Nothing Special   »   [go: up one dir, main page]

WO2024083218A1 - 取代四氢吡啶类化合物及其用途 - Google Patents

取代四氢吡啶类化合物及其用途 Download PDF

Info

Publication number
WO2024083218A1
WO2024083218A1 PCT/CN2023/125616 CN2023125616W WO2024083218A1 WO 2024083218 A1 WO2024083218 A1 WO 2024083218A1 CN 2023125616 W CN2023125616 W CN 2023125616W WO 2024083218 A1 WO2024083218 A1 WO 2024083218A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compound
reaction
added
hydrogen
Prior art date
Application number
PCT/CN2023/125616
Other languages
English (en)
French (fr)
Inventor
王太津
贾涛
白忠友
李钢
Original Assignee
成都赜灵生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都赜灵生物医药科技有限公司 filed Critical 成都赜灵生物医药科技有限公司
Publication of WO2024083218A1 publication Critical patent/WO2024083218A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the invention belongs to the field of chemical medicine and relates to a class of substituted tetrahydropyridine compounds and uses thereof.
  • PARP inhibitors have shown excellent clinical efficacy in patients with homologous recombination-deficient cancers. However, hematological toxicity (anemia, neutropenia, and thrombocytopenia) and other toxicities limit the application of these drugs, whether used alone or in combination therapy.
  • Related studies have shown that (Harris P A, Boloor A, Cheung M, et al. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. [J].
  • the novel PARP1 inhibitors of the present invention have unexpectedly higher selectivity for PARP1 than other PARP family members (such as PARP2, PARP3, PARP5a and PARP6), and can be used to treat diseases related to PARP function.
  • the object of the present invention is to provide a class of substituted tetrahydropyridine compounds and uses thereof, so as to achieve highly selective and efficient prevention or treatment of diseases related to PARP function.
  • the present invention provides a compound represented by formula II or a pharmaceutically acceptable form thereof, wherein the structure of formula II is as follows:
  • R1 is selected from halogen, C1-4 alkyl, C1-4 fluoroalkyl, 3-6 membered cycloalkyl, 3-6 membered fluorocycloalkyl or C2-4 alkenyl;
  • X1 is selected from N or CR5a
  • X2 is selected from N or CR5b
  • X3 is selected from N or CR5c ;
  • R6 is selected from hydrogen or halogen
  • R 4 is -CONHR 7 , R 7 is selected from C 1-4 alkyl, C 1-4 fluoroalkyl, C 1-4 deuterated alkyl, 3-6 membered cycloalkyl or 3-6 membered fluorocycloalkyl;
  • R 9a is selected from hydrogen, halogen, cyano, C 1-4 alkyl, C 1-4 fluoroalkyl, 3-6 membered cycloalkyl or 3-6 membered fluorocycloalkyl;
  • R 9c is selected from hydrogen or halogen
  • R2 is selected from hydrogen or C1-4 alkyl
  • R 3a is selected from halogen, C 1-4 alkyl, C 1-4 fluoroalkyl or 3-6 membered cycloalkyl;
  • R 3b is selected from hydrogen, halogen or C 1-4 alkyl;
  • R 3c is selected from hydrogen or C 1-4 alkyl
  • R 5a is selected from hydrogen, halogen or C 1-4 alkyl
  • R 5b is selected from hydrogen or halogen
  • R 5c is selected from hydrogen or halogen
  • the pharmaceutically acceptable form is selected from pharmaceutically acceptable salts, esters, stereoisomers, polymorphs, solvates, nitrogen oxides, isotopically labeled substances, metabolites or prodrugs.
  • R 1 is selected from chlorine, methyl, ethyl, fluoromethyl, fluoroethyl, cyclopropyl or vinyl.
  • R 6 is selected from hydrogen or fluorine.
  • R 7 is selected from methyl, ethyl, deuterated methyl, deuterated ethyl, fluoromethyl, fluoroethyl, cyclopropyl or fluorocyclopropyl.
  • R 9a is selected from hydrogen, fluorine, chlorine, cyano, methyl, ethyl, fluoromethyl, fluoroethyl, cyclopropyl or fluorocyclopropyl.
  • R 9c is selected from hydrogen or fluorine.
  • R2 is selected from hydrogen or methyl.
  • R 3a is selected from fluorine, methyl, ethyl, fluoromethyl, fluoroethyl, cyclopropyl or fluorocyclopropyl; and R 3b is selected from hydrogen, fluorine or methyl.
  • R 3c is selected from hydrogen or methyl.
  • R 5a is selected from hydrogen, fluorine or methyl
  • R 5b is selected from hydrogen or fluorine
  • R 5c is selected from hydrogen or fluorine
  • the compound has a structure described in Formula II-1, Formula II-2 or Formula II-3:
  • the compound has a structure described in Formula III-1, Formula III-2, Formula III-3 or Formula III-4:
  • the present invention also provides some specific compounds among the compounds shown, and the structures are as follows:
  • the present invention also provides some specific compounds among the compounds shown, and the structures are as follows:
  • the present invention also provides some specific compounds, the structures of which are as follows:
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the aforementioned compound or its pharmaceutically acceptable salt, ester, stereoisomer, tautomer, polymorph, solvate, nitrogen oxide, isotope-labeled substance, metabolite or prodrug as an active ingredient, supplemented with a pharmaceutically acceptable carrier.
  • a further object of the present invention is to provide a method for preparing the pharmaceutical composition of the present invention, the method comprising: A pharmaceutically acceptable carrier combination.
  • the pharmaceutically acceptable carrier that can be used in the pharmaceutical composition of the present invention is a pharmaceutically acceptable carrier.
  • suitable pharmaceutically acceptable carriers are described in Remington’s Pharmaceutical Sciences (2005).
  • the pharmaceutical composition can be administered in any form as long as it prevents, alleviates, prevents or cures the symptoms of a human or animal patient.
  • it can be prepared into various suitable dosage forms according to the administration route.
  • the administration of the compounds or pharmaceutical compositions of the present invention may be combined with another therapeutic method.
  • the other therapeutic method may be selected from, but not limited to: radiotherapy, chemotherapy, immunotherapy, or a combination thereof.
  • the present invention also relates to a pharmaceutical preparation comprising any of the aforementioned compounds or their pharmaceutically acceptable forms, or a mixture thereof as an active ingredient, or a pharmaceutical composition of the present invention.
  • the preparation is in the form of a solid preparation, a semisolid preparation, a liquid preparation or a gaseous preparation.
  • a further object of the present invention is to provide an article of manufacture, for example, in the form of a kit.
  • Articles of manufacture as used herein are intended to include, but are not limited to, kits and packages.
  • the article of manufacture of the present invention comprises: (a) a first container; (b) a pharmaceutical composition located in the first container, wherein the composition comprises: a first therapeutic agent, the first therapeutic agent comprising: any of the aforementioned compounds or a pharmaceutically acceptable form thereof, or a mixture thereof; (c) an optional package insert indicating that the pharmaceutical composition can be used to treat a neoplastic condition (as defined below); and (d) a second container.
  • the first container is a container for holding a pharmaceutical composition. This container can be used for preparation, storage, transportation and/or individual/batch sales.
  • the first container is intended to cover bottles, jars, vials, flasks, syringes, tubes (e.g., for cream products), or any other container for preparing, holding, storing or dispensing pharmaceutical products.
  • the second container is a container for accommodating the first container and optional package instructions.
  • the second container include, but are not limited to, boxes (e.g., paper or plastic boxes), boxes, cartons, bags (e.g., paper or plastic bags), pouches, and sacks.
  • the package instructions may be physically adhered to the outside of the first container via a cable tie, glue, staples, or other adhesion means, or they may be placed inside the second container without any physical tool for adhesion to the first container.
  • the package instructions are located outside the second container. When located outside the second container, it is preferred that the package instructions are physically adhered via a cable tie, glue, staples, or other adhesion means. Alternatively, it may abut or contact the outside of the second container without physical adhesion.
  • the package insert is a trademark, label, indicia, or the like, which lists information related to the pharmaceutical composition located in the first container.
  • the information listed is generally determined by the regulatory agency (e.g., the U.S. Food and Drug Administration) that governs the region in which the product is to be sold.
  • the package insert specifically lists the indications for which the pharmaceutical composition is approved.
  • the package insert may be made of any material from which the information contained therein or thereon may be read.
  • the package insert is a printable material (e.g., paper, plastic, cardboard, foil, adhesive paper, or plastic). Materials, etc.), on which desired information can be formed (for example, printed or applied).
  • the present invention provides the use of the aforementioned compounds, and related specific compounds or pharmaceutically acceptable forms thereof, or the pharmaceutical composition of the present invention in the preparation of drugs for preventing or treating PARP1 enzyme-related diseases.
  • the present invention provides a method for preventing or treating PARP1 enzyme-related diseases, comprising administering the aforementioned compound or a pharmaceutically acceptable form thereof, or the pharmaceutical composition of the present invention to an individual in need thereof.
  • the present invention provides the aforementioned compound or a pharmaceutically acceptable form thereof, or the pharmaceutical composition of the present invention, for use in preventing or treating PARP1 enzyme-related diseases.
  • the present invention provides a method for preventing or treating PARP1 enzyme-related diseases in combination with the aforementioned compound or a pharmaceutically acceptable form thereof or the pharmaceutical composition of the present invention, wherein the additional treatment method includes but is not limited to: radiotherapy, chemotherapy, immunotherapy, or a combination thereof.
  • the PARP1 enzyme-related disease is a disease that is sensitive or responsive to PARP1 enzyme inhibition.
  • the PARP1 enzyme-related disease is a tumor disorder.
  • the tumor-like disorder lacks the HR-dependent DNA DSB repair pathway.
  • the tumor-like disorder comprises one or more cancer cells having reduced or absent ability to repair DNA DSB via HR relative to normal cells.
  • the cancer cells have a BRCA1 or BRCA2 deficient phenotype.
  • the PARP1 enzyme-related disease is a tumor-related disorder, including but not limited to solid and hematological malignancies.
  • the tumor-related disorders include but are not limited to breast cancer, colorectal cancer, colon cancer, lung cancer (including small cell lung cancer, non-small cell lung cancer and bronchioloalveolar carcinoma) and prostate cancer, as well as bile duct cancer, bone cancer, bladder cancer, head and neck cancer, kidney cancer, liver cancer, gastrointestinal tissue cancer, esophageal cancer, ovarian cancer, pancreatic cancer, skin cancer, testicular cancer, thyroid cancer, uterine cancer, cervical cancer and vulvar cancer, as well as leukemia (including chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia (ALL) and chronic myeloid leukemia (CML)), multiple myeloma or lymphoma.
  • CLL chronic lymphocytic leukemia
  • ALL acute lymphocytic leukemia
  • CML chronic myeloid leukemia
  • the PARP1 enzyme-related disease is breast cancer, ovarian cancer, pancreatic cancer, prostate cancer, blood cancer, gastrointestinal cancer or lung cancer.
  • the compounds of the present invention can be used in combination with chemoradiotherapy or immunotherapy to prevent or treat cancer.
  • the present invention provides a novel class of highly active and highly selective PARP1 inhibitors, which can achieve at least one of the following technical effects: (1) high inhibitory activity against PARP1 enzyme; (2) selective inhibition of PARP1 enzyme, and inhibition of PARP2, PARP5a, PARP5b and other PARP family enzymes have high selectivity; (3) have strong inhibitory activity against homologous recombination-deficient tumor cells and weak inhibitory effect on non-homologous recombination-deficient cells; (4) have excellent pharmacokinetic properties (such as good bioavailability, appropriate half-life and duration of action); (5) have excellent safety (lower toxicity and/or fewer side effects, wider therapeutic window), etc.
  • compositions comprising "a” pharmaceutically acceptable excipient can be interpreted as indicating that the composition includes “one or more” pharmaceutically acceptable excipients.
  • C 1-4 should be understood to cover any sub-ranges and each point value therein, such as C 2-4 , C 3-4 , C 1-2 , C 1-3 , C 1-4 , etc., as well as C 1 , C 2 , C 3 , C 4 , etc.
  • halogen means fluorine, chlorine, bromine or iodine.
  • alkyl includes a linear or branched monovalent saturated hydrocarbon group.
  • alkyl includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 3-(2-methyl)butyl, 2-pentyl, 2-methylbutyl, neopentyl, n-hexyl, 2-hexyl, 2-methylpentyl, etc.
  • C1-4 in “ C1-4 alkyl” refers to a group containing 1, 2, 3 or 4 carbon atoms arranged in a linear or branched form.
  • cycloalkyl refers to a saturated or partially saturated, monocyclic or polycyclic (such as bicyclic) non-aromatic hydrocarbon group.
  • Common cycloalkyl groups include (but are not limited to) monocyclic cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclobutene, cyclopentene, cyclohexene, etc.; or bicyclic cycloalkyl groups, including fused rings, bridged rings or spiro rings, such as bicyclo[1.1.1]pentyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl, bicyclo[5.2.0]nonyl, decalinyl, etc.
  • monocyclic cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cycl
  • C 3-12 cycloalkyl refers to a cycloalkyl group having 3-12 ring carbon atoms (such as 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12).
  • the cycloalkyl or cycloalkylene group in the present invention is optionally substituted by one or more substituents described in the present invention.
  • fluoroalkyl refers to the alkyl group described above, wherein one or more hydrogen atoms are replaced by fluorine atoms.
  • C 1-4 fluoroalkyl refers to a C 1-4 alkyl group optionally substituted by one or more (e.g., 1-3) fluorine atoms. It should be understood by those skilled in the art that when there are more than one fluorine atom substituent, the fluorine atoms may be the same or different and may be located on the same or different C atoms.
  • haloalkyl groups include, for example, -CH 2 F, -CHF 2 , -CF 3 , -C 2 F 5 , -CH 2 CF 3 , -CH 2 CH 2 CF 3 , etc.
  • the fluoroalkyl group in the present invention is optionally substituted by one or more (e.g., 1-3) fluorine atoms. is substituted with one or more substituents described herein.
  • the present invention also includes all pharmaceutically acceptable isotopically labeled compounds, which are identical to the compounds of the present invention except that one or more atoms are replaced by atoms having the same atomic number but an atomic mass or mass number different from the atomic mass or mass number predominant in nature.
  • isotopes suitable for inclusion in the compounds of the present invention include, but are not limited to, isotopes of hydrogen (e.g., deuterium ( 2H ), tritium ( 3H )); isotopes of carbon (e.g., 13C and 14C ); isotopes of chlorine (e.g., 37Cl); isotopes of iodine (e.g., 125I ); isotopes of nitrogen (e.g., 13N and 15N ); isotopes of oxygen (e.g., 17O and 18O ); isotopes of phosphorus (e.g., 32P ); and isotopes of sulfur (e.g., 34S ).
  • isotopes of hydrogen e.g., deuterium ( 2H ), tritium ( 3H )
  • isotopes of carbon e.g., 13C and 14C
  • isotopes of chlorine e.g.
  • polymorph refers to different solid crystalline phases produced by the presence of two or more different molecular arrangements in the solid state of certain compounds of the present invention.
  • Certain compounds of the present invention may exist in more than one crystal form, and the present invention is intended to include various crystal forms and mixtures thereof.
  • crystallization will produce a solvate of the compound of the present invention.
  • solvate used in the present invention refers to an aggregate comprising one or more molecules of the compound of the present invention and one or more solvent molecules.
  • the solvent may be water, in which case the solvate is a hydrate.
  • the solvent may be an organic solvent.
  • the compound of the present invention may exist as a hydrate, including a single hydrate, a dihydrate, a hemihydrate, a sesquihydrate, a trihydrate, a tetrahydrate, etc., and corresponding solvated forms.
  • the compound of the present invention may form a true solvate, but in some cases, it may also retain only adventitious water or a mixture of water plus a portion of an adventitious solvent.
  • the compound of the present invention may react in a solvent or precipitate or crystallize from a solvent. Solvates of the compound of the present invention are also included within the scope of the present invention.
  • the present invention also encompasses all possible crystalline forms or polymorphs of the compounds of the present invention, which may be a single polymorph or a mixture of more than one polymorph in any ratio.
  • stereoisomer means an isomer formed due to at least one asymmetric center.
  • compounds with one or more (e.g., one, two, three, or four) asymmetric centers it can produce racemic mixtures, single enantiomers, diastereomeric mixtures, and individual diastereomers.
  • Specific individual molecules can also exist as geometric isomers (cis/trans).
  • the compounds of the present invention can exist as mixtures (commonly referred to as tautomers) of two or more structurally different forms in rapid equilibrium.
  • tautomers include keto-enol tautomers, phenol-ketone tautomers, nitroso-oxime tautomers, and imine-enamine tautomers. It is to be understood that the scope of the present invention encompasses all such isomers or mixtures thereof in any proportion (e.g., 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%).
  • pharmaceutically acceptable salts include acid addition salts and base addition salts thereof.
  • Suitable acid addition salts are formed by acids that form pharmaceutically acceptable salts.
  • Suitable base addition salts are formed by bases that form pharmaceutically acceptable salts.
  • “Pharmaceutically acceptable acid addition salts” refer to salts formed with inorganic or organic acids that retain the biological effectiveness of the free base without other side effects.
  • Inorganic acid salts include, but are not limited to, hydrochloride, hydrobromide, sulfate, nitrate, phosphate, etc.
  • organic acid salts include, but are not limited to, formate, acetate, 2,2-dichloroacetate, trifluoroacetate, propionate, caproate, caprylate, decanoate, undecylenate, glycolate, gluconate, lactate, sebacate, adipate, glutarate, malonate, oxalate, maleate, succinate, fumarate, tartrate, citrate, palmitate, stearate, oleate, cinnamate, laurate, malate, glutamate, pyroglutamate, aspartate, benzoate, methanesulfonate, benzenesulfon
  • “Pharmaceutically acceptable base addition salt” refers to salts formed with inorganic or organic bases that can maintain the biological effectiveness of the free acid without other side effects.
  • Salts derived from inorganic bases include, but are not limited to, sodium salts, potassium salts, lithium salts, ammonium salts, calcium salts, magnesium salts, iron salts, zinc salts, copper salts, manganese salts, aluminum salts, etc.
  • Preferred inorganic salts are ammonium salts, sodium salts, calcium salts and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, the following salts: primary amines, secondary amines and tertiary amines, substituted amines, including natural substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, diethanolamine, triethanolamine, dimethylethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, choline, betaine, ethylenediamine, glucosamine, methylglucosamine, theobromine, purine, piperazine, piperidine, N-ethylpiperidine, polyamine resins, etc.
  • Preferred organic bases include isopropylamine, diethylamine, ethanolamine, trimethylamine
  • esters refers to esters derived from the compounds described herein, including physiologically hydrolyzable esters (which can be hydrolyzed under physiological conditions to release the compounds of the present invention in free acid or alcohol form).
  • the compounds of the present invention themselves may also be esters.
  • the compounds of the present invention may exist in the form of solvates (preferably hydrates), wherein the compounds of the present invention contain polar solvents as structural elements of the crystal lattice of the compounds, in particular water, methanol or ethanol.
  • polar solvents as structural elements of the crystal lattice of the compounds, in particular water, methanol or ethanol.
  • the amount of polar solvents, in particular water may exist in a stoichiometric or non-stoichiometric ratio.
  • nitrogen-containing heterocycles are capable of forming nitrogen oxides, as nitrogen requires an available lone pair of electrons to oxidize to an oxide.
  • nitrogen-containing heterocycles that are capable of forming nitrogen oxides.
  • tertiary amines are capable of forming nitrogen oxides. Synthetic methods for preparing nitrogen oxides of heterocycles and tertiary amines are well known to those skilled in the art and include the use of peroxyacids such as peracetic acid and meta-chloroperbenzoic acid.
  • metabolite refers to a substance formed in vivo when a compound of the present invention is administered.
  • the metabolites of a compound can be identified by techniques known in the art, and their activity can be characterized by experimental methods. Such products can be produced, for example, by oxidation, reduction, hydrolysis, amidation, deamidation, esterification, enzymatic hydrolysis, etc. of the administered compound. Therefore, the present invention includes metabolites of the compounds of the present invention, including compounds prepared by contacting the compounds of the present invention with a mammal for a period of time sufficient to produce their metabolites.
  • prodrug refers to certain derivatives of the compounds of the present invention that can be converted into compounds of the present invention having the desired activity by, for example, hydrolytic cleavage when administered into or onto the body.
  • prodrugs will be functional group derivatives of the compound that are easily converted into the desired therapeutically active compound in vivo. Further information on the use of prodrugs can be found in "Pro-drugs as Novel Delivery Systems", Vol. 14, ACS Symposium Series (T. Higuchi and V. Stella).
  • prodrugs of the present invention can be prepared, for example, by replacing appropriate functional groups present in the compounds of the present invention with certain parts known to those skilled in the art as "pro-moieties” (e.g., as described in “Design of Prodrugs", H. Bundgaard (Elsevier, 1985)).
  • pharmaceutical composition refers to a preparation of the compound of the present invention and a medium generally accepted in the art for delivering biologically active compounds to mammals (e.g., humans).
  • the medium includes a pharmaceutically acceptable carrier.
  • the purpose of the pharmaceutical composition is to promote administration of the organism, facilitate the absorption of the active ingredient, and thus exert biological activity.
  • pharmaceutically acceptable carrier includes, but is not limited to, any adjuvant, carrier, excipient, glidant, sweetener, diluent, preservative, dye/colorant, flavoring agent, surfactant, wetting agent, dispersant, suspending agent, stabilizer, isotonic agent, solvent or emulsifier approved or accepted by relevant governmental regulatory authorities for use in humans or livestock.
  • drug combination refers to drug treatments obtained by mixing or combining more than one active ingredient, including fixed and non-fixed combinations of active ingredients.
  • fixed combination refers to the simultaneous administration of at least one compound described herein and at least one synergistic agent to a patient in the form of a single entity or a single dosage form.
  • non-fixed combination refers to the simultaneous administration, co-administration or sequential administration of at least one compound described herein and at least one synergistic agent to a patient in the form of separate entities, either at the same time, in combination or at variable intervals. This also applies to cocktail therapy, for example the administration of three or more Active ingredients.
  • tumor includes but is not limited to leukemia, gastrointestinal stromal tumor, histiocytic lymphoma, non-small cell lung cancer, small cell lung cancer, pancreatic cancer, squamous cell carcinoma of the lung, adenocarcinoma of the lung, breast cancer, prostate cancer, liver cancer, skin cancer, epithelial cell cancer, cervical cancer, ovarian cancer, intestinal cancer, rhinitis cancer, brain cancer, bone cancer, esophageal cancer, melanoma, kidney cancer, oral cancer and other diseases.
  • treating means reversing, alleviating, inhibiting the progression of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition.
  • FIG1 is a graph showing the changes in tumor volume in the MDA-MB-436 nude mouse model after administration of compound 2.
  • Figure 2 is a ball-and-stick diagram of the molecular structure and atomic number of compound 2 in the crystal.
  • Figure 3 is a ball-and-stick diagram of the molecular structure and atomic number of compound 21 in the crystal.
  • the reagents and raw materials used in the examples of the present invention are commercially available.
  • the structures of the compounds of the present invention are determined by nuclear magnetic resonance (NMR) or mass spectrometry (MS). NMR measurements are performed using a Bruker AVANCE-400 nuclear magnetic spectrometer, with deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated chloroform (CDCl 3 ), deuterated methanol (CD 3 OD) as the solvent, tetramethylsilane (TMS) as the internal standard, and chemical shifts are given in units of 10 -6 (ppm).
  • DMSO-d 6 deuterated dimethyl sulfoxide
  • CDCl 3 deuterated chloroform
  • CD 3 OD deuterated methanol
  • TMS tetramethylsilane
  • MS was measured using an Agilent SQD (ESI) mass spectrometer (manufacturer: Agilent, signal: 6110).
  • HPLC determinations were performed using an Agilent 1200DAD high pressure liquid chromatograph (Sunfirc C18, 150X 4.6mm, 5wn, chromatographic column) and a Waters 2695-2996 high pressure liquid chromatograph (Gimini C18, 150X 4.5mm, 5ym chromatographic column).
  • the thin layer chromatography silica gel plate used was Qingdao Ocean GF254 silica gel plate.
  • the silica gel plate used in thin layer chromatography (TLC) had a specification of 0.15mm-0.2mm, and the thin layer chromatography separation and purification product used a 0.4mm-0.5mm silica gel plate.
  • the reactions were carried out under an argon atmosphere or a nitrogen atmosphere.
  • Argon atmosphere or nitrogen atmosphere means that the reaction bottle is connected to an argon or nitrogen balloon with a volume of about 1 L.
  • Hydrogen atmosphere means that the reaction bottle is connected to a hydrogen balloon with a volume of about 1 L.
  • the hydrogenation reaction is usually evacuated, filled with hydrogen, and the operation is repeated 3 times.
  • Step 2 Add sodium hydride (6.86g, 171.4mmol) and 60ml 1,4-dioxane to a 250ml reaction bottle, and then replace nitrogen three times. Cool to 0°C, slowly add compound 2-phosphonobutyric acid triethyl ester (43.2g, 171.4mmol) under nitrogen protection, stir and react at 0°C for 10 minutes, heat to room temperature and stir and react for 10 minutes, then heat to 40°C and stir and react for 5 minutes, and cool the reaction to -78°C. Slowly drop compound INT1b (16g, 71.4mmol) dissolved in 60ml 1,4-dioxane solution, keep stirring and react at -78°C for 1 small test.
  • Step 3 Add compound INT1c (13.26 g, 41.1 mmol) to 100 ml of anhydrous ethanol, then add Pd/C (1.33 g, 10%), and stir at room temperature to react overnight. After the reaction is complete as monitored by LC-MS, filter the reaction solution, rinse the filter residue with a large amount of ethanol, combine the filtrates and concentrate by rotary evaporation. Add 4 mol/L hydrochloric acid in 1,4-dioxane solution (50 ml), stir at room temperature for 30 minutes, add ether to precipitate a large amount of solid, filter and dry to obtain compound INT1d (7.32 g, white solid).
  • Step 5 Add compound INT1e (2.0 g, 8.1 mmol) and 60 ml of tetrahydrofuran to a 150 ml reaction bottle, cool to 0°C, then add 2.5 mol/L lithium aluminum hydride tetrahydrofuran solution (6.48 ml, 16.2 mmol), and react at 0°C for 2 hours. After TLC monitoring, add 5 ml of water to quench the reaction, add a large amount of anhydrous sodium sulfate to dry, filter, rinse the filter residue with a large amount of dichloromethane, combine the filtrates, and concentrate by rotary evaporation. After drying, compound INT1f (1.2 g, white solid) is obtained.
  • Step 2 INT2b (10 g, 37.8 mmol) was dissolved in 100 mL THF. Solid NaH (60%, 2.3 g, 56.8 mmol) was slowly added at 0°C under nitrogen protection. The mixture was stirred for 0.5 h after addition and then stirred at room temperature for 10 min. Finally, a THF solution of INT1b (10.2 g, 45.4 mmol) was slowly added at -78°C. The mixture was stirred at -78°C for 1 h after addition. After LC-MS confirmed the completion of the reaction, a saturated aqueous solution of NH 4 Cl was added to quench the reaction. The mixture was extracted with EA (150 mL ⁇ 3).
  • Example 1 1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Weigh compound 1a (50 g, 235 mmol), add 300 ml of tetrahydrofuran, replace nitrogen, cool to -78 ° C, add lithium diisopropylamide (141 mL, 282 mmol) dropwise, stir for 30 minutes, then add N-phenylbis(trifluoromethanesulfonyl)imide (92 g, 258 mmol) dissolved in 300 mL of tetrahydrofuran dropwise, warm to room temperature and react for 2 hours. After TLC detection, the reaction is complete, saturated ammonium chloride aqueous solution is added to quench, and extracted three times with ethyl acetate. After the organic phases are combined, they are dried over anhydrous sodium sulfate, filtered, and spin-dried. Purification by column chromatography gives compound 1b (78 g, colorless liquid).
  • Step 2 Add compound 1b (78 g, 226 mmol), 2-methyl pyridine-5-boronate 1c (65 g, 249 mmol), Pd(dppf)Cl 2 (8.2 g, 11 mmol) and potassium carbonate (62 g, 452 mmol) to a mixed solvent of 400 ml of dioxane and 40 ml of water, then replace nitrogen, and react at 80°C for 4 hours under nitrogen protection. After TLC detection, the reaction is cooled to room temperature, concentrated by rotary evaporation, and extracted three times by adding 300 ml of ethyl acetate and 200 ml of water.
  • Step 5 Compound 1f (2.7 g, 9.0 mmol), INT1 (2.0 g, 9.0 mmol), N,N-diisopropylethylamine (6.2 mL, 36.0 mmol) and potassium iodide (0.15 g, 0.9 mmol) were added to 20 ml of anhydrous acetonitrile and stirred at 80°C for 2 hours.
  • Example 2 (S)-1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1'-,2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide and Example 3: (R)-1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1'-,2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Compound 1 was chiral split to obtain compound 2 and compound 3.
  • the splitting method was as follows: instrument: Waters 150Prep-SFC, column model-Chiralcel AD Column, mobile phase A: carbon dioxide, mobile phase B: 0.1% ammonia in isopropanol, gradient: 70% mobile phase B, pressure: 100 bar, flow rate: 100 mL/min.
  • the absolute configuration of compound 2 was determined by X-ray diffractometer.
  • the instrument used was Bruker D8VENTURE double micro-focus single crystal X-ray diffractometer, ambient temperature 193K, enhanced Cu light source, wavelength
  • the single crystal of the sample molecule belongs to the triclinic system, P1 space group; there is no characteristic symmetry element in the crystal; one unit cell contains 2 compounds 2 molecules; the 2 compounds 2 molecules in the unit cell include 2 chiral carbon atoms (black marks), and the absolute configuration of the chiral carbon atoms is C12 (S) and C39 (S).
  • Step 1 Add compound 4a (1.0 g, 3.0 mmol), 2-methylformate-5-bromopyridine 4b (0.65 g, 3.0 mmol), Pd(dppf)Cl 2 (0.2 g, 0.3 mmol) and potassium carbonate (1.2 g, 9.0 mmol) to a mixed solvent of 30 ml of dioxane and 3 ml of water, then replace nitrogen, and react at 80° C. for 3 hours under nitrogen protection. After TLC detection, the reaction is cooled to room temperature, concentrated by rotary evaporation, and extracted three times by adding 30 ml of ethyl acetate and 20 ml of water.
  • Step 5 Compound 4e (0.1 g, 0.3 mmol), INT1 (67 mg, 0.3 mmol), N,N-diisopropylethylamine (160 mg, 1.2 mmol) and potassium iodide (5 mg, 0.03 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours.
  • Step 1 Weigh compound 5a (2.0 g, 9.2 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (4.2 g, 27.6 mmol), add 30 ml of tetrahydrofuran, replace nitrogen, cool to -20°C, stir for 30 minutes, add perfluorobutylsulfonyl fluoride (8.3 g, 27.6 mmol) dissolved in 30 mL of tetrahydrofuran, react at -20°C for 30 minutes, after TLC detection, add saturated ammonium chloride aqueous solution to quench, extract three times with ethyl acetate, combine the organic phases, dry with anhydrous sodium sulfate, filter, spin dry, and purify by column chromatography to obtain compound 5b (1.1 g, colorless liquid).
  • Step 2 Add compound 5b (1.1 g, 2.1 mmol), 2-methyl pyridine-5-boronate 1c (0.1 g, 0.7 mmol), Pd(dppf)Cl 2 (51 mg, 0.07 mmol) and potassium phosphate (0.3 g, 1.4 mmol) to a mixed solvent of 30 ml of dioxane and 3 ml of water, then replace nitrogen, and react at 80° C. for 2 hours under nitrogen protection. After TLC detection, the reaction is cooled to room temperature, concentrated by rotary evaporation, and extracted three times by adding 30 ml of ethyl acetate and 20 ml of water.
  • Step 5 Compound 5e (0.15 g, 0.5 mmol), INT1 (0.11 g, 0.5 mmol), N,N-diisopropylethylamine (0.32 g, 2.5 mmol) and potassium iodide (8 mg, 0.05 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 80°C for 2 hours.
  • Example 6 (S)-1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-fluoro-N-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide and Example 7: (R)-1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-fluoro-N-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Compound 5 was chiral split to obtain compound 6 and compound 7.
  • the splitting method was as follows: instrument: Waters 150Prep-SFC, column model: Chiralcel AD Column, mobile phase A: carbon dioxide, mobile phase B: 0.1% ammonia in isopropanol, gradient: 70% mobile phase B, pressure: 100 bar, flow rate: 100 mL/min.
  • Example 8 3'-ethyl-1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Weigh compound 8a (2.0 g, 8.8 mmol), add 30 ml of tetrahydrofuran, replace nitrogen, cool to -78 ° C, add lithium diisopropylamide (5.3 mL, 10.6 mmol) dropwise, stir for 30 minutes, add N-phenylbis(trifluoromethanesulfonyl)imide (3.5 g, 9.7 mmol) dissolved in 30 mL of tetrahydrofuran dropwise, warm to room temperature and react for 2 hours. After TLC detection, the reaction is complete, saturated ammonium chloride aqueous solution is added to quench, and extracted three times with ethyl acetate. After the organic phases are combined, they are dried over anhydrous sodium sulfate, filtered, and spin-dried. Purification by column chromatography gives compound 8b (2.3 g, colorless liquid).
  • Step 2 Add compound 8b (2.3 g, 6.4 mmol), 2-methyl pyridine-5-boronate 1c (1.8 g, 7 mmol), Pd(dppf)Cl 2 (0.4 g, 0.6 mmol) and potassium carbonate (1.7 g, 12.4 mmol) to a mixed solvent of 40 ml of dioxane and 4 ml of water, then replace nitrogen and react at 80°C for 2 hours under nitrogen protection. After TLC detection of the reaction is complete, cool the reaction mixture to room temperature, concentrate by rotary evaporation, extract three times with 30 ml of ethyl acetate and 20 ml of water, and combine the mixture.
  • Step 5 Compound 8e (0.3 g, 0.9 mmol), INT1 (0.2 g, 0.9 mmol), N,N-diisopropylethylamine (0.6 mL, 3.6 mmol) and potassium iodide (15 mg, 0.09 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 80°C for 2 hours.
  • Step 1 Weigh compound 9a (0.5 g, 2.1 mmol), add 15 ml of tetrahydrofuran, replace nitrogen, cool to -78 ° C, add lithium diisopropylamide (1.25 mL, 2.5 mmol) dropwise, stir for 30 minutes, then add N-phenylbis(trifluoromethanesulfonyl)imide (0.8 g, 2.3 mmol) dissolved in 20 mL of tetrahydrofuran dropwise, warm to room temperature and react for 2 hours, TLC After the reaction was detected to be complete, saturated aqueous ammonium chloride was added to quench the reaction, and the mixture was extracted three times with ethyl acetate. The organic phases were combined and dried over anhydrous sodium sulfate, filtered, and spin-dried. The mixture was purified by column chromatography to obtain compound 9b (0.3 g, light yellow liquid).
  • Step 5 Compound 9e (0.3 g, 0.9 mmol), INT1 (0.2 g, 0.9 mmol), N,N-diisopropylethylamine (0.6 g, 4.6 mmol) and potassium iodide (15 mg, 0.09 mmol) were added to 20 ml of anhydrous acetonitrile and stirred at 80°C for 2 hours.
  • Step 1 Weigh 1d (1.5 g, 4.5 mmol), add 20 mL MeOH to dissolve, add 5 mL water, add lithium hydroxide (570 mg, 13.5 mmol), react at room temperature for 12 h, monitor the reaction by TLC, add 2 M HCl to adjust the pH to 6 after the reaction is complete, add (3 x 25 mL) EA to extract, combine the organic phases, dry over anhydrous sodium sulfate, and concentrate under reduced pressure to remove the solvent to obtain the product 10a (660 mg, light yellow solid).
  • Step 4 Compound 10c (0.1 g, 0.4 mmol), INT1 (86 mg, 0.4 mmol), N,N-diisopropylethylamine (0.2 g, 1.6 mmol) and potassium iodide (5 mg, 0.04 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Step 3 Compound 11b (0.2 g, 0.6 mmol), INT1 (0.13 g, 0.6 mmol), N,N-diisopropylethylamine (0.3 g, 2.4 mmol) and potassium iodide (7 mg, 0.06 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Example 12 1'-((7-ethyl-4-fluoro-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Compound 12a (180 g, 0.763 mol) was slowly added to a solution of MeONa (618.0 g, 11.4 mol, 15.0 eq) in methanol (2 L) at 0°C. The reaction mixture was stirred at 20°C for 1 hour, and then quenched with saturated NH 4 Cl aqueous solution (2 L) under stirring. The formed white precipitate was filtered, and the filter cake was washed with water (500 mL*3) and dried under vacuum. A white solid product 12b (150 g, 84.5% yield) was obtained.
  • Step 2 To a solution of compound 12b (150 g, 0.647 mol) in a mixed solvent of 1,4-dioxane (2.4 L) and water (600 mL) were added K 2 CO 3 (178.8 g, 1.29 mol, 2 eq.), potassium vinyl trifluoroborate (104.0 g, 0.776 mmol, 1.2 eq.) and Pd(dppf)Cl 2 (14.2 g, 19.4 mmol, 0.03 eq.). The mixture was degassed and backfilled with N 2 three times, then stirred at 80° C. for 8 hours.
  • K 2 CO 3 178.8 g, 1.29 mol, 2 eq.
  • potassium vinyl trifluoroborate 104.0 g, 0.776 mmol, 1.2 eq.
  • Pd(dppf)Cl 2 (14.2 g, 19.4 mmol, 0.03 eq.
  • Step 3 Pd/C (10% wt, 5.0 g) was added to a solution of 12c (50.0 g, 0.28 mol) in methanol (500 mL) under N2 , the mixture was degassed and backfilled with hydrogen three times, and then stirred at room temperature for 12 h under hydrogen atmosphere. After the reaction was completed, the mixture was filtered through celite and washed with ethyl acetate (50 mL*3). The combined filtrate was concentrated under vacuum to give a dark purple solid 12d. (38.8 g, 92% yield).
  • the fourth step 2-(ethoxymethylene) diethyl malonate (27.3g, 0.126mol, 25.5mL, 1.2eq) was added to a solution of 12d (16g, 0.105mol) in EtOH (300mL) at one time, and the reaction mixture was refluxed for 2 hours under stirring. TLC showed that the reaction was complete. After cooling to room temperature, the mixture was concentrated under vacuum to obtain a dark purple residue. The product was further purified by silica gel column chromatography (0-10% ethyl acetate/petroleum ether) to obtain compound 12e (32.0g, 94% yield, white solid).
  • the fifth step Compound 12e (32.0 g, 0.099 mol) was added to a three-necked round bottom flask (1.0 L) equipped with a reflux condenser and a mechanical stirrer, and then phenyl ether-biphenyl cocrystal (CAS: 8004-13-5, 300 mL) was added.
  • the system was degassed and filled with N 2 three times, and then placed in an oil bath preheated to 240 ° C.
  • the reaction mixture was stirred at 250-260 ° C for 1 hour and then cooled to room temperature. TLC showed that the reaction was complete.
  • 1.2 L of diisopropyl ether was added under stirring, and the mixture was stirred at room temperature for 1 hour.
  • the combined DCM layer was washed with saturated NaHCO 3 solution (200 mL), then with water (200 ml), dried over anhydrous Na 2 SO 4 , and spin-dried.
  • Step 7 Compound 12g (13.0 g, 0.047 mol) was added to anhydrous THF (300 mL), the reaction solution was cooled to -20 ° C, DIBAL-H (78.0 mL, 0.117 mol, 1.5 M toluene solution, 2.5 eq.) was added under a -20 ° C N 2 atmosphere, and the reaction mixture was further stirred between -15-0 ° C for 3 hours. TLC showed that the reaction was complete. The reaction was slowly quenched with 3N NaOH aqueous solution between -15-0 ° C, and the internal temperature was kept at no more than 0 ° C.
  • Step 8 Cool a suspension of compound 12h (8.0 g, 0.034 mol) in acetonitrile (100 mL) to -15-0 ° C with an ice-salt bath, and slowly add TMSI (3.0 eq) under stirring under N 2. Afterwards, remove the ice-salt bath, slowly warm the reaction mixture to 30 ° C, and stir at the same temperature for 24 hours until the raw material is completely consumed. The volatile substances are removed under reduced pressure, ethyl acetate (250 mL) and 1N NaOH aqueous solution (100 mL) are added to the solid residue, and the resulting mixture is stirred at room temperature for 1 hour, during which a large amount of white precipitate is formed.
  • Step 9 SOCl 2 (4.3 g, 0.036 mol, 2.6 mL, 1.5 eq) was slowly added to a DMF (100 mL) solution of compound 12i (5.3 g, 0.024 mol) at 0-5°C under nitrogen atmosphere, and the mixture was stirred at 25°C for 3 h until the starting material was completely consumed.
  • Step 10 Compound 12j (40 mg, 0.17 mmol), 1f (51 mg, 0.17 mmol), N,N-diisopropylethylamine (72 mg, 0.56 mmol) and potassium iodide (3 mg, 0.02 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Example 13 1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-methyl-N-(2,2,2-trifluoroethyl)-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 3 Compound 13b (0.11 g, 0.4 mmol), INT1 (86 mg, 0.4 mmol), N,N-diisopropylethylamine (0.2 g, 1.6 mmol) and potassium iodide (5 mg, 0.04 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Example 14 1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-2-fluoro-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Weigh compound 14b (392.5 mg, 2.0 mmol), 14a (514.8 mg, 2.2 mmol), Cs 2 CO 3 (1.3 g, 4 mmol), Pd(dppf)Cl 2 (146.3 mg, 0.2 mmol) in a reaction bottle, replace nitrogen three times, add 11 mL of dioxane/H 2 O (10:1) mixed solvent, replace nitrogen three times, and then react at 90°C for 3 h under nitrogen protection.
  • Step 4 Compound 14e (100 mg, 0.3 mmol), INT1 (62.8 mg, 0.28 mmol), DIEPA (182.3 mg, 1.4 mmol), and KI (4.7 mg, 0028 mmol) were weighed into a reaction tube, and 10 mL of acetonitrile was added to react at 80°C for 3 h.
  • Example 15 1'-((7-cyclopropyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Weigh compound 16a (430 mg, 2.0 mmol), 16b (437.4 mg, 2.1 mmol), Cs 2 CO 3 (1.3 g, 4.0 mmol), and Pd(dppf)Cl 2 (146.3 mg, 0.2 mmol) into a reaction bottle, replace nitrogen three times, add dioxane/H 2 O (10:1), replace nitrogen three times, and then react at 90°C for 3 h under nitrogen protection.
  • Step 4 Weigh compound 16d (100 mg, 0.32 mmol), INT1 (67.1 mg, 0.3 mmol), and DIEPA (194.6 mg, 1.5 mmol), KI (5.0 mg, 0.03 mmol) were placed in a reaction tube, 8 mL of acetonitrile was added and the mixture was reacted at 80°C for 3 h. The reaction mixture was cooled to room temperature, saturated aqueous NaHCO 3 solution was added and stirred for 2 h, most of the solvent was concentrated in vacuo, and then extracted with DCM (20 mL ⁇ 3), the organic phases were combined and dried over anhydrous Na 2 SO 4 , filtered and dried, and purified by column chromatography to obtain a light yellow solid compound 16 (65 mg, yield 50%).
  • Example 17 1'-((7-chloro-8-methyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Compound 17a (50 g, 0.23 mol), isopropenylboronic acid pinacol ester (77.6 g, 0.46 mol), potassium carbonate (150.4 g, 0.46 mol), and Pd(dppf)Cl 2 (8.4 g, 0.012 mmol) were weighed into a reaction bottle, nitrogen was replaced 3-5 times, 550 mL dioxane/H 2 O (10:1) was added, nitrogen was replaced 3-5 times, and then the reaction was carried out at 110° C. for 5 h under nitrogen protection. After the reaction, the reaction mixture was cooled to room temperature, and then filtered through diatomaceous earth. The filter cake was washed with EA (100 mL ⁇ 3).
  • Step 7 Weigh compound 17g (40 mg, 0.16 mmol), 52f (55.1 mg, 0.18 mmol), DIEPA (106.3 mg, 0.82 mmol), KI (2.7 mg, 0.016 mmol) in a reaction tube, add 5 mL of acetonitrile and react at 80°C for 3 h. Cool the reaction to room temperature, concentrate the solvent, and extract with DCM (20 mL ⁇ 3). Combine the organic phases and dry with anhydrous Na 2 SO 4 , filter and spin dry, and pass through a column with MeOH (0-8%) and DCM to obtain a light yellow solid compound 17 (35 mg, yield 49%).
  • Example 18 1'-((7-chloro-8-methyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-fluoro-N-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Example 19 1'-((7-cyclopropyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3',3'-trimethyl-1',2',3",6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Compound INT2 (200 mg, 0.6 mmol), 11b (140 mg, 0.6 mmol), N,N-diisopropylethylamine (310 mg, 2.4 mmol) and potassium iodide (10 mg, 0.06 mmol) were added to 20 ml of anhydrous acetonitrile and stirred at 85° C. for 2 hours. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Example 21 (S)-N-cyclopropyl-1'-((7-cyclopropyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide and
  • Example 22 (R)-N-cyclopropyl-1'-((7-cyclopropyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Compound 20 was chiral split to obtain compound 21 and compound 22.
  • the splitting method was: instrument-Waters 150Prep-SFC, column model: Chiralcel AD Column, mobile phase A: carbon dioxide, mobile phase B: 0.1% ammonia in isopropanol, gradient: 70% mobile phase B, pressure: 100 bar, flow rate: 100 mL/min.
  • the absolute configuration of compound 21 was determined by X-ray diffractometer.
  • the instrument used was Bruker D8VENTURE double micro-focus single crystal X-ray diffractometer, ambient temperature 193K, enhanced Cu light source, wavelength
  • the single crystal of the sample molecule belongs to the monoclinic system, C2 space group; the characteristic element in the crystal is the secondary axis; one unit cell contains 4 compound 21 molecules; each compound 21 molecule in the unit cell includes 1 chiral carbon atom (black mark), and the absolute configuration of the chiral carbon atom is C16 (S).
  • Step 1 Add compound 23a (10.5 g, 47.7 mmol), methyl 2-aminobutyrate (7.3 g, 47.7 mmol), and DIEA (18.6 g, 143.1 mmol) to 40 ml of DMF and react at room temperature for 24 h. After the reaction is complete as detected by LC-MS, add 120 ml of ethyl acetate and 120 ml of water, separate the layers in a separatory funnel, extract the aqueous phase twice with ethyl acetate, combine the organic phases, wash with water, wash with saturated brine, dry with anhydrous sodium sulfate, filter, and spin dry to obtain compound 23b (14.5 g, orange-red solid).
  • Step 3 Add compound 23c (5.0 g, 19.5 mmol) to 100 ml of anhydrous methanol, then add 10.4 ml of 16% sodium hydroxide solution and 31.2 ml of 30% hydrogen peroxide. After the addition, heat to 60°C and react for 16 h. After LC-MS detection, add 20 ml of saturated sodium thiosulfate, add 100 ml of water and 50 ml of dichloromethane, stir and filter, and spin dry to obtain compound 23d (3.4 g, yellow solid).
  • Step 4 Compound 23d (3.0 g, 11.8 mmol), tributylmethanol (3.8 g, 11.8 mmol) and Xphos-G 2 -Pd (0.47 g, 0.59 mmol) were added to 30 ml of dioxane, replaced with nitrogen three times, heated to 80°C and stirred for 8 h. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure and the crude product was purified by column chromatography to obtain compound 23e (1.8 g, yellow solid).
  • Step 5 Weigh 23e (0.5 g, 2.4 mmol), add 10 ml of HBr/H 2 O, heat to 80°C and react for 6 h. After the reaction is complete by LC-MS, cool to room temperature and add dropwise to 30 ml of ice water to precipitate a yellow solid. Filter and wash the filter cake with water. Spin dry the filter cake to obtain compound 23f (460 mg, yellow solid).
  • Step 6 23f (0.2 g, 0.74 mmol), 1f (271 mg, 0.89 mmol), DIEA (483 mg, 3.74 mmol), and KI (25 mg, 0.15 mmol) were added to 4 ml of acetonitrile, and the temperature was raised to 80°C for 2 h. After the reaction was complete as detected by LC-MS, the temperature was lowered to room temperature and the mixture was dried by spin drying.
  • Step 1 Add compound 24a (3.85 g, 24.6 mmol), DIEA (16.0 g, 123.3 mmol), DMAP (0.6 g, 4.81 mmol) to 100 ml of dichloromethane, cool to 0°C, add n-butyryl chloride (8.10 g, 76.3 mmol) dropwise, return to room temperature and react for 24 h.
  • Step 3 Add compound 24c (0.1 g, 0.5 mmol) to 10 ml of dioxane and 2.5 ml of water, then add sodium periodate (425 g, 2.0 mmol) and potassium osmate (75 mg, 0.15 mmol), stir at room temperature for 2 h, and after LC-MS detection, add 50 ml of ethyl acetate and 50 ml of water, separate the layers in a separatory funnel, extract the aqueous phase twice with ethyl acetate, combine the organic phases, wash with saturated sodium sulfite, dry the organic layer over anhydrous sodium sulfate, filter, and spin-dry the filter cake to obtain compound 24d (80 mg, yellow solid).
  • Step 4 Add 1f (131.6 mg, 0.44 mmol) and triethylamine (88 mg, 0.88 mmol) to 10 ml of dichloromethane, stir to dissolve; add 74d (80 mg, 0.40 mmol) to 10 ml of dichloromethane, stir to dissolve.
  • Step 1 Add compound 25a (10.0 g, 53.0 mmol) to 200 ml of dichloromethane, cool to -78°C, add DIBAL-H (107.0 ml, 106.0 mmol) dropwise, take a sample after the addition, and after the reaction is complete, add 300 ml of 6M hydrochloric acid aqueous solution, stir, separate the layers, adjust the pH of the aqueous layer to 8-9 with 20% sodium hydroxide, and then add ethyl acetate to extract twice, combine the organic phases and spin dry, and spin dry to obtain compound 25b (7.6 g, yellow solid).
  • Step 2 Add compound 25b (7.6 g, 48.0 mmol) to 76 ml of dichloromethane, cool to 0°C, slowly dropwise add Dess-Martin reagent (24.5 g, 57.7 mmol), return to room temperature after addition, stir for 1 h, and after LC-MS detection, add saturated sodium thiosulfate solution to quench the reaction, extract with ethyl acetate, and spin dry to obtain compound 25c (5.0 g, oil).
  • Dess-Martin reagent 24.5 g, 57.7 mmol
  • Step 3 Weigh 25c (5.0 g, 32.0 mmol), potassium tert-butoxide (10.0 g, 96.1 mmol), and 100 ml of ethyl butyrate, heat to 120°C and stir for 1 h. After the reaction is complete as detected by LC-MS, cool to room temperature, add 200 ml of water, separate the layers, extract the aqueous layer three times with 200 ml of ethyl acetate, combine the organic layers, add anhydrous sodium sulfate, dry, filter, and spin-dry. The crude product is purified by column chromatography to obtain compound 25d (1.5 g, yellow solid).
  • Step 5 Compound 25e (1.2 g, 6.0 mmol) was added to 60 ml of dioxane and 15 ml of water, followed by sodium periodate (2.56 g, 24.0 mmol) and potassium osmate (120 mg, 0.6 mmol), and stirred at room temperature for 2 h. After the reaction was completed by LC-MS, 200 ml of ethyl acetate and 200 ml of water were added, and the layers were separated in a separatory funnel. The aqueous phase was extracted twice with ethyl acetate, the combined organic phases were washed with saturated sodium sulfite, the layered organic layer was dried over anhydrous sodium sulfate, and filtered. The crude product was purified by column chromatography to obtain compound 25f (770 mg, yellow solid).
  • Step 6 Add 1f (371 mg, 1.08 mmol) and triethylamine (400 mg, 3.96 mmol) to 10 ml of dichloromethane, stir to dissolve; add 25f (400 mg, 0.99 mmol) to 10 ml of dichloromethane, stir to dissolve.
  • Step 1 INT2 (100 mg, 0.42 mmol), 5e (156 mg, 0.50 mmol), DIEA (271 mg, 2.1 mmol), and KI (14 mg, 0.084 mmol) were added to 2 ml of acetonitrile, and the temperature was raised to 80°C for reaction for 2 h. After the reaction was complete as detected by LC-MS, the mixture was cooled to room temperature, 4 ml of saturated sodium bicarbonate solution was added, and 20 ml of ethyl acetate was added for extraction three times. The organic layer was washed with saturated brine in turn, dried over anhydrous sodium sulfate, filtered, and spin-dried.
  • Step 3 Compound 27c (26 g, 78 mmol) was added to 200 ml of anhydrous methanol and 5 ml of water, followed by the addition of ammonium chloride (35 g, 621 mmol), the temperature was lowered to 0°C, zinc powder (43 g, 621 mmol) was slowly added, the temperature was raised to room temperature and the reaction was carried out for 1 hour.
  • Step 7 Add 27g (100 mg, 0.41 mmol), 5e (153 mg, 0.49 mmol), DIEA (268 mg, 2.05 mmol), KI (14 mg, 0.082 mmol) to 2 ml of acetonitrile, heat to 80°C and react for 2 h. After the reaction is complete as detected by LC-MS, cool to room temperature, add 4 ml of saturated sodium bicarbonate solution, add 20 ml of ethyl acetate and extract three times. The organic layer is washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and dried. The crude product is purified by column chromatography to obtain compound 27 (52 mg, white solid).
  • Example 29 1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-methyl-N-(1-methyl-1H-pyrazol-4-yl)-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 3 Compound 29c (130 mg, 0.3 mmol), INT1 (67 mg, 0.3 mmol), N,N-diisopropylethylamine (155 mg, 1.2 mmol) and potassium iodide (5 mg, 0.03 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Example 30 1'-((2-cyclopropyl-5-fluoro-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 2 30b (4.3 g, 12.4 mmol) was dissolved in 80 mL of glacial acetic acid. Reduced Fe powder was slowly added to the system with stirring at room temperature. After the addition, it was stirred at 70°C for 1 h. The mixture was filtered while hot, and the filter cake was washed with a mixed solvent of DCM and MeOH. The filtrate was concentrated in vacuo and purified by column chromatography with PE and EA (0-25%) to give an off-white solid 30c (3.4 g, 96%).
  • LC-MS: ESI [M+H] + 285.0.
  • Step 3 30c (3.0 g, 10.5 mmol) was weighed into a reaction bottle, 50 mL of DCM was added and stirred, and then DDQ (3.6 g, 15.8 mmol) powder was slowly added, and stirred at room temperature overnight. After the reaction was completed, saturated NaHCO 3 aqueous solution was added to the system, and the liquid was separated.
  • Step 6 Weigh compound 30f (50 mg, 0.20 mmol), compound 11b (71.9 mg, 0.22 mmol), DIEPA (127.9 mg, 1.0 mmol), and KI (6.6 mg, 0.04 mmol) into a reaction tube, add 5 mL of acetonitrile and react at 85°C for 3 h. Cool the reaction to room temperature, add saturated aqueous NaHCO 3 solution and stir for 0.5 h, then extract with DCM (50 mL ⁇ 3), combine the organic phases and dry with anhydrous Na 2 SO 4 , filter and spin dry, and pass through a column with MeOH (0-6%) and DCM to obtain a light yellow solid 30 (53.0 mg, 57%).
  • Example 32 1'-((7-chloro-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Add 32a (500 g, 1.99 mol) and 2.5 L of methanol under nitrogen protection, and cool to 0-5°C. Add a solution of sodium methoxide (118 g) in methanol (1.0 L) dropwise at 0-5°C. After complete addition, warm to room temperature and stir for 1 hour. Add water (2.0 L) to the reaction system, stir for 30 min, and then concentrate under reduced pressure at 40°C until no liquid is discharged. Then add ethyl acetate (4.0 L), stir and separate, add ethyl acetate to the aqueous layer for extraction, and separate. Combine the organic layers, add saturated brine to wash, separate, and concentrate the organic layer under reduced pressure at 40°C to obtain a white solid 32b (480 g).
  • Step 2 Weigh compound 32b (475 g, 1.93 mol) and add it to DMF (2.85 L), then add DMF-DMA (2.85 L) dropwise. After adding, heat to 100°C and stir for 2 h. After the reaction is complete, cool to 70-80°C, concentrate under reduced pressure until no liquid is produced, then add to water and stir to precipitate. Cool to 20-30°C, stir for 1 h, then filter, and dry the filter cake in a vacuum oven at 70°C to constant weight to obtain a red solid 32c (612 g, yield 95.3%).
  • Step 3 Add compound 32c (500 g, 1.91 mol) to THF (2.56 L) and stir to dissolve. Add an aqueous solution (2.56 L) of sodium periodate (805 g, 3.72 mol) to the reaction system. Stir at room temperature for 2-4 hours. After the reaction is completed, add ethyl acetate (4.0 L) and water (4.0 L) to the reaction system, stir to separate the layers, and extract the aqueous layer with ethyl acetate (2.0 L) twice. After the organic layers are combined, saturated sodium thiosulfate solution and saturated brine are added in turn for washing. The organic layer is concentrated under reduced pressure at 40-45 ° C until there is no fraction to obtain 500 g of oily substance 32d, which is directly used in the next step.
  • Step 4 Compound 32d (512 g, 1.69 mol) and 32e (1457.0 g, 7.61 mol) were added to anhydrous ethanol (7.5 L), stirred to dissolve, and SnCl 2 (1815.0 g, 9.57 mol) was added to the reaction system in batches at room temperature. After the addition, the temperature was raised to reflux and stirred for 1-2 h. The reaction system was cooled to 45-50 ° C, concentrated under reduced pressure until no fraction was left, ethyl acetate was added to the system and stirred to dissolve, and then saturated sodium bicarbonate was used to adjust the pH to 7-8. During the process, gas was released violently and a large amount of solid was precipitated.
  • the reaction solution was centrifuged, and the filtrate was collected and allowed to stand for stratification.
  • the organic layer was concentrated under reduced pressure at 40-45 ° C until no fraction was left, and purified by column chromatography to obtain flocculent solid 32f (230 g, yield 36.5%).
  • Step 7 Compound 32h (0.74 g, 2.92 mmol) was added to anhydrous THF (300 mL), the reaction solution was cooled to -20 ° C, DIBAL-H (4.9 mL, 7.3 mmol, 1.5 M toluene solution) was added under a N 2 atmosphere at -20 ° C, and the reaction mixture was further stirred between -15-0 ° C for 3 hours. TLC showed that the reaction was complete. The reaction was slowly quenched with 3N NaOH aqueous solution between -15-0 ° C, and the internal temperature was kept at no more than 0 ° C.
  • Step 8 SOCl 2 (357 mg, 3.0 mmol) was slowly added to a DMF (100 mL) solution of compound 32i (0.42 g, 2.0 mmol) at 0-5°C under nitrogen atmosphere, and the mixture was stirred at 25°C for 3 h until the starting material was completely consumed.
  • the reaction mixture was stirred at room temperature for 1 hour, and the gray-white precipitate formed was collected by filtration, washed with water (10 mL*3), and dried in vacuo to obtain compound 32j (250 mg).
  • LC-MS: ESI [M+H] + 229.0.
  • Step 9 32j (30.0 mg, 0.13 mmol), compound 1f (43.8 mg, 0.14 mmol), DIEPA (84.6 mg, 0.65 mmol), and KI (4.3 mg, 0.03 mmol) were weighed into a reaction tube, and 5 mL of acetonitrile was added to react at 85°C for 2 h. The reaction was cooled to room temperature, saturated aqueous NaHCO 3 solution was added and stirred for 0.5 h, extracted with DCM (50 mL ⁇ 3), the organic phases were combined and dried over anhydrous Na 2 SO 4 , filtered and dried, and filtered with MeOH (0-5%) and DCM to obtain a light yellow solid 32 (28.0 mg, 50%).
  • Step 1 Add compound 1b (7.8 g, 22.6 mmol), compound 34a (2.4 g, 24.9 mmol), Pd(dppf)Cl 2 (8.2 g, 11 mmol) and potassium carbonate (62 g, 452 mmol) to a mixed solvent of 40 ml of dioxane and 4 ml of water, then replace nitrogen, and react at 80° C. for 4 hours under nitrogen protection. After TLC detection of the reaction is complete, the reaction is cooled to room temperature, concentrated by rotary evaporation, and extracted three times by adding 300 ml of ethyl acetate and 200 ml of water.
  • Step 2 Compound 34b (1 g, 3.4 mmol) was added to 10 ml of anhydrous methanol, followed by 10 ml of 4 mol/L hydrochloric acid-dioxane solution. The mixture was stirred at room temperature for 0.5-1 h. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure to obtain compound 34c (0.9 g, white solid).
  • Step 3 Compound 34c (0.05 g, 0.26 mmol), INT1 (0.069 g, 0.31 mmol), N,N-diisopropylethylamine (0.16 g, 2.3 mmol) and potassium iodide (0.20 g, 1.3 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 80°C for 2 h. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • Example 36 N-cyclopropyl-1'-((2-ethyl-5-fluoro-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl)-3'-fluoro-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Example 37 N-cyclopropyl-1'-((7-ethyl-4-fluoro-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-fluoro-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Example 38 1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-3'-(hydroxymethyl)-N-methyl-1'-, 2', 3', 6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Weigh compound 38a (0.25 g, 0.83 mmol), add 20 ml of tetrahydrofuran, replace nitrogen, cool to -78 ° C, add lithium diisopropylamide (0.46 mL, 0.91 mmol) dropwise, stir for 30 minutes, add N-phenylbis(trifluoromethanesulfonyl)imide (0.36 g, 1.0 mmol) dissolved in 10 mL of tetrahydrofuran dropwise, warm to room temperature and react for 2 hours. After TLC detection, the reaction is complete, saturated ammonium chloride aqueous solution is added to quench, and extracted three times with ethyl acetate. After the organic phases are combined, they are dried over anhydrous sodium sulfate, filtered, and spin-dried. Purification by column chromatography gives compound 38b (0.25 g, colorless liquid).
  • Step 2 Compound 38b (0.25 g, 0.6 mmol), 2-methyl pyridine-5-boronate 1c (0.14 g, 0.66 mmol), Pd(dppf)Cl 2 (0.04 g, 0.06 mmol) and potassium carbonate (0.16 g, 1.2 mmol) were added to a mixed solvent of 20 ml of dioxane and 2 ml of water, and then nitrogen was replaced and reacted at 80° C. for 3 hours under nitrogen protection. After TLC detection of the reaction was complete, the reaction was cooled to room temperature, concentrated by rotary evaporation, and extracted three times by adding 30 ml of ethyl acetate and 20 ml of water.
  • Step 5 Compound 38e (80 mg, 0.25 mmol), INT1 (56 mg, 0.25 mmol), N,N-diisopropylethylamine (130 mg, 1.0 mmol) and potassium iodide (5 mg, 0.03 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 85°C for 2 hours.
  • Step 1 Add tetrahydrofuran (7 ml) to tert-butyl 3-methoxy-4-oxopiperidine-1-carboxylate 39a (350 mg, 1.528 mmol), replace nitrogen, cool to -78 ° C, add lithium diisopropylamide (1.8 mL, 1.833 mmol) dropwise, stir for 30 min, add N-phenylbis(trifluoromethanesulfonyl)imide (655 mg, 1.833 mmol) dissolved in (2 ml) tetrahydrofuran dropwise, warm to room temperature and react for 2 h.
  • N-phenylbis(trifluoromethanesulfonyl)imide 655 mg, 1.833 mmol
  • Step 5 Compound 39e (200 mg, 0.890 mmol), INT1 (252 mg, 0.890 mmol), N,N-diisopropylethylamine (345 mg, 2.670 mmol) and potassium iodide (15 mg, 0.09 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 80°C for 2 h. After the reaction was completed, the reaction solution was added to 20 mL of water and extracted with ethyl acetate. The organic phase was concentrated under reduced pressure and sent to the preparation.
  • Step 1 Add compound 40a (5.0 g, 0.019 mol) into dichloromethane (25 mL), add trifluoroacetic acid (25 mL) dropwise, and react at room temperature for 4 h. After the reaction is completed, the reaction solution is concentrated under reduced pressure to obtain 5.0 g of a crude product of compound 40b.
  • Step 2 Compound 40b (5.0 g, 23.5 mmol), triethylamine (7.145 g, 70.7 mmol) and di-tert-butyl dicarbonate (7.71 g, 35.3 mmol) were added to ethanol (50 mL). After the addition, the mixture was reacted at room temperature for 4 h. After the reaction was completed, water (30 mL) was added to quench the reaction. Ethyl acetate (30 mL ⁇ 3 times) was added for extraction. Water (10 mL ⁇ 3 times) was added to the mixture. The organic phase was washed with 4% paraformaldehyde and then concentrated under reduced pressure. The crude product was purified by column chromatography to obtain compound 40c (2.0 g, yield: 39.56%).
  • Step 4 Compound 40d (1.6 g, 4.860 mmol) was added with tetrahydrofuran (20 mL), the nitrogen was replaced, the temperature was lowered to -78 °C, potassium bistrimethylsilylamide (7.29 mL, 7.29 mmol) was added dropwise, and N-phenylbis(trifluoromethanesulfonyl)imide (2.251 g, 6.318 mmol) dissolved in (10 mL) tetrahydrofuran was added dropwise after stirring for 30 minutes. The mixture was heated to room temperature and reacted for 2 hours.
  • Step 5 Compound 40e (2.5 g, 5.421 mmol), 2-methyl pyridine-5-boronate 1c (1.426 g, 5.421 mmol), Pd(dppf)Cl 2 (396 mg, 0.541 mmol) and potassium carbonate (2.244 g, 16.264 mmol) were added to dioxane (25 mL) and water (2.5 mL), replaced with nitrogen, and reacted at 100° C. for 3 h under nitrogen protection.
  • Example 41 1'-((2-chloro-7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Add 2-hydroxy-6-methylnicotinic acid 41a (350 g, 2.287 mol) to concentrated sulfuric acid (1400 mL), slowly add potassium nitrate (462.5 g, 4.575 mol) in batches, heat to 90°C and react for 4 h. After the reaction, add the reaction solution to ice water (3000 mL), stir for 1 h, filter, collect the product, and dry under reduced pressure to obtain compound 41b (red solid, 215 g, yield 47.48%).
  • LC-MS: ESI [M+H] + 199.1.
  • Step 2 Compound 41b (215 g, 1.086 mol) was added to methanol (1000 mL), and the temperature was raised to 70°C for reaction for 3 h. After the reaction was completed, the mixture was concentrated under reduced pressure to about 200 mL, filtered, and the filter cake was collected and dried to obtain compound 41c (yellow solid, 226 g, yield 98.1%).
  • LC-MS: ESI [M+H] + 213.4.
  • Step 3 Compound 41c (212 g, 1.04 mol) was added to phosphorus oxychloride (300 mL), the reaction system was heated to 110°C, after the reaction was completed, the reaction solution was concentrated under reduced pressure, ice water (500 mL) was added to quench the reaction, ethyl acetate (1000 mL ⁇ 3 times) was added to extract, the organic phase was washed with water (500 mL ⁇ 3 times), the organic phase was concentrated under reduced pressure, petroleum ether (500 mL) was added to the concentrate for pulping, filtered, and the filter cake was collected to obtain compound 41d (yellow solid, 175 g, yield 73.32%).
  • LC-MS: ESI [M + H] + 231.0.
  • Step 4 Compound 41d (126 g, 0.55 mol) and DMF-DMA (130.38 g, 1.1 mol) were added to DMF (800 mL), the reaction system was heated to 100°C, and the reaction was continued for 3 h.
  • Step 5 Compound 41e (70 g, 0.2456 mol) was added to THF (700 mL), the reaction system was cooled to 0°C, an aqueous solution of sodium periodate (158 g, 0.736 mol) was added, and the reaction was allowed to react at room temperature for 12 h.
  • Step 6 Sodium hydrogen (8.52 g, 0.213 mol) was added to THF (300 mL), the reaction system was cooled to 0°C, ethyl 2-(diethoxyphosphoryl)butyrate (53.76 g, 0.213 mol) was added, and the temperature was restored to room temperature for 2 h after the addition.
  • the reaction solution was cooled to -70°C, compound 41f (26 g, 0.1065 mol) was added dropwise, and the reaction was carried out at -70°C for 2 h.
  • water 200 mL
  • ethyl acetate 300 mL ⁇ 2 times
  • Step 10 Compound 1f (45 mg, 0.169 mmol) was added to dichloromethane (2 mL), triethylamine (17 mg, 0.169 mmol) was added and stirred for 10 min, then compound 41j (45 mg, 0.169 mmol) was added and stirred for 2 h, and finally sodium triacetoxyborohydride (36 mg, 0.169 mmol) was added and reacted at room temperature for 2 h.
  • Example 42 (S)-1'-((7-cyclopropyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1'-,2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide and Example 43: (R)-1'-((7-cyclopropyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,3'-dimethyl-1'-,2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Compound 15 was chiral split to obtain compound 42 and compound 43.
  • the splitting method was: instrument-Waters 150Prep-SFC, column model: Chiralcel AD Column, mobile phase A: carbon dioxide, mobile phase B: 0.1% ammonia in isopropanol, gradient: 70% mobile phase B, pressure: 100 bar, flow rate: 100 mL/min.
  • Example 44 1'-((7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N,2,3'-trimethyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Example 45 1'-(7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl)-N-methyl-1',2',3',6'-tetrahydro-[3,4'-bipyridine]-6-carboxamide
  • Step 1 Add compound 4b (1 g, 4.6 mmol), 45a (1.7 g, 5.5 mmol), Pd(dppf)Cl 2 (0.3 g, 0.46 mmol) and potassium carbonate (1.6 g, 11.5 mmol) to a mixed solvent of 7 ml of dioxane, 3 ml of anhydrous ethanol and 4 ml of water, then replace nitrogen three times and react at 90°C for 2 h under nitrogen protection. After TLC detection of the reaction is complete, cool the reaction to room temperature, add 30 ml of dichloromethane and 20 ml of water, and separate the layers in a separatory funnel.
  • the aqueous phase is extracted twice with dichloromethane, and the organic phases are combined and then washed with water, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and spin-dried.
  • the crude product is purified by column chromatography to obtain compound 45b (1 g, white solid).
  • Step 2 Add 45b (1 g, 3 mmol), methylamine aqueous solution (5 g, 161.3 mmol) and anhydrous methanol (20 ml) into a 100 ml reaction bottle and stir overnight at room temperature. After the reaction is complete as monitored by TLC, the reaction solution is concentrated under reduced pressure to dryness to obtain compound 45c (0.8 g, white solid).
  • Step 3 Compound 45c (0.5 g, 1.5 mmol) was added to 10 ml of anhydrous methanol, followed by 10 ml of 4 mol/L hydrochloric acid-dioxane solution. The mixture was stirred at room temperature for 0.5-1 h. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure to obtain compound 45d (0.5 g, white solid).
  • Step 4 Compound 45d (0.05 g, 0.23 mmol), INT1 (0.06 g, 0.28 mmol), N,N-diisopropylethylamine (0.15 g, 1.15 mmol) and potassium iodide (0.19 g, 1.15 mmol) were added to 10 ml of anhydrous acetonitrile and stirred at 80°C for 2 h. After the reaction was completed as monitored by TLC, the reaction solution was concentrated under reduced pressure.
  • PARP1 protein BPS, Cat. No. 80501
  • PARP2 protein BPS, Cat. No. 80502
  • PARP5A protein BPS, Cat. No. 80504
  • Biotin-NAD+ R&D, Cat. No. 6573
  • Strep-HRP Thermo Pierce, Cat. No. 21127
  • NAD+ TCI, Cat. No. D0919-5G
  • quantitative enhanced chemiluminescence HRP substrate kit Thermo Pierce, Cat. No.
  • the compounds of the present invention have a significant inhibitory effect on PARP1.
  • BRCA mutant MDA-MB-436 cells were cultured in DMEM medium containing 10% fetal bovine serum, 100U/mL penicillin, and 100 ⁇ g/mL streptomycin, and cultured in a 5% saturated CO2 incubator at 37°C. When the cells grew to 80% confluence, the cells were collected, centrifuged at 300g for 10min, and plated on a 96-well plate at 1200 cells/well. After 24h, different final concentrations of PARPi (0, 0.01, 0.1, 1, 10, 100, 1000nM) were added and cultured for 72h. The cells were treated with a replacement medium (PARPi was added again at the same final concentration) and cultured for 96h.
  • PARPi 0.05, 0.01, 0.1, 1, 10, 100, 1000nM
  • inhibition rate % 1-(mean OD value of the drug group-mean OD value of the Blank group)/(mean OD value of the Control group-mean OD value of the Blank group)*100%.
  • DLD-1 cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum, 100U/mL penicillin, and 100 ⁇ g/mL streptomycin, and cultured in a 5% saturated CO2 incubator at 37°C. When the cells grew to 80% confluence, the cells were collected, centrifuged at 300g for 10min, and plated at 1000 cells/well in a 96-well plate. After 24h, different final concentrations of PARPi (0, 1, 10 ⁇ M) were added and cultured for another 72h. The cells were treated with a change of medium (PARPi was re-added at the same final concentration) and cultured for another 96h. The 96-well plate was taken out, and the OD value at a wavelength of 450nM was detected by CCK8, and the cell inhibition rate was calculated:
  • Inhibition rate % 1-(average OD value of the drug administration group-average OD value of the Blank group)/(average OD value of the Control group-average OD value of the Blank group)*100%.
  • CHO cells stably expressing hERG were cultured in a cell culture flask and placed in an incubator at 37°C and 5% CO2. When the cell density grew to 60-80%, the cell culture medium was aspirated, and the cells were washed with PBS and digested with Detachin. After complete digestion, the culture medium was added to neutralize the cells, and then centrifuged, the supernatant was aspirated, and the culture medium was added to resuspend the cells, and the cell density was adjusted to 2-5 ⁇ 106/mL for later use.
  • Compound preparation Dilute the compound stock solution with 100% DMSO, that is, take 10 ⁇ L of the compound stock solution and add it to 20 ⁇ L DMSO, and dilute it 3 times continuously to 6 concentrations. Take 4 ⁇ L of the 6 concentrations of the compound respectively and add it to 396 ⁇ L of extracellular fluid, that is, dilute it 100 times to get 6 intermediate concentrations. Then take 80 ⁇ L of the 6 intermediate concentration compounds respectively and add them to 320 ⁇ L of extracellular fluid, that is, dilute it 5 times to the final concentration to be tested. The highest test concentration is 40 ⁇ M, and there are 6 concentrations of 40, 13.33, 4.44, 1.48, 0.49 and 0.16 ⁇ M respectively. The DMSO content in the final test concentration does not exceed 0.2%, and this concentration of DMSO has no effect on the hERG potassium channel.
  • the compound preparation is completed by the Bravo instrument throughout the dilution process.
  • Electrophysiological recording process The single-cell high-impedance sealing and whole-cell pattern formation process are all completed automatically by the Qpatch instrument. After obtaining the whole-cell recording mode, the cell is clamped at -80 mV, and a 50-millisecond -50 mV pre-voltage is given before a 5-second +40 mV depolarizing stimulus is given, and then repolarized to -50 mV. Hold for 5 seconds, then return to -80 mV. Apply this voltage stimulation every 15 seconds, record for 2 minutes, give extracellular solution for 5 minutes, then start the drug administration process, compound concentration starts from the lowest test concentration, each test concentration is given for 2.5 minutes, after all concentrations are given continuously, give the positive control compound 3 ⁇ M Cisapride. At least 3 cells (n ⁇ 3) are tested for each concentration.
  • X is the Log value of the test sample detection concentration
  • Y is the inhibition percentage at the corresponding concentration
  • Bottom and Top are the minimum and maximum inhibition percentages, respectively.
  • Sample preparation weigh about 0.2 mg of the compound, add 10 ⁇ L DMSO to dissolve, and then add sodium chloride solution for injection to make a 0.1 mg ⁇ mL-1 compound solution for administration.
  • the blood concentration was quantitatively analyzed by LC-MS/MS analysis method, and pharmacokinetic parameters such as peak time (Cmax), area under the drug-time curve (AUC(0-t)), half-life (T 1/2 ), clearance (CL), tissue distribution (Vdss), bioavailability (F), etc. were calculated.
  • Reference compound AZD5305 was purchased from MedChemExpress (MCE)
  • the compounds of the present invention have good pharmacokinetic properties in Balb/c mice, including good oral bioavailability, exposure, half-life and clearance, etc. After oral gavage at 1 mg/kg, the C max of compounds 2, 6, 24 and 42 is better than that of reference compounds AZD5305 and compound 45, etc.
  • the compounds of the present invention have good pharmacokinetic properties in SD rats, including good oral bioavailability, exposure, half-life and clearance.
  • Detection Add 100uL of PBST to the 384 reaction plate and wash the plate 3 times for 5 minutes each time. Dilute Stre-HRP 2000 times in blocking solution and add 25uL to each well. Incubate at room temperature for 30 minutes.
  • the compounds of the present invention have high inhibitory activity against PARP-1 enzyme, and weaker inhibitory effects on PARP-2, PARP-5A and PARP-11 of the same family.
  • Compounds 2 and 42 have better enzymatic selectivity against PARP-2, PARP-5A and PARP-11 than the reference compound AZD5305.
  • mice 15 female NOD/SCID mice were randomly divided into 3 groups, namely, blank group, compound 2 (0.1 mg/kg) group, and compound 2 (0.3 mg/kg) group, with 5 mice in each group. All mice were orally administered once a day. The body weight was weighed every 2 days and the length and width of the tumor were measured with a vernier caliper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一类取代四氢吡啶类化合物及其用途,属于化学医药技术领域。本发明提供的式Ⅰ所示取代四氢吡啶类化合物,其能够作为PARP1抑制剂,具有高活性高选择性优势,还具有优异的药物代谢动力学性质和优异的安全性。

Description

取代四氢吡啶类化合物及其用途 技术领域
本发明属于化学医药领域,涉及一类取代四氢吡啶类化合物及其用途。
背景技术
细胞在生长过程中,它的DNA会不断受到内在和周遭各种不利因素的损害。在DNA损伤中,最严重的损伤类型是单链断裂和双链断裂,其中单链断裂更为常见,这些断裂如果得不到及时准确的修复,会导致基因组不稳定,进而引起癌变,甚至直接引起细胞死亡。对于DNA的单链断裂而言,它的修复主要依赖于PARP酶。对于双链断裂而言,双链DNA的修复方式,一种是非同源末端链接修复,另外一种是同源重组修复。同源重组修复是一种高保真,无错误的修复方式,也是双链DNA修复的主要途径。同源重组修复参与蛋白众多,其中最为人熟知的是BRCA蛋白。2005年的两项研究(Farmer H,Mccabe N,et al.Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J].Nature,2005,434(7035):917-921.Bryant,H.,Schultz,N.,Thomas,H.et al.Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose)polymerase.Nature 434,913–917(2005))表明,缺乏BRCA1或BRCA2的肿瘤细胞会被PARP抑制剂选择性地抑制。根据这一研究结果,学者提出了合成致死的概念:BRCA和PARP两种基因中的任何一种缺失本身都不致命,但两者同时失活会导致细胞死亡。基于合成致死理论,PARP抑制剂(PARPi)被开发用于选择性靶向BRCA1/2突变的癌细胞。
PARP抑制剂在同源重组缺陷癌症患者中已经表现出了优异的临床疗效,然而无论是单药使用还是联合疗法,血液学毒性(贫血、中性粒细胞减少和血小板减少)和其他毒性限制了这类药物的应用。相关研究表明(Harris P A,Boloor A,Cheung M,et al.Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide(Pazopanib),a novel and potent vascular endothelial growth factor receptor inhibitor.[J].Journal of Medicinal Chemistry,2008,51(15):4632.)这部分不良反应可能来源于已上市PARP抑制剂对于PARP2的抑制,而PARP2并非疗效所必须。高选择性PARP1抑制剂可以降低血液毒性,提高治疗安全窗,增加与其他化疗或者靶向药联用的潜力。
因此,对于有效且安全的PARP抑制剂存在未满足的临床需求,特别是对PARP1 具有选择性的PARP抑制剂。本发明所述的新型PARP1抑制剂对PARP1的选择性比其他PARP家族成员(如PARP2、PARP3、PARP5a和PARP6)出人意料地高,可用于治疗与PARP功能相关的疾病。
发明内容
本发明的目的在于提供一类取代四氢吡啶类化合物及其用途,以实现高选择性、高效预防或治疗与PARP功能相关的疾病。
第一方面,本发明提供一种式II所示的化合物或其药学上可接受的形式,所述式II结构如下:
式Ⅰ的化合物或其药学上可接受的形式,其特征在于:所述式Ⅰ结构如下:
其中:
R1选自卤素、C1-4烷基、C1-4氟代烷基、3~6元环烷基、3~6元氟代环烷基或C2-4烯基;
X1选自N或CR5a,X2选自N或CR5b,X3选自N或CR5c
R6选自氢或卤素;
R4为-CONHR7,R7选自C1-4烷基、C1-4氟代烷基、C1-4氘代烷基、3~6元环烷基或3~6元氟代环烷基;
R9a选自氢、卤素、氰基、C1-4烷基、C1-4氟代烷基、3~6元环烷基或3~6元氟代环烷基;
R9c选自氢或卤素;
R2选自氢或C1-4烷基;
R3a选自卤素、C1-4烷基、C1-4氟代烷基或3-6元环烷基;R3b选自氢、卤素或C1-4烷基;
R3c选自氢或C1-4烷基;
R5a选自氢、卤素或C1-4烷基,R5b选自氢或卤素,R5c选自氢或卤素;
所述药学上可接受的形式选自药学上可接受的盐、酯、立体异构体、多晶型物、溶剂合物、氮氧化物、同位素标记物、代谢物或前药。
在本发明一些优选实施例中,R1选自选自氯、甲基、乙基、氟代甲基、氟代乙基、环丙基或乙烯基。
在本发明一些优选实施例中,R6选自氢或氟。
在本发明一些优选实施例中,R7选自甲基、乙基、氘代甲基、氘代乙基、氟代甲基、氟代乙基、环丙基或氟代环丙基。
在本发明一些优选实施例中,R9a选自氢、氟、氯、氰基、甲基、乙基、氟代甲基、氟代乙基、环丙基或氟代环丙基。
在本发明一些优选实施例中,R9c选自氢或氟。
在本发明一些优选实施例中,R2选自氢或甲基。
在本发明一些优选实施例中,R3a选自氟、甲基、乙基、氟代甲基、氟代乙基、环丙基或氟代环丙基;R3b选自氢、氟或甲基。
在本发明一些优选实施例中,R3c选自氢或甲基。
在本发明一些优选实施例中,R5a选自氢、氟或甲基,R5b选自氢或氟,R5c选自氢或氟。
在本发明一些优选实施例中,结构单元选自如下结构:
在本发明一些优选实施例中,结构单元选自如下结构:
在本发明一些优选实施例中,结构单元选自如下结构:
在本发明一些优选实施例中,结构单元选自如下结构:
在本发明一些优选实施例中,结构单元选自如下结构:
在本发明一些优选实施例中,化合物具有式II-1、式II-2或式II-3所述结构:
在本发明一些优选实施例中,化合物具有式III-1、式III-2、式III-3或式III-4所述结构:
本发明还提供了一些所示化合物中的具体化合物,结构如下:

本发明还提供了一些所示化合物中的具体化合物,结构如下:
本发明还提供了一些具体化合物,结构如下:
第二方面,本发明提供了一种药物组合物,其以前述化合物或其药学上可接受的盐、酯、立体异构体、互变异构体、多晶型物、溶剂合物、氮氧化物、同位素标记物、代谢物或前药为活性成分,辅以药学上可接受的载体。
本发明的进一步的目的在于提供一种制备本发明的药物组合物的方法,所述方法包括将含前述的任意化合物或其药学上可接受的形式、或者它们的混合物、与一种或多种 药学上可接受的载体组合。
在本发明的药物组合物中可使用的药学上可接受的载体为药学上可接受的载体,适合的药学上可接受的载体的实例如在Remington’s Pharmaceutical Sciences(2005)中所述。
药物组合物可以以任意形式施用,只要其实现预防、减轻、防止或者治愈人类或动物患者的症状即可。例如,可根据给药途径制成各种适宜的剂型。
在另一些实施方案中,本发明的化合物或药物组合物的施用可以与另外的治疗方法组合。所述另外的治疗方法可以选自,但不限于:放射疗法、化疗疗法、免疫疗法,或其组合。
本发明还涉及一种药物制剂,其包含前述的任意化合物或其药学上可接受的形式、或它们的混合物作为活性成分,或者本发明的药物组合物。在一些实施方案中,所述制剂的形式为固体制剂、半固体制剂、液体制剂或气态制剂。
本发明的进一步的目的在于提供一种制品,例如以试剂盒形式提供。本文所用的制品意图包括但不限于药盒和包装。本发明的制品包含:(a)第一容器;(b)位于第一容器中的药物组合物,其中所述组合物包含:第一治疗剂,所述第一治疗剂包括:前述的任意化合物或其药学上可接受的形式、或者它们的混合物;(c)任选存在的包装说明书,其说明所述药物组合物可用于治疗肿瘤病症(如下文所定义);和(d)第二容器。
所述第一容器为用于容纳药物组合物的容器。此容器可用于制备、储存、运输和/或独立/批量销售。第一容器意图涵盖瓶、罐、小瓶、烧瓶、注射器、管(例如用于乳膏制品),或者用于制备、容纳、储存或分配药物产品的任何其它容器。
所述第二容器为用于容纳所述第一容器和任选包装说明书的容器。所述第二容器的实例包括但不限于盒(例如纸盒或塑料盒)、箱、纸箱、袋(例如纸袋或塑料袋)、小袋和粗布袋。所述包装说明书可经由扎带、胶水、U形钉或别的粘附方式物理粘附于所述第一容器的外部,或者其可放在所述第二容器的内部,而无需与所述第一容器粘附的任何物理工具。或者,所述包装说明书位于所述第二容器的外面。当位于所述第二容器的外面时,优选的是所述包装说明书经由扎带、胶水、U形钉或别的粘附方式物理粘附。或者,其可邻接或接触所述第二容器的外部,而无需物理粘附。
所述包装说明书为商标、标签、标示等,其列举了与位于所述第一容器内的药物组合物相关的信息。所列出的信息通常由管辖待销售所述制品的区域的管理机构(例如美国食品与药品管理局)决定。优选所述包装说明书具体列出了所述药物组合物获准用于的适应症。所述包装说明书可由任何材料制成,可从所述材料上读取包含于其中或其上的信息。优选所述包装说明书为可印刷材料(例如纸、塑料、卡纸板、箔、胶粘纸或塑 料等),其上可形成(例如印刷或施涂)所需信息。
第三方面,本发明提供前述化合物,及相关具体化合物或其药学上可接受的形式、或者本发明的药物组合物在制备用于预防或治疗PARP1酶相关疾病的药物中的用途。
本发明提供一种用于预防或治疗PARP1酶相关疾病的方法,所述方法包括向有此需要的个体施用前述的化合物或其药学上可接受的形式、或者本发明的药物组合物。
本发明提供前述化合物或其药学上可接受的形式、或者本发明的药物组合物,用于预防或治疗PARP1酶相关疾病。
本发明提供式前述的化合物或其药学上可接受的形式或者本发明的药物组合物与另外的治疗方法组合用于预防或治疗PARP1酶相关疾病的方法,所述另外的治疗方法包括但不限于:放射疗法、化疗疗法,免疫疗法、或其组合。
在一些实施方案中,所述PARP1酶相关疾病为对PARP1酶抑制敏感或有响应的疾病。
在一些实施方案,所述PARP1酶相关疾病为肿瘤类病症。
在一些优选的实施方案,所述肿瘤类病症缺乏HR依赖性DNA DSB修复途径。
在一些优选的实施方案,所述肿瘤类病症包含一种或多种癌细胞,所述癌细胞相对于正常细胞具有降低的或缺失的通过HR修复DNA DSB的能力。
在一些优选的实施方案,所述癌细胞具有BRCA1或BRCA2缺陷表型。
在一些实施方案中,所述PARP1酶相关疾病为肿瘤类病症,包括但不限于实体和血液恶性肿瘤。在进一步的实施方案中,所述肿瘤类病症包括但不限于乳腺癌、结肠直肠癌、结肠癌、肺癌(包括小细胞肺癌、非小细胞肺癌和细支气管肺泡癌)和前列腺癌,以及胆管癌、骨癌、膀胱癌、头颈癌、肾癌、肝癌、胃肠组织癌、食道癌、卵巢癌、胰腺癌、皮肤癌、睾丸癌、甲状腺癌、子宫癌、宫颈癌和外阴癌,以及白血病(包括慢性淋巴细胞性白血病(CLL)、急性淋巴细胞性白血病(ALL)和慢性骨髓性白血病(CML))、多发性骨髓瘤或淋巴瘤。
在一些优选的实施方案,所述PARP1酶相关疾病为乳腺癌、卵巢癌、胰腺癌、前列腺癌、血液癌、胃肠道癌或肺癌。
在进一步优选的实施方案中,本发明的化合物可以与放化疗或免疫疗法联用以预防或治疗癌症。
本发明的有益效果:
本发明提供一类新型的高活性高选择性PARP1抑制剂,能够实现下述至少一种技术效果:(1)对PARP1酶的高抑制活性;(2)选择性抑制PARP1酶,对PARP2、PARP5a、 PARP5b等PARP家族其他酶具有高选择性;(3)对同源重组缺陷型肿瘤细胞具有强抑制活性,对非同源重组缺陷型细胞抑制作用弱;(4)优异的药物代谢动力学性质(例如良好的生物利用度、合适的半衰期和作用持续时间);(5)优异的安全性(较低的毒性和/或较少的副作用,较宽的治疗窗)等。
术语定义:
除非在下文中另有定义,本文中所用的所有技术术语和科学术语的含义意图与本领域技术人员通常所理解的相同。术语“包括”、“包含”、“具有”、“含有”或“涉及”及其在本文中的其它变体形式为包含性的或开放式的,且不排除其它未列举的元素或方法步骤。本领域技术人员应当理解,上述术语如“包括”涵盖“由…组成”的含义。
在本发明中,“一”、“一个”、“该”、“至少一个”和“一个或多个”可互换使用。因此,例如,包含“一种”药学上可接受的赋型剂的组合物,可以被解释为表示该组合物包括“一种或多种”药学上可接受的赋型剂。
例如,表述“C1-4”应理解为涵盖其中的任意亚范围以及每个点值,例如C2-4、C3-4、C1-2、C1-3、C1-4等,以及C1、C2、C3、C4等。
在本发明中,除非另有说明,卤素是指氟、氯、溴或碘。
在本发明中,除非另有说明,“烷基”包括直链或支链的一价饱和烃基。例如烷基包括甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、3-(2-甲基)丁基、2-戊基、2-甲基丁基、新戊基、正己基、2-己基、2-甲基戊基等。类似的,“C1-4烷基”中的C1-4是指包含有1、2、3或4个碳原子的直链或支链形式排列的基团。
在本发明中,除非另有说明,“环烷基”、“碳环”或“亚环烷基”是指饱和或部分饱和的,单环或多环(诸如双环)的非芳香族烃基。常见的环烷基包括(但不限于)单环环烷基,诸如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基、环丁烯、环戊烯、环己烯等;或双环环烷基,包括稠环、桥环或螺环,诸如双环[1.1.1]戊基、双环[2.2.1]庚基、双环[3.2.1]辛基、双环[5.2.0]壬基、十氢化萘基等。例如,“C 3-12环烷基”指具有3-12个环碳原子(如3、4、5、6、7、8、9、10、11或12个)的环烷基。本发明中的环烷基或亚环烷基任选地被一个或多个本发明所描述的取代基取代。
在本发明中,除非另有说明,“氟代烷基”指上文所述的烷基,其中一个或多个氢原子被氟原子代替。例如,术语“C1-4氟代烷基”指任选地被一个或多个(如1-3个)氟原子取代的C1-4烷基。本领域技术人员应当理解,当氟原子取代基多于一个时,氟原子可以相同也可以不同,并且可以位于相同或不同的C原子上。卤代烷基的实例有例如-CH2F、-CHF2、-CF3、-C2F5、-CH2CF3、-CH2CH2CF3等。本发明中的氟代烷基任选地 被一个或多个本发明所描述的取代基取代。
本发明还包括所有药学上可接受的同位素标记的化合物,其与本发明的化合物相同,除了一个或多个原子被具有相同原子序数但原子质量或质量数不同于在自然界中占优势的原子质量或质量数的原子替代。适合包含入本发明的化合物中的同位素的实例包括(但不限于)氢的同位素(例如氘(2H)、氚(3H));碳的同位素(例如13C及14C);氯的同位素(例如37Cl);碘的同位素(例如125I);氮的同位素(例如13N及15N);氧的同位素(例如17O及18O);磷的同位素(例如32P);及硫的同位素(例如34S)。
在本发明中,“多晶型物”是指本发明的某些化合物在固体状态下由于存在两种或两种以上不同分子排列而产生的不同的固体结晶相。本发明的某些化合物可以存在多于一种晶型,本发明旨在包括各种晶型及其混合物。通常,结晶化作用会产生本发明化合物的溶剂化物。本发明中使用的术语“溶剂化物”是指包含一个或多个本发明化合物分子与一个或多个溶剂分子的聚集体。溶剂可以是水,该情况下的溶剂化物为水合物。或者,溶剂可以是有机溶剂。因此,本发明的化合物可以以水合物存在,包括单一水合物、二水合物、半水合物、倍半水合物、三水合物、四水合物等,以及相应的溶剂化形式。本发明化合物可形成真是的溶剂化物,但在某些情况下,也可以仅保留不定的水或者水加上部分不定溶剂的混合物。本发明的化合物可以在溶剂中反应或者从溶剂中沉淀析出或结晶出来。本发明化合物的溶剂化物也包含在本发明的范围之内。本发明还涵盖本发明的化合物的所有可能的结晶形式或多晶型物,其可为单一多晶型物或多于一种多晶型物的任意比例的混合物。
在本发明中,“立体异构体”表示由于至少一个不对称中心形成的异构体。在具有一个或多个(例如一个、两个、三个或四个)不对称中心的化合物中,其可产生外消旋混合物、单一对映异构体、非对映异构体混合物和单独的非对映异构体。特定个别分子也可以几何异构体(顺式/反式)存在。类似地,本发明的化合物可以两种或更多种处于快速平衡的结构不同的形式的混合物(通常称作互变异构体)存在。互变异构体的代表性实例包括酮-烯醇互变异构体、苯酚-酮互变异构体、亚硝基-肟互变异构体、亚胺-烯胺互变异构体。要理解,本发明的范围涵盖所有这样的以任意比例(例如60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%)的异构体或其混合物。
在本发明中,药学上可接受的盐包括其酸加成盐及碱加成盐。适合的酸加成盐由形成药学可接受盐的酸来形成。适合的碱加成盐由形成药学可接受盐的碱来形成。适合的盐的综述参见例如“Remington′s Pharmaceutical Sciences”,Mack Publishing Company,Easton,Pa.,(2005);和“药用盐手册:性质、选择和应用”(Handbook of  Pharmaceutical Salts:Properties,Selection,and Use),Stahl and Wermuth(Wiley-VCH,Weinheim,Germany,2002)。用于制备本发明的化合物的药学上可接受的盐的方法为本领域技术人员已知的。“药学上可接受的酸加成盐”是指能够保留游离碱的生物有效性而无其它副作用的,与无机酸或有机酸所形成的盐。无机酸盐包括但不限于盐酸盐、氢溴酸盐、硫酸盐、硝酸盐、磷酸盐等;有机酸盐包括但不限于甲酸盐、乙酸盐、2,2-二氯乙酸盐、三氟乙酸盐、丙酸盐、己酸盐、辛酸盐、癸酸盐、十一碳烯酸盐、乙醇酸盐、葡糖酸盐、乳酸盐、癸二酸盐、己二酸盐、戊二酸盐、丙二酸盐、草酸盐、马来酸盐、琥珀酸盐、富马酸盐、酒石酸盐、柠檬酸盐、棕榈酸盐、硬脂酸盐、油酸盐、肉桂酸盐、月桂酸盐、苹果酸盐、谷氨酸盐、焦谷氨酸盐、天冬氨酸盐、苯甲酸盐、甲磺酸盐、苯磺酸盐、对甲苯磺酸盐、海藻酸盐、抗坏血酸盐、水杨酸盐、4-胺基水杨酸盐、萘二磺酸盐等。这些盐可通过本专利已知的方法制备。“药学上可接受的碱加成盐”是指能够保持游离酸的生物有效性而无其它副作用的、与无机碱或有机碱所形成的盐。衍生自无机碱的盐包括但不限于钠盐、钾盐、锂盐、铵盐、钙盐、镁盐、铁盐、锌盐、铜盐、锰盐、铝盐等。优选的无机盐为铵盐、钠盐、钙盐及镁盐。衍生自有机碱的盐包括但不限于以下的盐:伯胺类、仲胺类及叔胺类,被取代的胺类,包括天然的被取代胺类、环状胺类及碱性离子交换树脂,例如氨、异丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、二乙醇胺、三乙醇胺、二甲基乙醇胺、2-二甲氨基乙醇、2-二乙氨基乙醇、二环己胺、赖氨酸、精氨酸、组氨酸、咖啡因、普鲁卡因、胆碱、甜菜碱、乙二胺、葡萄糖胺、甲基葡萄糖胺、可可碱、嘌呤、哌嗪、哌啶、N-乙基哌啶、聚胺树脂等。优选的有机碱包括异丙胺、二乙胺、乙醇胺、三甲胺、二环己胺、胆碱己咖啡因。这些盐可通过本专利已知的方法制备。
在本发明中,除非另有说明,“酯”指衍生自本文所描述的化合物的酯,其包括生理上可水解的酯(可在生理条件下水解以释放游离酸或醇形式的本发明的化合物)。本发明的化合物本身也可以是酯。
本发明的化合物可以溶剂合物(优选水合物)的形式存在,其中本发明的化合物包含作为所述化合物晶格的结构要素的极性溶剂,特别是例如水、甲醇或乙醇。极性溶剂特别是水的量可以化学计量比或非化学计量比存在。
本领域技术人员会理解,由于氮需要可用的孤对电子来氧化成氧化物,因此并非所有的含氮杂环都能够形成氮氧化物。本领域技术人员会识别能够形成氮氧化物的含氮杂环。本领域技术人员还会认识到叔胺能够形成氮氧化物。用于制备杂环和叔胺的氮氧化物的合成方法是本领域技术人员熟知的,包括用过氧酸如过氧乙酸和间氯过氧苯甲酸 (mCPBA)、过氧化氢、烷基过氧化氢如叔丁基过氧化氢、过硼酸钠和双环氧乙烷(dioxirane)如二甲基双环氧乙烷来氧化杂环和叔胺。这些用于制备氮氧化物的方法已在文献中得到广泛描述和综述,参见例如:T.L.Gilchrist,Comprehensive Organic Synthesis,vol.7,pp748-750(A.R.Katritzky和A.J.Boulton,Eds.,Academic Press);以及G.W.H.Cheeseman和E.S.G.Werstiuk,Advances in Heterocyclic Chemistry,vol.22,pp 390-392(A.R.Katritzky和
A.J.Boulton,Eds.,Academic Press)。
在本发明中,“代谢物”指在给药本发明的化合物时体内形成的物质。化合物的代谢产物可以通过所属领域公知的技术来进行鉴定,其活性可以通过试验的方法进行表征。这样的产物可由例如被给药的化合物的氧化、还原、水解、酰胺化、脱酰胺化、酯化、酶解等产生。因此,本发明包括本发明的化合物的代谢物,包括通过使本发明的化合物与哺乳动物接触足以产生其代谢产物的时间的方法制得的化合物。
在本发明中,“前药”指本发明化合物的某些衍生物当被给药至身体中或其上时可通过例如水解裂解转化成具有期望活性的本发明的化合物。通常这样的前药会是所述化合物的官能团衍生物,其易于在体内转化成期望的治疗活性化合物。关于前药的使用的其它信息可参见“Pro-drugs as Novel Delivery Systems”,第14卷,ACS Symposium Series(T.Higuchi及V.Stella)。本发明的前药可例如通过用本领域技术人员已知作为“前-部分(pro-moiety)(例如“Design of Prodrugs”,H.Bundgaard(Elsevier,1985)中所述)”的某些部分替代本发明的化合物中存在的适当官能团来制备。
在本申请中,“药物组合物”是指本发明化合物与本领域通常接受的用于将生物活性化合物输送至哺乳动物(例如人)的介质的制剂。该介质包括药学上可接受的载体。药物组合物的目的是促进生物体的给药,利于活性成分的吸收,进而发挥生物活性。
在本申请中,“药学上可接受的载体”包括但不限于任何被相关的政府管理部门许可或为接受供人类或家畜使用的佐剂、载体、赋型剂、助流剂、增甜剂、稀释剂、防腐剂、染料/着色剂、矫味剂、表面活性剂、润湿剂、分散剂、助悬剂、稳定剂、等渗剂、溶剂或乳化剂。
本文所使用术语“药物组合”、“药物联用”、“联合用药”、“施用其他治疗”、“施用其他治疗剂”等是指通过混合或组合不止一种活性成分而获得的药物治疗,其包括活性成分的固定和不固定组合。术语“固定组合”是指以单个实体或单个剂型的形式向患者同时施用至少一种本文所述的化合物和至少一种协同药剂。术语“不固定组合”是指以单独实体的形式向患者同时施用、合用或以可变的间隔时间顺次施用至少一种本文所述的化合物和至少一种协同制剂。这些也应用到鸡尾酒疗法中,例如施用三种或更多 种活性成分。
在本发明中,除非另有说明,“肿瘤”包括但不限于白血病、胃肠间质瘤、组织细胞性淋巴瘤、非小细胞肺癌、小细胞肺癌、胰腺癌、肺鳞癌、肺腺癌、乳腺癌、前列腺癌、肝癌、皮肤癌、上皮细胞癌、宫颈癌、卵巢癌、肠癌、鼻炎癌、脑癌、骨癌、食道癌、黑色素瘤、肾癌、口腔癌等疾病。
在本发明中,除非另有说明,“治疗”意指逆转、减轻、抑制这样的术语所应用的病症或病况或者这样的病症或病况的一种或多种症状的进展,或预防这样的病症或病况或者这样的病症或病况的一种或多种症状。
在不违背符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
附图说明
图1为化合物2给药后MDA-MB-436裸小鼠模型的肿瘤体积变化图。
图2为化合物2晶体中分子结构及原子标号球棍图。
图3为化合物21晶体中分子结构及原子标号球棍图。
具体实施方式
下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
本发明实施例中所用试剂和原料均市售可得。
表1本发明中字母缩写及其含义

本发明所述化合物的结构是通过核磁共振(NMR)或质谱(MS)来确定的。NMR的测定是用Bruker AVANCE-400核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6)、氘代氯仿(CDCl3)、氘代甲醇(CD3OD)内标为四甲基硅烷(TMS)化学位移是以10-6(ppm)作为单位给出。
MS的测定用Agilent SQD(ESI)质谱仪(生产商:Agilent,信号:6110)。
HPLC的测定使用安捷伦1200DAD高压液相色谱仪(Sunfirc C18,150X 4.6mm,5wn,色谱柱)和Waters 2695-2996高压液相色谱仪(Gimini C18,150X 4.5mm,5ym色谱柱)。
薄层层析硅胶板使用青岛海洋GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm-0.2mm,薄层层析分离纯化产品采用的规格是0.4mm-0.5mm硅胶板。
柱层析一般使用青岛海洋100-200、200-300目硅胶为载体。
以下实施例中无特殊说明,反应均在氩气氛围或氮气氛围下进行。氩气氛围或氮气氛围是指反应瓶连接一个约1L容积的氩气或氮气气球。氢气氛围是指反应瓶连接一个约1L容积的氢气气球。氢化反应通常抽真空,充入氢气,反复操作3次。
中间体制备
中间体INT1:7-(氯甲基)-3-乙基-1,5-萘啶-2(1H)-酮
第一步:在250ml反应瓶中加入化合物INT1a(20g,95.1mmol)与二氧化硒(16g,144mmol),加入120ml 1,4-二氧六环,升温至110℃搅拌反应过夜。TLC监测反应完全后,将反应液过滤,滤渣用乙酸乙酯冲洗,滤液合并后旋蒸浓缩。所得粗品经柱层析纯化得到化合物INT1b(16g,黄色固体)。LC-MS:ESI[M+H]+=225.2。
第二步:在250ml反应瓶中加入氢化钠(6.86g,171.4mmol),加入60ml 1,4-二氧六环,然后置换氮气三次。降温至0℃,在氮气保护下缓慢滴加化合物2-膦酰丁酸三乙脂(43.2g,171.4mmol),0℃下搅拌反应10分钟,升温至室温搅拌反应10分钟再升温至40℃搅拌反应5分钟,将反应降温至-78℃。缓慢滴加溶于60ml 1,4-二氧六环溶液的化合物INT1b(16g,71.4mmol),保持-78℃搅拌反应1小试。TLC监测反应完全后,将反应液缓慢加入冰的饱和氯化铵水溶液中淬灭,用150ml乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物INT1c(13.26g,褐色液体)。LC-MS:ESI[M+H]+=323.3。
第三步:将化合物INT1c(13.26g,41.1mmol)加入到100ml无水乙醇中,然后加入Pd/C(1.33g,10%),室温下搅拌反应过夜。LC-MS监测反应完全后,将反应液过滤,滤渣用大量乙醇冲洗,滤液合并后旋蒸浓缩。加入4mol/L盐酸的1,4-二氧六环溶液(50ml),室温下搅拌30分钟,加入乙醚析出大量固体,过滤、烘干,得到化合物INT1d(7.32g,白色固体)。LC-MS:ESI[M+H]+=249.3;1H NMR(400MHz,DMSO-d6)δ10.44(s,1H),8.62(d,J=1.9Hz,1H),7.75(d,J=1.9Hz,1H),4.34(q,J=7.1Hz,2H),3.87(s,0H),3.24(dd,J=16.8,6.3Hz,1H),2.97(dd,J=16.8,10.1Hz,1H),1.81–1.65(m,1H),1.52–1.36(m,1H),1.32(t,J=7.1Hz,3H),0.93(t,J=7.4Hz,3H)。
第四步:在250ml反应瓶中加入化合物INT1d(7.32g,29.5mmol)加入120ml1,4-二氧六环,然后加入DDQ(7.38g,32.5mmol),回流反应过夜。LC-MS监测反应完全 后,旋蒸浓缩反应液,加入饱和碳酸氢钠水溶液搅拌反应1小时,过滤,滤渣用水冲洗,再用少量乙醚洗涤,烘干后得到化合物INT1e(2.31g,黄色固体)。LC-MS:ESI[M+H]+=247.3。
第五步:在150ml反应瓶中加入化合物INT1e(2.0g,8.1mmol)加入60ml四氢呋喃,降温至0℃,然后加入2.5mol/L氢化铝锂的四氢呋喃溶液(6.48ml,16.2mmol),0℃下反应2小时。TLC监测反应完全后,加入5ml水淬灭反应,加入大量无水硫酸钠干燥,过滤,滤渣用大量二氯甲烷冲洗,滤液合并后旋蒸浓缩,烘干后得到化合物INT1f(1.2g,白色固体)。LC-MS:ESI[M+H]+=205.3;1H NMR(400MHz,DMSO-d6)δ11.87(s,1H),8.03(d,J=2.0Hz,1H),7.36(d,J=1.0Hz,1H),7.34(dd,J=2.0,0.9Hz,1H),4.51(s,2H),2.52(d,J=1.8Hz,1H),1.15(t,J=7.4Hz,3H)。
第六步:在50ml反应瓶中加入化合物INT1f(0.82g,4.0mmol)加入20ml二氯甲烷与1mlN,N-二甲基甲酰胺,降温至0℃,滴加二氯亚砜(0.87ml,12mmol),0℃下反应1小时。TLC监测反应完全后,旋蒸浓缩反应液,所得粗品经过柱层析纯化得到化合物INT1(0.66g,灰色固体)。LC-MS:ESI[M+H]+=223.7。
中间体INT2:7-(氯甲基)-3-环丙基-1,5-萘吡啶-2(1H)-酮
第一步:称取化合物INT2a(15g,72.4mmol)和亚磷酸三乙酯(24.1g,144.9mmol)于反应瓶中,氮气保护下于130℃搅拌反应24h,反应结束后柱层析纯化得无色液体INT2b(10g,52%),LC-MS:ESI[M+H]+=265.1。
第二步:将INT2b(10g,37.8mmol)溶解于100mL THF中,氮气保护下于0℃缓慢加入NaH(60%,2.3g,56.8mmol)固体,加完后搅拌0.5h,然后室温搅拌10min,最后于-78℃缓慢加入INT1b(10.2g,45.4mmol)的THF溶液,加完后保持-78℃搅拌1h,LC-MS确认反应完成后,加入NH4Cl饱和水溶液淬灭反应,用EA(150mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得黄色油状物INT2c(10g,79%),LC-MS:ESI[M+H]+=335.1。
第三步:将化合物INT2c(10g,29.9mmol)称取于反应瓶中,加入150mL冰乙酸溶解,然后缓慢加入Fe(5.0g,89.7mmol)粉,加完后升温至70℃搅拌2h,冷却至 室温后抽滤,并用少量DCM和MeOH洗涤滤饼,将滤液真空浓缩干,然后柱层析纯化得淡黄色固体INT2d(1.85g,24%),LC-MS:ESI[M+H]+=259.1。
第四步:称取化合物INT2d(1.85g,7.2mmol)于反应瓶中,加入20mL THF于-20℃搅拌,氮气保护下缓慢滴加DIBAL-H(1.5M in toluene,16mL,25.1mmol),滴完后恢复至室温搅拌0.5h,于0℃滴加饱和酒石酸钾钠水溶液淬灭反应,室温搅拌过夜,用DCM和MeOH(3:1)的混合溶液萃取3次,合并有机相并用无水Na2SO4干燥,过滤旋干,得淡黄色固体粗产物INT2e(1.46g,94%),LC-MS:ESI[M+H]+=217.1。
第五步:称取化合物INT2e(1.46g,6.8mmol)和DMF(98.7mg,1.4mmol)于反应瓶中,加入50mL甲苯溶解,于0℃缓慢滴加SOCl2(1.1g,9.5mmol),滴加完毕后缓慢升温至室温搅拌过夜反应。反应结束后真空浓缩掉溶剂,用DCM和MeOH(0-7%)过柱纯化,得淡黄色固体化合物INT2(1.24g,78%),LC-MS:ESI[M+H]+=235.1。
实施例1:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物1a(50g,235mmol),加入四氢呋喃300ml,置换氮气,降温至-78℃,滴加二异丙基氨基锂(141mL,282mmol),搅拌30分钟后滴加溶于300mL四氢呋喃的N-苯基双(三氟甲烷磺酰)亚胺(92g,258mmol),升至室温反应2小时,TLC检测反应完全后,加入饱和氯化铵水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干经过柱层析纯化得到化合物1b(78g,无色液体)。
第二步:在400ml二氧六环和40ml水的混合溶剂中加入化合物1b(78g,226mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(65g,249mmol)、Pd(dppf)Cl2(8.2g,11mmol)和碳酸钾(62g,452mmol),然后置换氮气,在氮气保护下80℃下反应4小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入300ml乙酸乙酯和200ml水萃取三次,合并有机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物1d(35g,白色固体);LC-MS:ESI[M+H]+=333.4。
第三步:在100ml反应瓶中加入1d(2g,6mmol)、甲胺水溶液(1.8mL,24mmol)和无水甲醇(15ml),室温下搅拌反应3小时。LC-MS监测反应完全后,将反应液减压浓缩,用石油醚打浆,过滤烘干得到化合物1e(1.76g,白色固体);LC-MS:ESI[M+H]+=332.4。
第四步:将化合物1e(1.76g,5.3mmol)加入到10ml无水甲醇中,随后再加入14ml4mol/L盐酸二氧六环溶液,室温搅拌小时,TLC监测反应完全后,加入二氧六环析出固体,过滤,烘干后得到化合物1f(2.1g,白色固体);LC-MS:ESI[M+H]+=232.3。
第五步:将化合物1f(2.7g,9.0mmol)、INT1(2.0g,9.0mmol)、N,N-二异丙基乙胺(6.2mL,36.0mmol)和碘化钾(0.15g,0.9mmol)加入到20ml无水乙腈中,80℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入30mL水析出固体,过滤,烘干后得到化合物1(2.82g,淡黄色固体);LC-MS:ESI[M+H]+=418.5;1H NMR(400MHz,CDCl3)δ11.83(s,1H),8.57(d,J=1.6Hz,1H),8.51(d,J=1.8Hz,1H),8.16(t,J=6.5Hz,1H),7.98(d,J=5.1Hz,1H),7.87(s,1H),7.76(dd,J=8.0,2.1Hz,2H),6.01(t,J=3.2Hz,1H),3.77(dd,J=34.5,13.9Hz,2H),3.39–3.26(m,1H),3.14(d,J=17.1Hz,1H),3.05(t,J=5.7Hz,3H),2.90(s,1H),2.79–2.68(m,3H),2.59(dd,J=11.1,4.0Hz,1H),1.31(q,J=7.5Hz,3H),1.06(t,J=6.6Hz,3H)。
实施例2:(S)-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺和实施例3:(R)-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
化合物1通过手性拆分得到化合物2和化合物3。拆分方法为:仪器:Waters 150Prep-SFC,柱子型号-Chiralcel AD Column,流动相A:二氧化碳,流动相B:0.1%氨水的异丙醇,梯度:70%流动相B,压力:100bar,流速:100mL/min。
化合物2通过X-射线衍射仪测定绝对构型,所使用仪器为Bruker D8VENTURE双微焦斑单晶X-射线衍射仪,环境温度193K,增强型Cu光源,波长通过单晶结构解析,得出如下结论:该样品分子的单晶属于三斜晶系,P1空间群;晶体中无特征对称元素;一个晶胞包含2个化合物2分子;晶胞内2个化合物2分子包括2个手性碳原子(黑色标识),手性碳原子的绝对构型为C12(S)和C39(S)。
实施例4:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3',3'-三甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:在30ml二氧六环和3ml水的混合溶剂中加入化合物4a(1.0g,3.0mmol)、2-甲酸甲酯-5-溴吡啶4b(0.65g,3.0mmol)、Pd(dppf)Cl2(0.2g,0.3mmol)和碳酸钾(1.2g,9.0mmol),然后置换氮气,在氮气保护下80℃下反应3小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入30ml乙酸乙酯和20ml水萃取三次,合并有机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物4c(0.4g,白色固体);LC-MS:ESI[M+H]+=347.3。
第三步:在50ml反应瓶中加入4c(0.4g,1.2mmol)、甲胺水溶液(0.4mL,4.8mmol)和无水甲醇(15ml),室温下搅拌反应3小时。LC-MS监测反应完全后,将反应液减压浓缩,用石油醚打浆,过滤烘干得到化合物4d(0.3g,白色固体);LC-MS:ESI[M+H]+=346.4。
第四步:将化合物4d(0.3g,0.9mmol)加入到10ml无水甲醇中,随后再加入1ml4mol/L盐酸二氧六环溶液,室温搅拌小时,TLC监测反应完全后,加入二氧六环析出固体,过滤,烘干后得到化合物4e(0.2g,白色固体);LC-MS:ESI[M+H]+=246.3。
第五步:将化合物4e(0.1g,0.3mmol)、INT1(67mg,0.3mmol)、N,N-二异丙基乙胺(160mg,1.2mmol)和碘化钾(5mg,0.03mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入30mL水析出固体,过滤,烘干后得到化合物4(42mg,淡黄色固体);LC-MS:ESI[M+H]+=432.5;1H NMR(400MHz,DMSO)δ11.93(s,1H),8.74(d,J=4.9Hz,1H),8.44(d,J=1.6Hz,1H),8.39(d,J=1.7Hz,1H),7.98(d,J=8.0Hz,1H),7.81(dd,J=8.1,2.1Hz,1H),7.76(s,1H),7.70(s,1H),5.61(t,J=3.2Hz,1H),3.72(s,2H),3.12(d,J=3.1Hz,2H),2.82(d,J=4.8Hz,3H),2.59–2.53(m,2H),2.36(s,2H),1.19(t,J=7.4Hz,3H),1.03(d,J=9.2Hz,6H)。
实施例5:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-氟-N-甲基-1'-,2', 3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物5a(2.0g,9.2mmol)与1,8-二氮杂二环[5.4.0]十一碳-7-烯(4.2g,27.6mmol)加入四氢呋喃30ml,置换氮气,降温至-20℃,搅拌30分钟后滴加溶于30mL四氢呋喃的全氟丁基磺酰氟(8.3g,27.6mmol),-20℃反应30分钟,TLC检测反应完全后,加入饱和氯化铵水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干经过柱层析纯化得到化合物5b(1.1g,无色液体)。
第二步:在30ml二氧六环和3ml水的混合溶剂中加入化合物5b(1.1g,2.1mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(0.1g,0.7mmol)、Pd(dppf)Cl2(51mg,0.07mmol)和磷酸钾(0.3g,1.4mmol),然后置换氮气,在氮气保护下80℃下反应2小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入30ml乙酸乙酯和20ml水萃取三次,合并有机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物5c(180mg,白色固体);LC-MS:ESI[M+H]+=337.3。
第三步:在25ml反应瓶中加入5c(180mg,0.5mmol)、甲胺水溶液(0.2mL,2.7mmol)和无水甲醇(5ml),室温下搅拌反应3小时。LC-MS监测反应完全后,将反应液减压浓缩,用石油醚打浆,过滤烘干得到化合物5d(0.16g,黄色固体);LC-MS:ESI[M+H]+=336.3。
第四步:将化合物5d(0.16g,0.48mmol)加入到5ml无水甲醇中,随后再加入1ml4mol/L盐酸二氧六环溶液,室温搅拌2小时,TLC监测反应完全后,加入二氧六环析出固体,过滤,烘干后得到化合物5e(0.15g,白色固体);LC-MS:ESI[M+H]+=236.2。
第五步:将化合物5e(0.15g,0.5mmol)、INT1(0.11g,0.5mmol)、N,N-二异丙基乙胺(0.32g,2.5mmol)和碘化钾(8mg,0.05mmol)加入到10ml无水乙腈中,80℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入30mL水析出固体,过滤,烘干后得到化合物5(80mg,白色固体);LC-MS:ESI[M+H]+=422.5;1H NMR(400MHz,CDCl3)δ11.28(s,1H),8.66(d,J=2.1Hz,1H),8.54(d,J=1.7Hz, 1H),8.19(d,J=8.2Hz,1H),7.98(d,J=5.0Hz,1H),7.94–7.90(m,1H),7.86(s,1H),7.73(d,J=1.0Hz,1H),6.56–6.47(m,1H),5.38(d,J=48.9Hz,1H),3.93–3.78(m,2H),3.54(ddd,J=17.9,7.7,4.7Hz,1H),3.34–3.22(m,1H),3.20–3.07(m,1H),3.06(dd,J=9.0,5.1Hz,3H),2.84–2.68(m,3H),1.30(t,J=7.4Hz,3H)。
实施例6:(S)-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-氟-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺和实施例7:(R)-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-氟-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
化合物5通过手性拆分得到化合物6和化合物7。拆分方法为:仪器:Waters 150Prep-SFC,柱子型号:Chiralcel AD Column,流动相A:二氧化碳,流动相B:0.1%氨水的异丙醇,梯度:70%流动相B,压力:100bar,流速:100mL/min。
实施例8:3'-乙基-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物8a(2.0g,8.8mmol),加入四氢呋喃30ml,置换氮气,降温至-78℃,滴加二异丙基氨基锂(5.3mL,10.6mmol),搅拌30分钟后滴加溶于30mL四氢呋喃的N-苯基双(三氟甲烷磺酰)亚胺(3.5g,9.7mmol),升至室温反应2小时,TLC检测反应完全后,加入饱和氯化铵水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干经过柱层析纯化得到化合物8b(2.3g,无色液体)。
第二步:在40ml二氧六环和4ml水的混合溶剂中加入化合物8b(2.3g,6.4mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(1.8g,7mmol)、Pd(dppf)Cl2(0.4g,0.6mmol)和碳酸钾(1.7g,12.4mmol),然后置换氮气,在氮气保护下80℃下反应2小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入30ml乙酸乙酯和20ml水萃取三次,合并有 机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物8c(2.1g,黄色固体);LC-MS:ESI[M+H]+=347.4。
第三步:在100ml反应瓶中加入8c(2g,5.7mmol)、甲胺水溶液(1.8mL,24mmol)和无水甲醇(15ml),室温下搅拌反应3小时。LC-MS监测反应完全后,将反应液减压浓缩,用石油醚打浆,过滤烘干得到化合物8d(1.9g,黄色固体);LC-MS:ESI[M+H]+=346.4。
第四步:将化合物8d(1.9g,5.5mmol)加入到10ml无水甲醇中,随后再加入14ml4mol/L盐酸二氧六环溶液,室温搅拌小时,TLC监测反应完全后,加入二氧六环析出固体,过滤,烘干后得到化合物8e(1.8g,淡黄色固体);LC-MS:ESI[M+H]+=246.3。
第五步:将化合物8e(0.3g,0.9mmol)、INT1(0.2g,0.9mmol)、N,N-二异丙基乙胺(0.6mL,3.6mmol)和碘化钾(15mg,0.09mmol)加入到10ml无水乙腈中,80℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入20mL水析出固体,过滤,烘干后得到化合物8(0.28g,淡黄色固体);LC-MS:ESI[M+H]+=432.5;1H NMR(400MHz,CDCl3)δ12.09(s,1H),8.57(d,J=1.6Hz,1H),8.51(d,J=1.8Hz,1H),8.15(d,J=8.1Hz,1H),7.98(q,J=4.7Hz,1H),7.88(s,1H),7.75(dd,J=8.1,2.0Hz,2H),6.03(t,J=3.3Hz,1H),3.86–3.68(m,2H),3.36(dd,J=17.3,3.9Hz,1H),3.14–3.06(m,1H),3.04(d,J=5.1Hz,3H),2.81(d,J=8.1Hz,1H),2.78–2.69(m,2H),2.66–2.55(m,2H),1.56(d,J=7.3Hz,2H),1.31(t,J=7.4Hz,3H),0.76(t,J=7.4Hz,3H)。
实施例9:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3',3'-二氟-N-甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物9a(0.5g,2.1mmol),加入四氢呋喃15ml,置换氮气,降温至-78℃,滴加二异丙基氨基锂(1.25mL,2.5mmol),搅拌30分钟后滴加溶于20mL四氢呋喃的N-苯基双(三氟甲烷磺酰)亚胺(0.8g,2.3mmol),升至室温反应2小时,TLC 检测反应完全后,加入饱和氯化铵水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干经过柱层析纯化得到化合物9b(0.3g,淡黄色液体)。
第二步:在18ml二氧六环和3ml水的混合溶剂中加入化合物9b(0.3g,0.8mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(0.16g,0.9mmol)、Pd(dppf)Cl2(95mg,0.08mmol)和碳酸钾(0.2g,1.6mmol),然后置换氮气,在氮气保护下80℃下反应2小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入30ml乙酸乙酯和200ml水萃取三次,合并有机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物9c(0.31g,淡黄色固体);LC-MS:ESI[M+H]+=355.3。
第三步:在25ml反应瓶中加入9c(0.3g,0.8mmol)、甲胺水溶液(0.24mL,3.2mmol)和无水甲醇(8ml),室温下搅拌反应3小时。LC-MS监测反应完全后,将反应液减压浓缩,用石油醚打浆,过滤烘干得到化合物9d(0.3g,黄色固体);LC-MS:ESI[M+H]+=354.3。
第四步:将化合物9d(0.3g,0.8mmol)加入到10ml无水甲醇中,随后再加入2ml4mol/L盐酸二氧六环溶液,室温搅拌小时,TLC监测反应完全后,加入二氧六环析出固体,过滤,烘干后得到化合物9e(0.3g,黄色固体);LC-MS:ESI[M+H]+=254.3。
第五步:将化合物9e(0.3g,0.9mmol)、INT1(0.2g,0.9mmol)、N,N-二异丙基乙胺(0.6g,4.6mmol)和碘化钾(15mg,0.09mmol)加入到20ml无水乙腈中,80℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入30mL水析出固体,过滤,烘干后得到化合物9(0.2g,黄色固体);LC-MS:ESI[M+H]+=440.4;1H NMR(400MHz,DMSO)δ11.89(s,1H),8.77(t,J=4.8Hz,1H),8.71(s,1H),8.43(d,J=1.6Hz,1H),8.11–7.99(m,2H),7.95(s,2H),7.77(s,1H),7.66(s,1H),6.86(s,1H),3.87(s,2H),3.09(dd,J=20.2,8.3Hz,2H),2.82(d,J=4.8Hz,3H),2.55(dd,J=14.3,6.9Hz,2H),1.19(s,3H)。
实施例10:N-(2,2-二氟乙基)-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取1d(1.5g,4.5mmol),加入20mL MeOH溶解,加入5mL水,加入氢氧化锂(570mg,13.5mmol),室温反应12h,TLC监测反应,反应完全后加入2M HCl调pH至6,加入(3 x 25mL)EA萃取,合并有机相,无水硫酸钠干燥后,减压浓缩除去溶剂,得到产物10a(660mg,淡黄色固体)。
第二步:称取化合物10a(0.2g,0.6mmol),2,2-二氟乙胺(97mg,1.2mmol),N-甲基吗啉(0.24g,2.4mmol),1-羟基苯并三唑(0.16g,1.2mmol)与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(0.23g,1.2mmol)于反应瓶,加入N,N-二甲基甲酰胺5mL,室温反应过夜,TLC监测反应完全后,加水与乙酸乙酯萃取,有机相合并后干燥,旋蒸,过柱纯化后得到化合物10b(0.16g,黄色固体);LC-MS:ESI[M+H]+=382.4。
第三步:将化合物10b(0.16g,0.4mmol)加入到10ml无水甲醇中,随后再加入0.4ml 4mol/L盐酸二氧六环溶液,室温搅拌反应1小时,TLC监测反应完全后,将反应液减压浓缩干得到化合物10c(0.1g,黄色固体);LC-MS:ESI[M+H]+=282.3。
第四步:将化合物10c(0.1g,0.4mmol)、INT1(86mg,0.4mmol)、N,N-二异丙基乙胺(0.2g,1.6mmol)和碘化钾(5mg,0.04mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物10(65mg,白色固体);LC-MS:ESI[M+H]+=468.5;1H NMR(400MHz,CDCl3)δ11.26(s,1H),8.55(dd,J=6.7,1.7Hz,2H),8.25(t,J=6.5Hz,1H),8.14(d,J=8.1Hz,1H),7.87(s,1H),7.78(dd,J=8.2,2.2Hz,1H),7.69(s,1H),6.12-5.78(m,1H),6.03(t,J=3.3Hz,1H),3.93-3.68(m,4H),3.34(d,J=14.7Hz,1H),3.14(d,J=17.2Hz,1H),2.91(s,1H),2.79-2.68(m,3H),2.59(dd,J=11.1,4.1Hz,1H),1.31(t,J=7.4Hz,3H),1.06(d,J=6.9Hz,3H)。
实施例11:N-环丙基-1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物10a(0.55g,1.7mmol),环丙胺(0.2g,3.5mmol),N-甲基吗啉(0.7g,6.9mmol),1-羟基苯并三唑(0.47g,3.5mmol)与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(0.66g,3.5mmol)于反应瓶,加入N,N-二甲基甲酰胺5mL,室温反应过夜,TLC监测反应完全后,加水与乙酸乙酯萃取,有机相合并后干燥,旋蒸,过柱纯化后得到化合物11a(0.23g,白色固体);LC-MS:ESI[M+H]+=358.4。
第二步:将化合物11a(0.23g,0.6mmol)加入到10ml无水甲醇中,随后再加入0.6ml 4mol/L盐酸二氧六环溶液,室温搅拌反应1小时,TLC监测反应完全后,将反应液减压浓缩干得到化合物11b(0.2g,白色固体);LC-MS:ESI[M+H]+=258.3。
第三步:将化合物11b(0.2g,0.6mmol)、INT1(0.13g,0.6mmol)、N,N-二异丙基乙胺(0.3g,2.4mmol)和碘化钾(7mg,0.06mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物11(270mg,淡黄色固体);LC-MS:ESI[M+H]+=444.5;1H NMR(400MHz,CDCl3)δ11.28(s,1H),8.56(d,J=1.7Hz,1H),8.48(d,J=1.6Hz,1H),8.15(dd,J=8.1,0.5Hz,1H),7.99(d,J=3.6Hz,1H),7.86(s,1H),7.75(dd,J=8.2,2.2Hz,1H),7.69(d,J=1.0Hz,1H),6.01(t,J=3.3Hz,1H),3.77(dd,J=34.1,13.8Hz,2H),3.30(d,J=2.2Hz,1H),3.19–3.08(m,1H),2.99–2.85(m,2H),2.78–2.68(m,3H),2.58(dd,J=11.1,4.1Hz,1H),1.30(dd,J=9.8,5.1Hz,3H),1.04(d,J=6.9Hz,3H),0.88(td,J=7.1,5.5Hz,2H),0.69–0.62(m,2H)。
实施例12:1'-((7-乙基-4-氟-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:在0℃下,向MeONa(618.0g,11.4mol,15.0eq)的甲醇(2L)溶液中缓慢加入化合物12a(180g,0.763mol)。将反应混合物在20℃下搅拌1小时,然后在搅拌下用饱和NH4Cl水溶液(2L)淬灭。过滤形成的白色沉淀物,并用水(500mL*3)洗涤滤饼,在真空下干燥。得到白色固体产物12b(150g,84.5%收率)。1HNMR(400M Hz,DMSO-d6)δ(ppm)9.06(d,J=2.4Hz,1H),8.78(d,J=2.4Hz,1H),4.07(s,3H)。
第二步:向化合物12b(150g,0.647mol)在1,4-二恶烷(2.4L)和水(600mL)的混合溶剂中的溶液中加入K2CO3(178.8g,1.29mol,2eq.)、乙烯基三氟硼酸钾(104.0g,0.776mmol,1.2eq.)和Pd(dppf)Cl2(14.2g,19.4mmol,0.03eq)。将混合 物脱气并用N2回填三次,然后在80℃下搅拌8小时。在减压下去除挥发性物质,用乙酸乙酯(1L*3)萃取所得混合物,用无水Na2SO4干燥,合并的有机层,浓缩并通过硅胶柱色谱法(0-10%乙酸乙酯/石油醚)纯化。得到黄色固体产物12c(81.5g,70%收率)。1HNMR(400M Hz,DMSO-d6)δ(ppm)8.96(d,J=2.7Hz,1H),8.57(d,J=2.8Hz,1H),6.82(dd,J=17.8,11.3Hz,1H),6.15(dd,J=17.7,1.0Hz,1H),5.56(dd,J=11.3,1.0Hz,1H),4.05(s,3H)。
第三步:在N2下将Pd/C(10%wt,5.0g)加入12c(50.0g,0.28mol)在甲醇(500mL)的溶液中,将混合物脱气并用氢气反填充三次,然后在氢气气氛下室温搅拌12h。反应完成后,通过硅藻土过滤混合物,用乙酸乙酯(50mL*3)洗涤。将合并的滤液在真空下浓缩,得到深紫色固体12d。(38.8g,92%收率)。1H NMR(400MHz,DMSO-d6)δ7.33(d,J=2.8Hz,1H),6.85(dt,J=2.8,0.7Hz,1H),4.65(br s,2H),3.73(s,3H),2.42(q,J=7.5Hz,2H),1.08(t,J=7.5Hz,3H)。
第四步:向12d(16g,0.105mol)在EtOH(300mL)的溶液中一次性加入2-(乙氧基亚甲基)丙二酸二乙酯(27.3g,0.126mol,25.5mL,1.2eq),在搅拌下将反应混合物回流2小时。TLC显示反应完全。冷却至室温后,将混合物在真空下浓缩,得到深紫色残留物。产物通过硅胶柱色谱法(0-10%乙酸乙酯/石油醚)进一步纯化得化合物12e(32.0g,94%收率,白色固体)。1HNMR(400MHz,DMSO-d6)δ10.65(s,1H),8.28(s,1H),8.05(d,J=2.8Hz,1H),7.66(d,J=2.8Hz,1H),4.15(dd,J=32.3,6.9Hz,4H),3.86(s,3H),2.54(q,J=7.5Hz,2H),1.24(q,J=6.4Hz,6H),1.14(t,J=7.5Hz,3H)。
第五步:将化合物12e(32.0g,0.099mol)加入装有回流冷凝器和机械搅拌器的三颈圆形底烧瓶(1.0L)中,然后加入苯基醚-联苯共晶(CAS:8004-13-5,300mL)。对系统进行脱气并充入N2三次,然后放入预热至240℃的油浴中。将反应混合物在250-260℃下搅拌1小时,然后冷却至室温。TLC显示反应完全。在搅拌下加入1.2L二异丙基醚,并将混合物在室温下搅拌1小时。通过过滤收集形成的灰白色沉淀物,用二异丙基乙醚(100mL*3)洗涤,真空干燥。得到灰白色固体的产物12f(21.3g,77%收率)。LC-MS:ESI[M+H]+=277.1。
第六步:在0-5℃下,向化合物12f(21.3g,0.077mol)在DCM(400mL)的悬浮液中缓慢加入DAST(37.3g,0.23mol,30.5mL,3.0eq)。除去冰水浴,使反应混合物在室温下搅拌8小时,直到形成澄清的橙色溶液。TLC显示只剩下微量的起始物料(DCM/MeOH=20:1,Rf=0.3),并产生一种主要产物(PE/EA=5:1,Rf=0.35)。用饱和NaHCO3水溶液(1.0L)在0-5℃下猝灭反应,直到pH=8,分离有机层,并用DCM (200mL*2)萃取剩余水相。将合并的DCM层用饱和NaHCO3溶液(200mL)洗涤,然后用水(200ml)洗涤,用无水Na2SO4干燥,旋干。通过硅胶柱色谱法(PE/EA=20:1至10:1)纯化得产物12g(18.0g,84%收率,白色针状固体)。1H NMR(400MHz,CDCl3)δ9.15(d,J=8.5Hz,1H),8.02(d,J=1.5Hz,1H),4.48(q,J=7.1Hz,2H),2.79(q,J=7.4Hz,2H),1.45(t,J=7.1Hz,3H),1.33(t,J=7.4Hz,3H)。
第七步:将化合物12g(13.0g,0.047mol)加入无水THF(300mL)中,将反应液冷却至-20℃,在-20℃的N2气氛下加入DIBAL-H(78.0mL,0.117mol,1.5M甲苯溶液,2.5eq.),将反应混合物在-15-0℃之间进一步搅拌3小时。TLC显示反应完全。用3N NaOH水溶液在-15-0℃之间缓慢猝灭反应,并保持内部温度不超过0℃。在25℃下减压除去挥发性物质,用乙酸乙酯(300mL*3)萃取所得物,用水(300mL)、盐水(300ml)洗涤合并的有机相,用无水Na2SO4干燥并蒸发至干。粗产物通过硅胶柱色谱法纯化(纯DCM,然后DCM/丙酮=30:1至10:1)。得到黄色固体的产物12h(8.0g,72%收率)。1H NMR(400MHz,DMSO-d6)δ8.79(d,J=8.8Hz,1H),8.10(d,J=1.2Hz,1H),5.52(s,1H),4.75(s,2H),4.07(s,3H),2.74(q,J=7.9,7.4Hz,2H),1.26(t,J=7.4Hz,3H)。
第八步:用冰盐浴将化合物12h(8.0g,0.034mol)在乙腈(100mL)的悬浮液冷却至-15-0℃,在N2下搅拌缓慢加入TMSI(3.0eq)。之后,移除冰盐浴,使反应混合物缓慢升温至30℃,并在相同温度下搅拌24小时,直到原料完全消耗掉。在减压下除去挥发性物质,向该固体残留物中加入乙酸乙酯(250mL)和1N NaOH水溶液(100mL),并将所得混合物在室温下搅拌1小时,在此期间形成大量白色沉淀。过滤收集白色固体,用水(10mL*3)洗涤,然后用乙酸乙酯(10mL*2)洗涤并真空干燥得化合物12i。收率:5.3g(70%)。1H NMR(400MHz,DMSO-d6)δ12.09(s,1H),8.46(d,J=8.7Hz,1H),7.77(d,J=1.5Hz,1H),5.50(s,1H),4.66(d,J=3.9Hz,2H),2.56(qd,J=7.4,1.1Hz,2H),1.19(t,J=7.5Hz,3H)。
第九步:在0-5℃氮气氛围下,向化合物12i(5.3g,0.024mol)的DMF(100mL)溶液中缓慢加入SOCl2(4.3g,0.036mol,2.6mL,1.5eq),将混合物在25℃下搅拌3h,直到原料完全消耗掉。用冰水浴将反应混合物冷却至0-5℃,并用1N NaOH(70mL)淬灭至pH=9,然后在搅拌下加入水(180mL)。将反应混合物在室温下搅拌1小时,通过过滤收集形成的灰白色沉淀物,用水(10mL*3)洗涤,真空干燥得化合物12j(4.01g,70%收率)。1H NMR(400MHz,DMSO-d6)δ12.25(s,1H),8.55(d,J=8.7Hz,1H),7.79(q,J=1.4Hz,1H),4.95(s,2H),2.57(qd,J=7.4,1.3Hz,2H),1.19(t,J=7.4Hz,3H);13C NMR(101MHz,DMSO-d6)δ161.2,152.2(d,J=266.6Hz),145.8(d,J=3.0Hz),141.67, 140.1(d,J=4.0Hz),135.0(d,J=3.0Hz),123.0(d,J=10.1Hz),119.9(d,J=8.1Hz),39.9(d,J=4.0Hz),23.14,12.25;19F NMR(376MHz,DMSO-d6)δ-125.12。MS(ESI):241.0(M+1)+
第十步:将化合物12j(40mg,0.17mmol)、1f(51mg,0.17mmol)、N,N-二异丙基乙胺(72mg,0.56mmol)和碘化钾(3mg,0.02mmol)加入到10ml无水乙腈中,85℃搅拌反应2小时,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物12(42mg,白色固体);LC-MS:ESI[M+H]+=436.5;1H NMR(400MHz,CDCl3)δ9.58(s,1H),8.58(d,J=8.7Hz,1H),8.49(d,J=1.8Hz,1H),8.14(d,J=8.1Hz,1H),7.96(d,J=5.0Hz,1H),7.82(d,J=1.2Hz,1H),7.74(dd,J=8.2,2.2Hz,1H),6.00(t,J=3.3Hz,1H),3.84(s,2H),3.33(d,J=15.0Hz,1H),3.16(d,J=17.0Hz,1H),3.03(d,J=5.1Hz,3H),2.90(s,1H),2.83–2.67(m,3H),2.58(dd,J=11.1,4.2Hz,1H),1.31(t,J=7.4Hz,3H),1.02(d,J=6.9Hz,3H)。
实施例13:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-甲基-N-(2,2,2-三氟乙基)-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物10a(0.2g,0.6mmol),2,2,2-三氟乙胺(120mg,1.2mmol),N-甲基吗啉(0.24g,2.4mmol),1-羟基苯并三唑(0.16g,1.2mmol)与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(0.23g,1.2mmol)于反应瓶,加入N,N-二甲基甲酰胺5mL,室温反应过夜,TLC监测反应完全后,加水与乙酸乙酯萃取,有机相合并后干燥,旋蒸,过柱纯化后得到化合物13a(0.15g,黄色固体);LC-MS:ESI[M+H]+=400.4。
第二步:将化合物13a(0.16g,0.4mmol)加入到10ml无水甲醇中,随后再加入0.4ml 4mol/L盐酸二氧六环溶液,室温搅拌反应1小时,TLC监测反应完全后,将反应液减压浓缩干得到化合物13b(0.11g,黄色固体);LC-MS:ESI[M+H]+=300.3。
第三步:将化合物13b(0.11g,0.4mmol)、INT1(86mg,0.4mmol)、N,N-二异丙基乙胺(0.2g,1.6mmol)和碘化钾(5mg,0.04mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物13(8mg,白色固体);LC-MS:ESI[M+H]+=486.5;1H NMR(400MHz,CDCl3)δ11.50(s,1H),8.57(d,J=1.7Hz,1H),8.55(d,J=1.7Hz,1H),8.32(t,J=6.7Hz,1H),8.16(d,J=8.1Hz,1H),7.87(s,1H),7.79(dd,J=8.2,2.2Hz,1H),7.70(s,1H),6.04(t,J=3.3 Hz,1H),4.24–4.03(m,2H),3.78(dd,J=33.9,13.8Hz,2H),3.42–3.26(m,1H),3.14(d,J=17.2Hz,1H),2.91(s,1H),2.74(ddd,J=11.1,7.3,5.5Hz,3H),2.59(dd,J=11.1,4.1Hz,1H),1.31(t,J=7.4Hz,3H),1.06(d,J=6.9Hz,3H)。
实施例14:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-2-氟-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物14b(392.5mg,2.0mmol)、14a(514.8mg,2.2mmol)、Cs2CO3(1.3g,4mmol)、Pd(dppf)Cl2(146.3mg,0.2mmol)于反应瓶中,抽换氮气3次,加入11mL dioxane/H2O(10:1)混合溶剂,再置换氮气3次,然后于氮气保护下90℃反应3h。反应结束后,减压浓缩除掉大部分溶剂,然后加水、EA(30mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得白色固体14c(513mg,73%),LC-MS:ESI[M+H]+=351.2。
第二步:称取化合物14c(500mg,1.4mmol)于反应管中,加入5mL甲醇作溶剂,然后加入MeNH2(40%,2mL)水溶液室温搅拌过夜,LC-MS确认反应完成后,真空浓缩除去溶剂,得淡黄色固体化合物14d(489mg,98%),未经任何纯化直接用于下一步,LC-MS:ESI[M+H]+=350.2。
第三步:称取化合物14d(485mg,1.4mmol)于反应管中,加入5mL甲醇作溶剂,然后加入HCl(4M in dioxane,3.5mL)溶液室温搅拌过夜,LC-MS确认反应完成后,真空浓缩干溶剂,然后用乙醚和正己烷(1:1)打浆,得化合物14e(435mg,97%),白色固体,LC-MS:ESI[M+H]+=250.1。
第四步:称取化合物14e(100mg,0.3mmol)、INT1(62.8mg,0.28mmol)、DIEPA(182.3mg,1.4mmol)、KI(4.7mg,0028mmol)于反应管中,加入10mL乙腈80℃反应3h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌2h,真空浓缩掉大部分溶剂,然后用DCM(30mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-8%)和DCM过柱,得淡黄色固体化合物14(87mg,收率71%)。LC-MS:ESI[M+H]+=436.2;1H NMR(400MHz,DMSO)δ11.87(s,1H),8.64(s,1H),8.43(s,1H),8.04(s,1H),7.95(s,1H),7.76(s,1H),7.68(s,1H),6.02(s,1H),3.71(d,J=19.1Hz,2H), 3.48(s,2H),3.14(s,2H),2.80(d,J=4.8Hz,3H),2.56(s,2H),2.34(d,J=16.9Hz,1H),1.19(t,J=7.4Hz,3H),0.85(d,J=6.9Hz,3H)。
实施例15:1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
称取化合物INT2(161.6mg,0.69mmol)、1f(220mg,0.72mmol)、DIEPA(445.1mg,3.4mmol)、KI(11.4mg,0.07mmol)于反应管中,加入30mL乙腈80℃反应3h。将反应冷却至室温,浓缩溶剂,并用DCM(50mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-8%)和DCM过柱,得淡黄色固体化合物15(245mg,收率83%)。LC-MS:ESI[M+H]+=430.2;1H NMR(400MHz,DMSO)δ11.91(s,1H),8.71(d,J=4.9Hz,1H),8.64(s,1H),8.41(s,1H),8.01–7.93(m,2H),7.65(s,1H),7.43(s,1H),6.20(s,1H),3.76(d,J=13.8Hz,1H),3.65(d,J=13.4Hz,1H),3.14(dt,J=11.6,5.8Hz,1H),3.07–2.93(m,2H),2.82(d,J=4.8Hz,3H),2.64–2.53(m,2H),2.20–2.10(m,1H),1.02–0.93(m,5H),0.83(q,J=6.0Hz,2H)。
实施例16:5-(5-(((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-5-氮杂螺[2.5]辛-7-en-8-基)-N-甲基吡啶酰胺
第一步:称取化合物16a(430mg,2.0mmol)、16b(437.4mg,2.1mmol)、Cs2CO3(1.3g,4.0mmol)、Pd(dppf)Cl2(146.3mg,0.2mmol)称取于反应瓶中,抽换氮气3次,加入dioxane/H2O(10:1),再置换氮气3次,然后于氮气保护下90℃反应3h。反应结束后,真空浓缩除掉大部分溶剂,然后加水用EA(30mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用柱层析纯化得白色固体16c(261.1mg,76%),LC-MS:ESI[M+H]+=344.2。
第三步:称取化合物16c(255mg,0.74mmol)于反应管中,加入3mL甲醇作溶剂,然后加入HCl(4M in dioxane,1.1mL)溶液室温搅拌过夜,LC-MS确认反应完成后,真空浓缩干溶剂,然后用乙醚和正己烷(1:1)打浆,得化合物16d(230mg,98%),白色固体,LC-MS:ESI[M+H]+=244.1。
第四步:称取化合物16d(100mg,0.32mmol)、INT1(67.1mg,0.3mmol)、DIEPA (194.6mg,1.5mmol)、KI(5.0mg,0.03mmol)于反应管中,加入8mL乙腈80℃反应3h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌2h,真空浓缩掉大部分溶剂,然后用DCM(20mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得淡黄色固体化合物16(65mg,收率50%)。LC-MS:ESI[M+H]+=430.2;1H NMR(400MHz,DMSO)δ11.88(s,1H),8.75(q,J=4.6Hz,1H),8.42(d,J=1.8Hz,1H),8.33(d,J=1.5Hz,1H),7.96(d,J=8.0Hz,1H),7.76(s,1H),7.70(dd,J=8.0,2.2Hz,1H),7.67(d,J=1.2Hz,1H),5.66(t,J=3.3Hz,1H),3.74(s,2H),3.24(d,J=3.3Hz,2H),2.81(d,J=4.9Hz,3H),2.58–2.52(m,2H),2.50(d,J=1.3Hz,2H),1.20–1.14(m,3H),0.55(t,J=5.5Hz,2H),0.45(t,J=5.4Hz,2H)。
实施例17:1'-((7-氯-8-甲基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:将化合物17a(50g,0.23mol)、异丙烯基硼酸频哪醇酯(77.6g,0.46mol)、碳酸钾(150.4g,0.46mol)、Pd(dppf)Cl2(8.4g,0.012mmol)称取于反应瓶中,抽换氮气3-5次,加入550mL dioxane/H2O(10:1),再置换氮气3-5次,然后于氮气保护下110℃反应5h。反应结束后,将反应冷却至室温,然后垫硅藻土抽滤,滤饼用EA(100mL×3)洗涤,浓缩母液,然后加入EA(200mL×5)和H2O萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得黄色油状物17b(44.5g,87%),LC-MS:ESI[M+H]+=223.1。
第二步:称取化合物17b(44.5g,0.20mol)于反应瓶中,加入400mL冰乙酸,缓慢加入铁粉(35.4g,0.60mol),加完后于70℃反应4h。反应结束后将反应冷却至室温,抽滤除去多余的铁粉,旋干母液,然后加入EA(150mL×4)和饱和NaHCO3水溶液萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得淡黄色固体化合物17c(32.3g,84%),LC-MS:ESI[M+H]+=193.1。
第三步:称取化合物17c(10g,52.0mmol)和TEA(15.8g,156.1mmol)于反应瓶中,加入70mL甲苯溶解,于0℃滴加三光气(7.7g,26.0mmol)的甲苯溶液(30mL),加完后于60℃搅拌反应5h。反应完后加入少量甲醇淬灭反应,然后真空浓缩掉溶剂,用乙醚打浆除去部分杂质,固体残余物柱层析纯化得白色固体17d(3.2g,28%),LC-MS: ESI[M+H]+=219.1。
第四步:称取化合物17d(3.2g,14.7mmol)和NCS(3.1g,23.5mmol)于反应瓶中,加入35mL冰乙酸溶解,氮气保护下加入二氯乙酸(0.38g,2.9mmol),加完后于90℃过夜搅拌反应。反应结束后真空浓缩除去大部分溶剂,用饱和NaHCO3水溶液洗涤,DCM萃取3-5次,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得淡黄色固体17e(3.1g,84%),LC-MS:ESI[M+H]+=253.0。
第五步:称取化合物17e(3.1g,12.3mmol)于反应瓶中,加入30mL THF于-20℃搅拌,氮气保护下缓慢滴加DIBAL-H(1.5M in toluene,65.4mL),滴完后恢复至室温搅拌0.5h,于0℃滴加饱和酒石酸钾钠水溶液淬灭反应,室温搅拌过夜,用DCM和MeOH(3:1)的混合溶液萃取5次,合并有机相并用无水Na2SO4干燥,过滤旋干,得淡黄色固体粗产物17f(810mg,29%),LC-MS:ESI[M+H]+=225.0。
第六步:称取化合物17f(810mg,3.6mmol)和DMF(26.4mg,0.36mmol)于反应瓶中,加入DCM溶解,于0℃缓慢滴加SOCl2(2.1g,21.6mmol),滴加完毕后缓慢升温至室温搅拌过夜反应。反应结束后真空浓缩掉溶剂,柱层析纯化得淡黄色固体17g(172mg,20%),LC-MS:ESI[M+H]+=243.0。
第七步:称取化合物17g(40mg,0.16mmol)、52f(55.1mg,0.18mmol)、DIEPA(106.3mg,0.82mmol)、KI(2.7mg,0.016mmol)于反应管中,加入5mL乙腈80℃反应3h。将反应冷却至室温,浓缩溶剂,并用DCM(20mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0~8%)和DCM过柱,得淡黄色固体化合物17(35mg,收率49%)。LC-MS:ESI[M+H]+=438.2;1H NMR(400MHz,CDCl3)δ12.40(s,1H),8.59(d,J=1.6Hz,1H),8.43(d,J=1.7Hz,1H),8.08(d,J=8.1Hz,1H),7.91(dd,J=10.1,5.0Hz,1H),7.79(d,J=1.4Hz,1H),7.68(dd,J=8.2,2.2Hz,1H),5.93(t,J=3.2Hz,1H),3.29–3.21(m,1H),3.06(d,J=17.1Hz,1H),2.97(d,J=5.1Hz,3H),2.89(s,1H),2.82(s,2H),2.72(s,3H),2.69–2.63(m,1H),2.51(dd,J=11.1,4.0Hz,1H),0.98(d,J=6.9Hz,3H)。
实施例18:1'-((7-氯-8-甲基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-氟-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
将化合物17g(40.0mg,0.16mmol)、5e(55.8mg,0.18mmol)、DIEPA(106.3mg, 0.82mmol)、KI(2.7mg,0.016mmol)称取于反应管中,加入5mL乙腈80℃反应3h。将反应冷却至室温,浓缩溶剂,并用DCM(20mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,柱层析纯化得淡黄色固体化合物18(20mg,收率28%)。LC-MS:ESI[M+H]+=442.1;1H NMR(400MHz,DMSO)δ12.32(s,1H),8.77(d,J=2.0Hz,1H),8.74(d,J=4.9Hz,1H),8.54(d,J=1.8Hz,1H),8.10(dd,J=8.2,2.1Hz,1H),8.02(d,J=8.2Hz,1H),7.72(d,J=1.7Hz,1H),6.80–6.73(m,1H),5.67(d,J=48.6Hz,1H),3.87–3.77(m,2H),3.45(dd,J=18.2,12.6Hz,2H),3.18(d,J=28.8Hz,1H),3.02(d,J=30.5Hz,1H),2.82(d,J=4.9Hz,3H),2.65(s,3H)。
实施例19:1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3',3'-三甲基-1',2',3”,6'-四氢-[3,4'-联吡啶]-6-甲酰胺
将化合物INT2(0.1g,0.3mmol)、4e(70mg,0.3mmol)、N,N-二异丙基乙胺(160mg,1.2mmol)和碘化钾(5mg,0.03mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入30mL水析出固体,过滤,烘干后得到化合物19(46mg,淡黄色固体);LC-MS:ESI[M+H]+=444.5;1H NMR(400MHz,DMSO)δ11.96(s,1H),8.74(d,J=4.8Hz,1H),8.41(dd,J=11.5,1.4Hz,2H),7.97(s,1H),7.81(dd,J=8.0,2.0Hz,1H),7.69(s,1H),7.42(s,1H),5.61(s,1H),3.70(s,2H),3.12(d,J=2.9Hz,2H),2.82(d,J=4.8Hz,3H),2.36(s,2H),2.20–2.08(m,1H),1.02(s,6H),1.00–0.92(m,2H),0.82(d,J=3.4Hz,2H)。
实施例20:N-环丙基-1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3'-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:将化合物INT2(200mg,0.6mmol)、11b(140mg,0.6mmol)、N,N-二异丙基乙胺(310mg,2.4mmol)和碘化钾(10mg,0.06mmol)加入到20ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物20(170mg,白色固体);LC-MS:ESI[M+H]+=404.5;1H NMR(400MHz,CDCl3)δ11.61(s,1H),8.54(d,J=1.7Hz,1H),8.48(d,J=1.7Hz,1H),8.15(d,J=8.0Hz,1H),8.00(d,J=3.6Hz,1H),7.74(dd,J=8.2,2.2Hz,1H),7.72(s,1H),7.51(s,1H),6.00(t, J=3.3Hz,1H),3.75(dd,J=33.5,13.8Hz,2H),3.29(s,1H),3.12(d,J=17.1Hz,1H),2.93(ddd,J=17.6,10.6,6.6Hz,2H),2.73(dd,J=11.1,4.3Hz,1H),2.57(dd,J=11.1,4.1Hz,1H),2.37–2.28(m,1H),1.12–1.06(m,2H),1.03(d,J=6.9Hz,3H),0.92–0.79(m,4H),0.70–0.61(m,2H)。
实施例21:(S)-N-环丙基-1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3'-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺和实施例22:(R)-N-环丙基-1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3'-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
化合物20通过手性拆分得到化合物21和化合物22。拆分方法为:仪器-Waters 150Prep-SFC,柱子型号:Chiralcel AD Column,流动相A:二氧化碳,流动相B:0.1%氨水的异丙醇,梯度:70%流动相B,压力:100bar,流速:100mL/min。
化合物21通过X-射线衍射仪测定绝对构型,所使用仪器为Bruker D8VENTURE双微焦斑单晶X-射线衍射仪,环境温度193K,增强型Cu光源,波长通过单晶结构解析,得出如下结论:该样品分子的单晶属于单斜晶系,C2空间群;晶体中特征元素为2次轴;一个晶胞包含4个化合物21分子;晶胞内每个化合物21分子包括1个手性碳原子(黑色标识),手性碳原子的绝对构型为C16(S)。
实施例23:1-(2-乙基-3-氧代-3,4-二氢喹啉-6-基)甲基)-N,3-二甲基-1,2,3,6-四氢-[3,4-联吡啶]-6-甲酰胺
第一步:在40ml DMF中加入化合物23a(10.5g,47.7mmol)、2-氨基丁酸甲酯(7.3g,47.7mmol)、DIEA(18.6g,143.1mmol),室温下反应24h。LC-MS检测反应完全后,加入120ml乙酸乙酯和120ml水,在分液漏斗中分层,水相用乙酸乙酯萃取两次,合并有机相后再分别水洗、饱和食盐水洗、无水硫酸钠干燥、过滤、旋干,得到化合物23b(14.5g,橙红色固体)。
第二步:在220ml甲醇中加入化合物23b(14.5g,45.7mmol)、氯化铵(19.6g,365.7mmol)、水(14.5ml),搅拌下降温0℃,加入锌粉(23.7g,365.7mmol),室温搅拌2h,TLC监测反应完全后,过滤,用甲醇:二氯甲烷=2:8洗涤滤饼,合并滤液旋干,再加入100ml乙酸乙酯、100ml水,在分液漏斗中分层,有机相再分别饱和食盐水洗、无水硫酸钠干燥、过滤、旋干。再加入乙酸乙酯14.5ml,甲醇14.5ml,搅拌下加入4M盐酸/1,4-二氧六环溶液0.6ml,室温搅拌1h,LC-MS检测反应完全后,旋干,得到化合物23c(11.6g,灰色固体)。
第三步:将化合物23c(5.0g,19.5mmol)加入到100ml无水甲醇中,随后再滴加16%氢氧化钠溶液10.4ml,滴加30%双氧水31.2ml,加毕后升温至60℃反应16h,LC-MS检测反应完全后,滴加饱和硫代硫酸钠20ml,在加入水100ml,二氯甲烷50ml,搅拌过滤,旋干,得到化合物23d(3.4g,黄色固体)。
第四步:将化合物23d(3.0g,11.8mmol)、三丁烯基甲醇(3.8g,11.8mmol)、Xphos-G2-Pd(0.47g,0.59mmol)加入到30ml二氧六环中,氮气置换三次,升温80℃搅拌8h,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物23e(1.8g,黄色固体)。
第五步:称取23e(0.5g,2.4mmol),加入HBr/H2O 10ml,升温至80℃反应6h,LC-MS检测反应完全后,冷却至室温,滴加至30ml冰水中析出黄色固体,过滤,滤饼用水洗涤,滤饼旋干,得到化合物23f(460mg,黄色固体)。
第六步:向4ml乙腈中加入23f(0.2g,0.74mmol)、1f(271mg,0.89mmol)、DIEA(483mg,3.74mmol)、KI(25mg,0.15mmol),升温80℃反应2h,LC-MS检测反应完全后,降至室温,旋干,所得粗品经过柱层析纯化得到化合物23(25mg,白色固体);LC-MS:ESI[M+H]+=418.5;1H NMR(400MHz,DMSO)δ12.29(s,1H),8.68(dd,J=27.1,3.0Hz,2H),7.97(dd,J=4.1,1.4Hz,2H),7.70(d,J=8.2Hz,1H),7.35-7.22(m,2H),6.21(s,1H),3.79-3.58(m,2H),3.31-3.21(m,1H),2.99(s,2H),2.86-2.75(m,5H),2.67-2.53(m,2H),1.22(t,J=7.4Hz,3H),1.00(d,J=6.8Hz,3H)。
实施例24:1,3-二氢-1,6-萘啶-7-甲基-N,3-二甲基-1,2,3,6-四氢联吡啶-6-甲酰胺
第一步:在100ml二氯甲烷中加入化合物24a(3.85g,24.6mmol)、DIEA(16.0g,123.3mmol)、DMAP(0.6g,4.81mmol)降温至0℃,滴加正丁酰氯(8.10g,76.3mmol),加毕后回温至室温下反应24h。LC-MS检测反应完全后,加入100ml乙酸乙酯和100ml水,在分液漏斗中分层,水相用乙酸乙酯萃取两次,合并有机相旋干,再加入二氯甲烷40ml析出固体,过滤,滤饼旋干得到化合物24b(0.8g,粉红色固体)。
第二步:将化合物24b(0.2g,0.96mmol)、乙烯基三氟硼酸钾(141.6mg,1.04mmol)、Pd(dppf)Cl2(17.4mg,0.024mmol)、碳酸钾(199mg,1.44mmol)加入到4ml二氧六环/水=9:1中,氮气置换三次,升温90℃搅拌4h,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物24c(0.1g,黄色固体)。
第三步:将化合物24c(0.1g,0.5mmol)加入到10ml二氧六环,2.5ml水中,随后再加入高碘酸钠(425g,2.0mmol)、锇酸钾(75mg,0.15mmol),室温搅拌2h,LC-MS检测反应完全后,加入乙酸乙酯50ml和50ml水,在分液漏斗中分层,水相用乙酸乙酯萃取两次,合并有机相用饱和亚硫酸钠洗涤,分层有机层无水硫酸钠干燥,过滤,滤饼旋干得到化合物24d(80mg,黄色固体)。
第四步:向10ml二氯甲烷中加入1f(131.6mg,0.44mmol)、三乙胺(88mg,0.88mmol),搅拌溶清;向10ml二氯甲烷中加入74d(80mg,0.40mmol),搅拌溶清。将1f的DCM溶液加入到24d的DCM中,室温搅拌1h,加入三乙酰氧基硼氢化钠(501mg,2.4mmol),室温搅拌2h,LC-MS检测反应完全后,加入20ml饱和氯化铵,搅拌分层,有机层依次用饱和碳酸氢钠,饱和氯化钠洗涤,无水硫酸钠干燥,过滤,旋干制备得到化合物24(20mg,黄色固体);LC-MS:ESI[M+H]+=418.5;1H NMR(400MHz,CDCl3)δ10.74(s,1H),8.67(s,1H),8.37(d,J=2.1Hz,1H),8.11(d,J=8.1Hz,1H),7.89(d,J=5.2Hz,1H),7.74-7.56(m,2H),7.50(s,1H),5.81(s,1H),4.42(q,J=13.1Hz,2H),3.95(q,J=16.9Hz,2H),3.69(d,J=6.9Hz,1H),2.97(d,J=5.0Hz,5H),2.57(q,J=7.4Hz,4H),1.19(d,J=3.6Hz,4H),0.94(d,J=6.8Hz,3H)。
实施例25:1-(6-乙基-7-氧代-7,8-二氢-1,8-萘啶-2-基)甲基)-N,3-二甲基-1,2,3,6-四氢联吡啶-6-甲酰胺
第一步:在200ml二氯甲烷中加入化合物25a(10.0g,53.0mmol)、降温至-78℃,滴加DIBAL-H(107.0ml,106.0mmol),加毕后取样,LC-MS检测反应完全后,加入6M盐酸水溶液300ml,搅拌,分层,水层用20%氢氧化钠调节PH=8-9,再加入乙酸乙酯萃取两次,合并有机相旋干,旋干得到化合物25b(7.6g,黄色固体)。
第二步:在76ml二氯甲烷中加入化合物25b(7.6g,48.0mmol),降温至0℃,缓慢滴加戴斯-马丁试剂(24.5g,57.7mmol),加毕后恢复室温反应,搅拌1h,LC-MS检测反应完全后,加入饱和硫代硫酸钠溶液淬灭,乙酸乙酯萃取,旋干,得到化合物25c(5.0g,油状物)。
第三步:称取25c(5.0g,32.0mmol)、叔丁醇钾(10.0g,96.1mmol)、丁酸乙酯100ml,升温至120℃搅拌1h,LC-MS检测反应完全后,降温至室温,加入200ml水,分层,水层用乙酸乙酯200ml萃取三次,合并有机层加入无水硫酸钠干燥,过滤,旋干,所得粗品经过柱层析纯化得到化合物25d(1.5g,黄色固体)。
第四步:将化合物25d(1.5g,7.2mmol)、乙烯基三氟硼酸钾(1.93g,1.44mmol)、Pd(dppf)Cl2(523.2mg,0.72mmol)、磷酸钾(4.58g,21.6mmol)加入到15ml二氧六环/水=9:1中,氮气置换三次,升温90℃搅拌4h,LC-MS监测反应完全后,加入20ml水,分层,水层用乙酸乙酯30ml萃取三次,合并有机层加入无水硫酸钠干燥,过滤,旋干,所得粗品经过柱层析纯化得到化合物25e(1.2g,黄色固体)。
第五步:将化合物25e(1.2g,6.0mmol)加入到60ml二氧六环,15ml水中,随后再加入高碘酸钠(2.56g,24.0mmol)、锇酸钾(120mg,0.6mmol),室温搅拌2h,LC-MS检测反应完全后,加入乙酸乙酯200ml和200ml水,在分液漏斗中分层,水相用乙酸乙酯萃取两次,合并有机相用饱和亚硫酸钠洗涤,分层有机层无水硫酸钠干燥,过滤,所得粗品经过柱层析纯化得到化合物25f(770mg,黄色固体)。
第六步:向10ml二氯甲烷中加入1f(371mg,1.08mmol)、三乙胺(400mg,3.96mmol),搅拌溶清;向10ml二氯甲烷中加入25f(400mg,0.99mmol),搅拌溶清。将1f的DCM溶液加入到25f的DCM溶液中,室温搅拌1h,加入三乙酰氧基硼氢化钠(1.26g,5.94mmol),室温搅拌2h,LC-MS检测反应完全后,加入20ml饱和氯化铵,搅拌分层,有机层依次用饱和碳酸氢钠,饱和氯化钠洗涤,无水硫酸钠干燥,过滤,旋干柱层析纯化得到化合物25(70mg,黄色固体);LC-MS:ESI[M+H]+=418.5;1H NMR(400MHz,DMSO-d6)δ12.06(s,1H),8.72(q,J=4.8Hz,1H),8.65(dd,J=2.2,1.0Hz,1H),8.16(s,1H),8.05(d,J=7.9Hz,1H),8.01-7.94(m,2H),7.73(d,J=1.2Hz,1H),7.37(d,J=7.9Hz,1H),6.20(t,J=3.5Hz,1H),3.86-3.65(m,3H),3.31(dd,J=17.8,3.9Hz,3H),3.08(dt,J=17.4,2.8 Hz,1H),3.00(s,1H),2.82(d,J=4.8Hz,3H),2.67(dd,J=11.2,4.3Hz,1H),2.57(dd,J=11.2,3.9Hz,1H),1.17(t,J=7.4Hz,3H),0.99(d,J=6.8Hz,3H)。
实施例26:1-(7-环丙基-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3-氟-N-甲基-1,2,3,6-四氢-[3,4-联吡啶]-6-甲酰胺
第一步:向2ml乙腈中加入INT2(100mg,0.42mmol)、5e(156mg,0.50mmol)、DIEA(271mg,2.1mmol)、KI(14mg,0.084mmol),升温至80℃反应2h,LC-MS检测反应完全后,冷却至室温,加入饱和碳酸氢钠溶液4ml,加入20ml乙酸乙酯萃取3次,有机层依次用饱和食盐水洗涤,无水硫酸钠干燥,过滤,旋干,所得粗品经过柱层析纯化得到化合物26(30mg,黄色固体);LC-MS:ESI[M+H]+=434.5;1H NMR(400MHz,DMSO-d6)δ12.16(s,1H),8.82-8.72(m,2H),8.53(d,J=1.9Hz,1H),8.13(dd,J=8.2,2.3Hz,1H),8.06(d,J=8.2Hz,1H),7.80(s,1H),7.47(s,1H),6.79(t,J=2.1Hz,1H),3.80(s,3H),2.83(d,J=4.8Hz,3H),2.19(tt,J=8.4,5.3Hz,1H),1.04-0.94(m,2H),0.86(dt,J=6.6,3.3Hz,2H)。
实施例27:1-(7-乙基-4-氟-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3-氟-N-甲基-1,2,3,6-四氢-[3,4-联吡啶]-6-甲酰胺
第一步:称取化合物27a(50g,314mmol),N-溴代丁二酰亚胺(67g,377mmol)于反应瓶,加入硫酸300mL,升温至80℃反应过夜。TLC检测反应完全后,降至室温,将反应液缓慢加入冰水中稀释,用乙酸乙酯萃取三次,合并有机相后再分别水洗、饱和碳酸氢钠水溶液洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物27b(65g,淡黄色固体);LC-MS:ESI[M+H]+=238.9。
第二步:在500ml反应瓶中加入化合物27b(43g,181mmol),2-氨基丁酸甲酯(21g,181mmol),N,N-二异丙基乙胺(70g,543mmol)和N,N-二甲基甲酰胺(100ml),室温下搅拌过夜。TLC监测反应完全后,将反应液减压浓缩,用乙酸乙酯与水萃取三次,合 并有机相后用无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物27c(37g,橙红色固体);LC-MS:ESI[M+H]+=336.1。
第三步:将化合物27c(26g,78mmol)加入到200ml无水甲醇与5ml水中,随后再加入氯化铵(35g,621mmol),降温至0℃,缓慢加入锌粉(43g,621mmol)升至室温反应1小时,TLC监测反应完全后,过滤,滤液减压浓缩后加入4mol/L盐酸的二氧六环溶液30ml,室温反应1小时,TLC监测反应完全后加入石油醚析出固体,过滤烘干后得到化合物27d(16g,灰白色固体);LC-MS:ESI[M+H]+=274.1。
第四步:将化合物27d(16g,57mmol)和2,3-二氯-5,6-二氰基苯醌(16g,69mmol)加入到500ml二氯甲烷中,室温反应过夜,TLC监测反应完全后,将反应液减压浓缩,加入饱和碳酸氢钠水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物27e(7.9g,棕色固体);LC-MS:ESI[M+H]+=272.1。
第五步:称取化合物27e(0.5g,1.8mmol),三丁基锡甲醇(0.65g,2.0mmol)和Xphos-Pd-G2(73mg,0.09mmol),加入15ml二氧六环,置换氮气,升温至80℃反应过夜,TLC监测反应完全后,加水与乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物27f(0.4g,淡黄色固体);LC-MS:ESI[M+H]+=223.2。
第六步:将化合物27f(0.4g,0.8mmol)加入到10ml氢溴酸水溶液中,升温至80℃反应3小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液淬灭,二氯甲烷萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物27g(0.24g,淡黄色固体);LC-MS:ESI[M+H]+=286.1。
第七步:向2ml乙腈中加入27g(100mg,0.41mmol)、5e(153mg,0.49mmol)、DIEA(268mg,2.05mmol)、KI(14mg,0.082mmol),升温至80℃反应2h,LC-MS检测反应完全后,冷却至室温,加入饱和碳酸氢钠溶液4ml,加入20ml乙酸乙酯萃取3次,有机层依次用饱和食盐水洗涤,无水硫酸钠干燥,过滤,旋干,所得粗品经过柱层析纯化得到化合物27(52mg,白色固体)。LC-MS:ESI[M+H]+=440.5;1H NMR(400MHz,DMSO-d6)δ12.14(s,1H),8.80-8.68(m,2H),8.48(d,J=8.5Hz,1H),8.09(dd,J=8.1,2.3Hz,1H),8.01(d,J=8.2Hz,1H),7.80(s,1H),6.78-6.72(m,1H),5.67(d,J=48.7Hz,1H),3.87(s,2H),3.53-3.40(m,1H),3.20(t,J=14.6Hz,1H),3.12-2.98(m,1H),2.80-2.64(m,1H),2.63-2.53(m,2H),1.20(t,J=7.4Hz,3H)。
实施例28:1-(3-乙基-2-氧代-1,2-二氢-1,6-萘啶-7-基)甲基)-3-氟-N-甲基-1,2,3, 6-四氢联吡啶-6-甲酰胺
向10ml二氯甲烷中加入5e(167mg,0.54mmol)、三乙胺(198mg,1.96mmol),搅拌溶清;向10ml二氯甲烷中加入24d(100mg,0.49mmol),搅拌溶清,将24d的DCM溶液加入到5e的DCM中,室温搅拌1h,加入三乙酰氧基硼氢化钠(623mg,2.94mmol),室温搅拌2h,LC-MS检测反应完全后,加入20ml饱和氯化铵,搅拌分层,有机层依次用饱和碳酸氢钠,饱和氯化钠洗涤,无水硫酸钠干燥,过滤,旋干柱层析纯化得到化合物28(43mg,白色固体);LC-MS:ESI[M+H]+=422.5;1H NMR(400MHz,DMSO-d6)δ11.96(s,1H),8.85-8.56(m,3H),8.19-7.94(m,2H),7.82(d,J=1.6Hz,1H),7.35(s,1H),6.79(dt,J=4.6,2.1Hz,1H),5.68(d,J=48.6Hz,1H),3.83(s,2H),3.56-3.42(m,1H),3.21(d,J=13.9Hz,1H),3.15-2.97(m,3H),2.83(d,J=4.8Hz,3H),2.81-2.64(m,1H),1.18(s,3H)。
实施例29:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-甲基-N-(1-甲基-1H-吡唑-4-基)-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物10a(150mg,0.47mmol),化合物29a(80mg,0.47mmol),N-甲基吗啉(190mg,1.88mmol),1-羟基苯并三唑(127mg,0.94mmol)与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(180mg,0.94mmol)于反应瓶,加入N,N-二甲基甲酰胺5mL,室温反应过夜,TLC监测反应完全后,加水与乙酸乙酯萃取,有机相合并后干燥,旋蒸,过柱纯化后得到化合物29b(130mg,淡黄色固体);LC-MS:ESI[M+H]+=398.5。
第二步:将化合物29b(130mg,0.33mmol)加入到10ml无水甲醇中,随后再加入0.4ml 4mol/L盐酸二氧六环溶液,室温搅拌反应1小时,TLC监测反应完全后,将反应液减压浓缩干得到化合物29c(130mg,淡黄色固体);LC-MS:ESI[M+H]+=298.4。
第三步:将化合物29c(130mg,0.3mmol)、INT1(67mg,0.3mmol)、N,N-二异丙基乙胺(155mg,1.2mmol)和碘化钾(5mg,0.03mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物29(90mg,白色固体);LC-MS:ESI[M+H]+=484.6;1H NMR(400MHz,CDCl3)δ11.49(s,1H),9.75(s,1H),8.57(s,2H),8.20(d,J=8.1Hz,1H),8.09(s,1H),7.87(s,1H),7.81(dd,J=8.2,2.1Hz,1H),7.71(s,1H),7.58(s,1H),6.05(t,J=3.2Hz,1H),3.92(s,3H), 3.78(dd,J=33.4,13.9Hz,2H),3.35(d,J=15.1Hz,1H),3.15(d,J=17.2Hz,1H),2.92(s,1H),2.80–2.69(m,3H),2.60(dd,J=11.1,3.9Hz,1H),1.31(t,J=7.4Hz,3H),1.07(d,J=6.9Hz,3H)。
实施例30:1'-((2-环丙基-5-氟-3-氧代-3,4-二氢喹喔啉-6-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取30a的盐酸盐(3.0g,18.1mmol)和DIEA(9.4g,72.5mmol)于反应瓶中,加入30mL DMF溶解,室温搅拌状态下加入27b(4.5g,19.0mmol),氮气保护下室温搅拌5h,反应结束后加入90mL纯水,用EA(150mL×2)萃取,合并有机相并用饱和食盐水洗涤,分液,有机相真空浓缩干,用PE和DCM(0-20%)过柱,得黄色油状液体30b(4.4g,70%),LC-MS:ESI[M+H]+=347.0。
第二步:将30b(4.3g,12.4mmol)溶解于80mL冰乙酸中,室温搅拌状态下向体系中缓慢加入还原Fe粉,加完后于70℃搅拌1h,趁热过滤,用DCM和MeOH混合溶剂洗涤滤饼,滤液真空浓缩干,用PE和EA(0-25%)过柱纯化,得灰白色固体30c(3.4g,96%),LC-MS:ESI[M+H]+=285.0。
第三步:将30c(3.0g,10.5mmol)称取于反应瓶中,加入50mL DCM搅拌,然后缓慢加入DDQ(3.6g,15.8mmol)粉,加完后室温搅拌过夜。反应结束后向体系加入饱和NaHCO3水溶液,分液,水相再用DCM和MeOH(5:1)混合溶剂(30mL×2)萃取2次,合并有机相并用无水Na2SO4干燥,过滤后浓缩干,用DCM和MeOH(0-3%)过柱纯化,得灰白色固体30d(2.6g,87%),LC-MS:ESI[M+H]+=283.0。
第四步:称取30d(1.5g,5.3mmol)、(三丁基锡)甲醇(3.4g,10.6mmol)和XPhos-Pd-G2(416.4mg,0.5mmol)于反应瓶中,加入30mL dioxane置换氮气3-5次,然后在氮气保护下于90℃搅拌4h,反应结束后真空浓缩掉溶剂,用DCM和MeOH(0-5%)过柱纯化,得白色固体30e(946.0mg,76%),LC-MS:ESI[M+H]+=235.1。
第五步:称取30e(400mg,1.7mmol)和DMF(25.0mg,0.34mmol)于反应瓶中,加入40mL甲苯溶解,于0℃缓慢滴加SOCl2(284.5mg,2.4mmol),滴加完毕后缓慢升温至室温搅拌过夜反应。反应结束后真空浓缩掉溶剂,用DCM和MeOH(0-7%)过柱 纯化,得淡黄色固体30f(297.0mg,69%),LC-MS:ESI[M+H]+=253.0。
第六步:称取化合物30f(50mg,0.20mmol)、化合物11b(71.9mg,0.22mmol)、DIEPA(127.9mg,1.0mmol)、KI(6.6mg,0.04mmol)于反应管中,加入5mL乙腈85℃反应3h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌0.5h,然后用DCM(50mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-6%)和DCM过柱,得淡黄色固体30(53.0mg,57%)。LC-MS:ESI[M+H]+=474.2;1H NMR(400MHz,DMSO)δ12.20(s,1H),8.66(d,J=4.9Hz,1H),8.59(s,1H),8.03–7.89(m,2H),7.43(d,J=8.3Hz,1H),7.29(t,J=7.7Hz,1H),6.16(s,1H),3.74(s,2H),3.24(d,J=14.8Hz,1H),3.03(d,J=17.3Hz,1H),2.99–2.85(m,2H),2.75–2.61(m,2H),2.58–2.53(m,1H),1.09(t,J=7.1Hz,4H),0.93(d,J=6.8Hz,3H),0.74–0.62(m,4H)。
实施例31:N-环丙基-1'-((2-环丙基-5-氟-3-氧代-3,4-二氢喹喔啉-6-基)甲基)-3'-氟-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
N-环丙基-1'-((2-环丙基-5-氟-3-氧代-3,4-二氢喹喔啉-6-基)甲基)-3'-氟-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺的制备参考实施例5。LC-MS:ESI[M+H]+=478.2;1H NMR(400MHz,DMSO)δ8.78–8.66(m,2H),8.13–8.05(m,1H),8.00(d,J=8.2Hz,1H),7.44(d,J=8.3Hz,1H),7.29(t,J=7.7Hz,1H),6.74(s,1H),5.65(d,J=48.8Hz,1H),3.81(s,2H),3.22–3.11(m,2H),3.06–2.96(m,1H),2.90(td,J=11.4,4.5Hz,1H),2.76–2.62(m,2H),1.14–1.03(m,4H),0.73–0.64(m,4H)。
实施例32:1'-((7-氯-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:氮气保护下加入32a(500g,1.99mol)和甲醇2.5L,降温至0-5℃。在0-5℃滴加甲醇钠(118g)的甲醇(1.0L)溶液。滴加完全后升至室温搅拌1小时。向反应体系中加入水(2.0L),搅拌30min后于40℃下减压浓缩,浓缩至不出液,后加入乙酸乙酯(4.0L),搅拌分层,水层加入乙酸乙酯萃取,分液。合并有机层加入饱和食盐水洗涤,分液,有机层于40℃下减压浓缩至得到白色固体32b(480g)。
第二步:称取化合物32b(475g,1.93mol)加入DMF(2.85L)中,滴加DMF-DMA(2.85L)。加完后升温至100℃搅拌2h。反应完全后降温至70-80℃,减压浓缩,浓缩至不出液,后加入水中,搅拌析出。降温至20-30℃,搅拌1h后过滤,滤饼于70℃真空干燥箱中干燥至恒重,得红色固体32c(612g,收率95.3%)。
第三步:将化合物32c(500g,1.91mol)加入THF(2.56L)中,搅拌溶清。向反应体系中滴加高碘酸钠(805g,3.72mol)的水溶液(2.56L)。室温搅拌2-4h,反应结束后向反应体系中加入乙酸乙酯(4.0L)和水(4.0L),搅拌分层,水层乙酸乙酯(2.0L)萃取两次。有机层合并后依次加入饱和硫代硫酸钠溶液、饱和食盐水洗涤,有机层于40-45℃下减压浓缩至无馏分,得到500g油状物32d,直接用于下一步。
第四步:将化合物32d(512g,1.69mol)和32e(1457.0g,7.61mol)加入无水乙醇(7.5L)中,搅拌溶清,室温下分批次向反应体系中加入SnCl2(1815.0g,9.57mol)。加毕后升温至回流,搅拌1-2h。将反应体系降温至45-50℃,减压浓缩至无馏分,向体系中加入乙酸乙酯搅拌溶解,后用饱和碳酸氢钠调节pH=7-8,过程剧烈放气,析出大量固体,反应液离心,收集滤液静置分层,有机层于40-45℃下减压浓缩至无馏分,柱层析纯化得到絮状固体32f(230g,收率36.5%)。
第五步:将化合物32f(1.20g,3.85mmol)和CuC1(0.57g,5.78mmol)加入DMF(10mL)中。将得到的混合物在120℃下搅拌过夜。用LCMS检测反应结束后将反应液冷却到室温。得到的混合物用乙酸乙酯(20mL)稀释。用10%氨水溶液洗涤。所得到的混合物在减压的条件下进行浓缩。残留物经硅胶柱层析纯化,得到化合物32g(800mg,77.78%)为白色固体。LC-MS:ESI[M+H]+=267.0。
第六步:在氮气保护下,将化合物32g(800mg,3.00mmol)和TMSI(1.80g,9.00mmol)加入乙腈(8mL)中。将反应液升温至50℃搅拌2小时。用LCMS检测反应介绍后将反应液冷却至室温。将得到的混合物用乙酸乙酯(50mL)稀释。水层用3x50mL的水(10%的三乙胺)清洗。合并后的有机层用盐水(50mL)洗涤,用无水硫酸钠干燥,过滤,滤液减压浓缩。残留物经硅胶柱层析纯化得到化合物32h(740mg,97.64%)为白色固体。LC-MS:ESI[M+H]+=252.9。
第七步:将化合物32h(0.74g,2.92mmol)加入无水THF(300mL)中,将反应液冷却至-20℃,在-20℃的N2气氛下加入DIBAL-H(4.9mL,7.3m mol,1.5M甲苯溶液),将反应混合物在-15-0℃之间进一步搅拌3小时。TLC显示反应完全。用3N NaOH水溶液在-15-0℃之间缓慢猝灭反应,并保持内部温度不超过0℃。在25℃下减压除去挥发性物质,用乙酸乙酯(30mL*3)萃取所得物,用水(30mL)、盐水(30ml)洗涤合并的有机相,用无水Na2SO4干燥并蒸发至干。粗产物通过硅胶柱色谱法纯化(纯DCM,然后DCM/丙酮=30:1至10:1)。得到黄色固体的产物32i(0.42g)。LC-MS:ESI[M+H]+=211.2。
第八步:在0-5℃氮气氛围下,向化合物32i(0.42g,2.0mmol)的DMF(100mL)溶液中缓慢加入SOCl2(357mg,3.0mmol),将混合物在25℃下搅拌3h,直到原料完全消耗掉。用冰水浴将反应混合物冷却至0-5℃,并用1N NaOH淬灭至pH=9,然后在搅拌下加入水(10mL)。将反应混合物在室温下搅拌1小时,通过过滤收集形成的灰白色沉淀物,用水(10mL*3)洗涤,真空干燥得化合物32j(250mg)。LC-MS:ESI[M+H]+=229.0。
第九步:称取32j(30.0mg,0.13mmol)、化合物1f(43.8mg,0.14mmol)、DIEPA(84.6mg,0.65mmol)、KI(4.3mg,0.03mmol)于反应管中,加入5mL乙腈85℃反应2h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌0.5h,用DCM(50mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-5%)和DCM过柱,得淡黄色固体32(28.0mg,50%)。LC-MS:ESI[M+H]+=424.2;1H NMR(400MHz,DMSO)δ8.77–8.69(m,1H),8.65(s,1H),8.49(d,J=1.4Hz,1H),8.26(s,1H),7.97(p,J=8.3Hz,2H),7.74(s,1H),6.21(s,1H),3.74(dd,J=43.1,14.0Hz,2H),3.27(s,2H),3.01(d,J=16.5Hz,2H),2.83(t,J=5.2Hz,3H),2.59(dd,J=21.4,3.8Hz,1H),0.99(d,J=6.8Hz,3H)。
实施例33:1-(7-乙基-4-氟-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3-氟-N-甲基-1,2,3,6-四氢-[3,4-联吡啶]-6-甲酰胺
向2ml乙腈中加入化合物12j(100mg,0.41mmol)、化合物5e(153mg,0.49mmol)、DIEA(268mg,2.05mmol)、KI(14mg,0.082mmol),升温至80℃反应2h,LC-MS检测反应完全后,冷却至室温,加入饱和碳酸氢钠溶液4ml,加入20ml乙酸乙酯萃取3次,有机层依次用饱和食盐水洗涤,无水硫酸钠干燥,过滤,旋干,所得粗品经过柱层 析纯化得到化合物33(52mg,白色固体)。LC-MS:ESI[M+H]+=440.5;1H NMR(400MHz,DMSO-d6)δ12.14(s,1H),8.80-8.68(m,2H),8.48(d,J=8.5Hz,1H),8.09(dd,J=8.1,2.3Hz,1H),8.01(d,J=8.2Hz,1H),7.80(s,1H),6.78-6.72(m,1H),5.67(d,J=48.7Hz,1H),3.87(s,2H),3.53-3.40(m,1H),3.20(t,J=14.6Hz,1H),3.12-2.98(m,1H),2.80-2.64(m,1H),2.63-2.53(m,2H),1.20(t,J=7.4Hz,3H)。
实施例34:3-乙基-7-((5-氟-3'-甲基-3'-,6'-二氢-[2,4'-联吡啶]-1'(2'H)-基)甲基)-1,5-萘啶-2(1H)-酮
第一步:在40ml二氧六环和4ml水的混合溶剂中加入化合物1b(7.8g,22.6mmol)、化合物34a(2.4g,24.9mmol)、Pd(dppf)Cl2 (8.2g,11mmol)和碳酸钾(62g,452mmol),然后置换氮气,在氮气保护下80℃下反应4小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入300ml乙酸乙酯和200ml水萃取三次,合并有机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物34b(12g,白色固体)。
第二步:将化合物34b(1g,3.4mmol)加入到10ml无水甲醇中,随后再加入10ml4mol/L盐酸二氧六环溶液,室温搅拌0.5-1h,TLC监测反应完全后,将反应液减压浓缩干得到化合物34c(0.9g,白色固体)。
第三步:将化合物34c(0.05g,0.26mmol)、INT1(0.069g,0.31mmol)、N,N-二异丙基乙胺(0.16g,2.3mmol)和碘化钾(0.20g,1.3mmol)加入到10ml无水乙腈中,80℃搅拌2h,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物34(0.022g,白色固体);LC-MS:ESI[M+H]+=365.2;1H NMR(400MHz,DMSO-d6)δ11.90(s,1H),8.52(d,J=2.6Hz,1H),8.41(d,J=19.1Hz,2H),7.75(s,1H),7.69(s,1H),7.62(dd,J=8.8,4.5Hz,1H),6.43(d,J=3.8Hz,1H),3.80(d,J=12.9Hz,1H),3.63(dd,J=10.0,6.2Hz,4H),3.16(dd,J=7.1,4.1Hz,4H),1.19(t,J=7.4Hz,3H)。
实施例35:N-环丙基-1'-((2-乙基-5-氟-3-氧代-3,4-二氢喹喔啉-6-基)甲基)-3'-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
称取化合物11b(51mg,0.15mmol)、化合物27g(40mg,0.14mmol)、DIEPA(90.7mg,0.7mmol)、KI(4.7mg,0.03mmol)于反应管中,加入10mL乙腈,升温至80℃反应3h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌2h,真空浓缩掉大部分溶剂,然后用DCM(30mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-8%)和DCM柱层析纯化,得淡黄色固体35(22mg,收率34%)。LC-MS:ESI[M+H]+=462.2;1H NMR(400MHz,CDCl3)δ9.43(s,1H),8.40(d,J=1.9Hz,1H),8.07(d,J=8.1Hz,1H),7.91(d,J=3.4Hz,1H),7.67(dd,J=8.2,2.2Hz,1H),7.55(d,J=8.4Hz,1H),7.35(t,J=7.5Hz,1H),5.92(t,J=3.1Hz,1H),3.71(d,J=31.7Hz,2H),3.16(dd,J=59.0,16.3Hz,2H),2.95–2.83(m,4H),2.70(s,1H),2.53–2.44(m,1H),1.28(t,J=7.4Hz,3H),0.93(d,J=6.9Hz,3H),0.83–0.77(m,2H),0.62–0.55(m,2H)。
实施例36:N-环丙基-1'-((2-乙基-5-氟-3-氧代-3,4-二氢喹喔啉-6-基)甲基)-3'-氟-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
称取化合物31c(61.1mg,0.18mmol)、化合物27g(40.0mg,0.17mmol)、DIEPA(107.4mg,0.83mmol)、KI(5.5mg,0.03mmol)于反应管中,加入5mL乙腈85℃反应2h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌2h,真空浓缩掉大部分溶剂,然后用DCM(30mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-7%)和DCM过柱,得淡黄色固体化合物36(16mg,收率21%)。LC-MS:ESI[M+H]+=466.2;1H NMR(400MHz,CDCl3)δ9.27(s,1H),8.62(d,J=1.8Hz,1H),8.17(d,J=8.2Hz,1H),7.99(d,J=3.2Hz,1H),7.91(dd,J=8.2,2.1Hz,1H),7.63(d,J=8.4Hz,1H),7.41(t,J=7.9Hz,1H),6.55–6.45(m,1H),5.34(dd,J=33.0,18.3Hz,1H),3.91(s,2H),3.54(ddd,J=18.0,7.8,4.6Hz,1H),3.37–3.22(m,1H),3.12(dd,J=17.9,10.9Hz,1H),3.02–2.90(m,3H),2.78(dd,J=29.9,10.2Hz,1H),1.35(t,J=7.4Hz,3H),1.25(s,3H),0.89–0.86(m,2H),0.69–0.62(m,2H)。
实施例37:N-环丙基-1'-((7-乙基-4-氟-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-3'-氟-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
称取化合物31c(76.4mg,0.23mmol)、化合物12j(50mg,0.21mmol)、DIEPA(113.3 mg,1.0mmol)、KI(6.9mg,0.04mmol)于反应管中,加入5mL乙腈85℃反应2h。将反应冷却至室温,加入饱和NaHCO3水溶液搅拌2h,真空浓缩掉大部分溶剂,然后用DCM(30mL×3)萃取,合并有机相并用无水Na2SO4干燥,过滤旋干,用MeOH(0-5%)和DCM过柱,得淡黄色固体化合物37(58mg,收率60%)。LC-MS:ESI[M+H]+=466.2;1H NMR(400MHz,DMSO)δ12.18(s,1H),8.76(dd,J=11.3,3.2Hz,2H),8.52(d,J=8.5Hz,1H),8.13(dd,J=8.2,2.0Hz,1H),8.05(d,J=8.3Hz,1H),7.84(s,1H),6.85–6.72(m,1H),5.70(d,J=48.7Hz,1H),3.92(s,2H),3.56–3.45(m,1H),3.29–3.18(m,1H),3.09(dd,J=17.3,12.4Hz,1H),3.00–2.90(m,1H),2.83–2.69(m,1H),2.62(q,J=7.4Hz,2H),1.24(dd,J=9.3,5.5Hz,3H),0.76–0.70(m,4H)。
实施例38:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-(羟甲基)-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:称取化合物38a(0.25g,0.83mmol),加入四氢呋喃20ml,置换氮气,降温至-78℃,滴加二异丙基氨基锂(0.46mL,0.91mmol),搅拌30分钟后滴加溶于10mL四氢呋喃的N-苯基双(三氟甲烷磺酰)亚胺(0.36g,1.0mmol),升至室温反应2小时,TLC检测反应完全后,加入饱和氯化铵水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、旋干经过柱层析纯化得到化合物38b(0.25g,无色液体)。
第二步:在20ml二氧六环和2ml水的混合溶剂中加入化合物38b(0.25g,0.6mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(0.14g,0.66mmol)、Pd(dppf)Cl2 (0.04g,0.06mmol)和碳酸钾(0.16g,1.2mmol),然后置换氮气,在氮气保护下80℃下反应3小时。TLC检测反应完全后,将反应降至室温,旋蒸浓缩,加入30ml乙酸乙酯和20ml水萃取三次,合并有机相后用饱和食盐水洗涤、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化,用石油醚打浆固化后过滤,烘干得到化合物38c(180mg,淡黄色液体);LC-MS:ESI[M+H]+=421.6。
第三步:在25ml反应瓶中加入38c(180mg,0.4mmol)、甲胺水溶液(0.12mL,1.6mmol)和无水甲醇(15ml),室温下搅拌反应3小时。LC-MS监测反应完全后,将 反应液减压浓缩,用石油醚打浆,过滤烘干得到化合物38d(160mg,淡黄色固体);LC-MS:ESI[M+H]+=420.6。
第四步:将化合物38d(160mg,0.38mmol)加入到10ml无水甲醇中,随后再加入0.4ml 4mol/L盐酸二氧六环溶液,室温搅拌2小时,TLC监测反应完全后,加入二氧六环析出固体,过滤,烘干后得到化合物38e(80mg,黄色固体);LC-MS:ESI[M+H]+=248.3。
第五步:将化合物38e(80mg,0.25mmol)、INT1(56mg,0.25mmol)、N,N-二异丙基乙胺(130mg,1.0mmol)和碘化钾(5mg,0.03mmol)加入到10ml无水乙腈中,85℃搅拌2小时,TLC监测反应完全后,加入饱和碳酸氢钠水溶液10ml,加入30mL水析出固体,过滤,烘干后得到化合物38(20mg,白色固体);LC-MS:ESI[M+H]+=434.5;1H NMR(400MHz,CDCl3)δ8.51(s,1H),8.48(s,1H),8.15(d,J=8.1Hz,1H),8.10(s,1H),7.78(d,J=7.4Hz,2H),6.09(s,1H),4.62(d,J=13.4Hz,1H),4.33(d,J=13.2Hz,1H),4.13(d,J=15.7Hz,1H),3.82–3.67(m,2H),3.67–3.50(m,2H),3.36(s,1H),3.23(s,1H),3.04(d,J=3.9Hz,3H),2.67(q,J=7.3Hz,2H),1.28(dd,J=13.1,5.7Hz,6H)。
实施例39:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-甲氧基-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺的制备
第一步:将3-甲氧基-4-氧代哌啶-1-甲酸叔丁酯39a(350mg,1.528mmol),加入四氢呋喃(7ml),置换氮气,降温至-78℃,滴加二异丙基氨基锂(1.8mL,1.833mmol),搅拌30min后滴加溶于(2ml)四氢呋喃的N-苯基双(三氟甲烷磺酰)亚胺(655mg,1.833mmol),升至室温反应2h,TLC检测反应完全后,加入饱和氯化铵水溶液淬灭,用乙酸乙酯萃取三次,合并有机相后用无水硫酸钠干燥、过滤、滤液浓干,得化合物39b粗品400mg。
第二步:将化合物39b(400mg,1.107mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(291mg,1.107mmol)、Pd(dppf)Cl2(162mg,0.221mmol)和碳酸钾(458mg,3.321mmol)加入二氧六环(5mL)和水(0.5mL)中,氮气置换,在氮气保护下90℃反应2h。反 应结束后,减压浓缩,所得粗品经过柱层析纯化,得化合物39c(300mg,收率:77.65%),LC-MS:ESI[M+H]+=349.1。
第三步:将化合物39c(300mg,0.861mmol)和甲胺水溶液(2mL)加入无水甲醇(5ml)中,室温反应1h。反应结束后,将反应液减压浓缩,得化合物39d(300mg,收率:99.9%),LC-MS:ESI[M+H]+=348.1。
第四步:将化合物39d(300mg,0.861mmol)加入二氯甲烷(6mL)中,加入4mol/L盐酸二氧六环(6mL)溶液,室温搅拌1h,反应结束后,将反应液减压浓缩,得化合物39e(300mg),LC-MS:ESI[M+H]+=248.2。
第五步:将化合物39e(200mg,0.890mmol)、INT1(252mg,0.890mmol)、N,N-二异丙基乙胺(345mg,2.670mmol)和碘化钾(15mg,0.09mmol)加入到10ml无水乙腈中,80℃搅拌2h,反应结束后,将反应液加入20mL水中,乙酸乙酯萃取,有机相减压浓缩,送制备,收集产物冻干,得化合物39(90mg);LC-MS:ESI[M+H]+=434.2;1H NMR(400MHz,CDCl3)δ10.96(s,1H),8.61(s,1H),8.57(d,J=4.0Hz,1H),8.17-8.13(m,1H),7.98-7.95(m,1H),7.89-7.86(m,2H),7.72(s,1H),6.36(t,J=4.0Hz,1H),3.77–3.71(m,1H),3.54-3.48(m,2H),3.33(s,3H),3.15-3.09(m,2H),3.04(d,J=4.0Hz,3H),2.76-2.71(m,3H),2.60–2.54(m,1H),1.31(t,J=8.0Hz,3H)。
实施例40:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-羟基-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺的制备
第一步:将化合物40a(5.0g,0.019mol)加入二氯甲烷(25mL)中,滴加三氟乙酸(25mL),加毕,室温反应4h,反应结束后,将反应液减压浓缩,得化合物40b粗品5.0g。
第二步:将化合物40b(5.0g,23.5mmol)、三乙胺(7.145g,70.7mmol)和二碳酸二叔丁酯(7.71g,35.3mmol)加入乙醇(50mL)中,加毕,室温反应4h,反应结束后,加入水(30mL)淬灭反应,加入乙酸乙酯(30mL×3次)萃取,水(10mL×3 次)洗有机相,有机相减压浓缩,所得粗品经过柱层析纯化,得化合物40c(2.0g,收率:39.56%)。
第三步:将化合物40c(2.0g,9.29mmol)和咪唑(1.264g,18.58mmol)加入二氯甲烷中,将反应体系降温至0℃,加入叔丁基二甲基氯硅烷(1.68g,11.1mmol),加毕,室温反应1h,反应结束后,加入水(30mL)淬灭反应,加入二氯甲烷(30mL×3次)萃取,水(10mL×3次)洗有机相,有机相减压浓缩,所得粗品经过柱层析纯化(石油醚:乙酸乙酯=10:1~5:1),得化合物40d(2.0g,收率:48.1%)。
第四步:将化合物40d(1.6g,4.860mmol),加入四氢呋喃(20mL),置换氮气,降温至-78℃,滴加双三甲基硅氨基钾(7.29mL,7.29mmol),搅拌30分钟后滴加溶于(10mL)四氢呋喃的N-苯基双(三氟甲烷磺酰)亚胺(2.251g,6.318mmol),升至室温反应2小时,反应结束后,加入饱和氯化铵水溶液(30mL)淬灭,用乙酸乙酯(30mL×3次)萃取,合并有机相后用无水硫酸钠干燥、过滤、滤液浓干,得化合物40e粗品2.5g。
第五步:将化合物40e(2.5g,5.421mmol)、2-甲酸甲酯吡啶-5-硼酸酯1c(1.426g,5.421mmol)、Pd(dppf)Cl2(396mg,0.541mmol)和碳酸钾(2.244g,16.264mmol)加入二氧六环(25mL)和水(2.5mL)中,氮气置换,在氮气保护下100℃反应3h。反应结束后,减压浓缩,所得粗品经过柱层析纯化(石油醚:乙酸乙酯=10:1~5:1),得化合物40f(400mg,收率:16.47%),LC-MS:ESI[M+H]+=449.2。
第六步:将化合物40f(400mg,0.8923mmol)和甲胺醇溶液(3mL)加入无水甲醇(4ml)中,室温反应1h。反应结束后,将反应液减压浓缩,得化合物40g(380mg,收率:95.0%),LC-MS:ESI[M+H]+=448.2。
第七步:将化合物40g(380mg,0.849mmol)加入二氯甲烷(4mL)中,加入4mol/L盐酸二氧六环(4mL)溶液,室温搅拌1小时,反应结束后,将反应液减压浓缩,得化合物40h(380mg),LC-MS:ESI[M+H]+=234.2。
1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-3'-羟基-N-甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺的制备参考实施例1。LC-MS:ESI[M+H]+=420.2;1H NMR(400MHz,CDCl3)δ11.86(s,1H),8.72-8.69(m,2H),8.48(d,J=4.0Hz,1H),8.05-8.03(m,1H),7.98-7.96(m,1H),7.77(s,1H),7.65(d,J=4.0Hz,1H),6.39(t,J=4.0Hz,1H),4.98(d,J=8.0Hz,1H),4.61(s,1H),3.76(d,J=12.0Hz,2H),3.26–3.14(m,2H),3.12-3.07(m,1H),2.82(d,J=8.0Hz,3H),2.73-2.54(m,3H),1.31(t,J=8.0Hz,3H)。
实施例41:1'-((2-氯-7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:将2-羟基-6-甲基烟酸41a(350g,2.287mol)加入浓硫酸(1400mL)中,分批缓慢加入硝酸钾(462.5g,4.575mol),加完后升温至90℃反应4h,反应结束后,将反应液加入冰水(3000mL)中,搅拌1h,过滤,收集产物,减压烘干,得化合物41b(红色固体,215g,收率47.48%)。LC-MS:ESI[M+H]+=199.1。
第二步:将化合物41b(215g,1.086mol)加入甲醇(1000mL)中,加完后升温至70℃反应3h,反应结束后,减压浓缩至剩余约200mL,过滤,收集滤饼,干燥滤饼得化合物41c(黄色固体,226g,收率98.1%)。LC-MS:ESI[M+H]+=213.4。
第三步:将化合物41c(212g,1.04mol)加入三氯氧磷(300mL)中,反应体系升温至110℃,反应结束后,减压浓缩,将反应液加入冰水(500mL)淬灭反应,加入乙酸乙酯(1000mL×3次)萃取,有机相水(500mL×3次)洗,有机相减压浓缩,浓缩物中加入石油醚(500mL)打浆,过滤,收集滤饼得化合物41d(黄色固体,175g,收率73.32%)。LC-MS:ESI[M+H]+=231.0。
第四步:将化合物41d(126g,0.55mol)和DMF-DMA(130.38g,1.1mol)加入DMF(800mL)中,将反应体系升温100℃,反应3h,反应结束后,减压浓缩,将反应液加入冰水(2000mL)淬灭反应,加入乙酸乙酯(1000mL×3次)萃取,有机相水(500mL×3次)洗,有机相减压浓缩,浓缩物柱层析(石油醚:乙酸乙酯=10:1到5:1),收集产物,化合物41e(黄色固体,60g,收率38.43%)。LC-MS:ESI[M+H]+=286.1。
第五步:将化合物41e(70g,0.2456mol)加入THF(700mL)中,将反应体系降温至0℃,加入高碘酸钠(158g,0.736mol)的水溶液,加完,室温反应12h,反应结束后,将反应液加入水(1000mL)淬灭,加入乙酸乙酯(1000mL×3次)萃取,有机相水(500mL×3次)洗,有机相减压浓缩,浓缩物柱层析(石油醚:乙酸乙酯=10:1到5:1),收集产物,得化合物41f(红色固体,26g,收率43.38%)LC-MS:ESI[M+H]+=245.1。
第六步:将钠氢(8.52g,0.213mol)加入THF(300mL)中,将反应体系降温至0℃,加入2-(二乙氧基磷酰基)丁酸乙酯(53.76g,0.213mol),加完后恢复至室温反应2h。反应液降温至-70℃,滴加化合物41f(26g,0.1065mol),在-70℃反应2h,反应结束后,加入水(200mL)淬灭反应,加入乙酸乙酯(300mL×2次)萃取,有机相水 (100mL×3次)洗,有机相减压浓缩,浓缩物柱层析(石油醚:乙酸乙酯=100:0到10:1),收集产物,得化合物41g(黄色油状物,15g,收率41.17%)。LC-MS:ESI[M+H]+=343.2。
第七步:将化合物41g(15.0g,43.85mmol)和铁粉(14.73g,263.1mmol)加入冰乙酸(150mL)中,将反应体系升温至80℃反应2h,反应结束后,加入二氯甲烷(200mL)中,过滤,收集滤液,滤液用饱和碳酸氢钠水溶液调pH=7~8,分液,有机相水(50mL×3次)洗,有机相无水硫酸钠干燥,过滤,收集滤液,滤液减压浓缩,得化合物41h(黄色固体,5g,收率42.76%)。LC-MS:ESI[M+H]+=367.1。
第八步:将化合物41h(4.8g,18.0mmol)加入四氢呋喃(50mL)中,将反应体系降温0℃,加入二异丁基氢化铝(27mL,54.0mmol),加完后自然升温至室温,反应结束后,将反应液加入水(10mL)中淬灭,加入二氯甲烷和甲醇=5:1(300mL×2次)萃取,有机相无水硫酸钠干燥,过滤,收集滤液,滤液减压浓缩得化合物41i(黄色固体,2g,收率46.8%),LC-MS:ESI[M+H]+=239.1。
第九步:将化合物41i(100mg,0.420mmol)加入二氯甲烷(2mL)中,将反应体系降温至0℃,加入戴斯马丁氧化剂(214mg,0.504mmol),加完,室温反应1h,反应结束后,加入水(2mL)淬灭反应,加入二氯甲烷萃取,有机相减压浓缩,浓缩物柱层析(二氯甲烷:甲醇=30:1~10:1),收集产物,得化合物41j(90mg,收率:90.78%%),LC-MS:ESI[M+H]+=452.2。
第十步:将化合物1f(45mg,0.169mmol)加入二氯甲烷(2mL)中,加入三乙胺(17mg,0.169mmol)搅拌10min,再加入化合物41j(45mg,0.169mmol)搅拌2h,最后加入三乙酰氧基硼氢化钠(36mg,0.169mmol),室温反应2h,反应结束后,将反应液加入水(2mL)中,分液,有机相减压浓缩,浓缩物送制备,收集产物,得化合物41(白色固体,20mg,收率:26.2%),LC-MS:ESI[M+H]+=452.2,HNMR(400M-d-DMSO):11.11(s,1H),8.54(s,1H),8.17(d,J=8.0Hz,1H),7.99-7.96(m,1H),7.79-7.76(m,2H),6.05-6.03(m,1H),3.81(m 2H),3.24-3.18(m,1H),3.06(d,J=4.0Hz,3H),2.96(s,1H),2.86-2.82(m,1H),2.70-2.65(m,3H),1.31-1.26(m,4H),1.31-1.26(d,J=8.0Hz,3H)。
实施例42:(S)-1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺和实施例43:(R)-1'-((7-环丙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,3'-二甲基-1'-,2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
化合物15通过手性拆分得到化合物42和化合物43。拆分方法为:仪器-Waters 150Prep-SFC,柱子型号:Chiralcel AD Column,流动相A:二氧化碳,流动相B:0.1%氨水的异丙醇,梯度:70%流动相B,压力:100bar,流速:100mL/min。
实施例44:1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,2,3'-三甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
1'-((7-乙基-6-氧代-5,6-二氢-1,5-萘吡啶-3-基)甲基)-N,2,3'-三甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺的制备参考实施例14。LC-MS:ESI[M+H]+=432.2。
实施例45:1'-(7-乙基-6-氧代-5,6-二氢-1,5-萘啶-3-基)甲基)-N-甲基-1',2',3',6'-四氢-[3,4'-联吡啶]-6-甲酰胺
第一步:在7ml二氧六环、3ml无水乙醇和4ml水的混合溶剂中加入化合物4b(1g,4.6mmol)、45a(1.7g,5.5mmol)、Pd(dppf)Cl2(0.3g,0.46mmol)和碳酸钾(1.6g,11.5mmol),然后置换氮气三次,在氮气保护下90℃下反应2h。TLC检测反应完全后,将反应降至室温,加入30ml二氯甲烷和20ml水,在分液漏斗中分层。水相用二氯甲烷萃取两次,合并有机相后再分别水洗、饱和食盐水洗、无水硫酸钠干燥、过滤、旋干。所得粗品经过柱层析纯化得到化合物45b(1g,白色固体)。
第二步:在100ml反应瓶中加入45b(1g,3mmol)、甲胺水溶液(5g,161.3mmol)和无水甲醇(20ml),室温下搅拌过夜。TLC监测反应完全后,将反应液减压浓缩干得到化合物45c(0.8g,白色固体)。
第三步:将化合物45c(0.5g,1.5mmol)加入到10ml无水甲醇中,随后再加入10ml4mol/L盐酸二氧六环溶液,室温搅拌0.5-1h,TLC监测反应完全后,将反应液减压浓缩干得到化合物45d(0.5g,白色固体)。
第四步:将化合物45d(0.05g,0.23mmol)、INT1(0.06g,0.28mmol)、N,N-二异丙基乙胺(0.15g,1.15mmol)和碘化钾(0.19g,1.15mmol)加入到10ml无水乙腈中,80℃搅拌2h,TLC监测反应完全后,将反应液减压浓缩,所得粗品经过柱层析纯化得到化合物45(0.02g,白色固体);LC-MS:ESI[M+H]+=404.5;1H NMR(400MHz,DMSO):11.85(s,1H),8.71(d,J=5.0Hz,1H),8.69(s,1H),8.41(d,J=1.3Hz,1H),8.06–7.91(m,2H),7.75(s,1H),7.64(s,1H),6.42(s,1H),3.72(s,2H),3.16(s,2H),2.81(d,J=4.8Hz,3H),2.70(s,2H),2.54(d,J=7.4Hz,4H),1.18(t,J=7.4Hz,3H)。
生物活性测试:
1、PARP-1酶测定
实验材料:PARP1蛋白(BPS,Cat.No.80501),PARP2蛋白(BPS,Cat.No.80502),PARP5A蛋白(BPS,Cat.No.80504),Biotin-NAD+(R&D,Cat.No.6573),Strep-HRP(Thermo Pierce,Cat.No.21127),NAD+(TCI,Cat.No.D0919-5G),定量增强化学荧光HRP底物试剂盒(Thermo Pierce,Cat.No.15159),组蛋白(Active Motif,Cat.No.81167),Activited DNA(Genscript,Cat.No.L05182-01&02&03),anti-rabbit IgG,HRP-linked Antibody(CST,Cat.No.7074P2),anti-Poly/Mono-ADP Ribose(E6F6A)Rabbit mAb(CST,Cat.No.83732S),SuperSignal ELISA Femto Substrate(THERMO PIERCE,Cat.No.37074)。
1.1 PARP1酶测定
1.1.1缓冲液的配制:PBST:1X PBS,0.05%Tween-20,封闭液:1X PBS,0.05%Tween-20,5%BSA,反应缓冲液:50mM Tris-HCl(pH7.5),0.005%Tween-20,0.01%BSA。
1.1.2包被:用1xPBS配制50ng/mL的Histone包被液,转移25uL包被液至384孔反应板中,4℃包被过夜。
1.1.3洗涤:包被结束后弃掉包被液,用PBST溶液进行洗涤,方法为转移50uLPBST至384孔反应板,静置5分钟,弃掉洗液,重新加满,重复洗涤3次,最后拍干反应板等待下一步封闭。
1.1.4封闭:转移50uL封闭液至384孔反应板,静置1小时。
洗涤:封闭结束后弃掉封闭液,用PBST溶液按照步骤2方法洗涤3次,最后拍干反应板。
1.1.5配制1000倍的化合物,转移1uL化合物至199uL反应缓冲液的96孔板中,混匀,将混匀后的化合物转移5uL至384孔反应板中。
1.1.6用反应缓冲液配制25/10倍PARP1-DNA溶液,转移10uLPARP1-DNA溶液至384孔反应板中,对于阴性对照孔,转移10uLDNA溶液,PARP1终浓度为0.02nM,DNA终浓度为0.8nM。
1.1.7用反应缓冲液配制25/10倍NAD+溶液,转移10uLNAD+溶液至384孔反应板中,NAD+终浓度为3.5uM,室温孵育60分钟。
1.1.8用反应缓冲液配制25/10倍NAD+溶液,转移10uLNAD+溶液至384孔反应板中,NAD+终浓度为3.5uM,室温孵育60分钟。
1.1.9洗涤:反应结束后弃掉反应液,用PBST溶液按照步骤2方法洗涤3次,最后拍干反应板。
1.1.10用封闭液稀释2000倍一抗(anti-Poly/Mono-ADP Ribose Rabbit mAb),加入20uL一抗,室温孵育1.5小时。
1.1.11洗涤:弃掉一抗,用PBST溶液按照步骤2方法洗涤3次,最后拍干反应板。
1.1.12用封闭液稀释2000倍二抗(anti-rabbit IgG,HRP-linked Antibody),加入20uL二抗,室温孵育1小时。
1.1.13洗涤:弃掉二抗,用PBST溶液按照步骤2方法洗涤3次,最后拍干反应板。
1.1.14显色:1:1混合Femto-ECL Substrate A和Femto-ECLSubstrate B,转移25uL至384反应板中。
1.1.15读数:用Envision读取化学发光数值RLU。
测试结果如下表2:
表2 PARP-1酶测试结果

结论:本发明化合物对PARP1具有显著的抑制作用。
2、细胞抗增殖活性测试:
BRCA突变细胞MDA-MB-436细胞采用DMEM培养基培养,含10%胎牛血清、100U/mL的青霉素、100μg/mL链霉素,置于37℃的5%饱和CO2孵箱中培养。当细胞生长至80%融合度时,收集细胞,300g离心10min,以1200个/孔铺96孔板。24h后,加入不同终浓度PARPi(0、0.01、0.1、1、10、100、1000nM),继续培养72h。对细胞进行换液处理(重新加入相同终浓度PARPi),继续培养96h。取出96孔板,采用CCK8法检测450nM波长下OD值,并统计细胞抑制率:抑制率%=1-(给药组平均OD值-Blank组平均OD值)/(Control组平均OD值-Blank组平均OD值)*100%。
BRCA野生型细胞DLD-1细胞采用RPMI-1640培养基培养,含10%胎牛血清、100U/mL的青霉素、100μg/mL链霉素,置于37℃的5%饱和CO2孵箱中培养。当细胞生长至80%融合度时,收集细胞,300g离心10min,以1000个/孔铺96孔板。24h后,加入不同终浓度PARPi(0、1、10μM),继续培养72h。对细胞进行换液处理(重新加入相同终浓度PARPi),继续培养96h。取出96孔板,采用CCK8法检测450nM波长下OD值,并统计细胞抑制率:
抑制率%=1-(给药组平均OD值-Blank组平均OD值)/(Control组平均OD值-Blank组平均OD值)*100%。
测试结果如下表3:
表3细胞抗增殖活性测试结果

结论:本发明化合物1、2、5、6、8、21、23、29和38等对BRCA突变MDA-MB-436细胞具有显著抑制用,对BRCA野生型DLD-1细胞无明显抑制作用,表明本发明化合物1、2、5、6、8、21、23、29和38等特异性抑制同源重组缺陷肿瘤细胞。
3、化合物对hERG钾离子通道的抑制实验
细胞培养和处理:稳定表达hERG的CHO细胞培养于细胞培养瓶中,置于37℃,5%CO2的培养箱培养。待细胞密度生长至60~80%,吸走细胞培养液,用PBS洗一遍后加入Detachin消化。待消化完全后加入培养液中和,然后离心,吸走上清液,再加入培养液重悬,调节细胞密度为2~5×106/mL备用。
化合物准备:将化合物母液用100%DMSO进行稀释,即取10μL化合物母液加入到20μL DMSO中,3倍连续稀释至6个浓度。分别取4μL的6个浓度的化合物,加入到396μL细胞外液中,即100倍稀释得到6个中间浓度。再分别取80μL的6个中间浓度化合物,加入到320μL细胞外液中,即5倍稀释至需要测试的最终浓度。最高测试浓度为40μM,依次分别为40,13.33,4.44,1.48,0.49和0.16μM共6个浓度。最终测试浓度中的DMSO含量不超过0.2%,此浓度的DMSO对hERG钾通道没有影响。化合物准备由Bravo仪器完成整个稀释过程。
电生理记录过程:单细胞高阻抗封接和全细胞模式形成过程全部由Qpatch仪器自动完成,在获得全细胞记录模式后,细胞钳制在-80毫伏,在给予一个5秒的+40毫伏去极化刺激前,先给予一个50毫秒的-50毫伏前置电压,然后复极化到-50毫伏维 持5秒,再回到-80毫伏。每15秒施加此电压刺激,记录2分钟后给予细胞外液记录5分钟,然后开始给药过程,化合物浓度从最低测试浓度开始,每个测试浓度给予2.5分钟,连续给完所有浓度后,给予阳性对照化合物3μM Cisapride。每个浓度至少测试3个细胞(n≥3)。
数据处理:数据分析处理采用GraphPad Prism 5.0和Excel软件。化合物IC50使用GraphPad Prism 5软件通过以下方程拟合计算得出:
Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))
其中,X为供试品检测浓度的Log值,Y为对应浓度下抑制百分率,Bottom和Top分别为最小和最大抑制百分率。
实验结果如下表4:
表4化合物对hERG钾离子通道抑制结果
结论:本发明化合物5和6等对hERG钾离子通道抑制作用较弱。
4、化合物在Balb/c小鼠体内的药代动力学评价
实验目的:了解化合物的药代动力学情况。
实验依据:化学药物非临床药代动力学研究技术指导原则,2014年。
实验方案:通过Balb/c小鼠静脉给药(1mg·kg-1)和灌胃给药(1mg·kg-1),考察化合物的药代动bB力学情况。
样品配制:称量0.2mg左右的化合物,加10μLDMSO溶解,再加注射用氯化钠溶液,配成0.1mg·mL-1的化合物溶液,待给药用。
样品采集:6只Balb/c小鼠(成都达硕实验动物有限公司,许可证号:SCXK(川)2020-030),雄性,3只按1mg·kg-1静脉给药(IV)、3只按1mg·kg-1灌胃给药(PO),给药后5min、15min、30min、1h、2h、4h、6h、8h、10h、24h和48h采集约0.05mL血液,将收集的血液3500rpm化合物离心15min,收集上清血浆,-40℃冻存待测。以LC-MS/MS分析方法定量分析血药浓度,计算药代动力学参数,如达峰时间(Cmax),药时曲线下面积(AUC(0-t)),半衰期(T1/2),清除率(CL),组织分部(Vdss),生物利用度(F)等。参考化合物AZD5305购买于MedChemExpress(MCE)公司
药代动力学评价结果如下表5:
表5化合物在Balb/c小鼠体内的药代动力学测试结果
结论:本发明化合物在Balb/c小鼠体内具有良好的药代动力学性质,包括良好的口服生物利用度、暴露量、半衰期和清除率等。1mg/kg口服灌胃给药,化合物2、6、24和42等化合物Cmax优于参考化合物AZD5305和化合物45等。
5、化合物在SD大鼠体内的药代动力学评价
实验目的:了解化合物的药代动力学情况。
实验依据:化学药物非临床药代动力学研究技术指导原则,2014年。
实验方案:通过SD大鼠口服静脉给药,考察化合物的药代动力学情况。
实验步骤:称量化合物,加少量DMSO,再入加注射用氯化钠溶液,配成溶液,待给药用。6只SD大鼠,雄鼠,按静脉给药、口服给药,给药后5min、15min、30min、1h、2h、4h、6h、8h、10h和24h采集约0.1mL血液,离心3500rpm 15min,收集 上清血浆。取5μL血浆于EP管中,加入100μL含20ng·ml-1内标SAHA的乙腈沉淀蛋白,涡旋30s,于13000rpm离心15min,取上清装进样瓶待测。标准曲线范围:10~10000ng·ml-1。
药代动力学评价结果如下表6:
表6化合物在SD大鼠体内的药代动力学测试结果
结论:本发明化合物在SD大鼠体内具有良好的药代动力学性质,包括良好的口服生物利用度、暴露量、半衰期和清除率等。
6、PARP酶学选择性评价
表7试剂
实验过程:
(1)、包被组蛋白底物:5x组蛋白用PARP缓冲溶液稀释成1x,每孔25uL包被4℃过夜
(2)、添加100uL的PBST到384反应板中,洗板3次,每次5分钟。
(3)、在384反应板中添加25uL的封闭缓冲溶液,室温放置90分钟。添加100uL的PBST到384反应板中,洗板3次,每次5分钟。
(4)、化合物准备:在384反应板中添加100nL化合物,然后离心1分钟。
(5)、在384反应板中添加5uL PARP蛋白,1000rpm,离心1分钟。
(6)、在384反应板中添加5uL PARP底物混合液,1000rpm,离心1分钟。室温反应1小时。
(7)、检测:添加100uL的PBST到384反应板中,洗板3次,每次5分钟。将Stre-HRP在封闭液中稀释2000倍,每孔添加25uL,室温反应30分钟。
(8)、添加100uL的PBST到384反应板中,洗板3次,每次5分钟。将ELISA ECL底物A和底物B 1:1混合,然后添加到384反应板中,每孔25uL
(9)、通过BMG酶标仪读取化合物发光信号。
酶学选择性实验结果如下表8:
表8化合物对PARP家族酶学选择性测试结果
结论:本发明化合物对PARP-1酶具有高抑制活性,对同家族PARP-2、PARP-5A和PARP-11抑制作用较弱。化合物2和42对PARP-2、PARP-5A和PARP-11酶学选择性优于参考化合物AZD5305。
7、化合物2对MDA-MB-436裸小鼠皮下移植瘤模型的体内药效学研究
实验过程:实验用雌性NOD/SCID小鼠15只,随机分为空白组、化合物2(0.1mg/kg)剂量组、化合物2(0.3mg/kg)剂量组,共3组,每组5只,均采用口服给药,1天1次。同时每2天称量体重并用游标卡尺测量肿瘤的长度和宽度。
结论:实验结果如图1所示。本发明化合物2对MDA-MB-436小鼠模型具有显著抑制作用,尤其是化合物2在0.3mg/kg每天一次口服给药,34天后肿瘤被完全抑制。

Claims (27)

  1. 式Ⅰ的化合物或其药学上可接受的形式,其特征在于:所述式Ⅰ结构如下:
    其中:
    R1选自卤素、C1-4烷基、C1-4氟代烷基、3~6元环烷基、3~6元氟代环烷基或C2-4烯基;
    X1选自N或CR5a,X2选自N或CR5b,X3选自N或CR5c
    R6选自氢或卤素;
    R4为-CONHR7,R7选自C1-4烷基、C1-4氟代烷基、C1-4氘代烷基、3~6元环烷基或3~6元氟代环烷基;
    R9a选自氢、卤素、氰基、C1-4烷基、C1-4氟代烷基、3~6元环烷基或3~6元氟代环烷基;
    R9c选自氢或卤素;
    R2选自氢或C1-4烷基;
    R3a选自卤素、C1-4烷基、C1-4氟代烷基或3-6元环烷基;R3b选自氢、卤素或C1-4烷基;
    R3c选自氢或C1-4烷基;
    R5a选自氢、卤素或C1-4烷基,R5b选自氢或卤素,R5c选自氢或卤素;
    所述药学上可接受的形式选自药学上可接受的盐、酯、立体异构体、多晶型物、溶剂合物、氮氧化物、同位素标记物、代谢物或前药。
  2. 根据权利要求1所述的化合物,其特征在于:R1选自选自氯、甲基、乙基、氟代甲基、氟代乙基、环丙基或乙烯基。
  3. 根据权利要求1所述的化合物,其特征在于:R6选自氢或者氟。
  4. 根据权利要求1所述的化合物,其特征在于:R7选自甲基、乙基、氘代甲基、氘代乙基、氟代甲基、氟代乙基、环丙基或氟代环丙基。
  5. 根据权利要求1所述的化合物,其特征在于:R9a选自氢、氟、氯、氰基、甲基、乙基、氟代甲基、氟代乙基、环丙基或氟代环丙基。
  6. 根据权利要求1所述的化合物,其特征在于:R9c选自氢或氟。
  7. 根据权利要求1所述的化合物,其特征在于:R2选自氢或甲基。
  8. 根据权利要求1所述的化合物,其特征在于:R3a选自氟、甲基、乙基、氟代甲基、氟代乙基、环丙基或氟代环丙基;R3b选自氢、氟或甲基。
  9. 根据权利要求1所述的化合物,其特征在于:R3c选自氢或甲基。
  10. 根据权利要求1所述的化合物,其特征在于:R5a选自氢、氟或甲基,R5b选自氢或氟,R5c选自氢或氟。
  11. 根据权利要求1~10任一项所述的化合物,其特征在于:结构单元选自如下结构:
  12. 根据权利要求1~10任一项所述的化合物,其特征在于:结构单元选自如下结构:
  13. 根据权利要求1~10任一项所述的化合物,其特征在于:结构单元选自如下结构:
  14. 根据权利要求1~10任一项所述的化合物,其特征在于:结构单元选自如下结构:
  15. 根据权利要求1~14任一项所述的化合物,其特征在于:结构单元选自如下结构:
  16. 根据权利要求1~15任一项所述的化合物或其药学上可接受的形式,其特征在于:具有式II-1、式II-2或式II-3所述结构:
  17. 根据权利要求1~16任一项所述的化合物或其药学上可接受的形式,其特征在于:具有式III-1、式III-2、式III-3或式III-4所述结构:
  18. 根据权利要求1~16任一项所述的化合物或其药学上可接受的形式,其特征在于:所述化合物选自:

  19. 根据权利要求1~17任一项所述的化合物或其药学上可接受的形式,其特征在于:所述化合物选自:
  20. 化合物或其药学上可接受的形式,其特征在于:所述化合物选自:

  21. 药物组合物,其特征在于:其是以权利要求1~20任一项所述的化合物或其药学上可接受的盐、酯、立体异构体、互变异构体、多晶型物、溶剂合物、氮氧化物、同位素标记物、代谢物或前药为活性成分,辅以药学上可接受的载体。
  22. 权利要求1~20任一项所述的化合物或其药学上可接受的盐、酯、立体异构体、互变异构体、多晶型物、溶剂合物、氮氧化物、同位素标记物、代谢物或前药,及权利要求21所述的药物组合物,在制备用于预防和/或治疗PARP1酶相关疾病的药物中发挥用途。
  23. 根据权利要求22所述的用途,其特征在于:所述PARP1酶相关疾病为肿瘤类病症。
  24. 根据权利要求23所述的用途,其特征在于:所述肿瘤类病症缺乏HR依赖性DNA DSB修复途径。
  25. 根据权利要求23或24所述的用途,其特征在于:所述肿瘤类病症包含一种或多种癌细胞,所述癌细胞相对于正常细胞具有降低的或缺失的通过HR修复DNA DSB的能力。
  26. 根据权利要求25所述的用途,其特征在于:所述癌细胞具有BRCA1或BRCA2缺陷表型。
  27. 根据权利要求23~26任一项所述的用途,其特征在于:所述肿瘤类病症为乳腺癌、卵巢癌、原发性腹膜癌、胰腺癌、前列腺癌、血液癌、胃肠道癌、胶质母细胞瘤或肺癌。
PCT/CN2023/125616 2022-10-20 2023-10-20 取代四氢吡啶类化合物及其用途 WO2024083218A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211291843 2022-10-20
CN202211291843.2 2022-10-20
CN202211694413 2022-12-28
CN202211694413.5 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024083218A1 true WO2024083218A1 (zh) 2024-04-25

Family

ID=90736952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125616 WO2024083218A1 (zh) 2022-10-20 2023-10-20 取代四氢吡啶类化合物及其用途

Country Status (1)

Country Link
WO (1) WO2024083218A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053373A1 (en) * 2007-10-26 2009-04-30 Janssen Pharmaceutica Nv Quinolinone derivatives as parp inhibitors
WO2021260092A1 (en) * 2020-06-25 2021-12-30 Astrazeneca Ab Quinoxaline derivatives as anti-cancer drugs
CN114144413A (zh) * 2019-07-19 2022-03-04 阿斯利康(瑞典)有限公司 Parp1抑制剂
WO2022222966A1 (zh) * 2021-04-23 2022-10-27 成都百裕制药股份有限公司 一种选择性parp1抑制剂及其应用
WO2022225934A1 (en) * 2021-04-19 2022-10-27 Xinthera, Inc. Parp1 inhibitors and uses thereof
WO2022223025A1 (zh) * 2021-04-23 2022-10-27 上海翰森生物医药科技有限公司 杂环类衍生物抑制剂、其制备方法和应用
WO2022228387A1 (en) * 2021-04-26 2022-11-03 Fochon Biosciences, Ltd. Compounds as parp inhibitors
WO2023046034A1 (zh) * 2021-09-22 2023-03-30 明慧医药(杭州)有限公司 一种含氮杂环化合物、其制备方法、其中间体及其应用
WO2023051812A1 (zh) * 2021-09-30 2023-04-06 海思科医药集团股份有限公司 含氮杂环衍生物parp抑制剂及其用途
WO2023051807A1 (zh) * 2021-09-30 2023-04-06 海思科医药集团股份有限公司 双环衍生物parp抑制剂及其用途
WO2023109521A1 (zh) * 2021-12-17 2023-06-22 凯复(苏州)生物医药有限公司 Parp抑制剂、包含其的药物组合物及其用途
WO2023146957A1 (en) * 2022-01-27 2023-08-03 Xinthera, Inc. Parp1 inhibitors and uses thereof
WO2023146960A1 (en) * 2022-01-28 2023-08-03 Xinthera, Inc. Parp1 inhibitors and uses thereof
CN116535401A (zh) * 2022-01-25 2023-08-04 南京圣和药业股份有限公司 新的parp1抑制剂及其应用
CN116891456A (zh) * 2022-04-08 2023-10-17 上海翰森生物医药科技有限公司 杂环类衍生物抑制剂、其制备方法和应用

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053373A1 (en) * 2007-10-26 2009-04-30 Janssen Pharmaceutica Nv Quinolinone derivatives as parp inhibitors
CN114144413A (zh) * 2019-07-19 2022-03-04 阿斯利康(瑞典)有限公司 Parp1抑制剂
WO2021260092A1 (en) * 2020-06-25 2021-12-30 Astrazeneca Ab Quinoxaline derivatives as anti-cancer drugs
WO2022225934A1 (en) * 2021-04-19 2022-10-27 Xinthera, Inc. Parp1 inhibitors and uses thereof
WO2022222966A1 (zh) * 2021-04-23 2022-10-27 成都百裕制药股份有限公司 一种选择性parp1抑制剂及其应用
WO2022223025A1 (zh) * 2021-04-23 2022-10-27 上海翰森生物医药科技有限公司 杂环类衍生物抑制剂、其制备方法和应用
WO2022228387A1 (en) * 2021-04-26 2022-11-03 Fochon Biosciences, Ltd. Compounds as parp inhibitors
WO2023046034A1 (zh) * 2021-09-22 2023-03-30 明慧医药(杭州)有限公司 一种含氮杂环化合物、其制备方法、其中间体及其应用
WO2023051812A1 (zh) * 2021-09-30 2023-04-06 海思科医药集团股份有限公司 含氮杂环衍生物parp抑制剂及其用途
WO2023051807A1 (zh) * 2021-09-30 2023-04-06 海思科医药集团股份有限公司 双环衍生物parp抑制剂及其用途
WO2023109521A1 (zh) * 2021-12-17 2023-06-22 凯复(苏州)生物医药有限公司 Parp抑制剂、包含其的药物组合物及其用途
CN116535401A (zh) * 2022-01-25 2023-08-04 南京圣和药业股份有限公司 新的parp1抑制剂及其应用
WO2023146957A1 (en) * 2022-01-27 2023-08-03 Xinthera, Inc. Parp1 inhibitors and uses thereof
WO2023146960A1 (en) * 2022-01-28 2023-08-03 Xinthera, Inc. Parp1 inhibitors and uses thereof
CN116891456A (zh) * 2022-04-08 2023-10-17 上海翰森生物医药科技有限公司 杂环类衍生物抑制剂、其制备方法和应用

Similar Documents

Publication Publication Date Title
KR101689421B1 (ko) 치환된 이미다조피리디닐-아미노피리딘 화합물
WO2023051716A1 (zh) 杂芳基衍生物parp抑制剂及其用途
EP3856192B1 (en) Degraders that target alk and therapeutic uses thereof
CN109790169A (zh) 具有作为usp30抑制剂活性的氰基吡咯烷衍生物
WO2015158310A1 (zh) 一种酪氨酸激酶抑制剂及其用途
JP2020504715A (ja) Ehmt2阻害剤としてのアミン置換複素環化合物およびその使用方法
WO2019000683A1 (zh) Rho相关蛋白激酶抑制剂、包含其的药物组合物及其制备方法和用途
ES2945573T3 (es) Compuesto de dioxazolina, método de preparación y usos del mismo
KR20170045748A (ko) 증식성 질병의 치료를 위한 조성물 및 방법
JP2016501251A (ja) がんの治療のための新規二環フェニル−ピリジン/ピラジン
WO2022117051A1 (zh) 大环化合物及其制备方法和应用
WO2014180182A1 (zh) [1,2,4]三唑并[4,3-a]吡啶类衍生物,其制备方法或其在医药上的应用
WO2018010514A1 (zh) 作为fgfr抑制剂的杂环化合物
WO2022012510A1 (zh) 一种作为btk抑制剂的化合物及其制备方法与用途
KR20210049862A (ko) 일종의 신형 퀴놀린 유도체 억제제
JP2020537645A (ja) Ehmt2阻害剤としてのアミン置換複素環化合物及びその誘導体
WO2022121813A1 (zh) Sos1抑制剂、包含其的药物组合物及其用途
BR112021009994A2 (pt) composto, e, medicamento
WO2021041976A1 (en) Perk inhibiting indolinyl compounds
RU2444515C2 (ru) Производное амида индазолакриловой кислоты
TWI448461B (zh) 4-aniline-6-butenamide-7-alkyl ether quinazoline derivatives, methods and uses thereof
TW201605858A (zh) 縮合吡唑衍生物
EP3966208A2 (en) Compounds and methods for treating cancer
JP2019501954A (ja) 1,4−ジカルボニル−ピペリジル誘導体
WO2024083218A1 (zh) 取代四氢吡啶类化合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879204

Country of ref document: EP

Kind code of ref document: A1