WO2024080719A1 - Zinc oxide nanoparticle thin film with improved mechanical flexibility - Google Patents
Zinc oxide nanoparticle thin film with improved mechanical flexibility Download PDFInfo
- Publication number
- WO2024080719A1 WO2024080719A1 PCT/KR2023/015576 KR2023015576W WO2024080719A1 WO 2024080719 A1 WO2024080719 A1 WO 2024080719A1 KR 2023015576 W KR2023015576 W KR 2023015576W WO 2024080719 A1 WO2024080719 A1 WO 2024080719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zno
- salt
- flexible
- pfpbr
- formula
- Prior art date
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 38
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 30
- 239000010409 thin film Substances 0.000 title abstract description 53
- 238000005452 bending Methods 0.000 claims description 51
- 239000012528 membrane Substances 0.000 claims description 29
- -1 ammonium halide salt Chemical group 0.000 claims description 27
- 150000003863 ammonium salts Chemical class 0.000 claims description 23
- 239000000412 dendrimer Substances 0.000 claims description 20
- 229920000736 dendritic polymer Polymers 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000011701 zinc Substances 0.000 claims description 14
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 11
- 150000003973 alkyl amines Chemical class 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 229920002873 Polyethylenimine Polymers 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229920000962 poly(amidoamine) Polymers 0.000 claims description 4
- 229920000333 poly(propyleneimine) Polymers 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000001072 heteroaryl group Chemical group 0.000 claims description 3
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical class CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical class CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical class NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical class C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical class C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 2
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 2
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical class C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 claims description 2
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical class C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 claims description 2
- PQZTVWVYCLIIJY-UHFFFAOYSA-N diethyl(propyl)amine Chemical class CCCN(CC)CC PQZTVWVYCLIIJY-UHFFFAOYSA-N 0.000 claims description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical class CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 claims description 2
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical class CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 claims description 2
- 150000004693 imidazolium salts Chemical class 0.000 claims description 2
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical class CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 claims description 2
- GNVRJGIVDSQCOP-UHFFFAOYSA-N n-ethyl-n-methylethanamine Chemical class CCN(C)CC GNVRJGIVDSQCOP-UHFFFAOYSA-N 0.000 claims description 2
- XWCCTMBMQUCLSI-UHFFFAOYSA-N n-ethyl-n-propylpropan-1-amine Chemical class CCCN(CC)CCC XWCCTMBMQUCLSI-UHFFFAOYSA-N 0.000 claims description 2
- UVBMZKBIZUWTLV-UHFFFAOYSA-N n-methyl-n-propylpropan-1-amine Chemical class CCCN(C)CCC UVBMZKBIZUWTLV-UHFFFAOYSA-N 0.000 claims description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical class CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 2
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical class CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 158
- 239000000243 solution Substances 0.000 description 41
- 239000010408 film Substances 0.000 description 40
- 239000010410 layer Substances 0.000 description 23
- 230000003993 interaction Effects 0.000 description 19
- 239000003792 electrolyte Substances 0.000 description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- 229920000831 ionic polymer Polymers 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 11
- 125000000524 functional group Chemical group 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 238000002296 dynamic light scattering Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 7
- 229920000144 PEDOT:PSS Polymers 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000005693 optoelectronics Effects 0.000 description 7
- 238000005535 overpotential deposition Methods 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 229910003106 Zn-Br Inorganic materials 0.000 description 6
- 238000004630 atomic force microscopy Methods 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 238000004626 scanning electron microscopy Methods 0.000 description 6
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 238000000399 optical microscopy Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- SGRHVVLXEBNBDV-UHFFFAOYSA-N 1,6-dibromohexane Chemical compound BrCCCCCCBr SGRHVVLXEBNBDV-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QTPLEVOKSWEYAC-UHFFFAOYSA-N 1,2-diphenyl-9h-fluorene Chemical compound C=1C=CC=CC=1C1=C2CC3=CC=CC=C3C2=CC=C1C1=CC=CC=C1 QTPLEVOKSWEYAC-UHFFFAOYSA-N 0.000 description 2
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 2
- PDQRQJVPEFGVRK-UHFFFAOYSA-N 2,1,3-benzothiadiazole Chemical compound C1=CC=CC2=NSN=C21 PDQRQJVPEFGVRK-UHFFFAOYSA-N 0.000 description 2
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 2
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- LFQSCWFLJHTTHZ-LIDOUZCJSA-N ethanol-d6 Chemical compound [2H]OC([2H])([2H])C([2H])([2H])[2H] LFQSCWFLJHTTHZ-LIDOUZCJSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- RYMCQWDAUFYTRI-UHFFFAOYSA-N 5-[9-(3,4,5-trihydroxyphenyl)fluoren-9-yl]benzene-1,2,3-triol Chemical compound OC1=C(O)C(O)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(O)C(O)=C(O)C=2)=C1 RYMCQWDAUFYTRI-UHFFFAOYSA-N 0.000 description 1
- RXACYPFGPNTUNV-UHFFFAOYSA-N 9,9-dioctylfluorene Chemical compound C1=CC=C2C(CCCCCCCC)(CCCCCCCC)C3=CC=CC=C3C2=C1 RXACYPFGPNTUNV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229940038879 chelated zinc Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001473 dynamic force microscopy Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000001442 methylidyne group Chemical group [H]C#[*] 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- BBFCIBZLAVOLCF-UHFFFAOYSA-N pyridin-1-ium;bromide Chemical class Br.C1=CC=NC=C1 BBFCIBZLAVOLCF-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/152—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/005—Dendritic macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/02—Polyamines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/18—Carrier blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K99/00—Subject matter not provided for in other groups of this subclass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Definitions
- This application relates to a zinc oxide nanoparticle thin film with improved mechanical flexibility.
- Metal oxide nanoparticles such as zinc oxide (ZnO) and nickel oxide have been intensively studied as interfacial layer materials for polymer-based optoelectronic devices. This is because metal oxide nanoparticles can easily form an electrically conductive thin film through a simple solution process without a high-temperature heat treatment process due to their high crystallinity. This low-temperature process is advantageous for integration into the underlying polymer semiconductor thin film, which may deteriorate at high temperatures. Additionally, metal oxide nanoparticle thin films exhibit high charge carrier mobility and wide bandgap that enable effective charge transport and high transmittance, respectively, resulting in high performance of organic optoelectronic devices such as OPV and OPD.
- OPV and OPD organic optoelectronic devices
- the metal oxide nanoparticle thin film acts as an encapsulation layer on the polymer-based photoactive layer, improving the air stability of OPV and OPD.
- metal oxide nanoparticles are brittle due to weak interactions between nanoparticles, so despite the advantages described above, they have rarely been used in flexible optoelectronic devices.
- ZnO nanoparticles Due to high electron mobility (> 0.002 cm 2 /Vs), wide band gap (> 3.3 eV), and small diameter ( ⁇ 100 nm), ZnO nanoparticles (ZnO NPs) serve as an electron transport layer in organic optoelectronic devices. It is one of the most studied materials as ETL). These properties have led to high-performance and air-stable OPVs and OPDs, but have rarely been used in flexible electronic devices. Fan researchers reported improved flexibility of ZnO-NP:polystyrene composite thin films (P. Fan, D. Zhang, Y. Wu, J. Yu, T.P. Russell, “Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells” Adv. Funct.
- the use of electrically insulating polymers may reduce the electrical properties of ZnO-NP-based ETL and result in phase separation. Additionally, the solubility of polystyrene in common organic solvents such as o-xylene hinders the application of alcohol-based ZnO-NP solutions. Therefore, the optimal additive for mechanically flexible ZnO-NP thin films has 1) small size (to avoid phase separation), 2) ⁇ -conjugated backbone (for better charge transport), and 3) high solubility in polar solvents. (for better miscibility in ZnO-NP alcohol solution).
- the present application seeks to provide a zinc oxide nanoparticle thin film with improved mechanical flexibility.
- the first aspect of the present application is a dendrimer comprising a compound represented by the following Chemical Formula I, an oligomer represented by the following Chemical Formula II, or a compound represented by the following Chemical Formula I at the terminal; and zinc oxide nanoparticles:
- R 1 is hydrogen or -OR a -R b ,
- R a is a C 1-10 alkylene group
- R b is an ammonium halide salt, and the ammonium salt is an ammonium salt (-NH 3 + ), a C 1-20 primary alkylamine, a secondary alkylamine, or a tertiary alkylamine containing at least one nitrogen, C 3-10 It is an ammonium salt of a heterocycloalkyl group, or a C 3-10 heteroaryl group, and in the ammonium halide salt, the halide ion is F - , Cl - , Br - , or I - ,
- R 2 is , , , , , or ego
- n is an integer from 1 to 10
- the dashed line is the connection part.
- the second aspect of the present application provides a flexible electronic device comprising the flexible film according to the first aspect as a charge transfer layer.
- the flexible membrane according to embodiments of the present application includes a multicharged conjugated electrolyte (MCCE) and zinc oxide nanoparticles, and zinc oxide is formed due to strong ionic interaction between the multicharged conjugated electrolyte and the zinc oxide nanoparticles. Nanoparticles can form aggregates, which has the characteristic of improving the mechanical flexibility of the membrane.
- MCCE multicharged conjugated electrolyte
- Zinc zinc oxide is formed due to strong ionic interaction between the multicharged conjugated electrolyte and the zinc oxide nanoparticles.
- Nanoparticles can form aggregates, which has the characteristic of improving the mechanical flexibility of the membrane.
- the flexible film according to embodiments of the present application does not contain an electrically insulating polymer such as polystyrene, but rather contains a polyion conjugated electrolyte that does not affect the electrical properties of the thin film, and can be used as a charge transfer layer in a flexible electronic device. It has the characteristic of not deteriorating the electrical characteristics of the device.
- the flexible membrane according to the embodiments of the present application has the characteristic that cracks do not occur even when tensile bending is repeated several times at a bending radius (r) of about 1.5 mm in a thickness range of about 500 nm or less due to improved flexibility.
- the flexible membrane according to the embodiments of the present application has the characteristic of not cracking even when tensile bending is repeated several or hundreds of times with a bending radius (r) of about 2.5 mm in a thickness range of about 100 nm or less due to improved flexibility. there is.
- the flexible membrane according to the embodiments of the present application does not crack even when tensile bending is repeated about 300 times or about 250 times with a bending radius (r) of about 2.5 mm in a thickness range of about 100 nm or less due to improved flexibility. There is a characteristic.
- the flexible electronic device includes the flexible membrane of the present application as a charge transfer layer, so that the original electrical properties are maintained even after tensile bending is repeated several or hundreds of times with a bending radius (r) of about 2.5 mm. There is.
- the flexible film according to the embodiments of the present application has the feature of being able to be manufactured through a simple solution process that does not deteriorate the electrical properties of the electronic device.
- Figure 1 shows the synthesis route of diphenylfluorene pyridinium bromide (PFPBr) in an example of the present application.
- Figures 2 and 3 show 1 H and 13 C NMR spectra of Compound 2, according to an example of the present application.
- Figures 4 and 5 show 1 H and 13 C NMR spectra of compound 3, according to an example of the present application.
- Figures 6 and 7 show 1 H and 13 C NMR spectra of PFPBr in an example of the present application.
- Figure 8 is a schematic diagram of zinc oxide nanoparticles (ZnO nanoparticles; ZnO-NP) and the chemical structures of KBr and PFPBr (a), and various amounts of KBr and PFPBr for ZnO-NPs, according to an example of the present application.
- Dynamic light scattering (DLS) analysis results and corresponding solution images for solutions containing ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr (numbers in parentheses indicate the molar concentration of Br - (i.e., [ Br - ]) is shown.) (b) is shown.
- DLS Dynamic light scattering
- Figure 9 is a photograph of PFPBr solutions of various concentrations dissolved in 2-methoxyethanol, according to an example of the present application.
- Figure 10 shows Br 3d core-level XPS spectra of ZnO-NP, ZnO-NP:KBr and ZnO-NP:PFPBr thin films containing various amounts of KBr and PFPBr (numbers in parentheses are (a) Schematic showing the composition of ZnO-NP:KBr and ZnO-NP:PFPBr complexes at various molar concentrations of KBr and PFPBr (representing the molar concentration of Br - ) and the composition of free Br as a function of the molar concentration of KBr and PFPBr.
- This is an optical microscope image of the thick film in (c) after bending five times at a bending radius (r) 1.5 mm (scale bar: 20 ⁇ m, arrow indicates the bending direction).
- AFM Atomic force microscopy
- OPD organic photodetector
- EQE external quantum efficiency
- the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and to aid understanding of the present application. It is used to prevent unscrupulous infringers from unfairly exploiting disclosures that contain precise or absolute figures.
- step of or “step of” as used throughout the specification herein do not mean “step for.”
- the term "combination(s) thereof" included in the Markushi format expression means a mixture or combination of one or more selected from the group consisting of the components described in the Markushi format expression, It means containing one or more selected from the group consisting of the above components.
- alkyl refers to a linear or branched alkyl group having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 5 carbon atoms. and all possible isomers thereof.
- the alkyl or alkyl group includes methyl group (Me), ethyl group (Et), n-propyl group ( n Pr), iso-propyl group ( i Pr), n-butyl group ( n Bu), and iso-butyl group.
- n-pentyl group ( i Bu), tert-butyl group (tert-Bu, t Bu), sec-butyl group (sec-Bu, sec Bu), n-pentyl group ( n Pe), iso-pentyl group ( iso Pe), sec -Pentyl group ( sec Pe), tert-pentyl group ( t Pe), neo-pentyl group ( neo Pe), 3-pentyl group, n-hexyl group, iso-hexyl group, heptyl group, 4,4-dimethylphene Examples include, but are not limited to, tyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, and isomers thereof.
- the first aspect of the present application is a dendrimer comprising a compound represented by the following Chemical Formula I, an oligomer represented by the following Chemical Formula II, or a compound represented by the following Chemical Formula I at the terminal; and zinc oxide nanoparticles:
- R 1 is hydrogen or -OR a -R b ,
- R a is a C 1-10 alkylene group
- R b is an ammonium halide salt, and the ammonium salt is an ammonium salt (-NH 3 + ), a C 1-20 primary alkylamine, a secondary alkylamine, or a tertiary alkylamine containing at least one nitrogen, C 3-10 It is an ammonium salt of a heterocycloalkyl group, or a C 3-10 heteroaryl group, and in the ammonium halide salt, the halide ion is F - , Cl - , Br - , or I - ,
- R 2 is , , , , , or ego
- n is an integer from 1 to 10
- the dashed line is the connection part.
- the ammonium salt of R b is ammonium salt (-NH 3 + ), trimethylammonium salt, triethylammonium salt, tripropylammonium salt, Methylammonium salt, ethyl ammonium salt, propyl ammonium salt, dimethyl ammonium salt, ethyl methyl ammonium salt, methyl propy ammonium salt, diethy ammonium salt, ethyl propy ammonium salt, dipropylammonium salt, ethyl dimethyl ammonium salt, dimethyl propy ammonium salt, diethyl methyl ammonium salt, ethyl methyl propy ammonium salt, Select from methyldipropylammonium salt, diethylpropylammonium salt, ethyldipropylammonium salt, pyridinium salt, aziridinium salt, azetidinium salt, pyrrolidinium salt,
- the halide ion of the ammonium halide salt may be a fluoride ion, a chloride ion, a bromide ion, or an iodide ion.
- R 1 is It may be, but may not be limited to this.
- the compound represented by Formula I may be diphenylfluorene pyridinium bromide (PFPBr) represented by the following Formula 1, but may not be limited thereto:
- PFPBr diphenylfluorene pyridinium bromide
- the oligomer represented by Formula II may be represented by the following Formula 2, but may not be limited thereto:
- R 2 is , , , , , or ego
- n is an integer from 1 to 10
- the dashed line is the connection part.
- a compound represented by Formula I; An oligomer represented by the above formula (II); And the dendrimer containing the compound represented by Formula I at the terminal may be a multicharged conjugated electrolyte (MCCE) containing multiple ionic functional groups at the terminal.
- the flexible membrane of the present application includes the zinc oxide nanoparticles and the polyion conjugated electrolyte, and strong ionic interaction (multivalent interaction) between the multiple ionic functional groups of the polyion conjugate electrolyte and the zinc oxide nanoparticles. Due to this, zinc oxide nanoparticles can form aggregates, which has the characteristic of improving the mechanical flexibility of the membrane.
- the multiple ionic functional groups included in the basic structure of Chemical Formula I are the main structure that can derive the effects of the present invention, and the basic skeleton is a single compound, which is used not only for the polyion conjugate electrolyte represented by Chemical Formula I, but also for this
- the oligomer represented by Formula II with an expanded structure, and the dendrimer containing multiple structures of Formula I at the terminal can have the same, similar, or improved level of effect as the polyion conjugate electrolyte represented by Formula I. It can be expected that there will be.
- a compound represented by Formula I An oligomer represented by the above formula (II); And in the dendrimer containing the compound represented by Formula I at the terminal, the multiple ionic functional groups may refer to R b .
- a dendrimer refers to a polymer material or macromolecule in which a branch-like unit structure repeatedly extends from the center, and consists of a central core, an interior branching unit, and an exterior surface functional group. It is composed of functional groups).
- the dendrimer may be used without particular limitation as long as it is a polymer of a typical dendrimer structure that can bind a compound containing multiple ionic functional groups as external surface functional groups.
- the dendrimer may be a dendrimer of polyethyleneimine (PEI), polypropyleneimine (PPI), or polyamidoamine (PAMAM), but may not be limited thereto.
- the dendrimer may be a 1st to 5th generation dendrimer, but may not be limited thereto.
- the dendrimer may further include a linker compound that assists in the connection between the internal branch unit and the external surface functional group, and the type of the linker compound may vary depending on the type of the dendrimer. there is.
- the dendrimer of polyethyleneimine may be, as a non-limiting example, a dendrimer of 1st to 3rd generation polyethyleneimine represented by the following structure, but may not be limited thereto:
- ⁇ in the dendrimer structure of polyethyleneimine may mean an external surface functional group, and when the external surface functional group is diphenylfluorene pyridinium bromide (PFPBr) represented by Formula 1 above.
- the dendrimer skeleton may be bonded to the 2nd carbon of the fluorene group as shown in the structure below, and may further include a linker compound such as an amine:
- the halide ion (X - ) of R b i.e., the halide ion of the polyion conjugate electrolyte
- Zn 2+ of the zinc oxide nanoparticles coordinate to form the zinc oxide nanoparticles. It may be agglomerating.
- the process of agglomerating the zinc oxide nanoparticles will be described in more detail:
- the halogenated ions of the polyion conjugated electrolyte ( Agglomerated halide chelated zinc oxide nanoparticles can be produced.
- the flexible membrane of the present application can be obtained by manufacturing a solution containing the polyion conjugated electrolyte and the zinc oxide nanoparticles into a membrane through a solution process.
- the solvent may be an alcohol solution of methanol, ethanol, propanol, 2-methoxyethanol, or isopropyl alcohol, but may not be limited thereto.
- the solution process may be a solution process commonly used to manufacture films of electronic devices, and non-limiting examples include spin casting, spray, or inkjet ( It may be an inkjet method, but may not be limited thereto.
- the diameter of the zinc oxide nanoparticles may be from about 1 nm to about 100 nm, but may not be limited thereto.
- the thickness of the flexible membrane may be about 1 nm to about 1 ⁇ m, but may not be limited thereto. In one embodiment of the present application, the thickness of the flexible film can be appropriately adjusted depending on the characteristics of the flexible electronic device to which it is applied. In one embodiment of the present application, the thickness of the flexible film for application to a flexible electronic device may preferably be from about 10 nm to about 100 nm, and more preferably from about 40 nm to about 80 nm.
- the flexible membrane may not crack even if it is bent about 300 times or more or about 250 times or more at a bending radius of about 2.5 mm in a thickness range of about 100 nm or less.
- the flexible membrane does not contain an electrically insulating polymer such as polystyrene, but contains a single molecule polyion conjugated electrolyte that does not affect the electrical properties of the thin film, and is a flexible electronic device. It has the characteristic of not deteriorating the electrical characteristics of the device when used as a charge transfer layer.
- a second aspect of the present application provides a flexible electronic device comprising the flexible film according to the first aspect as a charge transfer layer.
- the flexible electronic device may include one or more selected from flexible organic light-emitting diodes, flexible solar cells, flexible optical sensors, perovskite light-emitting diodes, flexible transistors, and flexible chemical sensors. However, it may not be limited thereto.
- the flexible electronic device includes the flexible membrane of the present application as a charge transfer layer, so that the original electrical properties are maintained even after tensile bending is repeated several or hundreds of times with a bending radius (r) of about 2.5 mm. You can.
- Pyridine was purchased from Sigma Aldrich and Junsei Chemical Company, respectively. 1,6-dibromohexane was purchased from Tokyo Chemical Industry Company. Mercaptopropionic acid and acetonitrile were purchased from Alfa Aesar. Pyridine was pyrogallol, and N,N-dimethylformamide, potassium carbonate, and sulfuric acid were purchased from Daejeong. Silica gel (Merck, 230 mesh to 400 mesh) was used for chromatographic purification of all intermediates and target molecules. All other chemicals and solvents were purchased from Sigma Aldrich, Fisher Scientific, or Acros Chemical Company.
- Figure 1 shows the synthetic route of PFPBr.
- Pyrocatechol appended-fluorene (compound 2 in FIG. 1) is described in reference BH Lee, IH Jung, HY Woo, HK Shim, G. Kim, and K. Lee, “Multi-Charged Conjugated Polyelectrolytes as a Versatile Work Function Modifier for Organic Electronic Devices", Adv. Funct. Mater. 24 (2014), 1100-1108. It was prepared in 88% yield from commercially available 9-fluorenone.
- Precursor compound 3 was synthesized according to standard methods using 1,6-dibromohexane. Afterwards, pyridine was easily coupled to compound 3 to produce PFPBr in 76% yield.
- PFPBr is characterized as an alkylated spiro-type diphenylfluorene with six water-soluble pyridinium groups.
- the structure of PFPBr was characterized by 1 H-NMR), 13 C-NMR, electrospray ionization mass spectrometry (ESI-MS), and component analysis. Details of synthesis and characterization are as follows.
- Zinc oxide nanoparticles (ZnO-NPs) (2.5 wt% in isopropyl alcohol) with an average particle size of 10 nm to 15 nm were purchased from Sigma Aldrich.
- the electron donor poly [(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4 ,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4,8-dione)](poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro) thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene
- the size distribution of ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr was measured using dynamic light scattering (DLS) analysis (DLS-7000, Otsuka Electronics).
- DLS dynamic light scattering
- the scattering angle was fixed at 135°, and the temperature of the sample was kept constant at 25.0°C ⁇ 0.1°C.
- KBr and PFPBr were first dissolved in 2-methoxyethanol (2-ME) to prepare KBr and PFPBr solutions of various concentrations, respectively.
- ZnO-NP IPA isopropyl alcohol
- ZnO-NP:KBr and ZnO-NP:PFPBr solutions were obtained.
- pure IPA was added to the mixed solution.
- ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr thin films were prepared by spin casting each solution on a silicon substrate cleaned with UV ozone. Afterwards, the thin film was annealed at 80°C for 5 minutes in a nitrogen-filled glove box, after which the sample was loaded into an XPS spectrometer and XPS spectra were obtained at a pressure of 5 ⁇ 10 -9 mbar.
- the same thin films used for OM analysis were used in the atomic force microscope (AFM) system (AFM5100N, Hitachi), and tapping mode atomic force microscopy was used to capture height images.
- AFM atomic force microscope
- SNM custom bending machine
- ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr films were evaluated using field emission scanning electron microscopy (FE-SEM, S-4800, Hitachi). . SEM images were obtained at an acceleration voltage of 15 kV.
- a flexible optical sensor (organic photodetector; OPD) was manufactured by spin casting a PEDOT:PSS (PH1000 grade) electrode on a transparent polyimide substrate. Electrical conductivity and wettability of PEDOT:PSS were increased by adding 5 wt% of DMSO (Dimethyl sulfoxide) and Zonyl FS-300 compound (0.16 wt%) to the PEDOT:PSS solution. The electrodes were baked at 150°C for 10 minutes in ambient air. As a hole transporting layer/electron blocking layer (HTL/EBL), PEDOT:PSS (AI4083 grade) was spin cast onto a PEDOT:PSS/DMSO/Zonyl FS-300 transparent electrode in ambient air.
- HTL/EBL hole transporting layer/electron blocking layer
- the membrane was baked at 150°C for 15 minutes and then transferred to a nitrogen-filled glove box to deposit a photoactive layer.
- PM6:Y6 (1:1.2 by weight) chloroform solution with a total concentration of 14 mg/mL was used to spin cast onto PEDOT:PSS (AI4083 grade).
- a small amount (5 ⁇ L) of 1-chloronaphthalene (1-CN) was added to the PM6:Y6 solution.
- a PFN layer was spin-cast from a methanol solution (0.5 m/mL) containing a small amount of acetic acid (2 ⁇ L) for better wettability of the ZnO-NP-based solution on ETL/HBL. .
- PFPBr molecular structure, see Figure 8 a
- Multicharged PFPBr electrolyte is designed to induce multiple ionic interactions with ZnO-NPs through the formation of Zn 2+ -Br - -N + bonds at the interface between ZnO-NPs and MCCE. It has been done.
- the polyionic interactions between polyionic PFP + and multiple ZnO-NPs can improve the flexibility of the ZnO-NP:PFPBr thin film. .
- Figure 8b shows the size distribution and images of ZnO-NPs according to various amounts of KBr or PFPBr compounds.
- ZnO-NP:KB shows almost the same size distribution, regardless of the amount of KBr in the ZnO-NP:KBr solution, compared to the size distribution of pristine ZnO-NPs (about 15 nm to 50 nm in diameter).
- the ZnO-NP:PFPBr solution shows a gradual increase in particle size distribution as the amount of PFPBr increases in the ZnO-NP:PFPBr solution. Accordingly, the turbidity of the ZnO-NP:PFPBr solution gradually increases, which is confirmed by the image of the solution ( Figure 8b).
- the ZnO-NP:KBr solution remained transparent even though the same molar ratio of KBr (i.e., [Br ⁇ ]) was added to the ZnO-NP:KBr solution compared to the ZnO-NP:PFPBr solution.
- the gradually increasing size distribution and turbidity are due to the ionic interaction between ZnO-NP and PFPBr at the adsorption-desorption equilibrium, considering the unchanged turbidity of the original PFPBr solution at the same concentration used in the ZnO-NP:PFPBr solution. This may be due to the enhanced aggregation of ZnO-NPs due to the action ( Figure 9).
- the gradually increased particle size distribution and turbidity of the ZnO-NP:PFPBr mixture demonstrate the effectiveness of multiion PFPBr to improve the chemical interaction between ZnO-NPs.
- FIG. 10a shows Br 3d core-level XPS spectra of ZnO-NP:KBr and ZnO-NP:PFPBr thin films with various molar concentrations of KBr and PFPBr, which are the same as DLS measurements.
- XPS spectra of pristine KBr and PFPBr were also obtained and shown in Figure 10a.
- the spectrum of KBr is centered at 68.8 eV and 69.8 eV, corresponding to Br 3d 5/2 and Br 3d 3/2 , respectively, at the Br - anion bound to the K + cation (hereinafter referred to as free Br). It represents two combined sub-peaks.
- the ZnO-NP:KBr mixture shows almost the same spectrum as pristine KBr regardless of the amount of KBr in the ZnO-NP:KBr mixture, but with very small spectra centered at 70.0 eV and 71.0 eV corresponding to Zn 2+ -Br - . A sub-peak was observed.
- the ZnO-NP:PFPBr thin film shows a clearly shifted spectrum to higher binding energy compared to that of the pristine PFPBr thin film.
- the shifted spectrum of ZnO-NP:PFPBr is divided into two bound subtypes of pristine PFPBr centered at 67.2 eV and 68.2 eV, corresponding to Br 3d 5/2 and Br 3d 3/2 (i.e., free Br), respectively.
- ZnO-NP and ZnO-NP:KBr thick films mostly show a greater number of cracks in the direction perpendicular to the bending direction.
- the ZnO-NP:PFPBr thick film exhibited a smooth and continuous surface without cracking even after applying the same mechanical stress, resulting from the strong intermolecular interactions of Zn 2+ -Br - -N + coordination described above. It shows the improved flexibility of the thick film.
- the surface morphology of the ZnO-NP:PFPBr thick film is different from that of the ZnO-NP and ZnO-NP:KBr thick films.
- the relatively rough surface of the ZnO-NP:PFPBr thick film compared to the ZnO-NP and ZnO-NP:KBr thick films may be due to the ZnO-NP having less mobility due to ionic interaction with PFPBr during the drying process of the film.
- the multivalent interaction between ZnO-NPs and PFPBr may reduce the degree of freedom of ZnO-NPs during the film drying process, resulting in many aggregation sites and associated rough surfaces.
- AFM images confirm cracks (for ZnO-NP and ZnO-NP:KBr thick films) and rough surface morphology (for ZnO-NP:PFPBr thick films) as described above ( Figure 13).
- the results show that effective ionic interaction between ZnO-NPs and PFPBr; and the improved mechanical flexibility of the ZnO-NP:PFPBr membrane.
- ZnO-NP:PFPBr thin film (thickness 55 nm to 60 nm) also had improved flexibility compared to ZnO-NP and ZnO-NP:KBr thin films (FIG. 14).
- Thin films were prepared by spin casting ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr solutions on a transparent polyimide substrate. Since the film thickness of the thin film is much smaller than that of the thick film (FIG. 12g to i), no large cracks are observed in the thin film by optical microscopy measurements. Therefore, SEM measurements were performed to find small cracks on the thin film surface.
- ZnO-NP and ZnO-NP:KBr thin films exhibit small but numerous cracks after tensile bending.
- the ZnO-NP:KBr thin film appears to have a relatively small number of cracks compared to the ZnO-NP thin film (a to b in Figure 14), but a greater number of cracks was observed at high magnification (1 ⁇ 10 5 ) (e in Figure 14).
- Flexible optical sensor flexible organic photodetector; flexible OPD
- FIG. 15a and b respectively show the device structure and corresponding energy level diagram.
- PFN was used to improve the wettability of the ZnO-NP-based solution when casting ZnO-NP-based ETL/EBL.
- Figure 15 d and e show the responsivity (R) and detectability (detectivity (D * )) spectra of flexible OPDs made of various ETL/HBL before and after 250 repeated bendings, where the data are shown under short circuit conditions (short circuit). -circuit condition) (0 V). The corresponding external quantum efficiency (EQE) spectrum is shown in Figure 16.
- the original device showed a similar EQE spectrum regardless of the type of ETL/HBL, with a value of approximately 69% or higher in the spectrum at 750 nm.
- the EQE of the device made of ZnO-NP decreased by about 46.4%.
- the EQE of the device containing ZnO-NP:KBr decreased significantly in the entire spectral range after 250 repeated bending cycles.
- the R spectrum was shown (d in Figure 15).
- the ionic interaction between ZnO-NP and polyionic PFPBr electrolyte and the effect of this interaction on the mechanical properties of ZnO-NP:PFPBr thin films were investigated.
- PFPBr with multiple pyridinium bromides as ionic pendant groups was synthesized.
- the multiple ionic pendant groups of the ZnO-NP:PFPBr complex form multiple Zn 2+ -Br - -N + coordinations by a single PFPBr molecule. Therefore, the polyionic PFP + cation can have multiple ZnO-NPs through ionic coordination between ZnO-NPs and PFPBr.
- the OPD containing ZnO-NP and ZnO-NP:KBr showed a significant decrease in R and D * compared to the pristine device before bending due to crack formation in the ZnO-NP and ZnO-NP:KBr ETL/HBL. .
- the present invention presents a simple and effective strategy to improve the mechanical properties of metal oxide nanoparticle-based thin films, and provides a simple and effective strategy for improving the mechanical properties of metal oxide nanoparticle-based thin films and improves the mechanical properties of metal oxide nanoparticles developed to date.
- the particles can be used in various flexible organic optoelectronic devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The present application provides a zinc oxide nanoparticle thin film with improved mechanical flexibility.
Description
본원은 기계적 유연성이 향상된 산화아연 나노입자 박막에 관한 것이다.This application relates to a zinc oxide nanoparticle thin film with improved mechanical flexibility.
용액 기반 제조 공정을 사용하여 다양한 유연 기판에 박막 소자를 제작할 수 있는 것은 유연 전자 장치(electronics)에 대한 관심을 불러일으킨다. 플라스틱 기판에 다층 전자 박막을 통합하면 가볍고 저렴하며 유연한, 유기 발광 다이오드 (organic light-emitting diode; OLED), 태양광 소자 (photovoltaic; OPV) 및 광센서 (photodetector; OPD)와 같은 광전자 소자를 개발할 수 있다. 각 구성 요소는 효율적이고 기계적으로 견고한 광전자 소자를 개발하기 위하여 다양한 기계적 응력 하에서 전기 전도성이 있고 견고한 전자 재료로 구성되어야 한다. 금속성 및 반도체성 고분자는 유연한 전극 및 광활성 재료의 우수한 후보이다. 그러나, 주변 공기에서의 보통의 안정성 및 금속 전극과의 열악한 전기 접촉으로 인하여 소자 성능이 저하될 수 있다. 고성능 고분자 기반 전자 장치를 개발하려면 전기 전도성이 있고 공기에 안정적인 계면층이 필요하다.The ability to fabricate thin film devices on a variety of flexible substrates using solution-based manufacturing processes has sparked interest in flexible electronics. Integrating multilayer electronic thin films on plastic substrates enables the development of lightweight, inexpensive, and flexible optoelectronic devices such as organic light-emitting diodes (OLEDs), photovoltaic devices (OPVs), and photodetectors (OPDs). there is. Each component must be composed of an electronic material that is electrically conductive and robust under various mechanical stresses to develop efficient and mechanically robust optoelectronic devices. Metallic and semiconducting polymers are excellent candidates for flexible electrodes and photoactive materials. However, device performance may be reduced due to poor electrical contact with metal electrodes and poor stability in ambient air. Developing high-performance polymer-based electronic devices requires an interfacial layer that is electrically conductive and stable in air.
고분자 기반 광전자 소자의 계면층 재료로서 산화아연(ZnO) 및 산화니켈과 같은 금속 산화물 나노입자(metal oxide nanoparticle; MONP)가 집중적으로 연구되어 왔다. 이는, 금속 산화물 나노입자는 높은 결정성으로 인하여 고온 열처리 공정 없이 간단한 용액 공정으로 전기 전도성 박막을 쉽게 형성할 수 있기 때문이다. 이러한 저온 공정은 고온에서 열화될 수 있는 하부 고분자 반도체 박막에 통합하는 데 유리하다. 또한, 금속 산화물 나노입자 박막은, 각각 효과적인 전하 수송 및 높은 투과도를 가능하게 하는 높은 전하 캐리어 이동도 및 넓은 밴드갭을 나타내어, OPV 및 OPD와 같은 유기 광전자 소자의 고성능을 초래한다. 금속 산화물 나노입자 박막은 고분자 기반 광활성층 위에서 캡슐화층 역할을 하여 OPV 및 OPD의 공기 안정성을 향상시킨다. 그러나, 금속 산화물 나노입자는 나노입자 간의 약한 상호 작용으로 인해 부서지기 쉬우므로, 상기 설명한 이점에도 불구하고 유연 광전자 소자에 거의 사용되지 않았다.Metal oxide nanoparticles (MONPs) such as zinc oxide (ZnO) and nickel oxide have been intensively studied as interfacial layer materials for polymer-based optoelectronic devices. This is because metal oxide nanoparticles can easily form an electrically conductive thin film through a simple solution process without a high-temperature heat treatment process due to their high crystallinity. This low-temperature process is advantageous for integration into the underlying polymer semiconductor thin film, which may deteriorate at high temperatures. Additionally, metal oxide nanoparticle thin films exhibit high charge carrier mobility and wide bandgap that enable effective charge transport and high transmittance, respectively, resulting in high performance of organic optoelectronic devices such as OPV and OPD. The metal oxide nanoparticle thin film acts as an encapsulation layer on the polymer-based photoactive layer, improving the air stability of OPV and OPD. However, metal oxide nanoparticles are brittle due to weak interactions between nanoparticles, so despite the advantages described above, they have rarely been used in flexible optoelectronic devices.
높은 전자 이동도(> 0.002 cm2/Vs), 넓은 밴드 갭(> 3.3 eV) 및 작은 직경(< 100 nm)으로 인하여 ZnO 나노 입자(ZnO NP)는 유기 광전자 소자에서 전자 수송층(electron transport layer; ETL)으로서 가장 많이 연구된 재료 중 하나이다. 상기 특성은 고성능 및 공기 안정한 OPV 및 OPD로 이어졌으나, 유연 전자 소자에는 거의 사용되지 않았다. 팬(Fan) 연구진은 ZnO-NP: 폴리스티렌 복합 박막의 향상된 유연성을 보고하였으나 (P. Fan, D. Zhang, Y. Wu, J. Yu,T.P. Russell, "Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells" Adv. Funct. Mater. 30 (2020), 2002932), 전기 절연 고분자의 사용은 ZnO-NP 기반 ETL의 전기적 특성을 감소시키고 상 분리를 초래할 수 있다. 또한, o-자일렌과 같은 일반적인 유기 용매에 대한 폴리스티렌의 용해도는 알코올 기반 ZnO-NP 용액의 적용을 방해한다. 따라서, 기계적으로 유연한 ZnO-NP 박막에 대한 최적의 첨가제는 1) 작은 크기 (상 분리를 피하기 위해), 2) π-공액 백본(더 나은 전하 수송을 위해), 및 3) 극성 용매에서 높은 용해도(ZnO-NP 알코올 용액에서 더 나은 혼화성을 위해)를 가져야 한다.Due to high electron mobility (> 0.002 cm 2 /Vs), wide band gap (> 3.3 eV), and small diameter (< 100 nm), ZnO nanoparticles (ZnO NPs) serve as an electron transport layer in organic optoelectronic devices. It is one of the most studied materials as ETL). These properties have led to high-performance and air-stable OPVs and OPDs, but have rarely been used in flexible electronic devices. Fan researchers reported improved flexibility of ZnO-NP:polystyrene composite thin films (P. Fan, D. Zhang, Y. Wu, J. Yu, T.P. Russell, “Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells" Adv. Funct. Mater. 30 (2020), 2002932), the use of electrically insulating polymers may reduce the electrical properties of ZnO-NP-based ETL and result in phase separation. Additionally, the solubility of polystyrene in common organic solvents such as o-xylene hinders the application of alcohol-based ZnO-NP solutions. Therefore, the optimal additive for mechanically flexible ZnO-NP thin films has 1) small size (to avoid phase separation), 2) π-conjugated backbone (for better charge transport), and 3) high solubility in polar solvents. (for better miscibility in ZnO-NP alcohol solution).
본원은 기계적 유연성이 향상된 산화아연 나노입자 박막을 제공하고자 한다.The present application seeks to provide a zinc oxide nanoparticle thin film with improved mechanical flexibility.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본원의 제 1 측면은, 하기 화학식 Ⅰ로서 표시되는 화합물, 하기 화학식 Ⅱ로서 표시되는 올리고머, 또는 하기 화학식 Ⅰ로서 표시되는 화합물을 말단에 포함하는 덴드리머; 및 산화아연 나노입자를 포함하는, 유연 막을 제공한다:The first aspect of the present application is a dendrimer comprising a compound represented by the following Chemical Formula I, an oligomer represented by the following Chemical Formula II, or a compound represented by the following Chemical Formula I at the terminal; and zinc oxide nanoparticles:
[화학식 Ⅰ][Formula Ⅰ]
[화학식 Ⅱ][Formula Ⅱ]
상기 화학식 Ⅰ 및 상기 화학식 Ⅱ에서,In Formula I and Formula II,
R1은 수소 또는 -O-Ra-Rb이고,R 1 is hydrogen or -OR a -R b ,
Ra는 C1-10의 알킬렌기이고,R a is a C 1-10 alkylene group,
Rb는 할로겐화 암모늄염이며, 상기 암모늄염은 암모늄염(-NH3
+), 질소를 하나 이상 포함하는, C1-20의 1차 알킬아민, 2차 알킬아민, 또는 3차 알킬아민, C3-10의 헤테로시클로알킬기, 또는 C3-10의 헤테로아릴기의 암모늄염이며, 상기 할로겐화 암모늄염에서 할로겐화 이온은 F-, Cl-, Br-, 또는 I-이고,R b is an ammonium halide salt, and the ammonium salt is an ammonium salt (-NH 3 + ), a C 1-20 primary alkylamine, a secondary alkylamine, or a tertiary alkylamine containing at least one nitrogen, C 3-10 It is an ammonium salt of a heterocycloalkyl group, or a C 3-10 heteroaryl group, and in the ammonium halide salt, the halide ion is F - , Cl - , Br - , or I - ,
단, R1이 모두 수소인 경우는 제외하며,However, except for the case where R 1 is all hydrogen,
m은 0 또는 1이고, n은 1 내지 10의 정수이고,m is 0 or 1, n is an integer from 1 to 10,
파선은 연결 부분임.The dashed line is the connection part.
본원의 제 2 측면은, 제 1 측면에 따른 유연 막을 전하 이동층으로서 포함하는, 유연 전자 소자를 제공한다.The second aspect of the present application provides a flexible electronic device comprising the flexible film according to the first aspect as a charge transfer layer.
본원의 구현예들에 따른 유연 막은, 다중이온 공액 전해질(multicharged conjugated electrolyte; MCCE) 및 산화아연 나노입자를 포함하는 것으로서, 다중이온 공액 전해질 및 산화아연 나노입자 사이의 강한 이온 상호작용으로 인하여 산화아연 나노입자가 응집체를 형성할 수 있으며, 이에 막의 기계적 유연성이 향상되는 특징이 있다.The flexible membrane according to embodiments of the present application includes a multicharged conjugated electrolyte (MCCE) and zinc oxide nanoparticles, and zinc oxide is formed due to strong ionic interaction between the multicharged conjugated electrolyte and the zinc oxide nanoparticles. Nanoparticles can form aggregates, which has the characteristic of improving the mechanical flexibility of the membrane.
본원의 구현예들에 따른 유연 막은, 폴리스티렌 등의 전기 절연 고분자를 포함하는 것이 아닌, 박막의 전기적 특성에 영향을 끼치지 않는 다중이온 공액 전해질을 포함하는 것으로서, 유연 전자 소자의 전하 이동층으로서 사용될 때 소자의 전기적 특성을 저하시키지 않는 특징이 있다.The flexible film according to embodiments of the present application does not contain an electrically insulating polymer such as polystyrene, but rather contains a polyion conjugated electrolyte that does not affect the electrical properties of the thin film, and can be used as a charge transfer layer in a flexible electronic device. It has the characteristic of not deteriorating the electrical characteristics of the device.
본원의 구현예들에 따른 유연 막은, 향상된 유연성으로 인하여 약 500 nm 이하의 두께 범위에서, 굽힘 반경 (r) 약 1.5 mm에서 인장 굽힘을 수 회 반복하여도 균열이 발생하지 않는 특징이 있다. 본원의 구현예들에 따른 유연 막은, 향상된 유연성으로 인하여 약 100 nm 이하의 두께 범위에서, 굽힘 반경 (r) 약 2.5 mm으로 인장 굽힘을 수 회 또는 수백 회 반복하여도 균열이 발생하지 않는 특징이 있다. 본원의 구현예들에 따른 유연 막은, 향상된 유연성으로 인하여 약 100 nm 이하의 두께 범위에서, 굽힘 반경 (r) 약 2.5 mm으로 인장 굽힘을 약 300 회 또는 약 250 회 반복하여도 균열이 발생하지 않는 특징이 있다.The flexible membrane according to the embodiments of the present application has the characteristic that cracks do not occur even when tensile bending is repeated several times at a bending radius (r) of about 1.5 mm in a thickness range of about 500 nm or less due to improved flexibility. The flexible membrane according to the embodiments of the present application has the characteristic of not cracking even when tensile bending is repeated several or hundreds of times with a bending radius (r) of about 2.5 mm in a thickness range of about 100 nm or less due to improved flexibility. there is. The flexible membrane according to the embodiments of the present application does not crack even when tensile bending is repeated about 300 times or about 250 times with a bending radius (r) of about 2.5 mm in a thickness range of about 100 nm or less due to improved flexibility. There is a characteristic.
본원의 구현예들에 따른 유연 전자 소자는, 전하 이동층으로서 본원의 유연 막을 포함함으로써 굽힘 반경 (r) 약 2.5 mm으로 인장 굽힘을 수 회 또는 수백 회 반복하여도 원래의 전기적 특성이 유지되는 특징이 있다.The flexible electronic device according to the embodiments of the present application includes the flexible membrane of the present application as a charge transfer layer, so that the original electrical properties are maintained even after tensile bending is repeated several or hundreds of times with a bending radius (r) of about 2.5 mm. There is.
본원의 구현예들에 따른 유연 막은, 전자 소자의 전기적 특성을 저하시키지 않는 간단한 용액 공정을 통하여 제조될 수 있는 특징이 있다.The flexible film according to the embodiments of the present application has the feature of being able to be manufactured through a simple solution process that does not deteriorate the electrical properties of the electronic device.
도 1은, 본원의 일 실시예에 있어서, 다이페닐플루오렌 피리디늄 브로마이드 (diphenylfluorene pyridinium bromide; PFPBr)의 합성 경로를 나타내는 것이다.Figure 1 shows the synthesis route of diphenylfluorene pyridinium bromide (PFPBr) in an example of the present application.
도 2 및 3은, 본원의 일 실시예에 있어서, 화합물 2의 1H 및 13C NMR 스펙트럼을 나타낸 것이다.Figures 2 and 3 show 1 H and 13 C NMR spectra of Compound 2, according to an example of the present application.
도 4 및 5는, 본원의 일 실시예에 있어서, 화합물 3의 1H 및 13C NMR 스펙트럼을 나타낸 것이다.Figures 4 and 5 show 1 H and 13 C NMR spectra of compound 3, according to an example of the present application.
도 6 및 7은, 본원의 일 실시예에 있어서, PFPBr의 1H 및 13C NMR 스펙트럼을 나타낸 것이다.Figures 6 and 7 show 1 H and 13 C NMR spectra of PFPBr in an example of the present application.
도 8은, 본원의 일 실시예에 있어서, 산화아연 나노입자(ZnO nanoparticle; ZnO-NP)의 개략도와 KBr 및 PFPBr의 화학 구조 (a), 및 ZnO-NP에 대하여 다양한 양의 KBr 및 PFPBr을 포함하는 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 용액에 대한 동적 광 산란 (dynamic light scattering; DLS) 분석 결과 및 해당 용액 이미지 (괄호 안의 숫자는 Br-의 몰 농도 (즉, [Br-])를 나타냄.) (b)를 나타낸 것이다.Figure 8 is a schematic diagram of zinc oxide nanoparticles (ZnO nanoparticles; ZnO-NP) and the chemical structures of KBr and PFPBr (a), and various amounts of KBr and PFPBr for ZnO-NPs, according to an example of the present application. Dynamic light scattering (DLS) analysis results and corresponding solution images for solutions containing ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr (numbers in parentheses indicate the molar concentration of Br - (i.e., [ Br - ]) is shown.) (b) is shown.
도 9는, 본원의 일 실시예에 있어서, 2-메톡시에탄올에 용해된 다양한 농도의 PFPBr 용액의 사진이다.Figure 9 is a photograph of PFPBr solutions of various concentrations dissolved in 2-methoxyethanol, according to an example of the present application.
도 10은, 본원의 일 실시예에 있어서, 다양한 양의 KBr 및 PFPBr를 포함하는 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 박막의 Br 3d 코어-레벨 XPS 스펙트럼 (괄호 안의 숫자는 Br-의 몰 농도를 나타냄)과 다양한 몰 농도의 KBr 및 PFPBr에서 ZnO-NP:KBr 및 ZnO-NP:PFPBr 복합체의 구성을 나타내는 개략도 (a), KBr 및 PFPBr의 몰 농도의 함수로서 자유 Br의 피크 면적에 대한 Zn-Br 서브피크의 면적 (AZn-Br/AfreeBr) (b), 및 ZnO-NP/PFPBr 계면에서 Zn2+-Br--N+ 이온 결합을 갖는 ZnO-NP:PFPBr 복합체의 개략도 (c)를 나타낸 것이다.Figure 10 shows Br 3d core-level XPS spectra of ZnO-NP, ZnO-NP:KBr and ZnO-NP:PFPBr thin films containing various amounts of KBr and PFPBr (numbers in parentheses are (a) Schematic showing the composition of ZnO-NP:KBr and ZnO-NP:PFPBr complexes at various molar concentrations of KBr and PFPBr (representing the molar concentration of Br - ) and the composition of free Br as a function of the molar concentration of KBr and PFPBr. Area of the Zn-Br subpeak relative to the peak area (A Zn-Br /A freeBr ) (b), and ZnO-NP:PFPBr with Zn 2+ -Br - -N + ionic bond at the ZnO-NP/PFPBr interface. A schematic diagram of the complex (c) is shown.
도 11은, 본원의 일 실시예에 있어서, ZnO-NP (a), ZnO-NP:KBr([Br-] = 1.6 μM) (b), 및 ZnO-NP:PFPBr([Br-] = 1.6 μM) (c)의 후막(thick film)의 굽힘 반경 (r) = 1.5 mm에서 5 회 굽힘 후 광학 현미경 이미지를 나타낸 것이다 (스케일 바: 20μm, 화살표는 굽힘 방향을 나타냄).Figure 11 shows ZnO-NP (a), ZnO-NP:KBr ([Br - ] = 1.6 μM) (b), and ZnO-NP:PFPBr ([Br - ] = 1.6, in an example of the present application) μM) This is an optical microscope image of the thick film in (c) after bending five times at a bending radius (r) = 1.5 mm (scale bar: 20 μm, arrow indicates the bending direction).
도 12는, 본원의 일 실시예에 있어서, ZnO-NP (a, d, g), ZnO-NP:KBr ([Br-] = 1.6 μM) (b, e, h), 및 ZnO-NP:PFPBr ([Br-] = 1.6 μM) (c, f, i)의 후막의 r = 1.5 mm에서 5 회 굽힘 후 주사전자현미경 (scanning electron microscope; SEM)이미지 (여기서 이미지는 다양한 배율로 수득됨 (각각, 5Х103, 1Х105, 및 5Х104); 및 ZnO-NP, ZnO-NP:KBr, 및 ZnO-NP:PFPBr 후막의 서로 다른 표면 형태를 나타내는 개략도 (j)를 나타낸 것이다.Figure 12 shows ZnO-NP (a, d, g), ZnO-NP:KBr ([Br - ] = 1.6 μM) (b, e, h), and ZnO-NP: After five bendings at r = 1.5 mm of the thick film of PFPBr ([Br − ] = 1.6 μM) (c, f, i) Scanning electron microscope ( SEM) images of ZnO-NP, ZnO-NP:KBr , and ZnO -NP: Schematic diagram (j) showing different surface morphologies of PFPBr thick films is shown.
도 13은, 본원의 일 실시예에 있어서, ZnO-NP (a, d), ZnO-NP:KBr ([Br-] = 1.6 μM) (b, e), 및 ZnO-NP:PFPBr([Br-] = 1.6 μM) (c, f)의 후막의 r = 1.5 mm에서 5회 굽힘 후 원자힘 현미경 (atomic force microscopy; AFM) 이미지 이다 (눈금 막대: 2 μm (상단), 0.5 μm (하단)).Figure 13 shows ZnO-NP (a, d), ZnO-NP: KBr ([Br - ] = 1.6 μM) (b, e), and ZnO-NP: PFPBr ([Br - ] = 1.6 μM) Atomic force microscopy (AFM) image of the thick film in (c, f) after five bendings at r = 1.5 mm (scale bar: 2 μm (top), 0.5 μm (bottom) ).
도 14는, 본원의 일 실시예에 있어서, ZnO-NP (a, d, g), ZnO-NP:KBr ([Br-] = 4.0 μM) (b, e, h), 및 ZnO-NP:PFPBr ([Br-] = 4.0 μM) (c, f, i)의 박막 (thin film )의 r = 1.5 mm에서 굽힘 후(a 내지 f) 및 전(g 내지 i)의 SEM 이미지이다 (여기서, 다양한 배율(각각, 3Х104, 1Х105, 및 2Х105)에서 이미지를 수득함, 삽입 이미지는 스핀 캐스팅 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 박막에 해당하는 개략도를 나타내며, 여기서 회색 원은 ZnO-NP를 나타냄.).Figure 14 shows, in an example of the present application, ZnO-NP (a, d, g), ZnO-NP:KBr ([Br - ] = 4.0 μM) (b, e, h), and ZnO-NP: SEM images of a thin film of PFPBr ([Br - ] = 4.0 μM) (c, f, i) after (a to f) and before (g to i) bending at r = 1.5 mm (where: Images were obtained at different magnifications (3Х10 4 , 1Х10 5 , and 2Х10 5 , respectively), the inset images show the corresponding schematics of spin-cast ZnO-NP, ZnO-NP:KBr and ZnO-NP:PFPBr thin films, where Gray circles represent ZnO-NPs).
도 15는, 본원의 일 실시예에 있어서, 유연 유기 광센서 (organic photodetector; OPD)의 소자 구조 (a) 와 에너지 레벨 다이어그램 (b); 인장 응력을 가하지 않은 유연 OPD (좌측) 및 r = 2.5 mm로 인장 응력을 가한 유연 OPD (우측)의 사진 (스케일바: 1 cm) (c); ZnO-NP, ZnO-NP:KBr ([Br-] = 0.6 μM), 및 ZnO-NP:PFPBr ([Br-] = 0.6 μM) 박막을 ETL/HBL로 사용하여 제작된 유연 OPD의 반응도 (responsivity; R) (d) 및 검출능 (detectivity; D*) (e) (r = 2.5 mm에서 250 회 반복 인장 굽힘 전 (좌측) 및 후(우측)); r = 2.5 mm에서 250 회 굽힘 후 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr의 ETL/HBL로 제작된 유연 OPD의 전면 광학 현미경 이미지 (화살표는 인장 굽힘 방향을 나타냄, 스케일 바: 100 μm) (f); 및 ZnO-NP 및 ZnO-NP:KBr ETL/HBL를 포함하는 유연 OPD의 인장 굽힘 후 개략도 (좌측: 측면도, 우측: 평면도) (g)를 나타낸 것이다.Figure 15 is a device structure (a) and an energy level diagram (b) of a flexible organic photodetector (OPD), according to an embodiment of the present application; Photograph of flexible OPD without tensile stress (left) and flexible OPD tensile stressing to r = 2.5 mm (right) (scale bar: 1 cm) (c); Responsivity of flexible OPDs fabricated using ZnO-NP, ZnO-NP:KBr ([Br - ] = 0.6 μM), and ZnO-NP:PFPBr ([Br - ] = 0.6 μM) thin films using ETL/HBL. ; R) (d) and detectability (D * ) (e) (before (left) and after (right) 250 repeated tensile bending at r = 2.5 mm); Front optical microscopy images of flexible OPDs fabricated by ETL/HBL of ZnO-NP, ZnO-NP:KBr and ZnO-NP:PFPBr after 250 bendings at r = 2.5 mm (arrows indicate tensile bending direction, scale bar: 100 μm) (f); and a schematic view (left: side view, right: top view) of flexible OPD containing ZnO-NP and ZnO-NP:KBr ETL/HBL after tensile bending (g).
도 16은, 본원의 일 실시예에 있어서, ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 박막을 ETL/HBL로 사용하여 제작된 유연 OPD의 외부양자효율(EQE) 측정 결과로서, r = 2.5 nm에서 250 회 굽힘 전 (a); 및 후 (b)의 측정 결과를 나타낸 것이다 (빨간색 화살표는 반복 굽힘 후 소자 고장으로 인하여 감소된 파라미터를 나타냄.).Figure 16 shows the external quantum efficiency (EQE) measurement results of flexible OPD manufactured using ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr thin films as ETL/HBL in an example of the present application, (a) before 250 bends at r = 2.5 nm; and (b) shows the measurement results (red arrows indicate reduced parameters due to device failure after repeated bending).
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the attached drawings, implementation examples and embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present application may be implemented in various different forms and is not limited to the implementation examples and examples described herein. In order to clearly explain the present invention in the drawings, parts unrelated to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout this specification, when a part is said to be “connected” to another part, this includes not only the case where it is “directly connected,” but also the case where it is “electrically connected” with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is said to be located “on” another member, this includes not only the case where the member is in contact with the other member, but also the case where another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present application, when a part “includes” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used herein, the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and to aid understanding of the present application. It is used to prevent unscrupulous infringers from unfairly exploiting disclosures that contain precise or absolute figures.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.The terms “step of” or “step of” as used throughout the specification herein do not mean “step for.”
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination(s) thereof" included in the Markushi format expression means a mixture or combination of one or more selected from the group consisting of the components described in the Markushi format expression, It means containing one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, description of “A and/or B” means “A or B, or A and B.”
본원 명세서 전체에서, 용어 "알킬" 또는 "알킬기"는, 1 내지 12 개의 탄소 원자, 1 내지 10 개의 탄소 원자, 1 내지 8 개의 탄소 원자, 또는 1 내지 5 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬 또는 알킬기는 메틸기(Me), 에틸기(Et), n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), iso-부틸기(iBu), tert-부틸기(tert-Bu, tBu), sec-부틸기(sec-Bu, secBu), n-펜틸기(nPe), iso-펜틸기(isoPe), sec-펜틸기(secPe), tert-펜틸기(tPe), neo-펜틸기(neoPe), 3-펜틸기, n-헥실기, iso-헥실기, 헵틸기, 4,4-디메틸펜틸기, 옥틸기, 2,2,4-트리메틸펜틸기, 노닐기, 데실기, 운데실기, 도데실기, 및 이들의 이성질체들 등을 들 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term “alkyl” or “alkyl group” refers to a linear or branched alkyl group having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 5 carbon atoms. and all possible isomers thereof. For example, the alkyl or alkyl group includes methyl group (Me), ethyl group (Et), n-propyl group ( n Pr), iso-propyl group ( i Pr), n-butyl group ( n Bu), and iso-butyl group. ( i Bu), tert-butyl group (tert-Bu, t Bu), sec-butyl group (sec-Bu, sec Bu), n-pentyl group ( n Pe), iso-pentyl group ( iso Pe), sec -Pentyl group ( sec Pe), tert-pentyl group ( t Pe), neo-pentyl group ( neo Pe), 3-pentyl group, n-hexyl group, iso-hexyl group, heptyl group, 4,4-dimethylphene Examples include, but are not limited to, tyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, and isomers thereof.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present application have been described in detail, but the present application may not be limited thereto.
본원의 제 1 측면은, 하기 화학식 Ⅰ로서 표시되는 화합물, 하기 화학식 Ⅱ로서 표시되는 올리고머, 또는 하기 화학식 Ⅰ로서 표시되는 화합물을 말단에 포함하는 덴드리머; 및 산화아연 나노입자를 포함하는, 유연 막을 제공한다:The first aspect of the present application is a dendrimer comprising a compound represented by the following Chemical Formula I, an oligomer represented by the following Chemical Formula II, or a compound represented by the following Chemical Formula I at the terminal; and zinc oxide nanoparticles:
[화학식 Ⅰ][Formula Ⅰ]
[화학식 Ⅱ][Formula Ⅱ]
상기 화학식 Ⅰ 및 상기 화학식 Ⅱ에서,In Formula I and Formula II,
R1은 수소 또는 -O-Ra-Rb이고,R 1 is hydrogen or -OR a -R b ,
Ra는 C1-10의 알킬렌기이고,R a is a C 1-10 alkylene group,
Rb는 할로겐화 암모늄염이며, 상기 암모늄염은 암모늄염(-NH3
+), 질소를 하나 이상 포함하는, C1-20의 1차 알킬아민, 2차 알킬아민, 또는 3차 알킬아민, C3-10의 헤테로시클로알킬기, 또는 C3-10의 헤테로아릴기의 암모늄염이며, 상기 할로겐화 암모늄염에서 할로겐화 이온은 F-, Cl-, Br-, 또는 I-이고,R b is an ammonium halide salt, and the ammonium salt is an ammonium salt (-NH 3 + ), a C 1-20 primary alkylamine, a secondary alkylamine, or a tertiary alkylamine containing at least one nitrogen, C 3-10 It is an ammonium salt of a heterocycloalkyl group, or a C 3-10 heteroaryl group, and in the ammonium halide salt, the halide ion is F - , Cl - , Br - , or I - ,
단, R1이 모두 수소인 경우는 제외하며,However, except for the case where R 1 is all hydrogen,
m은 0 또는 1이고, n은 1 내지 10의 정수이고,m is 0 or 1, n is an integer from 1 to 10,
파선은 연결 부분임.The dashed line is the connection part.
본원의 일 구현예에 있어서, 상기 Rb의 암모늄염은 암모늄염(-NH3
+), 트리메틸암모늄염, 트리에틸암모늄염, 트리프로필암모늄염, 메틸암모늄염, 에틸암모늄염, 프로필암모늄염, 디메틸암모늄염, 에틸메틸암모늄염, 메틸프로필암모늄염, 디에틸암모늄염, 에틸프로필암모늄염, 디프로필암모늄염, 에틸디메틸암모늄염, 디메틸프로필암모늄염, 디에틸메틸암모늄염, 에틸메틸프로필암모늄염, 메틸디프로필암모늄염, 디에틸프로필암모늄염, 에틸디프로필암모늄염, 피리디늄염, 아지리디늄염, 아제티디늄염, 피롤리디늄염, 피페리디늄염, 아제파니움염, 아조케니움염, 및 이미다졸륨염에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 여기서, 상기 할로겐화 암모늄염의 할로겐화 이온은 플루오르화이온, 염화이온, 브롬화이온, 또는 요오드화이온일 수 있다.In one embodiment of the present application, the ammonium salt of R b is ammonium salt (-NH 3 + ), trimethylammonium salt, triethylammonium salt, tripropylammonium salt, Methylammonium salt, ethyl ammonium salt, propyl ammonium salt, dimethyl ammonium salt, ethyl methyl ammonium salt, methyl propy ammonium salt, diethy ammonium salt, ethyl propy ammonium salt, dipropylammonium salt, ethyl dimethyl ammonium salt, dimethyl propy ammonium salt, diethyl methyl ammonium salt, ethyl methyl propy ammonium salt, Select from methyldipropylammonium salt, diethylpropylammonium salt, ethyldipropylammonium salt, pyridinium salt, aziridinium salt, azetidinium salt, pyrrolidinium salt, piperidinium salt, azepanium salt, azocenium salt, and imidazolium salt. It may include one or more, but may not be limited thereto. Here, the halide ion of the ammonium halide salt may be a fluoride ion, a chloride ion, a bromide ion, or an iodide ion.
본원의 일 구현예에 있어서, 상기 R1은 일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, R 1 is It may be, but may not be limited to this.
본원의 일 구현예에 있어서, 상기 화학식 Ⅰ로서 표시되는 화합물은 하기 화학식 1로서 표시되는 다이페닐플루오렌 피리디늄 브로마이드 (diphenylfluorene pyridinium bromide; PFPBr)일 수 있으나, 이에 제한되지 않을 수 있다:In one embodiment of the present application, the compound represented by Formula I may be diphenylfluorene pyridinium bromide (PFPBr) represented by the following Formula 1, but may not be limited thereto:
[화학식 1][Formula 1]
본원의 일 구현예에 있어서, 상기 화학식 Ⅱ로서 표시되는 올리고머는 하기 화학식 2로서 표시되는 것일 수 있으나, 이에 제한되지 않을 수 있다:In one embodiment of the present application, the oligomer represented by Formula II may be represented by the following Formula 2, but may not be limited thereto:
[화학식 2][Formula 2]
상기 화학식 2에서,In Formula 2,
m은 0 또는 1이고, n은 1 내지 10의 정수이고,m is 0 or 1, n is an integer from 1 to 10,
파선은 연결 부분임.The dashed line is the connection part.
본원의 일 구현예에 있어서, 상기 화학식 Ⅰ로서 표시되는 화합물; 상기 화학식 Ⅱ로서 표시되는 올리고머; 및 상기 화학식 Ⅰ로서 표시되는 화합물을 말단에 포함하는 덴드리머는, 말단에 다중의 이온성 작용기를 포함하는 다중이온 공액 전해질(multicharged conjugated electrolyte; MCCE)일 수 있다. 본원의 유연 막은 상기 산화아연 나노입자 및 상기 다중이온 공액 전해질을 포함하는 것으로서, 다중이온 공액 전해질의 다중의 이온성 작용기와 산화아연 나노입자 사이의 강한 이온 상호작용 (다가 상호작용(multivalent interaction))으로 인하여 산화아연 나노입자가 응집체를 형성할 수 있으며, 이에 막의 기계적 유연성이 향상되는 특징이 있다. 따라서, 기본적인 상기 화학식 Ⅰ의 구조에 포함되는 다중의 이온성 작용기가 본 발명의 효과를 도출할 수 있는 주요 구조이며, 기본 골격은 단일 화합물로서 상기 화학식 Ⅰ로서 표시되는 다중이온 공액 전해질뿐만 아니라, 이러한 구조가 확장된 상기 화학식 Ⅱ로서 표시되는 올리고머, 및 말단에 상기 화학식 Ⅰ의 구조를 다수 포함하는 덴드리머까지 상기 화학식 Ⅰ로서 표시되는 다중이온 공액 전해질과 동일하거나, 유사 또는 향상된 수준의 효과를 보유할 수 있을 것을 예상할 수 있다.In one embodiment of the present application, a compound represented by Formula I; An oligomer represented by the above formula (II); And the dendrimer containing the compound represented by Formula I at the terminal may be a multicharged conjugated electrolyte (MCCE) containing multiple ionic functional groups at the terminal. The flexible membrane of the present application includes the zinc oxide nanoparticles and the polyion conjugated electrolyte, and strong ionic interaction (multivalent interaction) between the multiple ionic functional groups of the polyion conjugate electrolyte and the zinc oxide nanoparticles. Due to this, zinc oxide nanoparticles can form aggregates, which has the characteristic of improving the mechanical flexibility of the membrane. Therefore, the multiple ionic functional groups included in the basic structure of Chemical Formula I are the main structure that can derive the effects of the present invention, and the basic skeleton is a single compound, which is used not only for the polyion conjugate electrolyte represented by Chemical Formula I, but also for this The oligomer represented by Formula II with an expanded structure, and the dendrimer containing multiple structures of Formula I at the terminal, can have the same, similar, or improved level of effect as the polyion conjugate electrolyte represented by Formula I. It can be expected that there will be.
본원의 일 구현예에 있어서, 상기 화학식 Ⅰ로서 표시되는 화합물; 상기 화학식 Ⅱ로서 표시되는 올리고머; 및 상기 화학식 Ⅰ로서 표시되는 화합물을 말단에 포함하는 덴드리머에서, 상기 다중의 이온성 작용기는 상기 Rb를 의미할 수 있다.In one embodiment of the present application, a compound represented by Formula I; An oligomer represented by the above formula (II); And in the dendrimer containing the compound represented by Formula I at the terminal, the multiple ionic functional groups may refer to R b .
통상적으로, 덴드리머는 중심에서부터 나뭇가지 모양의 일정한 단위구조가 반복적으로 뻗어 나오는 고분자 물질 혹은 거대분자를 의미하며, 중심부(central core), 내부 브랜치 유닛(interio branching unit), 및 외부 표면 작용기(exterior surface functional group)로 구성되어 있다. 본원의 일 구현예에 있어서, 상기 덴드리머는 외부 표면 작용기로서 다중의 이온성 작용기를 포함하는 화합물을 결합할 수 있는, 통상적인 덴드리머 구조의 고분자라면 특별한 제한없이 사용될 수 있다.Typically, a dendrimer refers to a polymer material or macromolecule in which a branch-like unit structure repeatedly extends from the center, and consists of a central core, an interior branching unit, and an exterior surface functional group. It is composed of functional groups). In one embodiment of the present application, the dendrimer may be used without particular limitation as long as it is a polymer of a typical dendrimer structure that can bind a compound containing multiple ionic functional groups as external surface functional groups.
본원의 일 구현예에 있어서, 상기 덴드리머는 폴리에틸렌이민 (PEI), 폴리프로필렌이민 (PPI), 또는 폴리아미도아민 (PAMAM)의 덴드리머일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 덴드리머는 1 세대 내지 5 세대의 덴드리머일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 덴드리머는 내부 브랜치 유닛 및 외부 표면 작용기 사이의 연결을 도와주는 링커(linker) 화합물을 추가 포함할 수 있으며, 상기 덴드리머의 종류에 따라 상기 링커 화합물의 종류는 달라질 수 있다.In one embodiment of the present application, the dendrimer may be a dendrimer of polyethyleneimine (PEI), polypropyleneimine (PPI), or polyamidoamine (PAMAM), but may not be limited thereto. In one embodiment of the present application, the dendrimer may be a 1st to 5th generation dendrimer, but may not be limited thereto. In one embodiment of the present application, the dendrimer may further include a linker compound that assists in the connection between the internal branch unit and the external surface functional group, and the type of the linker compound may vary depending on the type of the dendrimer. there is.
본원의 일 구현예에 있어서, 상기 폴리에틸렌이민의 덴드리머는, 비제한적 예로서, 하기의 구조로 표시되는 1 세대 내지 3 세대의 폴리에틸렌이민의 덴드리머일 수 있으나, 이에 제한되지 않을 수 있다:In one embodiment of the present application, the dendrimer of polyethyleneimine may be, as a non-limiting example, a dendrimer of 1st to 3rd generation polyethyleneimine represented by the following structure, but may not be limited thereto:
본원의 일 구현예에 있어서, 상기 폴리에틸렌이민의 덴드리머 구조에서 ●는, 외부 표면 작용기를 의미할 수 있으며, 상기 외부 표면 작용기가 상기 화학식 1로서 표시되는 다이페닐플루오렌 피리디늄 브로마이드(PFPBr)인 경우, 하기의 구조와 같이 플루오렌기의 2 번 탄소에 덴드리머 골격이 결합되는 것일 수 있으며, 아민 등의 링커(linker) 화합물을 추가 포함할 수 있다:In one embodiment of the present application, ● in the dendrimer structure of polyethyleneimine may mean an external surface functional group, and when the external surface functional group is diphenylfluorene pyridinium bromide (PFPBr) represented by Formula 1 above. , the dendrimer skeleton may be bonded to the 2nd carbon of the fluorene group as shown in the structure below, and may further include a linker compound such as an amine:
본원의 일 구현예에 있어서, 상기 Rb의 할로겐화 이온(X-)(즉, 상기 다중이온 공액 전해질의 할로겐화 이온)과 상기 산화아연 나노입자의 Zn2+이 배위결합하여 상기 산화아연 나노입자가 응집되는 것일 수 있다.In one embodiment of the present application, the halide ion (X - ) of R b (i.e., the halide ion of the polyion conjugate electrolyte) and Zn 2+ of the zinc oxide nanoparticles coordinate to form the zinc oxide nanoparticles. It may be agglomerating.
본원의 일 구현예에 있어서, 상기 산화아연 나노입자가 응집되는 과정을 보다 상세히 설명한다: 상기 다중이온 공액 전해질 및 상기 산화아연 나노입자를 용매 내에서 혼합하면, 상기 다중이온 공액 전해질의 할로겐화 이온 (X-)이 상기 산화아연 나노입자의 표면에서 아연 양이온(Zn2+)을 조정할 수 있으며, 상기 산화아연 나노입자 사이의 계면에서 Zn2+-X--N+ 결합을 통한 이온 상호작용에 의하여 응집된 할로겐화물 킬레이트화된 산화아연 나노입자가 생성될 수 있다. 이후, 상기 다중이온 공액 전해질 및 상기 산화아연 나노입자를 포함하는 용액을, 용액 공정을 통하여 막으로 제조함으로써 본원의 유연 막을 수득할 수 있다.In one embodiment of the present application, the process of agglomerating the zinc oxide nanoparticles will be described in more detail: When the polyion conjugated electrolyte and the zinc oxide nanoparticles are mixed in a solvent, the halogenated ions of the polyion conjugated electrolyte ( ( Agglomerated halide chelated zinc oxide nanoparticles can be produced. Thereafter, the flexible membrane of the present application can be obtained by manufacturing a solution containing the polyion conjugated electrolyte and the zinc oxide nanoparticles into a membrane through a solution process.
본원의 일 구현예에 있어서, 상기 용매는 메탄올, 에탄올, 프로판올, 2-메톡시에탄올, 또는 이소프로필알코올의 알코올 용액일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the solvent may be an alcohol solution of methanol, ethanol, propanol, 2-methoxyethanol, or isopropyl alcohol, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 용액 공정은 전자 소자의 막을 제작하는데 통상적으로 사용되는 용액 공정일 수 있으며, 비제한적 예로서, 스핀 캐스팅 (spin casting)법, 스프레이(spray)법, 또는 잉크젯(inkjet)법일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the solution process may be a solution process commonly used to manufacture films of electronic devices, and non-limiting examples include spin casting, spray, or inkjet ( It may be an inkjet method, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 산화아연 나노입자의 직경은 약 1 nm 내지 약 100 nm일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the diameter of the zinc oxide nanoparticles may be from about 1 nm to about 100 nm, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유연 막의 두께는 약 1 nm 내지 약 1 μm 일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 유연 막의 두께는 적용되는 유연 전자 소자의 특성에 따라 적절히 조절될 수 있다. 본원의 일 구현예에 있어서, 유연 전자 소자에 적용되기 위한 상기 유연 막의 두께는 바람직하게는 약 10 nm 내지 약 100 nm일 수 있고, 더 바람직하게는 약 40 nm 내지 약 80 nm일 수 있다.In one embodiment of the present application, the thickness of the flexible membrane may be about 1 nm to about 1 μm, but may not be limited thereto. In one embodiment of the present application, the thickness of the flexible film can be appropriately adjusted depending on the characteristics of the flexible electronic device to which it is applied. In one embodiment of the present application, the thickness of the flexible film for application to a flexible electronic device may preferably be from about 10 nm to about 100 nm, and more preferably from about 40 nm to about 80 nm.
본원의 일 구현예에 있어서, 상기 유연 막은 약 100 nm 이하의 두께 범위에서, 굽힘 반경 약 2.5 mm에서 약 300 회 이상 또는 약 250 회 이상 굽혀도 균열이 발생하지 않는 것일 수 있다.In one embodiment of the present application, the flexible membrane may not crack even if it is bent about 300 times or more or about 250 times or more at a bending radius of about 2.5 mm in a thickness range of about 100 nm or less.
본원의 일 구현예에 있어서, 상기 유연 막은, 폴리스티렌 등의 전기 절연 고분자를 포함하는 것이 아닌, 박막의 전기적 특성에 영향을 끼치지 않는 다중이온 공액 전해질을 단분자로서 포함하는 것으로서, 유연 전자 소자의 전하 이동층으로서 사용될 때 소자의 전기적 특성을 저하시키지 않는 특징이 있다.In one embodiment of the present application, the flexible membrane does not contain an electrically insulating polymer such as polystyrene, but contains a single molecule polyion conjugated electrolyte that does not affect the electrical properties of the thin film, and is a flexible electronic device. It has the characteristic of not deteriorating the electrical characteristics of the device when used as a charge transfer layer.
본원의 제 2 측면은, 제 1 측면에 따른 유연 막을 전하 이동층으로서 포함하는, 유연 전자소자를 제공한다.A second aspect of the present application provides a flexible electronic device comprising the flexible film according to the first aspect as a charge transfer layer.
본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Detailed description of parts overlapping with the first aspect of the present application has been omitted, but the content described in the first aspect of the present application can be applied equally even if the description is omitted in the second aspect of the present application.
본원의 일 구현예에 있어서, 상기 유연 전자 소자는 유연 유기발광다이오드, 유연 태양전지, 유연 광센서, 페로브스카이트 발광다이오드, 유연 트랜지스터, 및 유연 화학센서에서 선택되는 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the flexible electronic device may include one or more selected from flexible organic light-emitting diodes, flexible solar cells, flexible optical sensors, perovskite light-emitting diodes, flexible transistors, and flexible chemical sensors. However, it may not be limited thereto.
본원의 일 구현예에 있어서, 유연 전자 소자는, 전하 이동층으로서 본원의 유연 막을 포함함으로써 굽힘 반경 (r) 약 2.5 mm으로 인장 굽힘을 수 회 또는 수백 회 반복하여도 원래의 전기적 특성이 유지될 수 있다.In one embodiment of the present application, the flexible electronic device includes the flexible membrane of the present application as a charge transfer layer, so that the original electrical properties are maintained even after tensile bending is repeated several or hundreds of times with a bending radius (r) of about 2.5 mm. You can.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail using examples. However, the following examples are merely illustrative to aid understanding of the present application, and the content of the present application is not limited to the following examples.
[실시예][Example]
1. PFPBr의 합성 및 특성평가1. Synthesis and characterization of PFPBr
재료ingredient
합성에 사용된 모든 화학 물질은 시약 등급이며 추가 정제 없이 사용하였다. 피리딘(pyridine)은 각각 시그마 알드리치 (Sigma Aldrich) 및 준세이 화학 (Junsei Chemical Company)에서 구입하였다. 1,6-디브로모헥산(1,6-dibromohexane)은 도쿄 화성 공업 (Tokyo Chemical Industry Company)에서 구입하였다. 메르캅토프로피온산 (mercaptopropionic acid)과 아세토니트릴(acetonitrile)은 알파에이사 (Alfa Aesar)에서 구입하였다. 피리딘은 피로갈롤(pyrogallol)이고, N,N-디메틸포름아미드(N,N-dimethylformamide), 탄산칼륨, 및 황산은 대정에서 구입하였다. 실리카겔(머크, 230 메쉬 내지 400 메쉬)은 모든 중간물 및 목표 분자의 크로마토그래피 정제에 사용되었다. 다른 모든 화학 물질 및 용매는 시그마 알드리치, 피셔 사이언티픽 (Fisher Scientific), 또는 아크로스 화학 (Acros Chemical Company)에서 구입하였다.All chemicals used in the synthesis were reagent grade and used without further purification. Pyridine was purchased from Sigma Aldrich and Junsei Chemical Company, respectively. 1,6-dibromohexane was purchased from Tokyo Chemical Industry Company. Mercaptopropionic acid and acetonitrile were purchased from Alfa Aesar. Pyridine was pyrogallol, and N,N-dimethylformamide, potassium carbonate, and sulfuric acid were purchased from Daejeong. Silica gel (Merck, 230 mesh to 400 mesh) was used for chromatographic purification of all intermediates and target molecules. All other chemicals and solvents were purchased from Sigma Aldrich, Fisher Scientific, or Acros Chemical Company.
합성 및 특성 평가Synthesis and characterization
도 1은 PFPBr의 합성 경로를 나타낸다. 피로카테콜이 부착된 플루오렌 (pyrocatechol appended-fluorene)(도 1의 화합물 2)는 참고문헌 B.H. Lee, I.H. Jung, H.Y. Woo, H.K. Shim, G. Kim, and K. Lee, "Multi-Charged Conjugated Polyelectrolytes as a Versatile Work Function Modifier for Organic Electronic Devices", Adv. Funct. Mater. 24 (2014), 1100-1108.에 설명된 바와 같이 상업적으로 이용 가능한 9-플루오레논(9-fluorenone)으로부터 88% 수율로 제조되었다. 전구체 화합물 3은 1,6-디브로모헥산 (1,6-dibromohexane)을 사용하여 표준 방법에 따라 합성하였다. 그후, 피리딘을 화합물 3에 쉽게 결합하여 PFPBr을 76% 수율로 생성했다. PFPBr은 6 개의 수용성 피리디늄기를 갖는 알킬화된 스파이로형 디페닐플루오렌(alkylated spiro-type diphenylfluorene)을 특징으로 한다. PFPBr의 구조는 1H-NMR), 13C-NMR, 전자분무 이온화 질량분석(electrospray ionization mass spectrometry; ESI-MS) 및 성분 분석에 의하여 특성 평가되었다. 합성 및 특성평가 세부사항은 하기와 같다.Figure 1 shows the synthetic route of PFPBr. Pyrocatechol appended-fluorene (compound 2 in FIG. 1) is described in reference BH Lee, IH Jung, HY Woo, HK Shim, G. Kim, and K. Lee, “Multi-Charged Conjugated Polyelectrolytes as a Versatile Work Function Modifier for Organic Electronic Devices", Adv. Funct. Mater. 24 (2014), 1100-1108. It was prepared in 88% yield from commercially available 9-fluorenone. Precursor compound 3 was synthesized according to standard methods using 1,6-dibromohexane. Afterwards, pyridine was easily coupled to compound 3 to produce PFPBr in 76% yield. PFPBr is characterized as an alkylated spiro-type diphenylfluorene with six water-soluble pyridinium groups. The structure of PFPBr was characterized by 1 H-NMR), 13 C-NMR, electrospray ionization mass spectrometry (ESI-MS), and component analysis. Details of synthesis and characterization are as follows.
9,9-비스(3,4,5-트리하이드록시페닐)플루오렌 (9,9-Bis(3,4,5-trihydroxyphenyl)fluorene) (화합물 2)의 합성Synthesis of 9,9-Bis(3,4,5-trihydroxyphenyl)fluorene (Compound 2)
황산(0.018 mL)을 9-플루오레논(3.0 g, 16.6 mmol), 피로카테콜(9.2 g, 73.0 mmol) 및 3-메르캅토프로피온산(0.13 mL)의 혼합물에 실온에서 천천히 첨가하였다. 반응 혼합물을 아르곤 가스 하에서 60℃에서 3 시간 동안 격렬하게 교반하였다. 반응 혼합물을 실온으로 냉각시킨 후, 생성된 혼합물을 톨루엔을 첨가하여 퀜칭 (quenching)하였다. 진공 여과를 통해 분홍색 침전물을 수득한 후, 150 mL의 온수로 세척하였다. 건조 후, 연한 노란색 고체를 수득하였다.Sulfuric acid (0.018 mL) was added slowly to a mixture of 9-fluorenone (3.0 g, 16.6 mmol), pyrocatechol (9.2 g, 73.0 mmol) and 3-mercaptopropionic acid (0.13 mL) at room temperature. The reaction mixture was stirred vigorously at 60° C. under argon gas for 3 hours. After the reaction mixture was cooled to room temperature, the resulting mixture was quenched by adding toluene. A pink precipitate was obtained through vacuum filtration and washed with 150 mL of warm water. After drying, a light yellow solid was obtained.
수율: 88%; 1H NMR (400 MHz, 메탄올-d4): δ 7.74 (d, 2H), 7.41 (d, 2H), 7.31 (t, 2H), 7.23 (t, 2H), 6.23 (s, 4H); 13C NMR (100 MHz, 메탄올-d4): 153.62, 146.46, 141.50, 138.53, 132.87, 128.42, 128.29, 127.62, 120.93, 120.78, 108.99, 65.96 (도 2 및 3).Yield: 88%; 1 H NMR (400 MHz, methanol-d 4 ): δ 7.74 (d, 2H), 7.41 (d, 2H), 7.31 (t, 2H), 7.23 (t, 2H), 6.23 (s, 4H); 13 C NMR (100 MHz, methanol-d 4 ): 153.62, 146.46, 141.50, 138.53, 132.87, 128.42, 128.29, 127.62, 120.93, 120.78, 108.99, 65.96 (Figures 2 and 3 ).
9,9-비스(3,4,5-트리스(6-브로모헥실옥시)페닐)플루오렌 (9,9-Bis(3,4,5-tris(6-bromohexyloxy)phenyl)fluorine) (화합물 3)의 합성9,9-Bis(3,4,5-tris(6-bromohexyloxy)phenyl)fluorine (9,9-Bis(3,4,5-tris(6-bromohexyloxy)phenyl)fluorine) (compound 3) Synthesis of
아세토니트릴 (100 mL) 중 화합물 2(2.0 g, 4.83 mmol)의 용액에 무수 K2CO3 (4.4 g, 31.9 mmol)를 첨가하였다. 5 분 동안 교반한 후, 용액에 1,6-디브로모헥산(7.8 g, 31.9 mmol)을 적가하였다. 생성된 혼합물을 아르곤 기체 하에서 80℃에서 24 시간 동안 격렬하게 교반하였다. 반응 혼합물을 실온으로 냉각시킨 후, 용매를 진공에서 제거하였다. 반응 혼합물을 디클로로메탄 (dichloromethane) (150 mL)으로 추출하였다. 유기층을 분리하고 물(50 mL)로 세척하고 무수 MgSO4로 건조하여, 용매를 증발시켜 노란색 고체를 수득하였다. 순수한 생성물은 용리제로서 에틸 아세테이트:헥산 (1/10, v/v)을 사용하여 실리카겔 컬럼 크로마토그래피를 통해 분리하였다.To a solution of compound 2 (2.0 g, 4.83 mmol) in acetonitrile (100 mL) was added anhydrous K 2 CO 3 (4.4 g, 31.9 mmol). After stirring for 5 minutes, 1,6-dibromohexane (7.8 g, 31.9 mmol) was added dropwise to the solution. The resulting mixture was stirred vigorously at 80° C. for 24 hours under argon gas. After the reaction mixture was cooled to room temperature, the solvent was removed in vacuo. The reaction mixture was extracted with dichloromethane (150 mL). The organic layer was separated, washed with water (50 mL), dried over anhydrous MgSO 4 , and the solvent was evaporated to obtain a yellow solid. The pure product was separated through silica gel column chromatography using ethyl acetate:hexane (1/10, v/v) as eluent.
수율: 15%; 1H NMR (400 MHz, CDCl3): δ 7.76 (d, 2H), 7.41 (d, 2H), 7.38 (t, 2H), 7.30 (d, 2H), 6.34 (s, 4H), 3.89 (t, 4H), 3.74 (t, 8H), 3.41 (t, 12H), 1.85 (m, 12H), 1.69 (m, 12H), 1.45 (m, 24H); 13C NMR (100 MHz, CDCl3): 152.53, 151.19, 141.03, 140.23, 137.11, 127.67, 126.25, 120.39, 107.60, 73.18, 68.90, 65.72, 34.14, 34.00, 33.87, 33.02, 32.87, 32.71, 30.32, 29.90, 29.86, 29.33, 28.26, 28.19, 28.09, 27.50, 25.52, 25.46, 25.39, 22.90 (도 4 및 5).Yield: 15%; 1 H NMR (400 MHz, CDCl 3 ): δ 7.76 (d, 2H), 7.41 (d, 2H), 7.38 (t, 2H), 7.30 (d, 2H), 6.34 (s, 4H), 3.89 (t , 4H), 3.74 (t, 8H), 3.41 (t, 12H), 1.85 (m, 12H), 1.69 (m, 12H), 1.45 (m, 24H); 13 C NMR (100 MHz, CDCl 3 ): 152.53, 151.19, 141.03, 140.23, 137.11, 127.67, 126.25, 120.39, 107.60, 73.18, 68.90, 65.72, 34.14, 34. 00, 33.87, 33.02, 32.87, 32.71, 30.32, 29.90 , 29.86, 29.33, 28.26, 28.19, 28.09, 27.50, 25.52, 25.46, 25.39, 22.90 (Figures 4 and 5).
PFPBr의 합성Synthesis of PFPBr
피리딘(3.1 g, 3.9 mmol)을 아세토니트릴(30 mL) 중 화합물 3(4.6g, 3.3 mmol)의 용액에 첨가하였다. 생성된 혼합물을 아르곤 기체 하에서 80℃에서 24시간 동안 격렬하게 교반하였다. 반응 혼합물을 실온으로 냉각시킨 후, 용매를 진공에서 제거하였다. 반응 혼합물을 디클로로메탄 (150 mL)으로 추출하였다. 유기층을 분리하고 물(100 mL)로 세척하고 무수 MgSO4로 건조하고 용매를 진공에서 증발시켰다. 조생성물을 컬럼 크로마토그래피(실리카 겔, 에틸 아세테이트/헥산(1/3, v/v))를 통해 정제하여 흰색 고체를 수득하였다.Pyridine (3.1 g, 3.9 mmol) was added to a solution of compound 3 (4.6 g, 3.3 mmol) in acetonitrile (30 mL). The resulting mixture was stirred vigorously at 80° C. for 24 hours under argon gas. After the reaction mixture was cooled to room temperature, the solvent was removed in vacuo. The reaction mixture was extracted with dichloromethane (150 mL). The organic layer was separated, washed with water (100 mL), dried over anhydrous MgSO 4 , and the solvent was evaporated in vacuum. The crude product was purified via column chromatography (silica gel, ethyl acetate/hexane (1/3, v/v)) to give a white solid.
수율: 95%; 1H NMR (400 MHz, 에탄올-d6): δ 9.22 (t, 12H), 8.63 (t, 3H), 8.58 (t, 3H), 8.14 (m, 12H), 7.84 (d, 2H), 7.45 (d, 2H), 7.38 (d, 2H), 7.31 (t, 2H), 6.38 (s, 4H), 4.76 (m, 12H), 3.87 (t, 4H), 3.74 (t, 8H), 2.04 (m, 12H), 1.68 (m, 12H), 1.44 (m, 24H); 13C NMR (100 MHz, Ethanol-d6): 153.38, 152.19, 151.93, 146.73, 146.63, 145.99, 142.33, 141.11, 129.46, 129.40, 128.74, 128.62, 126.97, 121.27, 108.16, 79.49, 73.95, 69.47, 66.65, 62.68, 62.61, 57.52, 57.38, 57.17, 56.96, 56.74, 56.53, 32.43, 30.71, 29.88, 26.68, 26.59, 26.56, 26.41, 17.95, 17.76, 17.58, 17.39, 17.20, 17.01, 16.82 (도 6 및 7).Yield: 95%; 1 H NMR (400 MHz, ethanol-d 6 ): δ 9.22 (t, 12H), 8.63 (t, 3H), 8.58 (t, 3H), 8.14 (m, 12H), 7.84 (d, 2H), 7.45 (d, 2H), 7.38 (d, 2H), 7.31 (t, 2H), 6.38 (s, 4H), 4.76 (m, 12H), 3.87 (t, 4H), 3.74 (t, 8H), 2.04 ( m, 12H), 1.68 (m, 12H), 1.44 (m, 24H); 13 C NMR (100 MHz, Ethanol-d 6 ): 153.38, 152.19, 151.93, 146.73, 146.63, 145.99, 142.33, 141.11, 129.46, 129.40, 128.74, 128.62, 126.9 7, 121.27, 108.16, 79.49, 73.95, 69.47, 66.65 , 62.68, 62.61, 57.52, 57.38, 57.17, 56.96, 56.74, 56.53, 32.43, 30.71, 29.88, 26.68, 26.59, 26.56, 26.41, 17.95, 17.76, 1 7.58, 17.39, 17.20, 17.01, 16.82 (Figures 6 and 7) .
2. 산화아연 나노입자 및 이를 포함하는 막의 제조 및 특성평가2. Preparation and characterization of zinc oxide nanoparticles and membranes containing them
2-1. 재료 및 방법2-1. Materials and Methods
재료ingredient
평균 입자 크기가 10 nm 내지 15 nm인 산화아연 나노입자(ZnO-NP) (2.5 wt%, 이소프로필알코올 중)를 시그마 알드리치에서 구입하였다. 전자 도너(donor)인 폴리[(2,6-(4,8-비스(5-(2-에틸헥실-3-플루오로)티오펜-2-일)-벤조[1,2-b:4,5-b']디티오펜))-알트-(5,5-(1',3'-디-2-티에닐-5',7'-비스(2-에틸헥실)벤조[1',2'-c:4', 5'-c']디티오펜-4,8-디온)](poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]; PM6) 및 억셉터(acceptor)인 2,2'-[[12,13-비스(2-에틸헥실)-12,13-디히드로-3,9-디운데실비스티에노[2",3":4',5']티에노[2',3':4,5]피롤로[3,2-e:2',3'-g][2,1,3] 벤조티아디아졸-2,10-디일]비스[메틸리딘(5,6-디플루오로-3-옥소-1H-인덴-2,1(3H)-디일리덴)]]비스[프로판디니트릴] (2,2'-[[12,13-Bis(2-ethylhexyl)-12,13-dihydro-3,9-diundecylbisthieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-diyl]bis[methylidyne(5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[propanedinitrile]; Y6)은 브릴리언트 매터스(Brilliant Matters)에서 구입하였다. 폴리[(9,9-비스(3'-(N,N-디메틸아미노)프로필)-2,7-플루오렌)-알트-2,7-(9,9-디옥틸플루오렌)] (poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]; PFN)은 1-머티리얼(1-Material)에서 구입하였다. PEDOT:PSS 수용액(AI 4083 및 PH 1000 등급 모두)은 헤라우스 (Heraeus)에서 구입하여 그대로 사용하였다. 본 발명의 실시예에서 사용된 모든 용매와 브롬화칼륨(KBr)은 시그마 알드리치에서 구입하였다. 플렉서블 OPD용 기판으로 사용되는 투명 폴리이미드(polyimide) 필름(두께 100 μm)은 미쓰비시가스 화학으로부터 구매하였다.Zinc oxide nanoparticles (ZnO-NPs) (2.5 wt% in isopropyl alcohol) with an average particle size of 10 nm to 15 nm were purchased from Sigma Aldrich. The electron donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4 ,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4,8-dione)](poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro) thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7 '-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] and 2,2' as an acceptor. -[[12,13-bis(2-ethylhexyl)-12,13-dihydro-3,9-diundecylbisthieno[2",3":4',5']thieno[2' ,3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3] benzothiadiazole-2,10-diyl]bis[methylidine (5, 6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[propandinitrile] (2,2'-[[12,13-Bis(2-ethylhexyl) )-12,13-dihydro-3,9-diundecylbisthieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2',3 '-g][2,1,3]benzothiadiazole-2,10-diyl]bis[methylidyne(5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]bis[ propanedinitrile]; Y6) was purchased from Brilliant Matters. ,7-(9,9-dioctylfluorene)] (poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7- (9,9-dioctylfluorene)]; PFN) was purchased from 1-Material. PEDOT:PSS aqueous solution (both AI 4083 and PH 1000 grades) was purchased from Heraeus and used as is. All solvents and potassium bromide (KBr) used in the examples of the present invention were purchased from Sigma Aldrich. Transparent polyimide film (100 μm thick) used as a flexible OPD substrate was purchased from Mitsubishi Gas Chemical.
동적 광 산란 (Dynamic light scattering; DLS)Dynamic light scattering (DLS)
ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr의 크기 분포는 동적 광산란(DLS) 분석 (DLS-7000, 오츠카전자)을 사용하여 측정하였다. DLS 측정의 경우 산란각을 135°로 고정하였고, 샘플의 온도는 25.0℃ ± 0.1℃로 일정하게 유지하였다. ZnO-NP:KBr 및 ZnO-NP:PFPBr 용액의 경우, 먼저 KBr 및 PFPBr을 2-메톡시에탄올 (2-methoxyethanol; 2-ME)에 용해시켜 다양한 농도의 KBr 및 PFPBr 용액을 각각 제조하였다. 충분히 교반한 후, 다양한 양의 KBr 및 PFPBr 2-ME 용액을 ZnO-NP IPA(isopropyl alcohol) 분산액에 첨가하고 12 시간 동안 혼합하여 각각 총 농도가 약 8 mg/mL 내지 약 10 mg/mL인, ZnO-NP:KBr 및 ZnO-NP:PFPBr 용액을 수득하였다. 혼합 용액의 농도를 조절하기 위해 순수 IPA를 혼합 용액에 첨가하였다.The size distribution of ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr was measured using dynamic light scattering (DLS) analysis (DLS-7000, Otsuka Electronics). For DLS measurement, the scattering angle was fixed at 135°, and the temperature of the sample was kept constant at 25.0°C ± 0.1°C. In the case of ZnO-NP:KBr and ZnO-NP:PFPBr solutions, KBr and PFPBr were first dissolved in 2-methoxyethanol (2-ME) to prepare KBr and PFPBr solutions of various concentrations, respectively. After sufficient stirring, various amounts of KBr and PFPBr 2-ME solutions were added to the ZnO-NP IPA (isopropyl alcohol) dispersion and mixed for 12 hours, with a total concentration of about 8 mg/mL to about 10 mg/mL, respectively. ZnO-NP:KBr and ZnO-NP:PFPBr solutions were obtained. To control the concentration of the mixed solution, pure IPA was added to the mixed solution.
XPS 분석XPS analysis
XPS 실험은 hν= 1,486.6 eV에서 미세 초점 모노크로메이터 Al Kα가 장착된 XPS 분광계(K-alpha+, 써모 사이언티픽)를 사용하여 수행하였다. ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 박막은 UV 오존으로 세척된 실리콘 기판에 각 용액을 스핀 캐스팅(spin casting)하여 준비하였다. 그 후, 박막을 질소로 채워진 글로브 박스에서 80℃에서 5 분 동안 어닐링한 후, 샘플을 XPS 분광계에 로드하고 5 Х 10-9 mbar의 압력에서 XPS 스펙트럼을 수득하였다.XPS experiments were performed using an XPS spectrometer (K-alpha+, Thermo Scientific) equipped with a fine-focus monochromator Al Kα at hν = 1,486.6 eV. ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr thin films were prepared by spin casting each solution on a silicon substrate cleaned with UV ozone. Afterwards, the thin film was annealed at 80°C for 5 minutes in a nitrogen-filled glove box, after which the sample was loaded into an XPS spectrometer and XPS spectra were obtained at a pressure of 5 Х 10 -9 mbar.
광학 현미경 분석Light microscopy analysis
광학 현미경 (optical microscopy; OM)(LV100NPOL, 니콘)을 사용하여 인장 굽힘 전후의 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 막의 표면 이미지를 캡처하였다.Surface images of ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr films before and after tensile bending were captured using an optical microscope (OM) (LV100NPOL, Nikon).
원자힘현미경 (Atomic force microscopy) 분석Atomic force microscopy analysis
원자힘현미경(AFM) 시스템(AFM5100N, 히타치)에는 OM 분석에 사용된 것과 동일한 박막을 사용하였으며, 높이 이미지를 캡처하기 위해 탭핑 모드 원자현미경을 사용하였다.The same thin films used for OM analysis were used in the atomic force microscope (AFM) system (AFM5100N, Hitachi), and tapping mode atomic force microscopy was used to capture height images.
굽힘 테스트 (bending test)bending test
ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 막을 투명한 폴리이미드 기판 상에 드롭 캐스팅 (drop casting) 또는 스핀 캐스팅 (spin casting)을 통하여 제작하였다. 그 후, 막을 맞춤형 굽힘 기계(SNM)에 장착하고 다양한 굽힘 반경 (r = 0.5 mm 내지 1.5 mm)으로 반복적으로 굽혔다.ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr films were fabricated on transparent polyimide substrates through drop casting or spin casting. Afterwards, the membrane was mounted on a custom bending machine (SNM) and repeatedly bent with various bending radii (r = 0.5 mm to 1.5 mm).
주사전자현미경 (scanning electron microscopy; SEM) 분석 Scanning electron microscopy (SEM) analysis
전계 방출 주사 전자 현미경(field emission scanning electron microscopy; FE-SEM, S-4800, 히타치)를 사용하여 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 막의 표면 미세 구조 및 두께 특성을 평가하였다. SEM 이미지는 15 kV의 가속 전압에서 수득하였다.The surface microstructure and thickness characteristics of ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr films were evaluated using field emission scanning electron microscopy (FE-SEM, S-4800, Hitachi). . SEM images were obtained at an acceleration voltage of 15 kV.
소자 제작 및 특성평가Device manufacturing and characteristic evaluation
유연 광센서 (organic photodetector; OPD)는 투명한 폴리이미드 기판 위에 PEDOT:PSS(PH1000 등급) 전극을 스핀 캐스팅(spin casting)하여 제작하였다. PEDOT:PSS 용액에 DMSO(Dimethyl sulfoxide) 5 wt% 및 조닐 (Zonyl) FS-300 화합물 (0.16 wt%)을 첨가하여 PEDOT:PSS의 전기전도도 및 습윤성을 증가시켰다. 전극은 주변 공기에서 150℃에서 10 분 동안 베이킹되었다. 정공 수송층/전자 차단층(hole transporting layer/electron blocking layer; HTL/EBL)으로서, PEDOT:PSS(AI4083 등급)를 주변 공기에서 PEDOT:PSS/DMSO/Zonyl FS-300 투명 전극 위에 스핀 캐스팅하였다. 막을 150℃에서 15 분 동안 베이킹한 후 질소가 채워진 글로브 박스로 옮겨 광활성 층을 증착하였다. 총 농도가 14 mg/mL인 PM6:Y6(중량 기준 1:1.2) 클로로포름 용액을 사용하여 PEDOT:PSS(AI4083 등급) 위에 스핀 캐스팅하였다. 첨가제로서 소량(5 μL)의 1-클로로나프탈렌(1-chloronaphthalene; 1-CN)을 PM6:Y6 용액에 첨가하였다. 그 후, PM6:Y6 층에, ETL/HBL에 대한 ZnO-NP 기반 용액의 더 나은 습윤성을 위하여 소량의 아세트산(2 μL)이 포함된 메탄올 용액(0.5 m/mL)으로부터 PFN 층을 스핀 캐스팅하였다. ZnO-NP, ZnO-NP:KBr (중량 기준 1:0.010, [Br-] = 0.6 μM), 또는 ZnO-NP:PFPBr (중량 기준 1:0.025, [Br-] = 0.6 μM) 층을 스핀 캐스팅하여 PFN 층 위에 ETL/HBL을 형성하였다. 마지막으로, Ag 전극(두께 100 nm)은 고진공 조건(약 2Х10-6 Torr)에서 열 증발기를 이용하여 증착하였다. 유연 OPD의 소자 파라미터는 QE 측정 시스템(QuantX-300, Newport)을 이용하여 수득하였다.A flexible optical sensor (organic photodetector; OPD) was manufactured by spin casting a PEDOT:PSS (PH1000 grade) electrode on a transparent polyimide substrate. Electrical conductivity and wettability of PEDOT:PSS were increased by adding 5 wt% of DMSO (Dimethyl sulfoxide) and Zonyl FS-300 compound (0.16 wt%) to the PEDOT:PSS solution. The electrodes were baked at 150°C for 10 minutes in ambient air. As a hole transporting layer/electron blocking layer (HTL/EBL), PEDOT:PSS (AI4083 grade) was spin cast onto a PEDOT:PSS/DMSO/Zonyl FS-300 transparent electrode in ambient air. The membrane was baked at 150°C for 15 minutes and then transferred to a nitrogen-filled glove box to deposit a photoactive layer. PM6:Y6 (1:1.2 by weight) chloroform solution with a total concentration of 14 mg/mL was used to spin cast onto PEDOT:PSS (AI4083 grade). As an additive, a small amount (5 μL) of 1-chloronaphthalene (1-CN) was added to the PM6:Y6 solution. Afterwards, on the PM6:Y6 layer, a PFN layer was spin-cast from a methanol solution (0.5 m/mL) containing a small amount of acetic acid (2 μL) for better wettability of the ZnO-NP-based solution on ETL/HBL. . Spin-cast a layer of ZnO-NP, ZnO-NP:KBr (1:0.010 by weight, [ Br- ] = 0.6 μM), or ZnO-NP:PFPBr (1:0.025 by weight, [ Br- ] = 0.6 μM). Thus, ETL/HBL was formed on the PFN layer. Finally, Ag electrodes (thickness 100 nm) were deposited using a thermal evaporator under high vacuum conditions (approximately 2Х10 -6 Torr). The device parameters of the flexible OPD were obtained using a QE measurement system (QuantX-300, Newport).
2-2. 결과2-2. result
ZnO-NP 및 PFPBr 사이의 다가 상호작용 (multivalent interactions between ZnO-NP and PFPBr)Multivalent interactions between ZnO-NP and PFPBr
ZnO-NP/MCCE (multicharged conjugated electrolyte) 박막의 유연성 향상에 대한 ZnO-NP와 MCCE 간의 이온 상호 작용 효과를 조사하기 위하여, PFPBr (분자 구조는 도 8의 a 참조)을 설계하고 합성하였다. 도 1 내지 7은, PFPBr의 합성 및 특성평가 대한 자세한 정보를 나타낸다. 다중이온 PFPBr 전해질 (multicharged PFPBr electrolyte)은 ZnO-NP와 MCCE 사이의 계면에서 Zn2+-Br--N+ 결합의 형성을 통하여 ZnO-NP와 다중 이온 상호작용 (multiple ionic interaction)을 유도하도록 설계되었다. ZnO-NP:KBr 복합체의 단일-이온 (single-charged) K+ 양이온과 달리, 다중이온 PFP+ 및 여러 ZnO-NP 사이의 다중 이온 상호작용은 ZnO-NP:PFPBr 박막의 유연성을 향상시킬 수 있다.To investigate the effect of ionic interaction between ZnO-NP and MCCE on improving the flexibility of ZnO-NP/MCCE (multicharged conjugated electrolyte) thin films, PFPBr (molecular structure, see Figure 8 a) was designed and synthesized. Figures 1 to 7 show detailed information on the synthesis and characterization of PFPBr. Multicharged PFPBr electrolyte is designed to induce multiple ionic interactions with ZnO-NPs through the formation of Zn 2+ -Br - -N + bonds at the interface between ZnO-NPs and MCCE. It has been done. Unlike the single-charged K + cation in the ZnO-NP:KBr complex, the polyionic interactions between polyionic PFP + and multiple ZnO-NPs can improve the flexibility of the ZnO-NP:PFPBr thin film. .
ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 용액의 DLS 측정을 수행하여, ZnO-NP 및 PFPBr 사이의 강한 이온 상호작용으로 인한 ZnO-NP:PFPBr 용액에서 가능한 응집(aggregate)을 조사하였다. 도 8의 b는 다양한 양의 KBr 또는 PFPBr 화합물에 따른 ZnO-NP의 크기 분포 및 이미지를 나타낸다. ZnO-NP:KB는, 원래의 ZnO-NP (직경 약 15 nm 내지 50 nm)의 크기 분포와 비교하여 ZnO-NP:KBr 용액의 KBr 양에 관계없이, 거의 동일한 크기 분포를 나타낸다. 그러나, 대조적으로, ZnO-NP:PFPBr 용액은 ZnO-NP:PFPBr 용액에서 PFPBr의 양이 증가함에 따라 점차적으로 입자 크기 분포가 증가하는 것을 나타낸다. 따라서, ZnO-NP:PFPBr 용액의 탁도는 점진적으로 증가하며, 이는 용액의 이미지로 확인된다 (도 8의 b). 반면, ZnO-NP:KBr 용액은, ZnO-NP:PFPBr 용액과 비교하여 ZnO-NP:KBr 용액에 동일한 몰비의 KBr (즉, [Br-])이 추가되었음에도 불구하고, 투명하게 유지된다. 점진적으로 증가하는 크기 분포 및 탁도는, ZnO-NP:PFPBr 용액에 사용된 것과 동일한 농도에서 원래의 PFPBr 용액의 변하지 않은 탁도를 고려하였을 때, 흡착-탈착 평형에서 ZnO-NP와 PFPBr 사이의 이온 상호작용에 의한 ZnO-NP의 강화된 응집에서 기인한 것일 수 있다 (도 9). ZnO-NP:PFPBr 혼합물의 점진적으로 증가된 입자 크기 분포와 탁도는 ZnO-NP 간의 화학적 상호작용을 개선하기 위한 다중 이온 PFPBr의 효과를 보여준다.DLS measurements of ZnO-NP, ZnO-NP:KBr and ZnO-NP:PFPBr solutions were performed to investigate possible aggregation in the ZnO-NP:PFPBr solution due to the strong ionic interaction between ZnO-NP and PFPBr. did. Figure 8b shows the size distribution and images of ZnO-NPs according to various amounts of KBr or PFPBr compounds. ZnO-NP:KB shows almost the same size distribution, regardless of the amount of KBr in the ZnO-NP:KBr solution, compared to the size distribution of pristine ZnO-NPs (about 15 nm to 50 nm in diameter). However, in contrast, the ZnO-NP:PFPBr solution shows a gradual increase in particle size distribution as the amount of PFPBr increases in the ZnO-NP:PFPBr solution. Accordingly, the turbidity of the ZnO-NP:PFPBr solution gradually increases, which is confirmed by the image of the solution (Figure 8b). On the other hand, the ZnO-NP:KBr solution remained transparent even though the same molar ratio of KBr (i.e., [Br − ]) was added to the ZnO-NP:KBr solution compared to the ZnO-NP:PFPBr solution. The gradually increasing size distribution and turbidity are due to the ionic interaction between ZnO-NP and PFPBr at the adsorption-desorption equilibrium, considering the unchanged turbidity of the original PFPBr solution at the same concentration used in the ZnO-NP:PFPBr solution. This may be due to the enhanced aggregation of ZnO-NPs due to the action (Figure 9). The gradually increased particle size distribution and turbidity of the ZnO-NP:PFPBr mixture demonstrate the effectiveness of multiion PFPBr to improve the chemical interaction between ZnO-NPs.
ZnO-NP:PFPBr 박막의 특성평가Characterization evaluation of ZnO-NP:PFPBr thin film
ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 박막에서 XPS 측정을 수행하여 ZnO-NP와 PFPBr 사이의 이온 상호작용을 확인하였다. 도 10의 a는, DLS 측정과 동일한 다양한 몰 농도의 KBr 및 PFPBr을 갖는 ZnO-NP:KBr 및 ZnO-NP:PFPBr 박막의 Br 3d 코어-수준 XPS 스펙트럼을 나타낸다. 원래의 KBr 및 PFPBr의 XPS 스펙트럼도 수득하여 도 10의 a에 나타냈다. KBr의 스펙트럼은 K+ 양이온과 결합된 Br- 음이온(이하 자유 Br (free Br)으로 칭함)에서 각각, Br 3d5/2 및 Br 3d3/2에 해당하는 68.8 eV 및 69.8 eV를 중심으로 하는 두 개의 결합된 하위 피크를 나타낸다. ZnO-NP:KBr 혼합물은 ZnO-NP:KBr 혼합물의 KBr 양에 관계없이 원래의 KBr과 거의 동일한 스펙트럼을 나타내지만, Zn2+-Br-에 해당하는 70.0 eV 및 71.0 eV를 중심으로 하는 매우 작은 하위 피크가 관찰되었다.XPS measurements were performed on ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr thin films to confirm the ionic interaction between ZnO-NP and PFPBr. Figure 10a shows Br 3d core-level XPS spectra of ZnO-NP:KBr and ZnO-NP:PFPBr thin films with various molar concentrations of KBr and PFPBr, which are the same as DLS measurements. XPS spectra of pristine KBr and PFPBr were also obtained and shown in Figure 10a. The spectrum of KBr is centered at 68.8 eV and 69.8 eV, corresponding to Br 3d 5/2 and Br 3d 3/2 , respectively, at the Br - anion bound to the K + cation (hereinafter referred to as free Br). It represents two combined sub-peaks. The ZnO-NP:KBr mixture shows almost the same spectrum as pristine KBr regardless of the amount of KBr in the ZnO-NP:KBr mixture, but with very small spectra centered at 70.0 eV and 71.0 eV corresponding to Zn 2+ -Br - . A sub-peak was observed.
대조적으로, ZnO-NP:PFPBr 박막은 원래의 PFPBr 박막의 것과 비교하여 더 높은 결합 에너지로 명확하게 이동된 스펙트럼을 나타낸다. ZnO-NP:PFPBr의 이동된 스펙트럼은, Br 3d5/2 및 Br 3d3/2(즉, 자유 Br)에 각각 해당하는 67.2 eV 및 68.2 eV를 중심으로 하는 원래의 PFPBr의 두 개의 결합된 하위 피크와 비교되는, Zn2+-Br- 이온 결합에 해당하는 약 69.0 eV 및 69.8 eV를 중심으로 하는 추가 하위 피크를 갖는다. 자유 Br과 비교하여 Zn-Br에 대한 서브피크의 면적 (즉, AZn-Br/Afree Br)은 PFPBr의 양이 0.27 μM([Br-] = 1.6 μM에 해당)으로 증가함에 따라 증가하였으며, 그 후, 더 많은 양의 PFPBr이 사용됨에 따라 점차 감소하였다 (도 10의 b). 하기 표 1에 자세한 XPS 파라미터를 나열하였다. 도 10의 a는 PFPBr의 Br- 음이온이 KBr의 Br- 음이온에 비해 PFPBr의 더 낮은 몰 농도에서도 ZnO-NP 표면의 Zn2+ 양이온과 더 효과적으로 배위된다는 것을 보여준다. Zn2+와 Br- 이온 사이의 효과적인 배위는 ZnO-NP:PFPBr 계면에서 Zn2+-Br--N+ 이온 결합을 형성함으로써 링커로서 다중 이온 PFP+ 양이온을 통해 ZnO-NP가 강한 상호작용을 하도록 한다 (도 10의 c). 각각의 PFPBr은 다중 Zn2+-Br--N+ 이온 결합을 가지므로 PFPBr은 ZnO-NP:PFPBr 혼합물에서 여러 ZnO-NP를 보유하여 박막 유연성을 향상시킬 수 있다.In contrast, the ZnO-NP:PFPBr thin film shows a clearly shifted spectrum to higher binding energy compared to that of the pristine PFPBr thin film. The shifted spectrum of ZnO-NP:PFPBr is divided into two bound subtypes of pristine PFPBr centered at 67.2 eV and 68.2 eV, corresponding to Br 3d 5/2 and Br 3d 3/2 (i.e., free Br), respectively. Compared to the peak, there are additional sub-peaks centered around 69.0 eV and 69.8 eV corresponding to Zn 2+ -Br - ion bonds. Compared to free Br, the area of the subpeak for Zn-Br (i.e., A Zn-Br /A free Br ) increased as the amount of PFPBr increased to 0.27 μM (corresponding to [Br − ] = 1.6 μM). , and then gradually decreased as larger amounts of PFPBr were used (Figure 10b). Detailed XPS parameters are listed in Table 1 below. Figure 10 a shows that the Br - anion of PFPBr coordinates more effectively with the Zn 2+ cation on the ZnO-NP surface compared to the Br - anion of KBr, even at a lower molar concentration of PFPBr. Effective coordination between Zn 2+ and Br - ions forms a Zn 2+ -Br - -N + ionic bond at the ZnO-NP:PFPBr interface, allowing ZnO-NPs to have strong interactions through multiionic PFP + cations as linkers. Do this (c in Figure 10). Since each PFPBr has multiple Zn 2+ -Br - -N + ion bonds, PFPBr can retain multiple ZnO-NPs in the ZnO-NP:PFPBr mixture to improve thin film flexibility.
MaterialMaterial | Molar concentration of Br-(μM)Molar concentration of Br - (μM) | BE at the maximum intensity (eV)BE at the maximum intensity (eV) | Bromide ratioBromide ratio | |||
Free BrFree Br | Zn-BrZn-Br | AZn-Br/AFree Br A Zn-Br /A Free Br | ||||
3d5/2 3d 5/2 | 3d3/2 3d 3/2 | 3d5/2 3d 5/2 | 3d3/2 3d 3/2 | |||
KBrKBr | -- | 68.868.8 | 69.869.8 | -- | -- | -- |
ZnO-NP:KBrZnO-NP:KBr | 0.30.3 | 68.568.5 | 69.569.5 | 70.070.0 | 71.071.0 | 0.0510.051 |
ZnO-NP:KBrZnO-NP:KBr | 1.61.6 | 68.568.5 | 69.569.5 | 70.070.0 | 71.071.0 | 0.0510.051 |
ZnO-NP:KBrZnO-NP:KBr | 3.23.2 | 68.468.4 | 69.569.5 | 70.070.0 | 71.071.0 | 0.0620.062 |
ZnO-NP:KBrZnO-NP:KBr | 6.46.4 | 68.368.3 | 69.369.3 | 70.070.0 | 71.071.0 | 0.0430.043 |
PFPBrPFPBr | -- | 67.267.2 | 68.268.2 | -- | -- | -- |
ZnO-NP:PFPBrZnO-NP:PFPBr | 0.30.3 | 67.467.4 | 68.368.3 | 69.069.0 | 69.769.7 | 1.0781.078 |
ZnO-NP:PFPBrZnO-NP:PFPBr | 1.61.6 | 67.467.4 | 68.368.3 | 69.069.0 | 69.869.8 | 1.1081.108 |
ZnO-NP:PFPBrZnO-NP:PFPBr | 3.23.2 | 67.467.4 | 68.368.3 | 69.069.0 | 69.769.7 | 0.9190.919 |
ZnO-NP:PFPBrZnO-NP:PFPBr | 6.46.4 | 67.467.4 | 68.368.3 | 69.069.0 | 69.769.7 | 0.5950.595 |
ZnO-NP:PFPBr 후막의 기계적 성질Mechanical properties of ZnO-NP:PFPBr thick film
반복적인 인장 굽힘에 의한 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 후막 (thick film) (두께 약 320 nm 내지 약 450 nm)의 굽힘 안정성을 조사하고 비교하여, 고체 상태 ZnO-NP:PFPBr 복합체의 기계적 성질에 대한 이온 상호작용의 영향을 추가 조사하였다. 투명한 폴리이미드 기판(두께 100 μm) 위에 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 용액을 드롭 캐스팅(drop casting)하여 후막을 제조하였다. 후막을 다양한 굽힘 반경 (bending radius; r)으로 반복적으로 굽히고, 광학현미경을 사용하여 반복 굽힘 전후의 후막 표면을 조사하였다. 도 11은 r = 1.5 mm에서 5 회 인장 굽힘 후 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 후막의 광학현미경 이미지를 나타낸다. ZnO-NP 및 ZnO-NP:KBr 후막은 굽힘 방향에 수직인 방향에서 대부분 더 많은 수의 균열을 나타낸다. 대조적으로, ZnO-NP:PFPBr 후막은 동일한 기계적 응력을 가한 후에도 균열 없이 매끄럽고 연속적인 표면을 나타내어, 상기 설명한 Zn2+-Br--N+ 배위 결합된 강력한 분자간 상호 작용으로 인한 ZnO-NP:PFPBr 후막의 향상된 유연성을 보여준다.By investigating and comparing the bending stability of ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr thick films (thickness about 320 nm to about 450 nm) by repeated tensile bending, solid-state ZnO-NPs The influence of ionic interactions on the mechanical properties of the :PFPBr composite was further investigated. A thick film was prepared by drop casting ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr solutions on a transparent polyimide substrate (100 μm thick). The thick film was repeatedly bent at various bending radii (r), and the surface of the thick film before and after repeated bending was examined using an optical microscope. Figure 11 shows optical microscopy images of ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr thick films after five tensile bending at r = 1.5 mm. ZnO-NP and ZnO-NP:KBr thick films mostly show a greater number of cracks in the direction perpendicular to the bending direction. In contrast, the ZnO-NP:PFPBr thick film exhibited a smooth and continuous surface without cracking even after applying the same mechanical stress, resulting from the strong intermolecular interactions of Zn 2+ -Br - -N + coordination described above. It shows the improved flexibility of the thick film.
SEM 측정을 통하여 후막 간의 표면 변화를 추가로 조사하였다 (도 12). 광학현미경 결과와 유사하게, ZnO-NP 및 ZnO-NP:KBr 후막 표면에서 많은 균열이 관찰되었다. 그러나, ZnO-NP:PFPBr 후막은 동일한 굽힘 조건을 적용한 후에도 균열이 없는 손상되지 않은 표면을 나타내며, 더 높은 배율에서도 작은 균열이 관찰되지 않았다. 박막 유연성에 불리한, ZnO-NP:PFPBr 후막의 상대적으로 두꺼운 두께(도 12의 g 내지 i)를 고려할 때, ZnO-NP:PFPBr 후막의 현저히 향상된 기계적 유연성은 기계적으로 견고한 ZnO-NP:PFPBr 필름에 대한 다중이온 PFPBr의 효과를 보여준다.Surface changes between thick films were further investigated through SEM measurements (FIG. 12). Similar to the optical microscopy results, many cracks were observed on the surface of the ZnO-NP and ZnO-NP:KBr thick films. However, the ZnO-NP:PFPBr thick film showed an intact surface without cracks even after applying the same bending conditions, and no small cracks were observed even at higher magnifications. Considering the relatively large thickness of the ZnO-NP:PFPBr thick film (g to i in Figure 12), which is disadvantageous for thin film flexibility, the significantly improved mechanical flexibility of the ZnO-NP:PFPBr thick film is superior to the mechanically robust ZnO-NP:PFPBr film. shows the effect of polyion PFPBr on
특히, ZnO-NP:PFPBr 후막의 표면 형태는 ZnO-NP 및 ZnO-NP:KBr 후막과 다르다. ZnO-NP 및 ZnO-NP:KBr 후막에 비하여 ZnO-NP:PFPBr 후막의 표면이 상대적으로 거친 것은, 막의 건조 과정에서 PFPBr과의 이온 상호작용에 의해 더 적은 이동성을 갖는 ZnO-NP에 의한 것일 수 있다 (도 12의 j). ZnO-NP 및 PFPBr 사이의 다가 상호작용은 필름 건조 과정에서 ZnO-NP의 자유도를 감소시켜 많은 응집 부위 및 이와 관련된 거친 표면을 초래할 수 있다. 또한, AFM 이미지는 상기 설명한 대로 균열(ZnO-NP 및 ZnO-NP:KBr 후막의 경우) 및 거친 표면 형태(ZnO-NP:PFPBr 후막의 경우)를 확인한다 (도 13). 상기 결과는 ZnO-NP와 PFPBr 사이의 효과적인 이온 상호작용; 및 ZnO-NP:PFPBr 막의 향상된 기계적 유연성을 보여준다.In particular, the surface morphology of the ZnO-NP:PFPBr thick film is different from that of the ZnO-NP and ZnO-NP:KBr thick films. The relatively rough surface of the ZnO-NP:PFPBr thick film compared to the ZnO-NP and ZnO-NP:KBr thick films may be due to the ZnO-NP having less mobility due to ionic interaction with PFPBr during the drying process of the film. There is (j in Figure 12). The multivalent interaction between ZnO-NPs and PFPBr may reduce the degree of freedom of ZnO-NPs during the film drying process, resulting in many aggregation sites and associated rough surfaces. Additionally, AFM images confirm cracks (for ZnO-NP and ZnO-NP:KBr thick films) and rough surface morphology (for ZnO-NP:PFPBr thick films) as described above (Figure 13). The results show that effective ionic interaction between ZnO-NPs and PFPBr; and the improved mechanical flexibility of the ZnO-NP:PFPBr membrane.
ZnO-NP:PFPBr 박막의 기계적 성질Mechanical properties of ZnO-NP:PFPBr thin films
ZnO-NP:PFPBr 박막 (두께 55 nm 내지 60 nm) 또한, ZnO-NP 및 ZnO-NP:KBr 박막에 비하여 유연성이 향상되었다 (도 14). 투명 폴리이미드 기판 위에 ZnO-NP, ZnO-NP:KBr 및 ZnO-NP:PFPBr 용액을 스핀 캐스팅 (spin casting)하여 박막을 제조하였다. 박막의 필름 두께는 후막의 두께보다 훨씬 작으므로 (도 12의 g 내지 i), 광학현미경 측정으로 박막에서 큰 균열은 관찰되지 않는다. 따라서, SEM 측정을 수행하여 박막 표면의 작은 균열을 찾았다. 후막과 유사하게, ZnO-NP 및 ZnO-NP:KBr 박막은 인장 굽힘 후에 작지만 많은 균열을 나타낸다. ZnO-NP:KBr 박막은 ZnO-NP 박막에 비하여 상대적으로 균열 수가 적은 것으로 보이지만 (도 14의 a 내지 b), 고배율 (1Х105)에서 더 많은 수의 균열이 관찰되었다 (도 14의 e). 대조적으로, ZnO-NP:PFPBr 박막은 고배율에서도 ZnO-NP 및 ZnO-NP:KBr 박막과 비교하여 동일한 굽힘 조건(r = 1.5 mm)에서 인장 굽힘 후 균열을 나타내지 않는다 (도 14의 c 및 f).ZnO-NP:PFPBr thin film (thickness 55 nm to 60 nm) also had improved flexibility compared to ZnO-NP and ZnO-NP:KBr thin films (FIG. 14). Thin films were prepared by spin casting ZnO-NP, ZnO-NP:KBr, and ZnO-NP:PFPBr solutions on a transparent polyimide substrate. Since the film thickness of the thin film is much smaller than that of the thick film (FIG. 12g to i), no large cracks are observed in the thin film by optical microscopy measurements. Therefore, SEM measurements were performed to find small cracks on the thin film surface. Similar to thick films, ZnO-NP and ZnO-NP:KBr thin films exhibit small but numerous cracks after tensile bending. The ZnO-NP:KBr thin film appears to have a relatively small number of cracks compared to the ZnO-NP thin film (a to b in Figure 14), but a greater number of cracks was observed at high magnification (1Х10 5 ) (e in Figure 14). In contrast, the ZnO-NP:PFPBr thin film shows no cracks after tensile bending under the same bending conditions (r = 1.5 mm) compared to the ZnO-NP and ZnO-NP:KBr thin films even at high magnification (Figure 14c and f). .
유연 광센서 (flexible organic photodetector; flexible OPD)Flexible optical sensor (flexible organic photodetector; flexible OPD)
전자 수송층/정공 차단층(electron transport layer/hole blocking layer; ETL/HBL)로서 ZnO-NP:PFPBr을 사용하여 투명 폴리이미드 기판 위에 유연 OPD를 제작하여, ZnO-NP:PFPBr 박막의 향상된 기계적 유연성을 이용하였다. 비교를 위하여 ZnO-NP 및 ZnO-NP:KBr 박막을 사용한 유연 소자도 제작하였다. 도 15의 a 및 b는 각각 소자 구조 및 해당 에너지 준위 다이어그램을 나타낸다. 특히, PFN은 ZnO-NP 기반 ETL/EBL을 캐스팅할 때, ZnO-NP 기반 용액의 습윤성을 개선하기 위하여 사용하였다. 그 후, 일부 소자는 질소 충전된 글로브박스에서 r = 2.5 mm에서 인장 굽힘을 가하였다 (도 15의 c). 도 15의 d 및 e는 250 회 반복적인 굽힘 전후 다양한 ETL/HBL로 제작된 유연 OPD의 반응도 (responsivity; R) 및 검출능 (detectivity; D*) 스펙트럼을 나타내며, 여기서, 데이터는 단락 조건(short-circuit condition) (0 V)에서 수득하였다. 해당 외부 양자 효율 (external quantum efficiency; EQE) 스펙트럼은 도 16에 나타냈다.By fabricating a flexible OPD on a transparent polyimide substrate using ZnO-NP:PFPBr as an electron transport layer/hole blocking layer (ETL/HBL), improved mechanical flexibility of the ZnO-NP:PFPBr thin film was achieved. It was used. For comparison, flexible devices using ZnO-NP and ZnO-NP:KBr thin films were also fabricated. Figures 15a and b respectively show the device structure and corresponding energy level diagram. In particular, PFN was used to improve the wettability of the ZnO-NP-based solution when casting ZnO-NP-based ETL/EBL. Afterwards, some devices were subjected to tensile bending at r = 2.5 mm in a nitrogen-filled glovebox (Figure 15c). Figure 15 d and e show the responsivity (R) and detectability (detectivity (D * )) spectra of flexible OPDs made of various ETL/HBL before and after 250 repeated bendings, where the data are shown under short circuit conditions (short circuit). -circuit condition) (0 V). The corresponding external quantum efficiency (EQE) spectrum is shown in Figure 16.
원래의 소자는 ETL/HBL의 유형에 관계없이 유사한 EQE 스펙트럼을 나타냈으며, 750 nm의 스펙트럼에서 약 69% 이상의 값을 보였다. 그러나, r = 2.5 mm에서 250 회 굽힘 후 ZnO-NP로 제작된 소자의 EQE는 약 46.4% 감소하였다. ZnO-NP:KBr를 포함하는 소자는 250 회 반복 굽힘 후 전체 스펙트럼 범위에서 EQE가 크게 감소하였다. 대조적으로, ZnO-NP:PFPBr 기반 OPD는 동일한 조건(r = 2.5 mm에서 250 회)에서 굽힘 후에도 원래의 소자와 비교하여 거의 변하지 않은 EQE 스펙트럼을 나타냈다.The original device showed a similar EQE spectrum regardless of the type of ETL/HBL, with a value of approximately 69% or higher in the spectrum at 750 nm. However, after bending 250 times at r = 2.5 mm, the EQE of the device made of ZnO-NP decreased by about 46.4%. The EQE of the device containing ZnO-NP:KBr decreased significantly in the entire spectral range after 250 repeated bending cycles. In contrast, the ZnO-NP:PFPBr-based OPD showed an almost unchanged EQE spectrum compared to the pristine device even after bending under the same conditions (250 times at r = 2.5 mm).
따라서, ZnO-NP 및 ZnO-NP:KBr ETL/HBL로 제작된 유연 OPD의 R 및 D*는 r = 2.5 mm에서 250 회 굽힘 후 크게 감소한 반면, ZnO-NP:PFPBr 소자는 굽힘 전후에 거의 동일한 R 스펙트럼을 나타냈다 (도 15의 d). 하기 표 2에 나타난 바와 같이, ZnO-NP 및 ZnO-NP:KBr 소자의 R은 r = 2.5 mm에서 250 회 굽힘 후 각각 45.2% 및 47.6% 감소에 해당하는 0.23 A/W 및 0.22 A/W로 감소하였다. 한편, D* 값은 각각 2.28 Х 1012 Jones 및 2.25 Х 1012 Jones로 감소했으며, 이는 원래의 소자에 비하여 46.3% 및 44.2% 감소에 해당한다 (각각 D* = 4.25 Х 1012 Jones 및 4.03 Х 1012 Jones). 대조적으로, 동일한 굽힘 시험 후 ZnO-NP:PFPBr 소자의 R 및 D*는, 각각 0.38 A/W 및 3.62 Х 1012 Jones로 나타났다. 상기 값은 굽힘 전의 원래의 소자의 성능 (R = 0.41 A/W 및 D* = 4.02 Х 1012 Jones)과 비교하여 각각 7.3% 및 10.0%만 감소하였다.Therefore, the R and D * of flexible OPDs fabricated from ZnO-NP and ZnO-NP:KBr ETL/HBL decreased significantly after 250 bendings at r = 2.5 mm, while the ZnO-NP:PFPBr devices were almost the same before and after bending. The R spectrum was shown (d in Figure 15). As shown in Table 2 below, the R of the ZnO-NP and ZnO-NP:KBr devices was 0.23 A/W and 0.22 A/W, corresponding to a decrease of 45.2% and 47.6%, respectively, after 250 bendings at r = 2.5 mm. decreased. Meanwhile, the D * values decreased to 2.28 Х 10 12 Jones and 2.25 Х 10 12 Jones, respectively, which corresponds to a reduction of 46.3% and 44.2% compared to the original device (D * = 4.25 Х 10 12 Jones and 4.03 Х, respectively) 10 12 Jones). In contrast, R and D * of the ZnO-NP:PFPBr device after the same bending test were found to be 0.38 A/W and 3.62 Х 10 12 Jones, respectively. These values decreased by only 7.3% and 10.0%, respectively, compared to the performance of the original device before bending (R = 0.41 A/W and D * = 4.02 Х 10 12 Jones).
ZnO-NP 및 ZnO-NP:KBr 소자의 현저한 성능 저하는 인가된 인장 응력(tensile stress)에 의해 ETL/캐소드(cathode) 층에서 생성된 균열에 기인한다. 유연 OPD에서 ZnO-NP/Ag 및 ZnO-NP:KBr/Ag 층 위에 생성된 균열은 광학현미경 이미지로 확인되었으며, ZnO-NP:PFPBr/Ag는 눈에 띄는 균열 없이 매끄러운 표면을 나타낸다 (도 15의 f). OPD 성능은 균열에서 나타나는 전자 수집 저하로 인하여 감소하였으며, 이는, 종방향 전자 수송에 대한 전기 저항을 증가시키고 광활성/ETL/캐소드 계면에서 효율적인 접촉을 방해할 수 있기 때문이다. 이는, 균열 부분 근처의 내부 전기장을 감소시킨다. 이러한 결과는 상기 설명한 광학현미경, SEM 및 AFM 결과와 일치했으며, ZnO-NP와 PFPBr 사이의 효과적인 이온 배위 및 강력한 분자 상호 작용을 통하여 ZnO-NP:PFPBr 박막의 기계적 유연성이 크게 향상되었음을 나타낸다.The significant performance degradation of ZnO-NP and ZnO-NP:KBr devices is due to cracks generated in the ETL/cathode layer by the applied tensile stress. Cracks created on the ZnO-NP/Ag and ZnO-NP:KBr/Ag layers in flexible OPD were confirmed by optical microscopy images, and ZnO-NP:PFPBr/Ag shows a smooth surface without visible cracks (Figure 15). f). OPD performance was reduced due to poor electron collection seen in cracks, which could increase the electrical resistance to longitudinal electron transport and prevent efficient contact at the photoactive/ETL/cathode interface. This reduces the internal electric field near the crack area. These results were consistent with the optical microscopy, SEM, and AFM results described above, and indicated that the mechanical flexibility of the ZnO-NP:PFPBr thin film was greatly improved through effective ionic coordination and strong molecular interactions between ZnO-NP and PFPBr.
ETL/HBLETL/HBL | Bending cycles @r=2.5 mmBending cycles @r=2.5 mm |
R @λ=750 nm (A/W)R@λ=750 nm (A/W) |
D* @λ=750 nm (×1012, Jones)D * @λ=750 nm (×10 12 , Jones) |
ZnO-NPZnO-NPs | -- | 0.420.42 | 4.254.25 |
250250 | 0.230.23 | 2.282.28 | |
ZnO-NP:KBrZnO-NP:KBr | -- | 0.420.42 | 4.034.03 |
250250 | 0.220.22 | 2.252.25 | |
ZnO-NP:PFPBrZnO-NP:PFPBr | -- | 0.410.41 | 4.024.02 |
250250 | 0.380.38 | 3.623.62 |
본 발명에서는 ZnO-NP 및 다중이온 PFPBr 전해질 사이의 이온 상호작용과 상기 상호작용이 ZnO-NP:PFPBr 박막의 기계적 특성에 미치는 영향을 조사하였다. 디페닐플루오렌 기반 백본(diphenylfluorene-based backbone)을 기반으로, 이온성 펜던트기(ionic pendant group)로서 다중 피리디늄 브로마이드를 갖는 PFPBr을 합성하였다. ZnO-NP:PFPBr 복합체의 상기 다중 이온성 펜던트기는 단일 PFPBr 분자에 의해 여러 Zn2+-Br--N+ 배위를 형성한다. 따라서, 다중이온 PFP+ 양이온은 ZnO-NP와 PFPBr 사이의 이온 배위를 통하여 여러 ZnO-NP를 가질 수 있다. 대조적으로, ZnO-NP:KBr 복합체에서 단일 K+ 양이온을 갖는 KBr은 Zn2+-Br--K+ 결합의 비효율적인 배위로 인하여 여러 ZnO-NP를 가질 수 없다. 또한, 단일 K+ 양이온은 각각의 K+ 양이온이 하나의 ZnO-NP를 가질 수 있으므로 ZnO-NP 표면의 Zn2+-Br--K+ 배위에도 불구하고 여러 ZnO-NP를 가질 수 없다. 따라서, ZnO-NP:PFPBr 박막은 기계적 유연성이 크게 향상된 반면 ZnO-NP 및 ZnO-NP:KBr 박막은 반복적인 인장 굽힘 응력에서 부서지기 쉬운 상태가 된다. 이는, 광학현미경, SEM, 및 AFM 조사를 통하여 확인하였다.In the present invention, the ionic interaction between ZnO-NP and polyionic PFPBr electrolyte and the effect of this interaction on the mechanical properties of ZnO-NP:PFPBr thin films were investigated. Based on a diphenylfluorene-based backbone, PFPBr with multiple pyridinium bromides as ionic pendant groups was synthesized. The multiple ionic pendant groups of the ZnO-NP:PFPBr complex form multiple Zn 2+ -Br - -N + coordinations by a single PFPBr molecule. Therefore, the polyionic PFP + cation can have multiple ZnO-NPs through ionic coordination between ZnO-NPs and PFPBr. In contrast, in the ZnO-NP:KBr complex, KBr with a single K + cation cannot have multiple ZnO-NPs due to inefficient coordination of the Zn 2+ -Br - -K + bond. Additionally, a single K + cation cannot have multiple ZnO-NPs despite the Zn 2+ -Br - -K + coordination on the ZnO-NP surface, as each K + cation can have one ZnO-NP. Therefore, the mechanical flexibility of the ZnO-NP:PFPBr thin film is greatly improved, while the ZnO-NP and ZnO-NP:KBr thin films become brittle under repeated tensile bending stress. This was confirmed through optical microscopy, SEM, and AFM investigations.
유연 OPD는 본 발명에서 개발된 기계적으로 견고한 ZnO-NP:PFPBr 박막으로 인하여 제조된다. r = 2.5 mm에서 250 회 반복 굽힘 후에도 투명한 폴리이미드 기판 위에 ZnO-NP:PFPBr ETL/HBL을 사용하여 제작된 유연한 OPD는 각각, 0.38 A/W 및 3.62 Х1012 Jones의 높은 R 및 D* 값으로 매우 안정적인 성능을 나타냈다. 상기 값은 굽힘 전의 원래의 소자의 값과 거의 비슷하다 (R = 0.41 A/W 및 D* = 4.02 Х 1012 Jones). 대조적으로, ZnO-NP 및 ZnO-NP:KBr를 포함하는 OPD는 ZnO-NP 및 ZnO-NP:KBr ETL/HBL의 균열 형성으로 인해 굽힘 전의 원래의 소자와 비교하여 R 및 D*가 크게 감소하였다. 본 발명은 PFPBr이 ZnO-NP:PFPBr 박막의 전기적 특성을 변화시키지 않는다는 점을 고려할 때, 금속 산화물 나노입자 기반 박막의 기계적 특성을 개선하기 위한 간단하고 효과적인 전략을 제시하고 현재까지 개발된 금속 산화물 나노입자를 다양한 유연 유기 광전자 소자에 사용할 수 있도록 할 수 있다.Flexible OPD is fabricated due to the mechanically robust ZnO-NP:PFPBr thin film developed in the present invention. Even after 250 repeated bending cycles at r = 2.5 mm, flexible OPDs fabricated using ZnO-NP:PFPBr ETL/HBL on transparent polyimide substrates exhibit high R and D * values of 0.38 A/W and 3.62 Х10 12 Jones, respectively. It showed very stable performance. These values are almost similar to those of the original device before bending (R = 0.41 A/W and D * = 4.02 Х 10 12 Jones). In contrast, the OPD containing ZnO-NP and ZnO-NP:KBr showed a significant decrease in R and D * compared to the pristine device before bending due to crack formation in the ZnO-NP and ZnO-NP:KBr ETL/HBL. . Considering that PFPBr does not change the electrical properties of ZnO-NP:PFPBr thin films, the present invention presents a simple and effective strategy to improve the mechanical properties of metal oxide nanoparticle-based thin films, and provides a simple and effective strategy for improving the mechanical properties of metal oxide nanoparticle-based thin films and improves the mechanical properties of metal oxide nanoparticles developed to date. The particles can be used in various flexible organic optoelectronic devices.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The description of the present application described above is for illustrative purposes, and those skilled in the art will understand that the present application can be easily modified into other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present application. .
Claims (12)
- 하기 화학식 Ⅰ로서 표시되는 화합물, 하기 화학식 Ⅱ로서 표시되는 올리고머, 또는 하기 화학식 Ⅰ로서 표시되는 화합물을 말단에 포함하는 덴드리머; 및A dendrimer containing at its terminal a compound represented by the following formula (I), an oligomer represented by the following formula (II), or a compound represented by the following formula (I); and산화아연 나노입자zinc oxide nanoparticles를 포함하는, 유연 막:Flexible membrane comprising:[화학식 Ⅰ][Formula Ⅰ][화학식 Ⅱ][Formula Ⅱ]상기 화학식 Ⅰ 및 상기 화학식 Ⅱ에서,In Formula I and Formula II,R1은 수소 또는 -O-Ra-Rb이고,R 1 is hydrogen or -OR a -R b ,Ra는 C1-10의 알킬렌기이고,R a is a C 1-10 alkylene group,Rb는 할로겐화 암모늄염이며, 상기 암모늄염은 암모늄염(-NH3 +), 질소를 하나 이상 포함하는, C1-20의 1차 알킬아민, 2차 알킬아민, 또는 3차 알킬아민, C3-10의 헤테로시클로알킬기, 또는 C3-10의 헤테로아릴기의 암모늄염이며, 상기 할로겐화 암모늄염에서 할로겐화 이온은 F-, Cl-, Br-, 또는 I-이고,R b is an ammonium halide salt, and the ammonium salt is an ammonium salt (-NH 3 + ), a C 1-20 primary alkylamine, a secondary alkylamine, or a tertiary alkylamine containing at least one nitrogen, C 3-10 It is an ammonium salt of a heterocycloalkyl group, or a C 3-10 heteroaryl group, and in the ammonium halide salt, the halide ion is F - , Cl - , Br - , or I - ,단, R1이 모두 수소인 경우는 제외하며,However, except for the case where R 1 is all hydrogen,m은 0 또는 1이고, n은 1 내지 10의 정수이고,m is 0 or 1, n is an integer from 1 to 10,파선은 연결 부분임.The dashed line is the connection part.
- 제 1 항에 있어서,According to claim 1,상기 Rb의 암모늄염은 암모늄염(-NH3 +), 트리메틸암모늄염, 트리에틸암모늄염, 트리프로필암모늄염, 메틸암모늄염, 에틸암모늄염, 프로필암모늄염, 디메틸암모늄염, 에틸메틸암모늄염, 메틸프로필암모늄염, 디에틸암모늄염, 에틸프로필암모늄염, 디프로필암모늄염, 에틸디메틸암모늄염, 디메틸프로필암모늄염, 디에틸메틸암모늄염, 에틸메틸프로필암모늄염, 메틸디프로필암모늄염, 디에틸프로필암모늄염, 에틸디프로필암모늄염, 피리디늄염, 아지리디늄염, 아제티디늄염, 피롤리디늄염, 피페리디늄염, 아제파니움염, 아조케니움염, 및 이미다졸륨염에서 선택되는 하나 이상을 포함하는 것인, 유연 막.The ammonium salt of R b is ammonium salt (-NH 3 + ), trimethylammonium salt, triethylammonium salt, tripropylammonium salt, Methylammonium salt, ethyl ammonium salt, propyl ammonium salt, dimethyl ammonium salt, ethyl methyl ammonium salt, methyl propy ammonium salt, diethy ammonium salt, ethyl propy ammonium salt, dipropylammonium salt, ethyl dimethyl ammonium salt, dimethyl propy ammonium salt, diethyl methyl ammonium salt, ethyl methyl propy ammonium salt, Select from methyldipropylammonium salt, diethylpropylammonium salt, ethyldipropylammonium salt, pyridinium salt, aziridinium salt, azetidinium salt, pyrrolidinium salt, piperidinium salt, azepanium salt, azocenium salt, and imidazolium salt. A flexible membrane comprising one or more
- 제 1 항에 있어서,According to claim 1,상기 화학식 Ⅱ로서 표시되는 올리고머는 하기 화학식 2로서 표시되는 것인, 유연 막:The oligomer represented by Formula II is a flexible membrane represented by the following Formula 2:[화학식 2][Formula 2]상기 화학식 2에서,In Formula 2,m은 0 또는 1이고, n은 1 내지 10의 정수이고,m is 0 or 1, n is an integer from 1 to 10,파선은 연결 부분임.The dashed line is the connection part.
- 제 1 항에 있어서,According to claim 1,상기 덴드리머는 폴리에틸렌이민 (PEI), 폴리프로필렌이민 (PPI), 또는 폴리아미도아민 (PAMAM)의 덴드리머인 것인, 유연 막.The dendrimer is a flexible membrane of polyethyleneimine (PEI), polypropyleneimine (PPI), or polyamidoamine (PAMAM).
- 제 1 항에 있어서, According to claim 1,상기 Rb의 할로겐화 이온과 상기 산화아연 나노입자의 Zn2+이 배위결합하여 상기 산화아연 나노입자가 응집되는 것인, 유연 막.A flexible membrane in which the zinc oxide nanoparticles are aggregated by coordination between the halide ion of R b and Zn 2+ of the zinc oxide nanoparticles.
- 제 1 항에 있어서,According to claim 1,상기 산화아연 나노입자의 직경은 1 nm 내지 100 nm인 것인, 유연 막.A flexible membrane in which the diameter of the zinc oxide nanoparticles is 1 nm to 100 nm.
- 제 1 항에 있어서,According to claim 1,상기 유연 막의 두께는 1 nm 내지 1 μm인 것인, 유연 막.The flexible membrane has a thickness of 1 nm to 1 μm.
- 제 1 항에 있어서,According to claim 1,상기 유연 막은 100 nm 이하의 두께 범위에서, 굽힘 반경 2.5 mm에서 300 회 이상 굽혀도 균열이 발생하지 않는 것인, 유연 막.The flexible membrane is a flexible membrane that does not crack even if bent more than 300 times at a bending radius of 2.5 mm in a thickness range of 100 nm or less.
- 제 1 항에 따른 유연 막을 전하 이동층으로서 포함하는, 유연 전자 소자.A flexible electronic device comprising the flexible film according to claim 1 as a charge transfer layer.
- 제 11 항에 있어서,According to claim 11,상기 유연 전자 소자는 유연 유기발광다이오드, 유연 태양전지, 유연 광센서, 페로브스카이트 발광다이오드, 유연 트랜지스터, 및 유연 화학센서에서 선택되는 하나 이상을 포함하는 것인, 유연 막.The flexible electronic device is a flexible film comprising one or more selected from flexible organic light-emitting diodes, flexible solar cells, flexible optical sensors, perovskite light-emitting diodes, flexible transistors, and flexible chemical sensors.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220129700A KR20240050028A (en) | 2022-10-11 | 2022-10-11 | Zinc oxide nanoparticle thin film with improved mechanical flexibility |
KR10-2022-0129700 | 2022-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024080719A1 true WO2024080719A1 (en) | 2024-04-18 |
Family
ID=90669854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/015576 WO2024080719A1 (en) | 2022-10-11 | 2023-10-11 | Zinc oxide nanoparticle thin film with improved mechanical flexibility |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240050028A (en) |
WO (1) | WO2024080719A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150108092A (en) * | 2014-03-17 | 2015-09-25 | 한국과학기술원 | Synthetic Method for Surface Modified ZnO Nanoparticle by Alkoxy-functionalized Conjugated Polyelectrolytes and Polymer Light-Emitting Diode Using Thereof |
-
2022
- 2022-10-11 KR KR1020220129700A patent/KR20240050028A/en not_active Application Discontinuation
-
2023
- 2023-10-11 WO PCT/KR2023/015576 patent/WO2024080719A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150108092A (en) * | 2014-03-17 | 2015-09-25 | 한국과학기술원 | Synthetic Method for Surface Modified ZnO Nanoparticle by Alkoxy-functionalized Conjugated Polyelectrolytes and Polymer Light-Emitting Diode Using Thereof |
Non-Patent Citations (4)
Title |
---|
JIN HO CHEOL, SALMA SABRINA AUFAR, MOON DOO KYUNG, KIM JOO HYUN: "Effect of conjugated polymer electrolytes with diverse acid derivatives as a cathode buffer layer on photovoltaic properties", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 8, no. 8, 25 February 2020 (2020-02-25), GB , pages 4562 - 4569, XP055860304, ISSN: 2050-7488, DOI: 10.1039/C9TA12931F * |
JUNHO LEE: "Investigation of Photovoltaic Properties of Polymer Solar Cells with Fluorene-based Polyelectrolytes as the Interlayer", PORRIME - POLYMER, NGUG GOBUNJA HAGHOI, SEOUL,, HA, vol. 45, no. 1, 31 January 2021 (2021-01-31), HA , pages 134 - 142, XP093158305, ISSN: 0379-153X, DOI: 10.7317/pk.2021.45.1.134 * |
SAMUEL D. COLLINS: "Observing Ion Motion in Conjugated Polyelectrolytes with Kelvin Probe Force Microscopy", ADVANCED ELECTRONIC MATERIALS, vol. 3, no. 3, 1 March 2017 (2017-03-01), pages 1700005, XP093158313, ISSN: 2199-160X, DOI: 10.1002/aelm.201700005 * |
WEIDONG XU: "Understanding the Light Soaking Effects in Inverted Organic Solar Cells Functionalized with Conjugated Macroelectrolyte Electron‐Collecting Interlayers", ADVANCED SCIENCE, JOHN WILEY & SONS, INC, GERMANY, vol. 3, no. 2, 1 February 2016 (2016-02-01), Germany, pages 1500245, XP093158310, ISSN: 2198-3844, DOI: 10.1002/advs.201500245 * |
Also Published As
Publication number | Publication date |
---|---|
KR20240050028A (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | A Solution-Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for High-Performance Organic Solar Cells. | |
CN107056776B (en) | Compound for organic photoelectric device, and organic photoelectric device, image sensor and electronic device including the same | |
EP3243822A1 (en) | Selenophene derivatives and organic photoelectric device, image sensor and electronic device including the same | |
Yuan et al. | Design of benzodithiophene-diketopyrrolopyrrole based donor–acceptor copolymers for efficient organic field effect transistors and polymer solar cells | |
WO2010117158A2 (en) | Conductive polymer containing carbazole, and organic photovoltaic device using same | |
WO2011068305A2 (en) | Conducting polymer to which pyrene compounds are introduced, and organic solar cell using same | |
TW200840105A (en) | Thiophene electronic devices | |
EP3770163B1 (en) | Compound and photoelectric device, image sensor and electronic device including the same | |
KR101810900B1 (en) | Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof | |
CN103987715A (en) | Nitrogen-containing aromatic compound, organic semiconductor material and organic electronic devices | |
Zhou et al. | Diketopyrrolopyrrole-based small molecules for solution-processed n-channel organic thin film transistors | |
WO2018014163A1 (en) | Donor-acceptor polymer with 4-alkoxyl thiophene as conjugated side chain and composition having the same | |
Li et al. | High performance quinacridone-based polymers in film transistors and photovoltaics: effects of vinylene linkage on crystallinity and morphology | |
KR20170016862A (en) | N-fluoroalkyl-substituted dibromonaphthalene diimides and their use as semiconductor | |
KR20160149874A (en) | Naphthalene diimide based copolymers with high electron mobility and synthesizing method of the same | |
TWI623564B (en) | P-type semiconducting polymers and related methods | |
KR101956970B1 (en) | Thieno[2,3-c]pyrrole-dione derivatives and their use for organic semiconductors | |
TW202116729A (en) | Dopant, electroconductive composition and method for producing same | |
WO2024080719A1 (en) | Zinc oxide nanoparticle thin film with improved mechanical flexibility | |
Xu et al. | Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells. | |
Kim et al. | Thieno [3, 2‐b] thiophene‐substituted benzodithiophene in donor–acceptor type semiconducting copolymers: A feasible approach to improve performances of organic photovoltaic cells | |
WO2023167441A1 (en) | Method for producing high-purity cesium halide, and perovskite composite material | |
Yun et al. | Side chain engineering of [1] benzothieno [3, 2-b] benzothiophene (BTBT)-based semiconductors for organic field-effect transistors | |
WO2023234601A1 (en) | Coating agent for forming large-area perovskite thin film and method for forming perovskite thin film using same | |
WO2015182973A1 (en) | Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23877646 Country of ref document: EP Kind code of ref document: A1 |