Nothing Special   »   [go: up one dir, main page]

WO2024009815A1 - Substrate processing method - Google Patents

Substrate processing method Download PDF

Info

Publication number
WO2024009815A1
WO2024009815A1 PCT/JP2023/023465 JP2023023465W WO2024009815A1 WO 2024009815 A1 WO2024009815 A1 WO 2024009815A1 JP 2023023465 W JP2023023465 W JP 2023023465W WO 2024009815 A1 WO2024009815 A1 WO 2024009815A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
processing method
hydrogen
substrate processing
Prior art date
Application number
PCT/JP2023/023465
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 西塚
昌伸 本田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024009815A1 publication Critical patent/WO2024009815A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a substrate processing method.
  • gases such as CF 4 (perfluoromethane) gas and c-C 4 F 8 (perfluorocyclobutane) gas are used for dry etching, chamber cleaning, etc. Is going.
  • Patent Document 1 listed below discloses that plasma etching is performed using CF 4 gas, C 4 F 8 gas, or the like.
  • Many of the gases used in these semiconductor manufacturing processes are considered to be greenhouse gases that cause global warming, including CO2 (carbon dioxide), which has the ability to accelerate global warming. Contains gases with a high Global Warming Potential (GWP).
  • GWP Global Warming Potential
  • a substrate processing method includes a step of transporting a substrate including a silicon-containing film and a mask stacked on the silicon-containing film into a chamber, and a COF 2 gas and a hydrogen-containing gas. a step of etching the silicon-containing film by generating plasma from a processing gas containing the hydrogen-containing gas, and the flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas is 13% by volume in terms of hydrogen gas. The content is less than 50% by volume.
  • FIG. 1 is a cross-sectional view showing an example of a substrate.
  • FIG. 2 is an explanatory diagram for explaining the flow of the substrate processing method according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram showing the results of the etching rate of various layers with respect to the flow rate ratio of hydrogen gas.
  • FIG. 4 is a cross-sectional view showing an example of the substrate.
  • FIG. 5 is a cross-sectional view showing an example of the substrate.
  • FIG. 6 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • gases such as CF 4 gas and c-C 4 F 8 gas are used for dry etching, chamber interior cleaning, and the like.
  • gases used in these semiconductor manufacturing processes are considered to be greenhouse gases that cause global warming, and include gases with high GWP. Therefore, in the future, it will be important to suppress the emission of such gases that have a high greenhouse effect in semiconductor manufacturing processes.
  • CF 4 gas has a GWP of 6630
  • c-C 4 F 8 gas has a GWP of 9540, and the higher the GWP, the higher the greenhouse effect.
  • FIG. 1 is a cross-sectional view showing an example of a substrate W processed in this embodiment.
  • an etching process is performed on a substrate W as shown in FIG.
  • the substrate W includes a base layer 210 and a film laminated on the base layer 210 and containing silicon (Si) (silicon-containing film), and is an etching target.
  • the processing target layer 200 has a mask 220 laminated on the processing target layer 200.
  • the base layer 210 can be, for example, a metal film or a conductive layer such as a silicon film.
  • the metal film can be made of, for example, tungsten (W), aluminum (Al), copper (Cu), or the like.
  • the layer 200 to be etched can be a silicon oxide film (SiO 2 ) or a low dielectric constant (Low-k) film.
  • the low-k film can be, for example, a SiOC film (carbon-containing silicon oxide film), a silicon carbonitride film (SiCN), a SiOCH (hydrocarbon-containing silicon oxide film), or a combination thereof.
  • the base layer 210 is not limited to the above-mentioned conductor layer.
  • the base layer 210 has a high selectivity with respect to the layer to be processed 200 and that there is little loss in the base layer 210.
  • the base layer 210 is a silicon nitride film (SiN) or the like
  • the processed layer 200 is a silicon oxide film or the like. .
  • the base layer 210 is a silicon carbide film (SiC), a silicon carbonitride film, etc.
  • the layer to be processed 200 is a silicon oxide film, a low-k film, etc. becomes.
  • the mask 220 has a desired opening pattern and functions as a protective film when etching a desired portion of the layer 200 to be processed.
  • mask 220 includes at least one of carbon and metal.
  • the mask 220 may be a carbon-containing mask or a metal-containing mask.
  • the carbon-containing mask may be spin-on carbon (SOC), tungsten carbide, amorphous carbon, boron carbide, etc., and combinations thereof.
  • the metal-containing mask may be a titanium nitride film (TiN), a tungsten carbide film (WC), or the like.
  • FIG. 2 is an explanatory diagram for explaining the flow of the substrate processing method according to the present embodiment.
  • the substrate processing method according to the embodiment of the present disclosure includes the step (S1) of transporting the substrate W described above into the plasma processing apparatus (chamber), and the step (S1) of transporting the substrate W described above into the plasma processing apparatus (chamber), and plasma processing from the processing gas described below. and etching the layer to be processed 200 (S2).
  • a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.
  • the processing gas for the etching process according to this embodiment includes COF 2 (carbonyl fluoride) gas and hydrogen-containing gas.
  • COF 2 gas has a lower global warming effect than, for example, CF 4 gas (GWP: 6630), which has been used in a dry etching process for forming wiring layers of logic circuits. Therefore, in this embodiment, global warming can be suppressed by using COF 2 gas, which has a low greenhouse effect.
  • CF 4 gas GWP: 6630
  • the hydrogen-containing gas is one type of gas selected from the group consisting of hydrogen (H 2 ) gas, hydrogen fluoride (HF) gas, and hydrofluoroolefin gas, or multiple types of gas selected from these. It may also be a combination of gases.
  • hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas, or a combination thereof.
  • C 2 H 2 F 2 gas and C 3 H 2 F 4 gas have a GWP of 1 or less
  • C 4 H 2 F 6 gas has a GWP of 7 or less. That is, the above-mentioned hydrogen-containing gas has a low greenhouse effect, and is lower than that of CHF 3 (trifluoromethane) (GWP: 12400), etc., which has been used in the dry etching process for forming wiring layers of logic circuits. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.
  • the hydrogen-containing gas is C 3 HF 5 (pentafluoropropene) gas, C 4 H 3 F 5 (3,3,4,4,4-pentafluoro-1-butene, etc.) gas. , C 4 HF 5 (1,1,2,3,4-pentafluorobuta-1,3-diene) gas, or the like. Since these gases also have a low greenhouse effect, global warming can be suppressed by using hydrogen-containing gases that have a low greenhouse effect.
  • the processing gas for the etching process according to this embodiment may contain an inert gas.
  • the inert gas can be a noble gas such as argon (Ar), helium (He), nitrogen ( N2 ) gas, or a combination thereof.
  • the layer to be processed 200 of the substrate W is etched by plasma of a processing gas containing COF 2 gas and hydrogen-containing gas using the mask 220 described above using a plasma processing apparatus described later. do.
  • the flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas (or the processing gas excluding the inert gas if it contains an inert gas) is 13% in terms of hydrogen (H 2 ) gas. % by volume or more and less than 50% by volume.
  • the hydrogen-containing gas functions to extract oxygen contained in the COF 4 gas in the form of OH.
  • COF 4 gas can function as an etching gas at the same level as conventionally used gases such as CF 4 gas.
  • the flow rate of the hydrogen-containing gas is defined as the volumetric amount of the hydrogen gas converted by converting the hydrogen contained in the hydrogen-containing gas into hydrogen gas.
  • FIG. 3 is a diagram showing the results of the etching rate of various layers with respect to the flow rate ratio of hydrogen gas.
  • the horizontal axis in FIG. 3 shows the ratio of hydrogen gas to the total flow rate of the processing gas (COF 2 ) excluding inert gas
  • the vertical axis shows the ratio of the photoresist (PR), silicon oxide film, etc.
  • each etching rate (nm/min) of the silicon nitride film is shown.
  • COF 2 gas, hydrogen gas, and nitrogen gas were used as processing gases, and the photoresist, silicon oxide film, and silicon nitride were Etching was performed on three of the films.
  • the silicon oxide film is It was found that the resist was selectively etched.
  • COF 2 gas for example, COF 2 gas, CF (fluorocarbon)-based gas, and inert gas may be used as the processing gas. good.
  • the CF-based gas is C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, linear C 4 It can be F 8 O gas or a combination thereof. Since these gases also have a low greenhouse effect, global warming can be suppressed by using such CF-based gases that have a low greenhouse effect.
  • the processing gas for example, COF 2 gas, CHF (hydrofluorocarbon)-based gas, and inert gas are used as the processing gas.
  • the CHF-based gas can be CH 2 F 2 (difluoromethane) gas, CH 3 F (fluoromethane) gas, or a combination thereof.
  • CH 2 F 2 gas has a GWP of 677
  • CH 3 F gas has a GWP of 116
  • both have a GWP of 1000 or less. Since these gases also have a low greenhouse effect, global warming can be suppressed by using CHF gases that have a low greenhouse effect.
  • hydrogen fluoride (HF) gas may be used instead of or together with the CHF-based gas.
  • FIG. 4 is a cross-sectional view showing an example of a substrate W processed in this embodiment.
  • the substrate processing method includes performing an etching process on a substrate W as shown in FIG. 4, for example.
  • the substrate W includes a base layer 212, a layer laminated on the base layer 212, a layer 200 to be etched, and a layer laminated on the layer 200. It has a mask 220.
  • Each layer of the substrate W will be described below, but descriptions of points common to the above-described embodiments will be omitted here.
  • the base layer 212 can be, for example, a metal film, a silicon film, etc., and is not particularly limited.
  • the layer to be processed 200 may include one oxide film (for example, a silicon oxide film) and one or more nitride films (for example, a silicon nitride film).
  • the layer to be processed 200 includes two silicon nitride films 204 and a silicon oxide film 202 sandwiched between the two silicon nitride films 204.
  • the silicon oxide film 202 has a thickness of approximately 800 nm to 1200 nm
  • the silicon nitride film 204 has a thickness of approximately 300 nm to 400 nm.
  • a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.
  • the trench may, for example, be generally cylindrical with a depth of about 1 ⁇ m to 3 ⁇ m. Further, the generally cylindrical shape may have a diameter of, for example, about 20 nm to 50 nm.
  • a capacitor memory cell can be formed inside such a substantially cylindrical trench.
  • a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.
  • the processing gas for the etching process includes a CF (fluorocarbon)-based gas and an inert gas.
  • the CF-based gas can be C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, or a combination thereof.
  • C 3 F 6 gas has a GWP of 1 or less
  • C 4 F 6 (hexafluoro-1,3-butadiene) gas (GWP: 290 ) etc., have a lower GWP. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.
  • the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.
  • the processing gas may contain oxygen (O 2 ) gas.
  • FIG. 5 is a cross-sectional view showing an example of a substrate W processed in this embodiment.
  • the substrate processing method includes performing an etching process on a substrate W as shown in FIG. 5, for example.
  • the substrate W includes a base layer 212, a layer laminated on the base layer 212, a layer 200 to be etched, and a layer laminated on the layer 200 to be etched. It has a mask 220.
  • Each layer of the substrate W will be described below, but descriptions of points common to the above-described embodiments will be omitted here.
  • the base layer 212 can be, for example, a metal film, a silicon film, etc., and is not particularly limited.
  • the layer to be processed 200 has a laminated structure consisting of one oxide film 202 (for example, silicon oxide film) and one nitride film 204 (for example, silicon nitride film), as shown in FIG. It may contain more than one.
  • the layer to be processed 200 may include a plurality of laminated structures each consisting of one oxide film (for example, a silicon oxide film) and one silicon film (for example, a polysilicon film).
  • the layer to be treated 200 may include at least about 20 of the above laminated structures, preferably about 40, more preferably about 60, and even more preferably about 70. Note that in FIG.
  • the layer to be processed 200 is illustrated as having five of the above-mentioned laminate structures, but in this embodiment, the layer to be processed 200 includes at least about 20 of the above-mentioned laminate structures. The number is not limited as long as it includes the following.
  • a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.
  • the trench has a depth of approximately 2 ⁇ m to 6 ⁇ m, for example. Further, the trench may have a width of about 50 nm to 150 nm, for example.
  • a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.
  • the processing gas for the etching process includes a CF-based gas, a hydrogen-containing gas, and an oxygen gas.
  • the CF-based gas can be C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, or a combination thereof.
  • C 3 F 6 gas has a GWP of 1 or less.
  • C 3 F 6 gas and the like are more expensive than c-C 4 F 8 (perfluorocyclobutane) gas (GWP: 9540), which has been conventionally used in the dry etching process for forming vertical NAND flash memory devices.
  • C 3 F 6 gas etc. has a lower GWP than the conventionally used NF 3 (nitrogen trifluoride) gas (GWP: 16100) and SF 6 (sulfur hexafluoride) gas (GWP: 23500). have. Therefore, in this embodiment, global warming can be suppressed by using the CF-based gas that has a low greenhouse effect as described above.
  • NF 3 nitrogen trifluoride
  • SF 6 sulfur hexafluoride
  • the hydrogen-containing gas may be one type of gas selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas, or a combination of multiple types of gases selected from these. good.
  • hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas, or a combination thereof.
  • these gases also have a low greenhouse effect; for example, C 3 H 2 F 4 gas has a GWP of 1 or less, and C 4 H 2 F 6 gas has a GWP of 7 or less. be. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.
  • Semiconductor device manufacturing processes form various semiconductor devices such as microprocessors, logic circuits, and memory devices. Such semiconductor devices may be manufactured by processes that include patterning techniques to create various types of masks. Specifically, in some of these processes, a layer containing a silicon oxide film, a silicon nitride film, a silicon film, or the like is etched. An etching process using a gas with a low greenhouse effect as an alternative gas will be described below.
  • the processing gas for the etching process for the silicon oxide film includes a CF-based gas, oxygen gas, and an inert gas.
  • the CF-based gas can be C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, or a combination thereof.
  • C 3 F 6 gas has a GWP of 1 or less
  • the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.
  • the processing gas for the etching process for the silicon oxide film may include a CF-based gas and a CHF (hydrofluorocarbon)-based gas.
  • the CF-based gas is COF 2 gas, C 4 F 8 O (pentafluoroethyl trifluorovinyl ether) gas, CF 3 COF (1,2,2,2-tetrafluoroethane-1-one) gas, or any of these gases. It can be a combination.
  • examples of the CHF-based gas include CHF 2 COF (difluoroacetic acid fluoride) gas.
  • the processing gas for the etching process for the silicon nitride film includes a hydrogen-containing gas, an oxygen gas, and an inert gas.
  • the hydrogen-containing gas can be one type of gas selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas, or a combination of multiple types of gases selected from these.
  • hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas, or a combination thereof.
  • C 3 H 2 F 4 gas has a GWP of 1
  • C 4 H 2 F 6 gas has a GWP of 7 or less.
  • ) gas (GWP: 116), etc. has a low GWP. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.
  • the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.
  • the processing gas for the etching process for the silicon film includes a hydrogen-containing gas, an oxygen gas, and an inert gas.
  • the hydrogen-containing gas can include hydrogen fluoride gas, hydrogen bromide (HBr) gas, and the like.
  • HBr gas has a lower GWP than NF 3 (nitrogen trifluoride) gas (GWP: 16100), which has been used in the etching process for silicon films. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.
  • the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.
  • etching is performed using a processing gas with a low greenhouse effect according to this embodiment.
  • a processing gas with a low greenhouse effect By doing so, global warming can be suppressed.
  • even when such a gas with a low greenhouse effect is used it is possible to obtain process performance equivalent to that of the processing gas used so far in the process.
  • ⁇ Fifth embodiment> In the manufacturing process of semiconductor devices, various chambers are used to generate plasma and treat a substrate with the generated plasma. During such processing, by-products generated during the processing adhere to the inner walls of the chamber and the like, and the by-products gradually accumulate and grow into particles. Such particles can have a negative impact on stable plasma generation and substrate processing, so the chamber is dry-cleaned at regular intervals to reduce particles on the inner walls, etc. .
  • a cleaning gas and an inert gas are supplied into the chamber, plasma is generated using the supplied gas, and the inner walls of the chamber are cleaned with the plasma.
  • Conventionally used cleaning gases include, for example, NF 3 (nitrogen trifluoride) gas (GWP: 16100), SF 6 (sulfur hexafluoride) gas (GWP: 23500), etc.
  • GWP nitrogen trifluoride
  • SF 6 sulfur hexafluoride gas
  • the cleaning gas is COF 2 gas, HF (hydrogen fluoride) gas, fluorine (F 2 ) gas, FNO (nitrosyl fluoride) gas, F 3 NO (trifluoroamine oxide) gas, or It can be a combination of these.
  • gases have a lower greenhouse effect than NF 3 gas (GWP 16100), SF 6 gas (GWP 23500), etc. that have been used as cleaning gases so far. Therefore, in this embodiment, global warming can be suppressed by using a cleaning gas with a low greenhouse effect as described above.
  • FIG. 6 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
  • the plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a control section 2.
  • the capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section.
  • the gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 .
  • the gas introduction section includes a shower head 13.
  • Substrate support 11 is arranged within plasma processing chamber 10 .
  • the shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11.
  • the plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s, and at least one gas exhaust port for discharging gas from the plasma processing space.
  • Plasma processing chamber 10 is grounded.
  • the shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.
  • the substrate support section 11 includes a main body section 111 and a ring assembly 112.
  • the main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112.
  • a wafer is an example of a substrate W.
  • the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view.
  • the substrate W is placed on the central region 111a of the main body 111, and the ring assembly 112 is placed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
  • the main body 111 includes a base 1110 and an electrostatic chuck 1111.
  • Base 1110 includes a conductive member.
  • the conductive member of the base 1110 can function as a bottom electrode.
  • Electrostatic chuck 1111 is placed on base 1110.
  • Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a.
  • Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
  • ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member.
  • at least one RF/DC electrode coupled to an RF power source 31 and/or a DC (Direct Current) power source 32, which will be described later, may be arranged within the ceramic member 1111a.
  • at least one RF/DC electrode functions as a bottom electrode.
  • An RF/DC electrode is also referred to as a bias electrode if a bias RF signal and/or a DC signal, as described below, is supplied to at least one RF/DC electrode.
  • the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes.
  • the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.
  • Ring assembly 112 includes one or more annular members.
  • the one or more annular members include one or more edge rings and at least one cover ring.
  • the edge ring is made of a conductive or insulating material
  • the cover ring is made of an insulating material.
  • the substrate support unit 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
  • the temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof.
  • a heat transfer fluid such as brine or gas flows through the flow path 1110a.
  • a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111.
  • the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.
  • the shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s.
  • the shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c.
  • the showerhead 13 also includes at least one upper electrode.
  • the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
  • SGI side gas injectors
  • the gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22.
  • the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
  • gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow rate of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • the RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode.
  • RF power source 31 may function as at least part of a plasma generation unit configured to generate a plasma from one or more process gases in plasma processing chamber 10 .
  • a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b.
  • the first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. configured to generate.
  • the source RF signal has a frequency within the range of 10 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.
  • the second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power).
  • the frequency of the bias RF signal may be the same or different than the frequency of the source RF signal.
  • the bias RF signal has a lower frequency than the frequency of the source RF signal.
  • the bias RF signal has a frequency within the range of 100kHz to 60MHz.
  • the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
  • the generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b.
  • the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal.
  • the generated first bias DC signal is applied to the at least one bottom electrode.
  • the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal.
  • the generated second DC signal is applied to the at least one top electrode.
  • At least one of the first and second DC signals may be pulsed.
  • a sequence of voltage pulses is applied to at least one lower electrode and/or to at least one upper electrode.
  • the voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof.
  • a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section.
  • the voltage pulse generation section is connected to at least one upper electrode.
  • the voltage pulse may have positive polarity or negative polarity.
  • the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one cycle.
  • the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve.
  • the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
  • the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure.
  • the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1.
  • the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
  • the control unit 2 is realized by, for example, a computer 2a.
  • the processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
  • the acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1.
  • the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
  • the processing unit 2a1 may be a CPU (Central Processing Unit).
  • the storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • the substrate processing method according to each embodiment of the present disclosure is not limited to using the plasma processing apparatus shown in FIG. 6, and various plasma processing apparatuses can be used depending on each manufacturing process. It is.
  • capacitively coupled plasma CCP
  • ICP inductively coupled plasma
  • SWP microwave excited surface plasma
  • the substrate processing method includes a substrate W including a silicon-containing film (processed layer 200) and a mask 220 stacked on the silicon-containing film 200 in a chamber. and a step of etching the silicon-containing film 200 by generating plasma from a processing gas containing COF 2 gas and a hydrogen-containing gas, and etching the silicon-containing film 200.
  • the flow rate of the gas is 13% by volume or more and less than 50% by volume in terms of hydrogen gas.
  • the hydrogen-containing gas may include at least one selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas.
  • the hydrofluoroolefin gas is C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetra fluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas. can.
  • the processing gas may further include an inert gas, and the inert gas may include at least one of a rare gas and a nitrogen gas.
  • the silicon-containing film (processed layer 200) can include a silicon oxide film or a low-k film.
  • the Low-k film may include at least one selected from the group consisting of a SiOC film, a SiCN film, and a SiOCH film.
  • the mask 220 may include at least one of carbon and metal.
  • the carbon-containing mask may include at least one selected from the group consisting of spin-on carbon, tungsten carbide, amorphous carbon, and boron carbide.
  • the etching process can be an etching process for forming a wiring layer of a logic circuit.
  • the plasma may be a capacitively coupled plasma.
  • a step of carrying into the chamber a substrate including a silicon-containing film and a mask stacked on the silicon-containing film; generating plasma from a processing gas containing COF 2 gas and hydrogen-containing gas, and etching the silicon-containing film; including;
  • the flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas is 13% by volume or more and less than 50% by volume in terms of hydrogen gas.
  • Substrate processing method (2) The substrate processing method according to (1) above, wherein the hydrogen-containing gas includes at least one selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas.
  • the hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 Containing at least one selected from the group consisting of F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas,
  • the substrate processing method according to (2) above (4) The substrate according to any one of (1) to (3) above, wherein the processing gas further contains an inert gas, and the inert gas contains at least one of a rare gas and a nitrogen gas. Processing method.
  • the silicon-containing film includes a silicon oxide film or a Low-k film.
  • the Low-k film includes at least one selected from the group consisting of a SiOC film, a SiCN film, and a SiOCH film.
  • the mask contains at least one of carbon and metal.
  • the carbon-containing mask includes at least one selected from the group consisting of spin-on carbon, tungsten carbide, amorphous carbon, and boron carbide.
  • the plasma is a capacitively coupled plasma.
  • Plasma processing apparatus 2 Control section 2a Computer 2a1 Processing section 2a2 Storage section 2a3 Communication interface 10 Plasma processing chamber 10a Side wall 10e Gas exhaust port 10s Plasma processing space 11 Substrate support section 13 Shower head 13a Gas supply port 13b Gas diffusion chamber 13c Gas introduction Port 20 Gas supply section 21 Gas source 22 Flow rate controller 30 Power source 31 RF power source 31a, 31b RF generation section 32 DC power source 32a, 32b DC generation section 40 Exhaust system 111 Main body section 111a Central region 111b Annular region 112 Ring assembly 200 To be treated Layer 202 Silicon oxide film 204 Silicon nitride film 210, 212 Base layer 220 Mask 1110 Base 1110a Channel 1111 Electrostatic chuck 1111a Ceramic member 1111b Electrostatic electrode W Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A substrate processing method according to the present invention comprises: a step in which a substrate that comprises a silicon-containing film and a mask that is superposed on the silicon-containing film is carried into a chamber; and a step in which the silicon-containing film is etched by generating a plasma from a processing gas that contains a COF2 gas and a hydrogen-containing gas. With respect to this substrate processing method, the flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas is not less than 13% by volume but less than 50% by volume in terms of hydrogen gas.

Description

基板処理方法Substrate processing method

 本開示は、基板処理方法に関するものである。 The present disclosure relates to a substrate processing method.

 現在、半導体デバイスの製造プロセスにおいては、例えば、CF(パーフルオロメタン)ガス、c-C(パーフルオロシクロブタン)ガス等のガスを利用して、ドライエッチングやチャンバ内のクリーニング等に行っている。例えば、下記特許文献1には、CFガス、Cガス等を用いてプラズマエッチングを行うことが開示されている。これら半導体製造プロセスで使用されるガスの多くは、地球温暖化を招く温室効果ガスであるとされ、その中には、CO(二酸化炭素)を基準として温暖化を促進させる能力を示す地球温暖化指数(Global Warming Potential:GWP)が高いガスが含まれる。 Currently, in the manufacturing process of semiconductor devices, gases such as CF 4 (perfluoromethane) gas and c-C 4 F 8 (perfluorocyclobutane) gas are used for dry etching, chamber cleaning, etc. Is going. For example, Patent Document 1 listed below discloses that plasma etching is performed using CF 4 gas, C 4 F 8 gas, or the like. Many of the gases used in these semiconductor manufacturing processes are considered to be greenhouse gases that cause global warming, including CO2 (carbon dioxide), which has the ability to accelerate global warming. Contains gases with a high Global Warming Potential (GWP).

特開2008-28022号公報JP2008-28022A

 本開示においては、地球温暖化を抑制するために、各種の半導体製造プロセスで使用されている各種ガスを、温室効果の低いガスで代替することを提案する。 In this disclosure, in order to suppress global warming, we propose replacing various gases used in various semiconductor manufacturing processes with gases that have a low greenhouse effect.

 本開示の一態様に係る基板処理方法は、チャンバ内に、シリコン含有膜と、当該シリコン含有膜上に積層されたマスクとを含む基板を搬入する工程と、COFガス、及び、水素含有ガスを含む処理ガスからプラズマを生成し、前記シリコン含有膜に対してエッチングを行う工程とを含み、前記処理ガスの全流量に対する前記水素含有ガスの流量は、水素ガスに換算して、13体積%以上、50体積%未満である。 A substrate processing method according to one aspect of the present disclosure includes a step of transporting a substrate including a silicon-containing film and a mask stacked on the silicon-containing film into a chamber, and a COF 2 gas and a hydrogen-containing gas. a step of etching the silicon-containing film by generating plasma from a processing gas containing the hydrogen-containing gas, and the flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas is 13% by volume in terms of hydrogen gas. The content is less than 50% by volume.

 各種の半導体製造プロセスにおいて、本開示で提案する温室効果の低いガスを使用した基板処理方法を用いることにより、当該半導体製造プロセスで要求される性能を維持しつつ、地球温暖化を抑制することができる。 By using the substrate processing method using a gas with a low greenhouse effect proposed in this disclosure in various semiconductor manufacturing processes, it is possible to suppress global warming while maintaining the performance required in the semiconductor manufacturing process. can.

図1は、基板の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a substrate. 図2は、本開示の第1の実施形態に係る基板処理方法の流れを説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the flow of the substrate processing method according to the first embodiment of the present disclosure. 図3は、水素ガスの流量比に対する各種層のエッチングレートの結果を示す図である。FIG. 3 is a diagram showing the results of the etching rate of various layers with respect to the flow rate ratio of hydrogen gas. 図4は、基板の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of the substrate. 図5は、基板の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the substrate. 図6は、容量結合型のプラズマ処理装置の構成例を説明するための図である。FIG. 6 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.

 以下、図面を参照して、本願の開示する成膜方法の実施形態について詳細に説明する。なお、本実施形態により、開示する成膜方法が限定されるものではない。また、本明細書及び図面においては、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the film forming method disclosed in the present application will be described in detail with reference to the drawings. Note that the disclosed film forming method is not limited by this embodiment. Further, in this specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals and redundant explanation will be omitted.

 また、以下の説明で参照される図面は、本開示の一実施形態の説明とその理解を促すための図面であり、わかりやすくするために、図中に示される形状や寸法、比などは実際と異なる場合がある。さらに、図中に示される構成は、以下の説明と公知の技術を参酌して適宜、設計変更することができる。 In addition, the drawings referred to in the following explanation are drawings for explaining one embodiment of the present disclosure and promoting understanding thereof, and for the sake of clarity, the shapes, dimensions, ratios, etc. shown in the drawings are not actual. It may be different. Further, the configuration shown in the drawings can be modified in design as appropriate with reference to the following explanation and known techniques.

 近年、日本を始めとする先進国においては、地球温暖化への対策として、COガス等の温室効果の高いガスの排出を削減することが求められている。現在、半導体デバイスの製造プロセスにおいては、先に説明したように、CFガス、c-Cガス等のガスを利用して、ドライエッチングやチャンバ内のクリーニング等に行っている。これら半導体製造プロセスで使用されるガスの多くは、地球温暖化を招く温室効果ガスであるとされ、その中には、GWPが高いガスが含まれる。従って、今後、半導体製造プロセスにおいては、このような温室効果の高いガスの排出抑制を行うことは、重要になると考えられる。具体的には、CFガスはGWP:6630、c-CガスはGWP:9540であり、GWPが高いほど、温室効果が高いとされる。 In recent years, developed countries such as Japan have been required to reduce emissions of gases with a high greenhouse effect, such as CO 2 gas, as a measure against global warming. Currently, in the manufacturing process of semiconductor devices, as described above, gases such as CF 4 gas and c-C 4 F 8 gas are used for dry etching, chamber interior cleaning, and the like. Many of the gases used in these semiconductor manufacturing processes are considered to be greenhouse gases that cause global warming, and include gases with high GWP. Therefore, in the future, it will be important to suppress the emission of such gases that have a high greenhouse effect in semiconductor manufacturing processes. Specifically, CF 4 gas has a GWP of 6630, and c-C 4 F 8 gas has a GWP of 9540, and the higher the GWP, the higher the greenhouse effect.

 そこで、本開示においては、地球温暖化を抑制するために、各種の半導体製造プロセスで使用されている各種ガスを、GWPとして1000以下、好ましくは100以下の温室効果の低いガスで代替することを検討する。以下、本開示の実施形態の詳細を順次説明する。 Therefore, in the present disclosure, in order to suppress global warming, various gases used in various semiconductor manufacturing processes are replaced with gases with a low greenhouse effect with a GWP of 1000 or less, preferably 100 or less. think about. Hereinafter, details of embodiments of the present disclosure will be sequentially described.

 <第1の実施形態>
 まずは、本開示の第1の実施形態として、半導体デバイス製造プロセスの1つである、ロジック回路の配線層を形成するためのドライエッチング工程において、温室効果の低いガスで代替することを検討する。
<First embodiment>
First, as a first embodiment of the present disclosure, we will consider replacing a gas with a low greenhouse effect in a dry etching process for forming a wiring layer of a logic circuit, which is one of the semiconductor device manufacturing processes.

 以下、図1を参照して、本実施形態のエッチング工程を説明する。図1は、本実施形態で処理される基板Wの一例を示す断面図である。本実施形態においては、例えば、図1に示されるような基板Wに対してエッチング処理を行う。詳細には、図1に示すように、基板Wは、下地層210と、下地層210上に積層され、シリコン(Si)を含有する膜(シリコン含有膜)を含み、且つ、エッチングの対象となる被処理層200と、被処理層200上に積層されたマスク220とを有する。 Hereinafter, the etching process of this embodiment will be explained with reference to FIG. FIG. 1 is a cross-sectional view showing an example of a substrate W processed in this embodiment. In this embodiment, for example, an etching process is performed on a substrate W as shown in FIG. Specifically, as shown in FIG. 1, the substrate W includes a base layer 210 and a film laminated on the base layer 210 and containing silicon (Si) (silicon-containing film), and is an etching target. The processing target layer 200 has a mask 220 laminated on the processing target layer 200.

 下地層210は、例えば、金属膜、又は、シリコン膜等の導電体層であることができる。また、金属膜としては、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)等であることができる。さらに、エッチング対象となる被処理層200は、シリコン酸化膜(SiO)や低誘電率(Low-k)膜であることができる。また、Low-k膜は、例えば、SiOC膜(炭素含有シリコン酸化膜)、シリコン炭窒化膜(SiCN)、SiOCH(炭化水素含有シリコン酸化膜)、及び、これらの組み合わせ等であることができる。 The base layer 210 can be, for example, a metal film or a conductive layer such as a silicon film. Furthermore, the metal film can be made of, for example, tungsten (W), aluminum (Al), copper (Cu), or the like. Furthermore, the layer 200 to be etched can be a silicon oxide film (SiO 2 ) or a low dielectric constant (Low-k) film. Further, the low-k film can be, for example, a SiOC film (carbon-containing silicon oxide film), a silicon carbonitride film (SiCN), a SiOCH (hydrocarbon-containing silicon oxide film), or a combination thereof.

 さらに、本実施形態においては、下地層210が上述のような導電体層に限定されるものではない。例えば、被処理層200に対する下地層210が高選択比を有し、下地層210のロスが少ないことが望まれている場合がある。より具体的には、例えば、Self-Aligned Contact(SAC)構造を形成する場合には、下地層210は、シリコン窒化膜(SiN)等であり、被処理層200は、シリコン酸化膜等となる。また、ビア(Via)構造を形成する場合には、下地層210は、シリコン炭化膜(SiC)や、シリコン炭窒化膜等であり、被処理層200は、シリコン酸化膜又はLow-k膜等となる。 Furthermore, in this embodiment, the base layer 210 is not limited to the above-mentioned conductor layer. For example, it may be desired that the base layer 210 has a high selectivity with respect to the layer to be processed 200 and that there is little loss in the base layer 210. More specifically, for example, when forming a Self-Aligned Contact (SAC) structure, the base layer 210 is a silicon nitride film (SiN) or the like, and the processed layer 200 is a silicon oxide film or the like. . Further, when forming a via structure, the base layer 210 is a silicon carbide film (SiC), a silicon carbonitride film, etc., and the layer to be processed 200 is a silicon oxide film, a low-k film, etc. becomes.

 マスク220は、所望の開口パターンを持ち、被処理層200の所望の箇所をエッチングする際の保護膜として機能する。本実施形態においては、マスク220は、炭素及び金属のうちの少なくとも一方を含む。詳細には、本実施形態においては、マスク220は、炭素含有マスクや金属含有マスクであってもよい。さらに、本実施形態においては、炭素含有マスクは、スピンオンカーボン(SOC)、炭化タングステン、アモルファスカーボン、炭化ホウ素等、及び、これらの組み合わせであってもよい。また、本実施形態においては、金属含有マスクは、チタン窒化膜(TiN)、タングステン炭化膜(WC)等であってもよい。 The mask 220 has a desired opening pattern and functions as a protective film when etching a desired portion of the layer 200 to be processed. In this embodiment, mask 220 includes at least one of carbon and metal. Specifically, in this embodiment, the mask 220 may be a carbon-containing mask or a metal-containing mask. Further, in this embodiment, the carbon-containing mask may be spin-on carbon (SOC), tungsten carbide, amorphous carbon, boron carbide, etc., and combinations thereof. Further, in this embodiment, the metal-containing mask may be a titanium nitride film (TiN), a tungsten carbide film (WC), or the like.

 以下、このような基板Wに対するエッチングにおいて、温室効果の低いガスを代替ガスとして使用する、本実施形態に係る基板処理方法を説明する。 Hereinafter, a substrate processing method according to the present embodiment will be described in which a gas with a low greenhouse effect is used as a substitute gas in etching such a substrate W.

 図2を参照して、本実施形態に係る基板処理方法の流れを説明する。図2は、本実施形態に係る基板処理方法の流れを説明するための説明図である。図2に示すように、本開示の実施形態に係る基板処理方法は、先に説明した基板Wをプラズマ処理装置(チャンバ)内に搬送する工程(S1)と、下記に説明する処理ガスからプラズマを生成し、被処理層200に対してエッチングを行う工程(S2)とを含む。詳細には、本実施形態においては、例えば、所望の開口パターンを持つマスク220を用いて、被処理層200をエッチングしてトレンチを形成する。 The flow of the substrate processing method according to this embodiment will be explained with reference to FIG. 2. FIG. 2 is an explanatory diagram for explaining the flow of the substrate processing method according to the present embodiment. As shown in FIG. 2, the substrate processing method according to the embodiment of the present disclosure includes the step (S1) of transporting the substrate W described above into the plasma processing apparatus (chamber), and the step (S1) of transporting the substrate W described above into the plasma processing apparatus (chamber), and plasma processing from the processing gas described below. and etching the layer to be processed 200 (S2). Specifically, in this embodiment, for example, a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.

 本実施形態に係るエッチング工程の処理ガスは、COF(フッ化カルボニル)ガス、及び、水素含有ガスを含む。 The processing gas for the etching process according to this embodiment includes COF 2 (carbonyl fluoride) gas and hydrogen-containing gas.

 COFガスは、例えば、ロジック回路の配線層を形成するためのドライエッチング工程で使用されてきたCFガス(GWP:6630)等に比べて、温暖化効果が低い。従って、本実施形態においては、温室効果の低いCOFガスを用いることで、地球温暖化を抑制することができる。 COF 2 gas has a lower global warming effect than, for example, CF 4 gas (GWP: 6630), which has been used in a dry etching process for forming wiring layers of logic circuits. Therefore, in this embodiment, global warming can be suppressed by using COF 2 gas, which has a low greenhouse effect.

 また、水素含有ガスは、水素(H)ガス、フッ化水素(HF)ガス、及び、ハイドロフルオロオレフィンガスからなる群から選択される1種のガス、又は、これらから選択される複数種のガスの組み合わせであってもよい。また、ハイドロフルオロオレフィンガスは、C(1,1-ジフルオロエチレン)ガス、C(1,3,3,3-テトラフルオロプロペン)ガス、C(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)ガス、又は、これらの組み合わせであることができる。例えば、Cガス、Cガスは、GWPが1以下であり、Cガスは、GWPが7以下である。すなわち、上述の水素含有ガスは、温室効果が低く、ロジック回路の配線層を形成するためのドライエッチング工程で使用されてきたCHF(トリフルオロメタン)(GWP:12400)等に比べて低い。従って、本実施形態においては、上述のような温室効果の低い水素含有ガスを用いることで、地球温暖化を抑制することができる。 Further, the hydrogen-containing gas is one type of gas selected from the group consisting of hydrogen (H 2 ) gas, hydrogen fluoride (HF) gas, and hydrofluoroolefin gas, or multiple types of gas selected from these. It may also be a combination of gases. In addition, hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas, or a combination thereof. For example, C 2 H 2 F 2 gas and C 3 H 2 F 4 gas have a GWP of 1 or less, and C 4 H 2 F 6 gas has a GWP of 7 or less. That is, the above-mentioned hydrogen-containing gas has a low greenhouse effect, and is lower than that of CHF 3 (trifluoromethane) (GWP: 12400), etc., which has been used in the dry etching process for forming wiring layers of logic circuits. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.

 また、本実施形態においては、水素含有ガスは、CHF(ペンタフルオロプロペン)ガス、C(3,3,4,4,4-ペンタフルオロ-1-ブテン等)ガス、CHF(1,1,2,3,4-ペンタフルオロブタ-1,3-ジエン)ガス等であってもよい。これらのガスについても、温室効果が低いことから、このような温室効果の低い水素含有ガスを用いることで、地球温暖化を抑制することができる。 Furthermore, in this embodiment, the hydrogen-containing gas is C 3 HF 5 (pentafluoropropene) gas, C 4 H 3 F 5 (3,3,4,4,4-pentafluoro-1-butene, etc.) gas. , C 4 HF 5 (1,1,2,3,4-pentafluorobuta-1,3-diene) gas, or the like. Since these gases also have a low greenhouse effect, global warming can be suppressed by using hydrogen-containing gases that have a low greenhouse effect.

 さらに、本実施形態に係るエッチング工程の処理ガスは、不活性ガスを含んでもよい。不活性ガスは、アルゴン(Ar)、ヘリウム(He)等の希ガス、窒素(N)ガス、又は、これらの組合せであることができる。 Furthermore, the processing gas for the etching process according to this embodiment may contain an inert gas. The inert gas can be a noble gas such as argon (Ar), helium (He), nitrogen ( N2 ) gas, or a combination thereof.

 そして、本実施形態においては、例えば、後述するプラズマ処理装置により、上述したマスク220を用いて、COFガス、及び、水素含有ガスを含む処理ガスのプラズマにより基板Wの被処理層200をエッチングする。本実施形態においては、処理ガス(不活性ガスを含む場合には、不活性ガスを除いた処理ガス)の全流量に対する水素含有ガスの流量は、水素(H)ガスに換算して、13体積%以上、50体積%未満とする。本実施形態に係るエッチング工程においては、水素含有ガスは、COFガスに含まれる酸素をOHの形で引き抜くために機能する。本実施形態においては、このような機能を持つ水素含有ガスをともに用いることで、COFガスは、従来から使用されているCFガスといったガスと同等レベルで、エッチングガスとして機能することができる。なお、本実施形態においては、水素含有ガスの流量は、水素含有ガスに含まれる水素を水素ガスに換算し、換算された水素ガスの体積量として定義する。 In this embodiment, for example, the layer to be processed 200 of the substrate W is etched by plasma of a processing gas containing COF 2 gas and hydrogen-containing gas using the mask 220 described above using a plasma processing apparatus described later. do. In this embodiment, the flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas (or the processing gas excluding the inert gas if it contains an inert gas) is 13% in terms of hydrogen (H 2 ) gas. % by volume or more and less than 50% by volume. In the etching process according to this embodiment, the hydrogen-containing gas functions to extract oxygen contained in the COF 4 gas in the form of OH. In this embodiment, by using a hydrogen-containing gas having such a function, COF 4 gas can function as an etching gas at the same level as conventionally used gases such as CF 4 gas. . Note that in this embodiment, the flow rate of the hydrogen-containing gas is defined as the volumetric amount of the hydrogen gas converted by converting the hydrogen contained in the hydrogen-containing gas into hydrogen gas.

 ここで、図3を参照して、本実施形態に係るエッチング工程によるフォトレジスト、シリコン酸化膜、シリコン窒化膜の各エッチングレートを検討する。図3は、水素ガスの流量比に対する各種層のエッチングレートの結果を示す図である。詳細には、図3の横軸は、水素ガスの、不活性ガスを除いた処理ガス(COF)の全流量に対する比を示し、縦軸は、フォトレジスト(photoresist:PR)、シリコン酸化膜、シリコン窒化膜の各エッチングレート(nm/min)を示す。ここでは、処理ガスとして、COFガス、水素ガス、及び、窒素ガスを使用し、圧力3Pa、基板温度20℃、RF(Radio Frequency)電力300Wの条件で、フォトレジスト、シリコン酸化膜、シリコン窒化膜の3つの膜に対してエッチングを行った。 Here, with reference to FIG. 3, the etching rates of the photoresist, silicon oxide film, and silicon nitride film by the etching process according to this embodiment will be discussed. FIG. 3 is a diagram showing the results of the etching rate of various layers with respect to the flow rate ratio of hydrogen gas. In detail, the horizontal axis in FIG. 3 shows the ratio of hydrogen gas to the total flow rate of the processing gas (COF 2 ) excluding inert gas, and the vertical axis shows the ratio of the photoresist (PR), silicon oxide film, etc. , each etching rate (nm/min) of the silicon nitride film is shown. Here, COF 2 gas, hydrogen gas, and nitrogen gas were used as processing gases, and the photoresist, silicon oxide film, and silicon nitride were Etching was performed on three of the films.

 図3に示す結果から、処理ガスとしてCOFガスを用いた場合であっても、シリコン酸化膜及びシリコン窒化膜は、処理ガスとしてCFガスを用いた場合と同等で程度のエッチングレートでエッチングされることが分かった。すなわち、本実施形態によれば、このような温室効果の低いCOFガスを用いた場合であっても、当該プロセスでこれまで使用されたCFガスと同等のプロセス性能を得ることができる。 From the results shown in Figure 3, even when COF 2 gas is used as the processing gas, the silicon oxide film and silicon nitride film are etched at the same etching rate as when CF 4 gas is used as the processing gas. I found out that it will happen. That is, according to the present embodiment, even when using COF 2 gas having a low greenhouse effect, it is possible to obtain process performance equivalent to that of CF 4 gas used so far in the process.

 また、図3に示すように、水素ガスの流量を、処理ガスの全流量に対する体積比を13%~50%(図3中、矢印で示される範囲)とすることで、シリコン酸化膜はフォトレジストに対して選択的にエッチングされることがわかった。 In addition, as shown in FIG. 3, by setting the volume ratio of the hydrogen gas flow rate to the total flow rate of the processing gas to be 13% to 50% (range indicated by the arrow in FIG. 3), the silicon oxide film is It was found that the resist was selectively etched.

 以上のように、ロジック回路の配線層を形成するためのドライエッチング工程において、本実施形態に係る、温室効果の低い処理ガスを用いてエッチングを行うことにより、地球温暖化を抑制することができる。さらに、本実施形態によれば、このような温室効果の低いガスを用いた場合であっても、当該プロセスでこれまで使用された処理ガスと同等のプロセス性能を得ることができる。 As described above, global warming can be suppressed by performing etching using the processing gas with low greenhouse effect according to this embodiment in the dry etching process for forming the wiring layer of the logic circuit. . Furthermore, according to the present embodiment, even when such a gas with a low greenhouse effect is used, it is possible to obtain process performance equivalent to that of the processing gas used so far in the process.

 また、他の実施形態に係るロジック回路の配線層を形成するためのドライエッチング工程においては、処理ガスとして、例えば、COFガス、CF(フルオロカーボン)系ガス、及び、不活性ガスを用いてもよい。当該他の実施形態においては、CF系ガスは、C(ヘキサフルオロプロペン)ガス、C(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン)ガス、直鎖状COガス、又は、これらの組み合わせであることができる。これらのガスについても、温室効果が低いことから、このような温室効果の低いCF系ガスを用いることで、地球温暖化を抑制することができる。 Further, in the dry etching process for forming the wiring layer of the logic circuit according to another embodiment, for example, COF 2 gas, CF (fluorocarbon)-based gas, and inert gas may be used as the processing gas. good. In this other embodiment, the CF-based gas is C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, linear C 4 It can be F 8 O gas or a combination thereof. Since these gases also have a low greenhouse effect, global warming can be suppressed by using such CF-based gases that have a low greenhouse effect.

 また、他の実施形態に係るロジック回路の配線層を形成するためのドライエッチング工程においては、処理ガスとして、例えば、COFガス、CHF(ハイドロフルオロカーボン)系ガス、及び、不活性ガスを用いてもよい。当該他の実施形態においては、CHF系ガスは、CH(ジフルオロメタン)ガス、CHF(フルオロメタン)ガス、又は、これらの組み合わせであることができる。例えば、CHガスは、GWPが677であり、CHFガスは、GWPが116であり、いずれもGWPが1000以下である。これらのガスについても、温室効果が低いことから、このような温室効果の低いCHF系ガスを用いることで、地球温暖化を抑制することができる。さらに、上記エッチング工程の処理ガスとしては、CHF系ガスの代わりに、もしくは、CHF系ガスとともに、フッ化水素(HF)ガスを用いてもよい。 In addition, in the dry etching process for forming the wiring layer of the logic circuit according to another embodiment, for example, COF 2 gas, CHF (hydrofluorocarbon)-based gas, and inert gas are used as the processing gas. Good too. In such other embodiments, the CHF-based gas can be CH 2 F 2 (difluoromethane) gas, CH 3 F (fluoromethane) gas, or a combination thereof. For example, CH 2 F 2 gas has a GWP of 677, CH 3 F gas has a GWP of 116, and both have a GWP of 1000 or less. Since these gases also have a low greenhouse effect, global warming can be suppressed by using CHF gases that have a low greenhouse effect. Further, as the processing gas for the etching step, hydrogen fluoride (HF) gas may be used instead of or together with the CHF-based gas.

 <第2の実施形態>
 次に、本開示の第2の実施形態として、DRAM(Dynamic Random Access Memory)デバイスを形成するためのドライエッチング工程において、温室効果の低いガスで代替することを検討する。
<Second embodiment>
Next, as a second embodiment of the present disclosure, consideration will be given to replacing a gas with a low greenhouse effect in a dry etching process for forming a DRAM (Dynamic Random Access Memory) device.

 以下、図4を参照して、本実施形態の基板処理方法を説明する。図4は、本実施形態で処理される基板Wの一例を示す断面図である。本実施形態においては、基板処理方法は、例えば、図4に示されるような基板Wに対してエッチング処理を行うことを含む。詳細には、図4に示すように、基板Wは、下地層212と、下地層212上に積層され、且つ、エッチングの対象となる被処理層200と、被処理層200上に積層されたマスク220とを有する。以下に、基板Wの各層について説明するが、ここでは、上述の実施形態と共通する点については、説明を省略する。 Hereinafter, the substrate processing method of this embodiment will be explained with reference to FIG. 4. FIG. 4 is a cross-sectional view showing an example of a substrate W processed in this embodiment. In this embodiment, the substrate processing method includes performing an etching process on a substrate W as shown in FIG. 4, for example. Specifically, as shown in FIG. 4, the substrate W includes a base layer 212, a layer laminated on the base layer 212, a layer 200 to be etched, and a layer laminated on the layer 200. It has a mask 220. Each layer of the substrate W will be described below, but descriptions of points common to the above-described embodiments will be omitted here.

 本実施形態においては、下地層212は、例えば、金属膜、シリコン膜等であることができ、特に限定されるものではない。 In this embodiment, the base layer 212 can be, for example, a metal film, a silicon film, etc., and is not particularly limited.

 また、本実施形態においては、被処理層200は、1つ酸化膜(例えば、シリコン酸化膜)と、1つ又は複数の窒化膜(例えば、シリコン窒化膜)とを含んでもよい。本実施形態においては、例えば、図4に示すように、被処理層200は、2つのシリコン窒化膜204と、2つのシリコン窒化膜204に挟まれたシリコン酸化膜202とを有する。例えば、シリコン酸化膜202は、約800nm~1200nmの膜厚を持ち、シリコン窒化膜204は、約300nm~400nmの膜厚を持つ。 Furthermore, in this embodiment, the layer to be processed 200 may include one oxide film (for example, a silicon oxide film) and one or more nitride films (for example, a silicon nitride film). In this embodiment, for example, as shown in FIG. 4, the layer to be processed 200 includes two silicon nitride films 204 and a silicon oxide film 202 sandwiched between the two silicon nitride films 204. For example, the silicon oxide film 202 has a thickness of approximately 800 nm to 1200 nm, and the silicon nitride film 204 has a thickness of approximately 300 nm to 400 nm.

 本実施形態においては、所望の開口パターンを持つマスク220を用いて、被処理層200をエッチングしてトレンチを形成する。当該トレンチは、例えば、約1μm~3μmの深さを有する略円筒形であってよい。また、当該略円筒形は、例えば、約20nm~50nmの直径を有してもよい。そして、このような略円筒形のトレンチの内部に、例えば、キャパシタメモリセルを形成することができる。 In this embodiment, a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern. The trench may, for example, be generally cylindrical with a depth of about 1 μm to 3 μm. Further, the generally cylindrical shape may have a diameter of, for example, about 20 nm to 50 nm. For example, a capacitor memory cell can be formed inside such a substantially cylindrical trench.

 以下、このような基板Wに対するエッチングにおいて、温室効果の低いガスを代替ガスとして使用する、本実施形態に係る基板処理方法に含まれるエッチング工程について説明する。本実施形態においては、例えば、所望の開口パターンを持つマスク220を用いて、被処理層200をエッチングしてトレンチを形成する。 Hereinafter, in etching such a substrate W, an etching process included in the substrate processing method according to the present embodiment, which uses a gas with a low greenhouse effect as a substitute gas, will be described. In this embodiment, for example, a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.

 本実施形態に係るエッチング工程の処理ガスは、CF(フルオロカーボン)系ガス、及び、不活性ガスを含む。CF系ガスは、C(ヘキサフルオロプロペン)ガス、C(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン)ガス、又は、これらの組み合わせであることができる。例えば、Cガスは、GWPが1以下であり、DRAMデバイスを形成するためのドライエッチング工程で使用されてきたC(ヘキサフルオロ-1,3-ブタジエン)ガス(GWP:290)等に比べて、低いGWPを持つ。従って、本実施形態においては、上述のような温室効果の低い水素含有ガスを用いることで、地球温暖化を抑制することができる。 The processing gas for the etching process according to this embodiment includes a CF (fluorocarbon)-based gas and an inert gas. The CF-based gas can be C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, or a combination thereof. For example, C 3 F 6 gas has a GWP of 1 or less, and C 4 F 6 (hexafluoro-1,3-butadiene) gas (GWP: 290 ), etc., have a lower GWP. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.

 また、不活性ガスは、アルゴン、ヘリウム等の希ガス、窒素ガス、又は、これらの組合せであることができる。 Additionally, the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.

 さらに、本実施形態においては、処理ガスは、酸素(O)ガスを含んでいてもよい。 Furthermore, in this embodiment, the processing gas may contain oxygen (O 2 ) gas.

 以上のように、DRAMデバイスを形成するためのドライエッチング工程において、本実施形態に係る、温室効果の低い処理ガスを用いてエッチングを行うことにより、地球温暖化を抑制することができる。さらに、本実施形態によれば、このような温室効果の低いガスを用いた場合であっても、当該プロセスでこれまで使用された処理ガスと同等のプロセス性能を得ることができる。 As described above, global warming can be suppressed by performing etching using a process gas with a low greenhouse effect according to this embodiment in the dry etching process for forming a DRAM device. Furthermore, according to the present embodiment, even when such a gas with a low greenhouse effect is used, it is possible to obtain process performance equivalent to that of the processing gas used so far in the process.

 <第3の実施形態>
 次に、本開示の第3の実施形態として、垂直NAND型フラッシュメモリデバイスを形成するためのドライエッチング工程において、温室効果の低いガスで代替することを検討する。なお、垂直NAND構造は、VNAND、3D-NAND構造とも称される。
<Third embodiment>
Next, as a third embodiment of the present disclosure, consideration will be given to substituting a gas with a low greenhouse effect in the dry etching process for forming a vertical NAND flash memory device. Note that the vertical NAND structure is also referred to as a VNAND or 3D-NAND structure.

 以下、図5を参照して、本実施形態の基板処理方法を説明する。図5は、本実施形態で処理される基板Wの一例を示す断面図である。本実施形態においては、基板処理方法は、例えば、図5に示されるような基板Wに対してエッチング処理を行うことを含む。詳細には、図5に示すように、基板Wは、下地層212と、下地層212上に積層され、且つ、エッチングの対象となる被処理層200と、被処理層200上に積層されたマスク220とを有する。以下に、基板Wの各層について説明するが、ここでは、上述の実施形態と共通する点については、説明を省略する。 Hereinafter, the substrate processing method of this embodiment will be explained with reference to FIG. FIG. 5 is a cross-sectional view showing an example of a substrate W processed in this embodiment. In this embodiment, the substrate processing method includes performing an etching process on a substrate W as shown in FIG. 5, for example. Specifically, as shown in FIG. 5, the substrate W includes a base layer 212, a layer laminated on the base layer 212, a layer 200 to be etched, and a layer laminated on the layer 200 to be etched. It has a mask 220. Each layer of the substrate W will be described below, but descriptions of points common to the above-described embodiments will be omitted here.

 本実施形態においては、下地層212は、例えば、金属膜、シリコン膜等であることができ、特に限定されるものではない。 In this embodiment, the base layer 212 can be, for example, a metal film, a silicon film, etc., and is not particularly limited.

 本実施形態においては、被処理層200は、図5に示すように、1つの酸化膜202(例えば、シリコン酸化膜)と1つの窒化膜204(例えば、シリコン窒化膜)とからなる積層構造を複数個含んでもよい。もしくは、被処理層200は、1つの酸化膜(例えば、シリコン酸化膜)と1つのシリコン膜(例えば、ポリシリコン膜)とからなる積層構造を複数個含んでもよい。さらに、被処理層200は、上記積層構造を、少なくとも約20個含むことができ、好ましくは約40個、より好ましくは約60個、さらに好ましくは約70個、含んでもよい。なお、図5においては、便宜上、被処理層200は、5個の上記積層構造を含む物として図示されているが、本実施形態においては、被処理層200は、上記積層構造を少なくとも約20個含んでいればよく、その数は限定されるものではない。 In this embodiment, the layer to be processed 200 has a laminated structure consisting of one oxide film 202 (for example, silicon oxide film) and one nitride film 204 (for example, silicon nitride film), as shown in FIG. It may contain more than one. Alternatively, the layer to be processed 200 may include a plurality of laminated structures each consisting of one oxide film (for example, a silicon oxide film) and one silicon film (for example, a polysilicon film). Furthermore, the layer to be treated 200 may include at least about 20 of the above laminated structures, preferably about 40, more preferably about 60, and even more preferably about 70. Note that in FIG. 5, for convenience, the layer to be processed 200 is illustrated as having five of the above-mentioned laminate structures, but in this embodiment, the layer to be processed 200 includes at least about 20 of the above-mentioned laminate structures. The number is not limited as long as it includes the following.

 本実施形態においては、所望の開口パターンを持つマスク220を用いて、被処理層200をエッチングしてトレンチを形成する。当該トレンチは、例えば、約2μm~6μmの深さを有する。また、当該トレンチは、例えば、約50nm~150nmの幅を有してもよい。 In this embodiment, a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern. The trench has a depth of approximately 2 μm to 6 μm, for example. Further, the trench may have a width of about 50 nm to 150 nm, for example.

 以下、このような基板Wに対するエッチングにおいて、温室効果の低いガスを代替ガスとして使用する、本実施形態に係る基板処理方法に含まれるエッチング工程について説明する。本実施形態においては、例えば、所望の開口パターンを持つマスク220を用いて、被処理層200をエッチングしてトレンチを形成する。 Hereinafter, in etching such a substrate W, an etching process included in the substrate processing method according to the present embodiment, which uses a gas with a low greenhouse effect as a substitute gas, will be described. In this embodiment, for example, a trench is formed by etching the layer to be processed 200 using a mask 220 having a desired opening pattern.

 本実施形態に係るエッチング工程の処理ガスは、CF系ガス、水素含有ガス、及び、酸素ガスを含む。CF系ガスは、C(ヘキサフルオロプロペン)ガス、C(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン)ガス、又は、これらの組み合わせであることができる。先に説明したように、例えば、Cガスは、GWPが1以下である。そして、Cガス等は、垂直NAND型フラッシュメモリデバイスを形成するためのドライエッチング工程で従来使用されてきたc-C(パーフルオロシクロブタン)ガス(GWP:9540)に比べて、低いGWPを持つ。さらに、Cガス等は、従来使用されていたNF(三フッ化窒素)ガス(GWP:16100)、SF(六フッ化硫黄)ガス(GWP:23500)に比べて、低いGWPを持つ。従って、本実施形態においては、上述のような温室効果の低いCF系ガスを用いることで、地球温暖化を抑制することができる。 The processing gas for the etching process according to this embodiment includes a CF-based gas, a hydrogen-containing gas, and an oxygen gas. The CF-based gas can be C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, or a combination thereof. As explained above, for example, C 3 F 6 gas has a GWP of 1 or less. Furthermore, C 3 F 6 gas and the like are more expensive than c-C 4 F 8 (perfluorocyclobutane) gas (GWP: 9540), which has been conventionally used in the dry etching process for forming vertical NAND flash memory devices. , has a low GWP. Furthermore, C 3 F 6 gas etc. has a lower GWP than the conventionally used NF 3 (nitrogen trifluoride) gas (GWP: 16100) and SF 6 (sulfur hexafluoride) gas (GWP: 23500). have. Therefore, in this embodiment, global warming can be suppressed by using the CF-based gas that has a low greenhouse effect as described above.

 また、水素含有ガスは、水素ガス、フッ化水素ガス、及び、ハイドロフルオロオレフィンガスからなる群から選択される1種のガス、又は、これらから選択される複数種のガスの組み合わせであってもよい。また、ハイドロフルオロオレフィンガスは、C(1,1-ジフルオロエチレン)ガス、C(1,3,3,3-テトラフルオロプロペン)ガス、C(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)ガス、又は、これらの組み合わせであることができる。これらのガスについても、先に説明したように、温室効果が低く、例えば、Cガスは、GWPが1以下であり、Cガスは、GWPが7以下である。従って、本実施形態においては、上述のような温室効果の低い水素含有ガスを用いることで、地球温暖化を抑制することができる。 Further, the hydrogen-containing gas may be one type of gas selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas, or a combination of multiple types of gases selected from these. good. In addition, hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas, or a combination thereof. As explained above, these gases also have a low greenhouse effect; for example, C 3 H 2 F 4 gas has a GWP of 1 or less, and C 4 H 2 F 6 gas has a GWP of 7 or less. be. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.

 以上のように、垂直NAND型デバイスを形成するためのドライエッチング工程において、本実施形態に係る、温室効果の低い処理ガスを用いてエッチングを行うことにより、地球温暖化を抑制することができる。さらに、本実施形態によれば、このような温室効果の低いガスを用いた場合であっても、当該プロセスでこれまで使用された処理ガスと同等のプロセス性能を得ることができる。 As described above, global warming can be suppressed by performing etching using a processing gas with a low greenhouse effect according to this embodiment in the dry etching process for forming a vertical NAND type device. Furthermore, according to the present embodiment, even when such a gas with a low greenhouse effect is used, it is possible to obtain process performance equivalent to that of the processing gas used so far in the process.

 <第4の実施形態>
 半導体デバイスの製造プロセスでは、マイクロプロセッサ、ロジック回路、及び、メモリデバイス等の様々な半導体デバイスを形成する。このような半導体デバイスは、様々なタイプのマスクを作成するパターニング技術を含むプロセスにより製造され得る。詳細には、このようないくつかのプロセスにおいては、シリコン酸化膜や、シリコン窒化膜や、シリコン膜等を含有する層にエッチングを行う。以下、温室効果の低いガスを代替ガスとして使用するエッチング工程について説明する。
<Fourth embodiment>
Semiconductor device manufacturing processes form various semiconductor devices such as microprocessors, logic circuits, and memory devices. Such semiconductor devices may be manufactured by processes that include patterning techniques to create various types of masks. Specifically, in some of these processes, a layer containing a silicon oxide film, a silicon nitride film, a silicon film, or the like is etched. An etching process using a gas with a low greenhouse effect as an alternative gas will be described below.

 (シリコン酸化膜)
 本実施形態における、シリコン酸化膜に対するエッチング工程の処理ガスは、CF系ガス、酸素ガス、及び、不活性ガスを含む。CF系ガスは、C(ヘキサフルオロプロペン)ガス、C(オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテン)ガス、又は、これらの組み合わせであることができる。先に説明したように、例えば、Cガスは、GWPが1以下であり、シリコン酸化膜に対するエッチング工程で使用されてきたCFガス(GWP:6630)、CHF(トリフルオロメタン)ガス(GWP:12400)等に比べて、低いGWPを持つ。従って、本実施形態においては、上述のような温室効果の低いCF系ガスを用いることで、地球温暖化を抑制することができる。
(silicon oxide film)
In this embodiment, the processing gas for the etching process for the silicon oxide film includes a CF-based gas, oxygen gas, and an inert gas. The CF-based gas can be C 3 F 6 (hexafluoropropene) gas, C 4 F 8 (octafluoro-1-butene, octafluoro-2-butene) gas, or a combination thereof. As explained above, for example, C 3 F 6 gas has a GWP of 1 or less, and CF 4 gas (GWP: 6630) and CHF 3 (trifluoromethane) gas, which have been used in the etching process for silicon oxide films, are (GWP: 12400), etc., has a lower GWP. Therefore, in this embodiment, global warming can be suppressed by using the CF-based gas that has a low greenhouse effect as described above.

 また、不活性ガスは、アルゴン、ヘリウム等の希ガス、窒素ガス、又は、これらの組合せであることができる。 Additionally, the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.

 また、本実施形態における、シリコン酸化膜に対するエッチング工程の処理ガスは、CF系ガス、及び、CHF(ハイドロフルオロカーボン)系ガスを含んでもよい。CF系ガスは、COFガス、CO(ペンタフルオロエチルトリフルオロビニルエーテル)ガス、CFCOF(1,2,2,2-テトラフルオロエタン-1-オン)ガス、又は、これらの組み合わせであることができる。また、CHF系ガスとしては、CHFCOF(ジフルオロ酢酸フルオライド)ガス等を挙げることができる。従って、本実施形態においては、上述のような温室効果の低いCF系ガス及びCHF系ガスを用いることで、地球温暖化を抑制することができる。さらに、上記のエッチング工程の処理ガスにおいては、CHF系ガスの代わりに、もしくは、CHF系ガスとともに、フッ化水素(HF)ガスを用いてもよい。 Further, in this embodiment, the processing gas for the etching process for the silicon oxide film may include a CF-based gas and a CHF (hydrofluorocarbon)-based gas. The CF-based gas is COF 2 gas, C 4 F 8 O (pentafluoroethyl trifluorovinyl ether) gas, CF 3 COF (1,2,2,2-tetrafluoroethane-1-one) gas, or any of these gases. It can be a combination. Furthermore, examples of the CHF-based gas include CHF 2 COF (difluoroacetic acid fluoride) gas. Therefore, in this embodiment, global warming can be suppressed by using the above-mentioned CF-based gas and CHF-based gas that have a low greenhouse effect. Furthermore, in the processing gas for the above-mentioned etching process, hydrogen fluoride (HF) gas may be used instead of the CHF-based gas or together with the CHF-based gas.

 (シリコン窒化膜)
 本実施形態における、シリコン窒化膜に対するエッチング工程の処理ガスは、水素含有ガス、酸素ガス、及び、不活性ガスを含む。水素含有ガスは、水素ガス、フッ化水素ガス、及び、ハイドロフルオロオレフィンガスからなる群から選択される1種のガス、又は、これらから選択される複数種のガスの組み合わせであることができる。また、ハイドロフルオロオレフィンガスは、C(1,1-ジフルオロエチレン)ガス、C(1,3,3,3-テトラフルオロプロペン)ガス、C(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)ガス、又は、これらの組み合わせであることができる。例えば、Cガスは、GWPが1であり、Cガスは、GWPが7以下であり、シリコン窒化膜に対するエッチング工程で使用されてきたCHF(フルオロメタン)ガス(GWP:116)等に比べて、低いGWPを持つ。従って、本実施形態においては、上述のような温室効果の低い水素含有ガスを用いることで、地球温暖化を抑制することができる。
(silicon nitride film)
In this embodiment, the processing gas for the etching process for the silicon nitride film includes a hydrogen-containing gas, an oxygen gas, and an inert gas. The hydrogen-containing gas can be one type of gas selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas, or a combination of multiple types of gases selected from these. In addition, hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas, or a combination thereof. For example, C 3 H 2 F 4 gas has a GWP of 1, and C 4 H 2 F 6 gas has a GWP of 7 or less. ) gas (GWP: 116), etc., has a low GWP. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.

 また、不活性ガスは、アルゴン、ヘリウム等の希ガス、窒素ガス、又は、これらの組合せであることができる。 Additionally, the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.

 (シリコン膜)
 本実施形態における、シリコン膜に対するエッチング工程の処理ガスは、水素含有ガス、酸素ガス、及び、不活性ガスを含む。水素含有ガスは、フッ化水素ガス、臭化水素(HBr)ガス等を含むことができる。例えば、HBrガスは、シリコン膜に対するエッチング工程で使用されてきたNF(三フッ化窒素)ガス(GWP:16100)等に比べて、低いGWPを持つ。従って、本実施形態においては、上述のような温室効果の低い水素含有ガスを用いることで、地球温暖化を抑制することができる。
(silicon film)
In this embodiment, the processing gas for the etching process for the silicon film includes a hydrogen-containing gas, an oxygen gas, and an inert gas. The hydrogen-containing gas can include hydrogen fluoride gas, hydrogen bromide (HBr) gas, and the like. For example, HBr gas has a lower GWP than NF 3 (nitrogen trifluoride) gas (GWP: 16100), which has been used in the etching process for silicon films. Therefore, in this embodiment, global warming can be suppressed by using the hydrogen-containing gas that has a low greenhouse effect as described above.

 また、不活性ガスは、アルゴン、ヘリウム等の希ガス、窒素ガス、又は、これらの組合せであることができる。 Additionally, the inert gas can be a rare gas such as argon or helium, nitrogen gas, or a combination thereof.

 以上のように、シリコン酸化膜や、シリコン窒化膜や、シリコン膜等を含有する層へのパターニングのためのエッチング工程において、本実施形態に係る、温室効果の低い処理ガスを用いてエッチングを行うことにより、地球温暖化を抑制することができる。さらに、本実施形態によれば、このような温室効果の低いガスを用いた場合であっても、当該プロセスでこれまで使用された処理ガスと同等のプロセス性能を得ることができる。 As described above, in the etching process for patterning a layer containing a silicon oxide film, a silicon nitride film, a silicon film, etc., etching is performed using a processing gas with a low greenhouse effect according to this embodiment. By doing so, global warming can be suppressed. Furthermore, according to the present embodiment, even when such a gas with a low greenhouse effect is used, it is possible to obtain process performance equivalent to that of the processing gas used so far in the process.

 <第5の実施形態>
 半導体デバイスの製造プロセスでは、プラズマを生成し、生成したプラズマで基板を処理するために、各種のチャンバが用いられる。このような処理を行う中で、チャンバの内壁等には、処理時に生成される副生成物が付着し、さらに副生成物が徐々に堆積することにより、パーティクルへと成長する。このようなパーティクルは、安定したプラズマの生成や基板処理に悪影響を与える可能性があることから、内壁等のパーティクルを低減するために、所定の周期で、チャンバに対してドライクリーニングを行っている。
<Fifth embodiment>
In the manufacturing process of semiconductor devices, various chambers are used to generate plasma and treat a substrate with the generated plasma. During such processing, by-products generated during the processing adhere to the inner walls of the chamber and the like, and the by-products gradually accumulate and grow into particles. Such particles can have a negative impact on stable plasma generation and substrate processing, so the chamber is dry-cleaned at regular intervals to reduce particles on the inner walls, etc. .

 詳細には、このようなチャンバのドライクリーニングにおいては、チャンバ内に、クリーニングガス、及び、不活性ガスを供給し、供給したガスを用いてプラズマを発生させて、プラズマによりチャンバの内壁等をクリーニングする。従来から用いられているクリーニングガスとしては、例えば、NF(三フッ化窒素)ガス(GWP:16100)、SF(六フッ化硫黄)ガス(GWP:23500)等が挙げられるが、これらのガスは、GWPが高く、すなわち、温室効果が高い。 Specifically, in dry cleaning of such a chamber, a cleaning gas and an inert gas are supplied into the chamber, plasma is generated using the supplied gas, and the inner walls of the chamber are cleaned with the plasma. do. Conventionally used cleaning gases include, for example, NF 3 (nitrogen trifluoride) gas (GWP: 16100), SF 6 (sulfur hexafluoride) gas (GWP: 23500), etc. Gas has a high GWP, ie, a high greenhouse effect.

 以下、このようなクリーニングにおいて、温室効果の低いガスを代替ガスとして使用する、本実施形態に係るクリーニングを説明する。 Hereinafter, in such cleaning, cleaning according to the present embodiment will be described in which a gas with a low greenhouse effect is used as an alternative gas.

 本実施形態においては、クリーニングガスは、COFガス、HF(フッ化水素)ガス、フッ素(F)ガス、FNO(ニトロシルフルオリド)ガス、FNO(トリフルオロアミンオキサイド)ガス、又は、これらの組み合わせであることができる。これらのガスは、これまでクリーニングガスとして用いられてきたNFガス(GWP16100)、SFガス(GWP23500)等に比べて、温室効果が低い。従って、本実施形態においては、上述のような温室効果の低いクリーニングガスを用いることで、地球温暖化を抑制することができる。 In this embodiment, the cleaning gas is COF 2 gas, HF (hydrogen fluoride) gas, fluorine (F 2 ) gas, FNO (nitrosyl fluoride) gas, F 3 NO (trifluoroamine oxide) gas, or It can be a combination of these. These gases have a lower greenhouse effect than NF 3 gas (GWP 16100), SF 6 gas (GWP 23500), etc. that have been used as cleaning gases so far. Therefore, in this embodiment, global warming can be suppressed by using a cleaning gas with a low greenhouse effect as described above.

 以上のように、チャンバのドライクリーニングにおいて、本実施形態に係る、温室効果の低いクリーニングガスを用いてクリーニングを行うことにより、地球温暖化を抑制することができる。さらに、本実施形態によれば、このような温室効果の低いガスを用いた場合であっても、当該クリーニングでこれまで使用されたクリーニングガスと同等のクリーニング性能を得ることができる。 As described above, global warming can be suppressed by dry cleaning the chamber using the cleaning gas with low greenhouse effect according to the present embodiment. Furthermore, according to the present embodiment, even when such a gas with a low greenhouse effect is used, cleaning performance equivalent to that of the cleaning gas used up to now can be obtained in the cleaning.

 <プラズマ処理装置>
 次に、本開示の各実施形態に係る基板処理方法に適用され得るプラズマ処理装置の一例について説明する。図6は、容量結合型のプラズマ処理装置の構成例を説明するための図である。
<Plasma processing equipment>
Next, an example of a plasma processing apparatus that can be applied to the substrate processing method according to each embodiment of the present disclosure will be described. FIG. 6 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.

 図6に示すように、プラズマ処理システムは、容量結合型のプラズマ処理装置1及び制御部2を含む。容量結合型のプラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。 As shown in FIG. 6, the plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a control section 2. The capacitively coupled plasma processing apparatus 1 includes a plasma processing chamber 10, a gas supply section 20, a power supply 30, and an exhaust system 40. Further, the plasma processing apparatus 1 includes a substrate support section 11 and a gas introduction section. The gas inlet is configured to introduce at least one processing gas into the plasma processing chamber 10 . The gas introduction section includes a shower head 13. Substrate support 11 is arranged within plasma processing chamber 10 . The shower head 13 is arranged above the substrate support section 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 . The plasma processing chamber 10 has a plasma processing space 10s defined by a shower head 13, a side wall 10a of the plasma processing chamber 10, and a substrate support 11. The plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s, and at least one gas exhaust port for discharging gas from the plasma processing space. Plasma processing chamber 10 is grounded. The shower head 13 and the substrate support section 11 are electrically insulated from the casing of the plasma processing chamber 10.

 基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウエハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ112を支持するためのリング支持面とも呼ばれる。 The substrate support section 11 includes a main body section 111 and a ring assembly 112. The main body portion 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112. A wafer is an example of a substrate W. The annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in plan view. The substrate W is placed on the central region 111a of the main body 111, and the ring assembly 112 is placed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.

 一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF電源31及び/又はDC(Direct Current)電源32に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極が下部電極として機能する。後述するバイアスRF信号及び/又はDC信号が少なくとも1つのRF/DC電極に供給される場合、RF/DC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数の下部電極として機能してもよい。また、静電電極1111bが下部電極として機能してもよい。従って、基板支持部11は、少なくとも1つの下部電極を含む。 In one embodiment, the main body 111 includes a base 1110 and an electrostatic chuck 1111. Base 1110 includes a conductive member. The conductive member of the base 1110 can function as a bottom electrode. Electrostatic chuck 1111 is placed on base 1110. Electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within ceramic member 1111a. Ceramic member 1111a has a central region 111a. In one embodiment, ceramic member 1111a also has an annular region 111b. Note that another member surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b. In this case, ring assembly 112 may be placed on the annular electrostatic chuck or the annular insulation member, or may be placed on both the electrostatic chuck 1111 and the annular insulation member. Further, at least one RF/DC electrode coupled to an RF power source 31 and/or a DC (Direct Current) power source 32, which will be described later, may be arranged within the ceramic member 1111a. In this case, at least one RF/DC electrode functions as a bottom electrode. An RF/DC electrode is also referred to as a bias electrode if a bias RF signal and/or a DC signal, as described below, is supplied to at least one RF/DC electrode. Note that the conductive member of the base 1110 and at least one RF/DC electrode may function as a plurality of lower electrodes. Further, the electrostatic electrode 1111b may function as a lower electrode. Therefore, the substrate support 11 includes at least one lower electrode.

 リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。 Ring assembly 112 includes one or more annular members. In one embodiment, the one or more annular members include one or more edge rings and at least one cover ring. The edge ring is made of a conductive or insulating material, and the cover ring is made of an insulating material.

 また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。 Further, the substrate support unit 11 may include a temperature control module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature. The temperature control module may include a heater, a heat transfer medium, a flow path 1110a, or a combination thereof. A heat transfer fluid such as brine or gas flows through the flow path 1110a. In one embodiment, a channel 1110a is formed within the base 1110 and one or more heaters are disposed within the ceramic member 1111a of the electrostatic chuck 1111. Further, the substrate support section 11 may include a heat transfer gas supply section configured to supply heat transfer gas to the gap between the back surface of the substrate W and the central region 111a.

 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、少なくとも1つの上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。 The shower head 13 is configured to introduce at least one processing gas from the gas supply section 20 into the plasma processing space 10s. The shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and a plurality of gas introduction ports 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the plurality of gas introduction ports 13c. The showerhead 13 also includes at least one upper electrode. In addition to the shower head 13, the gas introduction section may include one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.

 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。 The gas supply section 20 may include at least one gas source 21 and at least one flow rate controller 22. In one embodiment, the gas supply 20 is configured to supply at least one process gas from a respective gas source 21 to the showerhead 13 via a respective flow controller 22 . Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller. Additionally, gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow rate of at least one process gas.

 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、少なくとも1つのRF信号(RF電力)を少なくとも1つの下部電極、及び/又は、少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。 Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit. The RF power source 31 is configured to supply at least one RF signal (RF power) to at least one bottom electrode and/or at least one top electrode. Thereby, plasma is formed from at least one processing gas supplied to the plasma processing space 10s. Accordingly, RF power source 31 may function as at least part of a plasma generation unit configured to generate a plasma from one or more process gases in plasma processing chamber 10 . Further, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.

 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極、及び/又は、少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極、及び/又は、少なくとも1つの上部電極に供給される。 In one embodiment, the RF power supply 31 includes a first RF generation section 31a and a second RF generation section 31b. The first RF generation section 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit, and generates a source RF signal (source RF power) for plasma generation. configured to generate. In one embodiment, the source RF signal has a frequency within the range of 10 MHz to 150 MHz. In one embodiment, the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are provided to at least one bottom electrode and/or at least one top electrode.

 第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。 The second RF generating section 31b is coupled to at least one lower electrode via at least one impedance matching circuit, and is configured to generate a bias RF signal (bias RF power). The frequency of the bias RF signal may be the same or different than the frequency of the source RF signal. In one embodiment, the bias RF signal has a lower frequency than the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 100kHz to 60MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. The generated one or more bias RF signals are provided to at least one bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.

 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。 Power source 30 may also include a DC power source 32 coupled to plasma processing chamber 10 . The DC power supply 32 includes a first DC generation section 32a and a second DC generation section 32b. In one embodiment, the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal. The generated first bias DC signal is applied to the at least one bottom electrode. In one embodiment, the second DC generator 32b is connected to the at least one upper electrode and configured to generate a second DC signal. The generated second DC signal is applied to the at least one top electrode.

 種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。この場合、電圧パルスのシーケンスが少なくとも1つの下部電極、及び/又は、少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に、1又は複数の正極性電圧パルスと、1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a、32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。 In various embodiments, at least one of the first and second DC signals may be pulsed. In this case, a sequence of voltage pulses is applied to at least one lower electrode and/or to at least one upper electrode. The voltage pulse may have a pulse waveform that is rectangular, trapezoidal, triangular, or a combination thereof. In one embodiment, a waveform generator for generating a sequence of voltage pulses from a DC signal is connected between the first DC generator 32a and the at least one bottom electrode. Therefore, the first DC generation section 32a and the waveform generation section constitute a voltage pulse generation section. When the second DC generation section 32b and the waveform generation section constitute a voltage pulse generation section, the voltage pulse generation section is connected to at least one upper electrode. The voltage pulse may have positive polarity or negative polarity. Further, the sequence of voltage pulses may include one or more positive voltage pulses and one or more negative voltage pulses within one cycle. Note that the first and second DC generation units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generation unit 32a may be provided in place of the second RF generation unit 31b. good.

 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。 The exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example. Evacuation system 40 may include a pressure regulating valve and a vacuum pump. The pressure within the plasma processing space 10s is adjusted by the pressure regulating valve. The vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.

 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。 The control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform various steps described in this disclosure. The control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, part or all of the control unit 2 may be included in the plasma processing apparatus 1. The control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3. The control unit 2 is realized by, for example, a computer 2a. The processing unit two a1 may be configured to read a program from the storage unit two a2 and perform various control operations by executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit 2a2, and is read out from the storage unit 2a2 and executed by the processing unit 2a1. The medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3. The processing unit 2a1 may be a CPU (Central Processing Unit). The storage unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. The communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).

 なお、本開示の各実施形態に係る基板処理方法においては、図6に示すプラズマ処理装置を用いることに限定されるものではなく、各製造プロセスに応じて様々なプラズマ処理装置を用いることが可能である。例えば、図6に示すプラズマ処理装置においては、プラズマ源として、容量結合型プラズマ(CCP)を用いているが、本開示の実施形態においては、これに限定されるものではない。例えば、容量結合型プラズマ(CCP)の他に、誘導結合プラズマ(ICP)、マイクロ波励起表面プラズマ(SWP)等であってもよい。 Note that the substrate processing method according to each embodiment of the present disclosure is not limited to using the plasma processing apparatus shown in FIG. 6, and various plasma processing apparatuses can be used depending on each manufacturing process. It is. For example, in the plasma processing apparatus shown in FIG. 6, capacitively coupled plasma (CCP) is used as a plasma source, but the embodiments of the present disclosure are not limited to this. For example, in addition to capacitively coupled plasma (CCP), inductively coupled plasma (ICP), microwave excited surface plasma (SWP), etc. may be used.

 <まとめ>
 以上のように、本開示の実施形態に係る基板処理方法は、チャンバ内に、シリコン含有膜(被処理層200)と、当該シリコン含有膜200上に積層されたマスク220とを含む基板Wを搬入する工程と、COFガス、及び、水素含有ガスを含む処理ガスからプラズマを生成し、前記シリコン含有膜200に対してエッチングを行う工程とを含み、前記処理ガスの全流量に対する前記水素含有ガスの流量は、水素ガスに換算して、13体積%以上、50体積%未満である。これにより、本開示の実施形態に係る基板処理方法によれば、地球温暖化を抑制しつつ、当該基板処理方法でこれまで使用された処理ガスと同等のプロセス性能を得ることができる。
<Summary>
As described above, the substrate processing method according to the embodiment of the present disclosure includes a substrate W including a silicon-containing film (processed layer 200) and a mask 220 stacked on the silicon-containing film 200 in a chamber. and a step of etching the silicon-containing film 200 by generating plasma from a processing gas containing COF 2 gas and a hydrogen-containing gas, and etching the silicon-containing film 200. The flow rate of the gas is 13% by volume or more and less than 50% by volume in terms of hydrogen gas. As a result, according to the substrate processing method according to the embodiment of the present disclosure, it is possible to suppress global warming and obtain process performance equivalent to that of processing gases used so far in the substrate processing method.

 また、本開示の実施形態によれば、前記水素含有ガスは、水素ガス、フッ化水素ガス、及び、ハイドロフルオロオレフィンガスからなる群から選択される少なくとも1つを含むことができる。 Further, according to an embodiment of the present disclosure, the hydrogen-containing gas may include at least one selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas.

 また、本開示の実施形態によれば、前記ハイドロフルオロオレフィンガスは、C(1,1-ジフルオロエチレン)ガス、C(1,3,3,3-テトラフルオロプロペン)ガス、及び、C(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)ガスからなる群から選択される少なくとも1つを含むことができる。 Further, according to an embodiment of the present disclosure, the hydrofluoroolefin gas is C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetra fluoropropene) gas, and C 4 H 2 F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas. can.

 また、本開示の実施形態によれば、前記処理ガスは、不活性ガスをさらに含み、前記不活性ガスは、希ガス、及び、窒素ガスのうちの少なくとも一方を含むことができる。 Further, according to an embodiment of the present disclosure, the processing gas may further include an inert gas, and the inert gas may include at least one of a rare gas and a nitrogen gas.

 また、本開示の実施形態によれば、前記シリコン含有膜(被処理層200)は、酸化シリコン膜、又は、Low-k膜を含むことができる。 Further, according to the embodiment of the present disclosure, the silicon-containing film (processed layer 200) can include a silicon oxide film or a low-k film.

 また、本開示の実施形態によれば、前記Low-k膜は、SiOC膜、SiCN膜、及び、SiOCH膜からなる群から選択される少なくとも1つを含むことができる。 Further, according to an embodiment of the present disclosure, the Low-k film may include at least one selected from the group consisting of a SiOC film, a SiCN film, and a SiOCH film.

 また、本開示の実施形態によれば、前記マスク220は、炭素及び金属のうちの少なくとも一方を含むことができる。 Further, according to an embodiment of the present disclosure, the mask 220 may include at least one of carbon and metal.

 また、本開示の実施形態によれば、前記炭素を含有するマスクは、スピンオンカーボン、炭化タングステン、アモルファスカーボン、及び、炭化ホウ素からなる群から選択される少なくとも1つを含むことができる。 Further, according to an embodiment of the present disclosure, the carbon-containing mask may include at least one selected from the group consisting of spin-on carbon, tungsten carbide, amorphous carbon, and boron carbide.

 また、本開示の実施形態によれば、エッチング工程は、ロジック回路の配線層を形成するためのエッチング工程であることができる。 Further, according to the embodiment of the present disclosure, the etching process can be an etching process for forming a wiring layer of a logic circuit.

 また、本開示の実施形態によれば、前記プラズマは、容量結合型プラズマであることができる。 Further, according to an embodiment of the present disclosure, the plasma may be a capacitively coupled plasma.

 <補足>
 以上、本開示の実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。すなわち、上述した実施形態は、多様な形態で具現され得る。また、上述した実施形態は、請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更、組み合わせされてもよい。
<Supplement>
Although the embodiments of the present disclosure have been described above, the embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. That is, the embodiments described above may be implemented in various forms. Further, the embodiments described above may be omitted, replaced, modified, or combined in various forms without departing from the scope and spirit of the claims.

 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の結果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely explanatory or illustrative, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or in place of the above effects.

 なお、本開示は以下のような構成をとることができる。
(1)
 チャンバ内に、シリコン含有膜と、当該シリコン含有膜上に積層されたマスクとを含む基板を搬入する工程と、
 COFガス、及び、水素含有ガスを含む処理ガスからプラズマを生成し、前記シリコン含有膜に対してエッチングを行う工程と、
 を含み、
 前記処理ガスの全流量に対する前記水素含有ガスの流量は、水素ガスに換算して、13体積%以上、50体積%未満である、
 基板処理方法。
(2)
 前記水素含有ガスは、水素ガス、フッ化水素ガス、及び、ハイドロフルオロオレフィンガスからなる群から選択される少なくとも1つを含む、上記(1)に記載の基板処理方法。
(3)
 前記ハイドロフルオロオレフィンガスは、C(1,1-ジフルオロエチレン)ガス、C(1,3,3,3-テトラフルオロプロペン)ガス、及び、C(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)ガスからなる群から選択される少なくとも1つを含む、
 上記(2)に記載の基板処理方法。
(4)
 前記処理ガスは、不活性ガスをさらに含み、前記不活性ガスは、希ガス、及び、窒素ガスのうちの少なくとも一方を含む、上記(1)~(3)のいずれか1つに記載の基板処理方法。
(5)
 前記シリコン含有膜は、酸化シリコン膜、又は、Low-k膜を含む、上記(1)~(4)のいずれか1つに記載の基板処理方法。
(6)
 Low-k膜は、SiOC膜、SiCN膜、及び、SiOCH膜からなる群から選択される少なくとも1つを含む、上記(5)に記載の基板処理方法。
(7)
 前記マスクは、炭素及び金属のうちの少なくとも一方を含む、上記(1)~(6)のいずれか1つに記載の基板処理方法。
(8)
 前記炭素を含有するマスクは、スピンオンカーボン、炭化タングステン、アモルファスカーボン、及び、炭化ホウ素からなる群から選択される少なくとも1つを含む、上記(7)に記載の基板処理方法。
(9)
 前記エッチング工程は、ロジック回路の配線層を形成するためのエッチング工程である、上記(1)~(8)のいずれか1つに記載の基板処理方法。
(10)
 前記プラズマは、容量結合型プラズマである、上記(1)~(9)のいずれか1つに記載の基板処理方法。
Note that the present disclosure can have the following configuration.
(1)
A step of carrying into the chamber a substrate including a silicon-containing film and a mask stacked on the silicon-containing film;
generating plasma from a processing gas containing COF 2 gas and hydrogen-containing gas, and etching the silicon-containing film;
including;
The flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas is 13% by volume or more and less than 50% by volume in terms of hydrogen gas.
Substrate processing method.
(2)
The substrate processing method according to (1) above, wherein the hydrogen-containing gas includes at least one selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas.
(3)
The hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 Containing at least one selected from the group consisting of F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas,
The substrate processing method according to (2) above.
(4)
The substrate according to any one of (1) to (3) above, wherein the processing gas further contains an inert gas, and the inert gas contains at least one of a rare gas and a nitrogen gas. Processing method.
(5)
The substrate processing method according to any one of (1) to (4) above, wherein the silicon-containing film includes a silicon oxide film or a Low-k film.
(6)
The substrate processing method according to (5) above, wherein the Low-k film includes at least one selected from the group consisting of a SiOC film, a SiCN film, and a SiOCH film.
(7)
The substrate processing method according to any one of (1) to (6) above, wherein the mask contains at least one of carbon and metal.
(8)
The substrate processing method according to (7) above, wherein the carbon-containing mask includes at least one selected from the group consisting of spin-on carbon, tungsten carbide, amorphous carbon, and boron carbide.
(9)
The substrate processing method according to any one of (1) to (8) above, wherein the etching step is an etching step for forming a wiring layer of a logic circuit.
(10)
The substrate processing method according to any one of (1) to (9) above, wherein the plasma is a capacitively coupled plasma.

  1 プラズマ処理装置
  2 制御部
  2a コンピュータ
  2a1 処理部
  2a2 記憶部
  2a3 通信インターフェース
  10 プラズマ処理チャンバ
  10a 側壁
  10e ガス排出口
  10s プラズマ処理空間
  11 基板支持部
  13 シャワーヘッド
  13a ガス供給口
  13b ガス拡散室
  13c ガス導入口
  20 ガス供給部
  21 ガスソース
  22 流量制御器
  30 電源
  31 RF電源
  31a、31b RF生成部
  32 DC電源
  32a、32b DC生成部
  40 排気システム
  111 本体部
  111a 中央領域
  111b 環状領域
  112 リングアセンブリ
  200 被処理層
  202  シリコン酸化膜
  204  シリコン窒化膜
  210、212 下地層
  220 マスク
  1110 基台
  1110a 流路
  1111 静電チャック
  1111a セラミック部材
  1111b 静電電極
  W 基板
1 Plasma processing apparatus 2 Control section 2a Computer 2a1 Processing section 2a2 Storage section 2a3 Communication interface 10 Plasma processing chamber 10a Side wall 10e Gas exhaust port 10s Plasma processing space 11 Substrate support section 13 Shower head 13a Gas supply port 13b Gas diffusion chamber 13c Gas introduction Port 20 Gas supply section 21 Gas source 22 Flow rate controller 30 Power source 31 RF power source 31a, 31b RF generation section 32 DC power source 32a, 32b DC generation section 40 Exhaust system 111 Main body section 111a Central region 111b Annular region 112 Ring assembly 200 To be treated Layer 202 Silicon oxide film 204 Silicon nitride film 210, 212 Base layer 220 Mask 1110 Base 1110a Channel 1111 Electrostatic chuck 1111a Ceramic member 1111b Electrostatic electrode W Substrate

Claims (10)

 チャンバ内に、シリコン含有膜と、当該シリコン含有膜上に積層されたマスクとを含む基板を搬入する工程と、
 COFガス、及び、水素含有ガスを含む処理ガスからプラズマを生成し、前記シリコン含有膜に対してエッチングを行う工程と、
 を含み、
 前記処理ガスの全流量に対する前記水素含有ガスの流量は、水素ガスに換算して、13体積%以上、50体積%未満である、
 基板処理方法。
A step of carrying into the chamber a substrate including a silicon-containing film and a mask stacked on the silicon-containing film;
generating plasma from a processing gas containing COF 2 gas and hydrogen-containing gas, and etching the silicon-containing film;
including;
The flow rate of the hydrogen-containing gas relative to the total flow rate of the processing gas is 13% by volume or more and less than 50% by volume in terms of hydrogen gas.
Substrate processing method.
 前記水素含有ガスは、水素ガス、フッ化水素ガス、及び、ハイドロフルオロオレフィンガスからなる群から選択される少なくとも1つを含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the hydrogen-containing gas includes at least one selected from the group consisting of hydrogen gas, hydrogen fluoride gas, and hydrofluoroolefin gas.  前記ハイドロフルオロオレフィンガスは、C(1,1-ジフルオロエチレン)ガス、C(1,3,3,3-テトラフルオロプロペン)ガス、及び、C(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)ガスからなる群から選択される少なくとも1つを含む、
 請求項2に記載の基板処理方法。
The hydrofluoroolefin gases include C 2 H 2 F 2 (1,1-difluoroethylene) gas, C 3 H 2 F 4 (1,3,3,3-tetrafluoropropene) gas, and C 4 H 2 Containing at least one selected from the group consisting of F 6 (trans-1,1,1,4,4,4-hexafluoro-2-butene) gas,
The substrate processing method according to claim 2.
 前記処理ガスは、不活性ガスをさらに含み、前記不活性ガスは、希ガス、及び、窒素ガスのうちの少なくとも一方を含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the processing gas further includes an inert gas, and the inert gas includes at least one of a rare gas and a nitrogen gas.  前記シリコン含有膜は、酸化シリコン膜、又は、Low-k膜を含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the silicon-containing film includes a silicon oxide film or a low-k film.  前記Low-k膜は、SiOC膜、SiCN膜、及び、SiOCH膜からなる群から選択される少なくとも1つを含む、請求項5に記載の基板処理方法。 6. The substrate processing method according to claim 5, wherein the Low-k film includes at least one selected from the group consisting of a SiOC film, a SiCN film, and a SiOCH film.  前記マスクは、炭素及び金属のうちの少なくとも一方を含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the mask contains at least one of carbon and metal.  前記炭素を含有するマスクは、スピンオンカーボン、炭化タングステン、アモルファスカーボン、及び、炭化ホウ素からなる群から選択される少なくとも1つを含む、請求項7に記載の基板処理方法。 8. The substrate processing method according to claim 7, wherein the carbon-containing mask includes at least one selected from the group consisting of spin-on carbon, tungsten carbide, amorphous carbon, and boron carbide.  前記エッチング工程は、ロジック回路の配線層を形成するためのエッチング工程である、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the etching step is an etching step for forming a wiring layer of a logic circuit.  前記プラズマは、容量結合型プラズマである、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the plasma is a capacitively coupled plasma.
PCT/JP2023/023465 2022-07-08 2023-06-26 Substrate processing method WO2024009815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-110250 2022-07-08
JP2022110250 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009815A1 true WO2024009815A1 (en) 2024-01-11

Family

ID=89453291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023465 WO2024009815A1 (en) 2022-07-08 2023-06-26 Substrate processing method

Country Status (2)

Country Link
TW (1) TW202405936A (en)
WO (1) WO2024009815A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114402A (en) * 2010-07-12 2012-06-14 Central Glass Co Ltd Dry etching agent
JP2017050529A (en) * 2015-08-12 2017-03-09 セントラル硝子株式会社 Dry etching method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114402A (en) * 2010-07-12 2012-06-14 Central Glass Co Ltd Dry etching agent
JP2017050529A (en) * 2015-08-12 2017-03-09 セントラル硝子株式会社 Dry etching method

Also Published As

Publication number Publication date
TW202405936A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
KR100849707B1 (en) Selective Etching of Carbon-Doped Low Dielectrics
CN100541734C (en) plasma etching method
US8129282B2 (en) Plasma etching method and computer-readable storage medium
JP5116983B2 (en) Plasma processing method and plasma processing apparatus
US9263331B2 (en) Method for forming self-aligned contacts/vias with high corner selectivity
TWI436419B (en) A plasma etch method and a computer readable memory medium
JP2008198659A (en) Plasma etching method
US11501975B2 (en) Substrate processing method and substrate processing apparatus
JP2017050413A (en) Plasma etching method
JP4827567B2 (en) Plasma etching method and computer-readable storage medium
JP4911936B2 (en) Plasma ashing method
JP2007508698A (en) Dinitrogen monoxide exfoliation method for organosilicate glass
WO2024009815A1 (en) Substrate processing method
JP2007508697A (en) Etchback method using dinitrogen monoxide
WO2022244678A1 (en) Substrate processing method and substrate processing apparatus
WO2023058582A1 (en) Etching method and etching device
JP7653327B2 (en) Etching method and etching apparatus
KR20220136136A (en) Etching method and etching processing apparatus
JP2022115720A (en) Substrate processing method and substrate processing apparatus
JP2022150973A (en) Substrate processing method and substrate processing apparatus
JP2024017869A (en) Etching method and substrate-processing device
WO2022215556A1 (en) Etching method and etching apparatus
KR20250056935A (en) Etching method and plasma treatment device
JP2025089743A (en) Etching Method
JP2022179327A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE