Nothing Special   »   [go: up one dir, main page]

WO2024027778A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2024027778A1
WO2024027778A1 PCT/CN2023/110869 CN2023110869W WO2024027778A1 WO 2024027778 A1 WO2024027778 A1 WO 2024027778A1 CN 2023110869 W CN2023110869 W CN 2023110869W WO 2024027778 A1 WO2024027778 A1 WO 2024027778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
radiation
conductive
circuit board
electronic device
Prior art date
Application number
PCT/CN2023/110869
Other languages
English (en)
French (fr)
Inventor
薛孟
张琛
聂成成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027778A1 publication Critical patent/WO2024027778A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the embodiments of the present application relate to the field of terminal technology, and in particular to an electronic device.
  • a cavity antenna may be formed in an electronic device.
  • a radiator is provided above a printed circuit board (PCB)
  • a radio frequency coupling probe is provided above the PCB near the inside of the radiator
  • a plane is provided on the surface of the radiator
  • a horizontal part is provided inside the radiator near the top of the RF coupling probe
  • a curved groove is provided inside the plane.
  • Capacitive coupling is used to transform the radiator into a radiating part of the antenna, and realize dual-passage through the coupling gap.
  • Frequency band resonance combines radiation and heat dissipation into one, which not only meets the performance requirements of the antenna, but also solves the problem of heat dissipation of electronic equipment.
  • the antenna performance is greatly affected by the PCB board below, causing the antenna to be too directional and the radiation performance in all directions to be uneven.
  • Embodiments of the present application provide an electronic device that can avoid or reduce the impact of the circuit board on the antenna performance of the antenna, thereby avoiding the problem of excessive directivity of the antenna and uneven radiation performance in various directions.
  • Embodiments of the present application provide an electronic device, which at least includes: a circuit board, electronic components, and metal structural parts; the metal structural parts are stacked and spaced apart from the circuit board, and the electronic components are located on the between the circuit board and the metal structural member; further comprising: a first conductive member; the first conductive member is located between the circuit board and the metal structural member, and one end of the first conductive member is connected to the The circuit board is electrically connected, and the other end of the first conductive member is electrically connected to the metal structural member; the metal structural member at least includes: a main body part and a first side connected to the main body part.
  • the first radiating part, the first radiating part, the area on the circuit board corresponding to the first radiating part, and the first conductive member form a first radiation cavity; the circuit board A first feed point is provided on the top, and the first feed point is electrically connected to the first radiation part.
  • a first conductive member is disposed between the circuit board and the metal structural member. One end of the first conductive member is electrically connected to the circuit board, and the other end of the first conductive member is electrically connected to the circuit board.
  • the metal structural parts are electrically connected, and the first radiating part of the metal structural part, the area on the circuit board corresponding to the first radiating part, and the first conductive part can be surrounded to form a first radiation cavity, and the first radiation cavity is formed by A first feeding point is provided.
  • the first feeding point is electrically connected to the first radiating part.
  • the first feeding point can feed the first radiating part to form a cavity antenna in the first radiating cavity. In this way, It can avoid or reduce the impact of the circuit board on the antenna performance of the cavity antenna, thereby avoiding the problem of excessive directivity of the antenna and uneven radiation performance in various directions.
  • the main body part has a first fixed end corresponding to the first radiating part, and there is a third fixed end between part of the outer edge of the first radiating part and the first fixed end.
  • the first fixed end corresponding to the first radiating part By designing the first fixed end corresponding to the first radiating part, the first fixed end is used to achieve mutual fixation between the metal structural component and the circuit board.
  • the outer edge of the first radiation part located at the first gap is electrically connected to the corresponding first feed point. In this way, the first feed point The electric point can feed the first radiation part through the first gap.
  • a first conductive part is provided on a side of the first radiation part facing the circuit board; the first conductive part The projection area of the electrical part on the circuit board is located within the projection area of the first radiation part on the circuit board.
  • the first conductive part By disposing the first conductive part on the side of the first radiating part facing the circuit board, the first conductive part can locally thicken the first radiating part to perform distributed matching loading.
  • one end of the first conductive part in the first direction faces the main body part, and the other end of the first conductive part in the first direction extends along the first direction. to an end of the first radiation part away from the main body part; wherein the first direction is the extension direction of the first gap.
  • One end of the antenna can adjust the impedance of the antenna in the first frequency band (such as the 2.4G frequency band).
  • one end of the first conductive part in the second direction is located at an intermediate position of the first radiation part in the second direction; the first conductive part is in the second direction.
  • the other end of the first conductive portion extends along the second direction toward the first slit, or the other end of the first conductive portion in the second direction extends away from the first slit along the second direction; Wherein, the second direction and the first direction are perpendicular to each other.
  • the first conductive part By arranging one end of the first conductive part in a direction perpendicular to the extending direction of the first slit at an intermediate position of the first radiating part in a direction perpendicular to the extending direction of the first slit, the first conductive part is The other end in a direction perpendicular to the extension direction of the first slit extends towards the first slit in a direction perpendicular to the extension direction of the first slit, or the first conductive part is arranged in a direction opposite to the extension direction of the first slit.
  • the other end in the vertical direction extends away from the first slit in a direction perpendicular to the extension direction of the first slit, and can adjust the impedance of the antenna in the second frequency band (such as the 5G frequency band).
  • the first conductive member extends along the second direction, or the first conductive member extends along the first direction, and the first conductive member is located at the The side of the first radiation part away from the first gap; the circuit board, the first radiation part and the first conductive member are collectively surrounded to form the first radiation cavity.
  • the extending direction of the first conductive member may be along a direction perpendicular to the extending direction of the first slit, or the extending direction of the first conductive member may also be along the first slit.
  • the circuit board, the first radiating part and the first conductive member can collectively surround and form a first radiation cavity to form a cavity antenna.
  • the first conductive member includes two or more spaced apart conductive members, one of the two or more spaced apart conductive members extends along the second direction. , the other of the two or more spaced conductive members extends along the first direction and is located on a side of the first radiation part away from the first gap; the circuit board, the The first radiation part and the two or more spaced apart conductive members together form the first radiation cavity.
  • the extension direction of one of the conductive members may be along a direction perpendicular to the extension direction of the first slit, and the extension direction of the other conductive member may also be along In this way, the circuit board, the first radiating part and two or more conductive members can collectively surround the first slit to form a first radiating cavity to form a cavity antenna.
  • the metal structural member further includes: a second radiating part connected to the main body part and located on the second side of the main body part; the main body part There is also a second fixed end corresponding to the second radiating part; there is a second gap between part of the outer edge of the second radiating part and the second fixed end; and a second fixed end is provided on the circuit board. Feeding point, the outer edge of the second radiating part located at the second gap is electrically connected to the corresponding second feeding point; the second radiating part, the circuit board and the second The corresponding area of the radiation part and the second conductive member together form a second radiation cavity.
  • the first radiating part corresponds to the first conductive member
  • the circuit board, the first radiating part and the first conductive member are collectively surrounded to form a first radiation cavity
  • the first feeding point feeds the first radiating part to
  • a cavity antenna is formed in the first radiating cavity.
  • the circuit board, the second radiating part and the second conductive member are collectively surrounded to form a second radiating cavity.
  • the second feeding point feeds the second radiating part so as to generate electricity in the first radiation cavity.
  • Another cavity antenna is formed within the second radiation cavity.
  • the first radiating part and the second radiating part are respectively located on both sides of the main body part, and the extending directions of the first conductive member and the second conductive member intersect. .
  • the circuit board, the first radiating part and the first conductive part are jointly surrounded to form a first radiation cavity
  • the circuit board, the second radiating part and the second conductive part are jointly surrounded to form a second radiation cavity.
  • the first radiation cavity The body and the second radiation cavity are arranged relatively orthogonally, which can increase the isolation between the cavity antenna in the first radiation cavity and the cavity antenna in the second radiation cavity, thereby reducing the cavity size in the first radiation cavity. body The degree of mutual interference between the antenna and the cavity antenna in the second radiation cavity.
  • the first radiating part and the second radiating part are respectively located on opposite sides of the main body part, and the extension direction of the first conductive member and the second conductive member parallel.
  • the circuit board, the first radiating part and the first conductive part are jointly surrounded to form a first radiation cavity
  • the circuit board, the second radiating part and the second conductive part are jointly surrounded to form a second radiation cavity.
  • the first radiation cavity The body and the second radiation cavity are arranged relatively parallel, and the first radiation cavity and the second radiation cavity are respectively located on opposite sides of the main body.
  • the first radiation cavity and the second radiation cavity are separated by the main body. , can increase the isolation between the cavity antenna in the first radiation cavity and the cavity antenna in the second radiation cavity, thereby reducing the isolation between the cavity antenna in the first radiation cavity and the cavity in the second radiation cavity The degree of mutual interference between antennas.
  • the metal structural member further includes: a third radiating part connected to the main body part and located on the third side of the main body part; the first The radiating part, the second radiating part and the third radiating part are respectively located on three sides of the main body part; the main body part also has a third fixed end corresponding to the third radiating part; the third radiating part There is a third gap between part of the outer edge of the three radiating parts and the third fixed end; a third feed point is provided on the circuit board, and the third radiating part is located outside the second gap. The edge is electrically connected to the corresponding third feed point; the third radiating part, the area on the circuit board corresponding to the third radiating part, and the third conductive member are collectively surrounded to form a third Three radiating cavities.
  • the circuit board, the first radiating part and the first conductive member are collectively surrounded to form a first radiation cavity, and the first feeding point feeds the first radiating part to form a cavity antenna in the first radiation cavity.
  • the circuit board, the second radiating part and the second conductive member are collectively surrounded to form a second radiation cavity, and the second feeding point feeds the second radiating part to form another cavity antenna in the second radiation cavity.
  • the circuit board, the third radiating part and the third conductive member are collectively surrounded to form a third radiating cavity, and the third feeding point feeds the third radiating part to form another cavity antenna in the third radiating cavity.
  • the length of the first radiation cavity in the first direction is 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 ; the length of the first radiation cavity in the second direction The length is 1/2 ⁇ 2 ⁇ 1/8 ⁇ 2 ; the ⁇ 1 is the wavelength of the electromagnetic wave in the free space in the first frequency band, and the ⁇ 2 is the wavelength of the electromagnetic wave in the free space in the second frequency band.
  • the length of the first radiation cavity in the extension direction of the first slot By designing the length of the first radiation cavity in the extension direction of the first slot to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can help the first radiation cavity to excite the first wave in the extension direction of the first slot.
  • TM 1/2,0 mode of the radiation cavity to cover the application of the antenna in the first frequency band.
  • the length of the first radiation cavity in the direction perpendicular to the extension direction of the first slit to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , the extension of the first radiation cavity to the first slit can be facilitated.
  • the TM 0,1 mode of the first radiation cavity is excited in a direction perpendicular to the direction to cover the application of the antenna in the second frequency band.
  • the length of the second radiation cavity in the first direction is 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 ; the length of the second radiation cavity in the second direction The length is 1/2 ⁇ 2 ⁇ 1/8 ⁇ 2 ; the ⁇ 1 is the wavelength of the electromagnetic wave in the free space in the first frequency band, and the ⁇ 2 is the wavelength of the electromagnetic wave in the free space in the second frequency band.
  • the length of the second radiation cavity in the extension direction of the second slit By designing the length of the second radiation cavity in the extension direction of the second slit to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can help the second radiation cavity to excite the second radiation in the extension direction of the second slit.
  • the length of the second radiation cavity in the direction perpendicular to the extension direction of the second slit to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , the extension of the second radiation cavity to the second slit can be facilitated.
  • the TM 0,1 mode of the second radiation cavity is excited in a direction perpendicular to the direction to cover the application of the antenna in the second frequency band.
  • the length of the third radiation cavity in the first direction is 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 ; the length of the third radiation cavity in the second direction The length is 1/2 ⁇ 2 ⁇ 1/8 ⁇ 2 ; the ⁇ 1 is the wavelength of the electromagnetic wave in the free space in the first frequency band, and the ⁇ 2 is the wavelength of the electromagnetic wave in the free space in the second frequency band.
  • the length of the third radiation cavity in the extension direction of the third slit By designing the length of the third radiation cavity in the extension direction of the third slit to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can help the third radiation cavity to excite the third radiation in the extension direction of the third slit.
  • the length of the third radiation cavity in the direction perpendicular to the extension direction of the third slit to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , the extension of the third radiation cavity to the third slit can be facilitated.
  • the TM 0,1 mode of the third radiation cavity is excited in the direction perpendicular to the direction to cover the application of the antenna in the second frequency band.
  • the second radiation cavity and the first radiation cavity are used to operate in the same operating frequency band.
  • the cavity antenna formed by the second radiation cavity and the cavity antenna formed by the first radiation cavity operate in the same operating frequency band, and can form a MIMO antenna pair.
  • the third radiation cavity, the second radiation cavity and the first radiation cavity are used to work in the same operating frequency band.
  • the cavity antenna formed by the first radiating cavity, the cavity antenna formed by the second radiating cavity and the cavity antenna formed by the third radiating cavity work in the same operating frequency band and can form a MIMO antenna.
  • the height of the first radiation cavity is 2mm-5mm.
  • the electric field coupling in the first radiation cavity can achieve a better coupling effect, thereby avoiding excessive electric field coupling or excessive electric field coupling caused by too small a height of the first radiation cavity.
  • the height of the first radiation cavity is too large, it may lead to undesirable problems such as failure of electric field coupling.
  • the height of the second radiation cavity is 2mm-5mm.
  • the electric field coupling in the second radiation cavity can achieve a better coupling effect, thereby avoiding excessive electric field coupling or excessive electric field coupling caused by too small a height of the second radiation cavity.
  • the height of the second radiation cavity is too large, it may lead to undesirable problems such as failure of electric field coupling.
  • the height of the third radiation cavity is 2mm-5mm.
  • the electric field coupling in the third radiation cavity can achieve a better coupling effect, thereby avoiding excessive electric field coupling or excessive electric field coupling caused by too small a height of the third radiation cavity.
  • the height of the third radiation cavity is too large, it may lead to undesirable problems such as failure of electric field coupling.
  • the first conductive member is conductive foam; or the first conductive member is conductive glue; or the first conductive member is a metal elastic piece.
  • Conductive bubbles, conductive glue and metal shrapnel can all play the role of electrically connecting circuit boards and metal structural parts.
  • the second conductive member is conductive foam; or the second conductive member is conductive glue; or the second conductive member is a metal elastic piece.
  • Conductive bubbles, conductive glue and metal shrapnel can all play the role of electrically connecting circuit boards and metal structural parts.
  • the third conductive member is conductive foam; or the third conductive member is conductive glue; or the third conductive member is a metal elastic piece. Conductive bubbles, conductive glue and metal shrapnel can all play the role of electrically connecting circuit boards and metal structural parts.
  • the metal structural component is a heat sink; and the electronic components are heating components.
  • the radiator as a metal structural member, the structure of the radiator can be used to form an antenna, and the radiator can be transformed into a radiating part of the antenna, so that radiation and heat dissipation are integrated into one. Not only does it meet the performance requirements of the antenna, the radiator can also provide The heating components dissipate heat and also solve the heat dissipation problem of electronic equipment, which can save the cost of the antenna to a certain extent.
  • the embodiments of the present application do not need to destroy the structure of the radiator itself when forming the antenna, thereby not affecting the heat dissipation performance of the radiator.
  • the electronic device is a speaker.
  • the internal space of the speaker to form a cavity antenna, the space for designing the antenna in the speaker can be saved to a large extent, and it can also save the cost of making the antenna to a certain extent.
  • Figure 1 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a side view of an electronic device provided by an embodiment of the present application.
  • Figure 3 is an exploded view of Figure 1;
  • Figure 4 is a partial structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 5 is a current and electric field distribution diagram of a cavity antenna in an electronic device provided by an embodiment of the present application at 2.4G;
  • Figure 6 is a current and electric field distribution diagram of a cavity antenna in an electronic device provided by an embodiment of the present application under 5G;
  • Figure 7 is an antenna scattering parameter diagram corresponding to the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 8 is an antenna pattern of a cavity antenna in an electronic device provided by an embodiment of the present application under 2.4G;
  • Figure 9 is an antenna pattern under 5G of a cavity antenna in an electronic device provided by an embodiment of the present application.
  • Figure 10 is a comparison diagram of the loading effect of the conductive part on the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 11 is a comparison diagram of the loading effect of the conductive part on the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the resonance of the cavity antenna at 2.4G when the conductive parts in the electronic device provided by an embodiment of the present application are of different sizes;
  • Figure 13 is a schematic diagram of the resonance of the cavity antenna under 5G when the conductive parts in the electronic device provided by an embodiment of the present application are of different sizes;
  • Figure 14 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
  • Figure 15 is an exploded view of Figure 14;
  • Figure 16 is a partial structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 17 is an antenna scattering parameter diagram corresponding to the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 18 is the antenna pattern of the cavity antenna in the electronic device provided by an embodiment of the present application under 2.4G;
  • Figure 19 is an antenna pattern under 5G of a cavity antenna in an electronic device provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
  • Figure 21 is an exploded view of Figure 20;
  • Figure 22 is a partial structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 23 is an antenna scattering parameter diagram corresponding to the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 24 is an antenna pattern of a cavity antenna in an electronic device provided by an embodiment of the present application under 2.4G;
  • Figure 25 is an antenna pattern under 5G of a cavity antenna in an electronic device provided by an embodiment of the present application.
  • Figure 26 is a schematic diagram of the antenna efficiency of the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 27 is a schematic diagram of the overall structure of an electronic device provided by an embodiment of the present application.
  • Figure 28 is an exploded view of Figure 27;
  • Figure 29 is a partial structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 30 is an antenna scattering parameter diagram corresponding to the cavity antenna in the electronic device provided by an embodiment of the present application.
  • Figure 31 is the antenna pattern of the cavity antenna in the electronic device provided by an embodiment of the present application under 2.4G;
  • Figure 32 is an antenna pattern under 5G of a cavity antenna in an electronic device provided by an embodiment of the present application.
  • FIG. 33 is a schematic diagram of the overall structure of an electronic device according to an embodiment of the present application.
  • Embodiments of the present application provide an electronic device, which may include but is not limited to smart speakers, smart door locks, mobile phones, tablet computers, notebook computers, ultra-mobile personal computers (UMPC), handheld computers, walkie-talkies, Netbooks, point of sales (POS) machines, personal digital assistants (PDA), wearable devices, virtual reality devices, wireless USB flash drives, Bluetooth speakers/headphones, or car front-mounted equipment, driving recorders, Mobile or fixed terminals with antennas such as security equipment.
  • UMPC ultra-mobile personal computers
  • POS point of sales
  • PDA personal digital assistants
  • wearable devices virtual reality devices
  • wireless USB flash drives wireless USB flash drives
  • Bluetooth speakers/headphones or car front-mounted equipment
  • driving recorders Mobile or fixed terminals with antennas such as security equipment.
  • the speaker is the above-mentioned electronic device as an example for description.
  • the speaker may be a barrel-type speaker, for example.
  • different antenna structures can be designed at different spatial locations on the speaker.
  • different resonant antennas can be arranged at different positions in the speaker space to meet the antenna requirements of the speaker in different scenarios.
  • a cavity antenna can be formed inside the speaker.
  • the metal cavity itself is a closed structure, and energy oscillates inside. By opening slits on the surface of the cavity, the energy is radiated out, forming a cavity antenna.
  • the resonant frequency of a cavity antenna is not only determined by its geometric size, but also affected by the size of the gap and the filling medium. Opening a slit is equivalent to increasing the volume of the cavity. The larger the gap, the wider the resonant bandwidth and the lower the resonant frequency point.
  • the cavity antenna relies on the internal oscillation of the cavity to generate resonance, the energy is mainly concentrated inside the cavity, and its radiation characteristics are less affected by the external environment.
  • a radiator is provided above the Printed Circuit Board (PCB)
  • a radio frequency coupling probe is provided above the PCB near the radiator
  • a plane is provided on the surface of the radiator, and, There is a horizontal part inside the radiator close to the top of the RF coupling probe, and a curved groove inside the plane.
  • Capacitive coupling is used to convert the radiator into a radiating part of the antenna, and dual frequency bands are realized through the coupling gap. resonance.
  • the antenna performance is greatly affected by the PCB board below, which results in the antenna being too directional and the radiation performance in all directions uneven.
  • the electronic device may be a speaker, for example.
  • at least one conductive member is disposed between the circuit board and the metal structural member. One end of the conductive member is connected to the circuit board. Electrically connected, the other end of the conductive member is electrically connected to the metal structural member.
  • Each radiating part of the metal structural member, the area corresponding to each radiating part on the circuit board, and at least one conductive member can be surrounded to form a radiation cavity, Moreover, by providing a feed point between the circuit board and each radiating part, the feeding point is electrically connected to the corresponding radiating part, and the feeding point can feed each radiating part, so that in each radiation cavity Forming a cavity antenna can avoid or reduce the impact of the circuit board on the antenna performance of the cavity antenna, thereby avoiding the problem of excessive directivity of the antenna and uneven radiation performance in various directions.
  • the antenna provided in this application is suitable for electronic equipment using one or more of the following MIMO (Multi-in Multi-out, multiple-in, multiple-out) communication technologies: for example, long term evolution (LTE) Communication technology, Wi-Fi communication technology, 5G communication technology, SUB-6G communication technology and other MIMO communication technologies in the future.
  • MIMO communication technology refers to the use of multiple antennas at both the transmitter and receiver to form an antenna system with multiple channels between transmitter and receiver, which has extremely high spectrum utilization efficiency.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the speaker.
  • the sound box may include more or less components, or combine some components, or split some components, or arrange different components.
  • an embodiment of the present application provides an electronic device 100 .
  • the electronic device 100 may be, for example, a speaker, a mobile phone, or a computer.
  • the electronic device 100 It may include at least: a circuit board 110, electronic components 170 and metal structural members 120, wherein the metal structural members 120 and the circuit board 110 are stacked and spaced apart, and the electronic components 170 may be located between the circuit board 110 and the metal structural member 120.
  • the metal structural member 120 may be a heat sink, and the electronic component 170 may be a heating component.
  • the electronic component 170 and the metal structural member 120 are in contact with each other on a side facing the circuit board 110. Specifically, as shown in FIG.
  • the surface of the platform 1211 , the electronic component 170 and the sinking platform 1211 facing the circuit board 110 are in contact with each other.
  • the metal structural member 120 can provide a good heat dissipation effect for the electronic component 170 .
  • the metal structural member 120 when the metal structural member 120 is a radiator, the metal structural member 120 may be a flat radiator, and the material of the flat radiator may be aluminum.
  • the radiator By using the radiator as the metal structural member 120, the structure of the radiator can be used to form a cavity antenna, and the radiator is transformed into a radiating part of the cavity antenna, so that radiation and heat dissipation are integrated into one, which not only meets the performance requirements of the antenna, but also It also solves the problem of heat dissipation of the electronic device 100, thereby saving antenna costs to a certain extent.
  • the cavity antenna can be implemented within a limited design space, effectively saving the antenna design space inside the electronic device 100 .
  • the cavity antenna provided by the embodiments of the present application does not require additional slotting on the radiator, so there is no need to destroy it when forming the cavity antenna.
  • the structure of the radiator itself will not affect the heat dissipation performance of the radiator.
  • eliminating the groove also has the advantage of not affecting the industrial design appearance of the electronic device.
  • the electronic device 100 may further include: a first conductive member 131 , wherein the first conductive member 131 is located between the circuit board 110 and the metal structural member 120 , and one end of the first conductive member 131 is connected to The circuit board 110 is electrically connected, and the other end of the first conductive member 131 is electrically connected to the metal structural member 120 .
  • the metal structural member 120 may also include: a first radiating part 1221, where the first radiating part 1221 is connected to the main body part 121, and, The first radiating part 1221 is located on the first side 1216 of the main body part 121, so that the first radiating part 1221, the area on the circuit board 110 corresponding to the first radiating part 1221, and the first conductive member 131 can be collectively surrounded to form a third A radiation cavity 151.
  • a first feed point 141 may be provided on the circuit board 110, and the first feed point 141 is electrically connected to the corresponding first radiating part 1221. In this way, the first feed point 141 The first radiating part 1221 can be fed, so that a cavity antenna is formed in the first radiating cavity 151 where the first radiating part 1221 is located.
  • the first feeding point 141 may be a metal dome, a probe, a conductive cable, etc., so that the first radiating part 1221 can be fed through a metal dome, a probe, or a conductive cable. It should be noted that the embodiment of the present application does not limit the specific formation method of the first feed point 141, nor is it limited to the above examples, as long as it can function as a feed connection.
  • the number of first feed points 141 corresponding to the first radiating part 1221 may be one, two, three or more. That is to say, the first radiating part 1221 may be connected through a The first feeding point 141 feeds power, or the first radiating part 1221 may feed through two first feeding points 141 at the same time, or the first radiating part 1221 may feed through three first feeding points at the same time. Point 141 feeds power, or the first radiating part 1221 may feed power through more first feeding points 141 at the same time, which is not limited in the embodiment of the present application.
  • the main body part 121 may have a first fixed end 1213 , and the first fixed end 1213 corresponds to the first radiating part 1221 .
  • the first fixed end 1213 is used to achieve mutual fixation between the metal structural member 120 and the circuit board 110.
  • the circuit board 110 may also be fixed to other structural components to achieve relative fixed positions between other structural components and the circuit board 110 .
  • a first through hole 1212 may be provided on the first fixed end 1213, and a second through hole 111 may be provided on the circuit board 110 in an area corresponding to the first fixed end 1213.
  • the first through hole 1212 is connected to
  • the second through holes 111 are arranged oppositely, and the first through hole 1212 and the second through hole 111 can be fixedly connected through a fixing member (not shown in the figure).
  • the fixing member may be a screw, a screw, a bolt, etc., which is not limited in the embodiments of the present application.
  • first gap 1231 between part of the outer edge of the first radiating part 1221 and the corresponding first fixed end 1213, and the outer edge of the first radiating part 1221 located at the first gap 1231 may It is electrically connected to the corresponding first feed point 141 .
  • the outer edge of the first radiating part 1221 located at the first gap 1231 is electrically connected to the corresponding first feeding point 141 In this way, the first feeding point 141 can feed the first radiating part 1221 through the first gap 1231 .
  • the length of the first radiation cavity 151 in the first direction L1 may be 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1
  • the length of the first radiation cavity 151 in the second direction may be 1 /2 ⁇ 2 ⁇ 1/8 ⁇ 2 .
  • the first direction L1 may be the extending direction of the first slit 1231, and the second direction L2 and the first direction L1 are perpendicular to each other.
  • ⁇ 1 is the wavelength of the electromagnetic wave in the free space under the first frequency band (for example, the 2.4G frequency band), and ⁇ 2 is the wavelength of the electromagnetic wave in the free space under the second frequency band (for example, the 5G frequency band).
  • the length of the first radiation cavity 151 in the extension direction of the first slot 1231 By designing the length of the first radiation cavity 151 in the extension direction of the first slot 1231 to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can help the first radiation cavity 151 to extend in the extension direction of the first slot 1231
  • the TM 1/2,0 mode of the first radiation cavity 151 is excited to cover the application of the cavity antenna in the first frequency band (for example, the 2.4G frequency band).
  • the length of the first radiation cavity 151 in the direction perpendicular to the extension direction of the first gap 1231 By designing the length of the first radiation cavity 151 in the direction perpendicular to the extension direction of the first gap 1231 to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can be helpful for the first radiation cavity 151 to be connected to the first slit 1231 .
  • the TM 0,1 mode of the first radiation cavity 151 is excited in a direction perpendicular to the extending direction of the slot 1231 to cover the application of the cavity antenna in the second frequency
  • the embodiment of the present application uses the space between the metal structural member 120 and the circuit board 110 to form a cavity antenna by adding the first conductive member 131 to feed the first radiating part 1221 to excite the TM of the first radiating cavity 151
  • the 1/2,0 mode and the orthogonal TM 0,1 mode realize WiFi's 2.4G and 5G dual-band coverage.
  • the cavity antenna has a low directivity coefficient and can achieve horizontal omnidirectional coverage.
  • the directivity coefficient of the cavity antenna may be less than 4dBi.
  • the directivity coefficient of the cavity antenna may be 3.5dBi, 3dBi, 2.5dBi, 2dBi, 1.5dBi, 1dBi or 0.5 dBi etc.
  • the height of the first radiation cavity 151 may be 2mm-5mm.
  • the height of the first radiation cavity 151 may be 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, etc., which is not limited in the embodiments of the present application.
  • the electric field coupling in the first radiation cavity 151 can reach Better coupling effect can avoid undesirable problems such as too strong electric field coupling when the height of the first radiation cavity 151 is too small, or failure of electric field coupling when the height of the first radiation cavity 151 is too large.
  • a first conductive part 161 may be provided on a side of the first radiating part 1221 facing the circuit board 110 , and the first conductive part 161 is disposed on the circuit board 110
  • the projection area may be located within the projection area of the first radiation part 1221 on the circuit board 110 .
  • one end of the first conductive part 161 in the first direction L1 may face the main body part 121 , and the other end of the first conductive part 161 in the first direction L1 may extend along the first direction L1 to One end of the first radiation part 1221 is away from the main body part 121 .
  • the first conductive part 161 With one end of the first conductive part 161 in the extension direction of the first slit 1231 facing the main body part 121 , the other end of the first conductive part 161 in the extension direction of the first slit 1231 extends along the extension direction of the first slit 1231 To the end of the first radiating part 1221 away from the main body part 121, the first conductive part 161 corresponds to the current small point in the first frequency band (for example, the 2.4G frequency band), and can adjust the performance of the cavity antenna in the first frequency band (for example, the 2.4G frequency band). impedance.
  • the first frequency band for example, the 2.4G frequency band
  • One end of the first conductive part 161 in the second direction L2 may be located at the middle position of the first radiation part 1221 in the second direction L2, and the other end of the first conductive part 161 in the second direction L2 may be along the second direction L2.
  • the direction L2 extends toward the first slit 1231 , or the other end of the first conductive part 161 in the second direction L2 may extend away from the first slit 1231 along the second direction L2 , wherein the second direction L2 is consistent with the first direction.
  • L1 are perpendicular to each other.
  • the impedance of the cavity antenna in the second frequency band can be adjusted.
  • the capacitive loading and inductive deloading effects can be achieved respectively in the 2.4G frequency band and the 5G frequency band. Moreover, by adjusting the size of the first conductive part 161, the cavity can be flexibly adjusted. Antenna impedance frequency deviation.
  • the size of the first conductive part 161 may be, for example, 17mm*18mm*2mm.
  • 5 and 6 are current and electric field distribution diagrams of the cavity antenna in the electronic device 100.
  • the cavity antenna in the electronic device 100 shown in FIGS. 1 to 3 is fed at the feed point 140 , and the 2.4G current flows along the first direction L1 on the circuit board 110 through the first conductive member 131 and flows into the first radiating part 1221 , the electric fields between the first radiation part 1221 and the circuit board 110 are in the same direction, forming the cavity TM1/2,0 mode.
  • the 5G current flows along the second direction L2 on the circuit board 110 and the first radiating part 1221, and the electric field reverses at the middle current point, forming the TM0,1 mode of the cavity.
  • Figure 7 shows the antenna S parameters (scattering parameters) corresponding to the cavity antenna in the electronic device 100 shown in Figures 1 to 3. According to Figure 7, it can be seen that the antenna frequency band of the cavity antenna in the electronic device 100 can cover 2.4 G and 5G dual-band, the in-band efficiency of the cavity antenna in Electronic Equipment 100 is within -1dB.
  • Figures 8 and 9 are antenna patterns corresponding to the cavity antenna in the electronic device 100 shown in Figures 1 to 3. According to Figures 8 and 9, it can be seen that the cavity antenna in the electronic device 100 has a directivity of 2.4G. The coefficient is 2.77dBi, and the 5G directivity coefficient is 3.9dBi. That is to say, the pattern corresponding to the cavity antenna in the electronic device 100 shown in Figures 1 to 3 can ensure good coverage of the horizontal plane.
  • FIGS. 1 to 3 illustrate the loading effect of the first conductive part 161 on the cavity antenna in the electronic device 100 shown in FIGS. 1 to 3 .
  • the two resonance points of the cavity antenna in the electronic device 100 are close to each other, and the Smith chart curves of the antenna are all in the inductive zone.
  • the 2.4G resonance deviates to the low frequency
  • the 5G resonance deviates to the high frequency
  • the corresponding Smith chart curves deviate to the capacitive and inductive areas respectively.
  • the first conductive part 161 plays a role in the 2.4G frequency band.
  • the role of capacitive loading plays a perceptual deloading role in the 5G frequency band.
  • the embodiment of the present application can quickly adjust different resonant frequency deviations by adjusting the size in the corresponding direction.
  • the embodiment of the present application can realize simultaneous debugging of the impedances of the 2.4G frequency band and the 5G frequency band. The same first conductive part 161 debugs different frequency bands. The debugging efficiency is higher and the structural design is simpler.
  • the extension of the first conductive part 161 in the first gap 1231 can also be adjusted.
  • the ratio between the size in the extension direction and the size of the first conductive part 161 in the direction perpendicular to the extension direction of the first gap 1231 achieves optimal matching between the first frequency band and the second frequency band.
  • the first radiating part 1221 may be provided with a first conductive member 131, wherein the specific arrangement of the first conductive member 131 may include but is not limited to the following two possibilities: Method to realize:
  • the first conductive member 131 may extend along the second direction L2, and the circuit board 110, the first radiating part 1221 and the first conductive member 131 are collectively surrounded to form a second conductive member 131.
  • the first conductive member 131 may extend along the first direction L1 , and the first conductive member 131 may be located at the first radiation part 1221 away from the first gap 1231 On one side, the circuit board 110 , the first radiation part 1221 and the first conductive member 131 together form a first radiation cavity 151 .
  • the extension direction of the first conductive member 131 may be along a direction perpendicular to the extension direction of the first gap 1231, or the first conductive member 131 The extension direction may also be along the extension direction of the first gap 1231. In this way, the circuit board 110, the first radiating part 1221 and the first conductive member 131 can collectively surround the first radiation cavity 151 to form a cavity antenna. .
  • extension along the first direction L1 or the extension along the second direction L2 mentioned in the embodiment of the present application is not strictly completely parallel to the first direction L1 or the second direction L2 in the mathematical sense. , but the angle range of 0-10° with this direction can be approximately considered to extend along the first direction L1 or extend along the second direction L2.
  • the first conductive member 131 may be conductive foam, or the first conductive member 131 may be conductive glue, or the first conductive member 131 may be a metal elastic piece.
  • Conductive foam, conductive glue and metal elastic pieces can all play a role in electrically connecting the circuit board 110 and the metal structural member 120 .
  • using conductive foam, conductive glue or metal shrapnel to construct a cavity antenna is simple to implement, can reduce the manufacturing cost of the antenna, and simplify the difficulty of assembling the whole machine.
  • the first conductive member 131 may include: two or more conductive members 1311 arranged at intervals.
  • the metal elastic piece can be designed as a plurality of small elastic pieces arranged at intervals, that is, the first conductive member 131 is arranged as a elastic piece that is grounded at multiple points.
  • the first conductive part 131 By designing the first conductive part 131 as two or more conductive parts 1311 arranged at intervals, at least one of the first radiating part 1221 , the area on the circuit board 110 corresponding to the first radiating part 1221 , and the first conductive part 131 Two or more spaced apart conductive members 1311 can still surround the first radiation cavity 151 , and the first feeding point 141 feeds the first radiation part 1221 to form a cavity in the first radiation cavity 151 body antenna.
  • the first radiation part 1221 may be provided with two corresponding conductive members 1311 .
  • one of the conductive members 1311 may extend along the second direction L2, and the other conductive member 1311 may extend along the first direction L1. Moreover, the other conductive member 1311 is located on the first radiation part 1221 away from the first gap 1231. At this time, the circuit board 110, the first radiation part 1221 and the two conductive members 1311 can be collectively surrounded to form the first radiation cavity 151.
  • the extension direction of one conductive member 1311 may be along the direction perpendicular to the extension direction of the first gap 1231, and the extension direction of the other conductive member 1311 may be It may be along the extending direction of the first gap 1231, so that the circuit board 110, the first radiation part 1221, and the two conductive members 1311 can collectively surround the first radiation cavity 151 to form a cavity antenna.
  • the first gap 1231 may be formed between the first radiation part 1221 and the corresponding first fixed end 1213.
  • the first radiating part 1221 may not have a corresponding first fixed end 1213, that is, the first gap 1231 may be directly formed between the first radiating part 1221 and the adjacent radiating part 122.
  • the first gap 1231 may It is directly formed between the first radiating part 1221 and the second radiating part 1222 (see Figure 33).
  • the body antenna is a body antenna, in which the first radiation cavity 151 is the cavity area of the cavity antenna, and a dual-frequency mode of the 2.4G frequency band and the 5G frequency band is generated in the first radiation cavity 151 .
  • the two conductive members 1311 seal the two sides of the first radiation cavity 151, so that the first radiation cavity 151 becomes a cavity closed on both sides.
  • the first radiation cavity 151 is a cavity with one side closed, and the embodiment of the present application can still achieve the same effect as the above embodiment.
  • Figure 17 shows the antenna S parameters (scattering parameters) corresponding to the cavity antenna in the electronic device 100 shown in Figures 15 and 16. According to Figure 17, it can be seen that the frequency band of the cavity antenna in the electronic device 100 can cover 2.4G and 5G dual-band.
  • Figures 18 and 19 are antenna patterns corresponding to the cavity antenna in the electronic device 100 shown in Figures 15 and 16. According to Figures 18 and 19, it can be seen that the directivity coefficient of the cavity antenna in the 2.4G frequency band is 3dBi , the directivity coefficient in the 5G frequency band is 4.2dBi, and this pattern can ensure good coverage in the horizontal plane.
  • the electronic device 100 may also include: a second conductive member 132, as shown in FIGS. 20 and 21 , and the metal structural member 120 may further include: a second radiating part 1222, wherein the The two radiating parts 1222 are connected to the main body part 121 , and the second radiating part 1222 is located on the second side 1217 of the main body part 121 .
  • a second feed point 142 is provided on the circuit board 110 , and the second feed point 142 can be electrically connected to the second radiation part 1222 .
  • the main body 121 may also have a second fixed end 1214 corresponding to the second radiating part 1222, wherein part of the outer edge of the second radiating part 1222 and the second fixed end 1214 There may be a second gap 1232 between them, and the outer edge of the second radiation part 1222 located at the second gap 1232 may be electrically connected to the corresponding second feed point 142 so that the second feed point 142 can be realized through the second gap 1232 Feeding power to the second radiating part 1222 .
  • the second radiating part 1222 , the area on the circuit board 110 corresponding to the second radiating part 1222 , and the second conductive member 132 together form a second radiation cavity 152 .
  • the circuit board 110, the first radiating part 1221 and the first conductive member 131 together form the first radiation cavity 151, and the first feeding point 141 feeds the first radiating part 1221, so that in the first radiation cavity A cavity antenna is formed in the body 151.
  • the circuit board 110, the second radiating part 1222 and the second conductive member 132 are collectively surrounded to form the second radiating cavity 152.
  • the second feeding point 142 feeds the second radiating part 1222. , to form another cavity antenna in the second radiation cavity 152 .
  • the length of the second radiation cavity 152 in the first direction L1 may be 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1
  • the length of the second radiation cavity 152 in the second direction L2 may be is 1/2 ⁇ 2 ⁇ 1/8 ⁇ 2 , where ⁇ 1 can be the wavelength of the electromagnetic wave in free space in the first frequency band, and ⁇ 2 can be the wavelength of the electromagnetic wave in free space in the second frequency band.
  • the length of the second radiation cavity 152 in the extension direction of the second slot 1232 By designing the length of the second radiation cavity 152 in the extension direction of the second slot 1232 to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can help the second radiation cavity 152 to extend in the extension direction of the second slot 1232 .
  • the TM 1/2,0 mode of the second radiation cavity 152 is excited to cover the application of the antenna in the first frequency band.
  • the length of the second radiation cavity 152 in the direction perpendicular to the extension direction of the second gap 1232 By designing the length of the second radiation cavity 152 in the direction perpendicular to the extension direction of the second gap 1232 to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can be helpful for the second radiation cavity 152 to connect with the second slit 1232 .
  • the TM 0,1 mode of the second radiation cavity 152 is excited in a direction perpendicular to the extending direction of the slot 1232 to cover the application of the antenna in the second frequency band.
  • the second radiation cavity 152 and the first radiation cavity 151 may operate in the same operating frequency band.
  • the cavity antenna formed by the second radiation cavity 152 and the cavity antenna formed by the first radiation cavity 151 operate in the same operating frequency band, and can form a MIMO antenna pair.
  • the height of the second radiation cavity 152 may be 2 mm-5 mm.
  • the height of the second radiation cavity 152 may be 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, etc., which is not limited in the embodiments of the present application.
  • the second conductive member 132 may be conductive foam, or the second conductive member 132 may be conductive glue, or the second conductive member 132 may be a metal elastic piece.
  • Conductive foam, conductive glue and metal elastic pieces can all play a role in electrically connecting the circuit board 110 and the metal structural member 120 .
  • using conductive foam, conductive glue or metal shrapnel to construct a cavity antenna is simple to implement, can reduce the manufacturing cost of the antenna, and simplify the difficulty of assembling the whole machine.
  • the second conductive part 162 may be provided on a side of the second radiating part 1222 facing the circuit board 110, and the projection area of the second conductive part 162 on the circuit board 110 may be located at the second The radiation part 1222 is within the projection area on the circuit board 110 .
  • the second conductive part 162 can locally thicken the second radiating part 1222 to perform distributed matching loading.
  • the specific location and size of the second conductive part 162 on the second radiating part 1222 are the same or similar to the specific location and size of the first conductive part 161 on the first radiating part 1221, and will not be discussed here. Repeat.
  • the first radiating part 1221 and the second radiating part 1222 may be located on both sides of the main body part 121 respectively, and the extension direction of the first conductive member 131 and the The extending directions of the two conductive members 132 intersect. In one embodiment, the first radiating part 1221 and the second radiating part 1222 may be respectively located on adjacent two sides of the main body part 121 .
  • the circuit board 110, the first radiating part 1221 and the first conductive member 131 are collectively surrounded to form the first radiation cavity 151
  • the circuit board 110, the second radiating part 1222 and the second conductive member 132 are collectively surrounded to form the second radiation cavity.
  • the cavity 152, the first radiation cavity 151 and the second radiation cavity 152 are arranged relatively orthogonally, which can increase the distance between the cavity antenna in the first radiation cavity 151 and the cavity antenna in the second radiation cavity 152.
  • the degree of isolation can further reduce the degree of mutual interference between the cavity antenna in the first radiation cavity 151 and the cavity antenna in the second radiation cavity 152 .
  • the first feeding point 141 is the feeding point of one of the cavity antennas
  • the second feeding point 142 is the feeding point of the other cavity antenna
  • the One radiation cavity 151 is the cavity area of one of the cavity antennas
  • the second radiation cavity 152 is the cavity area of the other cavity antenna.
  • the two cavity antennas in the electronic device 100 are placed orthogonally.
  • the isolation between the two cavity antennas is high, for example, the isolation can reach 40dB.
  • the horizontal plane patterns of the two cavity antennas are complementary, which helps Achieve 360-degree omnidirectional coverage.
  • Figure 23 shows the antenna S parameters (scattering parameters) corresponding to the cavity antenna in the electronic device 100 shown in Figures 20 and 21. According to Figure 23, it can be seen that the cavity antenna in the electronic device 100 operates in the 2.4G frequency band. The isolation between the two cavity antennas reaches -40dB, and in the 5G frequency band, the isolation between the two cavity antennas reaches -30dB.
  • Figures 24 and 25 are antenna patterns corresponding to the cavity antennas in the electronic device 100 shown in Figures 20 and 21. According to Figures 24 and 25, it can be seen that the patterns of the two cavity antennas basically cover the horizontal plane. , and are very complementary and can achieve 360-degree omnidirectional coverage on the horizontal plane.
  • Figure 26 shows the antenna efficiency of the cavity antenna in the electronic device 100 shown in Figure 20 and Figure 21. According to Figure 26, it can be seen that the antenna efficiency of the two cavity antennas in the electronic device 100 is good, and in the working frequency band Within, the antenna efficiency of both cavity antennas is above -0.5dB.
  • the cavity antenna in the electronic device 100 as a dual-antenna body, and by designing the first radiating part 1221 and the second radiating part 1222 under the same metal structural member 120, the first radiating part 1221 and the second radiating part 1222 are designed.
  • the conductive member 131 and the second conductive member 132 construct a cavity antenna, and at the same time, selecting appropriate positions of the first feed point 141 and the second feed point 142 can realize a dual-antenna integrated design. Due to the isolation of the current path of the cavity antenna, there is a high degree of isolation between the two cavity antennas. Moreover, the two cavity antennas are less affected by the surrounding metal environment and still have good radiation performance in the overall environment. .
  • the first radiating part 1221 and the second radiating part 1222 may be respectively located on opposite sides of the main body part 121 .
  • the extension direction of the first conductive member 131 and the extension direction of the second conductive member 132 may be parallel to each other (see FIG. 28 ). Alternatively, in some other embodiments, the extending direction of the first conductive member 131 and the extending direction of the second conductive member 132 may be perpendicular to each other.
  • the circuit board 110, the first radiating part 1221 and the first conductive member 131 are collectively surrounded to form the first radiation cavity 151
  • the circuit board 110, the second radiating part 1222 and the second conductive member 132 are collectively surrounded to form the second radiation cavity.
  • the cavity 152, the first radiation cavity 151 and the second radiation cavity 152 are arranged relatively parallel, and the first radiation cavity 151 and the second radiation cavity 152 are respectively located on opposite sides of the main body 121.
  • the first radiation cavity 151 and the second radiation cavity 152 are separated by the main body 121, which can increase the isolation between the cavity antenna in the first radiation cavity 151 and the cavity antenna in the second radiation cavity 152, and thus The degree of mutual interference between the cavity antenna in the first radiation cavity 151 and the cavity antenna in the second radiation cavity 152 can be reduced.
  • a first conductive member 131 is added between the first radiating part 1221 and the circuit board 110 , and a first feeding point 141 is designed at an appropriate position for feeding.
  • a second conductive member 132 is added between the second radiating part 1222 and the circuit board 110, and a second feed point 142 is designed at a suitable position for feeding and excitation to form a cavity antenna.
  • the first feeding point 141 is the feeding point of one of the cavity antennas
  • the second feeding point 142 is the feeding point of the other cavity antenna
  • the first radiation cavity 151 is the cavity of one of the cavity antennas.
  • the second radiation cavity 152 is the cavity area of another cavity antenna.
  • Figure 30 shows the antenna S parameters (scattering parameters) corresponding to the cavity antennas in the electronic device 100 shown in Figures 27 and 28 , it can be seen from Figure 30 that the two cavity antennas in the electronic device 100 have the same polarization, but the isolation between the two cavity antennas can still reach more than -20dB, which can meet the index requirements of most products.
  • Figures 31 and 32 are antenna patterns corresponding to the cavity antennas in the electronic device 100 shown in Figures 27 and 28. According to Figures 31 and 32, it can be seen that the two cavity antennas have good horizontal direction patterns. Omnidirectional coverage can meet the coverage needs of end products.
  • the electronic device 100 may further include: a third conductive member 133
  • the metal structural member 120 may further include: a third radiating part 1223 , wherein the third radiating part 1223 is connected to the main body part 121 , and, The three radiating parts 1223 are located on the third side 1218 of the main body part 121.
  • the first radiating part 1221, the second radiating part 1222 and the third radiating part 1223 may be respectively located on three sides of the main body part 121.
  • a third feed point 143 is provided on the circuit board 110 , and the third feed point 143 can be electrically connected to the third radiation part 1223 .
  • the main body 121 may also have a third fixed end 1215 corresponding to the third radiating part 1223, and part of the outer edge of the third radiating part 1223 There is a third gap 1233 between the third fixed end 1215 and the outer edge of the third radiation part 1223 located at the second gap 1232 can be electrically connected to the corresponding third feed point 143 so that the third feed point 143 can
  • the third radiating part 1223 is fed through the third gap 1233 , so that the circuit board 110 , the third radiating part 1223 and the third conductive member 133 can be collectively surrounded to form the third radiation cavity 153 .
  • the circuit board 110, the first radiating part 1221 and the first conductive member 131 together form the first radiation cavity 151, and the first feeding point 141 feeds the first radiating part 1221, so that in the first radiation cavity A cavity antenna is formed in the body 151.
  • the circuit board 110, the second radiating part 1222 and the second conductive member 132 are collectively surrounded to form the second radiating cavity 152.
  • the second feeding point 142 feeds the second radiating part 1222.
  • the circuit board 110, the third radiation part 1223 and the third conductive member 133 are collectively surrounded to form the third radiation cavity 153, and the third feed point 143 pair
  • the third radiating part 1223 performs power feeding to form another cavity antenna in the third radiating cavity 153 .
  • the length of the third radiation cavity 153 in the first direction L1 may be 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1
  • the length of the third radiation cavity 153 in the second direction L2 The length can be 1/2 ⁇ 2 ⁇ 1/8 ⁇ 2 , where ⁇ 1 is the wavelength of electromagnetic waves in free space in the first frequency band, and ⁇ 2 is the wavelength of electromagnetic waves in free space in the second frequency band.
  • the third radiation cavity 153 By designing the length of the third radiation cavity 153 in the extension direction of the third slit 1233 to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can help the third radiation cavity 153 to extend in the extension direction of the third slit 1233 .
  • the TM 1/2,0 mode of the third radiation cavity 153 is excited to cover the application of the antenna in the first frequency band.
  • the length of the third radiation cavity 153 in the direction perpendicular to the extension direction of the third gap 1233 By designing the length of the third radiation cavity 153 in the direction perpendicular to the extension direction of the third gap 1233 to 1/4 ⁇ 1 ⁇ 1/8 ⁇ 1 , it can be helpful for the third radiation cavity 153 to be connected to the third slit 1233 .
  • the TM 0,1 mode of the third radiation cavity 153 is excited in a direction perpendicular to the extending direction of the slot 1233 to cover the application of the antenna in the second frequency band.
  • the third radiation cavity 153, the second radiation cavity 152, and the first radiation cavity 151 can operate in the same operating frequency band.
  • the cavity antenna formed by the first radiation cavity 151, the cavity antenna formed by the second radiation cavity 152, and the cavity antenna formed by the third radiation cavity 153 work in the same operating frequency band, and can form a MIMO antenna.
  • the height of the third radiation cavity 153 may be 2mm-5mm.
  • the height of the third radiation cavity 153 may be 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, etc., which is not limited in the embodiments of the present application.
  • the third conductive member 133 may be conductive foam, or the third conductive member 133 may be conductive glue, or the third conductive member 133 may be a metal elastic piece.
  • Conductive foam, conductive glue and metal elastic pieces can all play a role in electrically connecting the circuit board 110 and the metal structural member 120 .
  • using conductive foam, conductive glue or metal shrapnel to construct a cavity antenna is simple to implement, can reduce the manufacturing cost of the antenna, and simplify the difficulty of assembling the whole machine.
  • the third conductive part 163 may be provided on a side of the third radiating part 1223 facing the circuit board 110, and the projection area of the third conductive part 163 on the circuit board 110 may be located on the third The radiation part 1223 is within the projection area on the circuit board 110 .
  • the third conductive part 163 can locally thicken the third radiating part 1223 to perform distributed matching loading.
  • the specific location and size of the third conductive part 163 on the third radiating part 1223 are the same or similar to the specific location and size of the first conductive part 161 on the first radiating part 1221 and will not be discussed here. Repeat.
  • the cavity antenna in the electronic device 100 by extending the cavity antenna in the electronic device 100 to a three-antenna common design, due to the isolation of the current path of the cavity antenna, there is a high degree of isolation between the three cavity antennas, which can ensure The three-antenna design provides omnidirectional coverage in the horizontal plane and the high isolation design can improve antenna performance in coexistence scenarios. Moreover, the three cavity antennas are less affected by the surrounding metal environment and still have good radiation performance in the overall environment.
  • the number of cavity antennas in the electronic device 100 may also be four.
  • the cavity antenna in the electronic device 100 can achieve coverage of more antenna modes.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Indirect connection through an intermediary can be the internal connection between two elements or the interaction between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例提供一种电子设备,该电子设备中,金属结构件与电路板层叠且间隔设置,第一导电件位于电路板与金属结构件之间,且第一导电件的一端与电路板电连接,第一导电件的另一端与金属结构件电连接;金属结构件至少包括:主体部以及与主体部相连且位于主体部第一侧的第一辐射部,其中,第一辐射部、电路板上与第一辐射部相对应的区域、以及第一导电件围设形成第一辐射腔体;电路板上设置有第一馈电点,第一馈电点与第一辐射部电连接。这样,能够避免或减小电路板对天线的天线性能产生影响,从而能够避免天线的定向性过强,在各个方向上的辐射性能不均匀的问题。

Description

电子设备
本申请要求于2022年08月03日提交中国专利局、申请号为202210925906.9、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,特别涉及一种电子设备。
背景技术
随着通信技术的不断发展,手机和电脑等电子设备的无线性能受到越来越多的关注,因而,天线技术在电子设备上的应用愈加广泛,需求也越来越高。
以电子设备为手机为例,一般在手机上的不同空间位置设计有不同的天线结构,具体地,可以根据实际场景需求,通过在手机空间内不同位置布局不同的谐振天线,以满足不同场景下的天线需求。相关技术中,电子设备内可以形成有腔体天线。具体地,电子设备中,印制电路板(Printed Circuit Board,PCB)的上方设置有散热器,PCB板的上方靠近散热器的内部设置有射频耦合探针,散热器的表面设置有平面,而且,散热器的内部靠近射频耦合探针的上方设置有水平部分,平面的内部设置有曲线回形槽,采用电容耦合的方式,将散热器转变为天线的一个辐射部分,并通过耦合缝隙实现双频段谐振,使得辐射和散热结合为一体,不仅满足了天线的性能要求,也解决了电子设备的散热。
然而,上述设计方案中,天线性能受下方PCB板的影响较大,导致天线的定向性过强,在各个方向上的辐射性能不均匀。
发明内容
本申请实施例提供一种电子设备,能够避免或减小电路板对天线的天线性能产生影响,从而能够避免天线的定向性过强,在各个方向上的辐射性能不均匀的问题。
本申请实施例提供一种电子设备,该电子设备至少包括:电路板、电子元器件以及金属结构件;所述金属结构件与所述电路板层叠且间隔设置,所述电子元器件位于所述电路板和所述金属结构件之间;还包括:第一导电件;所述第一导电件位于所述电路板与所述金属结构件之间,且所述第一导电件的一端与所述电路板电连接,所述第一导电件的另一端与所述金属结构件电连接;所述金属结构件至少包括:主体部以及与所述主体部相连且位于所述主体部第一侧的第一辐射部,所述第一辐射部、所述电路板上与所述第一辐射部相对应的区域、以及所述第一导电件围设形成第一辐射腔体;所述电路板上设置有第一馈电点,所述第一馈电点与所述第一辐射部电连接。
本申请实施例提供的电子设备,该电子设备中,通过在电路板与金属结构件之间设置第一导电件,第一导电件的一端与电路板电连接,第一导电件的另一端与金属结构件电连接,金属结构件的第一辐射部、电路板上与第一辐射部相对应的区域、以及第一导电件能够围设形成第一辐射腔体,而且,通过在电路板上设置有第一馈电点,第一馈电点与第一辐射部电连接,第一馈电点能够对第一辐射部进行馈电,以在第一辐射腔体内形成腔体天线,这样,能够避免或减小电路板对腔体天线的天线性能产生影响,从而能够避免天线的定向性过强,在各个方向上的辐射性能不均匀的问题。
在一种可能的实现方式中,所述主体部上具有与所述第一辐射部对应的第一固定端,所述第一辐射部的部分外边缘与所述第一固定端之间具有第一缝隙;所述第一辐射部位于所述第一缝隙处的外边缘与对应的所述第一馈电点电连接。
通过设计与第一辐射部对应的第一固定端,第一固定端用于实现金属结构件与电路板之间的相互固定。通过在第一辐射部与对应的第一固定端之间设计有第一缝隙,第一辐射部位于该第一缝隙处的外边缘与对应的第一馈电点电连接,这样,第一馈电点能够通过第一缝隙实现对第一辐射部的馈电。
在一种可能的实现方式中,所述第一辐射部面向所述电路板的一面上设有第一导电部;所述第一导 电部在所述电路板上的投影区域位于所述第一辐射部在所述电路板上的投影区域内。
通过在第一辐射部面向电路板的一面上设置有第一导电部,第一导电部能够对第一辐射部进行局部加厚,以起到进行分布式匹配加载的作用。
在一种可能的实现方式中,所述第一导电部在第一方向上的一端朝向所述主体部,所述第一导电部在所述第一方向上的另一端沿着第一方向延伸至所述第一辐射部背离所述主体部的一端;其中,所述第一方向为所述第一缝隙的延伸方向。
通过将第一导电部在第一缝隙的延伸方向上的一端朝向主体部,导电部在第一缝隙的延伸方向上的另一端沿着第一缝隙的延伸方向延伸至第一辐射部背离主体部的一端,能够调节天线在第一频段(例如2.4G频段)下的阻抗。
在一种可能的实现方式中,所述第一导电部在第二方向上的一端位于所述第一辐射部在所述第二方向上的中间位置;所述第一导电部在第二方向上的另一端沿着所述第二方向朝向所述第一缝隙延伸,或者,所述第一导电部在第二方向上的另一端沿着所述第二方向远离所述第一缝隙延伸;其中,所述第二方向与所述第一方向相互垂直。
通过将第一导电部在与第一缝隙的延伸方向相垂直的方向上的一端,设置在第一辐射部在与第一缝隙的延伸方向相垂直的方向上的中间位置,将第一导电部在与第一缝隙的延伸方向相垂直的方向上的另一端沿着与第一缝隙的延伸方向相垂直的方向朝向第一缝隙延伸,或者将第一导电部在与第一缝隙的延伸方向相垂直的方向上的另一端沿着与第一缝隙的延伸方向相垂直的方向远离第一缝隙延伸,能够调节天线在第二频段(例如5G频段)下的阻抗。
另外,通过调节第一导电部在第一缝隙的延伸方向上的尺寸与第一导电部在与第一缝隙的延伸方向相垂直的方向上的尺寸之间的比例,能够有助于实现第一频段和第二频段之间的最优匹配。
在一种可能的实现方式中,所述第一导电件沿着所述第二方向延伸,或者,所述第一导电件沿着所述第一方向延伸,且所述第一导电件位于所述第一辐射部远离所述第一缝隙的一侧;所述电路板、所述第一辐射部以及所述第一导电件共同围设形成所述第一辐射腔体。
第一辐射部对应一个导电件时,第一导电件的延伸方向可以是沿着与第一缝隙的延伸方向相垂直的方向,或者,第一导电件的延伸方向也可以是沿着第一缝隙的延伸方向,这样,电路板、第一辐射部以及第一导电件能够共同围设形成第一辐射腔体,以形成腔体天线。
在一种可能的实现方式中,所述第一导电件包括两个或多个间隔设置的导电件,所述两个或多个间隔设置的导电件中的其中一个沿所述第二方向延伸,所述两个或多个间隔设置的导电件中的另一个沿所述第一方向延伸,且位于所述第一辐射部远离所述第一缝隙的一侧;所述电路板、所述第一辐射部以及所述两个或多个间隔设置的导电件共同围设形成所述第一辐射腔体。
第一辐射部对应两个或两个以上导电件时,其中一个导电件的延伸方向可以是沿着与第一缝隙的延伸方向相垂直的方向,另一个导电件的延伸方向也可以是沿着第一缝隙的延伸方向,这样,电路板、第一辐射部以及两个或者两个以上导电件能够共同围设形成第一辐射腔体,以形成腔体天线。
在一种可能的实现方式中,还包括:第二导电件;所述金属结构件还包括:与所述主体部相连且位于所述主体部第二侧的第二辐射部;所述主体部上还具有与所述第二辐射部对应的第二固定端;所述第二辐射部的部分外边缘与所述第二固定端之间具有第二缝隙;所述电路板上设置有第二馈电点,所述第二辐射部位于所述第二缝隙处的外边缘与对应的所述第二馈电点电连接;所述第二辐射部、所述电路板上与所述第二辐射部相对应的区域、以及所述第二导电件共同围设形成第二辐射腔体。
这样,第一辐射部对应第一导电件,电路板、第一辐射部以及第一导电件共同围设形成第一辐射腔体,第一馈电点对第一辐射部进行馈电,以在第一辐射腔体内形成一个腔体天线,电路板、第二辐射部以及第二导电件共同围设形成第二辐射腔体,第二馈电点对第二辐射部进行馈电,以在第二辐射腔体内形成另一个腔体天线。
在一种可能的实现方式中,所述第一辐射部与所述第二辐射部分别位于所述主体部的两侧,且所述第一导电件和所述第二导电件的延伸方向相交。
这样,电路板、第一辐射部以及第一导电件共同围设形成第一辐射腔体,电路板、第二辐射部以及第二导电件共同围设形成第二辐射腔体,第一辐射腔体和第二辐射腔体相对正交设置,能够增加第一辐射腔体内的腔体天线与第二辐射腔体内的腔体天线之间的隔离度,进而能够减小第一辐射腔体内的腔体 天线与第二辐射腔体内的腔体天线之间的相互干扰程度。
在一种可能的实现方式中,所述第一辐射部与所述第二辐射部分别位于所述主体部相对的两侧,且所述第一导电件和所述第二导电件的延伸方向平行。
这样,电路板、第一辐射部以及第一导电件共同围设形成第一辐射腔体,电路板、第二辐射部以及第二导电件共同围设形成第二辐射腔体,第一辐射腔体和第二辐射腔体相对平行设置,且第一辐射腔体和第二辐射腔体分别位于主体部相对的两侧,第一辐射腔体和第二辐射腔体之间通过主体部分隔开,能够增加第一辐射腔体内的腔体天线与第二辐射腔体内的腔体天线之间的隔离度,进而能够减小第一辐射腔体内的腔体天线与第二辐射腔体内的腔体天线之间的相互干扰程度。
在一种可能的实现方式中,还包括:第三导电件;所述金属结构件还包括:与所述主体部相连且位于所述主体部第三侧的第三辐射部;所述第一辐射部、所述第二辐射部和所述第三辐射部分别位于所述主体部的三侧;所述主体部上还具有与所述第三辐射部对应的第三固定端;所述第三辐射部的部分外边缘与与所述第三固定端之间具有第三缝隙;所述电路板上设置有第三馈电点,所述第三辐射部位于所述第二缝隙处的外边缘与对应的所述第三馈电点电连接;所述第三辐射部、所述电路板上与所述第三辐射部相对应的区域、以及所述第三导电件共同围设形成第三辐射腔体。
这样,电路板、第一辐射部以及第一导电件共同围设形成第一辐射腔体,第一馈电点对第一辐射部进行馈电,以在第一辐射腔体内形成一个腔体天线,电路板、第二辐射部以及第二导电件共同围设形成第二辐射腔体,第二馈电点对第二辐射部进行馈电,以在第二辐射腔体内形成另一个腔体天线,电路板、第三辐射部以及第三导电件共同围设形成第三辐射腔体,第三馈电点对第三辐射部进行馈电,以在第三辐射腔体内形成又一个腔体天线。
在一种可能的实现方式中,所述第一辐射腔体在所述第一方向上的长度为1/4λ1±1/8λ1;所述第一辐射腔体在所述第二方向的长度为1/2λ2±1/8λ2;所述λ1为电磁波在第一频段下自由空间的波长,所述λ2为电磁波在第二频段下自由空间的波长。
通过将第一辐射腔体在第一缝隙的延伸方向上的长度设计为1/4λ1±1/8λ1,能够有助于第一辐射腔体在第一缝隙的延伸方向上激励出第一辐射腔体的TM1/2,0模式,以覆盖天线在第一频段下的应用。通过将第一辐射腔体在与第一缝隙的延伸方向相垂直的方向上的长度设计为1/4λ1±1/8λ1,能够有助于第一辐射腔体在与第一缝隙的延伸方向相垂直的方向上激励出第一辐射腔体的TM0,1模式,以覆盖天线在第二频段下的应用。
在一种可能的实现方式中,所述第二辐射腔体在所述第一方向上的长度为1/4λ1±1/8λ1;所述第二辐射腔体在所述第二方向的长度为1/2λ2±1/8λ2;所述λ1为电磁波在第一频段下自由空间的波长,所述λ2为电磁波在第二频段下自由空间的波长。
通过将第二辐射腔体在第二缝隙的延伸方向上的长度设计为1/4λ1±1/8λ1,能够有助于第二辐射腔体在第二缝隙的延伸方向上激励出第二辐射腔体的TM1/2,0模式,以覆盖天线在第一频段下的应用。通过将第二辐射腔体在与第二缝隙的延伸方向相垂直的方向上的长度设计为1/4λ1±1/8λ1,能够有助于第二辐射腔体在与第二缝隙的延伸方向相垂直的方向上激励出第二辐射腔体的TM0,1模式,以覆盖天线在第二频段下的应用。
在一种可能的实现方式中,所述第三辐射腔体在所述第一方向上的长度为1/4λ1±1/8λ1;所述第三辐射腔体在所述第二方向的长度为1/2λ2±1/8λ2;所述λ1为电磁波在第一频段下自由空间的波长,所述λ2为电磁波在第二频段下自由空间的波长。
通过将第三辐射腔体在第三缝隙的延伸方向上的长度设计为1/4λ1±1/8λ1,能够有助于第三辐射腔体在第三缝隙的延伸方向上激励出第三辐射腔体的TM1/2,0模式,以覆盖天线在第一频段下的应用。通过将第三辐射腔体在与第三缝隙的延伸方向相垂直的方向上的长度设计为1/4λ1±1/8λ1,能够有助于第三辐射腔体在与第三缝隙的延伸方向相垂直的方向上激励出第三辐射腔体的TM0,1模式,以覆盖天线在第二频段下的应用。
在一种可能的实现方式中,所述第二辐射腔体和所述第一辐射腔体用于工作在同一工作频段下。这样,第二辐射腔体所形成的腔体天线与第一辐射腔体所形成的腔体天线工作在同一工作频段下,能够组成MIMO天线对。
在一种可能的实现方式中,所述第三辐射腔体、所述第二辐射腔体以及所述第一辐射腔体用于工作 在同一工作频段下。这样,第一辐射腔体所形成的腔体天线、第二辐射腔体所形成的腔体天线以及第三辐射腔体所形成的腔体天线工作在同一工作频段下,能够组成MIMO天线。
在一种可能的实现方式中,所述第一辐射腔体的高度为2mm-5mm。通过将第一辐射腔体的高度设计为2mm-5mm,能够使得第一辐射腔体内的电场耦合达到较优的耦合效果,从而能够避免第一辐射腔体的高度过小时导致电场耦合过强或者第一辐射腔体的高度过大时导致电场无法耦合等不良问题。
在一种可能的实现方式中,所述第二辐射腔体的高度为2mm-5mm。通过将第二辐射腔体的高度设计为2mm-5mm,能够使得第二辐射腔体内的电场耦合达到较优的耦合效果,从而能够避免第二辐射腔体的高度过小时导致电场耦合过强或者第二辐射腔体的高度过大时导致电场无法耦合等不良问题。
在一种可能的实现方式中,所述第三辐射腔体的高度为2mm-5mm。通过将第三辐射腔体的高度设计为2mm-5mm,能够使得第三辐射腔体内的电场耦合达到较优的耦合效果,从而能够避免第三辐射腔体的高度过小时导致电场耦合过强或者第三辐射腔体的高度过大时导致电场无法耦合等不良问题。
在一种可能的实现方式中,所述第一导电件为导电泡棉;或者,所述第一导电件为导电胶;或者,所述第一导电件为金属弹片。导电泡、导电胶和金属弹片均能起到电连接电路板与金属结构件的作用。
在一种可能的实现方式中,所述第二导电件为导电泡棉;或者,所述第二导电件为导电胶;或者,所述第二导电件为金属弹片。导电泡、导电胶和金属弹片均能起到电连接电路板与金属结构件的作用。
在一种可能的实现方式中,所述第三导电件为导电泡棉;或者,所述第三导电件为导电胶;或者,所述第三导电件为金属弹片。导电泡、导电胶和金属弹片均能起到电连接电路板与金属结构件的作用。
在一种可能的实现方式中,所述金属结构件为散热器;所述电子元器件为发热元器件。通过将散热器作为金属结构件,能够利用散热器的结构形成天线,将散热器转变为天线的一个辐射部分,使得辐射和散热结合为一体,不仅满足了天线的性能要求,散热器能够给对发热元器件进行散热,也解决了电子设备的散热问题,从而能够在一定程度上起到节约天线成本的作用。另外,相比于现有技术中需要在散热器上进行开槽实现双频段谐振,本申请实施例形成天线时无需破坏散热器其本身的结构,进而不会影响散热器的散热性能。
在一种可能的实现方式中,所述电子设备为音箱。通过利用音箱内部空间形成腔体天线,能够在很大程度上节省在音箱内设计天线的空间,同时还能够在一定程度上起到节约制作天线成本的作用。
结合附图,根据下文描述的实施例,示例性实施例的这些和其它方面、实施形式和优点将变得显而易见。但应了解,说明书和附图仅用于说明并且不作为对本申请实施例的限制的定义,详见随附的权利要求书。本申请实施例的其它方面和优点将在以下描述中阐述,而且部分将从描述中显而易见,或通过本申请实施例的实践得知。此外,本申请实施例的各方面和优点可以通过所附权利要求书中特别指出的手段和组合得以实现和获得。
附图说明
图1为本申请一实施例提供的电子设备的整体结构示意图;
图2为本申请一实施例提供的电子设备的侧视图;
图3为图1的爆炸图;
图4为本申请一实施例提供的电子设备的部分结构示意图;
图5为本申请一实施例提供的电子设备中腔体天线在2.4G下的电流和电场分布图;
图6为本申请一实施例提供的电子设备中腔体天线在5G下的电流和电场分布图;
图7为本申请一实施例提供的电子设备中腔体天线所对应的天线散射参数图;
图8为本申请一实施例提供的电子设备中腔体天线在2.4G下的天线方向图;
图9为本申请一实施例提供的电子设备中腔体天线在5G下的天线方向图;
图10为本申请一实施例提供的电子设备中导电部对腔体天线的加载效果对比图;
图11为本申请一实施例提供的电子设备中导电部对腔体天线的加载效果对比图;
图12为本申请一实施例提供的电子设备中导电部为不同尺寸时腔体天线在2.4G下的谐振示意图;
图13为本申请一实施例提供的电子设备中导电部为不同尺寸时腔体天线在5G下的谐振示意图;
图14为本申请一实施例提供的电子设备的整体结构示意图;
图15为图14的爆炸图;
图16为本申请一实施例提供的电子设备的部分结构示意图;
图17为本申请一实施例提供的电子设备中腔体天线所对应的天线散射参数图;
图18为本申请一实施例提供的电子设备中腔体天线在2.4G下的天线方向图;
图19为本申请一实施例提供的电子设备中腔体天线在5G下的天线方向图;
图20为本申请一实施例提供的电子设备的整体结构示意图;
图21为图20的爆炸图;
图22为本申请一实施例提供的电子设备的部分结构示意图;
图23为本申请一实施例提供的电子设备中腔体天线所对应的天线散射参数图;
图24为本申请一实施例提供的电子设备中腔体天线在2.4G下的天线方向图;
图25为本申请一实施例提供的电子设备中腔体天线在5G下的天线方向图;
图26为本申请一实施例提供的电子设备中腔体天线的天线效率示意图;
图27为本申请一实施例提供的电子设备的整体结构示意图;
图28为图27的爆炸图;
图29为本申请一实施例提供的电子设备的部分结构示意图;
图30为本申请一实施例提供的电子设备中腔体天线所对应的天线散射参数图;
图31为本申请一实施例提供的电子设备中腔体天线在2.4G下的天线方向图;
图32为本申请一实施例提供的电子设备中腔体天线在5G下的天线方向图;
图33为本申请一实施例提供的电子设备的整体结构示意图。
附图标记说明:
100-电子设备;             110-电路板;               111-第二通孔;
120-金属结构件;           121-主体部;               1211-沉台;
1212-第一通孔;            1213-第一固定端;          1214-第二固定端;
1215-第三固定端;          1216-第一侧;              1217-第二侧;
1218-第三侧;              1221-第一辐射部;          1222-第二辐射部;
1223-第三辐射部;          1231-第一缝隙;            1232-第二缝隙;
1233-第三缝隙;            131-第一导电件;           1311-导电件;
132-第二导电件;           133-第三导电件;           141-第一馈电点;
142-第二馈电点;           143-第三馈电点;           151-第一辐射腔体;
152-第二辐射腔体;         153-第三辐射腔体;         161-第一导电部;
162-第二导电部;           163-第三导电部;           170-电子元器件;
L1-第一方向;              L2-第二方向。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供一种电子设备,可以包括但不限于为智能音箱、智能门锁、手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、销售点(Point of sales,POS)机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响/耳机、或车载前装、行车记录仪、安防设备等具有天线的移动或固定终端。
其中,本申请实施例中,以音箱为上述电子设备为例进行说明。其中,音箱例如可以为桶式音箱。
随着智能家居和全链接的发展,音箱作为其中应用之一,已经走入越来越多的家庭中,除了提升音频体验外,音箱也间逐渐承担起智能家居控制中心、私人助理或者娱乐服务等功能。因而,作为智能生活的入口,音箱整机功能架构也越来越复杂,为了进一步的增加音箱的可实现功能,可以在该音箱上设置有天线。但如何在复杂的整机环境中实现高性能多天线设计成为了必须要解决的关键问题。
目前,可以在音箱上的不同空间位置设计有不同的天线结构,具体地,可以根据实际场景需求,通过在音箱空间内不同位置布局不同的谐振天线,以满足音箱在不同场景下的天线需求。
音箱内可以形成有腔体天线。金属腔体本身是一个封闭结构,能量在内部产生振荡,通过在腔体表面开缝,使能量辐射出去,就形成了腔体天线。腔体天线的谐振频率不仅由其几何尺寸决定,也受缝隙大小和填充介质的影响,开缝等效为增加腔体的体积,缝隙越大,则谐振带宽越宽,谐振频点越低。而且,腔体天线由于依靠腔体内部振荡产生谐振,能量主要集中在腔体内部,其辐射特性受外部环境影响较小。
具体地,音箱中,印制电路板(Printed Circuit Board,PCB)的上方设置有散热器,PCB板的上方靠近散热器的部位设置有射频耦合探针,散热器的表面设置有平面,而且,散热器的内部靠近射频耦合探针的上方设置有水平部分,平面的内部设置有曲线回形槽,采用电容耦合的方式,将散热器转变为天线的一个辐射部分,并通过耦合缝隙实现双频段谐振。但是,该方案中,天线性能受下方PCB板的影响较大,导致天线的定向性过强,在各个方向上的辐射性能不均匀。
基于此,本申请实施例提供一种电子设备,该电子设备例如可以为音箱等,该电子设备中,通过在电路板与金属结构件之间设置至少一个导电件,导电件的一端与电路板电连接,导电件的另一端与金属结构件电连接,金属结构件的每个辐射部、电路板上与每个辐射部相对应的区域、以及至少一个导电件能够围设形成辐射腔体,而且,通过在电路板与每个辐射部之间设置有馈电点,馈电点与对应的辐射部电连接,馈电点能够对每个辐射部进行馈电,以在每个辐射腔体内形成腔体天线,这样,能够避免或减小电路板对腔体天线的天线性能产生影响,从而能够避免天线的定向性过强,在各个方向上的辐射性能不均匀的问题。
需要说明的是,本申请提供的天线适用于采用以下一种或多种MIMO(Multi-in Multi-out,多进多出)通信技术的电子设备:例如,长期演进(long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、SUB-6G通信技术以及未来其他MIMO通信技术等。MIMO通信技术指的是在发送端和接收端都使用多根天线,在收发之间构成多个信道的天线系统,具有极高的频谱利用效率。
可以理解的是,本申请实施例示意的结构并不构成对音箱的具体限定。在本申请另一些实施例中,音箱可以包括更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
下面分别以不同的实施例为例,并结合附图对该电子设备的具体结构进行介绍(以下各实施例不突出通信网络的需求,仅以频率大小说明天线的工作特性)。
参照图1和图2所示,本申请实施例提供一种电子设备100,该电子设备100例如可以为音箱、手机或者电脑等,具体地,参照图1和图3所示,该电子设备100至少可以包括:电路板110、电子元器件170以及金属结构件120,其中,金属结构件120与电路板110层叠且间隔设置,电子元器件170可以位于电路板110和金属结构件120之间。
在本申请实施例中,金属结构件120可以为散热器,电子元器件170可以为发热元器件。电子元器件170与金属结构件120朝向电路板110的一面相互接触,具体地,参见图3所示,金属结构件120至少包括主体部121,主体部121上设置有朝向电路板110凹陷的沉台1211,电子元器件170与沉台1211朝向电路板110的一面相互接触,此时,金属结构件120能够为电子元器件170提供良好散热的效果。
需要说明的是,在本申请实施例中,金属结构件120为散热器时,金属结构件120例如可以为平板散热器,平板散热器所采用的材质可以为铝。通过将散热器作为金属结构件120,能够利用散热器的结构形成腔体天线,将散热器转变为腔体天线的一个辐射部分,使得辐射和散热结合为一体,不仅满足了天线的性能要求,也解决了电子设备100的散热,从而能够在一定程度上起到节约天线成本的作用。
在一定程度上,该腔体天线可以在有限的设计空间内实现,有效节省了电子设备100内部的天线设计空间。
另外,相比于现有技术中需要在散热器上进行开槽实现双频段谐振,本申请实施例所提供的腔体天线无需在散热器上额外开槽,因而形成腔体天线时无需需要破坏散热器其本身的结构,进而不会影响散热器的散热性能。而且,取消开槽还具有不会影响电子设备的工业设计外观的优点。
继续参照图3所示,该电子设备100还可以包括:第一导电件131,其中,第一导电件131位于电路板110与金属结构件120之间,而且,第一导电件131的一端与电路板110电连接,第一导电件131的另一端与金属结构件120电连接。
金属结构件120还可以包括:第一辐射部1221,其中,第一辐射部1221与主体部121相连,而且, 第一辐射部1221位于主体部121的第一侧1216,以使得第一辐射部1221、电路板110上与第一辐射部1221相对应的区域、以及第一导电件131能够共同围设形成第一辐射腔体151。
另外,在一种可能的实现方式中,电路板110上可以设置有第一馈电点141,第一馈电点141与对应的第一辐射部1221电连接,这样,第一馈电点141能够对第一辐射部1221进行馈电,以使得第一辐射部1221所在的第一辐射腔体151内形成腔体天线。
其中,第一馈电点141可以为金属弹片、探针或者导电线缆等,这样,即可通过金属弹片、探针或者导电线缆等对第一辐射部1221进行馈电。需要说明的是,本申请实施例对第一馈电点141的具体形成方式并不加以限定,也不限于上述示例,只要能起到馈电连接的作用即可。
在本申请实施例中,第一辐射部1221所对应的第一馈电点141的数量可以为一个、两个、三个或者更多个,也就是说,第一辐射部1221可以是通过一个第一馈电点141进行馈电,或者,第一辐射部1221可以是同时通过两个第一馈电点141进行馈电,或者,第一辐射部1221可以是同时通过三个第一馈电点141进行馈电,或者,第一辐射部1221可以是同时通过更多个第一馈电点141进行馈电,本申请实施例对此并不加以限定。
可以理解的是,如图1或图3所示,主体部121上可以具有第一固定端1213,第一固定端1213与第一辐射部1221相对应。通过设计与第一辐射部1221对应的第一固定端1213,第一固定端1213用于实现金属结构件120与电路板110之间的相互固定。当然,在其它的一些实施例中,电路板110也可以是和其它结构件固定,以实现其它结构件和电路板110之间的相对固定位置。
示例性地,可以是在第一固定端1213上设置有第一通孔1212,在电路板110上与第一固定端1213相对应的区域设置有第二通孔111,第一通孔1212与第二通孔111相对设置,而且,第一通孔1212和第二通孔111之间可以通过固定件(图中未示出)固定相连。例如,固定件可以为螺杆、螺钉或者螺栓等,本申请实施例对此并不加以限定。
另外,在本申请实施例中,第一辐射部1221的部分外边缘与对应的第一固定端1213之间可以具有第一缝隙1231,第一辐射部1221位于第一缝隙1231处的外边缘可以与对应的第一馈电点141电连接。通过在第一辐射部1221与对应的第一固定端1213之间设计有第一缝隙1231,第一辐射部1221位于该第一缝隙1231处的外边缘与对应的第一馈电点141电连接,这样,第一馈电点141能够通过将第一缝隙1231实现对第一辐射部1221的馈电。
在一种可能的实现方式中,第一辐射腔体151在第一方向L1上的长度可以为1/4λ1±1/8λ1,第一辐射腔体151在第二方向的长度可以为1/2λ2±1/8λ2。其中,第一方向L1可以为第一缝隙1231的延伸方向,第二方向L2与第一方向L1相互垂直。
其中,λ1为电磁波在第一频段下(例如2.4G频段)自由空间的波长,λ2为电磁波在第二频段(例如5G频段)下自由空间的波长。
通过将第一辐射腔体151在第一缝隙1231的延伸方向上的长度设计为1/4λ1±1/8λ1,能够有助于第一辐射腔体151在第一缝隙1231的延伸方向上激励出第一辐射腔体151的TM1/2,0模式,以覆盖腔体天线在第一频段(例如2.4G频段)下的应用。通过将第一辐射腔体151在与第一缝隙1231的延伸方向相垂直的方向上的长度设计为1/4λ1±1/8λ1,能够有助于第一辐射腔体151在与第一缝隙1231的延伸方向相垂直的方向上激励出第一辐射腔体151的TM0,1模式,以覆盖腔体天线在第二频段(例如5G频段)下的应用。
本申请实施例利用金属结构件120与电路板110之间的空间,通过增加第一导电件131形成腔体天线,以在第一辐射部1221进行馈电激励出第一辐射腔体151的TM1/2,0模式和正交的TM0,1模式,实现WiFi的2.4G和5G双频覆盖,而且,腔体天线具有较低的方向性系数,可以实现水平面全向覆盖。
需要说明的是,在本申请实施例中,腔体天线的方向性系数可以小于4dBi,例如,腔体天线的方向性系数可以为3.5dBi,3dBi,2.5dBi,2dBi,1.5dBi,1dBi或者0.5dBi等。
在本申请实施例中,第一辐射腔体151的高度可以为2mm-5mm。例如,第一辐射腔体151的高度可以为2mm、2.5mm、3mm、3.5mm、4mm、4.5mm或者5mm等,本申请实施例对此并不加以限定。
这里需要说明的是,本申请涉及的数值和数值范围为近似值,受制造工艺的影响,可能会存在一定范围的误差,这部分误差本领域技术人员可以认为忽略不计。
通过将第一辐射腔体151的高度设计为2mm-5mm,能够使得第一辐射腔体151内的电场耦合达到 较优的耦合效果,从而能够避免第一辐射腔体151的高度过小时导致电场耦合过强或者第一辐射腔体151的高度过大时导致电场无法耦合等不良问题。
可以理解的是,如图4所示,在本申请实施例中,第一辐射部1221面向电路板110的一面上可以设有第一导电部161,第一导电部161在电路板110上的投影区域可以位于第一辐射部1221在电路板110上的投影区域内。通过在第一辐射部1221面向电路板110的一面上设置有第一导电部161,第一导电部161能够对第一辐射部1221进行局部加厚,以起到进行分布式匹配加载的作用。
继续参照图4所示,第一导电部161在第一方向L1上的一端可以朝向主体部121,第一导电部161在第一方向L1上的另一端可以是沿着第一方向L1延伸至第一辐射部1221背离主体部121的一端。
通过将第一导电部161在第一缝隙1231的延伸方向上的一端朝向主体部121,第一导电部161在第一缝隙1231的延伸方向上的另一端沿着第一缝隙1231的延伸方向延伸至第一辐射部1221背离主体部121的一端,第一导电部161对应第一频段(例如2.4G频段)的电流小点,能够调节腔体天线在第一频段(例如2.4G频段)下的阻抗。
第一导电部161在第二方向L2上的一端可以位于第一辐射部1221在第二方向L2上的中间位置,第一导电部161在第二方向L2上的另一端可以是沿着第二方向L2朝向第一缝隙1231延伸,或者,第一导电部161在第二方向L2上的另一端可以是沿着第二方向L2远离第一缝隙1231延伸,其中,第二方向L2与第一方向L1相互垂直。
通过将第一导电部161在与第一缝隙1231的延伸方向相垂直的方向上的一端,设置在第一辐射部1221在与第一缝隙1231的延伸方向相垂直的方向上的中间位置,将第一导电部161在与第一缝隙1231的延伸方向相垂直的方向上的另一端沿着与第一缝隙1231的延伸方向相垂直的方向朝向或者远离第一缝隙1231延伸,第一导电部161对应第二频段(例如5G频段)的电流大点,能够调节腔体天线在第二频段(例如5G频段)下的阻抗。
因此,本申请实施例中,通过上述设置,可以在2.4G频段和5G频段分别起到容性加载和感性去载的效果,而且,通过调整第一导电部161的尺寸,能够灵活调节腔体天线的阻抗频偏。
其中,在一种可能的实现方式中,第一导电部161的尺寸例如可以为17mm*18mm*2mm。
图5和图6为电子设备100中腔体天线的电流和电场分布图。图1至图3所示的电子设备100中腔体天线在馈电点140处进行馈电,2.4G电流在电路板110上沿第一方向L1经过第一导电件131流入第一辐射部1221,第一辐射部1221和电路板110之间的电场为同向,形成腔体TM1/2,0模式。5G电流在电路板110和第一辐射部1221上沿第二方向L2,电场在中间电流大点处发生反向,形成腔体的TM0,1模式。
图7为图1至图3所示的电子设备100中腔体天线所对应的天线S参数(散射参数),根据图7可以看出,该电子设备100中腔体天线的天线频段可以覆盖2.4G和5G双频,电子设备100中腔体天线在带内效率均在-1dB以内。
图8和图9为图1至图3所示的电子设备100中腔体天线所对应的天线方向图,根据图8和图9可以看出,电子设备100中腔体天线在2.4G方向性系数为2.77dBi,5G方向性系数为3.9dBi,也就是说,图1至图3所示的电子设备100中腔体天线所对应的方向图能够保证水平面的良好覆盖。
图10和图11为第一导电部161对图1至图3所示的电子设备100中腔体天线的加载效果。由图10和图11可以看出,在没有第一导电部161加载时,电子设备100中腔体天线的两个谐振点距离较近,天线Smith圆图曲线均处在感性区,设置第一导电部161后,2.4G谐振向低频偏,5G谐振向高频偏,对应的Smith圆图曲线分别向容性去和感性区偏离,也就是说,第一导电部161对2.4G频段起到容性加载的作用,对5G频段起到感性去载的作用。
图12和图13为第一导电部161的不同尺寸对电子设备100中腔体天线在2.4G频段和5G频段谐振的影响。根据图12和图13可以看出,第一导电部161在第一方向L1上的尺寸主要影响2.4G谐振频偏,第一导电部161在第一方向L1上的尺寸主要影响5G谐振频偏,因而,本申请实施例可以通过调整相应方向上的尺寸,以此快速调整不同的谐振频偏。例如,本申请实施例能够实现对2.4G频段和5G频段的阻抗进行同时调试,同一个第一导电部161调试不同频段,调试效率更高,结构设计也更加简单。
另外,需要说明的是,在本申请实施例中,还能够通过调节第一导电部161在第一缝隙1231的延 伸方向上的尺寸与第一导电部161在与第一缝隙1231的延伸方向相垂直的方向上的尺寸之间的比例,实现第一频段和第二频段之间的最优匹配。
在上述实施例的基础上,可以理解的是,第一辐射部1221可以对应设有一个第一导电件131,其中,第一导电件131的具体设置方式可以包括但不限于以下两种可能的实现方式:
一种可能的实现方式为:(图中未示出)第一导电件131可以是沿着第二方向L2延伸,电路板110、第一辐射部1221以及第一导电件131共同围设形成第一辐射腔体151。
另一种可能的实现方式为:参见图4所示,第一导电件131可以是沿着第一方向L1延伸,而且,第一导电件131可以是位于第一辐射部1221远离第一缝隙1231的一侧,电路板110、第一辐射部1221以及第一导电件131共同围设形成第一辐射腔体151。
也就是说,第一辐射部1221对应一个第一导电件131时,第一导电件131的延伸方向可以是沿着与第一缝隙1231的延伸方向相垂直的方向,或者,第一导电件131的延伸方向也可以是沿着第一缝隙1231的延伸方向,这样,电路板110、第一辐射部1221以及第一导电件131能够共同围设形成第一辐射腔体151,以形成腔体天线。
此处需要说明的是,本申请实施例中提及的沿着第一方向L1延伸或者沿着第二方向L2延伸,并非数学意义上严格的完全平行于第一方向L1或者第二方向L2延伸,而是与该方向呈0-10°角度范围内均可近似认为沿着第一方向L1延伸或者沿着第二方向L2延伸。
可以理解的是,在本申请实施例中,第一导电件131可以为导电泡棉,或者,第一导电件131可以为导电胶,或者,第一导电件131可以为金属弹片。导电泡棉、导电胶和金属弹片均能起到电连接电路板110与金属结构件120的作用。而且,利用导电泡棉、导电胶或者金属弹片等构建腔体天线,实现形式简单,能够减少天线的制作成本,简化整机组装难度。
此外,在本申请实施例中,第一导电件131可以包括:两个或多个间隔设置的导电件1311。例如,当第一导电件131为金属弹片时,可以将金属弹片设计为多个间隔设置的小弹片,即将第一导电件131布局为弹片多点接地。
通过将第一导电件131设计为两个或多个间隔设置的导电件1311,第一辐射部1221、电路板110上与第一辐射部1221相对应的区域、以及第一导电件131中至少两个或多个间隔设置的导电件1311依然能够围设形成第一辐射腔体151,第一馈电点141对第一辐射部1221进行馈电,以在第一辐射腔体151内形成腔体天线。
参照图14和图15所示,在本申请实施例中,第一辐射部1221可以对应设有两个导电件1311。
具体地,其中一个导电件1311可以沿第二方向L2延伸,另一个导电件1311可以是沿着第一方向L1延伸,而且,该另一个导电件1311位于第一辐射部1221远离第一缝隙1231的一侧,此时,电路板110、第一辐射部1221以及两个导电件1311能够共同围设形成第一辐射腔体151。
也就是说,第一辐射部1221对应两个导电件1311时,其中一个导电件1311的延伸方向可以是沿着与第一缝隙1231的延伸方向相垂直的方向,另一个导电件1311的延伸方向可以是沿着第一缝隙1231的延伸方向,这样,电路板110、第一辐射部1221、以及两个导电件1311能够共同围设形成第一辐射腔体151,以形成腔体天线。
需要说明的是,在一些实施例中,以第一缝隙1231为例,第一缝隙1231可以是形成在第一辐射部1221与对应的第一固定端1213之间。或者,第一辐射部1221可以不具有对应的第一固定端1213,即第一缝隙1231可以是直接形成在第一辐射部1221与相邻的辐射部122之间,例如,第一缝隙1231可以是直接形成在第一辐射部1221与第二辐射部1222之间(参见图33所示)。
在一些实施例中,如图15和图16所示,第一辐射部1221和电路板110之间增加两个导电件1311,在合适位置处设计第一馈电点141进行馈电激励形成腔体天线,其中,第一辐射腔体151为腔体天线的腔体区域,在第一辐射腔体151内产生2.4G频段和5G频段的双频模式。
这里需要说明的是,本申请实施例中,两个导电件1311将第一辐射腔体151的两个侧边封闭,使得第一辐射腔体151成为两边封闭的腔体,这样,相比于上述实施例中第一辐射腔体151为一边封闭的腔体,本申请实施例依然能够实现与上述实施例同样的效果。
图17为图15和图16所示的电子设备100中腔体天线所对应的天线S参数(散射参数),根据图17可以看出,该电子设备100中腔体天线的频段可以覆盖2.4G和5G双频。
图18和图19为图15和图16所示的电子设备100中腔体天线所对应的天线方向图,根据图18和图19可以看出,腔体天线在2.4G频段方向性系数为3dBi,在5G频段方向性系数为4.2dBi,该方向图能够保证水平面的良好覆盖。
另外,在上述实施例的基础上,该电子设备100还可以包括:第二导电件132,如图20和图21所示,该金属结构件120还包括:第二辐射部1222,其中,第二辐射部1222与主体部121相连,而且,第二辐射部1222位于主体部121的第二侧1217。
电路板110上设置有第二馈电点142,第二馈电点142可以与第二辐射部1222电连接。
其中,在一种可能的实现方式中,主体部121上还可以具有与第二辐射部1222对应的第二固定端1214,其中,第二辐射部1222的部分外边缘与第二固定端1214之间可以具有第二缝隙1232,第二辐射部1222位于第二缝隙1232处的外边缘可以与对应的第二馈电点142电连接,以使得第二馈电点142能够通过第二缝隙1232实现对第二辐射部1222的馈电。这样,第二辐射部1222、电路板110上与第二辐射部1222相对应的区域、以及第二导电件132共同围设形成第二辐射腔体152。
这样,电路板110、第一辐射部1221以及第一导电件131共同围设形成第一辐射腔体151,第一馈电点141对第一辐射部1221进行馈电,以在第一辐射腔体151内形成一个腔体天线,电路板110、第二辐射部1222以及第二导电件132共同围设形成第二辐射腔体152,第二馈电点142对第二辐射部1222进行馈电,以在第二辐射腔体152内形成另一个腔体天线。
在一种可能的实现方式中,第二辐射腔体152在第一方向L1上的长度可以为1/4λ1±1/8λ1,第二辐射腔体152在第二方向L2上的长度可以为1/2λ2±1/8λ2,其中λ1可以为电磁波在第一频段下自由空间的波长,λ2可以为电磁波在第二频段下自由空间的波长。
通过将第二辐射腔体152在第二缝隙1232的延伸方向上的长度设计为1/4λ1±1/8λ1,能够有助于第二辐射腔体152在第二缝隙1232的延伸方向上激励出第二辐射腔体152的TM1/2,0模式,以覆盖天线在第一频段下的应用。通过将第二辐射腔体152在与第二缝隙1232的延伸方向相垂直的方向上的长度设计为1/4λ1±1/8λ1,能够有助于第二辐射腔体152在与第二缝隙1232的延伸方向相垂直的方向上激励出第二辐射腔体152的TM0,1模式,以覆盖天线在第二频段下的应用。
另外,第二辐射腔体152和第一辐射腔体151可以工作在同一工作频段下。这样,第二辐射腔体152所形成的腔体天线与第一辐射腔体151所形成的腔体天线工作在同一工作频段下,能够组成MIMO天线对。
在本申请实施例中,第二辐射腔体152的高度可以为2mm-5mm。例如,第二辐射腔体152的高度可以为2mm、2.5mm、3mm、3.5mm、4mm、4.5mm或者5mm等,本申请实施例对此并不加以限定。
可以理解的是,在本申请实施例中,第二导电件132可以为导电泡棉,或者,第二导电件132可以为导电胶,或者,第二导电件132可以为金属弹片。导电泡棉、导电胶和金属弹片均能起到电连接电路板110与金属结构件120的作用。而且,利用导电泡棉、导电胶或者金属弹片等构建腔体天线,实现形式简单,能够减少天线的制作成本,简化整机组装难度。
可以理解的是,在本申请实施例中,第二辐射部1222面向电路板110的一面上可以设有第二导电部162,第二导电部162在电路板110上的投影区域可以位于第二辐射部1222在电路板110上的投影区域内。通过在第二辐射部1222面向电路板110的一面上设置有第二导电部162,第二导电部162能够对第二辐射部1222进行局部加厚,以起到进行分布式匹配加载的作用。
需要说明的是,第二导电部162在第二辐射部1222上的具体设置位置以及尺寸与第一导电部161在第一辐射部1221上的具体设置位置以及尺寸相同或相似,此处不再赘述。
如图21和图22所示,在本申请实施例中,第一辐射部1221与第二辐射部1222可以是分别位于主体部121的两侧,而且,第一导电件131的延伸方向和第二导电件132的延伸方向相交。在一个实施例中,第一辐射部1221与第二辐射部1222可以是分别位于主体部121相邻的两侧。
这样,电路板110、第一辐射部1221以及第一导电件131共同围设形成第一辐射腔体151,电路板110、第二辐射部1222以及第二导电件132共同围设形成第二辐射腔体152,第一辐射腔体151和第二辐射腔体152相对正交设置,能够增加第一辐射腔体151内的腔体天线与第二辐射腔体152内的腔体天线之间的隔离度,进而能够减小第一辐射腔体151内的腔体天线与第二辐射腔体152内的腔体天线之间的相互干扰程度。
具体地,在一些实施例中,如图21所示,第一馈电点141为其中一个腔体天线的馈电点,第二馈电点142为另一个腔体天线的馈电点,第一辐射腔体151为其中一个腔体天线的腔体区域,第二辐射腔体152为另一个腔体天线的腔体区域。电子设备100中的两个腔体天线正交放置,两个腔体天线之间的隔离度较高,例如隔离度能够达到40dB,而且,两个腔体天线的水平面方向图互补,有助于实现360度全方向覆盖。
图23为图20和图21所示的电子设备100中腔体天线所对应的天线S参数(散射参数),根据图23可以看出,该电子设备100中腔体天线在2.4G频段下,两个腔体天线之间的隔离度达到-40dB,在5G频段下,两个腔体天线之间的隔离度达到-30dB。
图24和图25为图20和图21所示的电子设备100中腔体天线所对应的天线方向图,根据图24和图25可以看出,两个腔体天线的方向图基本都覆盖水平面,且具有很好的互补性,可以实现水平面360度全向覆盖。
图26为图20和图21所示的电子设备100中腔体天线的天线效率,根据图26可以看出,该电子设备100中的两个腔体天线的天线效率均较好,在工作频段内,两个腔体天线的天线效率均在-0.5dB以上。
综上,本申请实施例中,通过将电子设备100中腔体天线设计为双天线共体,在同一金属结构件120下,通过设计第一辐射部1221和第二辐射部1222,增加第一导电件131和第二导电件132边构建腔体天线,同时选择合适的第一馈电点141和第而馈电点142的位置,可以实现双天线共体设计。由于腔体天线电流路径隔断,两个腔体天线之间具有较高的隔离度,而且,两个腔体天线受周围金属环境的影响较小,在整机环境下依然具有很好的辐射性能。
另外,在一些实施例中,参见图27和图28所示,第一辐射部1221与第二辐射部1222可以是分别位于主体部121相对的两侧。
其中,第一导电件131的延伸方向可以和第二导电件132的延伸方向相互平行(参见图28所示)。或者,在其它的一些实施例中,第一导电件131的延伸方向可以和第二导电件132的延伸方向相互垂直。
此处需要说明的是,本申请实施例中提及的平行以及垂直,并非数学意义上严格的平行或者垂直,而是公差小于10°即可近似认为平行或者垂直。
这样,电路板110、第一辐射部1221以及第一导电件131共同围设形成第一辐射腔体151,电路板110、第二辐射部1222以及第二导电件132共同围设形成第二辐射腔体152,第一辐射腔体151和第二辐射腔体152相对平行设置,且第一辐射腔体151和第二辐射腔体152分别位于主体部121相对的两侧,第一辐射腔体151和第二辐射腔体152之间通过主体部121分隔开,能够增加第一辐射腔体151内的腔体天线与第二辐射腔体152内的腔体天线之间的隔离度,进而能够减小第一辐射腔体151内的腔体天线与第二辐射腔体152内的腔体天线之间的相互干扰程度。
具体地,在一些实施例中,如图28和图29所示,第一辐射部1221和电路板110之间增加第一导电件131,在合适位置处设计第一馈电点141进行馈电激励形成腔体天线,第二辐射部1222和电路板110之间增加第二导电件132,在合适位置处设计第二馈电点142进行馈电激励形成腔体天线。其中,第一馈电点141为其中一个腔体天线的馈电点,第二馈电点142为另一个腔体天线的馈电点,第一辐射腔体151为其中一个腔体天线的腔体区域,第二辐射腔体152为另一个腔体天线的腔体区域。
图27和图28所示的电子设备100中的两个腔体天线背对背平行放置,图30为图27和图28所示的电子设备100中腔体天线所对应的天线S参数(散射参数),根据图30可以看出,该电子设备100中的两个腔体天线极化相同,但是两个腔体天线之间的隔离度依然能够达到-20dB以上,可以满足大部分产品的指标需求。
图31和图32为图27和图28所示的电子设备100中腔体天线所对应的天线方向图,根据图31和图32可以看出,两个腔体天线在水平面方向图具有很好的全向覆盖,可以满足终端产品覆盖需求。
参照图33所示,该电子设备100还可以包括:第三导电件133,该金属结构件120还包括:第三辐射部1223,其中,第三辐射部1223与主体部121相连,而且,第三辐射部1223位于主体部121的第三侧1218,此时,第一辐射部1221、第二辐射部1222和第三辐射部1223可以分别位于主体部121的三侧。
电路板110上设置有第三馈电点143,第三馈电点143可以与第三辐射部1223电连接。
主体部121上还可以具有与第三辐射部1223对应的第三固定端1215,第三辐射部1223的部分外边缘 与第三固定端1215之间具有第三缝隙1233,第三辐射部1223位于第二缝隙1232处的外边缘可以与对应的第三馈电点143电连接,以使得第三馈电点143能够通过第三缝隙1233实现对第三辐射部1223的馈电,这样,电路板110、第三辐射部1223以及第三导电件133可以共同围设形成第三辐射腔体153。
这样,电路板110、第一辐射部1221以及第一导电件131共同围设形成第一辐射腔体151,第一馈电点141对第一辐射部1221进行馈电,以在第一辐射腔体151内形成一个腔体天线,电路板110、第二辐射部1222以及第二导电件132共同围设形成第二辐射腔体152,第二馈电点142对第二辐射部1222进行馈电,以在第二辐射腔体152内形成另一个腔体天线,电路板110、第三辐射部1223以及第三导电件133共同围设形成第三辐射腔体153,第三馈电点143对第三辐射部1223进行馈电,以在第三辐射腔体153内形成又一个腔体天线。
需要说明的是,在本申请实施例中,第三辐射腔体153在第一方向L1上的长度可以为1/4λ1±1/8λ1,第三辐射腔体153在第二方向L2上的长度可以为1/2λ2±1/8λ2,其中,λ1为电磁波在第一频段下自由空间的波长,λ2为电磁波在第二频段下自由空间的波长。
通过将第三辐射腔体153在第三缝隙1233的延伸方向上的长度设计为1/4λ1±1/8λ1,能够有助于第三辐射腔体153在第三缝隙1233的延伸方向上激励出第三辐射腔体153的TM1/2,0模式,以覆盖天线在第一频段下的应用。通过将第三辐射腔体153在与第三缝隙1233的延伸方向相垂直的方向上的长度设计为1/4λ1±1/8λ1,能够有助于第三辐射腔体153在与第三缝隙1233的延伸方向相垂直的方向上激励出第三辐射腔体153的TM0,1模式,以覆盖天线在第二频段下的应用。
另外,在一种可能的实现方式中,第三辐射腔体153、第二辐射腔体152以及第一辐射腔体151可以工作在同一工作频段下。这样,第一辐射腔体151所形成的腔体天线、第二辐射腔体152所形成的腔体天线以及第三辐射腔体153所形成的腔体天线工作在同一工作频段下,能够组成MIMO天线。
在本申请实施例中,第三辐射腔体153的高度可以为2mm-5mm。例如,第三辐射腔体153的高度可以为2mm、2.5mm、3mm、3.5mm、4mm、4.5mm或者5mm等,本申请实施例对此并不加以限定。
可以理解的是,在本申请实施例中,第三导电件133可以为导电泡棉,或者,第三导电件133可以为导电胶,或者,第三导电件133可以为金属弹片。导电泡棉、导电胶和金属弹片均能起到电连接电路板110与金属结构件120的作用。而且,利用导电泡棉、导电胶或者金属弹片等构建腔体天线,实现形式简单,能够减少天线的制作成本,简化整机组装难度。
可以理解的是,在本申请实施例中,第三辐射部1223面向电路板110的一面上可以设有第三导电部163,第三导电部163在电路板110上的投影区域可以位于第三辐射部1223在电路板110上的投影区域内。通过在第三辐射部1223面向电路板110的一面上设置有第三导电部163,第三导电部163能够对第三辐射部1223进行局部加厚,以起到进行分布式匹配加载的作用。
需要说明的是,第三导电部163在第三辐射部1223上的具体设置位置以及尺寸与第一导电部161在第一辐射部1221上的具体设置位置以及尺寸相同或相似,此处不再赘述。
综上,本申请实施例中,通过将电子设备100中腔体天线扩展为三天线共体设计,由于腔体天线电流路径隔断,三个腔体天线之间具有较高的隔离度,能够保证三天线设计的水平面全向覆盖,高隔离设计能够提高共存场景的天线性能。而且,三个腔体天线受周围金属环境的影响较小,在整机环境下依然具有很好的辐射性能。
可以理解的是,本申请实施例中,电子设备100中的腔体天线的数量也可以为四个。本申请实施例提供的电子设备100中,通过辐射部122的数量的增加,电子设备100中腔体天线能够实现更多天线模式的覆盖。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四” 等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“可以包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制,尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (18)

  1. 一种电子设备,其特征在于,至少包括:
    电路板、电子元器件以及金属结构件;
    所述金属结构件与所述电路板层叠且间隔设置,所述电子元器件位于所述电路板和所述金属结构件之间;
    还包括:第一导电件;所述第一导电件位于所述电路板与所述金属结构件之间,且所述第一导电件的一端与所述电路板电连接,所述第一导电件的另一端与所述金属结构件电连接;
    所述金属结构件至少包括:主体部以及与所述主体部相连且位于所述主体部第一侧的第一辐射部,其中,所述第一辐射部、所述电路板上与所述第一辐射部相对应的区域、以及所述第一导电件围设形成第一辐射腔体;
    所述电路板上设置有第一馈电点,所述第一馈电点与所述第一辐射部电连接;
    且所述主体部朝向所述电路板的一面与所述电子元器件相接触。
  2. 根据权利要求1所述的电子设备,其特征在于,所述主体部上具有与所述第一辐射部对应的第一固定端;
    所述第一辐射部的部分外边缘与所述第一固定端之间具有第一缝隙;
    所述第一辐射部位于所述第一缝隙处的外边缘与对应的所述第一馈电点电连接。
  3. 根据权利要求2所述的电子设备,其特征在于,所述第一辐射部面向所述电路板的一面上设有第一导电部;
    所述第一导电部在所述电路板上的投影区域位于所述第一辐射部在所述电路板上的投影区域内。
  4. 根据权利要求3所述的电子设备,其特征在于,所述第一导电部在第一方向上的一端朝向所述主体部,所述第一导电部在所述第一方向上的另一端沿着第一方向延伸至所述第一辐射部背离所述主体部的一端;
    其中,所述第一方向为所述第一缝隙的延伸方向。
  5. 根据权利要求4所述的电子设备,其特征在于,所述第一导电部在第二方向上的一端位于所述第一辐射部在所述第二方向上的中间位置;
    所述第一导电部在第二方向上的另一端沿着所述第二方向朝向所述第一缝隙延伸,或者,所述第一导电部在第二方向上的另一端沿着所述第二方向远离所述第一缝隙延伸;
    其中,所述第二方向与所述第一方向相互垂直。
  6. 根据权利要求5所述的电子设备,其特征在于,所述第一导电件沿着所述第二方向延伸,
    或者,所述第一导电件沿着所述第一方向延伸,且所述第一导电件位于所述第一辐射部远离所述第一缝隙的一侧;
    所述电路板、所述第一辐射部以及所述第一导电件共同围设形成所述第一辐射腔体。
  7. 根据权利要求5所述的电子设备,其特征在于,所述第一导电件包括两个或多个间隔设置的导电件,所述两个或多个间隔设置的导电件中的其中一个沿所述第二方向延伸,所述两个或多个间隔设置的导电件中的另一个沿所述第一方向延伸,且位于所述第一辐射部远离所述第一缝隙的一侧;
    所述电路板、所述第一辐射部以及所述两个或多个间隔设置的导电件共同围设形成所述第一辐射腔体。
  8. 根据权利要求5-7任一所述的电子设备,其特征在于,还包括:第二导电件;
    所述金属结构件还包括:与所述主体部相连且位于所述主体部第二侧的第二辐射部;
    所述主体部上还具有与所述第二辐射部对应的第二固定端;
    所述第二辐射部的部分外边缘与所述第二固定端之间具有第二缝隙;
    所述电路板上设置有第二馈电点,所述第二辐射部位于所述第二缝隙处的外边缘与对应的所述第二馈电点电连接;
    所述第二辐射部、所述电路板上与所述第二辐射部相对应的区域、以及所述第二导电件共同围设形成第二辐射腔体。
  9. 根据权利要求8所述的电子设备,其特征在于,所述第一辐射部与所述第二辐射部分别位于所述主体部的两侧,且所述第一导电件和所述第二导电件的延伸方向相交。
  10. 根据权利要求8所述的电子设备,其特征在于,所述第一辐射部与所述第二辐射部分别位于所述主体部相对的两侧,且所述第一导电件和所述第二导电件的延伸方向平行。
  11. 根据权利要求8-10任一所述的电子设备,其特征在于,还包括:第三导电件;
    所述金属结构件还包括:与所述主体部相连且位于所述主体部第三侧的第三辐射部;
    所述第一辐射部、所述第二辐射部和所述第三辐射部分别位于所述主体部的三侧;
    所述主体部上还具有与所述第三辐射部对应的第三固定端;
    所述第三辐射部的部分外边缘与与所述第三固定端之间具有第三缝隙;
    所述电路板上设置有第三馈电点,所述第三辐射部位于所述第二缝隙处的外边缘与对应的所述第三馈电点电连接;
    所述第三辐射部、所述电路板上与所述第三辐射部相对应的区域、以及所述第三导电件共同围设形成第三辐射腔体。
  12. 根据权利要求5-7任一所述的电子设备,其特征在于,所述第一辐射腔体在所述第一方向上的长度为1/4λ1±1/8λ1
    所述第一辐射腔体在所述第二方向的长度为1/2λ2±1/8λ2
    所述λ1为电磁波在第一频段下自由空间的波长,所述λ2为电磁波在第二频段下自由空间的波长。
  13. 根据权利要求8-10任一所述的电子设备,其特征在于,所述第二辐射腔体和所述第一辐射腔体用于工作在同一工作频段下。
  14. 根据权利要求11所述的电子设备,其特征在于,所述第三辐射腔体、所述第二辐射腔体以及所述第一辐射腔体用于工作在同一工作频段下。
  15. 根据权利要求11所述的电子设备,其特征在于,所述第一辐射腔体的高度为2mm-5mm。
  16. 根据权利要求11任一所述的电子设备,其特征在于,所述第一导电件为导电泡棉;或者,所述第一导电件为导电胶;或者,所述第一导电件为金属弹片。
  17. 根据权利要求1-16任一所述的电子设备,其特征在于,所述金属结构件为散热器;
    所述电子元器件为发热元器件。
  18. 根据权利要求1-17任一所述的电子设备,其特征在于,所述电子设备为音箱。
PCT/CN2023/110869 2022-08-03 2023-08-02 电子设备 WO2024027778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210925906.9A CN117560842A (zh) 2022-08-03 2022-08-03 电子设备
CN202210925906.9 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024027778A1 true WO2024027778A1 (zh) 2024-02-08

Family

ID=89809732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110869 WO2024027778A1 (zh) 2022-08-03 2023-08-02 电子设备

Country Status (2)

Country Link
CN (1) CN117560842A (zh)
WO (1) WO2024027778A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050162321A1 (en) * 2004-01-23 2005-07-28 Colburn Joseph S. Dual band, low profile omnidirectional antenna
CN206461092U (zh) * 2017-02-17 2017-09-01 东莞市新盛电子有限公司 一种散热器天线
CN209766640U (zh) * 2019-06-21 2019-12-10 潍坊歌尔电子有限公司 一种天线结构及无线设备
CN112736431A (zh) * 2020-12-25 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN214627565U (zh) * 2020-12-15 2021-11-05 荣耀终端有限公司 一种电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050162321A1 (en) * 2004-01-23 2005-07-28 Colburn Joseph S. Dual band, low profile omnidirectional antenna
CN206461092U (zh) * 2017-02-17 2017-09-01 东莞市新盛电子有限公司 一种散热器天线
CN209766640U (zh) * 2019-06-21 2019-12-10 潍坊歌尔电子有限公司 一种天线结构及无线设备
CN214627565U (zh) * 2020-12-15 2021-11-05 荣耀终端有限公司 一种电子设备
CN112736431A (zh) * 2020-12-25 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN117560842A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US12160031B2 (en) Feed network of base station antenna, base station antenna, and base station
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US12218423B2 (en) Electronic device
KR101242389B1 (ko) 메타물질 하이브리드 패치 안테나 및 그 제조 방법
JP2007013643A (ja) 一体型平板多素子アンテナ及び電子機器
TWI671951B (zh) 智慧型天線裝置
CN113540808B (zh) 一种电子设备及天线装置
CN109301486B (zh) 用于5g移动通信的单层贴片式微波毫米波跨频段双频双极化辐射单元
US20250046988A1 (en) Antenna structure and electronic device
Wang et al. Compact broadband four-port MIMO antenna for 5G and IoT applications
US10784565B2 (en) Mobile device and antenna structure therein
WO2024027778A1 (zh) 电子设备
WO2024046200A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
CN118232005A (zh) 一种可折叠电子设备
TWI827123B (zh) 天線結構和通訊裝置
CN118786582A (zh) 一种电子设备
TWI515961B (zh) 指向性天線及用於指向性天線之輻射場型調整方法
WO2022017220A1 (zh) 一种电子设备
WO2024114283A1 (zh) 一种天线结构和电子设备
WO2023246690A1 (zh) 一种电子设备
US20240014548A1 (en) Highly isolated and barely separated antennas integrated with noise free RF-transparent Printed Circuit Board (PCB) for enhanced radiated sensitivity
TWI667843B (zh) 天線裝置
Nagaraju et al. Analysis of C-shape Slotted MSPA for 5G Sub Band Applications on Three Different Substrates
CN119050637A (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849482

Country of ref document: EP

Kind code of ref document: A1