WO2024093499A1 - 一种终端天线和电子设备 - Google Patents
一种终端天线和电子设备 Download PDFInfo
- Publication number
- WO2024093499A1 WO2024093499A1 PCT/CN2023/116691 CN2023116691W WO2024093499A1 WO 2024093499 A1 WO2024093499 A1 WO 2024093499A1 CN 2023116691 W CN2023116691 W CN 2023116691W WO 2024093499 A1 WO2024093499 A1 WO 2024093499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- electrical connection
- connection point
- capacitor
- radiator
- Prior art date
Links
- 239000002184 metal Substances 0.000 claims abstract description 40
- 239000003990 capacitor Substances 0.000 claims description 103
- 238000004891 communication Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 48
- 238000004088 simulation Methods 0.000 description 32
- 230000005855 radiation Effects 0.000 description 30
- 230000005684 electric field Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 7
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 7
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 5
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/10—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
Definitions
- the present application relates to the field of antenna technology, and in particular to a terminal antenna and an electronic device.
- the electronic device can realize wireless communication function through the antennas arranged therein, and some of the antennas can be arranged on the side of the electronic device for radiation.
- the antennas set on the sides need to be able to provide good radiation performance to support the wireless communication quality of the electronic devices.
- the embodiment of the present application provides a terminal antenna and an electronic device, wherein the antenna has better free space and hand model performance. Even if it is arranged on the side of the electronic device, the antenna can support the electronic device to perform wireless communication with better quality in various scenarios.
- a terminal antenna which is applied to an electronic device, and the electronic device is provided with a metal frame, and a first slit and a second slit are provided on the metal frame.
- the metal frame between the first slit and the second slit constitutes a first radiator, and the first radiator is not connected to the metal frame outside the first slit and the second slit.
- the antenna includes: the first radiator.
- a first electrical connection point, a second electrical connection point and a third electrical connection point are sequentially provided on the first radiator.
- the first electrical connection point is coupled to a feed source through a first tuning component
- the second electrical connection point is coupled to a reference ground
- the third electrical connection point is coupled to a reference ground through a second tuning component.
- the excitation of the CM mode and the DM mode can be realized simultaneously, thereby providing good radiation performance in both free space and hand mode.
- the first tuning component includes a first capacitor.
- a capacitor in series on the feed link By connecting a capacitor in series on the feed link, the effect of exciting the left-hand mode can be achieved.
- the second tuning component includes at least one of the following: a capacitor and an inductor.
- the second tuning component includes at least one second capacitor, and the capacitance of the second capacitor is determined according to the operating frequency band.
- the capacitance of the second capacitor is included in the range of 0 to 8 pF.
- the capacitance of the second capacitor is included in the range of 0 to 5 pF.
- the second tuning component includes at least one first inductor, and the inductance of the first inductor is determined according to the working frequency band.
- the working frequency band of the antenna covers low frequency
- the inductance of the first inductor is included in the range of 10nH to 82nH.
- the working frequency band of the antenna covers medium and high frequency
- the inductance of the first inductor is included in the range of 5nH to 27nH.
- the second tuning component can be arranged according to the working The frequency band is set to capacitors, inductors and other components. This excites the DM mode and better excites the longitudinal eigenmode of the floor, thereby obtaining better radiation performance.
- the second tuning component includes at least two paths, and when the antenna is working, at least one of the at least two paths is turned on by selecting a switch.
- Each of the at least two paths is provided with a second capacitor or a first inductor.
- the antenna further includes a third tuning component, one end of which is connected to the first electrical connection point or near the first electrical connection point, and the other end of which is connected to a reference ground.
- the third tuning component includes at least two third capacitors, each of which corresponds to a path, and the capacitances of the third capacitors on different paths are different.
- at least one of the paths corresponding to the at least two third capacitors is selected to be turned on through a switch.
- This example provides an implementation of setting a switch component on the feed link to switch the path.
- the third tuning component can be connected in parallel to the first electrical connection point.
- the third tuning component can be connected in parallel to the radiator near the first electrical connection point.
- the first radiator is equally divided into a first part, a second part and a third part, the second part is located between the first part and the third part.
- the first electrical connection point is set at any position on the first part
- the second electrical connection point is set at any position on the second part
- the third electrical connection point is set at any position on the third part.
- the first electrical connection point is arranged on the first part away from the end of the second part, and the third electrical connection point is arranged on the third part away from the end of the second part.
- the first resonance and the second resonance are excited, the frequency of the first resonance is lower than the second resonance, the first resonance is excited by the common mode CM, and the second resonance is excited by the differential mode DM.
- the free space working frequency band is mainly covered by the DM mode, and the CM mode can be excited in the low-frequency direction of the DM mode. Therefore, in the hand model scenario, even if the resonance is offset to the high frequency due to hand gripping, the CM mode can fall within the working frequency band, providing better hand model radiation performance.
- the third capacitor and the second capacitor can be flexibly set according to needs, so as to obtain better radiation in the current scenario.
- the terminal antenna is arranged on a long side of the electronic device.
- the length of the first radiator is greater than 1/4 wavelength of the working frequency band and less than 1/2 wavelength of the working frequency band.
- an electronic device in a second aspect, is provided, the electronic device being provided with a terminal antenna as provided in the first aspect and any possible design thereof.
- the electronic device transmits or receives a signal, the signal is transmitted or received through the terminal antenna.
- FIG1 is a schematic diagram of the location of an antenna in a mobile phone
- FIG2 is a schematic diagram of a left-hand antenna disposed on the side
- FIG3 is a schematic diagram of a left-hand antenna disposed on the side
- FIG4 is a schematic diagram of a current loop antenna disposed on the side
- FIG5 is a schematic diagram of a hand model scene
- FIG6 is a schematic diagram of S-parameter simulation when the side antenna is a left-hand solution
- FIG7 is a schematic diagram of S-parameter simulation when a side antenna is a current loop solution
- FIG8 is a schematic diagram of finger sealing in a hand model
- FIG9 is a schematic diagram of a simulation of finger sealing in a left-hand antenna solution
- FIG10 is a schematic diagram of a simulation of finger sealing in a current loop antenna solution
- FIG11 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG12 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG13 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG14 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG15A is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG15B is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG16 is a schematic diagram of an S-parameter simulation of an antenna solution provided in an embodiment of the present application.
- FIG17 is a schematic diagram of current simulation of an antenna solution provided in an embodiment of the present application.
- FIG18 is a schematic diagram of current simulation of an antenna solution provided in an embodiment of the present application.
- FIG19 is a schematic diagram of an electric field simulation of an antenna solution provided in an embodiment of the present application.
- FIG20 is a schematic diagram of an electric field simulation of an antenna solution provided in an embodiment of the present application.
- FIG21 is a schematic diagram of an S-parameter simulation of an antenna solution provided in an embodiment of the present application.
- FIG22 is a schematic diagram of an S-parameter simulation of an antenna solution provided in an embodiment of the present application.
- FIG23 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG24 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG25 is a logic diagram of an antenna solution provided in an embodiment of the present application.
- FIG. 26 is a schematic diagram of an S-parameter simulation of an antenna solution provided in an embodiment of the present application.
- An antenna may be provided in an electronic device to implement a wireless communication function.
- a mobile phone is taken as an example of an electronic device.
- a conventional antenna may be provided at the top and/or bottom of the electronic device.
- the antenna at the top may be provided in the upper antenna region as shown in FIG1 .
- the antenna at the bottom may be provided in the lower antenna region as shown in FIG1 .
- the antenna can be set on the side of the electronic device (such as the mobile phone shown in Figure 1).
- a mobile phone with a metal frame structure is taken as an example.
- the antenna set on the side can reuse the metal frame as a radiator, thereby saving the cost of setting up an additional antenna radiator in a small space.
- a gap that penetrates inside and outside the metal frame is reasonably set, thereby obtaining an independent metal frame used as the radiator 11.
- a schematic diagram of the electrical connection of a side-mounted antenna (referred to as a side antenna) is also given.
- the antenna radiator may be a radiator 11.
- One end of the radiator 11 may be coupled to a feed source (ie, The other end of the radiator 11 is coupled to the ground.
- the antenna structure shown in FIG1 can be used to cover at least part of low frequency (such as 700MHz-960MHz), medium frequency (such as 1710MHz-2170MHz), high frequency (such as 2300MHz-2700MHz), and other wireless communication frequency bands.
- the side antenna is used to cover the low frequency.
- FIG2 shows a specific antenna solution implementation with the antenna architecture shown in FIG1.
- the side antenna can achieve at least one frequency band coverage in the low frequency (such as B28, B5 and/or B8) through the left-hand antenna.
- a gap 22 that penetrates inside and outside can be provided on the metal frame.
- the metal frame can be coupled to the feed source on one side of the gap 22.
- one end of the metal frame can be coupled to the feed source via a capacitor 21.
- the portion of the metal frame away from the gap 22 can be grounded.
- the length of the metal frame between the grounding point and the gap 22 can be determined according to the operating frequency band that needs to be covered.
- capacitor 21 can also be called a left-hand capacitor.
- the radiator 11 i.e., the metal frame between the gap 22 and the ground terminal
- the left-hand mode can achieve a radiation effect covering the low-frequency band based on a smaller radiator.
- the antenna scheme based on the left-hand mode can also be called a left-hand antenna (The composite left hand antenna, CRLH), and the specific implementation method can also be referred to CN201380008276.8 and CN201410109571.9, which will not be repeated here.
- the grounding end may not be provided with a gap that penetrates inside and outside.
- a gap 23 that penetrates inside and outside may also be provided near the grounding end of the left-hand antenna.
- the radiator 11 of the corresponding left-hand antenna may be a metal frame between the gap 22 and the gap 23.
- FIGS 2 and 3 show the specific implementation of using the left-hand antenna as the side antenna.
- other antenna types may also be used to implement the setting of the side antenna.
- FIG. 4 Exemplarily, in conjunction with Figure 4, a schematic diagram of another side antenna setting is shown.
- the side antenna can be implemented by a current loop antenna.
- the specific setting of the current loop antenna can refer to CN202110961752.4, CN202110962491.8, CN202110963510.9, 202110961755.8 and other current loop antenna related patents.
- the antenna radiator 11 may include a slit 22 that runs through the frame inside and outside and a metal frame between the slits 23.
- the end of the metal frame close to the slit 22 may be connected to the feed source.
- the end of the metal frame close to the slit 23 may be grounded through a capacitor 31.
- the capacitor 31 may also be set in series at other locations on the radiator 11. In this example, based on the setting of the capacitor 31 between the feed source and the ground, a magnetic field distribution with a small amplitude difference may be distributed between the radiator 11 and the reference ground, thereby obtaining better free space radiation performance.
- the electronic device i.e., the antenna
- the human hand has a certain dielectric loss for electromagnetic radiation, so compared with free space, the radiation performance of the antenna is generally affected to varying degrees.
- the relative position of the human hand (i.e., the hand model) to the antenna is different from that in the right hand. There may be some differences in the working conditions of the left-hand mold and the right-hand mold.
- FIG6 shows the S parameter simulation diagram of the left-hand antenna of the structure shown in FIG2 in free space and in the left-hand mode and right-hand mode states.
- the left-hand antenna shown in FIG2 is taken as an example working in the B8 frequency band (i.e., 880MHz-960MHz).
- the efficiency simulation shown in FIG6 only shows the efficiency diagram of the low-frequency related part (i.e., 700MHz-1GHz).
- the free space optimum of the left-handed antenna is -6dB near 900MHz.
- the system efficiency of the left-handed antenna in free space, left-hand mode and right-hand mode is relatively similar, and the system efficiency at 900MHz is between -6dB and -8dB.
- the drop in the hand mode of the left-handed antenna is very small compared to the free space.
- FIG7 shows an S parameter simulation diagram of the current loop antenna shown in FIG4.
- the current loop antenna is also taken as an example to work in the B8 frequency band. Similar to the diagram of FIG6, for ease of explanation, the efficiency simulation of FIG7 only shows the efficiency diagram of the low-frequency related part (i.e., 700MHz-1GHz).
- the free space optimum of the current loop antenna is close to -12dB near 900MHz.
- the left-hand mode has a more obvious tendency to shift to low frequency.
- the right-hand mode does not cause significant frequency deviation.
- the free space efficiency peak of the current loop antenna has exceeded -4dB, which is significantly better than the free space efficiency of the left-hand antenna shown in Figure 6. At the same time, it has a better bandwidth.
- the antenna system efficiency is significantly reduced in the hand model scenario.
- the peak efficiency of the left-hand mode is less than -8dB, and the peak efficiency of the right-hand mode is less than -10dB.
- the current loop antenna when used as a side antenna, it has good free space performance, but the radiation performance in the hand model scenario is poor.
- a gap that penetrates inside and outside can be set between the antenna radiator and other parts of the metal frame.
- the hand model does not cover the gap. In other scenarios, if the hand model covers the gap, the influence of the corresponding hand model will be further increased.
- a finger in the hand model covers the gap 23 close to the ground end as an example.
- FIG9 shows a simulation diagram of the system efficiency corresponding to the finger covering the gap 23 under the hand model, taking the left-hand antenna having the composition structure shown in FIG3 as an example.
- the efficiency in free space is given as a comparison. Similar to the aforementioned FIG6 and FIG7, in this example, the efficiency of the low-frequency part B8 band is still shown for illustration.
- the hand model efficiency still has a limited decrease compared with the free space efficiency. Since the radiator 11 near the gap 23 in the antenna solution shown in Figure 3 is directly connected to the ground, even if the finger covers the gap 23, the hand model efficiency of the antenna is not significantly affected.
- FIG10 shows the system efficiency simulation corresponding to the finger covering the gap 23 under the hand model, taking the current loop antenna having the composition shown in FIG4 as an example; and the efficiency under free space is given as a comparison. Similar to the aforementioned FIG6 and FIG7, in this example, the efficiency of the low-frequency part is still shown for illustration.
- the hand mode efficiency decreases significantly after the finger covers the gap 23.
- the efficiency of the left hand mode deteriorates from nearly -8 dB when the gap 23 is not covered to -10 dB. That is, when a finger covers the end gap (such as the gap 23 far away from the feed source), the hand model performance of the current loop antenna is further deteriorated.
- the reuse of the side metal frame as the antenna radiator is used as an example for explanation. It is understandable that when the left-hand antenna or current loop antenna is prepared in other ways (such as FPC antenna, LDS antenna, etc.), similar problems also exist.
- the embodiment of the present application provides an antenna solution that can provide both good free space performance and small hand model degradation, that is, it has good hand model radiation performance.
- the antenna solution is set as a side antenna in an electronic device, the electronic device can have good wireless communication capabilities in both free space scenarios and hand model scenarios.
- the antenna solution provided in the embodiments of the present application can be applied to electronic devices, such as terminal electronic devices.
- the antenna solution involved in the present application can also be called a terminal antenna.
- the electronic device may include at least one of a mobile phone, a foldable electronic device, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a cellular phone, a personal digital assistant (PDA), an augmented reality (AR) device, a virtual reality (VR) device, an artificial intelligence (AI) device, a wearable device, an in-vehicle device, a smart home device, or a smart city device.
- PDA personal digital assistant
- AR augmented reality
- VR virtual reality
- AI artificial intelligence
- the electronic device involved in the embodiment of the present application may include a processor, an external memory interface, an internal memory, a universal serial bus (USB) connector, a charging management module, a power management module, a battery, an antenna 1, an antenna 2, a mobile communication module, a wireless communication module, an audio module, a speaker, a receiver, a microphone, an earphone interface, a sensor module, a button, a motor, an indicator, a camera module, a display screen, and a subscriber identification module (SIM) card interface, etc.
- a processor an external memory interface
- an internal memory a universal serial bus (USB) connector
- USB universal serial bus
- the sensor module may include a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, etc.
- the terminal antenna provided in the embodiment of the present application can be set on the long side of the mobile phone, corresponding to the side antenna in the aforementioned example, thereby providing better free space and radiation performance under the hand model.
- the specific implementation of the terminal antenna may be different.
- the radiator of the terminal antenna may fully or partially reuse the metal frame of the electronic device.
- the radiator of the terminal antenna may also be implemented in the form of a flexible printed circuit (FPC), anodized die casting (MDA), etc.
- FPC flexible printed circuit
- MDA anodized die casting
- the antenna radiator reuses the metal frame as an example.
- FIG. 11 is a schematic diagram of an electronic device provided in an embodiment of the present application.
- the electronic device may be a mobile phone.
- the interior of the electronic device may be provided with a printed wiring board (PWB), a battery (BAT) and another PWB from top to bottom.
- PWB printed wiring board
- BAT battery
- another PWB from top to bottom.
- the PWB arranged above the battery may be referred to as the main PWB
- the PWB arranged below the battery may be referred to as the sub-PWB.
- the main PWB and the sub-PWB may be used as carriers of other electrical components in the electronic device, and the interconnection between the various components may be achieved through electrical connection lines.
- the main PWB and the sub-PWB may also constitute the reference ground of other electronic components in the electronic device together with the metal middle frame (if any) of the electronic device.
- the electronic device has a metal frame architecture.
- One or more slits that penetrate inside and outside are provided on the metal frame, thereby breaking the metal frame into multiple separated metal segments.
- the side of the electronic device can be separated by two through slits to obtain a metal frame with a length less than 1/2 wavelength of the antenna working frequency band and greater than 1/4 wavelength of the antenna working frequency band.
- the metal frame can correspond to the radiator 51 shown in Figure 11, which is used as the radiator in the antenna scheme provided in the embodiment of the present application. As shown in Figure 11, the projection of the radiator 51 in this example toward the center direction of the electronic device may include at least part of it falling on the battery.
- the antenna will not be set near the battery (such as the position of the radiator 51 mentioned above). Even if the antenna scheme provided in the embodiment of the present application is set close to the battery, it can obtain better free space and hand model radiation performance.
- the two end slits used to separate the radiator 51 from the metal frame can be a first slit and a second slit, respectively.
- the length of the radiator 51 is limited to: less than 1/2 wavelength of the antenna operating frequency band and greater than 1/4 wavelength of the antenna operating frequency band.
- the length of the radiator is not necessarily the physical length of the radiator.
- the length can be the length converted from electrical loss parameters such as the dielectric constant and loss tangent of the material constituting the metal frame, or the length can be the electrical length; the following is similar.
- At least three electrical connection points may be provided on the radiator 51.
- the electrical connection point 61, electrical connection point 62, and electrical connection point 63 may be used for coupling feed source, grounding setting, etc., respectively.
- the radiator 51 may be fed with a feed signal for excitation.
- the excitation of the required mode is achieved.
- the common mode (CM) mode and the differential mode (DM) mode are excited.
- the electrical connection point 61 may correspond to the first electrical connection point.
- the electrical connection point 62 may correspond to the second electrical connection point.
- the electrical connection point 63 may correspond to the third electrical connection point.
- Fig. 12 is a logic diagram of an antenna provided in an embodiment of the present application. This example provides a specific example of the function settings of each electrical connection point.
- the electrical connection point 61 may be coupled to a feed source for receiving a feed signal.
- a first tuning component may be provided between the electrical connection point 61 and the feed source, and the first tuning component may be a first capacitor.
- the electrical connection point 62 can be grounded.
- the electrical connection point 62 can be provided with a tuning component such as an inductor (not shown) before being grounded to tune the electrical length of the current on the radiator flowing back from the electrical connection point 62 to the ground.
- the electrical connection point 63 can be connected to the ground through a second tuning component.
- the second tuning component can be used to tune the electrical parameters of the current on the radiator flowing back from the electrical connection point 63 to the ground.
- the electrical connection points 61 to 63 are sequentially arranged on the radiator 51 .
- the three electrical connection points may be respectively located on three parts of the radiator 51.
- the radiator 51 may be equally divided into three parts, namely, the first part, the second part, and the third part in the direction from the feed source to the ground, wherein the second part is located between the first part and the third part.
- the first part, the second part, and the third part have the same length.
- the electrical connection point 61 may be provided on the first part of the radiator 51.
- the electrical connection point 62 may be provided on the second part of the radiator 51.
- the electrical connection point 63 may be provided on the third part of the radiator 51.
- each electrical connection point on the corresponding portion of the radiator 51 can be flexibly adjusted.
- the three electrical connection points can be set separately from each other.
- the electrical connection point 61 can be set on the first part of the radiator 51 and set at the end position of the first part away from the second part.
- the electrical connection point 62 can be set at any position on the second part (such as the middle position, both ends of the second part, etc.), preferably, the electrical connection point 62 is set at the middle position of the second part; the electrical connection point 63 can be set on the third part away from the end position of the second part.
- any two of the three electrical connection points may also be disposed close to each other.
- electrical connection point 61 may be disposed on the first portion of radiator 51, close to the end of the second portion.
- Electrical connection point 62 may be disposed on the second portion, close to the end of the first portion.
- Electrical connection point 63 may be disposed at any position on the third portion, such as away from the end of the second portion.
- Figures 12 and 13 are only examples of the locations of two types of electrical connection points on the radiator.
- each electrical connection point may also be set at other locations on a portion of the radiator corresponding to each radiator 51.
- the specific locations of each electrical connection point are not limited in the embodiments of the present application.
- the implementation of coupling the feed source and grounding at the electrical connection point can refer to the example shown in Figure 12. That is, the electrical connection point 61 is coupled to the feed source, the electrical connection point 62 is coupled to the ground, and the electrical connection point 63 is coupled to the ground.
- the electrical connection point position setting shown in FIG13 is taken as an example.
- the electrical connection point 61 set on the first part is close to the electrical connection point 62 set on the second part.
- the feed source can be set close to the ground point corresponding to the electrical connection point 62.
- another grounding setting coupled to the electrical connection point 63 can also be set at the end of the radiator 51 away from the feed source.
- the electrical connection point arrangement shown in FIG12 i.e., electrical connection points 61 and 63 are arranged at both ends of the radiator 51, and electrical connection point 62 is arranged at any position on the second part
- the specific implementation of the first tuning component and the second tuning component may be different.
- the first tuning component and the second tuning component can be implemented by capacitors.
- the first tuning component can include capacitor 41
- the second tuning component can include capacitor 42.
- capacitor 41 can correspond to the first capacitor
- capacitor 42 can correspond to the second capacitor; preferably, capacitor 41 and capacitor 42 are lumped capacitors with fixed capacitance.
- the capacitor 41 may be set to correspond to a left-handed capacitor, for example, the capacitor 41 may be set to a capacitance less than 5 pF, thereby stimulating at least part of the radiator 51 to radiate based on the left-handed mode.
- the size of the capacitor 42 can be selected according to the operating frequency band. For example, when the operating frequency band of the antenna is low frequency, the capacitance of the capacitor 42 can be included in the range of 0 to 8 pF. When the operating frequency band of the antenna is medium frequency and/or high frequency, the capacitance of the capacitor 42 can be included in the range of 0 to 5 pF.
- the function of the second tuning component implemented by the capacitor 42 as shown in FIG15A is only an example. By grounding the capacitor 42 at the end of the radiator 51 , the effect of exciting the differential mode DM mode on the radiator 51 can be obtained.
- the function of the second tuning component can also be implemented by an inductor.
- the inductor in the second tuning component can also be referred to as a first inductor.
- the inductance value of the first inductor can be included in the range of 10nH to 82nH.
- the working frequency band of the antenna is an intermediate frequency and/or a high frequency
- the inductance value of the first inductor can be included in the range of 5nH to 27pF.
- the radiation performance that can be obtained by the antenna is described below in combination with simulation.
- the antenna solution shown in FIG15A is used as a side antenna on a mobile phone.
- the three electrical connection points of the side antenna from top to bottom are: electrical connection point 61, electrical connection point 62, and electrical connection point 63.
- the connection between each electrical connection point and the feed source/ground is shown in FIG15A .
- the simulation is performed by taking the overall size of 152 ⁇ 75 ⁇ 5 (mm), the antenna clearance of 1 mm, and the antenna radiator (ie, radiator 51) of 77.5 mm in length, 3.5 mm in width, and 5 mm in height as an example.
- the S parameter simulation results of the antenna model in free space are given.
- the antenna can simultaneously excite two resonances: the CM resonance on the low-frequency side, and the DM resonance on the high-frequency side.
- the DM resonance can be mainly used to cover the working frequency band of the antenna in free space.
- the working frequency band of the antenna can include the low-frequency B8 band.
- the CM resonance body is located in the low-frequency direction of the B8 band, but under the joint action of the CM resonance and the DM resonance, the low-frequency part of the B8 band in free space is significantly lowered. Therefore, the CM resonance also contributes to the radiation of low-frequency free space.
- Figure 16 also shows the optimal efficiency (i.e., radiation efficiency) that can be achieved when all frequency points are fully matched, as well as the efficiency (i.e., system efficiency) under current port matching.
- the optimal efficiency i.e., radiation efficiency
- system efficiency i.e., system efficiency
- Figures 17 and 18 provide current simulation and directional diagrams of CM resonance and DM resonance respectively. The darker the color, the stronger the corresponding current/gain.
- FIG17 shows the current simulation and directional diagram of CM resonance.
- the current in the CM resonance mode, the current converges from both ends to the middle on the antenna radiator, and presents the characteristics of current reversal on the radiator, which corresponds to the typical current distribution of CM.
- the CM resonance mode can excite currents that are significantly diagonally upward and diagonally downward on the floor. In this way, based on orthogonal decomposition, the longitudinal currents cancel each other out, and the transverse currents superimpose each other. As a result, the CM resonance mode can effectively excite the transverse currents on the floor.
- the directional diagram presents an oblique upward direction as shown in FIG17 .
- Figure 18 shows the current simulation and directional diagram of DM resonance.
- the current flows from one end to the other end of the antenna radiator without reversal, and the current is in the same direction, which corresponds to the typical current distribution of DM.
- this DM resonance mode can excite significant longitudinal current on the floor.
- the lateral gain distribution is significantly stronger than the longitudinal gain distribution.
- low-frequency radiation is generally mainly radiated through the floor.
- the DM mode can excite significant longitudinal floor currents when working, such as effectively exciting the longitudinal characteristic mode of the floor.
- the longitudinal dimension of the mobile phone i.e., the length of the long side
- the antenna solution provided in this application can excite the longitudinal characteristic mode of the floor through DM resonance, thereby obtaining better free-space radiation performance.
- Figures 19 and 20 provide schematic diagrams of electric field simulations of CM resonance and DM resonance, respectively. The darker the color, the stronger the electric field.
- the electric field distribution in the CM resonance mode is shown.
- the radiator 51 can radiate the normal electric field perpendicular to the radiator to the external space.
- the human body absorbs the tangential electric field more significantly, but does not absorb the normal electric field significantly.
- the CM mode excited in the present application will not cause a significant performance degradation due to the proximity of the hand model. Therefore, the radiation performance of the hand model can be improved by the CM resonance mode in the present application.
- the electric field distribution in the DM resonance mode is shown.
- the radiator 51 can radiate the tangential electric field perpendicular to the radiator to the external space.
- the human body absorbs the tangential electric field significantly.
- the present invention is designed to make the excited DM mode generate the longitudinal characteristic mode of the floor. By exciting the longitudinal characteristic mode of the floor, the low-frequency radiation performance can be significantly improved, thereby improving the radiation performance of the DM mode and achieving better radiation performance.
- the hand model will cause more significant absorption of the DM mode.
- the antenna solution shown in FIG. 15A works in free space, it can provide better radiation capability through the DM mode.
- the CM mode can effectively reduce the hand model absorption and improve the radiation capability of the antenna in the hand model scene.
- Fig. 16 has provided an efficiency simulation diagram in free space, which corresponds to the electric field/current distribution shown in Fig. 17 to Fig. 20.
- Fig. 21 provides an S parameter simulation diagram of the antenna solution shown in Fig. 15A under a hand model to continue the description.
- the return loss shows that the hand mode of the CM mode close to the low frequency direction does not change significantly.
- the corresponding DM mode has a significant change in resonance in both the left-hand mode and the right-hand mode. It can be understood that after adding the hand mode, the resonance of the DM mode becomes deeper, corresponding to the greater absorption of the hand mode, so the hand mode has a greater impact on the DM mode.
- the hand mode efficiency of the working frequency band (B8) is guaranteed.
- the free space efficiency of B8 is covered by the DM mode. As shown in Figure 21, in free space, the average efficiency of B8 reaches -4.6dB, the efficiency of the left hand mode is -7.8dB, and the efficiency of the right hand mode is -7.9dB.
- the efficiency of the left and right hands is relatively balanced, and the drop is only 3.3dB.
- the left and right hand efficiency simulation is shown in the case of hand model caulking.
- the left and right hand model system efficiency does not change significantly in the case of hand model caulking.
- the existing antenna scheme such as current loop antenna
- the antenna solution shown in FIG. 15A can provide better free-space radiation performance through the DM mode, and can improve the hand mode efficiency through the coverage of the CM mode.
- Table 1 shows the comparison of high, medium and low channel efficiencies in various antenna schemes when the working frequency band is B8, where the B8 low channel corresponds to 880MHz, the B8 medium channel corresponds to 920MHz, and the B8 high channel corresponds to 960MHz.
- the antenna solution provided by the present application may be the simulation result of the antenna solution shown in Figure 15A.
- the current loop antenna solution may be the antenna solution shown in Figure 4.
- the left-hand antenna solution may be the antenna solution shown in Figure 2 or Figure 3. It can be seen from Table 1 that, taking the antenna scheme provided in the present application as an example, in the free space scenario, the antenna efficiency obtained in the B8 low channel band is -4.7dB, the antenna efficiency obtained in the B8 middle channel band is -3.9dB, and the antenna efficiency obtained in the B8 high channel band is -5.1dB. Therefore, the average value of the antenna efficiency obtained in the B8 band is -4.6dB; it will change when the hand is held.
- the antenna efficiency obtained in the B8 low channel band is -7.6dB
- the antenna efficiency obtained in the B8 middle channel band is -7.6dB
- the antenna efficiency obtained in the B8 high channel band is -8.1dB. Therefore, the average value of the left-hand mode antenna efficiency obtained in the B8 band is -7.8dB; thus, the average reduction in the antenna efficiency of the left-hand mode relative to the free space is obtained to be -3.2dB, that is, -7.8dB-(-4.6dB).
- the average decrease in antenna efficiency relative to free space is -3.6dB; while in the prior art, the antenna efficiency obtained in the left-hand mode scenario using the current loop solution is The average reduction in antenna efficiency relative to free space is -3.8dB, which is not much compared with the -3.2 of the present invention; the antenna efficiency obtained in the left-hand mode (sealing) scenario using the current loop solution is -5.6dB relative to the antenna efficiency in free space; this is 2dB lower than the average reduction in antenna efficiency relative to the technical solution of the present invention.
- the average antenna efficiency of the left-hand solution in the free space scenario is -7.7dB, compared with the average value of -4.6dB of the antenna efficiency obtained by the present invention in the free space of the B8 frequency band, the antenna efficiency of the left-hand solution in free space is reduced by 3.1dB, therefore, in the left-hand mode scenario and the left-hand mode (sealing) scenario, the hand mode reduction of the left-hand solution is not much.
- the free space efficiency of the antenna solution provided in the present application is better than the efficiency of the left-hand antenna in free space
- the hand mode efficiency of the antenna solution of the present invention is better than the hand mode efficiency of the current loop antenna. Therefore, the antenna solution shown in Figure 15A provided in the embodiment of the present application can provide good radiation performance in different scenarios.
- the antenna scheme adopts the example of FIG. 15A as an example. It is understandable that the working condition of the antenna scheme provided in any of the above FIG. 11 to FIG. 14 is similar to the antenna scheme shown in FIG. 15A, and both can improve the hand mode efficiency through the CM mode and provide better free space efficiency through the DM mode. Therefore, other implementations can achieve the above effect of providing better radiation efficiency in various scenarios.
- capacitor 41 realizes the function of the first tuning component
- capacitor 42 realizes the function of the second tuning component.
- the first tuning component can also realize its tuning function through other components.
- the second tuning component can be an inductor, etc. In this way, the coverage of a working frequency band is achieved by an inductor or capacitor component of a fixed size.
- the functions of the first tuning component and/or the second tuning component can also be realized by a switching switch including at least two switching paths.
- the antenna can be tuned by the inductive/capacitive components on the corresponding paths to cover at least one working frequency band.
- the electronic device can switch the antenna working frequency band to the wireless communication frequency band by controlling the switching switch to work and conduct the corresponding paths.
- the first tuning component may include SW0.
- the SW0 may include the capacitor 41 in the aforementioned example.
- the second tuning component may include SW1.
- a third tuning component may also be provided on the antenna; the third tuning component is connected at the position of the electrical connection point 61 or near the electrical connection point 61.
- the third tuning component may include SW2.
- One end of the SW2 may be connected to the radiator 51, or to the path between SW0 and the radiator 51.
- the other end of the SW2 may be connected to the ground. This allows the SW2 to be connected in parallel to the feed link.
- the SW2 may also be included in the first tuning component. In the following example, one end of SW2 is connected to the electrical connection point 61, and the other end is connected to the ground.
- SW1 and SW2 may each include at least two switching paths, and different sensing/capacitive components are disposed on different switching paths.
- SW2 may include a switch 71, a capacitor 81, and a capacitor 82.
- the input end included in the switch 71 is connected to the electrical connection point 61 on the radiator 51.
- the first output end included in the switch 71 is connected to one end of the capacitor 81, and the other end of the capacitor 81 is connected to the ground.
- the second output end included in the switch 71 is connected to one end of the capacitor 82, and the other end of the capacitor 82 is connected to the ground.
- the capacitance values of the capacitor 81 and the capacitor 82 may be different. In different working scenarios, the capacitor 81 or the capacitor 82 is connected to the feeding path by switching the switch 71, so that the coverage frequency band of the CM mode excited on the antenna is adjusted.
- the capacitor set in SW2 may also be referred to as a third capacitor.
- Capacitor 82 can be referred to as the third capacitor.
- SW1 may include a switch 72, a capacitor 91 and a capacitor 92.
- the first input end included in the switch 72 is connected to the electrical connection point 63 on the radiator 51.
- the first output end included in the switch 72 is connected to one end of the capacitor 91, and the other end of the capacitor 91 is grounded.
- the second output end included in the switch 72 is connected to one end of the capacitor 92, and the other end of the capacitor 92 is grounded.
- the capacitance of the capacitor 91 and the capacitor 92 may be different.
- the capacitance of the capacitor 91 and the capacitor 92 can be selected according to the relationship between the working frequency band and the capacitance of the capacitor 42 in the aforementioned example.
- the capacitor 91 or the capacitor 92 is connected to the return path by switching the switch 72, so that the DM mode coverage band excited on the antenna is adjusted.
- the SW1 may also include at least one switching path of the inductor, so that when the path is turned on, the magnetic flux ring mode is excited on the radiator to work.
- SW1 including the composition shown in Figure 25 is continued as an example.
- the capacitor provided in SW1 may also be referred to as a second capacitor.
- the capacitor 91 and the capacitor 92 may both be referred to as a third capacitor.
- the inductors on each path may all be referred to as first inductors.
- the capacitance of SW2 when adjusting the low frequency band covered by the antenna, the capacitance of SW2 is increased, and the corresponding CM mode shifts toward low frequency.
- the capacitance of SW1 is increased, and the corresponding DM mode shifts toward low frequency.
- the coverage adjustment of the low-frequency working frequency band can be achieved by switching different paths of SW2 and SW1 at the same time.
- the electronic device controls the switch 71 in SW2 to turn on the capacitor 81, and controls the switch 72 in SW1 to turn on the capacitor 91, which corresponds to the state 1 shown in the figure.
- the DM mode can cover the B8 frequency band, and the resonant frequency of the CM mode can be located in the low-frequency direction of the B8 frequency band to improve the hand model efficiency of B8.
- the electronic device can control the switch 71 in SW2 to turn on the capacitor 82, and control the switch 72 in SW1 to turn on the capacitor 92, which corresponds to the state 2 shown in the figure.
- the capacitor 82 can be greater than the capacitor 81
- the capacitor 92 can be greater than the capacitor 91.
- the DM mode can be used to cover B28, and the resonant frequency of the CM mode can be located in the low-frequency direction of the B28 frequency band to improve the hand model efficiency of B28.
Landscapes
- Support Of Aerials (AREA)
Abstract
本申请实施例公开了一种终端天线和电子设备,涉及天线技术领域,该天线具有更好的自由空间以及手模性能。即使设置在电子设备的侧边,该天线也能够支持电子设备进行各种场景下较好质量的无线通信。具体方案为:终端天线应用于电子设备中,电子设备设置有金属边框,金属边框上开设有第一缝隙和第二缝隙。第一缝隙和第二缝隙之间的金属边框构成第一辐射体,第一辐射体与第一缝隙和第二缝隙之外的金属边框互不连接。天线包括:第一辐射体。第一辐射体上顺序设置有第一电连接点、第二电连接点以及第三电连接点。第一电连接点通过第一调谐部件与馈源耦接,第二电连接点与参考地耦接,第三电连接点通过第二调谐部件与参考地耦接。
Description
本申请要求于2022年11月4日提交国家知识产权局、申请号为202211380028.3、发明名称为“一种终端天线和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及天线技术领域,尤其涉及一种终端天线和电子设备。
电子设备可以通过其中设置的天线实现无线通信功能,其中一些天线可以设置在电子设备的侧边进行辐射。
由于电子设备的使用场景包括自由空间以及手握等场景,那么在这些场景下,设置在侧边的天线都需要能够提供较好的辐射性能,以便支持电子设备的无线通信质量。
发明内容
本申请实施例提供一种终端天线和电子设备,该天线具有更好的自由空间以及手模性能。即使设置在电子设备的侧边,该天线也能够支持电子设备进行各种场景下较好质量的无线通信。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种终端天线,该终端天线应用于电子设备中,该电子设备设置有金属边框,该金属边框上开设有第一缝隙和第二缝隙。该第一缝隙和该第二缝隙之间的金属边框构成第一辐射体,该第一辐射体与该第一缝隙和该第二缝隙之外的金属边框互不连接。该天线包括:该第一辐射体。该第一辐射体上顺序设置有第一电连接点、第二电连接点以及第三电连接点。该第一电连接点通过第一调谐部件与馈源耦接,该第二电连接点与参考地耦接,该第三电连接点通过第二调谐部件与参考地耦接。
由此,通过在金属边框天线上顺序设置上述馈源以及接地点。能够同时实现CM模式以及DM模式的激励,由此同时提供自由空间以及手模下的较好的辐射性能。
可选的,该第一调谐部件包括第一电容。这样,通过在馈源链路上串联电容,能够达到激励左手模式的效果。
可选的,该第二调谐部件包括以下中的至少一种:电容,电感。
可选的,该第二调谐部件包括至少一个第二电容,该第二电容的容值根据工作频段确定。在该天线的工作频段覆盖低频时,该第二电容的容值包括在0到8pF的范围内。在该天线的工作频段覆盖中高频时,该第二电容的容值包括在0到5pF的范围内。
可选的,该第二调谐部件包括至少一个第一电感,该第一电感的感值根据工作频段确定。在该天线的工作频段覆盖低频时,该第一电感的感值包括在10nH到82nH的范围内。在该天线的工作频段覆盖中高频时,该第一电感的感值包括在5nH到27nH的范围内。
该方案提供了几种第二调谐部件的设置方案示例。例如,第二调谐部件可以根据工
作频段设置为电容、电感等部件。由此激励DM模式,较好地激励地板纵向本征模,从而获取较好的辐射性能。
可选的,该第二调谐部件包括至少两个通路,在该天线工作时,该至少两个通路通过开关选择至少一个导通。该至少两个通路中的每个通路上设置有一个该第二电容或者一个该第一电感。由此通过设置开关,能够实现多路电容或电感的设置实现。这样,在不同的场景或工作频段下,切换到对应通路上,接入相应的第二电容或第一点感,获取对应的DM模式覆盖自由空间。
可选的,该天线还包括第三调谐部件,该第三调谐部件的一端连接到该第一电连接点或该第一电连接点附近,该第三调谐部件的另一端连接到参考地。该第三调谐部件包括至少两个第三电容,每个该第三电容对应一个通路,不同通路上的第三电容的容值不同。该天线工作时,该至少两个第三电容对应的通路通过开关选择至少一个导通。
该示例中提供了一种馈源链路上设置开关部件切换通路的实现。例如,该第三调谐部件可以并联到第一电连接点。又如,第三调谐部件可以并联到第一电连接点附近辐射体上。通过切换该第三调谐部件的不同通路导通,能够将不同容值的电容接入到馈电链路上,或者接近馈电链路的辐射体上。由此实现对CM模式覆盖频段的切换。
可选的,该第一辐射体等分为第一部分、第二部分以及第三部分,该第二部分位于该第一部分和该第三部分之间。该第一电连接点设置在该第一部分上任意位置,该第二电连接点设置在该第二部分上任意位置,该第三电连接点设置在该第三部分上任意位置。
可选的,该第一电连接点设置在该第一部分上远离该第二部分的末端,该第三电连接点设置在该第三部分上远离该第二部分的末端。
可选的,该天线工作时,激励第一谐振以及第二谐振,该第一谐振的频率小于第二谐振,该第一谐振通过共模CM激励,该第二谐振通过差模DM激励。基于该方案,在自由空间工作频段主要通过DM模式覆盖,在DM模式的低频方向可以激励该CM模式。从而使得在手模场景下,即使谐振由于手握向高频产生偏移,CM模式也能够落在工作频段内,提供较好的手模辐射性能。
可选的,在该天线的第三调谐部件中的第三电容的容值切换变小时,该第一谐振向高频偏移。可选的,在该第二调谐部件中的第二电容的容值切换变小时,该第二谐振向高频偏移。由此提供了调整DM模式以及CM模式的具体实现。在该方案的不同实施场景下,可以根据需求灵活设置第三电容以及第二电容,从而获取当前场景下较好的辐射。
可选的,该终端天线设置在该电子设备的长边上。
可选的,该第一辐射体的长度大于工作频段的1/4波长,小于工作频段的1/2波长。
第二方面,提供一种电子设备,该电子设备设置有如第一方面及其任一种可能的设计中提供的终端天线。该电子设备在进行信号发射或接收时,通过该终端天线进行信号的发射或接收。
应当理解的是,上述第二方面提供的技术方案,其技术特征均可对应到第一方面及其可能的设计中提供的技术方案,因此能够达到的有益效果类似,此处不再赘述。
图1为一种手机中设置天线的位置的示意图;
图2为一种设置在侧边的左手天线的示意图;
图3为一种设置在侧边的左手天线的示意图;
图4为一种设置在侧边的电流环天线的示意图;
图5为一种手模场景的示意图;
图6为一种侧边天线为左手方案时的S参数仿真示意图;
图7为一种侧边天线为电流环方案时的S参数仿真示意图;
图8为一种手模中手指堵缝的示意图;
图9为一种左手天线方案下手指堵缝的仿真示意图;
图10为一种电流环天线方案下手指堵缝的仿真示意图;
图11为本申请实施例提供的一种天线方案的逻辑示意图;
图12为本申请实施例提供的一种天线方案的逻辑示意图;
图13为本申请实施例提供的一种天线方案的逻辑示意图;
图14为本申请实施例提供的一种天线方案的逻辑示意图;
图15A为本申请实施例提供的一种天线方案的逻辑示意图;
图15B为本申请实施例提供的一种天线方案的逻辑示意图;
图16为本申请实施例提供的一种天线方案的S参数仿真示意图;
图17为本申请实施例提供的一种天线方案的电流仿真示意图;
图18为本申请实施例提供的一种天线方案的电流仿真示意图;
图19为本申请实施例提供的一种天线方案的电场仿真示意图;
图20为本申请实施例提供的一种天线方案的电场仿真示意图;
图21为本申请实施例提供的一种天线方案的S参数仿真示意图;
图22为本申请实施例提供的一种天线方案的S参数仿真示意图;
图23为本申请实施例提供的一种天线方案的逻辑示意图;
图24为本申请实施例提供的一种天线方案的逻辑示意图;
图25为本申请实施例提供的一种天线方案的逻辑示意图;
图26为本申请实施例提供的一种天线方案的S参数仿真示意图。
电子设备中可以设置有天线,用于实现无线通信功能。参考图1,以电子设备为手机为例。传统的天线可以设置在电子设备的顶部和/或底部。对应于图1,顶部的天线可以设置在如图1所示的上天线区域。对应的,底部的天线可以设置在如图1所示的下天线区域。
而随着电子设备的发展,屏占比越来越高,天线的数量越来越多。这样上天线区域以及下天线区域的空间经常无法满足天线设置的需求。那么,在一些实现中,天线可以设置在电子设备(如图1所示的手机)的侧边。
在如图1的示例中,以手机具有金属边框架构为例。那么设置在侧边的天线可以复用金属边框作为辐射体,由此节省小空间下另外设置天线辐射体的开销。如图1所示,基于所需天线辐射体的长度(如辐射体11的长度),合理在金属边框上设置内外贯穿的缝隙,由此获取独立的金属边框用作辐射体11。如图1的示例中,同时给出了一种侧边设置天线(简称为侧边天线)的电连接示意。
在该示例中,天线辐射体可以为辐射体11。在辐射体11的一端可以与馈源耦接(即
直接连接或间接连接),在辐射体11的另一端耦接到地。该如图1所示的天线架构可以用于覆盖低频(如700MHz-960MHz)、中频(如1710MHz-2170MHz)、高频(如2300MHz-2700MHz),以及其他无线通信频段中的至少部分。以下示例中,以侧边天线用于覆盖低频为例。
作为一种可能的实现,如图2示出了具有如图1所示的天线架构下的一种具体天线方案实现。在本示例中,侧边天线可以通过左手天线实现低频(如B28、B5和/或B8)中的至少一个频段(band)覆盖。
该如图2所示的方案中,金属边框上可以设置有内外贯穿的缝隙22。在缝隙22一侧金属边框可以耦接到馈源。例如,该金属边框的一端可以通过电容21耦接到馈源。金属边框上,远离缝隙22部分可以接地设置。其中,该接地点与缝隙22之间金属边框的长度可以根据需要覆盖的工作频段确定。
在该示例中,电容21也可以称为左手电容。基于该左手电容的设置,能够激励辐射体11(即缝隙22到接地端之间的金属边框)上形成同向的电流。由此激励左手模式进行辐射。该左手模式能够实现基于较小尺寸的辐射体,覆盖低频频段的辐射效果。可以理解的是,该基于左手模式工作的天线方案也可以称为左手天线(The composite left hand antenna,CRLH),具体的实现方式也可以参考CN201380008276.8和CN201410109571.9,在此不再赘述。
该如图2所示的左手天线的实现中,接地端可以不设置内外贯穿的缝隙。在另一些左手天线的实现中,如图3所示,左手天线的接地端附近也可以设置有内外贯穿的缝隙23。对应的左手天线的辐射体11可以为缝隙22以及缝隙23之间的金属边框。
上述如图2以及图3示出了以左手天线作为侧边天线的具体实现。在另一些实现中,还可以使用其他天线类型,实现该侧边天线的设置。
示例性的,结合图4,为又一种侧边天线的设置示意图。在该示例中,侧边天线可以通过电流环天线实现。其中,电流环天线的具体设置可以参考CN202110961752.4、CN202110962491.8、CN202110963510.9、202110961755.8以及其他电流环天线相关专利。
作为一种示例,如图4所示,本示例中,天线辐射体11可以包括边框上内外贯穿的缝隙22以及缝隙23之间的金属边框。该金属边框靠近缝隙22的一端可以与馈源连接。金属边框靠近缝隙23的一端可以通过电容31接地。在另一些实现中,该电容31也可以串联设置在辐射体11上的其他位置。在本示例中,基于馈源与接地之间的电容31的设置,使得辐射体11与参考地之间可以分布有幅度差较小的磁场分布,从而获取较好的自由空间辐射性能。
可以理解的是,电子设备在实际使用过程中,包括多种场景。比如,如图1-图4所示的自由空间场景。在该自由空间场景下,电子设备附近空间中只有较少或者不存在影响天线辐射体的介质,对应的天线辐射性能可以处于较好的状态。
又如,如图5所示,在用户手持电子设备的手模场景下。电子设备(也即天线)靠近人手。而人手对于电磁辐射而言存在一定的介质损耗,因此相较于自由空间下,天线的辐射性能一般会受到不同程度的影响。其中,在用户左手握持电子设备的情况下,与右手握持电子设备的情况下,由于人手(即手模)于天线的相对位置不同,因此天线在
左手模与右手模的工作状态可能存在一定的差异。
作为一种示例,结合图2的结构示意,图6示出了图2所示结构的左手天线在自由空间以及左手模、右手模状态下的S参数仿真示意。该示例中,以如图2所示的左手天线工作在B8频段(即880MHz-960MHz)为例。为了便于说明,该如图6的效率仿真中仅示出了低频相关部分(即700MHz-1GHz)的效率示意。
如图6中的回波损耗(S11)所示,左手天线的自由空间最优点为900MHz附近的-6dB。左手模、右手模与自由空间相比,没有显著的频偏。对应到系统效率,可以看到该左手天线在自由空间、左手模以及右手模的系统效率比较相近,900MHz的系统效率均在-6dB到-8dB之间。也就是说,该左手天线的手模相较于自由空间的降幅非常小。这也是左手天线作为侧边天线的优势所在。然而,该左手天线设置在侧边时,在自由空间的系统效率以及带宽均偏低。
在另一些示例中,结合图4的结构示意,图7示出了图4所示的电流环天线的S参数仿真示意。该示例中,同样以该电流环天线工作在B8频段为例。类似于图6的示意,为了便于说明,该如图7的效率仿真中仅示出了低频相关部分(即700MHz-1GHz)的效率示意。
如图7中的S11所示,电流环天线的自由空间最优点为900MHz附近的接近-12dB。相较之下,左手模有比较明显的向低频偏移的趋势。右手模则没有引起显著的频偏。对应到系统效率,该电流环天线的自由空间效率峰值已经超过-4dB,显著优于如图6示出的左手天线的自由空间效率。同时具有更好的带宽。然而,如图7中的左手模以及右手模的系统效率仿真示意,手模场景下,天线系统效率有较为显著的降低。比如,左手模的峰值效率不到-8dB,右手模的峰值效率不到-10dB。也就是说,该电流环天线作为侧边天线时,具有较好的自由空间性能,但是手模场景下的辐射性能较差。
结合图2-图4的说明,天线辐射体与其他部分金属边框之间可以设置内外贯穿的缝隙断开。上述图6以及图7的示例中,手模均未覆盖缝隙。在另一些场景下,如果手模覆盖缝隙,那么对应的手模的影响会进一步增加。
示例性的,参考图8,以手模中的一个手指覆盖靠近接地端的缝隙23为例。
在一些实施例中,请参考图9,以左手天线具有如图3所示的组成结构为例,示出了手模下手指覆盖缝隙23对应的系统效率仿真示意。同时给出了自由空间下的效率作为对比。与前述图6以及图7类似的,本示例中,依然示出了低频部分B8频段的效率进行说明。
如图9所示,在手指覆盖缝隙23后,手模效率与自由空间效率相比,降幅依然有限。由于该如图3所示的天线方案中,缝隙23附近的辐射体11有直接到地的设置,因此即使手指覆盖缝隙23,对天线的手模效率影响也不显著。
在另一些实施例中,请参考图10,以电流环天线具有如图4所示的组成为例,示出了手模下手指覆盖缝隙23对应的系统效率仿真示意;同时给出了自由空间下的效率作为对比。与前述图6以及图7类似的,本示例中,依然示出了低频部分的效率进行说明。
如图10所示,结合对比图7的仿真结果,在手指覆盖缝隙23后,手模效率显著下降。比如,在900MHz附近,左手模的效率从未覆盖缝隙23的接近-8dB恶化到-10dB。
也就是说,在手指覆盖末端缝隙(如远离馈源的缝隙23)时,电流环天线的手模性能进一步恶化。
上述对侧边天线的实现方式中,均以复用侧边金属框作为天线辐射体为例进行说明的。可以理解的是,在左手天线或者电流环天线采用其他方式制备(如FPC天线、LDS天线等)实现时,也具有类似的问题。
综上,目前实现侧边天线的方案中,一些手模降幅较小,但是自由空间性能较差(如图2以及图3所示的左手天线);另一些自由空间较好,但是手模降幅(特别是手指覆盖缝隙时的手模场景)较大,如图4所示的电流环天线。
基于此,本申请实施例提供一种天线方案,能够同时提供较好的自由空间性能,以及较小的手模降幅,即同时具有较好的手模辐射性能。在该天线方案作为侧边天线设置在电子设备中时,使得电子设备能够在自由空间场景以及手模场景下均具备较好的无线通信能力。
以下将结合附图对本申请实施例提供的天线方案进行详细说明。
需要说明的是,本申请实施例提供的天线方案可以应用于电子设备,如终端电子设备中。对应的,本申请中涉及的天线方案也可以称为终端天线。
在不同实现中,该电子设备可以包括手机、可折叠电子设备、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备、或智慧城市设备中的至少一种。本申请实施例对该电子设备的具体类型不作特殊限制。
作为一种可能的实现,本申请实施例涉及的电子设备可以包括处理器,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接头,充电管理模块,电源管理模块,电池,天线1,天线2,移动通信模块,无线通信模块,音频模块,扬声器,受话器,麦克风,耳机接口,传感器模块,按键,马达,指示器,摄像模组,显示屏,以及用户标识模块(subscriber identification module,SIM)卡接口等。其中传感器模块可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器,骨传导传感器等。
以电子设备为手机为例,本申请实施例提供的终端天线能够设置在手机的长边上,对应于前述示例中的侧边天线,从而提供较好的自由空间以及手模下的辐射性能。
在不同实现中,该终端天线的具体实现可以是不同的。在一些实施例中,该终端天线的辐射体可以全部或部分复用电子设备的金属边框。在另一些实施例中,该终端天线的辐射体也可以通过柔性电路板(Flexible Printed Circuit,FPC),阳极氧化的压铸成型工艺(Metalframe Diecasting for Anodicoxidation,MDA)等形式实现。本申请实施例对于终端天线辐射体的具体实现形式不作限制。
以下示例中,以天线辐射体复用金属边框为例进行说明。
示例性的,请参考图11,为本申请实施例提供的一种电子设备的示意。在本示例
中,电子设备可以为手机。
如图11所示,该电子设备的内部,由上至下可以分别设置有印制线路板(printed wiring board,PWB),电池(battery,BAT)以及另一块PWB。其中,设置在电池上方的PWB可以称为主PWB,电池下方的PWB可以称为副PWB。主PWB以及副PWB可以用于作为电子设备中其他电器件的载体,通过电连接线实现各个部件之间的互通。此外,主PWB以及副PWB也可以与电子设备的金属中框(如果有)共同构成电子设备中其他电子部件的参考地。
在该示例中,电子设备具有金属边框架构。金属边框上设置有一个或多个内外贯穿的缝隙,由此将金属边框打断为多个分离的金属段。在一些实现中,电子设备侧边可以由两个贯穿的缝隙分离获得长度小于天线工作频段1/2波长,大于天线工作频段1/4波长的金属边框。该金属边框可以对应于如图11所示的辐射体51,用作本申请实施例提供的天线方案中的辐射体。如图11所示,本示例中的辐射体51向电子设备中心方向的投影可以包括至少部分落在电池上。可以理解的是,一般而言由于电池对于天线的显著影响,不会将天线设置在电池附近(如上述辐射体51的位置)。而本申请实施例提供的天线方案即使靠近电池设置,也能够获取较好的自由空间以及手模辐射性能。在一些实现中,用于从金属边框上分离辐射体51的两端缝隙可以分别为第一缝隙以及第二缝隙。
需要说明的是,上述示例中,对于辐射体51的长度限定为:小于天线工作频段1/2波长,大于天线工作频段1/4波长。其中辐射体的长度并非一定为辐射体的物理长度。在一些实现中,该长度可以为经过构成金属边框的材料的介电常数、损耗正切角等电损耗参数转换后的长度,或者该长度可以为电长度;以下类似。
如图11所示,在辐射体51上可以设置有至少三个电连接点。如电连接点61、电连接点62,以及电连接点63。该电连接点61、电连接点62,以及电连接点63可以分别用于耦接馈源、接地设置等。由此使得该天线工作时,该辐射体51可以被馈入馈电信号进行激励。此外基于合理的接地以及其他部件的设置,实现所需模式的激励。例如激励共模(common mode,CM)模式以及差模(differential mode,DM)模式。在一些实现中,电连接点61可以对应于第一电连接点。电连接点62可以对应于第二电连接点。电连接点63可以对应于第三电连接点。
作为一种具体的示例,图12为本申请实施例提供的一种天线的逻辑示意图。该示例中提供了一种具体的各个电连接点功能设置的示例。
如图12所示,电连接点61可以与馈源耦接,用于接入馈电信号。在一些实施例中,电连接点61与馈源之间还可以设置有第一调谐部件,所述第一调谐部件可以为第一电容。
该示例中,电连接点62可以接地设置。在另一些实施例中,电连接点62在接地之前还可以设置有电感等调谐部件(图中未示出),用于调谐辐射体上电流从该电连接点62回流到地的电长度。
电连接点63可以通过第二调谐部件接地设置。该第二调谐部件可以用于调谐辐射体上电流从该电连接点63回流地的电参数。
在如图11以及图12的示例中,电连接点61-电连接点63顺序设置在辐射体51上。
在一些实施例中,如图13所示,该三个电连接点可以分别位于辐射体51的三个部分上。如图13所示,辐射体51可以被均分为三部分,从馈源到接地的方向上依次为第一部分、第二部分以及第三部分,所述第二部分位于所述第一部分和第三部分之间。第一部分、第二部分以及第三部分的长度相同。电连接点61可以设置在辐射体51的第一部分上。电连接点62可以设置在辐射体51的第二部分上。电连接点63可以设置在辐射体51的第三部分上。
在不同实施例中,各个电连接点在对应的辐射体51的部分上的位置可以是灵活调整的。
在一些实施例中,如图12的示例,三个电连接点可以互相分开设置。例如,电连接点61可以设置在辐射体51的第一部分上,并设置在所述第一部分上远离所述第二部分的末端位置。电连接点62可以设置在第二部分上的任意位置(如中间位置,第二部分的两端等),优选地,电连接点62设置在第二部分的中间位置;电连接点63可以设置在第三部分上远离第二部分的末端位置。
在另一些实施例中,如图12所示,三个电连接点中的任意两个也可以互相靠近设置。结合图13,电连接点61可以设置在辐射体51上第一部分上,靠近第二部分的末端。电连接点62可以设置在第二部分上靠近第一部分的末端。电连接点63可以设置在第三部分上的任意位置,如远离第二部分的末端。
可以理解的是,如图12以及图13仅为两种电连接点在辐射体上设置位置的示例。在另一些实施例中,各个电连接点还可以设置在各自对应的辐射体51的部分辐射体上的其他位置。本申请实施例对于各个电连接点的具体位置不做限定。
在不同的电连接点的位置设置下,电连接点上耦接馈源、接地的实现都可以参考如图12的示例。即电连接点61耦接到馈源,电连接点62耦接到地,电连接点63耦接到地。
示例性的,以如图13所示的电连接点位置设置为例。参考图14,设置在第一部分上的电连接点61与设置在第二部分上的电连接点62靠近设置。这样,馈源可以与电连接点62对应的接地点靠近设置。此外,在远离馈源的辐射体51的末端还可以设置有另一个与电连接点63耦接的接地设置。
以下示例中,以如图12所示的电连接点设置(即电连接点61以及电连接点63设置在辐射体51的两端,电连接点62设置在第二部分上的任意位置)为例。在不同实现中,第一调谐部件以及第二调谐部件的具体实现可以不同。
请参考图15A,在本示例中,第一调谐部件以及第二调谐部件可以分别通过电容实现。示例性的,如图15A所示,第一调谐部件可以包括电容41,第二调谐部件可以包括电容42。在一些实现中,电容41可以对应于第一电容,电容42可以对应于第二电容;优选地,所述电容41和电容42是容值固定的集总电容。
在一些实施例中,电容41可以对应于左手电容设置。比如电容41可以设置为小于5pF的电容,从而激励辐射体51的至少部分进行基于左手模式的辐射。
电容42的大小可以根据工作频段选取。示例性的,天线的工作频段为低频时,则该电容42的容值可以包括在0到8pF的范围内。天线的工作频段为中频和/或高频时,则该电容42的容值可以包括在0到5pF的范围内。
可以理解的是,如图15A所示的通过电容42实现第二调谐部件的功能仅为一种示例。通过在辐射体51末端设置电容42接地,能够获取辐射体51上激励出差模DM模式的效果。
在另一些实施例中,如图15B所示,该第二调谐部件的功能还可以通过电感实现。在一些实现中,该第二调谐部件中的电感也可称为第一电感。其中,天线的工作频段为低频时,则该第一电感的感值可以包括在10nH到82nH的范围内。天线的工作频段为中频和/或高频时,则该第一电感的感值可以包括在5nH到27pF的范围内。
以如图15A所示的天线实现为例,以下结合仿真对该天线能够获取的辐射性能进行说明。
示例性的,以该如图15A所示的天线方案作为侧边天线应用于手机上为例。如图16所示,该侧边天线由上至下分别设置的三个电连接点为:电连接点61,电连接点62,电连接点63。各个电连接点与馈源/接地的连接如图15A所示。
以整机尺寸152×75×5(mm),天线净空1mm,天线辐射体(即辐射体51)长度77.5mm宽度3.5mm高度5mm为例进行仿真。
如图16所示,给出了自由空间下该天线模型的S参数仿真结果。从回波损耗的角度,该天线能够同时激励两个谐振:位于低频侧的CM谐振,以及位于高频侧的DM谐振。其中,DM谐振可以主要用于在自由空间下覆盖天线的工作频段。例如,在该示例中,天线的工作频段可以包括低频B8频段。可以理解的是,CM谐振主体位于B8频段低频方向,但是CM谐振与DM谐振的共同作用下,在自由空间中B8频段的低频部分被显著拉低。因此,CM谐振也对低频自由空间的辐射有一定的贡献。
从效率的角度,图16同时示出了在所有频点均完全匹配的情况下能够达到的最优效率(即辐射效率)示意,以及在当前端口匹配下的效率(即系统效率)示意。在B8频段,如900MHz附近,辐射效率超过-6dB,系统效率达到了-6dB。因此该如图15A所示的天线方案能够获取较好的自由空间辐射性能。
图17以及图18分别提供了CM谐振以及DM谐振的电流仿真和方向图示意。颜色越深,对应电流/增益越强。
如图17示出了CM谐振的电流仿真以及方向图示意。如图17所示,在CM谐振模式下,电流在天线辐射体上从两端向中间汇聚,在辐射体上呈现电流反向的特征,由此对应到CM的典型电流分布。地板电流的分布中,该CM谐振模式能够激励地板上显著地斜向上以及斜向下的电流。这样,基于正交分解,纵向电流彼此抵消,横向电流互相叠加。由此,该CM谐振模式能够有效地激励地板上的横向电流。对应到方向图上,如图17所示方向图呈现斜向上的方向。
如图18示出了DM谐振的电流仿真以及方向图示意。如图18所示,在DM谐振模式下,电流在天线辐射体上从一端不反向地流向另一端,电流同向,由此对应到DM的典型电流分布。地板电流的分布中,该DM谐振模式能够激励地板上显著地纵向电流。对应到方向图上,横向增益分布显著强于纵向增益分布。
可以理解的是,低频的辐射一般主要通过地板进行辐射。在本示例中,DM模式工作时能够激励显著的纵向地板电流,如有效激励地板纵向特征模。以电子设备为手机为例,手机纵向尺寸(即长边长度)接近于150mm,该长度接近于低频的1/2波长。因此
通过激励地板纵向特征模,能够使得低频的辐射性能得到显著提升。基于此,本申请中提供的天线方案,能够通过DM谐振激励地板纵向特征模,由此获取较好的自由空间辐射性能。
图19以及图20分别提供了CM谐振以及DM谐振的电场仿真示意。颜色越深,电场越强。
如图19所示为CM谐振模式下的电场分布。在0°以及90°的相位下,辐射体51都可以向外部空间辐射垂直于辐射体的法向电场。本领域技术人员所公知的,人体对于切向电场吸收较为显著,而对于法向电场吸收并不明显。也就是说,本申请中激励的CM模式并不会由于手模的靠近造成显著的性能降低。因此,本申请中可以通过该CM谐振模式提升手模辐射性能。
如图20所示为DM谐振模式下的电场分布。在0°以及90°的相位下,辐射体51都可以向外部空间辐射垂直于辐射体的切向电场,本领域技术人员所公知的,人体对于切向电场吸收较为显著,但另一方面,本发明通过设计使得激励的该DM模式产生地板纵向特征模,通过激励地板纵向特征模,能够使得低频的辐射性能得到显著提升,从而使得DM模式辐射性能得到改善,实现更好的辐射性能。同时,相比于自由空间的DM模式,手模会对该DM模式造成较为显著的吸收。
结合图19以及图20的说明,如图15A所示的天线方案工作在自由空间下时,能够通过DM模式提供较好的辐射能力。而在处于手模场景时,CM模式能够有效降低手模吸收,提升该天线在手模场景下的辐射能力。
在上述图16中已经提供了自由空间下的效率仿真示意,与如图17-图20的电场/电流分布相对应。以下图21提供该如图15A所示的天线方案在手模下的S参数仿真示意继续说明。
如图21中的回波损耗表现出靠近低频方向的CM模式的手模变化并不明显。对应的DM模式在左手模以及右手模下,谐振均发生了较为显著的变化。可以理解的是,在增加手模后,DM模式的谐振变深,对应于手模较大的吸收,因此手模对于DM模式的影响较大。
从系统效率的角度,该示例中,由于CM模式对于手模并不敏感,因此使得工作频段(B8)的手模效率得到了保证。而B8的自由空间效率则由DM模式覆盖。如图21所示,该方案在自由空间下,B8平均效率达到了-4.6dB,左手模效率为-7.8dB,右手模为-7.9dB。左右手效率较为均衡,并且降幅仅3.3dB。
结合前述图8-图10的说明。在目前的天线方案中,在手模场景下,如果手指堵住了天线末端缝隙(如缝隙23),则会造成更显著的手模降幅。而本申请实施例提供的技术方案(如图11-图15B中任一种天线方案)可以有效地克服该问题。
示例性的,结合图22,为手模堵缝情况下的左右手效率仿真示意。相比于如图21所示的正常手模环境,该手模堵缝的情况下,左右手模系统效率没有明显的变化。而现有的天线方案(如电流环天线)中,如图7以及图10的说明,手模堵缝后,系统效率再次明显恶化。
综合上述对图15A的说明,可以看到,如图15A所示的天线方案能够通过DM模式提供较好的自由空间辐射性能,同时能够通过CM模式的覆盖提升手模效率。
具体的,结合图15A-图22,以下表1示出了工作频段为B8的情况下,各个天线方案实现中的高中低信道效率对比。其中,B8低信道对应于880MHz,B8中信道对应于920MHz,B8高信道对应于960MHz。
表1
在表1的示例中,本申请提供的天线方案可以为如图15A所示的天线方案的仿真结果。电流环天线方案可以为如图4所示的天线方案。左手天线方案可以为如图2或图3所示的天线方案。由表1可知,以本申请提供的天线方案为例进行说明,在自由空间场景下,B8低信道频段获得的天线效率为-4.7dB,B8中信道频段获得的天线效率为-3.9dB,B8高信道频段获得的天线效率为-5.1dB,因此,在B8频段获得的天线效率的平均值为-4.6dB;当手握之后会发生变化,以左手为例,在左手模场景下,B8低信道频段获得的天线效率为-7.6dB,B8中信道频段获得的天线效率为-7.6dB,B8高信道频段获得的天线效率为-8.1dB,因此,在B8频段获得的左手模天线效率的平均值为-7.8dB;从而可以获得左手模相对于自由空间的天线效率平均降幅为-3.2dB,即-7.8dB-(-4.6dB)。同样地,当用户左手捂住缝隙时,也即左手模(堵缝)场景下,相对于自由空间的天线效率平均降幅为-3.6dB;而现有技术中,采用电流环方案左手模场景下获得的天线效率,
相对于自由空间的天线效率平均降幅为-3.8dB,这与本发明的-3.2相比,手模降幅不大;采用电流环方案左手模(堵缝)场景下获得的天线效率,相对于自由空间的天线效率平均降幅为-5.6dB;这相对于本发明的技术方案而言,天线效率平均降幅降了2dB。同样地,采用左手方案在自由空间场景下的天线平均效率为-7.7dB,相比于本发明在B8频段自由空间获得的天线效率的平均值-4.6dB而言,采用左手方案在自由空间的天线效率下降了3.1dB,因此,左手模场景以及左手模(堵缝)场景下,采用左手方案的手模降幅不大。可以看到,本申请提供的天线方案的自由空间效率更优于左手天线在自由空间的效率,同时本发明天线方案的手模效率更优于电流环天线的手模效率。因此,本申请实施例提供的如图15A所示的天线方案能够在不同场景下均提供较好的辐射性能。
可以理解的是,上述仿真示例中,均以天线方案采用如图15A的示例为例。可以理解的是,前述图11-图14中任一项提供的天线方案的工作情况与如图15A所示的天线方案类似,都能够通过CM模式提高手模效率,通过DM模式提供较好的自由空间效率。因此其他实现均能够达到上述在各个场景下提供较好的辐射效率的效果。
需要说明的是,上述图15A中,电容41实现第一调谐部件的功能,电容42实现第二调谐部件的功能。结合前述说明,第一调谐部件还可以通过其他部件实现其调谐功能。比如,如图15B所示的,第二调谐部件可以为电感等。这样,通过固定大小的电感器件或电容器件实现一个工作频段的覆盖。
在另一些实施例中,第一调谐部件和/或第二调谐部件的功能还可通过包括至少两路切换通路的切换开关实现其调谐功能。在切换开关到通到不同通路上时,可以通过对应通路上的感/容部件实现对天线的调谐,用于覆盖至少一个工作频段。也就是说,在天线需要工作在不同无线通信频段时,可以电子设备可以通过控制切换开关工作导通对应的通路,实现将天线工作频段切换到该无线通信频段的效果。
作为一种示例,如图23所示,第一调谐部件可以包括SW0。例如,该SW0可以包括前述示例中的电容41。第二调谐部件可以包括SW1。在该天线上还可以设置有第三调谐部件;所述第三调谐部件连接在电连接点61的位置或电连接点61附近。例如,该第三调谐部件可以包括SW2。该SW2的一端可以连接到辐射体51上,或者连接到SW0与辐射体51之间的通路上。该SW2的另一端可以连接到地。由此使得该SW2可以并联接入馈电链路上。需要说明的是,在另一些逻辑划分中,该SW2也可以包括在第一调谐部件中。以下示例中,以SW2的一端连接到电连接点61,另一端连接到地为例。
在该如图23的示例中,SW1以及SW2均可以包括至少两个切换通路。不同切换通路上设置不同的感/容部件。
示例性的,以SW2包括两路切换通路,每个通路上设置不同容值的电容为例。如图24所示,该SW2可以包括开关71、电容81以及电容82。开关71包括的输入端与辐射体51上的电连接点61连接。开关71包括的第一输出端与电容81的一端连接,电容81的另一端连接到地。开关71包括的第二输出端与电容82的一端连接,电容82的另一端连接到地。其中电容81和电容82的容值可以不同。在不同工作场景下,通过切换开关71将电容81或者电容82接入馈电通路,以使得天线上激励的CM模式覆盖频段得到调整。
在一些实现中,该SW2中设置的电容也可以称为第三电容。例如,该电容81、电
容82都可以称为第三电容。
以SW1包括两路切换通路,每个通路上设置不同容值的电容为例。如图25所示,该SW1可以包括开关72、电容91以及电容92。开关72包括的第一输入端与辐射体51上的电连接点63连接。开关72包括的第一输出端与电容91的一端连接,电容91的另一端接地。开关72包括的第二输出端与电容92的一端连接,电容92的另一端接地。其中电容91和电容92的容值可以不同。在一些实施例中,电容91以及电容92的容值大小可以根据前述示例中工作频段与电容42的容值大小关系选取。在不同工作场景下,通过切换开关72将电容91或者电容92接入回地通路,以使得天线上激励的DM模式覆盖频段得到调整。应当理解的是,在另一些实施例中,该SW1中也可以包括至少一路电感的切换通路,由此使得在该通路导通时,在辐射体上激励磁流环模式进行工作。以下示例中,继续以SW1包括如图25所示组成为例。
在一些实现中,该SW1中设置的电容也可以称为第二电容。例如,该电容91、电容92都可以称为第三电容。在另一些实现中,在SW1中包括电感时,各个通路上的电感均可以称为第一电感。
在一些实施例中,在调整天线覆盖的低频频段时,将SW2导通的电容调大,则对应的CM模式向低频偏移。将SW1导通的电容调大,则对应DM模式向低频偏移。
作为一种具体的实现,如图26所示,同时切换SW2以及SW1不同通路即可实现对低频工作频段的覆盖调节。在该示例中,电子设备控制SW2中的开关71导通电容81,控制SW1中的开关72导通电容91,则对应于图示的状态1。在该状态1下,DM模式可以覆盖B8频段,CM模式的谐振频率可以位于B8频段的低频方向,以便提升B8的手模效率。在该天线需要切换工作在B28时,则电子设备可以控制SW2中的开关71导通电容82,控制SW1中的开关72导通电容92,则对应于图示的状态2。其中电容82可以大于电容81,电容92可以大于电容91。在该状态2下,DM模式可以用于覆盖B28,CM模式的谐振频率可以位于B28频段的低频方向,以便提升B28的手模效率。
由此也即实现了该天线方案的低频切换效果。在不同的低频工作状态下,辐射体上均能够激励CM模式以及DM模式,因此自由空间以及手模效率都可以得到有效的保证。
应当理解的是,在另一些实施例中,为了实现更宽的频带覆盖,SW2和/或SW1中也可以设置有更多切换通路,从而在不同的场景下切换到对应的通路进行工作。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。
Claims (15)
- 一种终端天线,其特征在于,所述终端天线应用于电子设备中,所述电子设备设置有金属边框,所述金属边框上开设有第一缝隙和第二缝隙;所述第一缝隙和所述第二缝隙之间的金属边框构成第一辐射体,所述第一辐射体与所述第一缝隙和所述第二缝隙之外的金属边框互不连接;所述天线包括:所述第一辐射体;所述第一辐射体上顺序设置有第一电连接点、第二电连接点以及第三电连接点;所述第一电连接点通过第一调谐部件与馈源耦接,所述第二电连接点与参考地耦接,所述第三电连接点通过第二调谐部件与参考地耦接。
- 根据权利要求1所述的天线,其特征在于,所述第一调谐部件包括第一电容。
- 根据权利要求2所述的天线,其特征在于,所述第二调谐部件包括以下中的至少一种:电容,电感。
- 根据权利要求3所述的天线,其特征在于,所述第二调谐部件包括至少一个第二电容,所述第二电容的容值根据工作频段确定;在所述天线的工作频段覆盖低频时,所述第二电容的容值包括在0到8pF的范围内;在所述天线的工作频段覆盖中高频时,所述第二电容的容值包括在0到5pF的范围内。
- 根据权利要求3所述的天线,其特征在于,所述第二调谐部件包括至少一个第一电感,所述第一电感的感值根据工作频段确定;在所述天线的工作频段覆盖低频时,所述第一电感的感值包括在10nH到82nH的范围内;在所述天线的工作频段覆盖中高频时,所述第一电感的感值包括在5nH到27nH的范围内。
- 根据权利要求5所述的天线,其特征在于,所述第二调谐部件包括至少两个通路,在所述天线工作时,所述至少两个通路通过开关选择至少一个导通;所述至少两个通路中的每个通路上设置有一个所述第二电容或者一个所述第一电感。
- 根据权利要求6所述的天线,其特征在于,所述天线还包括第三调谐部件,所述第三调谐部件的一端连接到所述第一电连接点或所述第一电连接点附近,所述第三调谐部件的另一端连接到参考地;所述第三调谐部件包括至少两个第三电容,每个所述第三电容对应一个通路,不同通路上的第三电容的容值不同;所述天线工作时,所述至少两个第三电容对应的通路通过开关选择至少一个导通。
- 根据权利要求1-7中任一项所述的天线,其特征在于,所述第一辐射体等分为第一部分、第二部分以及第三部分,所述第二部分位于所述第一部分和所述第三部分之间;所述第一电连接点设置在所述第一部分上任意位置,所述第二电连接点设置在所述第二部分上任意位置,所述第三电连接点设置在所述第三部分上任意位置。
- 根据权利要求8所述的天线,其特征在于,所述第一电连接点设置在所述第一部 分上远离所述第二部分的末端,所述第三电连接点设置在所述第三部分上远离所述第二部分的末端。
- 根据权利要求1-7、9中任一项所述的天线,其特征在于,所述天线工作时,激励第一谐振以及第二谐振,所述第一谐振的频率小于第二谐振,所述第一谐振通过共模CM激励,所述第二谐振通过差模DM激励。
- 根据权利要求10所述的天线,其特征在于,在所述天线的第三调谐部件中的第三电容的容值切换变小时,所述第一谐振向高频偏移。
- 根据权利要求11所述的天线,其特征在于,在所述第二调谐部件中的第二电容的容值切换变小时,所述第二谐振向高频偏移。
- 根据权利要求1-7、9、11-12中任一项所述的天线,其特征在于,所述终端天线设置在所述电子设备的长边上。
- 根据权利要求1-7、9、11-12中任一项所述的天线,其特征在于,所述第一辐射体的长度大于工作频段的1/4波长,小于工作频段的1/2波长。
- 一种电子设备,其特征在于,所述电子设备设置有如权利要求1-14中任一项所述的终端天线;所述电子设备在进行信号发射或接收时,通过所述终端天线进行信号的发射或接收。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211380028.3A CN118040289A (zh) | 2022-11-04 | 2022-11-04 | 一种终端天线和电子设备 |
CN202211380028.3 | 2022-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093499A1 true WO2024093499A1 (zh) | 2024-05-10 |
Family
ID=90929645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/116691 WO2024093499A1 (zh) | 2022-11-04 | 2023-09-04 | 一种终端天线和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118040289A (zh) |
WO (1) | WO2024093499A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112490639A (zh) * | 2019-09-12 | 2021-03-12 | 华为技术有限公司 | 天线装置、通信产品及天线方向图的重构方法 |
CN112928453A (zh) * | 2021-01-28 | 2021-06-08 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
CN113013594A (zh) * | 2021-02-26 | 2021-06-22 | Oppo广东移动通信有限公司 | 天线组件和电子设备 |
US20210305702A1 (en) * | 2018-12-12 | 2021-09-30 | Vivo Mobile Communication Co., Ltd. | Antenna structure and communications terminal |
CN113471678A (zh) * | 2021-06-11 | 2021-10-01 | 荣耀终端有限公司 | 一种终端天线及电子设备 |
CN113991288A (zh) * | 2021-10-20 | 2022-01-28 | Oppo广东移动通信有限公司 | 天线组件、中框组件以及电子装置 |
CN114552181A (zh) * | 2022-01-30 | 2022-05-27 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
CN114883791A (zh) * | 2022-07-04 | 2022-08-09 | 荣耀终端有限公司 | 天线系统和终端设备 |
-
2022
- 2022-11-04 CN CN202211380028.3A patent/CN118040289A/zh active Pending
-
2023
- 2023-09-04 WO PCT/CN2023/116691 patent/WO2024093499A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210305702A1 (en) * | 2018-12-12 | 2021-09-30 | Vivo Mobile Communication Co., Ltd. | Antenna structure and communications terminal |
CN112490639A (zh) * | 2019-09-12 | 2021-03-12 | 华为技术有限公司 | 天线装置、通信产品及天线方向图的重构方法 |
CN112928453A (zh) * | 2021-01-28 | 2021-06-08 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
CN113013594A (zh) * | 2021-02-26 | 2021-06-22 | Oppo广东移动通信有限公司 | 天线组件和电子设备 |
CN113471678A (zh) * | 2021-06-11 | 2021-10-01 | 荣耀终端有限公司 | 一种终端天线及电子设备 |
CN113991288A (zh) * | 2021-10-20 | 2022-01-28 | Oppo广东移动通信有限公司 | 天线组件、中框组件以及电子装置 |
CN114552181A (zh) * | 2022-01-30 | 2022-05-27 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
CN114883791A (zh) * | 2022-07-04 | 2022-08-09 | 荣耀终端有限公司 | 天线系统和终端设备 |
Also Published As
Publication number | Publication date |
---|---|
CN118040289A (zh) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113013593B (zh) | 天线组件和电子设备 | |
CN113013594B (zh) | 天线组件和电子设备 | |
CN112751212B (zh) | 天线系统及电子设备 | |
US10819031B2 (en) | Printed circuit board antenna and terminal | |
CN108123729B (zh) | 无线通信装置 | |
CN112821031A (zh) | 电子设备 | |
CN113451741B (zh) | 一种天线及终端设备 | |
US8325103B2 (en) | Antenna arrangement | |
US11276930B2 (en) | Antenna and mobile terminal | |
CN112751174B (zh) | 天线组件和电子设备 | |
CN111052501B (zh) | 天线装置和移动终端 | |
CN112768959B (zh) | 天线组件和电子设备 | |
CN112448725B (zh) | 天线、电子设备及天线控制方法 | |
WO2024001069A1 (zh) | 天线组件、中框组件以及电子设备 | |
US20240072440A1 (en) | Antenna assembly and electronic device | |
CN112825386B (zh) | 天线结构及具有该天线结构的无线通信装置 | |
CN114883791B (zh) | 天线系统和终端设备 | |
WO2023273604A1 (zh) | 天线模组及电子设备 | |
CN115036676B (zh) | 天线组件及电子设备 | |
WO2024093499A1 (zh) | 一种终端天线和电子设备 | |
CN115458911A (zh) | 天线装置和电子设备 | |
US7499736B2 (en) | Printed stubby unbalanced dipole antenna | |
CN112086742A (zh) | 天线结构、物联模块和显示装置 | |
WO2023020019A1 (zh) | 一种耦合馈电的终端单极子天线 | |
EP4283783A1 (en) | Terminal monopole antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884436 Country of ref document: EP Kind code of ref document: A1 |