Nothing Special   »   [go: up one dir, main page]

WO2024005068A1 - 予測装置、予測システムおよび予測プログラム - Google Patents

予測装置、予測システムおよび予測プログラム Download PDF

Info

Publication number
WO2024005068A1
WO2024005068A1 PCT/JP2023/023969 JP2023023969W WO2024005068A1 WO 2024005068 A1 WO2024005068 A1 WO 2024005068A1 JP 2023023969 W JP2023023969 W JP 2023023969W WO 2024005068 A1 WO2024005068 A1 WO 2024005068A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
prediction
data
scientific information
prediction device
Prior art date
Application number
PCT/JP2023/023969
Other languages
English (en)
French (fr)
Inventor
みゆき 岡庭
弘志 北
修 遠山
雄介 川原
邦雅 檜山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024005068A1 publication Critical patent/WO2024005068A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation

Definitions

  • the present invention relates to a prediction device, a prediction system, and a prediction program.
  • DX digital transformation
  • a method has been proposed that uses images to simplify the process of inspecting the quality and physical properties of an object (for example, Patent Documents 1 and 2).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a prediction device, a prediction system, and a prediction program that are capable of predicting multiple characteristics of a target object.
  • An acquisition unit that acquires first information including an image related to the target object and second information including at least one of characters, numbers, chemical structures, and spectra related to the target object, and the acquired first information and a prediction unit that predicts a plurality of characteristics of the target object based on the second information.
  • the prediction unit further includes a selection unit that selects the first information and the second information according to the plurality of characteristics of the object to be predicted, and the prediction unit selects the selected first information and the second information.
  • the prediction device according to (1) above, which predicts the plurality of characteristics of the object based on second information.
  • the second information includes at least one of a character and a chemical structure representing the type of substance contained in the object, and a number representing the amount of the substance contained in the object.
  • the second information includes at least one of an infrared absorption spectrum, a terahertz wave spectrum, a nuclear magnetic resonance spectrum, a Raman spectrum, an impedance spectrum, and an X-ray diffraction spectrum of the object (1) above.
  • the plurality of properties described in (1) above include at least one of mechanical properties, physical properties, thermal properties, moldability, electrical properties, durability, machinability, and combustibility of the object. Prediction device.
  • the prediction unit further includes an extraction unit that extracts feature quantities from each of the acquired first information and second information, and the prediction unit receives the extracted feature quantities as input and predicts a plurality of the characteristics.
  • the prediction device according to (11) above.
  • a first device that generates first information about a target object a second device that generates second information about the target object, and a prediction device according to any one of (1) to (13) above. Prediction system.
  • a prediction device, a prediction system, and a prediction program according to the present invention acquire first information and second information about a target object, and predict a plurality of characteristics of the target object based on the acquired first information and second information. . This makes it possible to predict multiple properties of the object at the same time.
  • FIG. 1 is a diagram showing the overall configuration of a prediction system according to an embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of a prediction device. 2 is a diagram showing another example of the prediction system shown in FIG. 1.
  • FIG. 2 is a diagram showing another example of the prediction system shown in FIG. 1.
  • FIG. 2 is a block diagram showing the functional configuration of a prediction device. It is a figure which shows an example of the display form of the information output by a prediction device.
  • It is a flowchart which shows the procedure of the prediction process performed in a prediction device.
  • 3 is a flowchart showing a machine learning method for a trained model.
  • It is a block diagram showing the functional composition of the prediction device concerning a modification.
  • 10 is a flowchart showing a procedure of a prediction process executed in the prediction device shown in FIG. 9.
  • FIG. 10 is a flowchart showing a procedure of a prediction process executed in the prediction device shown in FIG. 9.
  • FIG. 10 is
  • FIG. 1 is a diagram showing the overall configuration of a prediction system.
  • the prediction system includes, for example, a prediction device 100, a first device 200, and a second device 300.
  • This prediction system uses scientific and non-scientific information about the object to predict multiple properties of the object.
  • non-scientific information corresponds to a specific example of the first information of the present invention
  • scientific information corresponds to a specific example of the second information of the present invention.
  • target objects include space/aircraft related products, automobiles, ships, fishing rods, electrical/electronic/home appliance parts, parabolic antennas, bathtubs, flooring materials, roofing materials, etc., as well as component parts of various products.
  • CFRP Carbon-Fiber-Reinforced Plastics
  • CFRTP Carbon Fiber Reinforced Thermo Plastics
  • Carbon fiber reinforced GFRP Glass-Fiber-Reinforced Plastics
  • FRP Fiber-Reinforced Plastics
  • CeFRP Cellulose Fiber-Reinforced Plastics
  • CFRTP is excellent in terms of lightweight and recyclability.
  • the target objects include RMC (Rubber Matrix Composites) using rubber, MMC (Metal matrix composites) using metal, and CMC (Ceramics matrix composite) using ceramics. mposites) etc., and may also be industrial products such as concrete and asphalt, foodstuffs, etc.
  • RMC Rubber Matrix Composites
  • MMC Metal matrix composites
  • CMC Ceramics matrix composite
  • the target object is, for example, a mixture of multiple substances having mutually different chemical structures.
  • the object is, for example, a composite material containing filler and resin.
  • the resin contained in the composite material is, for example, a known thermosetting resin or thermoplastic resin.
  • polyolefin resins such as polyethylene resin (PE), polypropylene resin (PP), maleic anhydride-modified polypropylene (MAHPP), epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, polycarbonate resins, Polyester resin, polyamide (PA) resin, liquid crystal polymer resin, polyethersulfone resin, polyetheretherketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide (PPS) resin, polyacetal resin, polysulfone resin, polyimide resin , polyetherimide resin, polystyrene resin, modified polystyrene resin, AS resin (copolymer of acrylonitrile and styrene), ABS resin (copolymer of acrylonitrile, butadiene and styrene), modified ABS resin, MBS resin (copolymer of methyl methacrylate, butadiene and styrene) copo
  • PE polyethylene
  • the filler contained in the composite material is added to the resin, for example, for the purpose of improving the strength of the composite material.
  • the filler is added to the resin at a concentration of 0.1% to 50% by volume, for example.
  • the filler has, for example, a fiber shape or a particle shape.
  • the fiber-shaped filler include glass fiber (GF), carbon fiber (CF), aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and silicon carbide fiber.
  • CF for example, polyacrylonitrile (PAN type), pitch type, cellulose type, hydrocarbon vapor growth type carbon fiber, graphite fiber, etc. can be used.
  • E glass and S glass can be used as the GF.
  • the composite material includes at least one of glass fiber (GF) and carbon fiber (CF).
  • GF glass fiber
  • CF carbon fiber
  • the orientation state of the filler can be easily measured using the X-ray Talbot-Low apparatus described below, making it possible to improve the prediction accuracy of multiple properties. becomes.
  • Particle-shaped fillers include, for example, calcium carbonate (CaCo 3 ), talc (Mg 3 Si 4 O 10 (OH) 2 ), barium sulfate (BaSO 4 ), mica (Si, Al, Mg, K), aluminum hydroxide. (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO 2 ), antimony oxide (Sb 2 O 3 ), kaolin clay (Al 2 O 3 . 2SiO 2 .2H 2 O) and carbon black.
  • the filler contained in the object may be one type of these fillers, or two or more types may be mixed.
  • the composite material may contain a sensitivity modifier.
  • the sensitivity adjustment agent refers to a material that functions like an iodine-based contrast agent used during medical CT imaging. For example, the inclusion of a sensitivity modifier in the composite material allows for higher contrast images to be produced.
  • the composite material contains a sensitivity adjusting agent, a phenomenon serving as a feature quantity is emphasized, or a phenomenon serving as a feature quantity becomes detectable, making it easier to capture the feature.
  • the sensitivity modifier is preferably used when acquiring non-scientific information. For example, when the second device 300 is a Raman spectrometer, using zirconium tungstate as the sensitivity modifier changes the Raman shift, making it possible to generate information regarding the material properties of the fiber composite material with higher accuracy. becomes. For example, when the first device 200 is a fluorescence microscope, if a fluorescent dye is used as the sensitivity adjusting agent, it becomes possible to generate information regarding fiber length with higher accuracy.
  • the sensitivity modifier contained in the composite material has a small effect on the physical properties of the composite material.
  • the composite material measured by the first device 200 and the second device 300 can be used for, for example, molded products.
  • a test piece of a composite material containing a sensitivity modifier may be prepared.
  • the sensitivity modifier is appropriately selected depending on, for example, the composite material or the characteristics of the composite material.
  • a dye is used as the sensitivity adjuster. Examples of this dye include fluorescent dyes, heat-sensitive dyes, and pressure-sensitive dyes.
  • Additives added to the composite material for purposes other than sensitivity adjustment may function as sensitivity modifiers. Examples of additives include plasticizers, antioxidants, ultraviolet absorbers, nucleating agents, clarifying agents, and flame retardants.
  • the target object may be an alloy, fiber, ceramics, paper, synthetic resin, liquid crystal polymer, cultured cell, or biomaterial (bone, cell, or blood), etc.
  • the prediction device 100 is a computer such as a PC (Personal Computer), a smartphone, or a tablet terminal, and functions as a prediction device in this embodiment.
  • the prediction device 100 is configured to be connectable to the first device 200 and the second device 300, and transmits and receives various information to and from each device.
  • FIG. 2 is a block diagram showing a schematic configuration of the information processing device.
  • the prediction device 100 includes a CPU (Central Processing Unit) 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, a storage 140, a communication interface 150, a display Section 160, and operation reception 170.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 140 a storage 140
  • communication interface 150 a display Section 160
  • operation reception 170 Each configuration is communicably connected to each other via a bus.
  • the CPU 110 controls each of the above components and performs various calculation processes according to programs recorded in the ROM 120 and the storage 140.
  • the ROM 120 stores various programs and various data.
  • the RAM 130 temporarily stores programs and data as a work area.
  • the storage 140 stores various programs including an operating system and various data. For example, an application is installed in the storage 140 for predicting a plurality of characteristics of an object from non-scientific information and scientific information, which will be described later, using a learned classifier. Furthermore, non-scientific information and scientific information acquired from the first device 200 and the second device 300 may be stored in the storage 140. Furthermore, the storage 140 may store trained models used as classifiers and teacher data used for machine learning.
  • the communication interface 150 is an interface for communicating with other devices. As the communication interface 150, a wired or wireless communication interface according to various standards is used. The communication interface 150 receives, for example, non-scientific information and scientific information from the first device 200 or the second device 300, and sends prediction results of a plurality of characteristics to another device such as a server for storage. It is used when
  • the display unit 160 includes an LCD (liquid crystal display), an organic EL display, etc., and displays various information.
  • the display unit 160 may be configured by viewer software, a printer, or the like.
  • the display section 160 functions as an output section.
  • the operation reception unit 170 includes a touch sensor, a pointing device such as a mouse, a keyboard, etc., and accepts various operations from the user.
  • the display section 160 and the operation reception section 170 may constitute a touch panel by superimposing a touch sensor as the operation reception section 170 on a display surface as the display section 160.
  • the first device 200 is a device for generating non-scientific information regarding an object.
  • non-scientific information is information obtained by processing data obtained in order to analyze, analyze, or evaluate the performance, function, or quality of a predetermined object. This process will be explained using an example in which the first device 200 is an imaging device such as a digital camera.
  • a digital camera In a digital camera, the light that enters through the lens is reflected on the image sensor, which detects the light and converts it into digital data.
  • An image of a digital camera photograph is generated by processing this data with an image processing engine. For example, in the case of a 1 million pixel image, multiple pieces of information such as RGB intensities sensed by each of the 1 million image sensors, that is, multidimensional data, are processed by an image processing engine and reconstructed into a 2D image. doing. Since such images inherently contain multidimensional data, it is possible to obtain new information that cannot be obtained from scientific information.
  • the non-scientific information includes, for example, an image related to the object.
  • the image may be either a moving image or a still image.
  • the image may be an image such as a video captured of a person's behavior related to the object.
  • the person related to the object is, for example, a person involved in manufacturing the object.
  • the first device 200 such as a video camera is used to capture a video of the procedure.
  • the prediction device 100 detects the human and its movements using, for example, an open pose, and extracts specific movements.
  • the prediction device 100 determines, for example, drug injection speed, drug injection timing, drug injection interval, stirring speed, stirring time, etc. from the extracted motion, and uses these as feature quantities for characteristic prediction.
  • the prediction device 100 may use machine learning to extract specific movements and feature amounts.
  • the image itself captured by the first device 200 is not classified as scientific information because the information contained therein differs depending on the procedure in which the image is captured.
  • the feature amount extracted from the image can be scientific information.
  • a feature quantity determined according to the object or procedure content is extracted from the image.
  • the imaging device may be, for example, the digital camera described above, MOBOTIX (registered trademark), or the like.
  • the first device 200 is a device that generates such non-scientific information.
  • the first device 200 is a device that generates an image of an object, such as an imaging device, an It includes at least one of a force microscope, a fluorescence microscope, and a multidimensional colorimeter.
  • the second device 300 is a device for generating scientific information regarding an object.
  • scientific information is information that is in contrast to the above-mentioned non-scientific information.
  • Scientific information is the information itself detected by a sensor, that is, information that has not been subjected to multidimensional processing.
  • the scientific information may be information before multidimensional processing, so-called raw data.
  • the second device 300 is a light receiving element (or light receiving pixel) of an imaging device, and the information (digital data) detected by the light receiving element is scientific information.
  • Scientific information is primary information that directly captures phenomena occurring in objects. This scientific information can be directly related to the reaction mechanism that occurs in the object and the mechanism by which the function of the object is expressed.
  • the scientific information here is one-dimensional information, and includes, for example, at least one of letters, numbers, chemical structures, and spectra related to the object.
  • scientific information includes at least one of letters, numbers, chemical structures, and spectra representing substances contained in the object (hereinafter referred to as contained substances).
  • the scientific information includes at least one of letters and chemical structures representing the type of contained substance, and a number representing the amount of the contained substance.
  • the contained substance may be a main component or an impurity.
  • the scientific information may include a number representing the purity of at least one of the object and the contained substance.
  • the scientific information may include characters representing the shape of at least one of the object and the contained substance. The shape is, for example, solid, liquid, or gel.
  • the scientific information includes at least one of letters and numbers representing the manufacturing conditions of the object.
  • the scientific information includes at least one of letters and numbers representing the temperature, time, content, pressure, speed, etc. of each manufacturing process of the object.
  • scientific information includes signal values and the like used for analyzing and analyzing objects.
  • This signal value may be subjected to processing other than multidimensionalization.
  • Processing other than multidimensionalization is, for example, processing such as addition, subtraction, multiplication, division, and ratio change.
  • scientific information includes the spectrum of an object.
  • the spectrum of the object includes, for example, at least one of an infrared absorption spectrum, a terahertz wave spectrum, a nuclear magnetic resonance spectrum, a Raman spectrum, an impedance spectrum, and an X-ray diffraction spectrum.
  • a spectrum is not classified as non-scientific information because it is not information as an integral image.
  • a spectrum corresponds to scientific information because it is a collection of one-dimensional information at each point.
  • the one-dimensional information of each point is, for example, infrared absorption intensity at a predetermined wave number.
  • Spectra include one-dimensional spectra and multidimensional spectra with two or more dimensions, and two-dimensional spectra are sometimes referred to as imaging. If not specified, it means a one-dimensional spectrum, but this one-dimensional spectrum is scientific information, and a multidimensional spectrum is non-scientific information.
  • One-dimensional NMR spectra include, for example, proton (1H) and carbon (13C).
  • 1H-NMR information such as the structure of C in which H exists (for example, H bonded to a primary carbon), the presence of adjacent nuclei, and the number of H is obtained from chemical shifts, spin-spin coupling, and integral values. is obtained.
  • 1H-NMR expresses information about the surroundings where a certain H exists, such as the characteristics of bonding carbons and the number of H in the same environment.
  • a two-dimensional NMR spectrum is a measurement method in which the correlation between signals or the spin splitting pattern of each signal is developed in two dimensions with frequency as the vertical and horizontal axes, and the intensity of the peak is displayed using a contour diagram or the like.
  • two-dimensional NMR spectra include COSY and CHCOSY.
  • this two-dimensional NMR spectrum is utilized when the chemical structure is complex. Since CHCOSY is a heteronuclear shift correlation two-dimensional NMR, it is possible to specify which C and which H are bonded. In other words, it can be said that it is possible to specify the entire molecular structure using non-scientific information, and new information that cannot be obtained only from scientific information such as one-dimensional NMR can be obtained.
  • the second device 300 is a device that generates such scientific information.
  • the second device 300 includes, for example, a light receiving element of an imaging device.
  • the second device 300 may include a luminescent DNA sensor or the like.
  • the second device 300 may include a computer or the like into which at least one of letters, numbers, chemical structures, and spectra representing contained substances is input.
  • the second device 300 may include a computer, a sensor, or the like into which at least one of characters and numbers representing the manufacturing conditions of the object is input.
  • the second device 300 may include a device that analyzes or analyzes a target object.
  • the second device 300 may be at least one of an infrared spectrometer, a terahertz wave spectrometer, a nuclear magnetic resonance device, a Raman spectrometer, an impedance spectrometer, and an X-ray diffraction device that generate each spectrum of the target object. It may also contain.
  • the prediction system may include a plurality of first devices 200 (e.g., first devices 200A, 200B in FIG. 3), and a plurality of second devices 300 (e.g., second devices 300A, 300B in FIG. 4). May contain.
  • the prediction system may include multiple first devices 200 and multiple second devices 300 (not shown).
  • FIG. 5 is a block diagram showing the functional configuration of the prediction device 100.
  • the prediction device 100 functions as an acquisition unit 111, an extraction unit 112, a prediction unit 113, and a control unit 114 when the CPU 110 reads a program stored in the storage 140 and executes the process.
  • the acquisition unit 111 acquires the non-scientific information generated by the first device 200 and the scientific information generated by the second device 300.
  • the non-scientific information includes, for example, an image about the object, and the scientific information includes, for example, at least one of letters, numbers, chemical structures, and spectra about the object. It is preferable that the acquisition unit 111 acquires a plurality of scientific information and a plurality of non-scientific information. This makes it possible to predict the characteristics of the object with higher accuracy.
  • the extraction unit 112 extracts feature amounts from each of the non-scientific information and the scientific information acquired by the acquisition unit 111.
  • the extraction unit 112 may extract a plurality of feature amounts from each of the non-scientific information and the scientific information.
  • the acquisition unit 111 may acquire information from which feature amounts are extracted. That is, the non-scientific information and the scientific information may have feature amounts extracted from the information regarding the object generated by the first device 200 and the second device 300.
  • the prediction unit 113 predicts multiple characteristics of the object based on the non-scientific information and scientific information acquired by the acquisition unit 111. Specifically, the prediction unit 113 uses a trained classifier to input the feature amounts of each of the non-scientific information and the scientific information extracted by the extraction unit 112, and predicts multiple characteristics of the object. do.
  • the characteristics of the object include, for example, at least one of the physical properties, quality, and function of the object.
  • the physical properties of the object include at least one of mechanical properties, physical properties, thermal properties, moldability, electrical properties, and durability of the object.
  • the mechanical properties of the object include, for example, mechanical strength, elastic modulus, bending strength, bending elastic modulus, impact strength, and hardness of the object.
  • the physical property of the object is, for example, the density of the object.
  • the thermal properties of the object include, for example, the thermal conductivity, specific heat, coefficient of thermal expansion, and deflection density under load of the object.
  • the moldability of the object is, for example, the compression molding temperature, injection molding temperature, solution viscosity, molding shrinkage rate, etc. of the object.
  • the electrical properties of the object include, for example, the volume resistance, dielectric breaking strength, dielectric constant, and arc resistance of the object.
  • the durability of the object includes, for example, weak acid resistance, strong acid resistance, weak base resistance, strong base resistance, organic solvent resistance, light resistance, weather resistance, etc. of the object.
  • the physical properties of the object may be machinability, flammability, etc.
  • the quality of a target is defined as the extent to which a collection of characteristics (3.10.1) inherent in the target (3.6.1) satisfy the requirements (3.6.4).
  • the quality of parts used in a car refers to appearance, which is related to appearance, light weight, which is related to mileage and fuel efficiency, and durability of parts, which is related to the life of the car.
  • Functions of interest include, for example, shock absorption, plasticity, transparency, flame retardancy, antistatic and slip properties.
  • the prediction unit 113 predicts a plurality of mutually different characteristics. For example, the prediction unit 113 predicts a plurality of different properties among the mechanical properties, physical properties, thermal properties, moldability, electrical properties, durability, machinability, combustibility, etc. of the target object. The prediction unit 113 predicts, for example, mechanical properties including mechanical strength and impact strength, and moldability including molding shrinkage rate.
  • the prediction unit 113 determines a plurality of characteristics to be predicted based on instructions input in advance from the user.
  • the user inputs an instruction via the operation reception unit 170, for example.
  • the prediction unit 113 may determine a plurality of predictable characteristics based on the scientific information and non-scientific information regarding the object acquired by the acquisition unit 111.
  • the control unit 114 causes the display unit 160 to output information regarding the plurality of characteristics of the object predicted by the prediction unit 113.
  • FIG. 6 shows an example of information regarding multiple characteristics of the target object output to the display unit 160.
  • the display unit 160 displays, for example, information regarding the object as well as predicted values of a plurality of characteristics.
  • FIG. 7 is a flowchart showing the procedure of prediction processing executed by the prediction device 100.
  • the processing of the prediction device 100 shown in the flowchart of FIG. 7 is stored as a program in the storage 140 of the prediction device 100, and is executed by the CPU 110 controlling each part.
  • the prediction device 100 first acquires non-scientific information about the object generated by the first device 200 and scientific information about the object generated by the second device 300.
  • the prediction device 100 obtains, for example, non-scientific information from the first device 200 and scientific information from the second device 300.
  • the first device 200 and the second device 300 may store non-scientific information and scientific information in other devices such as a server, and the prediction device 100 stores non-scientific information and scientific information from other devices. may be obtained.
  • Step S102 The prediction device 100 extracts feature amounts from each of the non-scientific information and the scientific information acquired in the process of step S101.
  • Step S103 The prediction device 100 inputs the feature amounts of each of the non-scientific information and the scientific information extracted in the process of step S102 to a discriminator that has undergone machine learning in advance, and predicts a plurality of characteristics of the target object.
  • the discriminator uses a learning method as described below to acquire feature quantities of each of the non-scientific information and scientific information of multiple objects prepared in advance, and measurement values of multiple characteristics of each of the multiple objects.
  • Machine learning is performed using training data with.
  • the discriminator performs machine learning using feature quantities extracted from non-scientific information and scientific information about multiple objects as input data, and measured values of multiple characteristics of each of multiple objects as output data. be done.
  • the discriminator may undergo machine learning using non-scientific information and scientific information regarding multiple objects as input data and using measured values of multiple characteristics of each of the multiple objects as output data. Further, the information input to the discriminator is not limited to the feature amounts of each of the non-scientific information and scientific information regarding the object. For example, in addition to the feature amounts of each of the non-scientific information and scientific information regarding the object, other information may be input to the discriminator and used as information for learning and prediction.
  • Step S104 The prediction device 100 generates prediction results of a plurality of characteristics of the object based on the output from the classifier in the process of step S103.
  • Step S105 The prediction device 100 outputs the prediction result generated in the process of step S104.
  • the prediction device 100 displays the values of each of the plurality of characteristics predicted in the process of step S103 on the display unit 160 together with information regarding the target object (FIG. 6).
  • FIG. 8 is a flowchart showing a machine learning method for a trained model.
  • a large number of ( Machine learning is performed using i sets of data sets as learning sample data.
  • a stand-alone high-performance computer using a CPU and a GPU processor or a cloud computer is used as a learning device (not shown) that functions as a discriminator.
  • a learning method using a neural network configured by combining perceptrons such as deep learning in a learning device will be described, but the method is not limited to this, and various methods can be applied. For example, random forest, decision tree, support vector machine (SVM), logistic regression, k-nearest neighbor method, topic model, etc. may be applied.
  • SVM support vector machine
  • Step S111 The learning device reads learning sample data that is teacher data. If it is the first time, the first set of learning sample data is read, and if it is the i-th time, the i-th set of learning sample data is read.
  • Step S112 The learning device inputs input data of the read learning sample data to the neural network.
  • Pseudo images may be used for non-scientific information and scientific information that serve as learning sample data.
  • a pseudo image is an image created in a pseudo manner based on original data.
  • the original data may be either scientific information or non-scientific information.
  • the pseudo image is treated as scientific information
  • the original data is non-scientific information
  • the pseudo image is treated as non-scientific information.
  • the pseudo image can be obtained by, for example, using an imaging device, an X-ray Talbot-Lau device, an ultrasound device, a fluorescent fingerprint measurement device, a hyperspectral camera, a millimeter wave imaging device, a scanning electron microscope, an atomic force microscope, or a transmission electron microscope.
  • a pseudo image created as an image captured using at least one of a fluorescence microscope and a multidimensional colorimeter For example, a pseudo Talbot image (pseudo Talbot image) of an object may be created using multiple images taken by an X-ray Talbot-Lau device of materials and composite materials with a mixing ratio similar to the object as the original data. good.
  • Step S113 The learning device compares the prediction results of the neural network with the correct data.
  • Step S114 The learning device adjusts the parameters based on the comparison results.
  • the learning device adjusts the parameters so that the difference between the comparison results becomes smaller by, for example, executing processing based on back-propagation (error backpropagation method).
  • Step S115 If the learning device completes processing of all data from the 1st to the i-th set (YES), the process proceeds to step S116, and if not (NO), returns the process to step S111 and processes the next learning sample data. is read, and the processing from step S111 onwards is repeated.
  • Step S116 The learning device determines whether or not to continue learning, and when continuing (YES), returns the process to step S111, executes the processes from the 1st group to the i-th group again in steps S111 to S115, and continues. If not (NO), the process advances to step S117.
  • Step S117 The learning device stores the learned model constructed in the previous processing and ends (end).
  • the storage destination includes the internal memory of the prediction device 100.
  • a plurality of characteristics of the object are predicted using the learned model generated in this way.
  • the prediction device 100 and the prediction system of this embodiment acquire non-scientific information and scientific information regarding a target object, and predict a plurality of characteristics of the target object based on the acquired non-scientific information and scientific information. . This makes it possible to predict multiple properties of the object at the same time. The effects will be explained below.
  • DX conversion reduces the number of manual steps and improves work efficiency.
  • DX has not been sufficiently advanced.
  • multiple properties such as mechanical properties and formability of a product are each often measured manually.
  • the measured values may vary due to human factors.
  • the prediction system and prediction device 100 of the present embodiment multiple characteristics of the target are predicted based on non-scientific information and scientific information regarding the target. Characteristics can be understood at the same time. For example, it becomes possible to easily grasp the properties of an object from its manufacturing process to its life cycle, such as its tensile strength, impact strength, shape stability, and durability. Therefore, it becomes easier to achieve products with high social value more efficiently while reducing the number of manual steps.
  • the prediction system and prediction device 100 of this embodiment make predictions based on a combination of non-scientific information and scientific information regarding the target object, so it is possible to predict multiple characteristics of the target object with higher accuracy. becomes. This will be explained below.
  • Non-scientific information includes new multidimensional information that cannot be obtained from raw data (scientific information) alone. Scientific information also includes information that directly captures phenomena occurring in objects and is directly linked to reaction mechanisms and mechanisms by which functions are expressed. If predictions are made based only on non-scientific information, information related to the raw materials, manufacturing process, and other phenomenon of the target product will not be taken into account, so it will not be possible to capture the influence of the quality of the raw materials (such as the amount of impurities). is difficult. On the other hand, when predictions are made based only on scientific information, structural information is not taken into account, making it difficult to understand changes in the strength of plastic products (objects) caused by, for example, the orientation of fibers.
  • the prediction system and prediction device 100 of this embodiment are capable of inspecting, detecting, and analyzing subtle differences and changes in the state and composition of objects (substances) for manufacturing in small quantities and in a wide variety of products that conforms to Society 5.0.
  • the input data is data obtained for the purpose of detecting raw material information, process conditions, minute differences and changes, and characteristics correlated with them, and is used as a detection signal and information.
  • Scientific information obtained from data that is used and utilized as is, and non-scientific information that is processed to analyze and evaluate the performance, function, quality, etc. of a certain object. This relates to devices and systems that combine information into training data and evaluate it through calculations using artificial intelligence and algorithms.
  • This prediction system and prediction device 100 are related to various manufacturing industries, processing industries, related or incidental research and development, quality assurance, inspection, and analysis that are currently in operation, as well as traceability of raw materials and manufacturing.
  • the purpose is to describe, record, and evaluate the state of substances with high sensitivity regarding materials and ID.
  • 3D printers can be a means to meet the demands of the super smart society mentioned above, but although they can be used to create objects, they cannot be adapted.
  • the materials used are metals, alloys, and ceramics, and the reality is that the most general-purpose plastics have not been easily applied on a commercial scale.Furthermore, due to the characteristics of 3D printers, the mechanical strength of the printed object differs depending on the orientation. They have various problems, including long production times, a surprising amount of waste, and many issues from the perspective of resource conservation and SDGs.
  • HACCP subdivides the manufacturing process and performs risk management for each process, making it possible to prevent products with problems from being shipped, and even in the unlikely event that a food accident occurs, it is possible to quickly identify which process is at fault.
  • the law is required by companies other than large-scale manufacturers, it is extremely difficult to control all processes using advanced analytical equipment due to the cost, and there are a wide variety of items to be managed. Therefore, how to deal with it has become a major issue.
  • the mainstream was ⁇ sampling inspection'' from ⁇ packaging'' to ⁇ shipping,'' but the HACCP method detects ⁇ microbial contamination and foreign matter'' in each process from receiving raw materials to processing and shipping.
  • This is a hygiene management method that ensures product safety, such as "predicting hazards such as contamination” and “continuously and continuously monitoring and recording particularly important processes that lead to the prevention of harm.”
  • product safety such as "predicting hazards such as contamination” and "continuously and continuously monitoring and recording particularly important processes that lead to the prevention of harm.”
  • HACCP is a system and regulation that has only just begun in Japan, so it is not fully understood that it is a major issue outside of the industry, but this problem is being investigated from various angles beyond the food industry. It is self-evident that it is essential to take the following steps.
  • Quality assurance is an important activity in the aforementioned food processing and manufacturing, and various methods have been taken to date. However, it is important to note that the evaluation items for quality assurance are limited to the management of customs and process conditions (for example, heating at 100°C for 2 minutes, or annealing at room temperature for 1 hour after printing); There are many cases where essential analysis has not been conducted.
  • Analyzer manufacturers naturally aim to increase profits (not charity), so they will only market products that are recognized as valuable by many users.
  • the largest users of analyzers are scientists conducting academic research, such as universities and corporate research departments.
  • many of the purposes for which such users use analytical devices are to verify the logic of academic papers and dissertations. In other words, there is always a logical basis for the data generated by the analyzer, and that logic has no meaning unless it can at least be understood by the scientists on the user side.
  • the inventors' underlying problem awareness is that there must be inspection and analysis methods that are necessary and sufficient for manufacturing activities in a super smart society, although they are not conventional analytical instruments and therefore are not currently on the market. Met.
  • AI artificial intelligence
  • DX digitization and digitalization and shift to digital transformation
  • IoT Internet of Things
  • DX Digital technology
  • Image IoT refers to device implementation technology that utilizes core technologies to collect high-quality image data from the field (edge), an AI platform that integrates various sensor data and performs advanced recognition and judgment, and The general term that combines these technologies is defined as image IoT.
  • IoT-PF image IoT platform
  • a common architecture was developed to utilize IoT-PF to analyze and utilize camera images at manufacturing sites. Many of the issues at manufacturing sites can be visualized by analyzing camera images, so it is important to build functions such as "visualization of productivity in manufacturing processes” and “visualization of compliance with labor safety rules” in a common system. became possible. We believe that it can be easily expanded to other applications in the future.
  • IoT-PF is a collection of control technologies that can acquire raw data from the field and feed back analysis results using AI to the real world in real time in order to solve various customer issues. Furthermore, we will build an ecosystem with partner companies and become a hub for co-creating customer value in order to provide the best services to our customers. It is expected that image IoT technology will be used to provide optimal solutions to various requests.
  • Imaging AI is a group of high-speed, high-precision AI learning/inference technologies centered on images, such as AI libraries/accelerators; engines specialized for images; high-speed, advanced AI for image analysis A group of processing technologies.
  • this image processing technology will be used in three areas: "human behavior” such as posture estimation and human attribute detection, "advanced medical care” such as X-ray dynamic analysis and image biomarkers, and "inspection” such as defect detection and classification. This is an area of focus for the future.
  • System function configuration FORXAI IoT-PF consists of three layers: cloud, edge, and device, and the required functions are prepared in advance for each layer.
  • ⁇ Cloud FORXAI IoT-PF's cloud service provides APIs for managing data storage and searching, sending email and mobile push notifications, and managing devices.
  • ⁇ Edge Edge is a computer placed on-site that performs functions such as receiving information from devices, processing it using deep learning, etc., and sending the results to the cloud.
  • ⁇ Devices Devices refer to sensors and actuators installed on-site, and the embedded systems that control them.
  • Examples of system solutions that can be realized with IoT-PF include acquiring video images from camera devices on site, viewing the results recognized by AI via the cloud, and notifying smartphones when specific situations occur. Can be done. You can also manage the operating status of your device via the cloud.
  • the physical properties required for plastic products depend on whether the resin fibers are oriented, whether the additives are functional, whether they are homogeneous in the product, and the surface condition of the product. , are determined based on various requirements, but information on each cannot necessarily be easily grasped through visual evaluation, etc., and although the state of things such as fiber orientation can be observed using expensive analytical equipment, etc.
  • 3D printer can be considered as a means of setting manufacturing conditions as numerical values and data without relying on tacit knowledge.
  • the materials used are metals, alloys, and ceramics, and the reality is that the most general-purpose plastics have not been easily applied on a commercial scale.Furthermore, due to the characteristics of 3D printers, the mechanical strength of the printed object differs depending on the orientation. They have various problems, including long production times, a surprising amount of waste, and many new problems from the perspective of resource conservation and SDGs. Furthermore, in reality, plastic manufacturing and processing is mainly carried out by small and medium-sized enterprises, and most of the processes involve human intervention, which can be said to be one of the reasons why it is difficult to obtain data.
  • the vulcanization/forming process is a process in which the unvulcanized rubber compound produced by scouring is vulcanized (crosslinked) and molded into a product.
  • the final (4) inspection is performed, and this inspection is the final Normally, inspections are performed not only during the process but also during the process.
  • Food tech is a new industry that combines food and technology and creates added value such as new foods and cooking methods that have not existed before by incorporating IT technology from food production to cooking processing. . Specifically, this includes the spread of robots in food processing and manufacturing as mentioned above, stable production in plant factories, and research and development of food ingredients, such as the production of meat substitutes. In research, development, and manufacturing, it is important to provide a system for acquiring the type and number of data necessary and sufficient for designing and stably producing better quality, such as taste and texture. This can be said to be a challenge.
  • GMP Good Manufacturing Practice
  • Standards related to manufacturing control and quality control of pharmaceuticals which summarize the requirements for manufacturing high-quality pharmaceuticals.
  • the World Health Organization (WHO) resolved to establish them in 1968, and the It has been enacted in each country.
  • WHO World Health Organization
  • GMP is stipulated to ensure that products are made safely and maintain a ⁇ constant quality'' throughout the entire process, from receiving raw materials to manufacturing and shipping the final product.
  • GMP Ministerial Ordinance was revised for the first time in about 16 years in order to be consistent with the latest international standard, the PIC/S GMP Guidelines, and was promulgated in March 2021 and came into effect from August 1, 2021.
  • GMP The three principles of GMP are (1) "minimizing human error,” (2) “preventing contamination and quality deterioration,” and (3) “designing a system that guarantees high quality.” This is the basic requirement for producing products of the same quality and high quality no matter who does the work or when they do the work. These three principles require the management of human actions by double checking and keeping work records, and the reduction of errors in human actions through identification such as drug product names and lot numbers. It can be said that it is recognized that human actions and conditions in raw materials and manufacturing processes affect the performance of products, in this case pharmaceuticals.
  • AI artificial intelligence
  • the challenge is to provide a means to acquire the necessary and sufficient amount and type of data for inspection and analysis that complies with regulations and is acceptable not only to large-scale manufacturers but to all industry stakeholders.
  • This data will inevitably include information on human actions, the raw materials used, intermediates if extracted during the process, and information on the nature and state of the substances in the final product.
  • platform-type (integrated) DX is not possible. This is not a big problem if the product is designed with a single performance or characteristic, or if it is a simple product, but if it is a complex product, or in other words, a composite material or complex material where multiple scientific phenomena occur simultaneously, this is not a big problem. While it is a major barrier to development, it is also expected to be used in various industries.
  • the prediction system and prediction device 100 of the present embodiment acquires scientific information and non-scientific information regarding a target object, and predicts a plurality of characteristics of the target object based on the scientific information and non-scientific information.
  • a new data generation method and its means that were actually investigated and discovered by the present inventors will be explained.
  • Scientific information obtained from conventional instrumental analysis is basically independent scientific information with guaranteed orthogonality.
  • data in the virtual world using a computer can be obtained in multiple dimensions, ignoring orthogonality, depending on how it is collected, but the quality of the data is basically low, and in order to improve it, the above-mentioned steps are required. This creates a need for high-precision, high-cost calculations using supercomputers, etc.
  • data that records human behavior is also considered unscientific information. While some of the actions of people who perform various tasks in the manufacturing process are directly linked to scientific information, such as the process of preparing and using raw materials mentioned above, and the process of inputting process conditions to manufacturing equipment, It is believed that behavioral data includes information that humans are unconscious of or cannot recognize, such as what is known as misunderstanding experience, and it captures non-scientific information.
  • HitomeQ Care Support has developed a posture estimation method that can be recognized even from a camera on the ceiling. It utilizes a unique algorithm that uses the positional relationships of human body parts such as the head and lower legs as features to estimate human regions and their poses.
  • the ⁇ human behavior'' recognition technology captured by cameras on the ceiling is used in the ⁇ go insight'' service, which analyzes data on the purchasing behavior process in stores and connects it to marketing activities, and is also used to analyze customer spending time and behavior in front of shelves. has been done.
  • the prediction device 100 and prediction system of this embodiment can predict multiple characteristics of a target object.
  • FIG. 9 shows a functional configuration of a prediction device 100 in a prediction system according to a modified example.
  • the prediction device 100 may function as a selection unit 115 in addition to the acquisition unit 111, the extraction unit 112, the prediction unit 113, and the control unit 114.
  • the selection unit 115 selects scientific information and non-scientific information according to the plurality of characteristics of the object predicted by the prediction unit 113. For example, the selection unit 115 selects scientific information and non-scientific information from among the plurality of scientific information and the plurality of non-scientific information regarding the object acquired by the acquisition unit 111. The selection unit 115 may select a plurality of scientific information and a plurality of non-scientific information regarding the object. The selection unit 115 selects, for example, scientific information and non-scientific information that are highly relevant to each of the plurality of predicted characteristics.
  • the acquisition unit 111 may acquire scientific information and non-scientific information regarding the object selected by the selection unit 115.
  • the selection unit 115 comprehensively selects scientific information and non-scientific information, for example.
  • scientific information is selected to include multiple sizes among macro, micro, and nano sizes as focal sizes of data.
  • non-scientific information is selected to include multiple structures among a physical structure, a chemical structure, and an interface structure as the structure of the object.
  • the selection unit 115 may select scientific information and non-scientific information regarding the object using machine learning.
  • the prediction unit 113 predicts multiple properties of the object based on the scientific information and non-scientific information selected by the selection unit 115. This makes it possible to improve the prediction accuracy of each of the plurality of characteristics.
  • FIG. 10 is a flowchart showing the procedure of prediction processing executed in this prediction device 100.
  • Step S201 The prediction device 100 first acquires scientific information and non-scientific information regarding the object in the same manner as step S101 described in the above embodiment. For example, the prediction device 100 acquires a plurality of scientific information and a plurality of non-scientific information regarding a target object.
  • Step S202 the prediction device 100 acquires scientific information and non-scientific information from among the plurality of scientific information and the plurality of non-scientific information acquired in step S201 based on the plurality of characteristics to be predicted.
  • the prediction device 100 may perform the processing in the order of step S202 and step S201.
  • Steps S203 to S206 After this, the prediction device 100 performs the same processing as steps S102 to S105 described in the above embodiment, and ends the processing.
  • the prediction system and prediction device 100 also calculates multiple characteristics of the object based on scientific information and non-scientific information about the object. can be predicted at the same time. Furthermore, since the selection unit 115 is provided, it is possible to select scientific information and non-scientific information that are highly relevant to each of the plurality of characteristics to be predicted. Therefore, it becomes possible to predict a plurality of characteristics of an object with higher accuracy.
  • samples of 48 types of fiber composite materials were created. This sample was produced using a combination of four types of resin, three types of fibers, two conditions of fiber concentration (volume ratio), and two conditions of injection pressure shown below. The resin and fibers were mixed in advance at a desired ratio using a Laboplastomill (registered trademark) extruder manufactured by Toyo Seiki Seisakusho Co., Ltd. This produced pellets. Samples of 48 types of fiber composite materials were molded using an injection molding machine SE50D manufactured by Sumitomo Heavy Industries. The sample shape for measuring mechanical strength and molding shrinkage rate was dumbbell-shaped test piece type A1 shown in JIS K7139. The sample shape for measuring the impact strength was cut from this dumbbell-shaped test piece type A1 to obtain a test piece in which a notch was added to a strip test piece as shown in JIS K7139B2.
  • Resin Polypropylene (Noblen (registered trademark) W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona (registered trademark) 1300S manufactured by Asahi Kasei Corporation), ABS (Toyolac700 314 manufactured by Toray Industries, Inc.), polycarbonate (manufactured by Mitsubishi Engineering Plastics Corporation) Iupilon (registered trademark) H-3000R); Fiber: PAN (polyacrylonitrile) carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN carbon fiber (TC-3233 manufactured by Taiwan Plastics Co., Ltd.), glass fiber (CS3J-960 manufactured by Nitto Boseki Co., Ltd.); Fiber concentration: 5%, 20%; Injection pressure: 50MPa, 100MPa.
  • each of these 48 types of fiber composite material samples was measured using the following measuring device, and the discriminator was made to learn the feature amounts extracted from the measurement results. The measurement was performed near the center of the dumbbell-shaped test piece.
  • FTIR Fastier Transform Infrared Spectroscopy
  • AWATAR370 manufactured by Thermo Fisher Scientific
  • Terahertz wave spectrometer C12068-01 manufactured by Hamamatsu Photonics Co., Ltd.
  • Ultrasonic measurement device UVM-2 manufactured by Ultrasonic Industry Co., Ltd., measurement was performed in reflection mode
  • X-ray diffraction device Smart Lab manufactured by Rigaku Co., Ltd.
  • X-ray Talbot-Low device device described in JP 2019-184450
  • Behavioral video video taken of the worker with a video camera
  • the mechanical strength, impact strength, and molding shrinkage rate of each of the 48 types of composite resin material samples were measured using the following method, and a discriminator was made to learn the measurement results.
  • the evaluation results of a tensile test conducted using Tensilon (RTF2325) manufactured by A&D Co., Ltd. in accordance with JIS K7161-2 were used as the measurement results of mechanical strength. At this time, the distance between the grips was 75 mm, and the test speed was 1 mm/min. In addition, the value obtained by dividing the stress at break by the cross-sectional area of the test piece was defined as the mechanical strength.
  • an impact testing machine manufactured by Toyo Seiki Co., Ltd. (JCHBAS) was used. The molding shrinkage rate was measured according to JIS K7152-4.
  • Examples 1 to 8 Comparative Examples 1 and 2
  • samples of four types of objects were prepared. This sample was produced using the following combinations of two types of resin, two types of fibers, one condition of fiber concentration (volume ratio), and one condition of injection pressure. The samples were prepared in the same manner as for the training data described above.
  • Resin polypropylene (Noblen W101 manufactured by Sumitomo Chemical Co., Ltd.), polyamide 66 (Leona 1300S manufactured by Asahi Kasei Corporation); Fiber: PAN-based carbon fiber (CF-N manufactured by Nippon Polymer Sangyo Co., Ltd.), PAN-based carbon fiber (TC-33 manufactured by Taiwan Plastics Co., Ltd.); Fiber concentration: 10%; Injection pressure: 80MPa.
  • Examples 1 to 8 scientific information and non-scientific information shown in Table 1 below were generated for samples of these four types of objects. After this, the feature values extracted from these scientific and non-scientific information were input into a trained discriminator to obtain predicted values for mechanical strength, impact strength, and molding shrinkage rate. In Comparative Example 1, only scientific information was generated, and in Comparative Example 2, only non-scientific information was generated. Scientific or non-scientific information was then input into the trained discriminator to obtain predicted values for mechanical strength, impact strength, and mold shrinkage.
  • the mechanical strength, impact strength, and molding shrinkage rate of each of the four types of object samples were measured, and the measured values were determined.
  • the error between the predicted value and the measured value was calculated using the following formula (1), and then the average of the errors for the four types of object samples was determined.
  • Table 1 when the average value of this error is 30% or less, it is written as A, when it is larger than 30%, and when it is 60% or less, it is written as B, and when it is larger than 60%, it is written as C. That is, when the mechanical strength, impact strength, or molding shrinkage rate is "A", it means that the accuracy of the characteristics predicted using the learned discriminator is the highest.
  • the configurations of the prediction device 100 and the prediction system described above are the main configurations explained in explaining the features of the above-mentioned embodiments and examples, and are not limited to the above-mentioned configurations, but within the scope of the claims. Various modifications can be made. Moreover, the configuration provided in a general prediction system is not excluded.
  • the prediction device 100 may include components other than the above components, or may not include some of the above components.
  • the prediction device 100, the first device 200, and the second device 300 may each be configured by a plurality of devices, or may be configured by a single device.
  • each configuration may be realized by other configurations.
  • the first device 200 or the second device 300 may be integrated into the prediction device 100, and some or all of the functions of the first device 200 and the second device 300 may be realized by the prediction device 100.
  • processing units in the flowchart in the above embodiment are divided according to the main processing contents in order to facilitate understanding of each process.
  • the present invention is not limited by how the processing steps are classified. Each process can also be divided into more process steps. Also, one processing step may perform more processing.
  • the means and methods for performing various processes in the system according to the embodiments described above can be realized by either a dedicated hardware circuit or a programmed computer.
  • the program may be provided on a computer-readable recording medium such as a flexible disk or CD-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred and stored in a storage unit such as a hard disk.
  • the above program may be provided as a standalone application software, or may be incorporated into the software of the device as a function of the system.
  • 100 prediction device 110 CPU, 111 Acquisition Department; 112 Extraction part, 113 Prediction Department, 114 control unit, 115 Selection section, 120 ROM, 130 RAM, 140 storage, 150 communication interface, 160 display section, 170 Operation reception department, 200 first device, 300 Second device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biochemistry (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

対象物の複数の特性を予測することが可能な予測装置、予測システムおよび予測プログラムを提供する。予測装置100は、対象物に関する画像を含む第1情報と、前記対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含む第2情報とを取得する取得部111と、取得された前記第1情報および前記第2情報に基づいて、前記対象物の複数の特性を予測する予測部113とを含む。

Description

予測装置、予測システムおよび予測プログラム
 本発明は、予測装置、予測システムおよび予測プログラムに関する。
 製造業、加工業、これらに関連または付随する品質保証、検査および分析等の様々な分野において、DX(デジタルトランスフォーメーション)化の促進が望まれている。例えば、画像を用いることにより、対象物の品質および物性等の検査の工程を簡略化する方法が提案されている(例えば、特許文献1、2等)。
 ところで、社会的に価値のある製品は、一の品質項目または一の物性項目等、一の特性の基準を満たせばよいわけではなく、複数の特性において各々の基準を満たすことを望まれる。
特開2019-184450号公報 特開2014-193596号公報
 したがって、対象物の複数の特性を同時に予測できることが望ましい。
 本発明は、上記事情に鑑みてなされたものであり、対象物の複数の特性を予測することが可能な予測装置、予測システムおよび予測プログラムを提供することを目的とする。
 本発明の上記目的は、下記の手段によって達成される。
 (1)対象物に関する画像を含む第1情報と、前記対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含む第2情報とを取得する取得部と、取得された前記第1情報および前記第2情報に基づいて、前記対象物の複数の特性を予測する予測部とを備える予測装置。
 (2)予測する前記対象物の複数の前記特性に応じて、前記第1情報および前記第2情報を選択する選択部をさらに有し、前記予測部は、選択された前記第1情報および前記第2情報に基づいて、前記対象物の複数の前記特性を予測する上記(1)に記載の予測装置。
 (3)前記画像は、前記対象物を撮像装置、X線タルボ・ロー装置、超音波装置、蛍光指紋測定装置、ハイパースペクトルカメラ、ミリ波イメージング装置、走査電子顕微鏡、原子間力顕微鏡、透過型電子顕微鏡、蛍光顕微鏡および多次元色度計の少なくともいずれかを用いて撮像された画像を含む上記(1)に記載の予測装置。
 (4)前記画像は、前記対象物に関連した人の行動を撮像した画像を含む上記(1)に記載の予測装置。
 (5)前記第2情報は、前記対象物に含まれる物質の種類を表す文字および化学構造の少なくとも一方と、前記対象物に含まれる前記物質の量を表す数とを含む上記(1)に記載の予測装置。
 (6)前記第2情報は、前記対象物の赤外吸収スペクトル、テラヘルツ波分光スペクトル、核磁気共鳴スペクトル、ラマン分光スペクトル、インピーダンス分光スペクトルおよびX線回折スペクトルの少なくともいずれかを含む上記(1)に記載の予測装置。
 (7)前記対象物は、互いに異なる化学構造を有する複数の物質の混合物である上記(1)に記載の予測装置。
 (8)複数の前記特性は、前記対象物の物性、品質および機能の少なくともいずれかを含む上記(1)に記載の予測装置。
 (9)複数の前記特性は、前記対象物の機械物性、物理物性、熱特性、成形性、電気特性、耐久性、機械加工性および燃焼性の少なくともいずれかを含む上記(1)に記載の予測装置。
 (10)予測された複数の前記特性に関する情報を出力部に出力させる制御部をさらに含む上記(1)に記載の予測装置。
 (11)前記予測部は、学習済みの識別器を用いて複数の前記特性を予測する上記(1)に記載の予測装置。
 (12)取得された前記第1情報および前記第2情報各々から特徴量を抽出する抽出部をさらに含み、前記予測部は、抽出された前記特徴量を入力とし、複数の前記特性を予測する上記(11)に記載の予測装置。
 (13)前記識別器は、前記特徴量を入力データとし、複数の前記特性を出力データとして機械学習される上記(12)に記載の予測装置。
 (14)対象物に関する第1情報を生成する第1装置と、前記対象物に関する第2情報を生成する第2装置と、上記(1)~(13)のいずれかに記載の予測装置とを備える予測システム。
 (15)対象物に関する画像を含む第1情報と、前記対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含む第2情報とを取得するステップ(a)と、取得された前記第1情報および前記第2情報に基づいて、前記対象物の複数の特性を予測するステップ(b)とを有する処理をコンピューターに実行させるための予測プログラム。
 本発明に係る予測装置、予測システムおよび予測プログラムは、対象物に関する第1情報および第2情報を取得し、取得した第1情報および第2情報に基づいて、対象物の複数の特性を予測する。これにより、対象物の複数の特性を同時に予測することが可能となる。
実施形態に係る予測システムの全体構成を示す図である。 予測装置の概略構成を示すブロック図である。 図1に示した予測システムの他の例を示す図である。 図1に示した予測システムのその他の例を示す図である。 予測装置の機能構成を示すブロック図である。 予測装置によって出力される情報の表示形態の一例を示す図である。 予測装置において実行される予測処理の手順を示すフローチャートである。 学習済みモデルの機械学習方法を示すフローチャートである。 変形例に係る予測装置の機能構成を示すブロック図である。 図9に示した予測装置において実行される予測処理の手順を示すフローチャートである。
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 [実施形態]
 <予測システムの構成>
 図1は、予測システムの全体構成を示す図である。
 図1に示すように、予測システムは、例えば、予測装置100、第1装置200および第2装置300を有する。この予測システムは、対象物に関する科学的情報および非科学的情報を用いて、対象物の複数の特性を予測する。この実施形態では、非科学的情報が本発明の第1情報の一具体例に対応し、科学的情報が本発明の第2情報の一具体例に対応する。
 対象物としては、例えば、宇宙・航空機関係、自動車、船舶、つり竿の他、電気・電子・家電部品、パラボラアンテナ、浴槽、床材、屋根材等を始め、様々な製品等の構成部材として用いられる繊維複合材料、炭素繊維またはガラス繊維やセルロース繊維やセルロースナノ繊維を強化繊維として用いたCFRP(Carbon-Fiber-Reinforced Plastics:炭素繊維強化プラスチック)、CFRTP(Carbon Fiber Reinforced Thermo Plastics:炭素繊維強化熱可塑性プラスチック)およびGFRP(Glass-Fiber-Reinforced Plastics:ガラス繊維強化プラスチック)、CeFRP(セルロース繊維強化プラスチック)に代表されるFRP(Fiber-Reinforced Plastics:繊維強化プラスチック)等が挙げられる。特に、CFRTPは、軽量性およびリサイクル性の点で優れている。
 対象物は、上記のようなマトリックスとして樹脂を用いた複合材以外にも、ゴムを用いる複合材RMC(Rubber Matrix Composites)、金属用いるMMC(Metal matrix composites)およびセラミックスを用いるCMC(Ceramics matrix composites)等であってもよく、コンクリート、アスファルトなどのインダストリー製品や食料品等であってもよい。
 具体的に、対象物は、例えば、互いに異なる化学構造を有する複数の物質の混合物である。対象物は、例えば、フィラーおよび樹脂を含む複合材料である。複合材料に含まれる樹脂は、例えば、公知の熱硬化性樹脂および熱可塑性樹脂等である。具体的には、例えば、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、無水マレイン酸変性ポリプロピレン(MAHPP)等のポリオレフィン樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド(PA)樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド(PPS)樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、AS樹脂(アクリロニトリルとスチレンとのコポリマー)、ABS樹脂(アクリロニトリル、ブタジエン及びスチレンのコポリマー)、変性ABS樹脂、MBS樹脂(メチルメタクリレート、ブタジエン及びスチレンのコポリマー)、変性MBS樹脂、ポリメチルメタクリレート(PMMA)樹脂および変性ポリメチルメタクリレート樹脂等が挙げられる。複合材料に含まれる樹脂は、これらのうちの1種であってもよく、2種以上が混合されていてもよい。
 複合材料に含まれるフィラーは、例えば、複合材料の強度を向上させる目的で、樹脂に添加される。フィラーは、例えば、体積比で0.1%~50%の濃度で樹脂に添加されている。フィラーは、例えば、繊維形状または粒子形状を有している。繊維形状のフィラーは、例えば、ガラスファイバー(GF)、カーボンファイバー(CF)、アラミドファイバー、アルミナファイバー、シリコンカーバイドファイバー、ボロンファイバーおよび炭化ケイ素ファイバー等である。CFには、例えば、ポリアクリロニトリル(PAN系)、ピッチ系、セルロース系、炭化水素による気相成長系炭素繊維および黒鉛繊維などを用いることができる。また、GFには、例えば、EガラスおよびSガラスなどを用いることができる。複合材料は、ガラスファイバー(GF)およびカーボンファイバー(CF)の少なくとも一方を含んでいることが好ましい。ガラスファイバー(GF)およびカーボンファイバーの少なくとも一方を含む複合樹脂では、後述のX線タルボ・ロー装置により、フィラーの配向状態が測定しやすくなるので、複数の特性の予測精度を向上させることが可能となる。
 粒子形状のフィラーは、例えば、炭酸カルシウム(CaCo)、タルク(MgSi10(OH))、硫酸バリウム(BaSO)、マイカ(Si,Al,Mg,K)、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化アンチモン(Sb)、カオリンクレー(Al・2SiO・2HO)およびカーボンブラック等の無機粒子である。対象物に含まれるフィラーは、これらのうちの1種であってもよく、2種以上が混合されていてもよい。
 複合材料は、感度調整剤を含んでいてもよい。感度調整剤とは、医療用CT撮影時に用いられるヨード系造影剤のように機能する材料のことをいう。例えば、複合材料が感度調整剤を含むことにより、より高いコントラストの画像を生成することが可能となる。あるいは、複合材料が感度調整剤を含むことにより、特徴量となる現象が強調され、または、特徴量となる現象が検出可能となり、特徴を捉えやすくなる。感度調整剤は、非科学的情報の取得時に用いられることが好ましい。例えば、第2装置300がラマン分光測定装置であるとき、感度調整剤にタングステン酸ジルコニウムを用いると、ラマンシフトが変化し、より高い精度で繊維複合材料の材料特性に関する情報を生成することが可能となる。例えば、第1装置200が蛍光顕微鏡であるとき、感度調整剤に蛍光色素を用いると、より高い精度で繊維長に関する情報を生成することが可能となる。
 複合材料に含まれる感度調整剤は、複合材料の物性への影響が小さいことが好ましい。これにより、例えば、第1装置200および第2装置300により測定された複合材料を、例えば、成形品等に使用することが可能となる。第1装置200および第2装置300での測定用に、感度調整剤を含む複合材料の試験片を作製してもよい。感度調整剤は、例えば、複合材料に応じて、または、複合材料の特性に応じて、適宜選択される。感度調整剤には、例えば、色素が用いられる。この色素としては、例えば、蛍光色素、感熱色素および感圧色素等が挙げられる。感度調整以外の目的で複合材料に加えられた添加剤が、感度調整剤として機能してもよい。添加剤としては、例えば可塑剤、酸化防止剤、紫外線吸収剤、核剤、透明化剤および難燃剤等が挙げられる。
 対象物は、合金、繊維、セラミックス、紙、合成樹脂、液晶高分子、培養細胞または生体材料(骨、細胞または血液)等であってもよい。
 (予測装置100)
 予測装置100は、例えばPC(Personal Computer)やスマートフォン、タブレット端末等のコンピューターであり、本実施形態においては予測装置として機能する。予測装置100は、第1装置200および第2装置300と接続可能に構成され、各装置との間で各種情報を送受信する。
 図2は、情報処理装置の概略構成を示すブロック図である。
 図2に示すように、予測装置100は、CPU(Central Processing Unit)110、ROM(Read Only Memory)120、RAM(Random Access Memory)130、ストレージ140、通信インターフェース150、表示部160、および操作受付部170を有する。各構成は、バスを介して相互に通信可能に接続されている。
 CPU110は、ROM120やストレージ140に記録されているプログラムにしたがって、上記各構成の制御や各種の演算処理を行う。
 ROM120は、各種プログラムや各種データを格納する。
 RAM130は、作業領域として一時的にプログラムやデータを記憶する。
 ストレージ140は、オペレーティングシステムを含む各種プログラムや、各種データを格納する。例えば、ストレージ140には、学習済みの識別器を用いて、後述の非科学的情報および科学的情報から対象物の複数の特性を予測するためのアプリケーションがインストールされている。また、ストレージ140には、第1装置200および第2装置300から取得された非科学的情報および科学的情報が記憶されてもよい。また、ストレージ140には、識別器として用いられる学習済みモデルや、機械学習に用いられる教師データが記憶されてもよい。
 通信インターフェース150は、他の装置と通信するためのインターフェースである。通信インターフェース150としては、有線または無線の各種規格による通信インターフェースが用いられる。通信インターフェース150は、例えば、第1装置200または第2装置300から非科学的情報および科学的情報を受信したり、保存のために複数の特性の予測結果をサーバー等の他の装置に送信したりする際に用いられる。
 表示部160は、LCD(液晶ディスプレイ)や有機ELディスプレイ等を備え、各種情報を表示する。表示部160は、ビューワーソフトまたはプリンター等により構成されていてもよい。本実施形態において、表示部160は、出力部として機能する。
 操作受付部170は、タッチセンサーや、マウス等のポインティングデバイス、キーボード等を備え、ユーザーの各種操作を受け付ける。なお、表示部160および操作受付部170は、表示部160としての表示面に、操作受付部170としてのタッチセンサーを重畳することによって、タッチパネルを構成してもよい。
 (第1装置200)
 第1装置200は、対象物に関する非科学的情報を生成するための装置である。ここで、非科学的情報とは、所定の対象の性能、機能または品質などを解析、分析または評価するために取得するデータに処理を加えた情報である。この処理について、第1装置200がデジタルカメラ等の撮像装置であるときを例に挙げて説明する。
 デジタルカメラでは、レンズから入った光がイメージセンサーに映し出され、センサーが光を検知してデジタルデータに変換される。このデータを画像処理エンジンで処理することによりデジカメ写真の画像が生成される。例えば100万画素の画像の場合には100万のイメージセンサーのそれぞれが感知した例えばRGBの強度などの複数の情報、つまり多次元データを画像処理エンジンで処理し、2次元の画像へと再構成をしている。このような画像にはもともと多次元データが含まれていることから、科学的情報では得られない新たな情報を得ることが可能となる。
 非科学的情報は、例えば、対象物に関する画像を含んでいる。画像は、動画および静止画のどちらであってもよい。画像は、対象物に関連した人の行動を撮像した動画などの画像であってもよい。対象物に関連した人は、例えば、対象物の製造に関わった人等である。複合材料の製造では、ロボットなどを用いた自動化の工程だけでなく、人間の手技による工程が存在する場合がある。特に、複合材料の開発時には、対象およびフェーズ等に応じて、製造プロセスおよび測定内容等が異なることが頻繁に発生する。このため、全ての工程を自動化することは困難であり、手技の工程が存在することが多い。例えば、ビデオカメラ等の第1装置200を用いて、手技の工程の動画を撮影する。この撮影画像から、予測装置100は、例えば、オープンポーズ(Open Pose)などを用いて、人間およびその動きを検出し、特異的な動きを抽出する。予測装置100は、抽出した動きから、例えば、薬剤投入速度、薬剤投入タイミング、薬剤投入間隔、攪拌速度または攪拌時間などを求め、これらを特徴量として特性予測に用いる。予測装置100は、特異的な動きの抽出および特徴量の抽出に、機械学習を用いてもよい。ここでは、第1装置200によって撮影された画像自体は、撮影される手技に応じて含まれる情報が異なるため、科学的情報に分類されない。なお、画像から抽出された特徴量は、科学的情報となり得る。例えば、対象または手技内容に応じて決定された特徴量が、画像から抽出される。撮像装置は、例えば、上記デジタルカメラ等であってもよく、MOBOTIX(登録商標)等であってもよい。
 第1装置200は、このような非科学的情報を生成する装置である。第1装置200は、対象物の画像を生成する装置、例えば、撮像装置、X線タルボ・ロー装置、超音波装置、蛍光指紋測定装置、ハイパースペクトルカメラ、ミリ波イメージング装置、走査電子顕微鏡、原子間力顕微鏡、蛍光顕微鏡および多次元色度計の少なくともいずれかを含んでいる。
 (第2装置300)
 第2装置300は、対象物に関する科学的情報を生成するための装置である。ここで、科学的情報は、上記の非科学的情報と対照となる情報である。科学的情報は、センサーにより検出された情報そのもの、即ち、多次元化する処理が施されていない情報である。科学的情報は、多次元化処理の前の情報、いわゆる、ローデータ(raw data)であってもよい。例えば、第2装置300は、撮像装置の受光素子(または、受光画素)等であり、受光素子により検知された情報(デジタルデータ)が科学的情報である。
 科学的情報は、対象物に発生している現象を直接的に捉える一次情報である。この科学的情報は、対象物で生じる反応のメカニズムおよび対象物の機能が発現する機構に、直接的に関連付けやすい。ここでの科学的情報は一次元の情報であり、例えば、対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含んでいる。
 例えば、科学的情報は、対象物に含まれる物質(以下、含有物質という。)を表す文字、数、化学構造およびスペクトルの少なくともいずれかを含んでいる。具体的には、科学的情報は、含有物質の種類を表す文字および化学構造の少なくとも一方と、含有物質の量を表す数とを含んでいる。含有物質は、主成分であってもよく、不純物であってもよい。科学的情報は、対象物および含有物質の少なくとも一方の純度を表す数を含んでいてもよい。科学的情報は、対象物および含有物質の少なくとも一方の形状を表す文字を含んでいてもよい。形状は、例えば、固体、液体、またはゲル等である。
 例えば、科学的情報は、対象物の製造条件を表す文字および数の少なくとも一方を含んでいる。具体的には、科学的情報は、対象物の各製造工程の温度、時間、内容、圧力または速度等を表す文字および数の少なくとも一方を含んでいる。
 例えば、科学的情報は、対象物の分析および解析等に用いられる信号値等を含んでいる。この信号値には、多次元化以外の処理が施されていてもよい。多次元化以外の処理は、例えば、加減乗除および比率変更等の処理である。
 例えば、科学的情報は、対象物のスペクトル等を含んでいる。対象物のスペクトルは、例えば、赤外吸収スペクトル、テラヘルツ波分光スペクトル、核磁気共鳴スペクトル、ラマン分光スペクトル、インピーダンス分光スペクトルおよびX線回折スペクトルの少なくともいずれかを含んでいる。
 なお、スペクトルは、一体的な画像としての情報ではないので、非科学的情報には分類されない。スペクトルは、各ポイントの一次元情報の集合であるため、科学的情報に該当する。各ポイントの一次元情報は、例えば所定の波数での赤外吸収強度等である。
 スペクトルには一次元スペクトルと二次元またはそれ以上の次元を有する多次元のスペクトルがあり、二次元のスペクトルをイメージングという場合もある。特定しない場合には一次元スペクトルを意味するが、この一次元スペクトルは科学的情報であり、多次元のスペクトルは非科学的情報である。
 この一次元スペクトルおよび多次元のスペクトルの例として、NMRを説明する。一次元のNMRスペクトルとしては、例えば、プロトン(1H)および炭素(13C)が挙げられる。1H-NMRでは、化学シフト、スピン-スピン結合および積分値より、Hの存在するCの構造(例えば、第1級炭素に結合したHなど)、隣接する核の存在およびHの個数などの情報が得られる。つまり、1H-NMRは、ある特定のHが存在する周辺の情報として、結合する炭素の特徴および同じ環境にあるHの個数などの情報を表している。この情報では、ある程度分子構造を推定できている場合には構造を特定することが可能な場合もあるが、この情報のみではHの個数など分子の一部分の情報を得られるにとどまる。二次元のNMRスペクトルは、周波数を縦軸と横軸にとってシグナル同士の相関あるいは各シグナルのスピン分裂パターンを二次元に展開し、そのピークの強さを等高線図などにより表示する測定法である。例えば、二次元のNMRスペクトルには、COSYやCHCOSYなどがある。特に、この二次元のNMRスペクトルは、複雑な化学構造をもつ場合に活用される。CHCOSYは、異核シフト相関二次元NMRであるので、どのCとどのHが結合しているかを特定することが可能である。即ち、非科学的情報では分子構造全体を特定することも可能といえ、一次元NMRである科学的情報だけでは得られない新たな情報を得られるといえる。
 第2装置300は、このような科学的情報を生成する装置である。第2装置300は、例えば、撮像装置の受光素子等を含んでいる。第2装置300は、発光DNAセンサー等を含んでいてもよい。第2装置300は、含有物質を表す文字、数、化学構造およびスペクトルの少なくともいずれかが入力されるコンピューター等を含んでいてもよい。あるいは、第2装置300は、対象物の製造条件を表す文字および数値の少なくとも一方が入力されるコンピューターまたはセンサー等を含んでいてもよい。第2装置300は、対象物の分析または解析等を行う装置を含んでいてもよい。あるいは、第2装置300は、対象物の各スペクトルを生成する赤外分光測定装置、テラヘルツ波分光測定装置、核磁気共鳴装置、ラマン分光測定装置、インピーダンス分光測定装置およびX線回折装置の少なくともいずれかを含んでいてもよい。
 図3および図4は、予測システムの他の例を表している。予測システムは、複数の第1装置200(例えば、図3の第1装置200A,200B)を含んでいてもよく、複数の第2装置300(例えば、図4の第2装置300A,300B)を含んでいてもよい。予測システムは、複数の第1装置200および複数の第2装置300を含んでいてもよい(図示省略)。
 <予測装置100の機能>
 図5は、予測装置100の機能構成を示すブロック図である。
 図5に示すように、予測装置100は、CPU110がストレージ140に記憶されたプログラムを読み込んで処理を実行することによって、取得部111、抽出部112、予測部113および制御部114として機能する。
 取得部111は、第1装置200により生成された非科学的情報と、第2装置300により生成された科学的情報とを取得する。非科学的情報は、例えば、対象物に関する画像を含み、科学的情報は、例えば、対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含む。取得部111は、複数の科学的情報および複数の非科学的情報を取得することが好ましい。これにより、対象物の特性をより高い精度で予測することが可能となる。
 抽出部112は、取得部111により取得された非科学的情報および科学的情報各々から特徴量を抽出する。抽出部112は、非科学的情報、科学的情報各々から複数の特徴量を抽出してもよい。
 取得部111は、特徴量が抽出された情報を取得してもよい。即ち、非科学的情報および科学的情報は、第1装置200および第2装置300により生成された対象物に関する情報から特徴量が抽出されたものであってもよい。
 予測部113は、取得部111により取得された非科学的情報および科学的情報に基づいて、対象物の複数の特性を予測する。具体的には、予測部113は、学習済みの識別器を用いて、抽出部112により抽出された非科学的情報および科学的情報各々の特徴量を入力とし、対象物の複数の特性を予測する。
 対象物の特性は、例えば、対象物の物性、品質および機能の少なくともいずれかを含んでいる。具体的には、対象物の物性は、対象物の機械物性、物理物性、熱特性、成形性、電気特性および耐久性の少なくともいずれかを含んでいる。対象物の機械物性は、例えば、対象物の機械強度、弾性率、曲げ強度、曲げ弾性率、衝撃強度および硬度等である。対象物の物理物性は、例えば、対象物の密度等である。対象物の熱特性は、例えば、対象物の熱伝導率、比熱、熱膨張係数および荷重たわみ密度等である。対象物の成形性は、例えば、対象物の圧縮成型温度、射出成型温度、溶液粘度および成型収縮率等である。対象物の電気特性は、例えば、対象物の体積抵抗、絶縁破断強さ、誘電率および耐アーク性等である。対象物の耐久性は、例えば、対象物の耐弱酸性、耐強酸性、耐弱塩基性、耐強塩基性、耐有機溶媒性、耐光性および耐候性等である。対象物の物性は、機械加工性および燃焼性等であってもよい。
 対象の品質は、例えば、ISO9000より、対象(3.6.1)に本来備わっている特性(3.10.1)の集まりが、要求事項(3.6.4)を満たす程度のことをいう。例えば、車に使用される部品の品質は、見た目に関わる外観、走行距離・燃費に関わる軽量性および車の寿命に関わる部品の耐久性などを指す。その製造時に焦点を当てると、部品点数を減らし、1部品で複数機能を保有すること、加工および製造の容易性、環境負荷がかからない省エネ製造およびリサイクル性などが挙げられる。対象の機能は、例えば、衝撃吸収性、可塑性、透明性、難燃性、帯電防止および滑り性などである。
 予測部113は、互いに異なる複数の特性を予測することが好ましい。例えば、予測部113は、対象物の機械物性、物理物性、熱特性、成形性、電気特性、耐久性、機械加工性および燃焼性等のうち、互いに異なる複数の特性を予測する。予測部113は、例えば、機械強度および衝撃強度を含む機械物性と、成形収縮率を含む成形性とを予測する。
 予測部113は、例えば、ユーザーから予め入力された指示に基づいて、予測する複数の特性を決定する。ユーザーは、例えば、操作受付部170を介して指示を入力する。予測部113は、取得部111により取得された対象物に関する科学的情報および非科学的
情報に基づいて、予測可能な複数の特性を決定してもよい。
 制御部114は、予測部113により予測された対象物の複数の特性に関する情報を表示部160に出力させる。
 図6は、表示部160に出力された対象物の複数の特性に関する情報の一例を表している。表示部160には、例えば、対象物に関する情報とともに、予測された複数の特性の値が表示される。
 予測装置100において実行される処理について、以下に詳述する。
 <処理概要>
 図7は、予測装置100において実行される予測処理の手順を示すフローチャートである。図7のフローチャートに示される予測装置100の処理は、予測装置100のストレージ140にプログラムとして記憶されており、CPU110が各部を制御することにより実行される。
 (ステップS101)
 予測装置100は、まず、第1装置200により生成された対象物に関する非科学的情報と、第2装置300により生成された対象物に関する科学的情報とを取得する。予測装置100は、例えば、第1装置200から非科学的情報、第2装置300から科学的情報を各々取得する。第1装置200および第2装置300は、非科学的情報および科学的情報をサーバー等の他の装置に記憶させてもよく、予測装置100は、他の装置から非科学的情報および科学的情報を取得してもよい。
 (ステップS102)
 予測装置100は、ステップS101の処理において取得された非科学的情報および科学的情報各々から特徴量を抽出する。
 (ステップS103)
 予測装置100は、ステップS102の処理において抽出された非科学的情報および科学的情報各々の特徴量を、予め機械学習された識別器に入力して、対象物の複数の特性を予測する。例えば、識別器は、後述するような学習方法によって、予め多数準備された複数の対象物の非科学的情報および科学的情報各々の特徴量と、複数の対象物各々の複数の特性の測定値とを有する教師データを用いて機械学習される。具体的には、識別器は、複数の対象物に関する非科学的情報および科学的情報から抽出された特徴量を入力データ、複数の対象物各々の複数の特性の測定値を出力データとして機械学習される。各特性に対して機械学習を行うため、それぞれの特性の予測に適した特徴量群が見出される。画像を含む非科学情報から、ディープラーニングによって特徴量を自動抽出する技術が知られている。この技術を用いることにより、膨大なデータの中からパターンまたは共通点が見出され、特徴量が抽出される。このため、所定の特性に影響を与える因子が明らかになっていない場合、つまり、所定の特性が発現されるメカニズムが十分に理解されていない場合であっても、特性の予測に適した特徴量を抽出することができる。このため、画像などの非科学情報の特徴量抽出には、ディープラーニングを用いることが好ましい。これにより、予測装置100は、非科学的情報および科学的情報各々について抽出された特徴量を識別器に入力することによって、対象物の複数の特性を予測することができる。
 識別器は、複数の対象物に関する非科学的情報および科学的情報を入力データとし、複数の対象物各々の複数の特性の測定値を出力データとして機械学習されてもよい。また、識別器に入力する情報は、対象物に関する非科学的情報および科学的情報各々の特徴量に限定されない。例えば、対象物に関する非科学的情報および科学的情報各々の特徴量に加えて、他の情報が識別器に入力され、学習および予測を行うための情報として用いられてもよい。
 (ステップS104)
 予測装置100は、ステップS103の処理における識別器による出力に基づいて、対象物の複数の特性の予測結果を生成する。
 (ステップS105)
 予測装置100は、ステップS104の処理において生成された予測結果を出力する。例えば、予測装置100は、ステップS103の処理において予測された複数の特性各々の値を、対象物に関する情報とともに表示部160に表示する(図6)。
 <学習処理について>
 次に、識別器において用いられる学習済みモデルの機械学習方法について説明する。
 図8は、学習済みモデルの機械学習方法を示すフローチャートである。
 図8の処理においては、予め準備した複数の対象物の非科学的情報および科学的情報各々の特徴量を入力とし、複数の対象物各々の複数の特性の測定値を出力とする、多数(i組個)のデータセットを学習サンプルデータとして用いて機械学習が実行される。識別器として機能する学習器(図示せず)には、例えば、CPUおよびGPUのプロセッサを用いたスタンドアロンの高性能コンピューター、またはクラウドコンピューターが用いられる。以下においては、学習器において、ディープラーニング等のパーセプトロンを組み合わせて構成したニューラルネットワークを用いる学習方法について説明するが、これに限られず、種種の手法が適用され得る。例えば、ランダムフォレスト、決定木、サポートベクターマシン(SVM)、ロジスティック回帰、k近傍法、トピックモデル等が適用され得る。
 (ステップS111)
 学習器は、教師データである学習サンプルデータを読み込む。最初であれば1組目の学習サンプルデータを読み込み、i回目であれば、i組目の学習サンプルデータを読み込む。
 (ステップS112)
 学習器は、読み込んだ学習サンプルデータのうち入力データをニューラルネットワークに入力する。
 学習サンプルデータとなる非科学的情報および科学的情報には、擬似画像を用いてもよい。擬似画像は、元データに基づいて擬似的に作成された画像である。このとき、元データは、科学的情報および非科学的情報のどちらであってもよい。元データが科学的情報であるときには擬似画像を科学的情報として扱い、元データが非科学的情報であるときには擬似画像を非科学的情報として扱う。
 擬似画像は、例えば、対象物を撮像装置、X線タルボ・ロー装置、超音波装置、蛍光指紋測定装置、ハイパースペクトルカメラ、ミリ波イメージング装置、走査電子顕微鏡、原子間力顕微鏡、透過型電子顕微鏡、蛍光顕微鏡および多次元色度計の少なくともいずれかを用いて撮像された画像として擬似的に作成された擬似画像である。例えば、対象物に類似する材料および混合比の複合材料をX線タルボ・ロー装置により撮像した複数の画像を元データとして、擬似的に対象物のタルボ画像(擬似タルボ画像)を作成してもよい。
 (ステップS113)
 学習器は、ニューラルネットワークの予測結果を、正解データと比較する。
 (ステップS114)
 学習器は、比較結果に基づいてパラメータを調整する。学習器は、例えば、バックプロパゲーション(Back-propagation、誤差逆伝搬法)に基づく処理を実行することにより、比較結果の差異が小さくなるようにパラメータを調整する。
 (ステップS115)
 学習器は、1~i組目まで全データの処理が完了すれば(YES)、処理をステップS116に進め、完了していなければ(NO)、処理をステップS111に戻し、次の学習サンプルデータを読み込み、ステップS111以下の処理を繰り返す。
 (ステップS116)
 学習器は、学習を継続するか否かを判定し、継続する場合(YES)、処理をステップS111に戻し、ステップS111~S115において再度1組目~i組目までの処理を実行し、継続しない場合(NO)、処理をステップS117に進める。
 (ステップS117)
 学習器は、これまでの処理で構築された学習済みモデルを記憶して終了する(エンド)。記憶先には、予測装置100の内部メモリが含まれる。上述の図7の処理では、このようにして生成された学習済みモデルを用いて対象物の複数の特性が予測される。
 <予測装置100および予測システムの作用効果>
 本実施形態の予測装置100および予測システムは、対象物に関する非科学的情報および科学的情報を取得し、取得した非科学的情報および科学的情報に基づいて、対象物の複数の特性を予測する。これにより、対象物の複数の特性を同時に予測することが可能となる。以下、この作用効果について説明する。
 上述のように、様々な分野でDX化の促進が望まれている。DX化では、手作業の工程数を減らし、作業の効率化が図られる。しかし、未だ十分なDX化が進められていない分野も存在する。例えば、製品の機械物性および成形性など複数の特性は、各々、手作業で測定されることが多い。手作業で製品の特性の測定を行う場合、人為的な要因に起因して測定値がばらつくおそれがある。
 これに対し、本実施形態の予測システムおよび予測装置100では、対象物に関する非科学的情報および科学的情報に基づいて、対象物の複数の特性が予測されるので、簡便に対象物の複数の特性を同時に把握することができる。例えば、対象物の引張強度、衝撃強度、形状安定性および耐久性など、製造工程からライフサイクルにわたる対象物の特性を容易に把握することが可能となる。したがって、手作業の工程数を抑えつつ、より効率的に社会的に価値の高い製品に到達しやすくなる。
 特に、本実施形態の予測システムおよび予測装置100では、対象物に関する非科学的情報および科学的情報の組み合わせに基づいて予測するので、より高い精度で対象物の複数の特性を予測することが可能となる。以下、これについて説明する。
 非科学的情報には、ローデータ(科学的情報)だけからは得られないような新たな多次元情報が含まれる。また、科学的情報には、対象物に発生している現象を直接的に捉え、反応のメカニズムや機能が発現する機構へ直接的に結び付けられる情報が含まれる。仮に、非科学的情報のみに基づいて予測を行うと、対象物の原材料、製造プロセスおよびそのほかの現象発現に紐づく情報が考慮されないので、原材料の品質(不純物の量など)の影響を捉えることが困難である。一方、科学的情報のみに基づいて予測を行うと、構造的情報が考慮されないので、例えば、繊維の配向状態等に起因するプラスチック製品(対象物)の強度の変化を捉えることが困難となる。
 さらに、非科学的情報に含まれる多次元の情報の特徴量を、ディープラーニングを用いて抽出することが好ましい。これにより、膨大なデータの中からパターンまたは共通点が見出され、簡便に、特徴量が抽出される。よって、所定の特性に影響を与える因子が明らかになっていない場合、つまり、所定の特性を発現するメカニズムが十分に理解されていない場合であっても、機械学習に必要な特徴量を抽出することができる。このことは、科学的情報からは得られない情報または科学的情報からは得られない特徴量を、非科学的情報から得られる可能性を示唆している。このように、ディープラーニングを用いて、非科学的情報の特徴量を抽出することにより、より高い精度で対象物の特性を予測することが可能となる。
 上記で説明したように、非科学的情報および科学的情報の両者を取得することにより、対象物の物性、品質および機能などの特性をより正確に捉えることが可能となる。即ち、より高い精度で対象物の複数の特性を予測することが可能となる。
 以下では、より詳細に本実施形態の予測システムおよび予測装置100の作用効果について説明する。
 本実施形態の予測システムおよび予測装置100は、Society 5.0に適合する少量多品種のものづくりのための、被検体(物質)の状態や組成の微妙な違いや変化の検査や検出、分析、測定またはセンシングする手法において、入力側のデータとして、原料情報やプロセス条件や、その微小な違いや変化やそれと相関する特性の検出することを目的として得たデータであって検出信号やその情報をそのまま利用、活用するようなデータから得られた科学的情報と、ある対象物に対してその性能や機能、品質などを解析や分析、評価するために取得するデータに処理を加えた非科学的情報とを組み合わせて教師データとし、それを人工知能やアルゴリズムを用いた演算により評価する装置およびシステムに関するものである。
 この予測システムおよび予測装置100は、現在営まれている各種製造業、加工業、それに関連または付随する研究開発、品質保証、検査、分析に関わるものであり、その他、原材料や製造上のトレーサビリティーやIDに関する、物質の状態を高感度に記述、記録し、評価することを目的としている。
 1.デジタルトランスフォーメーションをものづくりに適用するためには
 1-1.製造業における課題、およびその変化
 「ものづくり」とも呼ばれる製造業において、研究開発、技術開発、生産、製造等の行為は、大部分が技術者や職人の「カン」と「経験」と「コツ」と呼ばれる属人的かつ暗黙知的な活動や思考によって担われており、その技能やノウハウの伝承が思うように進まないことが社会課題としてクローズアップされている。
 そのような背景からファクトリー・オートメーションが様々な業種で採り入れられ生産性や品質の向上に寄与しているが、これは全て「大量消費・大量生産」という経済活動の大原則に則して成り立つものであり、日本政府が提唱する超スマート社会(Society5.0)で定義される、「必要なモノを、必要なヒトに、必要な時に、必要なだけ」提供する製造業とは合致しない。つまり、2030年を想定して進められている超スマート社会においては、オートメーション自体も否定されるべき製造方法ということになる。
 ごくごく一部の製造業への適用にはなるが、立体造形物を製造することに関しては、例えば3Dプリンターが上記の超スマート社会の要望に応えうる手段にはなるが、造形はできるものの適合できる材料は金属、合金、セラミックス程度であり、最も汎用的なプラスチックではなかなか事業規模での適用ができていないのが実情であり、さらに、3Dプリンターの特徴上、造形物の方位による機械強度が違うことや、製造時間が長いこと、意外にも廃棄物が多く省資源やSDGsの観点では課題が多いことなど、さまざまな不具合を抱えている。
 1-2.食品加工における課題、およびその変化
 上記に挙げたような、所謂工業製品以外にも同様にものづくりにおける課題として、例えば食品加工においても数多くの課題がある。
 例えば、直近においては、食品の製造・流通のグローバル化を受け、2018年6月に可決した改正食品衛生法によって、日本でも2020年6月1日より「HACCP(ハサップ)導入の義務化」が始まり、一年の猶予期間を経て、2021年6月からは「HACCP完全義務化」が全ての食品関連事業者に求められるようになった。
 HACCPは製造工程を細分化し、工程ごとのリスク管理を行うことになり、問題がある商品の出荷を防ぐことができ、万が一食品事故が発生した場合でも、どの工程に原因があるのかを迅速に究明できることを特徴としているが、大規模製造業者以外にも求められる法律であるため、全ての工程を高度分析機器で管理することは費用的にも非常に難しく、また、管理する項目が多岐にわたるため、その対応が大きな課題となっている。
 従来の方式は、「包装」から「出荷」での「抜き取り検査」が主流だったが、HACCP(ハサップ)方式は、原材料の受け入れから加工・出荷までの各工程で、「微生物による汚染や異物の混入などの危害を予測」し、「危害の防止につながる特に重要な工程を連続的・継続的に監視し記録する」といった、製品の安全性を確保する衛生管理手法のため、これまでの最終製品の抜き取り検査に比べて、より問題のある製品の出荷防止を可能にできる一方で、検査や解析の費用や手間(工数)、さらには製造工程の大規模改造等がすでに大きな問題となっている。
 HACCPは日本国内ではまだ始まったばかりの制度・規制のため、業界関係者以外には大きな課題であること自体が十分に理解されていないが、これは食品業界を超えて、さまざまな角度からこの対策を講じることが不可欠であることは自明である。
 1-3.品質保証における課題
 前記の食品加工・製造においても品質保証は重要な行為であり、これまでも様々な方法で対策が打たれてきている。ただ、問題視しなければならないのが品質保証の評価項目が慣例やプロセス条件(例えば、100℃、2分加熱、あるいは、造形後は室温にて1時間アニールなど)の管理に留まり、品質に関する本質的な分析がなされていない場合も数多く存在することである。
 また、樹脂材料などの化学品においては、弾性率や軟化点などの代表的な物性はスペック項目として計測され、カタログや品質証明書等に掲載されているが、例えばそのスペック値が同一であったとしても、加工を施した際に同じ特性になるとは限らず、それについては使用者側が長年の経験と担当者のカンやコツに頼った属人的な品質チェックによって一定程度の品質の担保が行われることも一般的である。
 このような品質保証体制は、これまでの製造業の中心であった、「大量生産/大量消費」が前提だったためであることは言うまでも無く、超スマート社会に対応するオンデマンド品においてはもはや抜き取り検査では対応不可能であり、個別に、かつ、簡便に品質を維持・保証する仕組みが必要となってくるのは明白である。
 1-4.検査、分析における課題
 消費や生産のスタイル、つまり「世の中の常識」が変化するのであれば、当然、検査や分析の方法や手段に関してもそれに対応させる必要が生じてくる。
 現在まで分析装置として購入できる機械類は、どんどん計測精度が向上してきており、また操作性も格段に良くなり、装置サイズも小さくなっている方向で、今後もそのトレンドは大きく変わらないものと予想される。
 ところが、前記のように製造物(食品や医薬品、飲料等も含めて)に関する品質保証や検査の「常識」が変わるのであれば、そのような従来の分析装置を超スマート社会での品質保証の計測ツールとして適用することは不適格と考えるべきで、新たな検査・分析方法が必要になってくるはずである。
 ここで現在市販されている分析装置について考えてみる。分析装置メーカーも当然収益を上げることを目的としている(慈善事業ではない)ため、多くのユーザーに価値を認めてもらえるもののみを上市することになる。分析装置の最大のユーザーは、大学や企業の研究部門を代表とするアカデミックな研究を行う科学者が対象となる。またそのようなユーザーが分析装置を使用する目的の多くは学術論文や学位論文の論理性を検証することになる。つまり、分析装置から発生するデータには論理的裏付けが必ず存在し、その論理性は少なくともユーザー側の科学者が理解できるものでなければ意味を持たない。
 一方で、品質保証の対象となる物質や食品は、全て科学的な根拠がなければ品質を保持できないのであろうか。そこに根本的な問題点であるのではないかと、本発明者等は考えた。即ち、計測できる対象物が多岐にわたり、それらの対象物に対して簡便な計測で、かつ、大量にデータを発生でき品質や特性を保証するのであれば、必ずしも論理性は担保されなくても(本質的には論理性があっても、その論理性が人間に理解されなくても)「品質を保証する」という目的に対しては十分なのではなかろうか。
 このような従来の分析機器ではなく、従って、現在上市もされていないが超スマート社会の製造行為において必要十分な検査・分析方法がきっとあるはずというのが本発明者等の根本にある問題意識であった。
 1-5.トレーサビリティーのおける課題
 前記の検査・分析にも関連するが、「必要なモノを、必要なヒトに、必要な時に、必要なだけ」製造するということになると、むしろ製造物の最終的な特性や品質よりも、その製造途中でのトレーサビリティーの方が重要になってくるはずで、厳密に管理された原材料を、透明性の高い製造プロセスで作ったこと自体が品質になるし、それが消費者の信用に繋がるのではなかろうか。もし、そうなるとするのであれば、製造過程のトレーサビリティーを簡便に記録しデジタイズしておくことが重要になってくる。
 1-6.製造物責任が問われる原材料や中間加工品のID(状態記録)における課題
 オンデマンドの製造物が世の中に広く流通すると、製造物責任に対する備えが大きな課題となってくる。先に述べたトレーサビリティーもその備えの一つであるが、使用する原材料や途中で取り出す場合は中間体、そして最終製造物、それぞれでその物質の素性や状態を記録しておく、つまり、広域なID化が必ず求められるようになる。
 現在でもQRコード(登録商標)やバーコード等を使ってIDを記録しているものも多く存在するが、原材料までIDが必要になるとすると、第一次産業を担う人たちにも簡便にIDを付与・取得できる方法を考案し、普及させることが不可欠になってくる。
 また、全ての原材料、中間体、最終製造物で、さらにそれがオンデマンド的に作られることになると、そのIDを保管することや、管理すること、さらには問題等が生じた時にデータをつなぎ合わせて製造の上流側に遡ることが大きな課題となり、それに関しては現在の人間中心の管理では対応できるはずもなく、人工知能(AI)を有効に活用することが前提となる。
 2.ものづくりとデータサイエンスおよび計算科学をうまく連携させるには
 2-1.データ駆動型研究開発への移行期である現状の課題
 デジタルトランスフォーメーションの技術・研究開発版としてバイオインフォマティクスやマテリアルズインフォマティクス等のデータ駆動型研究開発が脚光を浴びている。
 https://www.admat.or.jp/library/5975666db3de4b020a7803ae/61ea4ddafc46fdbc65f00a21.pdf
 国際的な流れは、米国が2011年に立ち上げた、Materials Genome Initiativeに端を発し、それに追従するように欧州のNOMAD、韓国のCreative Materials Discovery等が国家プロジェクトとして活動を実行し、日本におおても、2014年に立ち上げたSIP革新構造材料/MIシステムや2015年~のMi2I、2016年~の超先端材料超高速開発基板技術プロジェクト(通称;超超Pj)等、文部科学省や経済産業省の重点施策として国の研究期間と民間を巻き込んだ産官連携を中心に、研究開発や技術開発に対し、積極的に計算科学やデータ駆動型開発を採り入れた取り組みが実行されてきている。
 https://www.admat.or.jp/library/5975666db3de4b020a7803ae/61ea4ddafc46fdbc65f00a21.pdf
 この中で超超Pjは6年間の活動期間を満了し、そこで検討された19のテーマに対して、具体的に開発期間または試作回数の短縮率が報告されている。(https://www.admat.or.jp/library/5975666db3de4b020a7803ae/61ea4ddafc46fdbc65f00a21.pdf)
 このプロジェクトでは、19もの数多くのテーマに対して、計算・プロセス・計測を組み合わせることの利得が検証されたものであるため、その成果は今後の研究開発や技術開発の指針として大いに参考になる。
 全てのテーマにおいて成果報告書がweb上にアップロードされているため、それらを注意深く読み込んでみると、次のような全体像が見えて来る。どのテーマも最初からデータ駆動型開発を実行していたのではなく、やはりデータが集積されるまではコンピュテーショナルサイエンスは主にシミュレーションに活用されているようである。
 また、データを大量に取得するには従来のヒトが主体となった実験や分析では対応できないため、ハイスループット実験装置やハイスループット計測装置が必要となってくる。これらは国家プロジェクトとして産官学連携を推進力として検討を進めたことで成功に至っているが、これを単独企業や大学の研究室で実行するには、各種スキル、費用面、知識面でかなり困難であると予想される。
 2-2.データ駆動型が主流となる際の課題
 経済産業省「DXレポート2」(2020年12月)にはこのようなことが掲載されている。
 解釈はいろいろできるが、データ駆動型開発は、この図においては“デジタルトランスフォーメーション”に位置づけられる“市場ニーズに応じた価値創出”のための研究開発や体制の変革に相当する。
 一方で、多くの製造業や大学の研究室では、個別の作業・製造プロセスのデジタル化、即ち、“デジタライゼーション”すらできていないところが多く、さらには、アナログ・物理データのデジタルデータ化、即ち、“デジタイゼーション”も未了というところも実態としては多く存在する。
 もちろん、デジタイゼーションとデジタライゼーションをスキップして、いきなりデジタルトランスフォーメーション(DX)に移項することも不可能ではないが、現在のやり方を基本とする場合では、その2段階を割愛してDXに移項するのはおそらく無理で、何らかの新たなツールや手法が必要となってくる。
 2-3.製造業全般における論理的解釈にまつわる課題
 これまで、特に画像データを活用する取り組みを例示してきたが、また、それとは別に製造業に特有のデータ駆動型開発の課題も存在する。
 データ駆動で現在もっとも効果を上げている一つがeコマース(電子商取引)である。この場合、消費者の固有データが大量に必要となり(いわゆる“ビッグデータ”)、それをAIを使って機械学習したり深層学習することで、個人の消費行動に対してリコメンド(推奨候補の提示)を行うことが基本となり、これまでの流通卸業とは全く異なる発展を遂げている。ただし、この場合、ビッグデータ解析をした結果はリコメンド程度の確度で許容されるため、それに関して論理的な説明をする必要はない。
 一方、製造業や研究開発におけるデータ駆動は、帰納法的な解の導き方であるため、従来の理論や法則に裏打ちされた演繹法的な解法ではないため、時に突飛であり、意外性もあって、新たな気づきへと繋がる利点もあるが、そのデータ駆動から得られた結果を、そのまま製造業における工程処方にストレートに適用することは、現在の状況においては受け入れ難く、かならず何らかの論理的な考察を必要とする。ここが、製造業や研究開発におけるデータ駆動の難しさであり、乗り越えなければならない壁でもある。
 2-4.第一次産業におけるデータ取得ならびにデータ管理の課題
 さらに1-2.項で述べた食品製造におけるHACCPにおいては、将来的にはこの分野においてもデータ駆動が主流になるとは言うものの、製造業(第2次産業)にも数段増して第一次産業におけるデータ取得は、これまで殆ど行われていなかったことからも、社会全体の大きな課題となってのしかかってくるのは自明であり、その観点からも新たな簡
便かつ有効なデータ取得手段や方法が必要になってくる。
 2-5.順問題解法型コンピューターシミュレーションの課題
 データ駆動型開発を帰納法的、すなわち逆問題解法的と捉える場合、科学法則や理論に則ってそれをコンピューターを使って高速演算して解を求めるシミュレーションは、順問題解法の代表的な手法と言える。
 2-1.に記載した超超Pjの成果報告資料によれば、全てのテーマがデータ駆動型開発で研究開発期間を短縮した訳ではなさそうで、中には順問題解法型のシミュレーションだけを駆使して大きな成果を導いた事例も複数紹介されている。
 これらシミュレーション技術による成果を塾考してみると、物体のマクロの挙動を推測するために、分子や原子のナノメートル以下での第一原理計算から、サブミクロン領域までは分子動力学計算(MD)を使い、さらにミリメートル以上のサイズには有限要素法を適用する等、ナノ~ミクロン~ミリを繋ぐ“マルチスケールシミュレーション”を達成手段に使っていることが分かる。
 このような計算には、いわゆるスーパーコンピュータークラスの大型超高速計算機が必要となり、国家プロジェクト以外では、なかなか実施するのが難しいという問題がありそうなことが容易にうかがわれる。
 2-6.逆問題解法型インフォマティクスの課題
 一方、逆問題解法型のマテリアルズインフォマティクスやプロセスインフォマティクスにおいては、前記の高度シミュレーションほどのマシンパワー(演算速度)は必要ないが、そのかわり、現象や物質に紐付いた、いわゆる“質の高いデータ”を大量に必要とする。
 従来、質の高いデータは1-4.に記載した機器分析により取得するのが一般的だが、それではデータ取得に要する時間や工数が大きく、データを取ること自体がデータ駆動の律速となってしまう。
 前記、超超Pjの一部のテーマにおいては、当初、論理的な理解に活用していたコンピューターシミュレーションを、データ駆動用のデータ発生手段として合理的に用いた例が数多く紹介されており、大きな成果を導いているが、それにおいてもスーパーコンピューターが必要となり、前記2-5.と同様の計算機にまつわる課題が発生してしまう。
 つまり、コンピューターシミュレーションのようなバーチャルでの実験ではなく、もちろん、従来の機器分析のような生産性の低いリアル実験でもない、製造業向けのデータ取得手段や方法が必要になってくる訳である。
 2-7.両方向からのコンピュテーショナルサイエンスを利用した開発手法の現状
 データ駆動のデータの大部分をコンピューターシミュレーションで発生させた場合、基本的にコンピューターシミュレーションは演繹的な手法であるため、その科学的な考察は可能である。
 一方、データ駆動による結果は、帰納法的解法によるものであるため、基本的にはその理由や科学的根拠まではわからないが、データ自体に論理性が付与されているため、特定領域の専門科学者がこの両方を取り扱うことで、逆問題的に出てきた解を順問題的に理論付けることが可能となり、製造業や研究開発においては新たな合理的開発手段になりうるものと思われる。
 バーチャルなシミュレーションにより取得されるデータに加えて、従来の機器分析とは異なるが、物質や現象との紐付けがあり、リアルで、かつ、生産性の高い、データ取得手段があれば、前記全ての課題が解決されるはずである。本発明者等は、この基本的な理念に基づき、新たなデータ取得システムの実現に向けて挑戦した。
 3.ものづくり現場での現状の取り組み-画像データ活用の観点から-
 3-1.画像データを活用する取り組み
 デジタルトランスフォーメーション(DX)の推進を支援する取り組みとして、画像データを取得して活用し、課題を解決するシステムが公開されており、インダストリー分野においても有効な取り組みとなっている。
 各種センサーやカメラなどの様々な「モノ」をインターネットに接続し、収集したデータを活用するIoT(Internet of Things)という概念が注目されており、DXの加速が叫ばれていることも相まって、以前と比べ企業や個人の日々の活動にデジタル技術が広く浸透してきている。しかしその一方で、製造業においては未だデジタル技術の取り込み、DX推進が十分にできていない生産現場が多く存在する。そうした現場でデジタル技術を用いた改善に遅れが生じている理由として、デジタル技術の初期導入コストの高さや近年のデジタル技術に精通した人財確保の難しさ、限られたリソースの範囲内であるため最適な解決策を導き出すのが難しい、といったものがある。
 このような現状に対して、画像データを取得して活用し課題を解決する取り組みは、比較的安価な各種センサーやカメラを使用し、一旦システムを構築してしまえばデジタル技術に精通した人材は多くは必須ではなく、製造業等の現場に比較的容易に導入することが可能となる。更に、複数の企業と協業して技術やノウハウを出し合うことで、広く多種多様なリソースがアクセス可能となり、最適な解決策に到達しやすくなる。
 3-2.画像データを活用する取り組み例
 画像データを活用する取り組みの例として、画像技術とIoT技術を組み合わせた「画像IoT」システムを挙げることができ、生産性の向上や労働安全など多岐に及ぶ課題やニーズに対して、解決策の提案に繋げることが可能となる。
 ここで、「画像IoT」とは、コア技術を生かした現場(エッジ)から高品質な画像データを収集するデバイス実装技術、様々なセンサーデータを統合し高度な認識・判断を行うAIプラットフォーム、これらの技術を組み合わせた総称を画像IoTと定義している。
 近年、データやIT技術を活用し、急速に成長する企業が世界的に増えている。これらの企業は、ソフトウェアやクラウドの最新技術を最大限に利用し、データ活用に基づくお客様への新たな価値や体験をサービスとして提供することで、世界規模に成長している。
 これらのビジネスは成長する過程でプラットフォームの概念を生み出し、業界・業種を超えた破壊的イノベーションを引き起こしている。これからのビジネスでは、新規事業の創出において、このようなプラットフォームを活用することが必須であるのは周知の事実である。
 画像IoT技術を活用し、顧客やパートナー企業と共に社会のDXを加速させる画像IoTのプラットフォーム(IoT-PF)が提案されている。IoT-PFは、エッジIoT戦略で求められる現場での解析処理実行やクラウドとの連携だけでなく、実際に現場に機器を設置する際に求められる機器管理やセキュリティーなどの非機能要求に応えるための共通機能を提供するプラットフォームである。これを活用することで、ユーザエクスペリエンスや差別化機能の開発に注力し、効率的かつ俊敏にソリューションを提供できるようになる。
 IoT-PFを活用し、製造現場のカメラ映像を解析し活用するための共通アーキテクチャを策定した。製造現場の課題の多くはカメラ映像の解析により可視化することができるため、「製造業工程の生産性可視化」や、「労働安全ルール遵守の可視化」といった機能を共通のシステムの中で構築することが可能となった。今後、他の用途にも容易に展開できると考えている。
 IoT-PFは、様々なお客様の課題を解決するため、現場の生データを取得し、AIを活用した分析結果をリアルタイムに実世界にフィードバックすることができる制御技術の集合体である。更にパートナー企業とのエコシステムを構築し、顧客にとって最も良いサービスを提供するための顧客価値共創のハブとなる。画像IoT技術を用いて様々な「みたい」という要望に対して最適なソリューションを提供することが期待されている。
 3-3.FORXAI(登録商標)画像IoTプラットフォームの構成
 この画像IoTプラットフォームは、主に下記のような構成要素から構築されている。
 (1)AIライブラリ/アクセラレータなど画像を中心とした高速・高精度なAI学習/推論の技術群である“Imaging AI”、画像に特化したエンジン;画像解析を行うための高速・高度なAI処理技術群である。特に、この画像処理技術を使い、姿勢推定や人物属性検知などの「人行動」、X線動態解析や画像バイオマーカーなどの「先端医療」、欠陥検出や分類などの「検査」の3つの領域に強みがあり、今後の注力領域でもある。
 (2)IoTデバイスとクラウド間のスムーズなデータ処理/リモート管理・更新を可能とする“IoT Platform”、(3)MOBOTIX(登録商標)やLiDAR、ガス漏洩監視カメラなど人間の視覚能力を超えた情報を処理可能な自社/他社デバイス群となる“Sensor Device”、これら三位一体の画像IoT技術と、パートナー企業の技術と掛け合わせてソリューション群を形成する。
 システム機能構成 
 FORXAI IoT-PFはクラウド・エッジ・デバイスの3階層からなり、それぞれに求められる機能をあらかじめ用意している。
 ・クラウド
 FORXAI IoT-PFのクラウドサービスでは、データの保管や検索などの管理、メールやモバイルプッシュ通知の送信、機器の管理などを実行するAPIを用意している。
 ・エッジ
 エッジは現場に置かれたコンピューターで、デバイスからの情報を受け取りディープラーニングなどによる処理を実行し、クラウドに結果を送信するなどの機能を担う。
 ・デバイス
 デバイスは現場に設置するセンサーやアクチュエーター類、およびそれらを制御する組み込みシステムを指す。
 IoT-PFで実現できるシステム
 ソリューションの例として、現場のカメラデバイスから動画像を取得し、AIで認識させた結果をクラウド経由で閲覧したり、特定状況が出現した場合スマートフォンへ通知したりすることができる。また、クラウド経由でデバイスの稼働状況も管理することができる。
 3-4.画像IoTシステムによる効果と課題
 ここまでに説明した画像IoTシステムをインダストリー製造分野へ活用した事例は、「製造業におけるFORXAI IoT Platformの活用」(https://research.konicaminolta.com/jp/pdf/technology_report/2022/pdf/19_yoshizawa.pdf%22)、「FORXAI Recognitionの骨格検出アルゴリズムによるMFP組み立て工程改善」(https://research.konicaminolta.com/jp/pdf/technology_report/2022/pdf/19_sonoyama.pdf%22)および「産業保安のスマート化を目指したガス監視システム高度化の取り組み」(https://research.konicaminolta.com/jp/pdf/technology_report/2021/pdf/18_asano.pdf)にて報告されているように、人間の行動を捉えて作業効率化のソリューションを提供しているものや、
(例えばhttps://linx.jp/product/mvtec/halcon/に示すように)製造する対象物の性能や機能、品質、物性など特性へのソリューションを提供しているものの検査やモニタリングなど生産工程への適用が主であり、研究開発におけるインフォマティクス(機械学習)の説明変数の強化として使用される例はまだ限定的である。
 これまでの日本の産業を支えていた日本特有の“ものづくり”において、それを根底から支えていたのが研究開発であり、この研究開発こそがその特性を実現する場である。従来の研究開発方法やものづくり手法ではAIやロボティクス活用が一般化した現在においては、さらに将来に向かっては、大きな変革が必要であることは言うまでも無いものの、前第2章に記載したように、全てをデータ駆動型開発、データ駆動型生産にするのは合理的ではなく、一部は順問題解法的な従来型研究開発やコンピューターシミュレーションを活用することも必要不可欠である。
 特に、機器分析に代表される科学的な解析は、研究者や技術者の考察の裏付け以外にも、インフォマティクスを実施する際の目的変数としても有効であり、分析、シミュレーション、インフォマティクス(機械学習)のそれぞれの利点と欠点を理解した上で、相補的に活用することが鍵となってくる。一言で「データ駆動」と言っても、適用する領域や開発課題によって、それを演繹的に理解する必要があるかどうかをケースバイケースで判断することが肝要である。
 画像IoTシステムをより一層インダストリー分野へ広く活用することにより、サプライチェーン全体や産業全体の効率化による改革とともにSociety 5.0に適合するものづくりへと進化するものと信じている。
 インダストリー領域でのものづくりにおいて、前記の通り画像データが重要であること、や、帰納的解釈だけでなく演繹的な解釈も必要であること、データ駆動型技術開発を適応するべきであることを示してきたが、現状ではそれらが十分に満たされていないと考えている。その原因は、「ものづくり」とも呼ばれる製造業において、研究開発、技術開発、生産、製造等の行為は、大部分が技術者や職人の「カン」と「経験」と「コツ」と呼ばれる属人的かつ暗黙知的な活動や思考によって担われており、その技能やノウハウの伝承が思うように進まないためと捉えており、社会課題としてもクローズアップされている。以下にこれらの課題について具体的な事例を示す。
 1)プラスチック製品の製造における課題
 現状、「カン」や「経験」、「コツ」に頼っているものづくりの場として、最初にプラスチック製品の製造が挙げられる。そもそも「カン」や「経験」、「コツ」に頼ってしまうのは当然それらの積み重ねによって問題を解決できた成功体験を得たことには違いないが、異なる観点から考えると、それら以外に頼りにするべき判断の指標やデータが無かったとも考えられる。プラスチック製品に求められる強度やしなやかさ、後加工のしやすさといった物理的性能は樹脂繊維が配向しているか、添加剤が機能しているかとそれらが製品で均質か、また製品の表面状態など、様々な要件で決定されるのに対しそれぞれが必ずしも目視評価などで情報を容易に把握できるものではなく、繊維の配向などは高価な分析装置等によって状態を観察されるようなものではあるものの、その費用や時間がかかるなど、製造現場に適応しやすいものではないことの問題がある。つまり、帰納的な解釈および演繹的な解釈のいずれにも、また、データ駆動型技術開発においても必要となる十分なデータ数の取得に課題があると言える。
 ここで立体造形物を製造することに着目すると、前述した3Dプリンターを用いることは製造条件などを数値・データとして設定するために暗黙知に頼らない手段と考えられる
が、造形はできるものの適合できる材料は金属、合金、セラミックス程度であり、最も汎用的なプラスチックではなかなか事業規模での適用ができていないのが実情であり、さらに、3Dプリンターの特徴上、造形物の方位による機械強度が違うことや、製造時間が長いこと、意外にも廃棄物が多く省資源やSDGsの観点での新たな問題が多いことなど、さまざまな不具合を抱えている。また現実の現場をみると、プラスチックの製造や加工はおもに中小企業によって担われており、人が介する工程がほとんどであることも、データ取得をしづらい原因と言える。
 2)ゴム製品の製造における課題
 ゴムの製造の一般的な工程は、(1)設計工程、(2)精錬工程、(3)加硫・成形工程、(4)検査工程である。(1)設計では要求性能に適合するようゴム原料(生ゴム)や配合剤(可塑剤や加硫促進剤など)の量などの材料条件や加工する時間などのプロセス条件を決定し、(2)ロールでは決定した条件の架橋剤以外の材料を計量して原料ゴムに配合剤を加えて練ることにより、未加硫ゴムコンパウンドを製造する工程である。(3)加硫・成形工程は、精練により製造された未加硫ゴムコンパウンドを製品に加硫(架橋)成形する工程であり、最後の(4)検査を行っており、この検査は最後の工程だけでなく途中の工程での検査も行われるのが通常である。
 配合剤は要求性能によって10種を超える場合もあるが、それぞれ1種または数種程度を同時に使用した場合の化学反応のメカニズムや反応性(反応のしやすさ)を理解できていても、複数の配合剤を混合する場合にはメカニズムや反応性が相互に影響し合うために複雑となり全てを理解することは大変困難であり、これらの工程のほとんどが「カン」や「経験」、「コツ」に頼らざるを得ない状況であることは容易に想像できる。つまりここでの問題は複数の原料を混合し複雑な化学反応を起こすような複合材料において、全ての現象を理解するため、または捉えるための分析データを全て得ることは大変困難であり、言い換えるとそれらを説明するために必要なデータの種類と数の取得が困難であることと言える。また前項と同様にゴム製品の製造においても人が介する工程がほとんどであり、データを取得しづらい状況であることは前項と同様である。
 3)食品加工における課題
 第1章に挙げた食品加工の課題として、「HACCP完全義務化」という新たな規制への適合を全ての食品関連事業者に求められるようになっている。大規模製造業者のみならず業界関係者全員が受け入れられるような検査、解析のために必要十分なデータの種類と数の取得手段とそれらによって食品の品質を担保できるようなシステムを提供することが課題と言える。
 また、このシステムは、同じ食品加工ともいえるが、新たな産業ともいえるフードテックにおける課題にも関連すると考えている。フードテックは、フード(Food)とテクノロジー(Technology)を組み合わせ、食材の生産から調理加工へIT技術を取り入れることにより、従来にはない新たな食品や調理法などの付加価値を生みだす新産業である。具体的には、前記のような食品の加工・製造へロボットの普及や植物工場での安定な製造から代替肉の製造に代表される食材の研究や開発などが含まれる。これらの研究・開発、製造においてより良い品質、例えば味や食感など、を狙い通りの設計や安定に生産をする際にも必要十分なデータの種類と数の取得手段システムを提供することが課題と言える。
 4)医薬品の製造における課題
 前記の食品と同様、さらにはそれ以上に厳しく製造や品質についての管理を規制が為されているのが医薬品の製造であり、その最も重要な基準の一つと言えるのがGMP(Good Manufacturing Practice)である。医薬品の製造管理及び
品質管理に関する基準で、品質の良い優れた医薬品を製造するための要件をまとめたものであり、1968年に世界保健機関(WHO)がその制定を決議し、それを受けて各国で制定されている。GMPは原材料の入荷から製造、最終製品の出荷にいたるすべての過程において、製品が安全に作られ「一定の品質」が保たれるよう定められている。最近では、最新の国際標準であるPIC/S GMPガイドラインとの整合性をとるため、GMP省令が約16年ぶりに改正され2021年3月に公布、2021年8月1日から施行された。
 このGMPの3原則とは、(1)「人為的な誤りを最小限にすること」、(2)「汚染及び品質低下を防止すること」、(3)「高い品質を保証するシステムを設計すること」であり、誰が作業しても、いつ作業しても、必ず同じ品質・高い品質の製品をつくるための基本要件である。この3原則では、複数回の確認を行うこと(ダブルチェック)や作業記録をとることにより人を介する行動の管理や、医薬品の品名、ロットNoなど識別表示による人間の行動におけるミスの低減がなされていることからも、人を介する行動や原材料や製造プロセスにおける条件は製品、この場合は医薬品の性能にも影響することが認識されていると言える。
 さらに人の行動以外の記録として、現在でもQRコード(登録商標)やバーコード等を使ってIDを記録しているものも多く存在するが、原材料までIDが必要になるとすると、第一次産業を担う人たちにも簡便にIDを付与・取得できる方法を考案し、普及させることが不可欠になってくる。
 また、全ての原材料、中間体、最終製造物で、さらにそれがオンデマンド的に作られることになると、そのIDを保管することや、管理すること、さらには問題等が生じた時にデータをつなぎ合わせて製造の上流側に遡ることが大きな課題となり、それに関しては現在の人間中心の管理では対応できるはずもなく、人工知能(AI)を有効に活用することが前提となる。
 つまり、規制に適合し、且つ、大規模製造業者のみならず業界関係者全員が受け入れられるような検査、解析のために必要十分なデータの数と種類の取得手段を提供することが課題と言え、このデータとして人為的な行動に関する情報と、使用する原材料や途中で取り出す場合は中間体、そして最終製造物、それぞれでその物質の素性や状態に関する情報が必ず求められるようになる。
 5)ものづくりのサプライチェーンにおける課題
 ものづくりへデータ駆動型技術開発を取入れる際の課題示したが、異なる視点からの課題と言えるのが、サプライチェーンを統合したプラットフォーム型のDX実現である。ものづくりの現場は、素材や原材料の生産工程、部品製造工程、組立て工程、販売に至るまで全てを一社で行うことは珍しく、例えば自動車業界におけるサプライチェーンで考えると、自動車を販売する(自動車のブランドを有する)メーカーのもと、原材料のメーカー、その原材料から部品を製造するメーカー、部品から組み立てを行うメーカーなど複数の企業や時には大学や研究機関がピラミッド構造の様な関係で成り立っている。各企業においてDXの推進が行われているものの、企業間においては重要な情報は企業秘密として扱われ、また前項で記載の通り、暗黙知の情報は共有が不可能であることから情報が分断され、プラットフォーム型(統合型)のDXは成り立たない。これは設計する性能や特性が単一であったり単純な製品であったりすればそれほど大きな問題ではないが、複雑系な製品、言い換えると複数の科学的現象が同時に起きる複合材料、複雑系材料の開発では大きな障壁となっている一方、様々な産業において期待されている。
 6)ものづくりのトレードオフにおける課題
 ものづくりの実際の現場で製造されるものにはそのほとんどが複数の機能や仕様の項目をクリアすることが求められており、それらの項目は原料から生産、品証までの研究・から開発製造工程に留まらず、その製品が顧客にわたった際の保存性、耐久性などの製品ライフサイクルの観点も含まれる。前項までに示した課題は明確な言及はしていないものの1つの機能や仕様の項目について性能を予測したり、その性能を満たす条件を見出すことに焦点を当てているが、実際には複数の性能を同時に満たすことが必要であり、その中にはトレードオフの関係にある性能が含まれるため、同時に複数の性能を設計することが求められる。
 ここまでに挙げた現在の課題を整理すると、今後求められるものづくり、特に、高性能や高機能を同時に満たすという観点から複合的、複雑系の難易度の高いものづくりにおいて、SDGsへの適合や各種規制への適応をサプライチェーンやその業界に留まらず社会全体に適する課題解決手段が求められている。対象物の設計において、検査や解析し、重要な判断をするために必要十分なデータの取得手段だけでなく、さらにそれらのデータを統合して対象物の複数の物性や機能、品質を同時に予測するAI解析システムによって、これらの課題を解決し得ると考えている。
 ここで重要となる必要十分なデータを取得する手段として、「非科学的情報」と「科学的情報」との両者を用いることを考えた。
 ここまで挙げたように、データ駆動型技術開発のために、必要十分な質の良いデータの数と種類の取得することが課題であり、その数と種類が必要十分であることを実現する手段として前項に記載のように非科学的情報と科学的情報を組み合わせることによって、一方のみでは不足するデータ種に起因する説明変数を獲得することが可能と考えている。またデータ数についても、非科学的情報のように多次元データから複数の説明変数を獲得できることは実質的な工数としてデータ数を多く獲得していることとも言え、また、画像生成のような手法を組み合わせた非科学的情報もさらにその数を増やすことが可能であり、課題を解決できると言える。
 上記のように、本実施形態の予測システムおよび予測装置100では、対象物に関する科学的情報および非科学的情報を取得し、これらに基づいて対象物の複数の特性を予測する。以下では、本発明者等が実際に検討し、見出した、新たなデータ発生方式とその手段について解説する。
 ・多次元データ
 ここまで述べて来たように、データ駆動型開発は研究開発における破壊的イノベーションであるため、その鍵となる技術はこれまでの踏襲ではなし得ないものである。人間がデ
ータ解析する際、データの次元としては2次元が最も考えやすく、最大でも基本的には3次元である。これは、立体的に座標を想定できることもその理由であるが、もっとも大きな理由は、「データの直交性」によるもので、データとデータの間には他のデータの要素を含まないこと、干渉しないことが前提となる。
 一方、機械学習においては、直交性はアルゴリズムと演算により取り払うことが可能となるため、次元数は3を超え、例えば100でも1000でも対応出来る。また、人間の場合は複雑怪奇になると解を求めることが不可能になるが、機械学習を用いたインフォマティクスでは、主成分解析やLASSO解析などで回帰するのに必要な説明変数の重み付けを行うことは容易であるためデータの次元数は多くても困ることはない。
 従来の機器分析から得られる科学的情報は、基本的に直交性が担保された独立の科学的情報である。逆に、コンピューターを使ったバーチャルな世界でのデータは、取り方によっては直交性を無視して多次元に取得できるが、基本的にはデータの質は低く、それを高めるためには前記のようなスーパーコンピューター等の高精度、高コスト計算を行う必要性が発生してしまう。
 それを克服する一つの手段として、本発明者等は、物質間の相互作用に着目し、その微妙な変化や違いに対応するデータを取得することで、多次元化され、かつ、物質自体や物質の状態に紐付いた質の高いデータが取得できると考えている。
 ・説明変数(データ種)の充足
 状態に紐づいた質の高さというのは、状態を全て説明し得る説明変数を獲得することと言い換えることもできる。この説明変数を獲得するためには、データの種類としてはある程度の量が必要となる。ここで科学的情報のみを使用する場合を考えてみる。ここで科学的情報とは、対象物の特性や品質と直接的に関連する情報が多く含まれており、研究開発における活動では現象の解明や理解することを目的とした活動であるため、必然的に科学的情報が多くなる。これと対照的にある非科学的情報は多次元を持つ情報であり、ローデータのみからでは得られない構造的情報を得られることは、構造に起因する説明変数は非科学的情報からのみ入手が可能であると言える。
 さらに、人間の行動を記録したデータも同じく非科学的情報と考えている。製造工程で様々な作業をする人の行動は先に挙げた原材料の準備、使用する過程や、プロセス条件を製造装置へ入力する過程などの科学的情報に直接的に繋がる行動もある一方で、所謂、勘コツ経験に代表される人間の無意識または認知できない情報が行動データに含まれると考えており、非科学的情報を捉えている。
 これらの非科学的情報を活用することは、工数を増やすことなくデータ種類さらにそこから得られる説明変数を格段に増やすことができ、これは課題であるトレードオフを解消する解決策を見出す唯一の手段であるといえる。
 ・データ量の充足
 データ数は機械学習を行うためには十分な量が必要となる。このデータ数が少なくなる原因の一つとして研究開発や要素技術の開発の場合いわゆる演繹的な考察から収集された、科学的意味のあるデータ、科学的情報を使っていることもその本質的な原因と考えた。ここでデータ量を充足する手段として、前記の説明変数の充足で説明したように画像のような非科学的情報には多種の情報が含まれているので、1つの画像から多数のデータを入手するといった方法のほか、データ数自体を増やすという観点からGANやVAEのような機械学習の手法を用いて生成した画像データ用いることも1つの方法である。このような方法で生成された画像は非科学的情報と言える。
 ・「人行動」認識技術
 「人物行動」カテゴリーにおけるAI技術開発では、Deep Learningを活用した人検知・姿勢推定・行動認識などのアルゴリズム開発が進められている。大量の現場画像を学習させることで、どのような環境でも誤認識しない、ロバストな「人行動」認識技術の開発が行われている。実際に2D姿勢推定において、認識精度の高さと高速処理の両立を実現し、以下の事業に活用している。
 これまで普及していたカメラで人を横から撮影する前提の姿勢推定技術とは異なり、HitomeQ ケアサポートでは天井のカメラからでも認識可能な姿勢推定手法を開発した。頭部や下腿部といった人体部位の位置関係を特徴量として用い、人物領域とその姿勢を推定する独自のアルゴリズムを活用している。
 天井のカメラでの撮影による「人行動」認識技術は、店舗における購買行動プロセスをデータ分析してマーケティング活動につなげる「go insight」サービスで、顧客の滞在時間・棚前行動などの分析にも活用されている。
 以上説明したように、本実施形態の予測装置100および予測システムでは、対象物の複数の特性を予測することが可能となる。
 以下、上記実施形態の変形例について説明する。上記実施形態で説明したのと同様の構成については、その説明を省略する。
 [変形例]
 図9は、変形例に係る予測システムにおける予測装置100の機能構成を表している。予測装置100は、取得部111、抽出部112、予測部113および制御部114に加えて、選択部115して機能してもよい。
 選択部115は、予測部113が予測する対象物の複数の特性に応じて、科学的情報および非科学的情報を選択する。選択部115は、例えば、取得部111により取得された対象物に関する複数の科学的情報および複数の非科学情報の中から、科学的情報および非科学的情報を選択する。選択部115は、対象物に関する複数の科学的情報および複数の非科学的情報を選択してもよい。選択部115は、例えば、予測される複数の特性各々と関連性が高い科学的情報および非科学的情報を選択する。
 選択部115により選択された対象物に関する科学的情報および非科学的情報を、取得部111が取得してもよい。選択部115は、例えば、科学的情報および非科学的情報を網羅的に選択する。例えば、データの焦点サイズとして、マクロサイズ、ミクロサイズおよびナノサイズのうちの複数のサイズを含むように科学的情報を選択する。あるいは、対象物の構造として、物理構造、化学構造および界面構造のうちの複数の構造を含むように非科学的情報を選択する。選択部115は、機械学習を用いて対象物に関する科学的情報および非科学的情報を選択してもよい。
 予測部113は、選択部115により選択された科学的情報および非科学的情報に基づいて、対象物の複数の特性を予測する。これにより、複数の特性各々の予測精度を向上させることが可能となる。
 図10は、この予測装置100において実行される予測処理の手順を示すフローチャートである。
 (ステップS201)
 予測装置100は、まず、上記実施形態で説明したステップS101と同様にして、対象物に関する科学的情報および非科学的情報を取得する。予測装置100は、例えば、対象物に関する複数の科学的情報および複数の非科学的情報を取得する。
 (ステップS202)
 次に、予測装置100は、ステップS201で取得した複数の科学的情報および複数の非科学的情報の中から、予測する複数の特性に基づいて、科学的情報および非科学的情報を取得する。予測装置100は、ステップS202およびステップS201の順に処理を行ってもよい。
 (ステップS203~S206)
 この後、予測装置100は、上記実施形態で説明したステップS102~S105と同様の処理を行い、処理を終了する。
 変形例に係る予測システムおよび予測装置100も、上記実施形態で説明した予測システムおよび予測装置100と同様に、対象物に関する科学的情報および非科学的情報に基づいて、対象物の複数の特性を同時に予測することができる。また、選択部115を有しているので、予測する複数の特性各々と関連性が高い科学的情報および非科学的情報を選択することができる。よって、より高い精度で対象物の複数の特性を予測することが可能となる。
 本発明の効果を、以下の実施例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。実施例では、樹脂材料と、炭素繊維またはガラス繊維とを混合した繊維強化樹脂を対象物のサンプルとした。
 (学習済みの識別器の作成)
 まず、教師データを作成するため、48種類の繊維複合材料のサンプルを作製した。このサンプルは、以下に示す4種類の樹脂、3種類の繊維、2条件の繊維濃度(体積比)および2条件の射出圧力の組み合わせにより作製した。樹脂および繊維は、事前に株式会社東洋精機製作所製ラボプラストミル(登録商標)押出機を用いて、所望の比率で混合させた。これにより、ペレットを作製した。48種類の繊維複合材料のサンプルは、住友重機製射出成型機SE50Dを用いて成型した。機械強度と成型収縮率を測定するサンプル形状は、JIS K7139に示される、ダンベル形試験片タイプA1とした。衝撃強度を測定するサンプル形状は、このダンベル形試験片タイプA1から切削加工して、JIS K7139B2に示される、短冊試験片にノッチをつけた試験片とした。
 樹脂:ポリプロピレン(住友化学株式会社製ノーブレン(登録商標)W101)、ポリアミド66(旭化成株式会社製レオナ(登録商標)1300S)、ABS(東レ株式会社製Toyolac700 314)、ポリカーボネート(三菱エンジニアリングプラスチック株式会社製ユーピロン(登録商標)H-3000R);
 繊維:PAN(ポリアクリロニトリル)系炭素繊維(日本ポリマー産業株式会社製CF-N)、PAN系炭素繊維(台湾プラスチックス社製TC-3233)、ガラス繊維(日東紡績株式会社製CS3J-960);
 繊維濃度:5%、20%;
 射出圧力:50MPa、100MPa。
 次に、この48種類の繊維複合材料のサンプル各々を以下の測定装置を用いて測定し、測定結果から抽出された特徴量を識別器に学習させた。測定はダンベル形試験片の中央付近で行った。
 FTIR(Fourier Transform Infrared Spectroscopy)装置(Thermo Fisher Scientific社製AVATAR370);
 テラヘルツ波分光測定装置(浜松ホトニクス株式会社製C12068-01);
 超音波測定装置(超音波工業株式会社製UVM-2、反射モードで測定を行った。);
 X線回折装置(株式会社リガク製Smart Lab);
 X線タルボ・ロー装置(特開2019-184450号に記載の装置);
 行動動画(ビデオカメラで作業者を撮影した動画)
 上記48種類の複合樹脂材料のサンプル各々の、機械強度、衝撃強度および成型収縮率を以下の手法で測定し、測定結果を識別器に学習させた。
 JIS K7161-2に準拠してエーアンドデイ社製テンシロン(RTF2325)を用いて行った引張試験の評価結果を、機械強度の測定結果とした。このとき、掴み具間の距離は75mm、試験速度は1mm/分とした。また、破断時の応力を試験片の断面積で割った値を、機械強度とした。JIS-K7111に準拠して、シャルピー衝撃試験(Uノッチ、R=1mm)を行った評価結果を、衝撃強度の測定結果とした。シャルピー衝撃試験には、東洋精機社製衝撃試験機(JCHBAS)を用いた。成型収縮率は、JIS K7152-4に準じて測定した。
 (実施例1~8、比較例1、2)
 まず、4種類の対象物のサンプルを作製した。このサンプルは、以下に示す2種類の樹脂、2種類の繊維、1条件の繊維濃度(体積比)および1条件の射出圧力の組み合わせにより作製した。サンプルの作製は、上記教師データと同様に行った。
 樹脂:ポリプロピレン(住友化学株式会社製ノーブレンW101)、ポリアミド66(旭化成株式会社製レオナ1300S);
 繊維:PAN系炭素繊維(日本ポリマー産業株式会社製CF-N)、PAN系炭素繊維(台湾プラスチックス社製TC-33);
 繊維濃度:10%;
 射出圧力:80MPa。
 実施例1~8では、この4種類の対象物のサンプルについて、下記表1に示す科学的情報および非科学的情報を生成した。この後、これらの科学的情報および非科学的情報から抽出した特徴量を学習済みの識別器に入力して機械強度、衝撃強度および成型収縮率の予測値を求めた。比較例1では、科学的情報のみを生成し、比較例2では、非科学的情報のみを生成した。この後、科学的情報または非科学的情報を学習済みの識別器に入力して機械強度、衝撃強度および成型収縮率の予測値を求めた。
 また、学習済み識別機の作成と同じ手法を用いて、上記4種類の対象物のサンプル各々の機械強度、衝撃強度および成型収縮率を測定し、測定値を求めた。次に、予測値と測定値との誤差を下記の式(1)を用いて算出した後、4種類の対象物のサンプルの誤差の平均を求めた。下記表1には、この誤差の平均値が30%以下であるときをA、30%よりも大きく、60%以下であるときをB、60%よりも大きいときをCとして記載した。即ち、機械強度、衝撃強度または成型収縮率が、「A」であるとき、学習済みの識別器を用いて予測した特性の精度が最も高いことを表す。
 科学的情報および非科学的情報各々の特徴量を識別器に入力した実施例1~8では、比較例1、2に比べて、誤差が小さくなった。また、実施例1~8の中でも、対象物に関する複数の非科学的情報を用いた実施例4、実施例7および実施例8では、それ以外の実施例に比べて誤差を小さくすることができた。
 以上に説明した予測装置100および予測システムの構成は、上述の実施形態および実施例の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な予測システムが備える構成を排除するものではない。
 例えば、予測装置100は、それぞれ上記の構成要素以外の構成要素を含んでいてもよく、あるいは、上記の構成要素のうちの一部が含まれていなくてもよい。
 また、予測装置100、第1装置200、および第2装置300は、それぞれ複数の装置によって構成されてもよく、あるいは単一の装置によって構成されてもよい。
 また、各構成が有する機能は、他の構成によって実現されてもよい。例えば、第1装置200または第2装置300は、予測装置100に統合され、第1装置200および第2装置300が有する各機能の一部または全部が予測装置100によって実現されてもよい。
 また、上記の実施形態におけるフローチャートの処理単位は、各処理の理解を容易にするために、主な処理内容に応じて分割したものである。処理ステップの分類の仕方によって、本願発明が制限されることはない。各処理は、さらに多くの処理ステップに分割することもできる。また、1つの処理ステップが、さらに多くの処理を実行してもよい。
 上述した実施形態に係るシステムにおける各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、フレキシブルディスクおよびCD-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提
供されてもよいし、システムの一機能としてその装置のソフトウエアに組み込まれてもよい。
 本出願は、2022年6月30日に出願された日本特許出願(特願2022-105570)に基づいており、その開示内容は、参照され、全体として、組み入れられている。
100 予測装置、
110 CPU、
111 取得部、
112 抽出部、
113 予測部、
114 制御部、
115 選択部、
120 ROM、
130 RAM、
140 ストレージ、
150 通信インターフェース、
160 表示部、
170 操作受付部、
200 第1装置、
300 第2装置。
 

Claims (15)

  1.  対象物に関する画像を含む第1情報と、前記対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含む第2情報とを取得する取得部と、
     取得された前記第1情報および前記第2情報に基づいて、前記対象物の複数の特性を予測する予測部と
     を備える予測装置。
  2.  予測する前記対象物の複数の前記特性に応じて、前記第1情報および前記第2情報を選択する選択部をさらに有し、
     前記予測部は、選択された前記第1情報および前記第2情報に基づいて、前記対象物の複数の前記特性を予測する請求項1に記載の予測装置。
  3.  前記画像は、前記対象物を撮像装置、X線タルボ・ロー装置、超音波装置、蛍光指紋測定装置、ハイパースペクトルカメラ、ミリ波イメージング装置、走査電子顕微鏡、原子間力顕微鏡、透過型電子顕微鏡、蛍光顕微鏡および多次元色度計の少なくともいずれかを用いて撮像された画像を含む請求項1に記載の予測装置。
  4.  前記画像は、前記対象物に関連した人の行動を撮像した画像を含む請求項1に記載の予測装置。
  5.  前記第2情報は、前記対象物に含まれる物質の種類を表す文字および化学構造の少なくとも一方と、前記対象物に含まれる前記物質の量を表す数とを含む請求項1に記載の予測装置。
  6.  前記第2情報は、前記対象物の赤外吸収スペクトル、テラヘルツ波分光スペクトル、核磁気共鳴スペクトル、ラマン分光スペクトル、インピーダンス分光スペクトルおよびX線回折スペクトルの少なくともいずれかを含む請求項1に記載の予測装置。
  7.  前記対象物は、互いに異なる化学構造を有する複数の物質の混合物である請求項1に記載の予測装置。
  8.  複数の前記特性は、前記対象物の物性、品質および機能の少なくともいずれかを含む請求項1に記載の予測装置。
  9.  複数の前記特性は、前記対象物の機械物性、物理物性、熱特性、成形性、電気特性、耐久性、機械加工性および燃焼性の少なくともいずれかを含む請求項1に記載の予測装置。
  10.  予測された複数の前記特性に関する情報を出力部に出力させる制御部をさらに含む請求項1に記載の予測装置。
  11.  前記予測部は、学習済みの識別器を用いて複数の前記特性を予測する請求項1に記載の予測装置。
  12.  取得された前記第1情報および前記第2情報各々から特徴量を抽出する抽出部をさらに含み、
     前記予測部は、抽出された前記特徴量を入力とし、複数の前記特性を予測する請求項11に記載の予測装置。
  13.  前記識別器は、前記特徴量を入力データとし、複数の前記特性を出力データとして機械学習される請求項12に記載の予測装置。
  14.  対象物に関する第1情報を生成する第1装置と、
     前記対象物に関する第2情報を生成する第2装置と、
     請求項1~13のいずれかに記載の予測装置と
     を備える予測システム。
  15.  対象物に関する画像を含む第1情報と、前記対象物に関する文字、数、化学構造およびスペクトルの少なくともいずれかを含む第2情報とを取得するステップ(a)と、
     取得された前記第1情報および前記第2情報に基づいて、前記対象物の複数の特性を予測するステップ(b)と
     を有する処理をコンピューターに実行させるための予測プログラム。
PCT/JP2023/023969 2022-06-30 2023-06-28 予測装置、予測システムおよび予測プログラム WO2024005068A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105570 2022-06-30
JP2022-105570 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005068A1 true WO2024005068A1 (ja) 2024-01-04

Family

ID=89382415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023969 WO2024005068A1 (ja) 2022-06-30 2023-06-28 予測装置、予測システムおよび予測プログラム

Country Status (1)

Country Link
WO (1) WO2024005068A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057495A2 (en) * 2000-02-01 2001-08-09 The Government Of The United States Of America As Represented By The Secretary, Department Of Health & Human Services Methods for predicting the biological, chemical, and physical properties of molecules from their spectral properties
WO2019048965A1 (ja) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 物性予測方法および物性予測システム
JP2020038495A (ja) * 2018-09-04 2020-03-12 横浜ゴム株式会社 物性データ予測方法及び物性データ予測装置
WO2022009597A1 (ja) * 2020-07-08 2022-01-13 帝人株式会社 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置
JP2022522159A (ja) * 2019-04-19 2022-04-14 ナノトロニクス イメージング インコーポレイテッド 組立てラインのための組立てエラー修正

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057495A2 (en) * 2000-02-01 2001-08-09 The Government Of The United States Of America As Represented By The Secretary, Department Of Health & Human Services Methods for predicting the biological, chemical, and physical properties of molecules from their spectral properties
WO2019048965A1 (ja) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 物性予測方法および物性予測システム
JP2020038495A (ja) * 2018-09-04 2020-03-12 横浜ゴム株式会社 物性データ予測方法及び物性データ予測装置
JP2022522159A (ja) * 2019-04-19 2022-04-14 ナノトロニクス イメージング インコーポレイテッド 組立てラインのための組立てエラー修正
WO2022009597A1 (ja) * 2020-07-08 2022-01-13 帝人株式会社 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置

Similar Documents

Publication Publication Date Title
Bressanelli et al. Towards the smart circular economy paradigm: a definition, conceptualization, and research agenda
Hürkamp et al. Combining simulation and machine learning as digital twin for the manufacturing of overmolded thermoplastic composites
Kalidindi Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials
Kalidindi et al. Digital twins for materials
Ninduwezuor-Ehiobu et al. Tracing the evolution of ai and machine learning applications in advancing materials discovery and production processes
Petrakli et al. End-of-Life recycling options of (nano) enhanced CFRP composite prototypes waste—A life cycle perspective
Wang et al. Application of deep neural network learning in composites design
Rodríguez-Martín et al. Predictive models for the characterization of internal defects in additive materials from active thermography sequences supported by machine learning methods
Ghasemi et al. Principal component neural networks for modeling, prediction, and optimization of hot mix asphalt dynamics modulus
Furferi et al. Circular economy guidelines for the textile industry
Chen et al. Machine intelligence-accelerated discovery of all-natural plastic substitutes
Chauhan et al. Optimization of compression molding process parameters for NFPC manufacturing using taguchi design of experiment and moldflow analysis
D’Amore et al. Principal features of fatigue and residual strength of composite materials subjected to Constant Amplitude (CA) loading
Prabhakaran et al. Optimum selection of a composite product system using MADM approach
Faddoul et al. Thermo-visco mechanical behavior of glass fiber reinforced thermoplastic composite
Roosen et al. Operational framework to quantify “quality of recycling” across different material types
Simon et al. Experimental validation of a direct fiber model for orientation prediction
Tan et al. Prediction and optimization of process parameters for composite thermoforming using a machine learning approach
WO2024005068A1 (ja) 予測装置、予測システムおよび予測プログラム
D’Emilia et al. Uncertainty Evaluation in Vision-Based Techniques for the Surface Analysis of Composite Material Components
Lázaro et al. A simple direct method to obtain kinetic parameters for polymer thermal decomposition
Bogdanov et al. Fatigue Damage Assessment and Lifetime Prediction of Short Fiber Reinforced Polymer Composites—A Review
Choi et al. A methodology to predict the fatigue life under multi-axial loading of carbon fiber-reinforced polymer composites considering anisotropic mechanical behavior
Jin et al. Multi-scale probabilistic analysis for the mechanical properties of plain weave carbon/epoxy composites using the homogenization technique
Bean et al. Integration of material characterization, thermoforming simulation, and as-formed structural analysis for thermoplastic composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024530919

Country of ref document: JP