and fourth straight portion LP24 are shown.
  • the first straight portion LP11 extends at an angle ⁇ ° with respect to the x-axis direction.
  • the second straight portion LP12 extends at an angle ⁇ ° with respect to the x-axis direction.
  • the third straight portion LP23 extends at an angle (90+ ⁇ )° with respect to the x-axis direction.
  • the fourth straight portion LP24 extends at an angle (90+ ⁇ )° with respect to the x-axis direction.
  • the first, second, third, and fourth quadrants include a first linear portion LP11, a fourth linear portion LP24, and a second linear portion, respectively.
  • LP12 and the third straight portion LP23 belong thereto. That is, even in a plan view of the second liquid crystal cell 100-2, the first linear portion LP11, the second linear portion LP12, the third linear portion LP23, and the fourth linear portion LP24 are different from each other. belongs to the quadrant.
  • FIG. 8C is a schematic diagram illustrating the angle of the extending direction of the transparent electrode 120 of the third liquid crystal cell 100-3 of the optical device 1 according to an embodiment of the present invention.
  • FIG. 8C shows the first straight part LP11 and the second straight part in the third liquid crystal cell 100-3, with the first bent part CP11 and the second bent part CP22 being the origin of the x-axis and the y-axis.
  • LP12, third straight portion LP23, and fourth straight portion LP24 are shown.
  • the first straight portion LP11 extends at an angle of ⁇ ° with respect to the x-axis direction.
  • the second straight portion LP12 extends at an angle of ⁇ ° with respect to the x-axis direction.
  • the third straight portion LP23 extends at an angle (90- ⁇ )° with respect to the x-axis direction.
  • the fourth straight portion LP24 extends at an angle (90 ⁇ )° with respect to the x-axis direction.
  • the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant include a third linear portion LP23, a second linear portion LP12, and a fourth linear portion, respectively.
  • LP24 and the first straight portion LP11 belong thereto. That is, even in a plan view of the third liquid crystal cell 100-3, the first linear portion LP11, the second linear portion LP12, the third linear portion LP23, and the fourth linear portion LP24 are different from each other. belongs to the quadrant.
  • FIG. 8D is a schematic diagram illustrating the angle of the extending direction of the transparent electrode 120 of the fourth liquid crystal cell 100-4 of the optical device 1 according to an embodiment of the present invention.
  • FIG. 8D shows the first straight part LP11 and the second straight part in the fourth liquid crystal cell 100-4, with the first bent part CP11 and the second bent part CP22 as the origins of the x-axis and the y-axis.
  • LP12, third straight portion LP23, and fourth straight portion LP24 are shown.
  • the first straight portion LP11 extends at an angle of ⁇ ° with respect to the x-axis direction.
  • the second straight portion LP12 extends at an angle of ⁇ ° with respect to the x-axis direction.
  • the third straight portion LP23 extends at an angle (90- ⁇ )° with respect to the x-axis direction.
  • the fourth straight portion LP24 extends at an angle (90 ⁇ )° with respect to the x-axis direction.
  • the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant include a fourth linear portion LP24, a first linear portion LP11, and a third linear portion, respectively.
  • LP23 and the second straight portion LP12 belong thereto. That is, even in a plan view of the fourth liquid crystal cell 100-4, the first linear portion LP11, the second linear portion LP12, the third linear portion LP23, and the fourth linear portion LP24 are different from each other. belongs to the quadrant.
  • Table 2 shows the straight line portions belonging to each quadrant in the first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100-3, and fourth liquid crystal cell 100-4.
  • Table 3 also shows the straight line portions belonging to each quadrant in the first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100-3, and fourth liquid crystal cell 100-4. Indicates the angle made with respect to the x-axis direction.
  • the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100- 4 are stacked, a straight line portion belongs to each quadrant, and the straight line portions within each quadrant are overlapped at different angles. Therefore, in the optical element 10, moiré is reduced.
  • the angles ⁇ ° and ⁇ ° formed are preferably greater than 0° and less than or equal to 45°, more preferably greater than 0° and less than or equal to 30°, particularly preferably greater than 0° and less than or equal to 10°.
  • the angle of the extending direction of the transparent electrode 120 has been described above with the bent portion as the center, the angle can also be defined with the base of the transparent electrode 120 (i.e., the connecting portion between the transparent electrode 120 and the wiring) as the center.
  • the two straight parts included in one transparent electrode 120 are each bent at a predetermined angle in the same direction (positive direction or negative direction) from the x-axis direction or the y-axis direction. Can be done.
  • FIGS. 9A and 9B are schematic plan views showing a superimposed state of transparent electrodes 120 extending along the x-axis direction and the y-axis direction, respectively, in the optical device 1 according to an embodiment of the present invention.
  • the straight portion of the transparent electrode 120 extends at a predetermined angle with respect to the x-axis direction, but in FIG. 9A, the first transparent electrode 120-1 and the second transparent electrode 120-2 extends generally along the x-axis direction, and in FIG. 9B, a third transparent electrode 120-3 and a fourth transparent electrode 120-4 extend generally along the y-axis direction.
  • a third transparent electrode 120-3 and a fourth transparent electrode 120-4 extend generally along the y-axis direction.
  • portion LP12_2, the first linear portion LP11_3 and second linear portion LP12_3 of the third liquid crystal cell 100-3, and the first linear portion LP11_4 and second linear portion LP12_4 of the fourth liquid crystal cell 100-4. do not completely overlap each other when viewed in the length direction.
  • the first bent portion CP11 included in the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100-4 is a flat surface. When viewed, it lies on a straight line extending in the y-axis direction.
  • the second bent portion CP22 included in the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100-4 is a flat surface. When viewed, it lies on a straight line extending in the x-axis direction.
  • an optical element 10A different from the optical element 10 can be manufactured using a plurality of liquid crystal cells 100 having the same configuration.
  • FIG. 10 is a schematic exploded perspective view of the optical element 10A of the optical device 1 according to an embodiment of the present invention.
  • the optical element 10A is different from the optical element 10 in the arrangement directions of the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100-4.
  • the first direction D1 and the second direction D2 of the third liquid crystal cell 100-3 are the +y direction and the ⁇ x direction, respectively.
  • the angle formed by the first direction D1 of the first liquid crystal cell 100-1 and the first direction D1 of the third liquid crystal cell 100-3 is 90°
  • the second liquid crystal cell 100- is arranged such that the angle between the second direction D2 of the first liquid crystal cell 100-1 and the second direction D2 of the third liquid crystal cell 100-3 is 90°. It is located on 2.
  • the first direction D1 and the second direction D2 of the fourth liquid crystal cell 100-4 are the ⁇ y direction and the +x direction, respectively.
  • the angle formed by the first direction D1 of the first liquid crystal cell 100-1 and the first direction D1 of the fourth liquid crystal cell 100-4 is 90°
  • the third liquid crystal cell 100- is arranged such that the angle between the first direction D1 of the first liquid crystal cell 100-1 and the first direction D1 of the fourth liquid crystal cell 100-4 is 90°. It is located on 3.
  • each of the first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100-3, and fourth liquid crystal cell 100-4 in the optical element 10A are as shown in Table 4. It is. Note that Table 4 shows a case where a voltage is applied to all the transparent electrodes 120 (that is, a potential difference is generated between two adjacent transparent electrodes 120 on the substrate 110).
  • FIG. 11A is a schematic diagram illustrating the angle of the extending direction of the transparent electrode 120 of the third liquid crystal cell 100-3 of the optical element 10A included in the optical device 1 according to an embodiment of the present invention.
  • FIG. 11A shows the first linear portion LP11 and the second straight line of the third liquid crystal cell 100-3 of the optical element 10A in xy coordinates with the first bent portion CP11 and the second bent portion CP22 as origins.
  • a portion LP12, a third straight portion LP23, and a fourth straight portion LP24 are shown.
  • the first straight portion LP11 extends at an angle (90 ⁇ )° with respect to the x-axis direction.
  • the second straight portion LP12 extends at an angle (90 ⁇ )° with respect to the x-axis direction.
  • the third straight portion LP23 extends at an angle of ⁇ ° with respect to the x-axis direction.
  • the fourth straight portion LP24 extends at an angle ⁇ with respect to the x-axis direction.
  • the first, second, third, and fourth quadrants have a first straight portion LP11, a third straight portion LP23, and a third straight portion LP23, respectively.
  • the second straight line portion LP12 and the fourth straight line portion LP24 belong thereto. That is, in a plan view of the third liquid crystal cell 100-3 of the optical element 10A, the first linear portion LP11, the second linear portion LP12, the third linear portion LP23, and the fourth linear portion LP24 are respectively , belong to different quadrants.
  • FIG. 11B is a schematic diagram illustrating the angle of the extending direction of the transparent electrode 120 of the fourth liquid crystal cell 100-4 of the optical element 10A included in the optical device 1 according to an embodiment of the present invention.
  • FIG. 11B shows the first linear portion LP11 and the second straight line of the fourth liquid crystal cell 100-4 of the optical element 10A in xy coordinates with the first bent portion CP11 and the second bent portion CP22 as origins.
  • a portion LP12, a third straight portion LP23, and a fourth straight portion LP24 are shown.
  • the first straight portion LP11 extends at an angle (90 ⁇ )° with respect to the x-axis direction.
  • the second straight portion LP12 extends at an angle (90 ⁇ )° with respect to the x-axis direction.
  • the third straight portion LP23 extends at an angle of ⁇ ° with respect to the x-axis direction.
  • the fourth straight portion LP24 extends at an angle ⁇ with respect to the x-axis direction.
  • the first, second, third, and fourth quadrants have a second linear portion LP12, a fourth linear portion LP24, and a fourth linear portion LP24, respectively.
  • the first straight line portion LP11 and the third straight line portion LP23 belong thereto. That is, in a plan view of the fourth liquid crystal cell 100-4 of the optical element 10A, the first linear portion LP11, the second linear portion LP12, the third linear portion LP23, and the fourth linear portion LP24 are as follows. Each belongs to a different quadrant.
  • Table 5 shows the straight line portions belonging to each quadrant in the first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100-3, and fourth liquid crystal cell 100-4.
  • Table 6 also shows the linear portions belonging to each quadrant in the first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100-3, and fourth liquid crystal cell 100-4. Indicates the angle made with respect to the x-axis direction.
  • the optical element 10 of the optical device 1 includes a plurality of liquid crystal cells 100 having the same configuration, and moiré can be reduced by mutually changing the arrangement directions of the liquid crystal cells 100. Furthermore, in the case of the liquid crystal cell 100, it is also possible to manufacture an optical element 10A different from the optical element 10, so that the liquid crystal cell 100 has high versatility and the manufacturing cost of the optical device 1 can be suppressed.
  • FIG. 12 is a schematic plan view showing a planar pattern of a first transparent electrode 120B-1 and a second transparent electrode 120B-2 of a first liquid crystal cell of an optical device according to an embodiment of the present invention. .
  • each of the first transparent electrode 120B-1 and the second transparent electrode 120B-2 has a first straight part LP11B, a second straight part LP12B, and a first bent part CP11B.
  • the first straight portion LP11B and the second straight portion LP12B intersect and are connected at the first bent portion CP11B.
  • the width of each of the first straight portion LP11B and the second straight portion LP12B is not uniform, and increases toward the first bent portion CP11B. Note that in FIG. 12, the width of each of the first straight portion LP11B and the second straight portion LP12B gradually increases toward the first bent portion CP11B, but even if the width increases in a stepwise manner, good.
  • FIG. 13 is a schematic plan view showing a planar pattern of a first transparent electrode 120C-1 and a second transparent electrode 120C-2 of a first liquid crystal cell of an optical device according to an embodiment of the present invention. .
  • each of the first transparent electrode 120C-1 and the second transparent electrode 120C-2 has a first straight part LP11C, a second straight part LP12C, and a first bent part CP11C.
  • the first straight portion LP11C and the second straight portion LP12C intersect and are connected at the first bent portion CP11C.
  • the width of each of the first straight portion LP11C and the second straight portion LP12C is not uniform, and becomes smaller toward the first bent portion CP11C.
  • FIG. 13 shows that the width of each of the first straight portion LP11B and the second straight portion LP12B gradually decreases toward the first bent portion CP11C, even if the width decreases in a stepwise manner, good.
  • FIG. 14 is a schematic plan view showing a planar pattern of a first transparent electrode 120D-1 and a second transparent electrode 120D-2 of a first liquid crystal cell of an optical device according to an embodiment of the present invention. .
  • each of the first transparent electrode 120C-1 and the second transparent electrode 120C-2 includes a plurality of first bent portions CP11.
  • the plurality of first bent portions CP11 may be provided regularly or may be provided randomly. However, the first bent portions CP11 located at the center are regularly provided so as to lie on a straight line extending in the y-axis direction.
  • Optical device 10, 10A: Optical element
  • 20 Light source
  • 100 Liquid crystal cell
  • 100-1 First liquid crystal cell
  • 100-2 Second liquid crystal cell
  • 100-3 Third liquid crystal cell
  • 100-4 Fourth liquid crystal cell
  • 130-1 First alignment film
  • 130-2 Second alignment film
  • 140 Seal material
  • 150 Liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

光学装置は、光源と、積層された複数の液晶セルを含み、光源から出射された光の配光を制御する光学素子と、を含み、複数の液晶セルの各々は、第1の電極(120-1)と第2の電極(120-2)とが交互に配置される第1の基板(110-1)と、第3の電極と第4の電極とが交互に配置される第2の基板と、第1の基板と第2の基板との間の液晶層と、を含み、第1の電極および第2の電極の各々は、第1の方向に対してなす角α°で延在する第1の直線部(LP11)と、第1の方向に対してなす角βで延在する第2の直線部(LP12)と、を含み、第3の電極および第4の電極の各々は、第1の方向に対してなす角(90+α)°で延在する第3の直線部と、第1の方向に対してなす角(90+β)°で延在する第4の直線部と、を含む。

Description

光学装置
 本発明の一実施形態は、光源から出射される光の配光を制御する光学装置に関する。
 従来より、液晶に印加する電圧を調整し、液晶の屈折率が変化することを利用した光学素子、いわゆる液晶レンズが知られている。また、液晶レンズを用いて、光源から出射される光の配光を制御する光学装置の開発が進められている(例えば、特許文献1、特許文献2、または特許文献3参照)。
特開2005-317879号公報 特開2010-230887号公報 特開2014-160277号公報
 しかしながら、積層される複数の液晶セルにおいて、液晶に電圧を印加する電極の形状および配置が同一であると、拡散光に干渉縞、モアレ、または色付きが生じてしまう場合がある。積層される複数の液晶セルの電極の形状パターンが全て異なるように設計することもできるが、製造する液晶セルの種類が増加するため、製造コストが上昇してしまう。
 本発明の一実施形態は、上記問題に鑑み、製造コストを抑制し、モアレが低減された光学装置を提供することを目的の一つとする。
 本発明の一実施形態に係る光学装置は、光源と、積層された複数の液晶セルを含み、光源から出射された光の配光を制御する光学素子と、を含み、複数の液晶セルの各々は、第1の電極と第2の電極とが交互に配置される第1の基板と、第3の電極と第4の電極とが交互に配置される第2の基板と、第1の基板と第2の基板との間の液晶層と、を含み、第1の電極および第2の電極の各々は、第1の方向に対してなす角α°(0<α<90)で延在する第1の直線部と、第1の方向に対してなす角β°(0<β<90、かつ、β≠α)で延在する第2の直線部と、を含み、第3の電極および第4の電極の各々は、第1の方向に対してなす角(90+α)°で延在する第3の直線部と、第1の方向に対してなす角(90+β)°で延在する第4の直線部と、を含み、複数の液晶セルは、光源に最も近く配置される第1の液晶セルと、第1の液晶セルに積層して配置される第2の液晶セルと、を含み、第2の液晶セルの第1の基板は、第1の液晶セルの第2の基板と対向し、第2の液晶セルは、第1の液晶セルの第1の方向と第2の液晶セルの第1の方向とのなす角が180°であるように、第1の液晶セルと重畳して配置される。
本発明の一実施形態に係る光学装置の模式的な斜視図である。 本発明の一実施形態に係る光学装置の光学素子の模式的な分解斜視図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの模式的な斜視図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの模式的な断面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの模式的な断面図である。 本発明の一実施形態に係る光学装置1の第1の液晶セルを透過する光の性質を説明する模式的な断面図である。 本発明の一実施形態に係る光学装置1の第1の液晶セルを透過する光の性質を説明する模式的な断面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの透明電極の平面パターンを示す模式的な平面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの透明電極の平面パターンを示す模式的な平面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの透明電極の平面パターンを示す模式的な平面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの透明電極の延在方向の角度を説明する模式図である。 本発明の一実施形態に係る光学装置の第2の液晶セルの透明電極の延在方向の角度を説明する模式図である。 本発明の一実施形態に係る光学装置の第2の液晶セルの透明電極の延在方向の角度を説明する模式図である。 本発明の一実施形態に係る光学装置の第2の液晶セルの透明電極の延在方向の角度を説明する模式図である。 本発明の一実施形態に係る光学装置において、x軸方向に延在する透明電極の重畳状態を示す模式的な平面図である。 本発明の一実施形態に係る光学装置において、y軸方向に延在する透明電極の重畳状態を示す模式的な平面図である。 本発明の一実施形態に係る光学装置の光学素子の模式的な分解斜視図である。 本発明の一実施形態に係る光学装置に含まれる光学素子の第3の液晶セルの透明電極の延在方向の角度を説明する模式図である。 本発明の一実施形態に係る光学装置に含まれる光学素子の第4の液晶セルの透明電極の延在方向の角度を説明する模式図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの第1の透明電極及び第2の透明電極の平面パターンを示す模式的な平面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの第1の透明電極及び第2の透明電極の平面パターンを示す模式的な平面図である。 本発明の一実施形態に係る光学装置の第1の液晶セルの第1の透明電極及び第2の透明電極の平面パターンを示す模式的な平面図である。
 以下、本発明の各実施形態において、図面等を参照しつつ説明する。但し、本発明は、その技術的思想の要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、図示の形状そのものが本発明の解釈を限定するものではない。また、図面において、明細書中で既出の図に関して説明したものと同様の機能を備えた要素には、別図であっても同一の符号を付して、重複する説明を省略する場合がある。
 ある一つの膜を加工して複数の構造体を形成した場合、各々の構造体は異なる機能、役割を有する場合があり、また各々の構造体はそれが形成される下地が異なる場合がある。しかしながら、これら複数の構造体は、同一の工程で同一層として形成された膜に由来するものであり、同一の材料を有する。従って、これら複数の膜は同一層に存在しているものと定義する。
 ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上」と表記する場合、特に断りの無い限りは、ある構造体に接して、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
<第1実施形態>
 図1~図11Bを参照して、本発明の一実施形態に係る光学装置について説明する。
[1.光学装置の構成]
 図1は、本発明の一実施形態に係る光学装置1の模式的な斜視図である。図1に示すように、光学装置1は、光学素子10および光源20を含む。光学素子10の構成の詳細は後述するが、光学素子10は、複数の液晶セル100を含む。光学素子10は、複数の液晶セル100を用いて、光源20から出射された光の拡散を制御することにより、光学素子10を透過する光の形状、すなわち、配光を変化させることができる。
 光源20は、光を出射することができればよく、特に限定されない。例えば、光源20として、発光ダイオード(Light Emitting Diode:LED)などを用いることができる。
 図2は、本発明の一実施形態に係る光学装置1の光学素子10の模式的な分解斜視図である。図2に示すように、光学素子10は、4つの液晶セル100(第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4)を含む。第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セルは、光源20側からz軸方向にこの順で積層され、重畳している。第1の液晶セル100-1が光源20に最も近く、第4の液晶セル100-4が光源20から最も離れている。なお、光学素子10に含まれる液晶セル100の数は、4つに限られない。光学素子10には、少なくとも2つの液晶セル100が含まれていればよい。
 4つの液晶セル100の各々は、後述する接続端子を含む。接続端子にはフレキシブルプリント回路基板(Flexible Printed Circuits:FPCs)210が接続され、フレキシブルプリント回路基板210を介して液晶セル100に制御信号が入力される。
 隣接する2つの液晶セル100の間には、光学弾性樹脂層200が設けられている。すなわち、光学素子10は、第1の液晶セル100-1と第2の液晶セル100-2との間、第2の液晶セル100-2と第3の液晶セル100-3との間、および第3の液晶セル100-3と第4の液晶セル100-4との間のそれぞれに、光学弾性樹脂層200が設けられている。光学弾性樹脂層200は、隣接する2つの液晶セル100を接着し、固定することができる。光学弾性樹脂層200としては、例えば、透光性を有したアクリル樹脂を含む接着材を用いることができる。
 図1および図2に示すx軸、y軸、およびz軸は、光学素子10を基準として定義され、互いに直交する。z軸方向は、複数の液晶セル100の積層方向であり、光源20から遠ざかる方向が+方向である。x軸方向およびy軸方向の各々は、z軸に垂直な面の一方向である。
 第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4は、同一の構成を有する。すなわち、光学素子10では、同一の構成を有する4つの液晶セル100が互いに配置方向を変えて積層されている。図2に示すように、第1の液晶セル100-1の第1の方向D1および第2の方向D2は、それぞれ、光学素子10のx軸方向(+x方向)およびy軸方向(+y方向)に対応している。以下では、便宜上、同一の構成を有する4つの液晶セル100のそれぞれ配置方向を説明するにあたり、光源20に最も近い第1の液晶セル100-1の配置方向を基準として、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4の配置方向を説明する。
 第2の液晶セル100-2の第1の方向D1および第2の方向D2は、ぞれぞれ、-x方向および-y方向である。換言すると、第2の液晶セル100-2は、第1の液晶セル100-1の第1の方向D1と第2の液晶セル100-2の第1の方向D1とのなす角が180°、かつ、第1の液晶セル100-1の第2の方向D2と第2の液晶セル100-2の第2の方向D2とのなす角が180°であるように、第1の液晶セル100-1上に配置されている。
 第3の液晶セル100-3の第1の方向D1および第2の方向D2は、それぞれ、-x方向および+y方向である。換言すると、第3の液晶セル100-3は、第1の液晶セル100-1の第1の方向D1と第3の液晶セル100-3の第1の方向D1とのなす角が180°、かつ、第1の液晶セル100-1の第2の方向D2と第3の液晶セル100-3の第2の方向D2とのなす角が0°であるように、第2の液晶セル100-2上に配置されている。
 第4の液晶セル100-4の第1の方向D1および第2の方向D2は、それぞれ、+x方向および-y方向である。換言すると、第4の液晶セル100-4は、第1の液晶セル100-1の第1の方向D1と第4の液晶セル100-4の第1の方向D1とのなす角が0°、かつ、第1の液晶セル100-1の第2の方向D2と第4の液晶セル100-4の第2の方向D2とのなす角が180°であるように、第3の液晶セル100-3上に配置されている。
 このように、光学素子10では、同一の構成を有する複数の液晶セル100を、互いに配置方向が異なるように積層し、モアレを低減することができる。また、1種類の液晶セル100を用いて光学素子10を製造することができるため、光学装置1の製造コストを削減することができる。なお、光学素子10には、同じ配置方向を有する液晶セルが含まれていてもよい。
[2.液晶セルの構成]
 上述したように、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4は、同一の構成を有する液晶セル100である。そのため、以下では、第1の液晶セル100-1を一例として液晶セル100の構成を説明する。
 図3は、本発明の一実施形態に係る光学装置1の第1の液晶セル100-1の模式的な斜視図である。図4Aおよび図4Bの各々は、本発明の一実施形態に係る光学装置1の第1の液晶セル100-1の模式的な断面図である。具体的には、図4Aは、図3のA1-A2線で切断されたzx面内における第1の液晶セル100-1の断面図であり、図4Bは、図3のB1-B2線で切断されたyz面内における第1の液晶セル100-1の断面図である。
 第1の液晶セル100-1は、第1の基板110-1、第2の基板110-2、第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、第4の透明電極120-4、第1の配向膜130-1、第2の配向膜130-2、シール材140、および液晶層150を含む。なお、以下では、第1の基板110-1および第2の基板110-2を特に区別しないとき、基板110として説明する場合がある。同様に、第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4を特に区別しないとき、透明電極120として説明する場合がある。
 第1の基板110-1上には、第1の透明電極120-1、第2の透明電極120-2、ならびに第1の透明電極120-1および第2の透明電極120-2を覆う第1の配向膜130-1が設けられている。また、第2の基板110-2上には、第3の透明電極120-3、第4の透明電極120-4、ならびに第3の透明電極120-3および第4の透明電極120-4を覆う第2の配向膜130-2が設けられている。第1の基板110-1と第2の基板110-2とは、第1の基板110-1上の第1の透明電極120-1および第2の透明電極120-2と、第2の基板110-2上の第3の透明電極120-3および第4の透明電極120-4とが対向するように配置されている。また、第1の基板110-1と第2の基板110-2とは、第1の基板110-1および第2の基板110-2の周辺部に設けられたシール材140を介して、接着されている。また、第1の基板110-1(より具体的には、第1の配向膜130-1)、第2の基板110-2(より具体的には、第2の配向膜130-2)、およびシール材140で囲まれた空間には液晶が封入され、第1の基板110-1と第2の基板110-2との間に液晶層150が設けられている。
 第1の基板110-1および第2の基板の各々として、例えば、ガラス基板、石英基板、またはサファイア基板などの透光性を有する剛性基板が用いられる。また、第1の基板110-1および第2の基板110-2の各々として、例えば、ポリイミド樹脂基板、アクリル樹脂基板、シロキサン樹脂基板、またはフッ素樹脂基板などの透光性を有する可撓性基板を用いることもできる。
 第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4の各々は、液晶層150に電界を形成するための電極として機能する。第1の透明電極120-1、第2の透明電極120-2,第3の透明電極120-3、および第4の透明電極120-4の各々として、例えば、インジウム・スズ酸化物(ITO)またはインジウム・亜鉛酸化物(IZO)などの透明導電材料が用いられる。また、第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4の各々として、不透明な金属材料を用いることもできる。
 第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4のそれぞれの平面パターンの詳細は後述するが、図4Aおよび図4Bに示すように、第1の透明電極120-1および第2の透明電極120-2は概ねx軸方向に沿って延在し、第3の透明電極120-3および第4の透明電極120-4は概ねy軸方向に沿って延在している。
 液晶層150は、液晶分子の配向状態に応じて、透過する光を屈折し、または透過する光の偏光状態を変化させることができる。液晶層150の液晶として、ネマティック液晶などが用いられる。本実施形態で説明する液晶はポジ型であるが、透明電極120に電圧を印加しない状態における液晶分子の配向方向などを変更することによりネガ型を適用する構成も可能である。また、液晶には、液晶分子にねじれを付与するカイラル剤が含まれていることが好ましい。
 第1の配向膜130-1および第2の配向膜130-2の各々は、液晶層150内の液晶分子を所定の方向に配向させる。第1の配向膜130-1および第2の配向膜130-2の各々として、ポリイミド樹脂などが用いられる。なお、第1の配向膜130-1および第2の配向膜130-2の各々は、ラビング法または光配向法などの配向処理によって配向特性が付与されてもよい。ラビング法は、配向膜の表面を一方向に擦る方法である。また、光配向法は、配向膜に直線偏光の紫外線を照射する方法である。
 第1の配向膜130-1は、y軸方向にラビング処理が行われ、液晶層150の第1の基板110-1側の液晶分子の長軸をy軸方向に配向させる配向特性を有する。また、第2の配向膜130-2は、x軸方向にラビング処理が行われ、液晶層150の第2の基板110-2側の液晶分子の長軸をx軸方向に配向させる配向特性を有する。
 なお、本実施形態においては、第1の配向膜130-1の配向方向(y軸方向)と第2の配向膜130-2の配向方向(x軸方向)とが直交するものとして説明しているが、第1の配向膜130-1の配向方向と第2の配向膜130-2の配向方向とのなす角は90°に限られない。第1の配向膜130-1の配向方向と第2の配向膜130-2の配向方向とのなす角は、90°近傍の角度、例えば、80°以上90°未満であってもよい。
 シール材140として、エポキシ樹脂またはアクリル樹脂を含む接着材などが用いられる。なお、接着材は、紫外線硬化型であってもよく、熱硬化型であってもよい。
 以上、第1の液晶セル100-1の構成について説明したが、光学素子10では、同一の構成を有する4つの液晶セルが互いに配置方向を変えて積層されている。具体的には、第2の液晶セル100-2は、第2の液晶セル100-2の第1の基板110-1が第1の液晶セル100-1の第2の基板110-2と対向するように、第1の液晶セル100-1上に配置されている。また、第3の液晶セル100-3は、第3の液晶セル100-3の第2の基板110-2が第2の液晶セル100-2の第2の基板と対向するように、第2の液晶セル100-2上に配置されている。また、第4の液晶セル100-4は、第4の液晶セル100-4の第2の基板が第3の液晶セルの第1の基板110-1と対向するように、第3の液晶セル100-3上に配置されている。
[3.液晶セルの特性]
 ここで、図5Aおよび図5Bを参照して、第1の液晶セル100-1を透過する光の性質について説明する。
 図5Aおよび図5Bは、本発明の一実施形態に係る光学装置1の第1の液晶セル100-1を透過する光の性質を説明する模式的な断面図である。具体的には、図5Aは、透明電極120に電圧が印加されていない状態の第1の液晶セル100-1を示し、図5Bは、透明電極120に電圧が印加されている状態の第1の液晶セル100-1を示す。
 図5Aに示すように、第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4のいずれにも電圧が印加されていない状態では、液晶層150内の液晶分子は、第1の基板110-1から第2の基板110-2に向かうにつれてz軸方向に沿って90°ねじれるように配向する。そのため、液晶層150を透過する光は、液晶分子の配向方向にしたがって、偏光面(偏光軸または偏光成分の向き)が90°回転される。すなわち、液晶層150を透過する光は、旋光する。
 図5Bでは、隣接する2つの透明電極120間で電位差が生じるように電圧が印加されている。例えば、第1の透明電極120-1および第3の透明電極120-3にHigh電圧(H)が印加され、第2の透明電極120-2および第4の透明電極120-4にLow電圧(L)が印加される。なお、以下では、隣接する2つの透明電極120間に生じる電界を横電界という場合がある。
 第1の基板110-1側近傍の液晶分子は、第1の透明電極120-1と第2の透明電極120-2との間の横電界によって、第1の基板110-1に対してy軸方向に凸円弧状に配向し、屈折率分布が生じる。また、第2の基板110-2側近傍の液晶分子は、第3の透明電極120-3と第4の透明電極120-4との間の横電界によって、第2の基板110-2に対してx軸方向に凸円弧状に配向し、屈折率分布が生じる。一方、第1の基板110-1と第2の基板110-2の間の間隔であるセルギャップdは、隣接する2つの透明電極間の距離よりも十分に大きい(例えば10μm≦d≦30μm)ため、第1の基板110-1と第2の基板110-2との間の中央近傍に位置する液晶分子の配向はほとんど変化しない。
 光源20から出射された光は、x軸方向の偏光成分(以下、「P偏光成分」という。)およびy軸方向の偏光成分(以下、「S偏光成分」という。)を含むが、以下では、便宜上、光源20から出射された光を、P偏光成分を有する第1の偏光1000-1とS偏光成分を有する第2の偏光1000-2とに分けて説明する(図5Bの(1)参照)。
 液晶セル100に入射した第1の偏光1000-1のP偏光成分は、第1の基板110-1側の液晶分子の配向方向と異なるため、第1の偏光1000-1は拡散されない(図5Bの(2)参照)。第1の偏光1000-1は、液晶層150を通過する過程でその偏光成分の向きが、第1の配向膜130-1の配向方向と第2の配向膜130-2とのなす角(本実施形態においては90°)だけ回転することとなり(本現象を旋光と称する場合がある。)し、偏光成分がP偏光成分からS偏光成分に変化する。第1の偏光1000-1のS偏光成分は、第2の基板110-2側の液晶分子の配向方向と異なるため、第1の偏光1000-1は拡散されない(図5Bの(3)参照)。また、液晶セル100から出射される第1の偏光1000-1は、S偏光成分を有する(図5Bの(4)参照)。
 一方、液晶セル100に入射した第2の偏光1000-2のS偏光成分は、第1の基板110-1側の液晶分子の配向方向と同じであるため、第2の偏光1000-2は、液晶分子の屈折率分布にしたがってy軸方向に拡散される(図5Bの(2)参照)。第2の偏光1000-2は、液晶層150を通過する過程で旋光し、偏光成分がS偏光成分からP偏光成分に変化する。第2の偏光1000-2のP偏光成分は、第2の基板110-2側の液晶分子の配向方向と同じであるため、第2の偏光1000-2は、液晶分子の屈折率分布にしたがってx軸方向に拡散される(図5Bの(3)参照)。また、液晶セル100から出射される第2の偏光1000-2は、P偏光成分を有する(図5Bの(4)参照)。
 以上、第1の液晶セル100-1の特性について説明したが、光学素子10では、同一の構成を有する4つの液晶セルが互いに配置方向を変えて積層されている。光源20から出射された光のP偏光成分およびS偏光成分に対する、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4のそれぞれの拡散特性は表1のとおりである。なお、表1には、全ての透明電極120に電圧が印加されている(すなわち、基板110上で隣接する2つの透明電極120間に電位差が生じている)場合が示されている。
Figure JPOXMLDOC01-appb-T000001
    
[5.透明電極の平面パターン]
 図6Aおよび図6Bの各々は、本発明の一実施形態に係る光学装置1の第1の液晶セル100-1の透明電極120の平面パターンを示す模式的な平面図である。具体的には、図6Aは、第1の基板110-1上の第1の透明電極120-1および第2の透明電極120-2の平面パターンを示し、図6Bは、第2の基板110-2上の第3の透明電極120-3および第4の透明電極120-4の平面パターンを示す。
 図6Aに示すように、第1の基板110-1上には、複数の第1の透明電極120-1、複数の第2の透明電極120-2、配線WL11、配線WL12、第1の接続端子T11、および第2の接続端子T12が設けられている。複数の第1の透明電極120-1の各々は、配線WL11を介して第1の接続端子T11と電気的に接続されている。また、複数の第2の透明電極120-2の各々は、配線WL12を介して第2の接続端子T12と電気的に接続されている。さらに、第1の基板110-1上には、第3の接続端子T13、第4の接続端子T14、配線WL13、配線WL14、第1の接続パッドPD11、および第2の接続パッドPD12が設けられている。第1の接続パッドPD11は、配線WL13を介して第3の接続端子T13と電気的に接続されている。第2の接続パッドPD12は、配線WL14を介して第4の接続端子T14と電気的に接続されている。
 第1の接続端子T11、第2の接続端子T12、第3の接続端子T13、および第4の接続端子T14には、フレキシブルプリント回路基板が接続され、第1の液晶セル100-1を制御する制御信号として電圧が供給される。
 配線WL11、配線WL12、配線WL13、配線WL14、第1の接続パッドPD11、第2の接続パッドPD12、第1の接続端子T11、第2の接続端子T12、第3の接続端子T13、および第4の接続端子T14として、透明導電材料が用いられていてもよく、金属材料が用いられていてもよい。
 複数の第1の透明電極120-1の各々は、第1の直線部LP11、第2の直線部LP12、および第1の屈曲部CP11を含む。第1の直線部LP11と第2の直線部LP12とは、平行ではなく、第1の屈曲部CP11で所定の角度を有して接続されている。同様に、複数の第2の透明電極120-2の各々も、第1の直線部LP11、第2の直線部LP12、および第1の屈曲部CP11を含む。但し、第1の透明電極120-1では、第1の直線部LP11が配線WL11と接続し、第2の直線部LP12が端部を有するのに対し、第2の透明電極120-2では、第2の直線部LP12が配線WL12と接続し、第1の直線部LP11が端部を有する。この点において、第1の透明電極120-1と第2の透明電極120-2とは構成が異なる。
 図6Bに示すように、第2の基板110-2上には、複数の第3の透明電極120-3、複数の第4の透明電極120-4、配線WL23、配線WL24、第3の接続パッドPD23、および第4の接続パッドPD24を含む。複数の第3の透明電極120-3の各々は、配線WL23を介して第3の接続パッドPD23と電気的に接続されている。また、複数の第4の透明電極120-4の各々は、配線WL24を介して第4の接続パッドPD24と電気的に接続されている。第3の接続パッドPD23および第4の接続パッドPD24は、導電性材料により、それぞれ、第1の接続パッドPD11および第2の接続パッドPD12と電気的に接続される。そのため、複数の第3の透明電極120-3の各々は、第3の接続端子T13と電気的に接続され、複数の第4の透明電極120-4の各々は、第4の接続端子T14と電気的に接続されている。
 複数の第3の透明電極120-3の各々は、第3の直線部LP23、第4の直線部LP24、および第2の屈曲部CP22を含む。第3の直線部LP23と第4の直線部LP24とは、平行ではなく、第2の屈曲部CP22で所定の角度を有して接続されている。同様に、複数の第4の透明電極120-4の各々も、第3の直線部LP23、第4の直線部LP24、および第2の屈曲部CP22を含む。但し、第3の透明電極120-3では、第3の直線部LP23が配線WL23と接続し、第4の直線部LP24が端部を有するのに対し、第4の透明電極120-4では、第4の直線部LP24が配線WL24と接続し、第3の直線部LP23が端部を有する。この点において、第3の透明電極120-3と第4の透明電極120-4とは構成が異なる。
 図7は、本発明の一実施形態に係る光学装置1の第1の液晶セル100-1の透明電極120の平面パターンを示す平面図である。平面視において、第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4の各々は、くの字形状を有する。第3の透明電極120-3は、第1の透明電極120-1および第2の透明電極120-2と重畳している。同様に、第4の透明電極120-4も、第1の透明電極120-1および第2の透明電極120-2と重畳している。
 ここで、図8A~図8Dを参照して、透明電極120の第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24の各々の延在方向について説明する。
 図8Aは、本発明の一実施形態に係る光学装置1の第1の液晶セル100-1の透明電極120の延在方向の角度を説明する模式図である。図8Aには、第1の屈曲部CP11および第2の屈曲部CP22を原点としたxy座標における、第1の液晶セル100-1の第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24の延在方向が示されている。本明細書では、説明の便宜上、直線部の長さ方向における中心線を延在方向として定義する。
 第1の液晶セル100-1では、第1の直線部LP11は、x軸方向に対してなす角α°(0<α<90)で延在している。第2の直線部LP12は、x軸方向に対してなす角β°(0<β<90、かつ、β≠α)で延在している。第3の直線部LP23は、x軸方向に対してなす角(90+α)°で延在している。第4の直線部LP24は、x軸方向に対してなす角(90+β)°で延在している。
 ここで、図8Aに示すxy座標を、第1象限、第2象限、第3象限、および第4象限で区分すると、第1象限、第2象限、第3象限、および第4象限には、それぞれ、第2の直線部LP12、第3の直線部LP23、第1の直線部LP11、および第4の直線部LP24が属する。すなわち、第1の液晶セル100-1の平面視において、第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24は、それぞれ、互いに異なる象限に属している。
 図8Bは、本発明の一実施形態に係る光学装置1の第2の液晶セル100-2の透明電極120の延在方向の角度を説明する模式図である。図8Bには、第1の屈曲部CP11および第2の屈曲部CP22をx軸およびy軸の原点とする、第2の液晶セル100-2における第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24が示されている。
 第2の液晶セル100-2では、第1の直線部LP11は、x軸方向に対してなす角α°で延在している。第2の直線部LP12は、x軸方向に対してなす角β°で延在している。第3の直線部LP23は、x軸方向に対してなす角(90+α)°で延在している。第4の直線部LP24は、x軸方向に対してなす角(90+β)°で延在している。第2の液晶セル100-2では、第1象限、第2象限、第3象限、および第4象限には、それぞれ、第1の直線部LP11、第4の直線部LP24、第2の直線部LP12、および第3の直線部LP23が属する。すなわち、第2の液晶セル100-2の平面視においても、第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24は、それぞれ、互いに異なる象限に属している。
 図8Cは、本発明の一実施形態に係る光学装置1の第3の液晶セル100-3の透明電極120の延在方向の角度を説明する模式図である。図8Cには、第1の屈曲部CP11および第2の屈曲部CP22をx軸およびy軸の原点とする、第3の液晶セル100-3における第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24が示されている。
 第3の液晶セル100-3では、第1の直線部LP11は、x軸方向に対してなす角-α°で延在している。第2の直線部LP12は、x軸方向に対してなす角-β°で延在している。第3の直線部LP23は、x軸方向に対してなす角(90-α)°で延在している。第4の直線部LP24は、x軸方向に対してなす角(90-β)°で延在している。第3の液晶セル100-3では、第1象限、第2象限、第3象限、および第4象限には、それぞれ、第3の直線部LP23、第2の直線部LP12、第4の直線部LP24、および第1の直線部LP11が属する。すなわち、第3の液晶セル100-3の平面視においても、第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24は、それぞれ、互いに異なる象限に属している。
 図8Dは、本発明の一実施形態に係る光学装置1の第4の液晶セル100-4の透明電極120の延在方向の角度を説明する模式図である。図8Dには、第1の屈曲部CP11および第2の屈曲部CP22をx軸およびy軸の原点とする、第4の液晶セル100-4における第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24が示されている。
 第4の液晶セル100-4では、第1の直線部LP11は、x軸方向に対してなす角-α°で延在している。第2の直線部LP12は、x軸方向に対してなす角-β°で延在している。第3の直線部LP23は、x軸方向に対してなす角(90-α)°で延在している。第4の直線部LP24は、x軸方向に対してなす角(90-β)°で延在している。第4の液晶セル100-4では、第1象限、第2象限、第3象限、および第4象限には、それぞれ、第4の直線部LP24、第1の直線部LP11、第3の直線部LP23、および第2の直線部LP12が属する。すなわち、第4の液晶セル100-4の平面視においても、第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24は、それぞれ、互いに異なる象限に属している。
 表2に、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4における各象限に属する直線部に示す。また、表3に、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4における各象限に属する直線部のx軸方向に対してなす角を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3からわかるように、光学素子10では、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4が積層されても、各象限に直線部が属し、かつ、各象限内の直線部は、角度がずれて重畳される。そのため、光学素子10では、モアレが低減される。なお、なす角α°およびβ°は、好ましくは0°より大きく45°以下であり、さらに好ましくは0°より大きく30°以下であり、特に好ましくは0°より大きく10°以下である。
 以上、屈曲部を中心として透明電極120の延在方向の角度を説明したが、透明電極120の基部(すなわち、透明電極120と配線との接続部)を中心として角度を規定することもできる。この場合、1つの透明電極120に含まれる2つの直線部は、x軸方向またはy軸方向から同じ方向(正方向または負方向)にそれぞれが所定の角度を有して屈曲しているということができる。
 ここで、図9Aおよび図9Bを参照して、屈曲部の位置について説明する。
 図9Aおよび図9Bは、本発明の一実施形態に係る光学装置1において、それぞれx軸方向およびy軸方向に沿って延在する透明電極120の重畳状態を示す模式的な平面図である。上述したように、透明電極120の直線部は、x軸方向に対して所定の角度を有して延在するが、図9Aには、第1の透明電極120-1および第2の透明電極120-2が概ねx軸方向に沿って延在し、図9Bには、第3の透明電極120-3および第4の透明電極120-4が概ねy軸方向に沿って延在しているものとして説明する。
 図9Aに示すように、第1の液晶セル100-1の第1の直線部LP11_1および第2の直線部LP12_1、第2の液晶セル100-2の第1の直線部LP11_2および第2の直線部LP12_2、第3の液晶セル100-3の第1の直線部LP11_3および第2の直線部LP12_3、ならびに第4の液晶セル100-4の第1の直線部LP11_4および第2の直線部LP12_4は、長さ方向に亘ってみた場合に互いに完全には重畳していない。但し、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4に含まれる第1の屈曲部CP11は、平面視において、y軸方向に延在する一直線上に載っている。
 図9Bに示すように、第1の液晶セル100-1の第3の直線部LP23_1および第4の直線部LP24_1、第2の液晶セル100-2の第3の直線部LP23_2および第4の直線部LP24_2、第3の液晶セル100-3の第3の直線部LP23_3および第4の直線部LP24_3、ならびに第4の液晶セル100-4の第3の直線部LP23_4および第4の直線部LP24_4は、長さ方向に亘ってみた場合に互いに完全には重畳していない。但し、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4に含まれる第2の屈曲部CP22は、平面視において、x軸方向に延在する一直線上に載っている。
[6.光学素子の別の構成]
 上述した平面パターンを有する透明電極120を含む液晶セル100では、同一の構成を有する複数の液晶セル100を用いて、光学素子10とは異なる光学素子10Aを製造することもできる。
 図10は、本発明の一実施形態に係る光学装置1の光学素子10Aの模式的な分解斜視図である。光学素子10Aは、光学素子10とは第3の液晶セル100-3および第4の液晶セル100-4の配置方向が異なる。
 光学素子10Aでは、第3の液晶セル100-3の第1の方向D1および第2の方向D2は、それぞれ、+y方向および-x方向である。換言すると、第3の液晶セル100-3は、第1の液晶セル100-1の第1の方向D1と第3の液晶セル100-3の第1の方向D1とのなす角が90°、かつ、第1の液晶セル100-1の第2の方向D2と第3の液晶セル100-3の第2の方向D2とのなす角が90°であるように、第2の液晶セル100-2上に配置されている。第4の液晶セル100-4の第1の方向D1および第2の方向D2は、それぞれ、-y方向および+x方向である。換言すると、第4の液晶セル100-4は、第1の液晶セル100-1の第1の方向D1と第4の液晶セル100-4の第1の方向D1とのなす角が90°、かつ、第1の液晶セル100-1の第1の方向D1と第4の液晶セル100-4の第1の方向D1とのなす角が90°であるように、第3の液晶セル100-3上に配置されている。
 光学素子10Aにおける第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4のそれぞれの拡散特性は表4のとおりである。なお、表4には、全ての透明電極120に電圧が印加されている(すなわち、基板110上で隣接する2つの透明電極120間に電位差が生じている)場合が示されている。
Figure JPOXMLDOC01-appb-T000004
 図11Aは、本発明の一実施形態に係る光学装置1に含まれる光学素子10Aの第3の液晶セル100-3の透明電極120の延在方向の角度を説明する模式図である。図11Aには、第1の屈曲部CP11および第2の屈曲部CP22を原点としたxy座標における、光学素子10Aの第3の液晶セル100-3の第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24が示されている。
 光学素子10Aの第3の液晶セル100-3では、第1の直線部LP11は、x軸方向に対してなす角(90-α)°で延在している。第2の直線部LP12は、x軸方向に対してなす角(90-β)°で延在している。第3の直線部LP23は、x軸方向に対してなす角-α°で延在している。第4の直線部LP24は、x軸方向に対してなす角-βで延在している。光学素子10Aの第3の液晶セル100-3では、第1象限、第2象限、第3象限、および第4象限には、それぞれ、第1の直線部LP11、第3の直線部LP23、第2の直線部LP12、および第4の直線部LP24が属する。すなわち、光学素子10Aの第3の液晶セル100-3の平面視において、第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24は、それぞれ、互いに異なる象限に属している。
 図11Bは、本発明の一実施形態に係る光学装置1に含まれる光学素子10Aの第4の液晶セル100-4の透明電極120の延在方向の角度を説明する模式図である。図11Bには、第1の屈曲部CP11および第2の屈曲部CP22を原点としたxy座標における、光学素子10Aの第4の液晶セル100-4の第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24が示されている。
 光学素子10Aの第4の液晶セル100-4では、第1の直線部LP11は、x軸方向に対してなす角(90-α)°で延在している。第2の直線部LP12は、x軸方向に対してなす角(90-β)°で延在している。第3の直線部LP23は、x軸方向に対してなす角-α°で延在している。第4の直線部LP24は、x軸方向に対してなす角-βで延在している。光学素子10Aの第4の液晶セル100-4では、第1象限、第2象限、第3象限、および第4象限には、それぞれ、第2の直線部LP12、第4の直線部LP24、第1の直線部LP11、および第3の直線部LP23が属する。すなわち、光学素子10Aの第4の液晶セル100-4の平面視においても、第1の直線部LP11、第2の直線部LP12、第3の直線部LP23、および第4の直線部LP24は、それぞれ、互いに異なる象限に属している。
 表5に、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4における各象限に属する直線部に示す。また、表6に、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4における各象限に属する直線部のx軸方向に対してなす角を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および表6からわかるように、光学素子10と同様に、光学素子10Aにおいても、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4が積層されても、各象限に直線部が属し、かつ、各象限内の直線部は、角度がずれて重畳される。
 以上説明したように、光学装置1の光学素子10は、同一の構成を有する複数の液晶セル100を含み、液晶セル100の配置方向を互いに変えることにより、モアレを低減することができる。また、液晶セル100の場合、光学素子10と異なる光学素子10Aを製造することも可能であり、液晶セル100の汎用性が高く、光学装置1の製造コストを抑制することができる。
<第2実施形態>
 図12を参照して、本発明の一実施形態に係る光学装置について説明する。なお、以下では、光学装置1と同様の構成についての説明を省略する場合がある。
 図12は、本発明の一実施形態に係る光学装置の第1の液晶セルの第1の透明電極120B-1および第2の透明電極120B-2の平面パターンを示す模式的な平面図である。
 図12に示すように、第1の透明電極120B-1および第2の透明電極120B-2の各々は、第1の直線部LP11B、第2の直線部LP12B、および第1の屈曲部CP11Bを含む。また、第1の直線部LP11Bと第2の直線部LP12Bとは、第1の屈曲部CP11Bで交差し、接続されている。第1の直線部LP11Bおよび第2の直線部LP12Bの各々の幅は一様ではなく、第1の屈曲部CP11Bに向かって大きくなる。なお、図12には、第1の直線部LP11Bおよび第2の直線部LP12Bの各々の幅が、第1の屈曲部CP11Bに向かって徐々に大きくなっているが、ステップ状に大きくなってもよい。
 本実施形態に係る光学装置では、透明電極120Bの幅、および隣接する第1の透明電極120B-1と第2の透明電極120B-2との間の電極間ピッチが変化するため、モアレをさらに低減することができる。
<第3実施形態>
 図13を参照して、本発明の一実施形態に係る光学装置について説明する。なお、以下では、光学装置1と同様の構成についての説明を省略する場合がある。
 図13は、本発明の一実施形態に係る光学装置の第1の液晶セルの第1の透明電極120C-1および第2の透明電極120C-2の平面パターンを示す模式的な平面図である。
 図13に示すように、第1の透明電極120C-1および第2の透明電極120C-2の各々は、第1の直線部LP11C、第2の直線部LP12C、および第1の屈曲部CP11Cを含む。また、第1の直線部LP11Cと第2の直線部LP12Cとは、第1の屈曲部CP11Cで交差し、接続されている。第1の直線部LP11Cおよび第2の直線部LP12Cの各々の幅は一様ではなく、第1の屈曲部CP11Cに向かって小さくなる。なお、図13には、第1の直線部LP11Bおよび第2の直線部LP12Bの各々の幅が、第1の屈曲部CP11Cに向かって徐々に小さくなっているが、ステップ状に小さくなってもよい。
 本実施形態に係る光学装置では、透明電極120Cの幅、および隣接する第1の透明電極120C-1と第2の透明電極120C-2との間の電極間ピッチが変化するため、モアレをさらに低減することができる。
<第4実施形態>
 図14を参照して、本発明の一実施形態に係る光学装置について説明する。なお、以下では、光学装置1と同様の構成についての説明を省略する場合がある。
 図14は、本発明の一実施形態に係る光学装置の第1の液晶セルの第1の透明電極120D-1および第2の透明電極120D-2の平面パターンを示す模式的な平面図である。
 図14に示すように、第1の透明電極120C-1および第2の透明電極120C-2の各々は、複数の第1の屈曲部CP11を含む。複数の第1の屈曲部CP11は、規則的に設けられていてもよく、ランダムに設けられていてもよい。但し、中央部に位置する第1の屈曲部CP11は、y軸方向に延在する一直線上に載るように規則的に設けられている。
 本実施形態に係る光学装置では、積層方向における複数の液晶セルの透明電極120Dの重畳が少なくなるため、モアレをさらに低減することができる。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除、もしくは設計変更を行ったもの、または工程の追加、省略、もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
1:光学装置、 10、10A:光学素子、 20:光源、 100:液晶セル、 100-1:第1の液晶セル、 100-2:第2の液晶セル、 100-3:第3の液晶セル、 100-4:第4の液晶セル、 110:基板、 110-1:第1の基板、 110-2:第2の基板、 120、120B、120C、120D:透明電極、 120-1、120B-1、120C-1、120D-1:第1の透明電極、 120-2、120B-2、120C-2、120D-2:第2の透明電極、 120-3:第3の透明電極、 120-4:第4の透明電極、 130-1:第1の配向膜、 130-2:第2の配向膜、 140:シール材、 150:液晶層、 200:光学弾性樹脂層、 210:フレキシブルプリント回路基板、 1000-1:第1の偏光、 1000-2:第2の偏光、 CP11、CP11B、CP11C:第1の屈曲部、 CP22:第2の屈曲部、 D1:第1の方向、 D2:第2の方向、 LP11、LP11B、LP11C:第1の直線部、 LP12、LP12B、LP12C:第2の直線部、 LP23:第3の直線部、 LP24:第4の直線部、 PD11:第1の接続パッド、 PD12:第2の接続パッド、 PD23:第3の接続パッド、 PD24:第4の接続パッド、 T11:第1の接続端子、 T12:第2の接続端子、 T13:第3の接続端子、 T14:第4の接続端子、 WL11、WL12、WL13、WL14、WL23、WL24:配線

Claims (7)

  1.  光源と、
     積層された複数の液晶セルを含み、前記光源から出射された光の配光を制御する光学素子と、を含み、
     前記複数の液晶セルの各々は、
      第1の電極と第2の電極とが交互に配置される第1の基板と、
      第3の電極と第4の電極とが交互に配置される第2の基板と、
      前記第1の基板と前記第2の基板との間の液晶層と、を含み、
     前記第1の電極および前記第2の電極の各々は、
      第1の方向に対してなす角α°(0<α<90)で延在する第1の直線部と、
      前記第1の方向に対してなす角β°(0<β<90、かつ、β≠α)で延在する第2の直線部と、を含み、
     前記第3の電極および前記第4の電極の各々は、
      前記第1の方向に対してなす角(90+α)°で延在する第3の直線部と、
      前記第1の方向に対してなす角(90+β)°で延在する第4の直線部と、を含み、
     前記複数の液晶セルは、前記光源に最も近く配置される第1の液晶セルと、前記第1の液晶セルに積層して配置される第2の液晶セルと、を含み、
     前記第2の液晶セルの前記第1の基板は、前記第1の液晶セルの前記第2の基板と対向し、
     前記第2の液晶セルは、前記第1の液晶セルの前記第1の方向と前記第2の液晶セルの前記第1の方向とのなす角が180°であるように、前記第1の液晶セルと重畳して配置される、光学装置。
  2.  平面視において、前記第1の直線部と前記第2の直線部とが接続される第1の屈曲部は、前記第3の直線部と前記第4の直線部とが接続される第2の屈曲部と重畳する、請求項1に記載の光学装置。
  3.  前記第1の直線部および前記第2の直線部の各々の幅は、前記第1の屈曲部に向かって大きくなり、
     前記第3の直線部および前記第4の直線部の各々の幅は、前記第2の屈曲部に向かって大きくなる、請求項2に記載の光学装置。
  4.  前記第1の直線部および前記第2の直線部の各々の幅は、前記第1の屈曲部に向かって小さくなり、
     前記第3の直線部および前記第4の直線部の各々の幅は、前記第2の屈曲部に向かって小さくなる、請求項2に記載の光学装置。
  5.  前記第1の電極および前記第2の電極の各々は、前記第1の直線部と前記第2の直線部とが接続される第1の屈曲部を複数含み、
     前記第3の電極および前記第4の電極の各々は、前記第3の直線部と前記第4の直線部とが接続される第2の屈折部を複数含み、
     複数の前記第1の屈曲部の1つは、複数の前記第2の屈折部の1つと重畳する、請求項1に記載の光学装置。
  6.  前記複数の液晶セルは、さらに、前記第1の液晶セルとは反対側において前記第2の液晶セルに積層して配置される第3の液晶セルと、前記第2の液晶セルとは反対側において前記第3の液晶セルに積層して配置される第4の液晶セルを含み、
     前記第3の液晶セルの前記第2の基板は、前記第2の液晶セルの前記第2の基板と対向し、
     前記第4の液晶セルの前記第2の基板は、前記第3の液晶セルの前記第1の基板と対向し、
     前記第3の液晶セルは、前記第1の液晶セルの前記第1の方向と前記第3の液晶セルの前記第1の方向とのなす角が180°であるように、前記第1の液晶セルおよび前記第2の液晶セルと重畳して配置され、
     前記第4の液晶セルは、前記第1の液晶セルの前記第1の方向と前記第4の液晶セルの前記第1の方向とのなす角が0°であるように、前記第1の液晶セル乃至前記第3の液晶セルと重畳して配置される、請求項1に記載の光学装置。
  7.  前記複数の液晶セルは、さらに、前記第1の液晶セルとは反対側において前記第2の液晶セルに積層して配置される第3の液晶セルと、前記第2の液晶セルとは反対側において前記第3の液晶セルに積層して配置される第4の液晶セルを含み、
     前記第3の液晶セルの前記第2の基板は、前記第2の液晶セルの前記第2の基板と対向し、
     前記第4の液晶セルの前記第2の基板は、前記第3の液晶セルの前記第1の基板と対向し、
     前記第3の液晶セルは、前記第1の液晶セルの前記第1の方向と前記第3の液晶セルの前記第1の方向とのなす角が90°であるように、前記第1の液晶セルおよび前記第2の液晶セルと重畳して配置され、
     前記第4の液晶セルは、前記第1の液晶セルの前記第1の方向と前記第4の液晶セルの前記第1の方向とのなす角が90°であるように、前記第1の液晶セル乃至前記第3の液晶セルと重畳して配置される、請求項1に記載の光学装置。
     
PCT/JP2023/024894 2022-08-08 2023-07-05 光学装置 WO2024034293A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126305 2022-08-08
JP2022126305 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034293A1 true WO2024034293A1 (ja) 2024-02-15

Family

ID=89851408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024894 WO2024034293A1 (ja) 2022-08-08 2023-07-05 光学装置

Country Status (1)

Country Link
WO (1) WO2024034293A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525388A (ja) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビーム成形デバイス
JP2014022106A (ja) * 2012-07-13 2014-02-03 Panasonic Corp 照明装置
US20150002765A1 (en) * 2013-06-28 2015-01-01 Tianma Micro-Electronics Co., Ltd. Liquid crystal lens and process for manufacturing the same, stereoscopic display device and process for manufacturing the same
US20180196318A1 (en) * 2015-09-12 2018-07-12 Lensvector Inc. Liquid crystal beam control device
JP2022064069A (ja) * 2020-10-13 2022-04-25 株式会社ジャパンディスプレイ 液晶デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525388A (ja) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビーム成形デバイス
JP2014022106A (ja) * 2012-07-13 2014-02-03 Panasonic Corp 照明装置
US20150002765A1 (en) * 2013-06-28 2015-01-01 Tianma Micro-Electronics Co., Ltd. Liquid crystal lens and process for manufacturing the same, stereoscopic display device and process for manufacturing the same
US20180196318A1 (en) * 2015-09-12 2018-07-12 Lensvector Inc. Liquid crystal beam control device
JP2022064069A (ja) * 2020-10-13 2022-04-25 株式会社ジャパンディスプレイ 液晶デバイス

Similar Documents

Publication Publication Date Title
US11886081B2 (en) Liquid crystal device comprising a plurality of first spacers disposed inside a sealant and a plurality of first and second strip electrodes
WO2022190786A1 (ja) 液晶デバイス
US12078891B2 (en) Liquid crystal device
JP7527472B2 (ja) 液晶光制御装置
US12044939B2 (en) Liquid crystal device
JP2024107464A (ja) 光学素子
WO2021117331A1 (ja) 光制御装置及び照明装置
WO2024034293A1 (ja) 光学装置
KR20150039639A (ko) 와이어 그리드 편광자, 이를 포함하는 표시 장치 및 이의 제조방법
US11754904B2 (en) Light control device and illumination device
JP7534544B2 (ja) 照明装置
KR20230130716A (ko) 광학 소자 및 조명 장치
US20240310679A1 (en) Optical element
WO2024084842A1 (ja) 光学素子および照明装置
JP7510002B2 (ja) 光学素子
US20240361649A1 (en) Optical element
WO2023135937A1 (ja) 照明装置
WO2024176604A1 (ja) 照明装置
JP7565454B2 (ja) 光学素子の駆動方法
WO2023074106A1 (ja) 光学素子
US20230244120A1 (en) Light control device and illumination device
WO2022181005A1 (ja) 調光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852276

Country of ref document: EP

Kind code of ref document: A1