Nothing Special   »   [go: up one dir, main page]

WO2024080049A1 - 被膜形成性オルガノポリシロキサンのエマルション組成物及びその製造方法 - Google Patents

被膜形成性オルガノポリシロキサンのエマルション組成物及びその製造方法 Download PDF

Info

Publication number
WO2024080049A1
WO2024080049A1 PCT/JP2023/033019 JP2023033019W WO2024080049A1 WO 2024080049 A1 WO2024080049 A1 WO 2024080049A1 JP 2023033019 W JP2023033019 W JP 2023033019W WO 2024080049 A1 WO2024080049 A1 WO 2024080049A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
emulsion composition
emulsion
film
parts
Prior art date
Application number
PCT/JP2023/033019
Other languages
English (en)
French (fr)
Inventor
匠 深町
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024080049A1 publication Critical patent/WO2024080049A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to an emulsion composition of a film-forming organopolysiloxane and a method for producing the composition.
  • Silicone emulsion compositions that form rubber coatings are known in a variety of compositions and are used in a variety of applications, including weather stripping, coatings, binders, and fiber treatments.
  • silicone emulsion composition comprising a hydroxylated diorganopolysiloxane, colloidal silica, and an organic tin compound or an organic amine compound
  • Patent Document 1 a silicone emulsion composition comprising a hydroxyl group-containing organopolysiloxane, a Si-H group-containing organopolysiloxane, colloidal silica, an amide group- and carboxyl group-containing silane, an epoxy group-containing silane, and a curing catalyst
  • Patent Document 2 a silicone emulsion composition comprising an alkenyl group-containing organopolysiloxane, a Si-H group-containing organopolysiloxane, colloidal silica, a reaction product of an aminosilane and an acid anhydride, an epoxysilane, and an addition reaction catalyst
  • Patent Document 3 a silicone emulsion composition comprising a silicone having molecular ends blocked with
  • Proposed compositions include a silicone emulsion composition consisting of a hydrogen siloxane, an emulsifier, water, and a curing catalyst (Patent Document 4); a silicone emulsion composition consisting of a colloidal silica-silicone core-shell body, a curing catalyst, an emulsifier, and water (Patent Documents 5 to 7); a silicone emulsion composition consisting of a hydroxyl group-containing organopolysiloxane, colloidal silica, an amide group- and carboxyl group-containing silane, an epoxy group-containing silane, a curing catalyst, and a photocatalytic oxide (Patent Document 8); and a silicone emulsion composition consisting of a hydroxyl group-containing organopolysiloxane, colloidal silica, an amide group- and carboxyl group-containing silane, and an epoxy group-containing silane (Patent Document 9).
  • silicone emulsion compositions that form rubber coatings are also used as fiber treatment agents.
  • Known methods for producing silicone emulsion compositions for forming such rubber coatings include those in which a cyclic siloxane oligomer or a silanol-terminated organopolysiloxane is emulsified as a raw material and then subjected to emulsion polymerization using a strong acid or strong base.
  • Patent Document 10 proposes that an organopolysiloxane emulsion having such a high degree of polymerization that a coating is formed in a shorter time than before can be obtained by emulsifying an organopolysiloxane having a terminal silanol group with a highly hydrophobic trialkylmethyl type cationic surfactant and an alkyltrimethyl type cationic surfactant (including a nonionic surfactant in some cases) in combination, and then adding an alkali catalyst to polymerize the emulsion.
  • the cured coating of the above composition is soft and has low strength.
  • the organopolysiloxane in this emulsion has such a high degree of polymerization that it forms a coating. Therefore, once it separates, it is impossible to stably disperse it again no matter how high the shear stirring is, making it difficult to use industrially, and further improvement in long-term stability is required.
  • the present invention has been made in consideration of the problems of the conventional technology described above, and aims to provide an emulsion composition of a film-forming organopolysiloxane that has good film-forming properties, excellent strength and flexibility of the film after curing, and good storage stability of the emulsion. It also aims to provide a method for producing the emulsion composition of the film-forming organopolysiloxane.
  • the present invention provides an emulsion composition of a film-forming organopolysiloxane, characterized in that it contains the following (A) to (D): (A) 100 parts by mass of an organopolysiloxane represented by the following average composition formula (1), having a viscosity of 300,000 mPa ⁇ s or more at 25° C.
  • R 1 's are each independently a hydrogen atom or an unsubstituted or substituted monovalent organic group having 1 to 20 carbon atoms
  • R 2 's are an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, or alkoxy or hydroxy group having 1 to 20 carbon atoms
  • a's are an integer from 2 to 1,000
  • b's are an integer from 10 to 10,000
  • c's are an integer from 0 to 1,000
  • d's are an integer from 0 to 1,000
  • c+d's are integers that satisfy the range of 0 to 2,000, and the viscosity of the organopolysiloxane at 25° C.
  • the emulsion composition of the film-forming organopolysiloxane of the present invention has good film-forming properties, produces a film with excellent strength and flexibility after curing, and has good storage stability as an emulsion.
  • the (B) cationic surfactant contains either or both of the following (B-1) or (B-2).
  • Q1 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • Q2 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • X is each independently a halogen atom or a monovalent carboxyl group having 1 to 6 carbon atoms
  • is an integer of 1 or 2, provided that the total amount of (B-1) and (B-2) is 0.1 to 30 parts by mass.
  • Such an emulsion composition provides better storage stability of the emulsion.
  • the emulsion composition of the present invention preferably further contains (E) a nonionic surfactant in an amount of 0.1 to 30 parts by mass per 100 parts by mass of component (A).
  • Such an emulsion composition can be emulsified more easily by complementing the emulsifying ability of component (E), and can dramatically improve the stability of the emulsion.
  • the nonionic surfactant (E) is preferably one represented by the following formula: R3O (EO) p (PO) qH (In the formula, R3 is a straight or branched alkyl group having 8 to 30 carbon atoms, EO is an ethylene oxide group, and PO is a propylene oxide group, and the arrangement thereof may be block or random. p and q are each independently an integer of 0 to 100, with the proviso that p+q>0.)
  • Such a surfactant (E) component has an appropriate balance between hydrophilicity and hydrophobicity, and is compatible with components (B-1) and (B-2), enhancing the stability of the emulsion.
  • the properties of the nonionic surfactant itself make it easy to handle when producing the emulsion.
  • the particle surface of the (D) colloidal silica is treated with an oxide of a metal other than silicon.
  • Such component (D) positively charges the surfaces of the surface-treated colloidal silica particles over a wide pH range, generating an electrical repulsive force between the surface-treated colloidal silica particles and the emulsion particles in the emulsion composition, making them less likely to coalesce or aggregate, and thus enabling the emulsion to be dispersed more stably.
  • the emulsion composition of the present invention may further contain a salt composed of a basic substance, which may be either ammonia or an organic amine, or both, and an acidic substance.
  • the emulsion composition of the present invention contains such salts, it has good film-forming properties, the strength and flexibility of the film after curing are excellent, and the storage stability of the emulsion is also good.
  • each of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) contained in the emulsion composition is 1,000 ppm or less (mass conversion, the same applies below).
  • the total content of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), tetradecamethylcycloheptasiloxane (D7), hexadecamethylcyclooctasiloxane (D8), octadecamethylcyclononasiloxane (D9), and eicosamethylcyclodecasiloxane (D10) contained in the emulsion composition is 1,000 ppm or less.
  • the emulsion composition of the present invention has a low content of such low molecular weight cyclic siloxanes, so the properties of the coating after curing (elongation at break, etc.) are excellent.
  • the average particle size of the emulsion contained in the emulsion composition is preferably 1 ⁇ m or less, and more preferably 500 nm or less.
  • the buoyancy applied to the particles is small in proportion to the volume of the particles, allowing the particles to be uniformly dispersed within the emulsion, suppressing aggregation and coalescence between particles, and preventing separation into light and dark layers or separation into two layers even when stored for a long period of time.
  • the emulsion composition of the present invention can also have an antiviral activity value Mv of 2.0 or more according to JIS L 1922.
  • the emulsion composition of the present invention can be applied to a target substance, such as a substrate, to which antiviral properties are to be imparted, to form a coating containing a substance that exhibits antiviral properties.
  • the present invention also provides a method for producing an emulsion composition of the above-mentioned film-forming organopolysiloxane, comprising the following steps (I) to (III), in which after step (I), steps (II) and (III) are carried out in any order or simultaneously:
  • the present invention provides a method for producing an emulsion composition of a film-forming organopolysiloxane, which comprises adding water (C) so that the total amount of the following (C-1), (C-2), and (C-3) is 30 to 3,000 parts by mass.
  • (I) a step of emulsifying a mixture containing the following components (A-1), (A-2), (B) and (C-1) to prepare an emulsion composition; (A-1) Organopolysiloxane blocked with terminal alkoxy groups and/or terminal silanol groups, having a viscosity at 25° C.
  • the total of (A-1) and (A-2) is 100 parts by mass, and the ratio of (A-2) to (A-1) is 0 to 0.2.
  • the method for producing an emulsion composition of a film-forming organopolysiloxane according to the present invention can efficiently produce an emulsion composition that has good film-forming properties, provides a film with excellent strength and flexibility after curing, and has good emulsion storage stability.
  • either or both of ammonia and organic amines can be used as the basic catalyst (F).
  • Such a catalyst makes it possible to significantly suppress the by-production of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while still ensuring that the viscosity of the organopolysiloxane in the emulsion composition of the film-forming organopolysiloxane at 25°C is 300,000 mPa ⁇ s or more, and the content of each can be kept to 1,000 ppm or less.
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • (B) As the cationic surfactant (B), it is preferable to use either or both of the following (B-1) and (B-2).
  • Q 1 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • Q 2 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • X is each independently a halogen atom or a monovalent carboxyl group having 1 to 6 carbon atoms
  • is an integer of 1 or 2
  • the total amount of (B-1) and (B-2) is 0.1 to 30 parts by mass.
  • This method for producing an emulsion composition can efficiently produce an emulsion composition with better storage stability.
  • a nonionic surfactant (E) can be added in an amount of 0.1 to 30 parts by mass per 100 parts by mass of the total of (A-1) and (A-2).
  • This method of producing an emulsion composition makes it easier to emulsify by complementing the emulsifying ability of component (E), and can efficiently produce a composition with dramatically improved emulsion stability.
  • a nonionic surfactant represented by the following formula can be used as the component (E).
  • R3O (EO) p (PO) qH (In the formula, R3 is a straight or branched alkyl group having 8 to 30 carbon atoms, EO is an ethylene oxide group, and PO is a propylene oxide group, and the arrangement thereof may be block or random.
  • p and q are each independently an integer of 0 to 100, with the proviso that p+q>0.)
  • colloidal silica the particle surface of which is treated with an oxide of a metal other than silicon, as component (D).
  • component (D) When such component (D) is used, electrical repulsion occurs between the surface-treated colloidal silica particles and the emulsion particles in the emulsion composition, making them less likely to coalesce or aggregate, making it possible to efficiently produce a more stable emulsion composition.
  • component (A-1) in which the content of each of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) is 1,000 ppm or less.
  • the content of each of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) contained in the emulsion composition can be 1,000 ppm or less, and the total content of each of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), tetradecamethylcycloheptasiloxane (D7), hexadecamethylcyclooctasiloxane (D8), octadecamethylcyclononasiloxane (D9), and eicosamethylcyclodecasiloxane (D10) contained in the emul
  • the method for producing an emulsion composition of the present invention makes it possible to efficiently produce an emulsion composition with a low content of such low molecular weight cyclic siloxanes.
  • the emulsion composition of the film-forming organopolysiloxane of the present invention (hereinafter also referred to as the emulsion composition) can provide an emulsion composition of the film-forming organopolysiloxane that has good film-forming properties, excellent film strength and flexibility after curing, and good emulsion storage stability, and a coating.
  • the emulsion composition can provide an emulsion composition of the film-forming organopolysiloxane that has good film-forming properties, excellent film strength and flexibility after curing, and good emulsion storage stability, and a coating.
  • a textile treatment agent that contains the emulsion composition of the present invention as an active ingredient has excellent washing durability and can maintain flexibility and lubricity even after washing treatment.
  • an emulsion composition of a film-forming organopolysiloxane containing specific amounts of (A) a specific organopolysiloxane having a viscosity of 300,000 mPa ⁇ s or more at 25°C, (B) a cationic surfactant, (C) water, and (D) colloidal silica has good film-forming properties, produces a film with excellent strength and flexibility after curing, and has good storage stability of the emulsion, which led to the creation of the present invention.
  • the present invention is a film-forming organopolysiloxane emulsion composition characterized by comprising the following (A) to (D): (A) 100 parts by mass of an organopolysiloxane represented by the following average composition formula (1), having a viscosity of 300,000 mPa ⁇ s or more at 25° C.
  • R 1 's are each independently a hydrogen atom or an unsubstituted or substituted monovalent organic group having 1 to 20 carbon atoms
  • R 2 's are an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, or alkoxy or hydroxy group having 1 to 20 carbon atoms
  • a's are an integer from 2 to 1,000
  • b's are an integer from 10 to 10,000
  • c's are an integer from 0 to 1,000
  • d's are an integer from 0 to 1,000
  • c+d's are integers that satisfy the range of 0 to 2,000, and the viscosity of the organopolysiloxane at 25° C.
  • the emulsion composition of the film-forming organopolysiloxane of the present invention comprises: (A) 100 parts by mass of an organopolysiloxane represented by the following average composition formula (1), having a viscosity of 300,000 mPa ⁇ s or more at 25° C.
  • R 1 's are each independently a hydrogen atom or an unsubstituted or substituted monovalent organic group having 1 to 20 carbon atoms
  • R 2 's are an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, or alkoxy or hydroxy group having 1 to 20 carbon atoms
  • a's are an integer from 2 to 1,000
  • b's are an integer from 10 to 10,000
  • c's are an integer from 0 to 1,000
  • d's are an integer from 0 to 1,000
  • c+d's are integers that satisfy the range of 0 to 2,000, and the viscosity of the organopolysiloxane at 25° C.
  • Component (A) is an organopolysiloxane represented by the following average composition formula (1), which has a viscosity at 25° C. of 300,000 mPa ⁇ s or more and contains at least two alkoxy groups or hydroxy groups bonded to silicon atoms in each molecule.
  • the emulsion composition of the present invention contains 100 parts by mass of this component (A).
  • R 1 's are each independently a hydrogen atom or an unsubstituted or substituted monovalent organic group having 1 to 20 carbon atoms
  • R 2 's are an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, or alkoxy or hydroxy group having 1 to 20 carbon atoms
  • a's are an integer from 2 to 1,000
  • b's are an integer from 10 to 10,000
  • c's are an integer from 0 to 1,000
  • d's are an integer from 0 to 1,000
  • c+d's are integers that satisfy the range of 0 to 2,000
  • the viscosity of the organopolysiloxane at 25° C. is a value that satisfies the range of 300,000 mPa ⁇ s or more.
  • R 1 is, independently of each other, a hydrogen atom or an unsubstituted or substituted monovalent organic group having 1 to 20 carbon atoms, which may be linear, branched, or cyclic, and specifically includes alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, cyclopentyl, cyclohexyl, and cycloheptyl, aryl groups such as phenyl, tolyl, and naphthyl, alkenyl groups such as vinyl and allyl, and those in which a portion of the hydrogen atoms in the organic group structure is substituted with a halogen atom or an organic group containing a polar group such as amino, acryl
  • R2 is an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a hydroxy group, which may be linear, branched, or cyclic.
  • hydroxy group examples thereof include, in addition to a hydroxy group, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group; a phenyl group, a tolyl group, a naphthyl group; a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a dec
  • a, b, c, and d are integers that satisfy the viscosity of the organopolysiloxane at 25°C of 300,000 mPa ⁇ s or more.
  • the character a is an integer from 2 to 1,000, preferably an integer from 2 to 500, and more preferably an integer from 2 to 100. If a is greater than 1,000, the flexibility of the silicone rubber coating may be poor.
  • b is an integer from 10 to 10,000, preferably an integer from 50 to 7,000, and more preferably an integer from 100 to 5,000. If b is less than 10, the flexibility of the silicone rubber coating may be poor or the coating may not be formed, whereas if b is more than 10,000, the tear strength and tensile strength of the coating may decrease.
  • c is an integer from 0 to 1,000, preferably an integer from 0 to 200, and more preferably an integer from 0 to 100.
  • c is greater than 1,000, the flexibility of the silicone rubber coating may decrease, and the tear strength and tensile strength of the coating may decrease.
  • d is an integer from 0 to 1,000, preferably an integer from 0 to 200, and more preferably an integer from 0 to 100. If d is greater than 1,000, the flexibility of the silicone rubber coating may decrease, and the tear strength and tensile strength of the coating may decrease.
  • c+d is an integer of 0 to 2,000, preferably 0 to 400, and more preferably 0 to 200.
  • the organopolysiloxane of component (A) has a viscosity at 25°C of 300,000 mPa ⁇ s or more, preferably 400,000 mPa ⁇ s or more, more preferably 500,000 mPa ⁇ s or more, more preferably 1,000,000 mPa ⁇ s or more, and most preferably has such a high viscosity that it cannot be measured by the viscosity measurement method described below.
  • the viscosity (absolute viscosity) in this invention is the measured value when measured using a BM type rotational viscometer (TVB-10M) at 25°C.
  • the viscosity of all of the following products is 300,000 mPa ⁇ s or higher: products whose viscosity cannot be measured even using the M4 rotor (maximum measurable viscosity: 2,000,000 mPa ⁇ s), which is the rotor capable of measuring the highest viscosity among all BM type rotational viscometers; products whose viscosity cannot be measured because they wrap around the rotor of the BM type rotational viscometer; and products whose viscosity cannot be measured because they do not dissolve in toluene.
  • organopolysiloxane of component (A) in the present invention include, but are not limited to, the average composition formula below.
  • a, b, b1, b2, b3, c, c1, c2, c3, and d are values that satisfy the viscosity of the polyorganosiloxane at 25°C of 300,000 mPa ⁇ s or more, and a, b, c, and d are the same as above.
  • b1, b2, and b3 are each an integer whose sum satisfies b, that is, 10 to 10,000, and c1, c2, and c3 are each an integer whose sum satisfies c, that is, 0 to 1,000.
  • Component (B) is a cationic surfactant, and is contained in an amount of 0.1 to 30 parts by mass, preferably 0.2 to 25 parts by mass, and more preferably 0.5 to 20 parts by mass, per 100 parts by mass of component (A). If the amount of component (B) is less than 0.1 part by mass or more than 30 parts by mass, the emulsion may become unstable, or it may become difficult to achieve a high degree of polymerization by dealcoholization condensation polymerization or dehydration condensation polymerization between alkoxy groups or hydroxy groups contained in the organopolysiloxane.
  • component (B) preferably contains either or both of the following component (B-1) or component (B-2).
  • B-1) Q 1 3 (CH 3 ) N + X - Cationic surfactant (B-2) represented by the formula Q 2 ⁇ (CH 3 ) 4- ⁇ N + ⁇ X -
  • Q1 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • Q2 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • X is each independently a halogen atom or a monovalent carboxyl group having 1 to 6 carbon atoms
  • is an integer of 1 or 2.
  • components (B-1) and (B-2) are intended to emulsify and disperse organopolysiloxane in water, but the present inventors believe that the mechanism of action of components (B-1) and (B-2) is the following, in addition to their function as emulsifiers.
  • an organopolysiloxane emulsion composition of the present invention when an organopolysiloxane is emulsified and dispersed in water and then a basic catalyst (alkali catalyst) is added, OH -- generated in the aqueous phase is exchanged with the counter ions of the cationic surfactants of components (B-1) and (B-2), and the cationic surfactant itself also acts as a catalyst, and it is believed that as a result, the organopolysiloxane of component (A) can be more efficiently polymerized to a high degree.
  • a basic catalyst alkali catalyst
  • the cationic surfactant of component (B-1) is a cationic surfactant represented by Q 1 3 (CH 3 ) N + ⁇ X - as described above, where Q 1 is the same or different monovalent organic group having 6 to 30 carbon atoms, preferably a monovalent organic group having 7 to 20 carbon atoms, and more preferably a monovalent organic group having 8 to 18 carbon atoms.
  • Q 1 has 6 or more carbon atoms
  • the surfactant has appropriate hydrophilicity and contact frequency with the organopolysiloxane of component (A) is sufficient, allowing the organopolysiloxane to be highly polymerized, and does not take much time to achieve high polymerization.
  • Q 1 has 30 or less carbon atoms, the surfactant has sufficient emulsifying power, allowing a stable emulsion to be obtained.
  • Q1 include alkyl groups such as hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, docosanyl, cyclohexyl, and cycloheptyl, aryl groups such as phenyl, tolyl, and naphthyl, aralkyl groups such as benzyl, and alkenyl groups such as oleyl, etc.
  • octyl, dodecyl, hexadecyl, and octadecyl are preferred.
  • X ⁇ is a halogen ion or a monovalent carboxyl ion having 1 to 6 carbon atoms, and specific examples thereof include halogen ions such as Cl ⁇ , Br ⁇ , and I ⁇ , and carboxyl ions such as HCOO ⁇ , CH 3 COO ⁇ , and C 2 H 5 COO ⁇ . Of these, Cl ⁇ , Br ⁇ , HCOO ⁇ , and CH 3 COO ⁇ are preferred.
  • the (B-1) component include, but are not limited to, trihexylmethylammonium chloride, triheptylmethylammonium chloride, trioctylmethylammonium chloride, trinonylmethylammonium chloride, tridecylmethylammonium chloride, trilaurylmethylammonium chloride, trioctylmethylammonium acetate, and trilaurylmethylammonium acetate.
  • the amount of cationic surfactant (B-1) used per 100 parts by weight of component (A) is 0 to 30 parts by weight, preferably 0.2 to 25 parts by weight, and more preferably 0.5 to 20 parts by weight. If the amount is 0 to 30 parts by weight, the stability of the emulsion will be good.
  • the cationic surfactant of the component (B-2) is a cationic surfactant represented by Q 2 ⁇ (CH 3 ) 4- ⁇ N + .X - as described above, and can improve the stability of the emulsion.
  • Q 2 is the same or different monovalent organic group having 6 to 30 carbon atoms, preferably a monovalent organic group having 12 to 28 carbon atoms, and more preferably a monovalent organic group having 18 to 26 carbon atoms. If Q 2 has 6 or more carbon atoms, the stability of the emulsion becomes good. If Q 2 has 30 or less carbon atoms, as in the case of Q 1 , the emulsifying power as a surfactant is sufficient, and a stable emulsion can be obtained.
  • X - of Q 2 is the same as X - of Q 1 above.
  • is an integer of 1 or 2.
  • the (B-2) component examples include hexyltrimethylammonium chloride, phenyltrimethylammonium chloride, heptyltrimethylammonium chloride, benzyltrimethylammonium chloride, octyltrimethylammonium chloride, nonyltrimethylammonium chloride, decyltrimethylammonium chloride, lauryltrimethylammonium chloride, myristyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, stearyltrimethylammonium chloride, icosyltrimethylammonium chloride, behenyltrimethylammonium chloride, hexyltrimethylammonium acetate, phenyltrimethylammonium acetate, and heptyltrimethylammonium a.
  • the amount of cationic surfactant (B-2) used per 100 parts by weight of component (A) is 0 to 30 parts by weight, preferably 0.2 to 25 parts by weight, and more preferably 0.5 to 20 parts by weight. If it is 30 parts by weight or less, the stability of the emulsion will be good.
  • the emulsion composition of the present invention contains 0 to 30 parts by mass of component (B-1) and 0 to 30 parts by mass of component (B-2) per 100 parts by mass of component (A), with the total amount of components (B-1) and (B-2) being within the range of 0.1 to 30 parts by mass. If the total amount is within this range, the stability of the emulsion will be good.
  • Component (B-1) is more hydrophobic than component (B-2), and therefore comes into contact with the organopolysiloxane of component (A) more frequently, which is expected to have the effect of accelerating the polymerization rate.
  • component (B-2) is also highly hydrophobic and has inferior emulsifying ability to component (B-2). Therefore, when using only (B-1), it is necessary to further improve the emulsion's stability over time depending on the emulsion's composition, particle size, viscosity, pH, and other conditions. Therefore, by using component (B-2), which has a higher emulsifying ability than component (B-1), in combination, it is possible to increase the emulsion's stability while still increasing the polymerization rate.
  • the cationic surfactant (B-1) is represented by Q 1 3 (CH 3 ) N + ⁇ X -
  • the cationic surfactant (B-2) is represented by Q 2 ⁇ (CH 3 ) 4- ⁇ N + ⁇ X -
  • (B-1) is characterized by three quaternary ammonium substituents Q 1
  • (B-2) is characterized by one or two quaternary ammonium substituents Q 2.
  • the total number of carbon atoms of the substituents of each quaternary ammonium is not particularly limited, but from the viewpoint of obtaining a suitable emulsion, the total number of carbon atoms of the substituents of the quaternary ammonium of (B-1) (the total number of carbon atoms in three Q 1 and one methyl group) is N (B-1) , and the total number of carbon atoms of the substituents of the quaternary ammonium of (B-2) (the total number of carbon atoms in one or two Q 2 and the remaining methyl group) is N (B-2) , and the difference between N (B-1) and N (B-2) is preferably 0 to 35, the lower limit may be any integer from 0 to 4, and the upper limit may be any integer from 30 to 34.
  • a suitable emulsion can be obtained by setting the difference between N (B-1) and N (B-2) to an appropriate value.
  • the combination of the carbon number of Q1 and the carbon number of Q2 is not particularly limited, but from the viewpoint of obtaining a suitable emulsion, the difference between the carbon number of Q1 and the carbon number of Q2 is preferably 0 to 15, the lower limit may be any integer from 0 to 4, and the upper limit may be any integer from 10 to 14.
  • the hydrophilicity of the surfactant, the frequency of contact with the organopolysiloxane of component (A), and the emulsifying power can be made appropriate, and the organopolysiloxane can be highly polymerized by condensation polymerization, and the polymerization rate can be made appropriate, so that a stable and suitable emulsion can be obtained.
  • Component (C) The emulsion composition of the present invention contains 30 to 3,000 parts by mass, and preferably 40 to 2,400 parts by mass, of water as component (C) per 100 parts by mass of component (A). If the amount of water is too little, the emulsion will not be an oil-in-water emulsion, whereas if the amount of water is too much, it is uneconomical.
  • Component (D) is colloidal silica, and 0.5 to 50 parts by mass of component (D) is contained per 100 parts by mass of component (A).
  • the colloidal silica in component (D) acts as a coating reinforcer. Even in cases where the strength of the coating (particularly hardness and tensile strength) is weak and the emulsion composition cannot be used in applications where durability is required, the strength (particularly hardness and tensile strength) of the coating formed from the emulsion composition can be dramatically improved by using colloidal silica.
  • the colloidal silica is preferably hydrophilic and can be used as an aqueous dispersion.
  • colloidal silica there are no limitations on the type of colloidal silica as long as it can be mixed with the emulsion composition, and commercially available colloidal silica may be used.
  • the stability of the emulsion can be significantly improved by using colloidal silica whose particle surface is treated with an oxide of a metal other than silicon.
  • a substance with an isoelectric point of 5 or more such as aluminum oxide, titanium oxide, iron oxide, zinc oxide, and magnesium oxide, is preferable.
  • the surface of the colloidal silica particles is positively charged in a wide pH range, and an electric repulsive force is generated between the emulsion particles in the emulsion composition, making them less likely to coalesce and aggregate, so that the dispersion can be made more stable.
  • the isoelectric point may be measured, for example, in accordance with JIS R1638:1999.
  • colloidal silica when removing water to form a coating, an electric repulsive force is generated between the emulsion particles in the emulsion composition and between the colloidal silica particles, making them less likely to coalesce and aggregate, so that a more uniform coating (with more dispersed particles) can be obtained, and the strength (particularly hardness and tensile strength) of the coating formed from the emulsion composition can be further dramatically improved.
  • colloidal silica examples include Snowtex C, Snowtex XL, Snowtex 30L, Snowtex YL, Snowtex O, Snowtex OL, Snowtex OYL, Snowtex NXS, Snowtex NS, Snowtex N, Snowtex N-40, Snowtex AK, Snowtex AK-L, and Snowtex AK-YL (manufactured by Nissan Chemical Industries, Ltd.).
  • Snowtex AK, Snowtex AK-L, and Snowtex AK-YL, in which the surface of the colloidal silica is treated with alumina are particularly preferred, but the present invention is not limited to this.
  • the average particle size of the colloidal silica is not particularly limited, but the average particle size of the colloidal silica described above can be used.
  • Pickering emulsions are emulsions that are stabilized by the adsorption (orientation) of fine solid particles at the liquid/liquid interface, and have been attracting attention in recent years because emulsion compositions can be produced without the use of emulsifiers.
  • solid fine particles used in Pickering emulsion compositions generally, hydrophobic silica, hydrophobic cellulose, silicone resin powder, hollow hemispherical silicone particles, polyamide resin, talc, hydrophobic pigments, etc. are used.
  • hydrophobic silica is generally used, which is obtained by reacting the hydroxyl group on the hydrophilic silica surface with a trifunctional silane, etc., and modifying the surface with a hydrocarbon, etc. to make it hydrophobic.
  • the colloidal silica preferably used in the present invention is an aqueous dispersion of hydrophilic silica fine particles having many silanol groups (Si-OH) on the surface, and the surface is preferably coated with a metal oxide other than silicon, so that Pickering emulsion compositions and the emulsion compositions of the present invention are different in composition.
  • the colloidal silica is not adsorbed (oriented) at the liquid/liquid (organopolysiloxane/water) interface, and is stably dispersed in the aqueous phase (continuous phase) while experiencing charge repulsion, and therefore the dispersion mechanism is also different from that of Pickering emulsion compositions.
  • Component (E) is a nonionic surfactant, and 0.1 to 30 parts by mass of component (E) can be contained per 100 parts by mass of component (A).
  • the nonionic surfactant (E) acts to compensate for the lack of emulsifying ability of components (B-1) and (B-2) alone, making emulsification easier and dramatically improving the stability of the emulsion.
  • the nonionic surfactant serving as component (E) preferably has the following structure: R3O (EO) p (PO) qH (In the formula, R3 is a straight or branched alkyl group having 8 to 30 carbon atoms, EO is an ethylene oxide group, and PO is a propylene oxide group, and the arrangement thereof may be block or random. p and q are each independently an integer of 0 to 100, with the proviso that p+q>0.)
  • the nonionic surfactant of component (E) is preferably a nonionic surfactant represented by R 3 O(EO) p (PO) q H as described above, where R 3 is a linear or branched alkyl group having 8 to 30 carbon atoms, preferably a linear or branched alkyl group having 12 to 22 carbon atoms, and more preferably a linear or branched alkyl group having 13 to 18 carbon atoms.
  • the carbon number of R 3 is 8 or more, the hydrophilicity of the surfactant is appropriate, the compatibility with the (B-1) component and the (B-2) component is good, and there is no risk of separation into light and dark layers or separation into two layers even after two months. If the carbon number of R 3 is 30 or less, the hydrophobicity is not too high and sufficient emulsification can be performed. Since the carbon number of R 3 is 30 or less, it is not necessary to increase the degree of polymerization of the ethylene oxide group (p in the formula) to increase the hydrophilicity. Therefore, the degree of polymerization of the ethylene oxide group may be low, and the properties of the nonionic surfactant itself are easy to handle when producing an emulsion.
  • R3 include octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentadecyl, hexacosyl, heptadecyl, octacosyl, nonacosyl, triacontyl, etc.
  • dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl are preferred, and tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl are more preferred.
  • EO represents an ethylene oxide group
  • PO represents a propylene oxide group, and the arrangement thereof may be block or random.
  • p and q are each independently an integer from 0 to 100, preferably an integer from 2 to 80, and more preferably an integer from 4 to 60. However, p+q>0.
  • p>q As the degree of polymerization of PO (q in the formula) increases, the hydrophobicity increases and the emulsifiability of the nonionic surfactant tends to decrease, so it is preferable that p>q.
  • component (E) include, but are not limited to, polyoxyethylene (4) lauryl ether, polyoxyethylene (9) lauryl ether, polyoxyethylene (23) lauryl ether, polyoxyethylene (5) tridecyl ether, polyoxyethylene (10) tridecyl ether, polyoxyethylene (6) cetyl ether, polyoxyethylene (7) cetyl ether, polyoxyethylene (6) stearyl ether, polyoxyethylene (7) stearyl ether, polyoxyethylene (20) stearyl ether, polyoxyethylene (50) stearyl ether, and polyoxyethylene (60) stearyl ether.
  • polyoxyethylene (4) lauryl ether polyoxyethylene (9) lauryl ether, polyoxyethylene (23) lauryl ether
  • polyoxyethylene (5) tridecyl ether polyoxyethylene (10) tridecyl ether
  • polyoxyethylene (6) cetyl ether polyoxyethylene (7) cetyl ether
  • polyoxyethylene (6) stearyl ether polyoxyethylene
  • cationic surfactants such as quaternary ammonium salts and alkylamine acetates other than the components (B-1) and (B-2), and amphoteric surfactants such as alkylbetaines and alkylimidazolines.
  • the above-mentioned nonionic or amphoteric surfactant can be added, but the anionic surfactant with strong catalytic action does not need to be added.
  • the emulsion composition of the present invention can be used together with cationic emulsions and chemicals used in fiber treatment applications and hair cosmetics applications, and has good stability and is useful in that the use conditions and blending conditions are not limited. This is a feature of the present invention that is not seen in the emulsion polymerization emulsion using the conventional anionic surfactant.
  • the emulsion composition of the present invention may further contain a salt composed of a basic substance composed of either or both of ammonia and an organic amine, and an acidic substance.
  • the emulsion composition of the present invention desirably contains a basic substance consisting of ammonia or an organic amine, and a salt consisting of a strong acidic substance or a weak acidic substance.
  • the basic substance consisting of ammonia or an organic amine, and the salt consisting of a strong acidic substance or a weak acidic substance are salts produced by neutralizing a basic catalyst (alkali catalyst) used for polymerization in producing the emulsion composition of the present invention described below.
  • the emulsion composition of the present invention when a strong or weak acid is added as a neutralizing agent for terminating the polymerization, a basic substance consisting of ammonia and/or an organic amine and a salt consisting of a strong or/weak acid are produced in the emulsion composition. Even if the emulsion composition of the present invention contains the above salt, it has good film forming properties, the strength and flexibility of the film after curing are excellent, and the storage stability of the emulsion is good. However, in order to improve the stability of the emulsion composition, it is preferable that the content of the above salt is small.
  • the salt concentration in the emulsion composition is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the emulsion composition does not contain a large amount of ingredients such as alcohol, which generally have the effect of reducing the stability of emulsions.
  • the alcohol concentration in the emulsion composition is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the cationic surfactants of components (B-1) and (B-2) are sometimes sold in a form diluted with a solvent (particularly alcohol) such as ethanol or IPA, but the concentration of the solvent (particularly alcohol) is preferably 20% by mass or less, more preferably 13% by mass or less, and even more preferably 7% by mass or less. If the concentration of the solvent (particularly alcohol) is more than 20% by mass, the stability of the emulsion may decrease and separation may occur easily over time.
  • the alcohol refers to an aliphatic alcohol having 1 to 20 carbon atoms. The numerical ranges shown above are merely examples and are not limited to these, and may be set taking into consideration the stability of the emulsion composition, including other components.
  • the average particle size of the emulsion composition of the present invention is preferably 1 ⁇ m or less, more preferably 500 nm or less. If the average particle size is 1 ⁇ m or less, the buoyancy applied to the particles in the emulsion corresponding to the volume of the particles becomes small, so that the particles can be uniformly dispersed in the emulsion, and aggregation or coalescence between the particles is suppressed, and separation into light and dark layers or separation into two layers does not occur even when stored for a long period of time.
  • the average particle size refers to the particle size at an integrated value of 50% in a volume-based particle size distribution measured using a laser diffraction/scattering type particle size distribution measuring device.
  • the emulsion composition of the film-forming organopolysiloxane of the present invention may contain octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in an amount of 1,000 ppm or less.
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • the emulsion composition may also contain hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), tetradecamethylcycloheptasiloxane (D7), hexadecamethylcyclooctasiloxane (D8), octadecamethylcyclononasiloxane (D9), and eicosamethylcyclodecasiloxane (D10) in a total amount of 1,000 ppm or less.
  • D3 hexamethylcyclotrisiloxane
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • D7 tetradecamethylcycl
  • a cyclic siloxane oligomer such as octamethylcyclotetrasiloxane is used as the low molecular weight siloxane to be subjected to emulsion polymerization, because it is easily available and easy to emulsify and undergo ring-opening polymerization.
  • the ring-opening polymerization of a cyclic siloxane oligomer is an equilibration reaction, and the emulsion after emulsion polymerization usually contains cyclic siloxane oligomers, typically octamethylcyclotetrasiloxane, remaining in the polysiloxane.
  • the oligomers may volatilize from the emulsion during storage or use, impairing the physical stability of the emulsion system.
  • the volatilized oligomers may contaminate the surrounding environment or cause contact failure in electrical equipment.
  • the low molecular weight cyclic siloxane oligomers contained therein may impair the feel due to their volatility. Therefore, it has become necessary to suppress the amount of the cyclic siloxane oligomers in the emulsion.
  • octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane are stable compounds that are easily produced by equilibration reactions and are volatile, so it has become necessary to suppress their content.
  • Such silanol group-terminated polydiorganosiloxanes can be synthesized, for example, by hydrolyzing and polycondensing dimethyldichlorosilane, or by ring-opening polymerization of the corresponding cyclic siloxane oligomer in the presence of an acid catalyst such as sulfuric acid, or an alkaline catalyst such as potassium hydroxide or potassium silanolate.
  • an acid catalyst such as sulfuric acid
  • an alkaline catalyst such as potassium hydroxide or potassium silanolate.
  • Unreacted cyclic siloxane oligomers such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane, are present in the product, but in order to avoid the above-mentioned problems caused by the cyclic siloxane oligomers remaining after emulsion polymerization
  • the emulsion composition of the present invention has almost no change in the contents of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) after six months of storage at 25°C compared to immediately after production, and emulsion compositions that have less than 1,000 ppm of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) immediately after production have 1,000 ppm or less of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) even after six months of storage at 25°C.
  • D4 octamethylcyclotetrasiloxane
  • D5
  • the emulsion composition of the present invention has film-forming properties.
  • the method for producing the film but by removing the water from the emulsion composition, the organopolysiloxane in the emulsion composition aggregates to form a uniform film.
  • the method for removing the water but for example, the water may be removed in a short time at 100°C or higher, or the water may be removed gradually at 25°C.
  • the coating is formed by weighing out the emulsion composition onto a 15 cm x 10 cm PP (polypropylene) tray so that the non-volatile content is 8.0 g, drying at 25°C for 48 hours, and then drying at 105°C for an additional hour.
  • the physical properties of the coating prepared as above are evaluated by measuring the hardness, tensile strength, and elongation in accordance with JIS K6249.
  • a method for producing an emulsion composition of the film-forming organopolysiloxane comprising the steps (I) to (III) below, in which after step (I), steps (II) and (III) are carried out in any order or simultaneously,
  • a method for producing an emulsion composition of a film-forming organopolysiloxane comprising adding water (C) so that the total amount of the following (C-1), (C-2), and (C-3) is 30 to 3,000 parts by mass: (I) a step of preparing an emulsion composition by emulsifying a mixture containing the following components (A-1), (A-2), (B) and (C-1): (A-1) Organopolysiloxane blocked with terminal alkoxy groups and/or terminal silanol groups, having a viscosity at 25° C.
  • the total of (A-1) and (A-2) is 100 parts by mass, and the ratio of (A-2) to (A-1) is 0 to 0.2.
  • steps (II) and (III) can be performed in any order after step (I), and may be performed simultaneously.
  • (A-1) an organopolysiloxane blocked with terminal alkoxy groups or terminal silanol groups having a viscosity of 300,000 mPa ⁇ s or less at 25°C is a raw material for the organopolysiloxane of component (A).
  • the viscosity of the organopolysiloxane blocked with terminal alkoxy groups or terminal silanol groups at 25°C is preferably 150,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less. If the viscosity at 25°C is 300,000 mPa ⁇ s or less, the emulsion particle size becomes small and the emulsion becomes highly stable.
  • the organopolysiloxane may have a branched structure. Even if the terminal is an alkoxy group such as a methoxy group or an ethoxy group, it can be hydrolyzed in the emulsion composition to become a silanol group, so polymerization is also possible with the organopolysiloxane blocked with terminal alkoxy groups.
  • the component (A-1) may contain octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in an amount of 1,000 ppm or less.
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • component (A-1) include, but are not limited to, the average composition formula below.
  • g, h+i, and h+i+j are values that satisfy the requirement that the viscosity of the terminal alkoxy group- and/or terminal silanol group-blocked organopolysiloxane at 25° C. is less than 300,000 mPa ⁇ s.
  • g, h+i, and h+i+j in the general formula below can typically take values of 1 to 2000.
  • the organoalkoxysilane of component (A-2) is a raw material for the organopolysiloxane of component (A), and is an organoalkoxysilane represented by the following formula (3).
  • R 4 e Si(OR 5 ) 4-e (3) (wherein, R 4 is independently a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms, and R 5 is independently a hydrogen atom or a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms; and e is 0 or 1.)
  • R 4 is, independently of one another, a hydrogen atom, or a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms.
  • the monovalent organic group having 1 to 20 carbon atoms include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, cyclopentyl, cyclohexyl, and cycloheptyl, aryl groups such as phenyl, tolyl, and naphthyl, alkenyl groups such as vinyl and allyl, and those in which a part of the hydrogen atoms in the organic group structure is substituted with a halogen atom or an organic group containing a polar group such as amino, acryloxy, me
  • R 4 is a methyl group.
  • R 5 is, independently of one another, a hydrogen atom, or a substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms.
  • the monovalent organic group having 1 to 20 carbon atoms for R5 is the same as for R4 above, with methyl, ethyl, propyl and butyl being preferred, and methyl and ethyl being more preferred.
  • the amount of component (A-2) used is 0 to 20 parts by mass, preferably 0 to 15 parts by mass, more preferably 0 to 10 parts by mass, and particularly preferably 0 to 5 parts by mass, per 100 parts by mass of the total of components (A-1) and (A-2). If the amount of component (A-2) is within the above range, the coating will have sufficient strength and durability.
  • the (A-2) component examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryl
  • Q 1 is the same or different monovalent organic group having 6 to 30 carbon atoms
  • Q 2 is a monovalent organic group having 6 to 30 carbon atoms
  • X is each independently a halogen atom or a monovalent carboxyl group having 1 to 6 carbon atoms
  • is an integer of 1 or 2
  • the total amount of (B-1) and (B-2) is 0.1 to 30 parts by mass.
  • a nonionic surfactant (E) may be further added in an amount of 0.1 to 30 parts by mass per 100 parts by mass of the total of the (A-1) and (A-2).
  • a nonionic surfactant represented by the following formula can also be used.
  • R3O (EO) p (PO) qH (In the formula, R3 is a straight or branched alkyl group having 8 to 30 carbon atoms, EO is an ethylene oxide group, and PO is a propylene oxide group, and the arrangement thereof may be block or random.
  • p and q are each independently an integer of 0 to 100, with the proviso that p+q>0.
  • colloidal silica the particle surface of which has been treated with an oxide of a metal other than silicon can also be used.
  • the components (B), (D) and (E) used in the method for producing the emulsion composition of the present invention are the same as described above.
  • Component (C-1), Component (C-2), and Component (C-3) refer to the water used in step (I) and, if necessary, step (II) and step (III).
  • the total amount of the components (C-1), (C-2), and (C-3) used is the amount of water used in component (C).
  • step (I) the amount of water used for component (C-1) is 30 to 3,000 parts by mass per 100 parts by mass of component (A), and varies depending on the type of emulsifier used to reduce the size of the emulsion particles.
  • the amount of the component (C-1) used is not particularly limited and may be 30 to 3,000 parts by mass per 100 parts by mass of the component (A); however, when an emulsifier such as a homodisper (an emulsifier consisting of a circular disk with saw-tooth teeth on the outer periphery), a homomixer (an emulsifier consisting of a rotor and a stator), or a colloid mill (an emulsifier that feeds each component into the gap between a rapidly rotating disk and a fixed disk to emulsify) that uses a shearing force to reduce the size of emulsion particles is used, the amount of the component (C-1) used is preferably 1 to 200 parts by mass, more preferably 2 to 100 parts by mass, and even more preferably 5 to 50 parts by mass per 100 parts by mass of the component (A).
  • a homodisper an emulsifier consisting of a circular disk with saw-tooth teeth on the outer periphery
  • component (C-1) When using an emulsifier that uses shear force to reduce the size of emulsion particles, adding 200 parts by mass or less of component (C-1) will enable the shear force to work efficiently, reducing the size of the emulsion particles and improving the stability of the emulsion composition. If the amount is 1 part by mass or more, an O/W type emulsion is easily obtained.
  • component (C-2) may or may not be added; however, the total amount of components (C-1), (C-2), and (C-3) used (meaning water, component (C)) is preferably 30 to 3,000 parts by mass per 100 parts by mass of component (A).
  • the amount of component (C-2) used may be appropriately adjusted so as to obtain a concentration and viscosity appropriate for the intended use. Note that it is usually preferable to add water as component (C-2) when using an emulsifier such as a homodisper, homomixer, or colloid mill.
  • component (C-3) may or may not be added; however, the total amount of components (C-1), (C-2), and (C-3) used (meaning water, component (C)) is preferably 30 to 3,000 parts by mass per 100 parts by mass of component (A).
  • the amount of the component (C-3) used may be appropriately adjusted so as to obtain a concentration and viscosity appropriate for the intended use.
  • the colloidal silica of the component (D) is an aqueous dispersion
  • the water in the aqueous dispersion of colloidal silica is also included in the component (C-3).
  • Component (F) In the method for producing an emulsion composition of a film-forming organopolysiloxane of the present invention, water (C-2) is further added to the emulsion composition obtained in step (II) as necessary, and polymerization is carried out in the presence of a basic catalyst (F) at 0 to 40° C. for 1 to 150 hours, followed by neutralization.
  • a basic catalyst (F) at 0 to 40° C. for 1 to 150 hours, followed by neutralization.
  • ammonia and an organic amine can be used as the basic catalyst (F).
  • Examples of the basic catalyst (alkali catalyst) which is the component (F) include alkali metal hydroxides and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide, ammonia, and organic amines.
  • Examples of the organic amines include alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine, and alkylamines such as monomethylamine, diethylamine, trimethylamine, monoethylamine, diethylamine, and triethylamine.
  • the alkali catalyst is preferably ammonia or triethanolamine, and more preferably ammonia.
  • the content of each of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) contained in the emulsion composition is 1,000 ppm or less, and it is also preferable that the total content of each of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), tetradecamethylcycloheptasiloxane (D7), hexadecamethylcyclooctasiloxane (D8), octadecamethylcyclononasiloxane (D9)
  • the amount of the alkali catalyst used is preferably 0.1 to 10 equivalents, and more preferably 0.2 to 5 equivalents, relative to the total molar amount of the cationic surfactant (B-1) and the cationic surfactant (B-2).
  • an emulsion composition containing a highly polymerized organopolysiloxane can be obtained in a short period of time.
  • the emulsion composition will have good stability and the amount of by-product cyclic siloxanes (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), etc.) will be kept to 1,000 ppm or less.
  • by-product cyclic siloxanes octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), etc.
  • the amount of alkali catalyst used is not limited to the above amount, and may be outside the above range if necessary.
  • the alkali catalyst used may be the alkali metal hydroxide or alkaline earth metal hydroxide described above if there is no particular restriction on the content of cyclic siloxanes (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), etc.) for the intended use.
  • the alkali catalyst when adding an alkali catalyst to the emulsion composition, may be diluted with water before use. In this case, there is no particular restriction on the amount of water used for dilution, as long as it is in the range of 30 to 3,000 parts by mass of component (C) per 100 parts by mass of component (A). In this way, the concentration of the alkali catalyst becomes appropriate, and the emulsion composition becomes stable and easy to handle.
  • a homogeneous emulsion composition is prepared using an emulsifier such as a homogenizer, homodisper, homomixer, colloid mill, or line mixer from the terminal silanol-blocked organopolysiloxane (A-1), the cationic surfactant (B) and water (C-1), and then water (C-2) is added to the resulting emulsion composition as needed.
  • the emulsion composition is polymerized in the presence of an alkali catalyst (F) at 0 to 40°C for 1 to 150 hours, and then neutralized. After that, colloidal silica (D) and water (C-3) are added as needed.
  • the polymerization temperature is 0 to 40°C, preferably 5 to 30°C. If the polymerization temperature is 0°C or higher, the polymerization proceeds quickly and is practical, and the emulsion does not freeze and has good stability. If the polymerization temperature is 40°C or lower, the emulsion has good stability and the amount of by-product cyclic siloxanes (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), etc.) is suppressed to 1,000 ppm or less.
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • the polymerization time is 1 to 150 hours, preferably 1 to 120 hours. Polymerization is sufficient if it is 1 hour or more, and is industrially sufficient if it is 150 hours or less.
  • the polymerization reaction can be stopped by neutralization.
  • Neutralization here can be performed by adding an acidic compound.
  • acidic compounds neutralizing agents
  • hydrochloric acid, formic acid, acetic acid, propionic acid, and lactic acid examples include hydrochloric acid, formic acid, and acetic acid being preferred. Note that it is also possible to neutralize using an ion exchange resin instead of using an acidic compound.
  • the emulsion composition of the highly polymerized organopolysiloxane of the present invention obtained by the above method is suitable for use as a fiber treatment agent, release agent, water repellent, cosmetic raw material, etc., and can impart excellent flexibility, slipperiness, water repellency, volume, etc. by treating various fibers, leather, paper, hair, etc.
  • fibers include, but are not limited to, natural fibers such as cotton, linen, silk, and wool, synthetic fibers such as polyester, polyamide, polyacrylonitrile, polyethylene, polypropylene, vinylon, polyvinyl chloride, and spandex, and semi-synthetic fibers such as acetate.
  • the emulsion composition of the highly polymerized organopolysiloxane of the present invention can be appropriately blended with various thickeners, pigments, dyes, penetrating agents, antistatic agents, defoamers, flame retardants, antibacterial agents, preservatives, water repellents, crosslinking agents, adhesion improvers, as well as other silicone oils, silicone resins, silica, acrylic resins, urethane resins, etc.
  • the emulsion composition of the highly polymerized organopolysiloxane of the present invention is capable of forming a coating after drying, and can be used by treating or impregnating the surface of various substrates such as fibers, paper, metal, wood, rubber, plastic, and glass.
  • substrate can be coated by any of the various conventional coating methods, including dipping, spraying, roll coating, bar coating, and brush coating.
  • the emulsion composition of the highly polymerized organopolysiloxane of the present invention may have an antiviral activity value Mv of 2.0 or more according to JIS L 1922 and may have antiviral performance. It is believed that this antiviral performance is exhibited by the cationic surfactant in the emulsion composition.
  • the emulsion composition of the highly polymerized organopolysiloxane of the present invention has a film-forming ability, and therefore, by applying the emulsion composition to a target substance such as a substrate to which antiviral properties are to be imparted to form a film, a film containing a substance that exhibits antiviral performance is formed, which has excellent durability and can be expected to have long-term antiviral performance.
  • Emulsions A to Y of Examples 1 to 25 and emulsions CA to CF of Comparative Examples 1 to 4, 6, and 7 were prepared as follows. It should be noted that no emulsions were obtained in Comparative Examples 5 and 8.
  • Tables 1 to 3 show the amounts (parts by mass) of each component per 100 parts by mass of component (A).
  • Example 1 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of a 30% aqueous dispersion of colloidal silica ((D-1) component) (manufactured by Nissan Chemical Industries, Ltd.) and 45.0 g of ion-exchanged water ((C-1) component) using a homomixer and a disperser. 330.0 g of ion-exchanged water ((C-2) component) was further added to this emulsion and uniformly dispersed using a homomixer.
  • aqueous potassium hydroxide solution prepared by diluting 1.4 g of 85% potassium hydroxide ((F-1) component) with 60.0 g of ion-exchanged water ((C-2) component) in advance was added. Thereafter, the liquid temperature was lowered to 15°C, polymerization was carried out for 24 hours, and the polymerization was terminated by neutralization with 1.4 g of acetic acid.
  • Emulsion A had a non-volatile content of 39.3% after drying at 105° C. for 3 hours.
  • Example 2 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of ammonia (manufactured by Nissan Chemical Industries, Ltd.) and 45.0 g of ion-exchanged water ((C-1) component) using a homomixer and a disperser, and 330.0 g of ion-exchanged water ((C-2) component) was further added to this emulsion and uniformly dispersed using a homomixer, and then an aqueous ammonia solution prepared by diluting 1.2 g of a 30% aqueous ammonia solution ((F-2) component) with 60.0 g of ion-exchanged water ((C-2) component) in advance was added.
  • an aqueous ammonia solution prepared by diluting 1.2 g of a 30% aqueous ammonia solution ((F-2) component) with 60.0 g of ion-exchanged water ((C-2) component) in advance was added.
  • Emulsion B had a non-volatile content of 40.0% after drying at 105°C for 3 hours.
  • Example 3 The mixture consisted of 294.0 g of an organopolysiloxane (component (A-1-1)) capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C, in which cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by heating and mixing at 150°C under reduced pressure of 10 mmHg or less, 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • component (A-1-1) organopolysiloxan
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of a 30% aqueous dispersion of colloidal silica ((D-1) component) (manufactured by Nissan Chemical Industries, Ltd.) and 45.0 g of ion-exchanged water ((C-1) component) using a homomixer and a disperser. 330.0 g of ion-exchanged water ((C-2) component) was further added to this emulsion and uniformly dispersed using a homomixer, and then an aqueous triethanolamine solution prepared by diluting 3.2 g of triethanolamine ((F-3) component) with 60.0 g of ion-exchanged water ((C-2) component) was added.
  • Emulsion C had a non-volatile content of 40.2% after drying at 105°C for 3 hours.
  • Example 4 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyltrimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.) containing 80% of the active ingredient, and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by previously diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • component (B-2-1) behenyltrimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialt
  • Emulsion D had a non-volatile content of 40.4% after drying at 105° C. for 3 hours.
  • Example 5 The mixture consisted of 294.0 g of an organopolysiloxane (component (A-1-1)) capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C, in which cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by heating and mixing at 150°C under reduced pressure of 10 mmHg or less, 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • component (A-1-1) organopolysiloxan
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 9.0 g of polyoxyethylene lauryl ether (component (E-1)) (Emulgen 109P: Kao Corporation) and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by previously diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • component (E-1) polyoxy
  • Emulsion E had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 6 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion F had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 7 The mixture consisted of 294.0 g of an organopolysiloxane (component (A-1-2)) capped with silanol groups at both ends and having a viscosity of 50,000 mPa ⁇ s at 25°C, in which cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by heating and mixing at 150°C under reduced pressure of 10 mmHg or less, 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • component (A-1-2) organopolysiloxan
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion G had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 8 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 200,000 mPa ⁇ s at 25°C (component (A-1-3)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion H had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 9 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion I had a non-volatile content of 43.4% after drying at 105° C. for 3 hours.
  • Example 10 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion J had a non-volatile content of 40.0% after drying at 105° C. for 3 hours.
  • Example 11 The mixture consisted of 298.5 g of an organopolysiloxane (component (A-1-1)) capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C, in which cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by heating and mixing at 150°C under reduced pressure of 10 mmHg or less, 1.5 g of triethoxyphenylsilane (component (A-2-1)), and 95% ethanol product of the active ingredient trioctylmethylammonium chloride (component (B-1-1)) (TOMAC: Linyi Connect Chemical Technology An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g
  • Emulsion K had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 12 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 90.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 285.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion L had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 13 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 9.0 g of polyoxyethylene stearyl ether (component (E-3)) (Emulgen 350: Kao Corporation) (24.0 g), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper.
  • Emulsion M had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 14 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 30.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 30.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution in which 0.4 g of a 30% aqueous ammonia solution (component (F-2)) had been diluted with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion N had a non-volatile content of 41.1% after drying at 105° C. for 3 hours.
  • Example 15 The mixture consisted of 294.0 g of an organopolysiloxane (component (A-1-1)) capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C, in which cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by heating and mixing at 150°C under reduced pressure of 10 mmHg or less, 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • component (A-1-1) organopolysiloxan
  • An emulsion was prepared by uniformly emulsifying and dispersing 1.5 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 1.5 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (B-2-1) behenyl trimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • E-2 polyoxyethylene tridecyl
  • Emulsion O had a non-volatile content of 44.3% after drying at 105° C. for 3 hours.
  • Example 16 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (B-2-1) behenyl trimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • C-1 ion-exchanged water
  • Emulsion P had a non-volatile content of 42.6% after drying at 105° C. for 3 hours.
  • Example 17 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (B-2-1) behenyl trimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • C-1 ion-exchanged water
  • Emulsion Q had a non-volatile content of 43.2% after drying at 105° C. for 3 hours.
  • Example 18 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion R had a non-volatile content of 39.4% after drying at 105° C. for 3 hours.
  • Example 19 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution in which 2.2 g of a 30% aqueous ammonia solution (component (F-2)) had been diluted with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion S had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 20 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (B-2-1) behenyl trimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • C-1 ion-exchanged water
  • Emulsion T had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 21 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (B-2-1) behenyl trimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • C-1 ion-exchanged water
  • Emulsion U had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 22 The mixture was heated and mixed at 150° C. under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture had a viscosity of 1,500 mPa ⁇ s at 25° C.
  • component (A-1-4) branched unit
  • R 1 methyl group
  • R 2 methoxy group
  • TOMAC Linyi Connect Chemical Technology Co., Ltd.
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion V had a non-volatile content of 42.0% after drying at 105° C. for 3 hours.
  • Example 23 The mixture was heated and mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit).
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • stearyl trimethylammonium chloride (B-2-2) component with 98% active ingredient (Tokyo Chemical Industry Co., Ltd.), 8.0 g of polyoxyethylene tridecyl ether ((E-2) component) (Newcol 1310: Nippon Nyukazai Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether ((E-2) component) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water ((C-1) component) were uniformly emulsified and dispersed using a homomixer and a disper to prepare an emulsion, and 330.0 g of ion-exchanged water ((C-2) component) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution in which 2.2 g of a 30% aqueous ammonia solution (
  • Emulsion W had a non-volatile content of 41.3% after drying at 105° C. for 3 hours.
  • Example 24 The mixture was mixed at 150° C. under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit), and contained 294.0 g of an organopolysiloxane blocked with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25° C.
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6)
  • component (A-1-1) 6.0 g of triethoxyphenylsilane (component (A-2-1)), 9.0 g of trioctadecylmethylammonium chloride (component (B-1-2)) (manufactured by AstaTech) containing 95% active ingredient, and 98 g of cyclic siloxane (D7) containing 1,000 ppm active ingredient.
  • % stearyl trimethylammonium chloride (B-2-2) component) (Tokyo Chemical Industry Co., Ltd.), 8.0 g of polyoxyethylene tridecyl ether ((E-2) component) (Newcol 1310: Nippon Nyukazai Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether ((E-2) component) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water ((C-1) component) were uniformly emulsified and dispersed using a homomixer and a disper to prepare an emulsion, and 330.0 g of ion-exchanged water ((C-2) component) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution in which 2.2 g of a 30% aqueous ammonia solution ((F-2) component) was diluted with 60.0
  • Emulsion X had a non-volatile content of 40.3% after drying at 105° C. for 3 hours.
  • Example 25 The mixture contained 294.0 g of an organopolysiloxane (component (A-1-1)) capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C, in which cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by previously heating and mixing at 150°C under a reduced pressure of 10 mmHg or less, 6.0 g of triethoxyphenylsilane (component (A-2-1)), 9.0 g of trioctadecylmethylammonium chloride (component (B-1-2)) (manufactured by AstaTech) containing 95% active ingredient, 9.0 g of behenyltrimethylammonium chloride
  • Emulsion Y had a non-volatile content of 41.1% after drying at 105° C. for 3 hours.
  • An emulsion was prepared by uniformly emulsifying and dispersing 24.0 g of tridecyl ether (component (E-2)) (Newcol 1310: manufactured by Nippon Nyukazai Co., Ltd.) and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (E-2) tridecyl ether
  • component (C-1) ion-exchanged water
  • Emulsion CA had a non-volatile content of 41.1% after drying at 105°C for 3 hours.
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (B-2-1) behenyl trimethylammonium chloride
  • ethanol Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • C-1 ion-exchanged water
  • Emulsion CB had a non-volatile content of 39.6% after drying at 105° C. for 3 hours.
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of behenyl trimethylammonium chloride (component (B-2-1)) in ethanol (Lipocard 22-80: Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disper, and 330.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer, followed by the addition of an aqueous ammonia solution prepared by diluting 2.2 g of a 30% aqueous ammonia solution (component (F-2)) with 60.0 g of ion-exchanged water (component (C-2)).
  • Emulsion CC had a non-volatile content of 39.6% after drying at 105° C. for 3 hours.
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) each reduced to less than 10 ppm (detection limit).
  • An emulsion was prepared by uniformly emulsifying and dispersing 24.0 g of ethylhexyl tridecyl ether (component (E-2)) (Newcol 1310: manufactured by Nippon Nyukazai Co., Ltd.) and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser.
  • component (E-2) ethylhexyl tridecyl ether
  • C-1 ion-exchanged water
  • Emulsion CD had a non-volatile content of 38.6% after drying at 105°C for 3 hours.
  • the mixture contained 294.0 g of an organopolysiloxane capped with silanol groups at both ends and having a viscosity of 1,500 mPa ⁇ s at 25°C (component (A-1-1)), 6.0 g of triethoxyphenylsilane (component (A-2-1)), and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (component (B-1-1)).
  • the mixture was then mixed at 150°C under reduced pressure of 10 mmHg or less to reduce the amount of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6).
  • the mixture had a viscosity of 1,500 mPa ⁇ s at 25°C and an ethanol product (TOMAC: Linyi Connect Chemical Technology Co., Ltd.) containing 95% of the active ingredient trioctylmethylammonium chloride (B-1-1).
  • An emulsion was prepared by uniformly emulsifying and dispersing 9.0 g of ethanol solution containing 80% of the active ingredient of behenyl trimethylammonium chloride (component (B-2-1)) (Lipocard 22-80: manufactured by Lion Specialty Chemicals Co., Ltd.), 24.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310: manufactured by Nippon Nyukazai Co., Ltd.), and 45.0 g of ion-exchanged water (component (C-1)) using a homomixer and a disperser, and 390.0 g of ion-exchanged water (component (C-2)) was further added to this emulsion and uniformly dispersed using a homomixer.
  • component (B-2-1) Lipocard 22-80: manufactured by Lion Specialty Chemicals Co., Ltd.
  • E-2 polyoxyethylene tridecyl ether
  • C-1 ion-ex
  • Emulsion CE had a non-volatile content of 41.9% after drying at 105° C. for 3 hours.
  • An emulsion was prepared by uniformly emulsifying and dispersing 300.0 g of a dimethylpolysiloxane (component (A-3)) capped at both ends with trimethylsilyl groups and having a viscosity of 1,500 mPa ⁇ s at 25° C.; the content of cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) had been reduced to less than 10 ppm (detection limit) by heating and mixing at 150° C.
  • component (A-3) dimethylpolysiloxane
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • Emulsion CF had a non-volatile content of 41.0% after drying at 105°C for 3 hours.
  • cyclic siloxanes such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) to less than 10 ppm (detection limit), 6.0 g of polyoxyethylene tridecyl ether (component (E-2)) (Newcol 1310, manufactured by Nippon Nyukazai Co., Ltd.), 10.5 parts of sodium dodecylbenzenesulfonate as an anionic surfactant, and 18.0 g of ion-exchanged water (component (C-1)) were emulsified using a Homo Disper.
  • component (E-2) polyoxyethylene tridecyl ether
  • component (C-1)) ion-exchanged water
  • the viscosities of all of the compositions that could not be measured even using the M4 rotor which is the rotor capable of measuring the highest viscosity among BM type rotational viscometers, those that could not be measured because they wrapped around the rotor of the BM type rotational viscometer, and those that could not be measured because they did not dissolve in toluene were all 300,000 mPa ⁇ s or higher.
  • Average particle size of emulsion This is the particle size at an integrated value of 50% in the volume-based particle size distribution measured using a laser diffraction/scattering particle size distribution measuring device (Partica LA-960, manufactured by Horiba, Ltd.).
  • acetone layer was then collected and analyzed by gas chromatography (Agilent 7890B (manufactured by Agilent Technologies)) to quantify the amounts of cyclic siloxanes (hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), tetradecamethylcycloheptasiloxane (D7), hexadecamethylcyclooctasiloxane (D8), octadecamethylcyclononasiloxane (D9), and eicosamethylcyclodecasiloxane (D10)) (mass converted value).
  • gas chromatography Agilent Technologies
  • Each emulsion composition was weighed out onto a 15 cm x 10 cm PP (polypropylene) tray so that the nonvolatile content was 8.0 g, dried at 25°C for 48 hours, and then further dried at 105°C for 1 hour, and it was evaluated whether a coating was formed.
  • C A uniform coating was not formed.
  • the emulsion compositions of the film-forming organopolysiloxane (high polymerization degree organopolysiloxane) of the present invention in Examples 1 to 25 have strong film-forming ability and also have excellent storage stability.
  • Comparative Example 5 in which an excessive amount of component (B) was blended, the emulsion became unstable and a uniform emulsion could not be obtained.
  • Comparative Examples 6 and 7 in which a low-viscosity dimethylpolysiloxane blocked with trimethylsilyl groups at both ends that cannot be polymerized (condensation polymerization by dehydration or dealcoholization) was used instead of component (A) of the present invention, silica was used, but a film with sufficient physical properties was not obtained, even when only a cationic surfactant was used or when a nonionic surfactant was further combined.
  • Comparative Example 8 in which a stronger catalytic anionic surfactant was used instead of a cationic surfactant, high-viscosity anionic emulsion polymerization proceeded at a lower temperature (10°C), but the addition of colloidal silica made the emulsion unstable, and a uniform emulsion could not be obtained.
  • the emulsion compositions obtained according to the compositions of Comparative Examples 1 to 8 were unable to obtain a uniform emulsion in the first place, did not form a coating, or formed a coating with weak coating strength.
  • the content of cyclic siloxanes D4 to D6 exceeded 5000 ppm by mass, but the physical properties (hardness, tensile strength, and elongation at break) and storage stability of the resulting coating were good.
  • the emulsion composition of the present invention contains residual low molecular weight cyclic siloxanes, the resulting coating has good physical properties and storage stability, and the step of removing the low molecular weight cyclic siloxanes can be omitted, thereby reducing production costs.
  • Emulsion F has antiviral properties.
  • the emulsion composition of film-forming organopolysiloxane of the present invention has good film-forming properties, and can provide a silicone emulsion composition and a film that have good storage stability of the emulsion, and the film that can form a film.
  • the emulsion composition of film-forming organopolysiloxane of the present invention can also have a very low content of cyclic siloxane, so that when the substrate is subjected to heat treatment, etc., the cyclic siloxane volatilizes and contaminates the inside of the device, and there is little concern that the product itself is contaminated by the cyclic siloxane or the silicon dioxide powder derived from the cyclic siloxane, etc., so that it is industrially useful and has excellent versatility, and can be widely applied to release agents, water repellents, cosmetics, hair cosmetics, etc. in addition to fiber treatment agents.
  • An emulsion composition of a film-forming organopolysiloxane characterized by comprising the following (A) to (D): (A) 100 parts by mass of an organopolysiloxane represented by the following average composition formula (1), having a viscosity of 300,000 mPa ⁇ s or more at 25° C.
  • R 1 's are each independently a hydrogen atom or an unsubstituted or substituted monovalent organic group having 1 to 20 carbon atoms
  • R 2 's are an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, or alkoxy or hydroxy group having 1 to 20 carbon atoms
  • a's are an integer from 2 to 1,000
  • b's are an integer from 10 to 10,000
  • c's are an integer from 0 to 1,000
  • d's are an integer from 0 to 1,000
  • c+d's are integers that satisfy the range of 0 to 2,000, and the viscosity of the organopolysiloxane at 25° C.
  • [5] The emulsion composition of a film-forming organopolysiloxane according to any one of [1] to [4], wherein the colloidal silica (D) has a particle surface treated with an oxide of a metal other than silicon.
  • [7] The emulsion composition of any one of [1] to [6], wherein the content of each of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) contained in the emulsion composition is 1,000 ppm or less.
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • D3 hexamethylcyclotrisiloxane
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentas
  • [9] The emulsion composition of any one of [1] to [8], wherein the average particle size of the emulsion contained in the emulsion composition is 1 ⁇ m or less.
  • [10] An emulsion composition of a film-forming organopolysiloxane according to [9], characterized in that the average particle size of the emulsion contained in the emulsion composition is 500 nm or less.
  • [11] The emulsion composition of any one of [1] to [10], characterized in that the antiviral activity value Mv according to JIS L 1922 is 2.0 or more.
  • [12] A method for producing an emulsion composition of the film-forming organopolysiloxane of [1], comprising the following steps (I) to (III), in which after step (I), steps (II) and (III) are carried out in any order or simultaneously;
  • the total of (A-1) and (A-2) is 100 parts by mass, and the ratio of (A-2) to (A-1) is 0 to 0.2.
  • [16] A method for producing an emulsion composition of a film-forming organopolysiloxane according to [15], characterized in that the component (E) is a nonionic surfactant represented by the following formula: R3O (EO) p (PO) qH (In the formula, R3 is a straight or branched alkyl group having 8 to 30 carbon atoms, EO is an ethylene oxide group, and PO is a propylene oxide group, and the arrangement thereof may be block or random.
  • R3O (EO) p (PO) qH In the formula, R3 is a straight or branched alkyl group having 8 to 30 carbon atoms, EO is an ethylene oxide group, and PO is a propylene oxide group, and the arrangement thereof may be block or random.
  • [18] The method for producing an emulsion composition of a film-forming organopolysiloxane according to any one of [12] to [17], characterized in that the content of each of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) contained in the component (A-1) is 1,000 ppm or less.
  • D4 octamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • a method for producing an emulsion composition of a film-forming organopolysiloxane characterized in that the total content of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), tetradecamethylcycloheptasiloxane (D7), hexadecamethylcyclooctasiloxane (D8), octadecamethylcyclononasiloxane (D9), and eicosamethylcyclodecasiloxane (D10) contained in the emulsion composition is 1,000 ppm or less.
  • the present invention is not limited to the above-described embodiments.
  • the above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and provides similar effects is included within the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明は、(A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサン:100質量部、(B)カチオン系界面活性剤:0.1~30質量部、(C)水:30~3,000質量部、及び(D)コロイダルシリカ:0.5~50質量部、を含有するものであることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物である。これにより、良好な被膜形成性を有し、硬化後の被膜強度と柔軟性に優れ、保存安定性が良好な被膜形成性オルガノポリシロキサンのエマルション組成物を提供する。(式中、Rは水素原子又は炭素数1~20の1価有機基、Rは炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基又はヒドロキシ基である。)

Description

被膜形成性オルガノポリシロキサンのエマルション組成物及びその製造方法
 本発明は、被膜形成性オルガノポリシロキサンのエマルション組成物、及び該組成物の製造方法に関するものである。
 ゴム被膜を形成するシリコーンエマルション組成物は、従来から種々の組成のものが公知であり、ウェザーストリップ剤、コーティング剤、バインダー剤、繊維処理剤など様々な用途に使用されている。
 例えば、ヒドロキシ化ジオルガノポリシロキサン、コロイダルシリカ及び有機スズ化合物又は有機アミン化合物からなるシリコーンエマルション組成物(特許文献1)、ヒドロキシ基含有オルガノポリシロキサン、Si-H基含有オルガノポリシロキサン、コロイダルシリカ、アミド基及びカルボキシル基含有シラン、エポキシ基含有シラン及び硬化用触媒からなるシリコーンエマルション組成物(特許文献2)、アルケニル基含有オルガノポリシロキサン、Si-H基含有オルガノポリシロキサン、コロイダルシリカ、アミノシランと酸無水物の反応物、エポキシシラン、付加反応用触媒からなるシリコーンエマルション組成物(特許文献3)、分子末端が水酸基で封鎖されたハイドロジェンシロキサン、乳化剤、水、硬化触媒からなるシリコーンエマルション組成物(特許文献4)、コロイダルシリカ-シリコーンコアシェル体、硬化触媒、乳化剤、水からなるシリコーンエマルション組成物(特許文献5~7)、ヒドロキシ基含有オルガノポリシロキサン、コロイダルシリカ、アミド基及びカルボキシル基含有シラン、エポキシ基含有シラン、硬化用触媒及び光触媒性酸化物からなるシリコーンエマルション組成物(特許文献8)、ヒドロキシ基含有オルガノポリシロキサン、コロイダルシリカ、アミド基及びカルボキシル基含有シラン、エポキシ基含有シランからなるシリコーンエマルション組成物(特許文献9)等が提案されている。
 また、オルガノポリシロキサンは各種繊維又は繊維製品に柔軟性や潤滑性を付与することが可能であるため、繊維処理剤としてもゴム被膜を形成するタイプのシリコーンエマルション組成物が利用されている。
 このようなゴム被膜を形成するシリコーンエマルション組成物の製造方法としては、環状シロキサンオリゴマーや末端シラノール基封鎖オルガノポリシロキサンを原料として乳化した状態で、強酸あるいは強塩基などによって乳化重合を行う方法が知られている。
 界面活性剤として触媒作用が強いアニオン系界面活性剤を使用する場合、重合反応は速やかに起こるため、古くより研究が進められ、多くの方法が提案されている。しかし、アニオン系界面活性剤を使用した乳化重合エマルションは、特に繊維処理用途や毛髪用化粧料用途などで多く使用されているカチオン系のエマルションや薬剤との相性が悪く、配合すると安定性が低下してしまい使用条件や配合条件が限定されてしまうといった問題も起こっている。
 一方、界面活性剤としてセチルトリメチルアンモニウムクロライドや牛脂のトリメチルアンモニウムクロライドに代表されるような一般的なカチオン系界面活性剤を使用すると触媒作用が弱いことから重合速度が極めて遅く、ゴム被膜を形成するほど高重合度なシリコーンエマルションを得ることは困難である。
 特許文献10では、末端シラノール基封鎖オルガノポリシロキサンを極めて疎水性が高いトリアルキルメチルタイプのカチオン系界面活性剤、及び、アルキルトリメチルタイプのカチオン系界面活性剤(場合により非イオン性界面活性剤を含む)を併用して乳化した後に、アルカリ触媒を加えて重合を行わせることにより、従来よりも短時間で被膜が形成するほど高重合度のオルガノポリシロキサンエマルションが得られることを提案している。しかしながら、上記組成物の硬化被膜は被膜の硬さが柔らかく強度が低いという問題が指摘されている。また、これらエマルションは3ヶ月経たずして分離してしまうという問題があった。このエマルション中のオルガノポリシロキサンは被膜を形成するほど高重合度である。このため、一度分離してしまうとどんなに高せん断な攪拌を行っても再び安定的に分散させることは不可能であることから工業的に使用することが困難であり、更なる長期安定性の向上が必要とされていた。
特開昭56-16553号公報 特開平8-85760号公報 特開平9-208826号公報 特開平9-208900号公報 特開平9-208901号公報 特開平9-208902号公報 特開平9-208903号公報 特開2002-363494号公報 特開2008-231276号公報 特開2021-95455号公報
 本発明は、上記従来技術の課題に鑑みてなされたもので、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性が良好な被膜形成性オルガノポリシロキサンのエマルション組成物を提供することを目的とする。また、上記被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法を提供することを目的としている。
 上記課題を解決するために、本発明では、下記(A)~(D)を含有してなるものであることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物を提供する。
(A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサン:100質量部
Figure JPOXMLDOC01-appb-C000002
(式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、aは2~1,000の整数、bは10~10,000の整数、cは0~1,000の整数、dは0~1,000の整数であり、c+dは0~2,000を満たす整数であり、該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす値である。)
(B)カチオン系界面活性剤:0.1~30質量部
(C)水:30~3,000質量部
(D)コロイダルシリカ:0.5~50質量部
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物であれば、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性も良好である。
 この場合、前記(B)カチオン系界面活性剤が下記(B-1)又は(B-2)のいずれか又は両方を含むものであることが好ましい。
(B-1)Q (CH)N・X
で示されるカチオン系界面活性剤:0~30質量部
(B-2)Q α(CH4-α・X
で示されるカチオン系界面活性剤:0~30質量部
(Qは同一又は異種の炭素原子数6~30の1価有機基、Qは同一又は異種の炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数である。ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
 このようなエマルション組成物であれば、エマルションの保存安定性がより良好なものとなる。
 本発明のエマルション組成物は、さらに(E)ノニオン系界面活性剤を(A)成分100質量部に対して0.1~30質量部含有するものであることが好ましい。
 このようなエマルション組成物であれば、(E)成分の乳化能を補う働きにより、より容易に乳化が可能で、エマルションの安定性を劇的に向上させることができる。
 この場合、前記(E)ノニオン系界面活性剤が下記式で表されるものであることが好ましい。
O(EO)(PO)
(式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
 このような(E)成分は、界面活性剤の親水性と疎水性とのバランスが適切であり、(B-1)成分及び(B-2)成分との相性も良好で、エマルションの安定性が高まる。また、前記ノニオン系界面活性剤自体の性状が、エマルションを製造する際に取り扱い易いものとなっている。
 本発明では、前記(D)コロイダルシリカが、粒子表面がケイ素を除く金属の酸化物で処理されたものであることが好ましい。
 このような(D)成分は、広いpH領域で表面処理コロイダルシリカ粒子の表面がプラスに帯電するため、表面処理コロイダルシリカ粒子と前記エマルション組成物中のエマルション粒子との間に電気的斥力が発生し、合一、凝集しにくくなるため、前記エマルションをより安定的に分散させることができる。
 本発明のエマルション組成物は、さらにアンモニア又は有機アミンのいずれか一方又は両方から成る塩基性物質と、酸性物質とから成る塩を含有するものであることができる。
 本発明のエマルション組成物は、このような塩を含有するものであっても、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性も良好である。
 また、前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量がそれぞれ1,000ppm(質量換算、以下同じ)以下のものであることが好ましい。
 そして、前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、及びエイコサメチルシクロデカシロキサン(D10)の各含有量の合計が1,000ppm以下のものであることがより好ましい。
 このような本発明のエマルション組成物は、このような低分子量の環状シロキサンの含有量が少ないので、硬化後の被膜の特性(切断時伸びなど)に優れる。
 前記エマルション組成物中に含まれるエマルションの平均粒径が1μm以下であることが好ましく、500nm以下であることがより好ましい。
 このような本発明のエマルション組成物は、エマルションが、粒子の体積に対応して粒子に加わる浮力が小さくなりエマルション中で均一に分散でき、粒子同士の凝集や合一が抑制され、長期に保存しても、濃淡分離や二層分離することがない。
 また本発明のエマルション組成物は、JIS L 1922における抗ウイルス活性値Mvが2.0以上であることができる。
 本発明のエマルション組成物は、抗ウイルス性を付与したい基材などの対象物質にエマルション組成物を塗布して、抗ウイルス性能を発現する物質を含む被膜を形成できる。
 また、本発明は、上記被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法であって、下記(I)~(III)の工程を含み、(I)の工程後に、(II)及び(III)の工程を任意の順序で、又は同時に行い、
下記(C-1)と(C-2)と(C-3)の合計量が30~3,000質量部となるように前記(C)水を加えることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法を提供する。
(I)下記(A-1)成分、(A-2)成分、(B)成分及び(C-1)成分を含む混合物を乳化してエマルション組成物を調製する工程、
(A-1)25℃における粘度が300,000mPa・s以下である末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサン
(A-2)下記式(3)で示されるアルコキシシラン
Si(OR4-e  (3)
(ここで、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基であり、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。eは0または1である。)
なお、(A-1)と(A-2)の合計は100質量部であり、(A-2)の(A-1)に対する割合は0~0.2である。
(B)カチオン性界面活性剤:0.1~30質量部
(C-1)水:30~3,000質量部
(II)得られたエマルション組成物に、必要により(C-2)水を更に加え、(F)塩基性触媒存在下、0~40℃で1~150時間重合を行い、更に中和を行う工程、
(III)更に(D)コロイダルシリカ:0.5~50質量部と、必要により(C-3)水を更に加える工程
 このような本発明の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法であれば、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性も良好であるエマルション組成物を効率よく製造できる。
 この場合、前記(F)塩基性触媒としてアンモニア又は有機アミンのいずれか又は両方を用いることができる。
 このような触媒を使用すると、被膜形成性オルガノポリシロキサンのエマルション組成物中のオルガノポリシロキサンの25℃における粘度が300,000mPa・s以上であることを満たしつつ、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の副生を大幅に抑制することが可能であり、各含有量を1,000ppm以下とすることができる。
 また、前記(B)カチオン系界面活性剤として下記(B-1)又は(B-2)のいずれか又は両方を用いることが好ましい。
(B-1)Q (CH)N・Xで示されるカチオン系界面活性剤:0~30質量部質量部
(B-2)Q α(CH4-α・Xで示されるカチオン系界面活性剤:0~30質量部質量部
(Qは同一又は異種の炭素原子数6~30の1価有機基、Qは同一又は異種の炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数であり、ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
 このようなエマルション組成物の製造方法であれば、エマルションの保存安定性がより良好な組成物を効率よく製造できる。
 また、前記(I)~(III)のいずれかの工程において、さらに(E)ノニオン系界面活性剤を前記(A-1)と(A-2)の合計100質量部に対して0.1~30質量部加えることができる。
 このようなエマルション組成物の製造方法であれば、前記(E)成分の乳化能を補う働きにより、より容易に乳化が可能で、エマルションの安定性を劇的に向上した組成物を効率よく製造できる。
 前記(E)成分として下記式で表されるノニオン系界面活性剤を用いることができる。
O(EO)(PO)
(式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
 このような(E)成分は、その性状が、エマルションを製造する際に取り扱い易い。
 また、前記(D)成分としてその粒子表面がケイ素を除く金属の酸化物で処理されているコロイダルシリカを用いることが好ましい。
 このような(D)成分を用いると、表面処理コロイダルシリカ粒子と前記エマルション組成物中のエマルション粒子との間に電気的斥力が発生し、合一、凝集しにくくなるため、より安定なエマルション組成物を効率よく製造することができる。
 また、前記(A-1)成分として、その中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下であるものを用いることが好ましい。
 本発明のエマルション組成物の製造方法では、このような低分子量の環状シロキサンの含有量が少ない原料を用いることで、低分子量の環状シロキサンの含有量が少ないエマルション組成物を効率良く製造することができる。
 本発明のエマルション組成物の製造方法では、前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下となるようにすることができ、また、前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、エイコサメチルシクロデカシロキサン(D10)各含有量の合計が1,000ppm以下となるようにすることもできる。
 本発明のエマルション組成物の製造方法によれば、このような低分子量の環状シロキサンの含有量が少ないエマルション組成物を効率良く製造することができる。
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物(以下、エマルション組成物ともいう)によれば、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性が良好な被膜形成性オルガノポリシロキサンのエマルション組成物、及び被膜を提供することができる。また、該組成物を各種繊維又は繊維製品に処理することにより、柔軟性や潤滑性を付与することができる。さらに、本発明のエマルション組成物を有効成分として含有する繊維処理剤は、洗濯耐久性に優れ、洗濯処理後にも柔軟性や潤滑性を維持することができる。
 本発明者らは、上記目的を達成するために鋭意検討した結果、(A)25℃における粘度が300,000mPa・s以上の特定のオルガノポリシロキサン、(B)カチオン系界面活性剤、(C)水、(D)コロイダルシリカをそれぞれ特定量含有する被膜形成性オルガノポリシロキサンのエマルション組成物が、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性も良好であることを見出し、本発明をなすに至ったものである。
 即ち、本発明は、下記(A)~(D)を含有してなるものであることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物である。
(A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサン:100質量部
Figure JPOXMLDOC01-appb-C000003
(式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、aは2~1,000の整数、bは10~10,000の整数、cは0~1,000の整数、dは0~1,000の整数であり、c+dは0~2,000を満たす整数であり、該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす値である。)
(B)カチオン系界面活性剤:0.1~30質量部
(C)水:30~3,000質量部
(D)コロイダルシリカ:0.5~50質量部
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[被膜形成性オルガノポリシロキサンのエマルション組成物]
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物は、
(A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサン:100質量部
Figure JPOXMLDOC01-appb-C000004
(式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、aは2~1,000の整数、bは10~10,000の整数、cは0~1,000の整数、dは0~1,000の整数であり、c+dは0~2,000を満たす整数であり、該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす値である。)
(B)カチオン系界面活性剤:0.1~30質量部
(C)水:30~3,000質量部
(D)コロイダルシリカ:0.5~50質量部
を含有するものである。必要に応じて、さらに(A)~(D)成分以外の成分を含んでもよい。以下、各成分について説明する。
[(A)成分]
 (A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサンである。本発明のエマルション組成物において、この(A)成分は、100質量部含有される。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、aは2~1,000の整数、bは10~10,000の整数、cは0~1,000の整数、dは0~1,000の整数であり、c+dは0~2,000を満たす整数であり、該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす値である。)
 上記(1)式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、直鎖、分岐鎖または環状のいずれでもよく、具体的には、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのアルキル基、フェニル、トリル、ナフチルなどのアリール基、ビニル、アリルなどのアルケニル基、或いはこれらの有機基構造中の水素原子の一部をハロゲン原子や、アミノ、アクリロキシ、メタクリロキシ、エポキシ、メルカプト等の極性基含有の有機基で置換したものなどが挙げられる。ここで、Rの80%以上はメチル基であることが工業的及び特性的に望ましい。
 Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、直鎖、分岐鎖または環状のいずれでもよく、具体的には、ヒドロキシ基以外に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基;フェニル基、トリル基、ナフチル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、テトラデシルオキシ基、又はこれらの基に結合する水素原子の一部又は全部がハロゲン原子、アミノ基、シアノ基等で置換された基等が挙げられる。Rとしては、中でも、メチル基、ヒドロキシ基、メトキシ基、エトキシ基が好ましいが、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するように設定される。
 a、b、c、dは該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす整数である。
 aは2~1,000の整数であり、好ましくは2~500の整数であり、より好ましくは2~100の整数である。aが1,000より大きいとシリコーンゴム被膜の柔軟性が乏しくなる恐れがある。
 bは10~10,000の整数であり、好ましくは50~7,000の整数であり、より好ましくは100~5,000の整数である。bが10よりも小さいとシリコーンゴム被膜の柔軟性が乏しいものとなったり、被膜を形成しないおそれがあり、10,000より大きいと被膜の引裂き強さや引張り強さが低下する恐れがある。
 cは0~1,000の整数であり、好ましくは0~200の整数であり、より好ましくは0~100の整数である。cが1,000より大きいとシリコーンゴム被膜の柔軟性が乏しくなったり、被膜の引裂き強さや引張り強さが低下するおそれがある。
 dは0~1,000の整数であり、好ましくは0~200の整数であり、より好ましくは0~100の整数である。dが1,000より大きいとシリコーンゴム被膜の柔軟性が乏しくなったり、被膜の引裂き強さや引張り強さが低下するおそれがある。
 また、c+dは0~2,000の整数であり、0~400が好ましく、0~200がより好ましい。
 (A)成分のオルガノポリシロキサンは、25℃における粘度が300,000mPa・s以上であり、好ましくは400,000mPa・s以上であり、より好ましくは500,000mPa・s以上、より好ましくは1,000,000mPa・s以上、最も好ましくは後述する粘度測定方法において粘度測定できないほど高粘度である。
 なお、本発明における粘度(絶対粘度)とは、25℃においてBM型回転粘度計(TVB-10M)を用いて測定した際の測定値である。BM型回転粘度計の中で最も高粘度を測定可能なロータであるM4(測定上限粘度2,000,000mPa・s)を用いても粘度が測定できないものや、BM型回転粘度計のロータに巻き付いてしまい測定できないもの、もしくはトルエンに溶解せず測定できないものの粘度は全て300,000mPa・s以上である。
 本発明における(A)成分のオルガノポリシロキサンの具体例としては、下記平均組成式が挙げられるが、これらに限定されるものではない。下記平均組成式中、a、b、b1、b2、b3、c、c1、c2、c3、dは、ポリオルガノシロキサンの25℃における粘度が300,000mPa・s以上を満たす値であり、a、b、c、dは上記と同様である。b1、b2、b3はそれらの合計がb、すなわち10~10,000を満たす範囲の整数であり、c1、c2、c3はそれらの合計がc、すなわち0~1,000を満たす範囲の整数を取りうる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[(B)成分]
 (B)成分はカチオン系界面活性剤であり、(A)成分100質量部に対して、(B)成分が0.1~30質量部含有され、好ましくは0.2~25質量含有され、より好ましくは0.5~20質量部含有される。(B)成分の量が0.1質量部未満か30質量部を超えるとエマルションが不安定になったり、オルガノポリシロキサン中に含有するアルコキシ基又はヒドロキシ基同士の脱アルコール縮重合又は脱水縮重合による高重合度化が進行しにくくなる可能性がある。
 また、(B)成分は下記(B-1)成分又は(B-2)成分のいずれか又は両方を含むことが好ましい。
(B-1)Q (CH)N・X
で示されるカチオン系界面活性剤
(B-2)Q α(CH4-α・X
で示されるカチオン系界面活性剤
(Qは同一又は異種の炭素原子数6~30の1価有機基、Qは同一又は異種の炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数である。)
 これら(B-1)成分及び(B-2)成分であるカチオン系界面活性剤は、オルガノポリシロキサンを水中へ乳化分散させるためのものであるが、本発明者らは(B-1)成分及び(B-2)成分の作用機構について、乳化剤としての作用機構以外にも次のような作用機構を考えている。
 本発明のオルガノポリシロキサンのエマルション組成物の製造方法において、オルガノポリシロキサンを水中へ乳化分散した後に、塩基性触媒(アルカリ触媒)を加えた際に水相に生じるOHと(B-1)成分及び(B-2)成分であるカチオン系界面活性剤の対イオンが交換することにより、カチオン系界面活性剤自体も触媒として作用し、その結果、より効率的に(A)成分のオルガノポリシロキサンを高重合度化することができると考えられる。
 (B-1)成分であるカチオン系界面活性剤は、上記のように、Q (CH)N・Xで示されるカチオン系界面活性剤であり、Qは同一又は異種の炭素原子数6~30の1価有機基であり、好ましくは7~20の1価有機基であり、より好ましくは8~18の1価有機基である。Qの炭素原子数が6以上であれば、界面活性剤の親水性が適切で(A)成分のオルガノポリシロキサンとの接触頻度が十分になり、オルガノポリシロキサンを高重合度化することができ、高重合度化するのに時間はかからない。また、Qの炭素原子数が30以下であれば、界面活性剤としての乳化力が十分にあり、安定なエマルションを得ることができる。
 Qの具体例としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、ドコサニル、シクロヘキシル、シクロヘプチルなどのアルキル基、フェニル、トリル、ナフチルなどのアリール基、ベンジルなどのアラルキル基、オレイルなどのアルケニル基等が挙げられる。中でもオクチル、ドデシル、ヘキサデシル、オクタデシルが好ましい。
 また、Xは、ハロゲンイオン又は炭素原子数1~6の1価カルボキシルイオンであり、具体的にはCl、Br、Iなどのハロゲンイオン、HCOO、CHCOO、CCOOなどのカルボキシルイオンが挙げられる。中でもCl、Br、HCOO、CHCOOが好ましい。
 (B-1)成分の具体例としては、トリヘキシルメチルアンモニウムクロライド、トリヘプチルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、トリノニルメチルアンモニウムクロライド、トリデシルメチルアンモニウムクロライド、トリラウリルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムアセテート、トリラウリルメチルアンモニウムアセテート等が挙げられるが、これらに限定されるものではない。
 (B-1)成分のカチオン系界面活性剤の使用量としては、(A)成分100質量部に対して、0~30質量部用いることができ、好ましくは0.2~25質量部、より好ましくは0.5~20質量部である。0~30質量部であればエマルションの安定性が良好になる。
 また、(B-2)成分のカチオン系界面活性剤は、上記のように、Q α(CH4-α・Xで示されるカチオン系界面活性剤でありエマルションの安定性を向上させることができる。ここで、Qは同一又は異種の炭素原子数6~30の1価有機基であり、好ましくは12~28の1価有機基であり、より好ましくは18~26の1価有機基である。Qの炭素原子数が6以上であれば、エマルションの安定性が良好になる。Qの炭素原子数が30以下であれば、Qの場合と同様に、界面活性剤としての乳化力が十分にあり、安定なエマルションを得ることができる。QのXは、上記QのXと同じである。αは1または2の整数である。
 (B-2)成分の具体例としては、ヘキシルトリメチルアンモニウムクロライド、フェニルトリメチルアンモニウムクロライド、ヘプチルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、オクチルトリメチルアンモニウムクロライド、ノニルトリメチルアンモニウムクロライド、デシルトリメチルアンモニウムクロライド、ラウリルトリメチルアンモニウムクロライド、ミリスチルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、イコシルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヘキシルトリメチルアンモニウムアセテート、フェニルトリメチルアンモニウムアセテート、ヘプチルトリメチルアンモニウムアセテート、ベンジルトリメチルアンモニウムアセテート、オクチルトリメチルアンモニウムアセテート、ノニルトリメチルアンモニウムアセテート、デシルトリメチルアンモニウムアセテート、ラウリルトリメチルアンモニウムアセテート、ミリスチルトリメチルアンモニウムアセテート、ヘキサデシルトリメチルアンモニウムアセテート、ステアリルトリメチルアンモニウムアセテート、イコシルトリメチルアンモニウムアセテート、ベヘニルトリメチルアンモニウムアセテート、ジヘキシルジメチルアンモニウムクロライド、ジフェニルジメチルアンモニウムクロライド、ヘキシルフェニルジメチルアンモニウムクロライド、ヘプチルフェニルジメチルアンモニウムクロライド、オクチルフェニルジメチルアンモニウムクロライド、ノニルフェニルジメチルアンモニウムクロライド、デシルフェニルジメチルアンモニウムクロライド、ラウリルフェニルジメチルアンモニウムクロライド、ミリスチルフェニルジメチルアンモニウムクロライド、ヘキサデシルフェニルジメチルアンモニウムクロライド、ステアリルフェニルジメチルアンモニウムクロライド、イコシルフェニルジメチルアンモニウムクロライド、ベヘニルジメチルアンモニウムクロライド、ジヘプチルジメチルアンモニウムクロライド、ジベンジルジメチルアンモニウムクロライド、ジオクチルジメチルアンモニウムクロライド、ジノニルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ジミリスチルジメチルアンモニウムクロライド、ジヘキサデシルジメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムアセテート、ジイコシルジメチルアンモニウムアセテート、ジベヘニルジメチルアンモニウムアセテート、ジヘキシルジメチルアンモニウムアセテート、ジフェニルジメチルアンモニウムアセテート、ジヘプチルジメチルアンモニウムアセテート、ジベンジルジメチルアンモニウムアセテート、ジオクチルジメチルアンモニウムアセテート、ジノニルジメチルアンモニウムアセテート、ジデシルジメチルアンモニウムアセテート、ジラウリルジメチルアンモニウムアセテート、ジミリスチルジメチルアンモニウムアセテート、ジヘキサデシルジメチルアンモニウムアセテート、ジステアリルジメチルアンモニウムアセテート、ジイコシルジメチルアンモニウムアセテート、ジベヘニルジメチルアンモニウムアセテート、等が挙げられるが、これらに限定されるものではない。
 (B-2)成分のカチオン系界面活性剤の使用量としては、(A)成分100質量部に対して、0~30質量部用いることができ、好ましくは0.2~25質量部、より好ましくは0.5~20質量部である。30質量部以下であればエマルションの安定性が良好になる。
 なお、上述のように本発明のエマルション組成物において、(A)成分100質量部に対して、(B-1)成分が0~30質量部含有され、(B-2)成分が0~30質量部含有されるが、(B-1)成分と(B-2)成分の合計量は0.1~30質量部を満たす範囲である。合計量がこの範囲内であればエマルションの安定性が良好になる。
 (B-1)成分は(B-2)成分と比べて疎水性が高いため、(A)成分のオルガノポリシロキサンとの接触頻度が高く、より重合速度を速める効果が期待できる一方で、疎水性が高く(B-2)成分より乳化能が劣る。そのため、(B-1)のみ使用する場合、エマルションの組成や、粒径、粘度、pH等の条件によってはエマルションの経時安定性をより高める必要がある。そこで、(B-1)成分と比較して乳化能が高い(B-2)成分を併用することによって重合速度を速めたまま、エマルションの安定性を高めることができる。
 上述したように、(B-1)成分のみ使用することもできるが、(B-1)成分と(B-2)成分を併用することによって重合速度を速めたまま、エマルションの安定性を高めることができる。(B-1)であるカチオン系界面活性剤は、Q (CH)N・Xで示され、(B-2)のカチオン系界面活性剤は、Q α(CH4-α・Xで示されるカチオン系界面活性剤である。(B-1)は、4級アンモニウムの3つの置換基Qにより、(B-2)は、4級アンモニウムの1又は2つの置換基Qにより特徴づけられる。1価有機基Q、Qの炭素数が多いほど疎水性が高まり、その嵩高さのため立体障害が大きくなる。Q、Qを選択することによりこれらの作用を調節して、好ましい重合速度とエマルションの安定性とすることができる。
 (B-1)成分と(B-2)成分の組み合わせにおいて、各4級アンモニウムの置換基の総炭素数は特に制限されないが、好適なエマルションを得る観点から、(B-1)の4級アンモニウムの置換基の総炭素数(3つのQと1つのメチル基における炭素数の合計)をN(B-1)とし、(B-2)の4級アンモニウムの置換基の総炭素数(1つ又は2つのQと残りのメチル基における炭素数の合計)をN(B-2)として、N(B-1)とN(B-2)との差は0から35が好ましく、下限は0から4のいずれの整数であって良く、上限は30から34のいずれの整数であっても良い。N(B-1)とN(B-2)の差を適切な値とすることで好適なエマルションを得ることができる。
 また、Qの炭素数とQの炭素数の組み合わせについても特に制限されないが、好適なエマルションを得る観点から、Qの炭素数とQの炭素数の差は0から15が好ましく、下限は0から4のいずれの整数であって良く、上限は10から14のいずれの整数であっても良い。Qの炭素数とQの炭素数の差を適切な値とすることによって、界面活性剤の親水性、(A)成分のオルガノポリシロキサンとの接触頻度、乳化力を適切なものとすることができ、オルガノポリシロキサンを縮重合により高重合度化し、重合速度を好適にすることができるため、安定で好適なエマルションを得ることができる。
[(C)成分]
 本発明のエマルション組成物は、(C)成分として水を、(A)成分100質量部に対して30~3,000質量部、好ましくは40~2,400質量部配合する。水が少なすぎると水中油型エマルションとならず、多すぎると不経済である。
[(D)成分]
 (D)成分はコロイダルシリカであり、(A)成分100質量部に対して、(D)成分が0.5~50質量部含有される。
 (D)成分のコロイダルシリカは被膜補強剤として作用する。被膜の強度(特に硬さ、引張り強さ)が弱く耐久性を求められるような用途でエマルション組成物の使用ができない場合でも、コロイダルシリカを使用することで、該エマルション組成物から形成される被膜の強度(特に硬さ、引張り強さ)が劇的に向上することができる。
 本発明において、コロイダルシリカは親水性であることが好ましく、水性分散液として使用することができる。コロイダルシリカとしては、該エマルション組成物と混合して用いることができればその種類に制限はなく、市販のものを使用すれば良い。
 特にコロイダルシリカとして、その粒子表面がケイ素を除く金属の酸化物で処理されているものを使用することでエマルションの安定性を大幅に向上させることができる。ケイ素を除く金属の酸化物としては酸化アルミニウム、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム等の等電点が5以上の物質が好ましい。このようなコロイダルシリカを用いることで、広いpH領域でコロイダルシリカ粒子表面がプラスに帯電するため、該エマルション組成物中のエマルション粒子との間に電気的斥力が発生し合一、凝集しにくくなるため、より安定的に分散させることができる。なお、等電点は、例えばJIS R1638:1999に準拠して測定すればよい。また、このようなコロイダルシリカを用いることで水を除去して被膜を形成する際に、該エマルション組成物中のエマルション粒子同士やコロイダルシリカ同士に電気的斥力が発生し合一、凝集しにくくなるため、より均一な(より粒子が分散している)被膜を得ることができ、これにより該エマルション組成物から形成される被膜の強度(特に硬さ、引張り強さ)がさらに劇的に向上することができる。
 具体的なコロイダルシリカとしては、スノーテックスC、スノーテックスXL,スノーテックス30L、スノーテックスYL、スノーテックスO,スノーテックスOL、スノーテックスOYL、スノーテックスNXS、スノーテックスNS、スノーテックスN、スノーテックスN-40、スノーテックスAK、スノーテックスAK―L、スノーテックスAK―YL(日産化学工業社製)等が挙げられ、上述した中では特にコロイダルシリカ表面をアルミナで処理しているスノーテックスAK、スノーテックスAK―L、スノーテックスAK―YLが好ましいが、この限りではない。
 コロイダルシリカの平均粒径は特に限定されないが、上記コロイダルシリカの平均粒径を採用することができる。
 なお、シリカ/オルガノポリシロキサン/水を含有する類似の組成物の例としては、ピッカリングエマルション組成物が挙げられる。
 ピッカリングエマルションとは、液/液界面に固体微粒子が吸着(配向)して安定化されたエマルションの事を指し、乳化剤フリーでエマルション組成物が製造可能であることから近年注目されている。
 ピッカリングエマルション組成物に使用される固体微粒子としては、一般的に疎水性シリカ、疎水性セルロース、シリコーン樹脂粉末、中空半球状シリコーン粒子、ポリアミド樹脂、タルク、疎水性顔料などが用いられている。中でもシリカに関しては、親水性シリカ表面の水酸基を3官能性シランなどと反応させることで、表面を炭化水素などで改質して疎水化した疎水性シリカが一般的に使用されている。一方、本発明において好ましく用いられるコロイダルシリカは、表面にシラノール基(Si-OH)を多く有する親水性シリカ微粒子の水分散液であり、好ましくはその表面がケイ素を除く金属酸化物で被覆されたものであることから、ピッカリングエマルション組成物と本発明のエマルション組成物は組成的に異なるものである。
 また、本発明では、コロイダルシリカは液/液(オルガノポリシロキサン/水)界面には吸着(配向)しておらず、水相(連続相)中で電荷反発しながら安定的に分散しているため、分散メカニズム的にもピッカリングエマルション組成物とは異なるものである。
[(E)成分]
 (E)成分はノニオン系界面活性剤であり、(A)成分100質量部に対して、(E)成分が0.1~30質量部含有できる。
 (E)成分であるノニオン系界面活性剤は、(B-1)成分及び(B-2)成分だけでは不足している乳化能を補う働きがあり、これにより容易に乳化が可能で、エマルションの安定性を劇的に向上させることができる。
 (E)成分であるノニオン系界面活性剤としては下記構造であることが好ましい。
O(EO)(PO)
(式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
 (E)成分であるノニオン系界面活性剤は、上述のように、RO(EO)(PO)H で示されるノニオン系界面活性剤であることが好ましく、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、好ましくは12~22の直鎖又は分岐鎖のアルキル基であり、より好ましくは13~18の直鎖又は分岐鎖のアルキル基である。
 Rの炭素原子数が8以上であれば、界面活性剤の親水性が適切で、(B-1)成分及び(B-2)成分との相性も良好で、2ヶ月後でも濃淡分離、もしくは二層分離してしまうおそれがない。また、Rの炭素原子数が30以下であれば、疎水性が高すぎず十分に乳化できる。また、Rの炭素原子数が30以下であるので、エチレンオキシド基の重合度(式中のp)を高めて、親水性をわざわざ高くする必要がない。このため、エチレンオキシド基の重合度が低くてもよく、ノニオン系界面活性剤自体の性状が、エマルションを製造するうえで取り扱い易いものとなる。
 Rの具体例としては、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、ヘンエイコシル、ドコシル、トリコシル、テトラコシル、ペンタコシル、ヘキサコシル、ヘプタコシル、オクタコシル、ノナコシル、トリアコンチル等が挙げられる。中でもドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、が好ましく、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシルがより好ましい。
 EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり好ましくは2~80の整数、より好ましくは4~60の整数である。ただし、p+q>0である。なお、POの重合度(式中、q)が高くなるにつれて疎水性が高くなり、ノニオン系界面活性剤の乳化性は低下する傾向があるため、p>qであることが好ましい。
 (E)成分の具体例としては、ポリオキシエチレン(4)ラウリルエーテル、ポリオキシエチレン(9)ラウリルエーテル、ポリオキシエチレン(23)ラウリルエーテル、ポリオキシエチレン(5)トリデシルエーテル、ポリオキシエチレン(10)トリデシルエーテル、ポリオキシエチレン(6)セチルエーテル、ポリオキシエチレン(7)セチルエーテル、ポリオキシエチレン(6)ステアリルエーテル、ポリオキシエチレン(7)ステアリルエーテル、ポリオキシエチレン(20)ステアリルエーテル、ポリオキシエチレン(50)ステアリルエーテル、ポリオキシエチレン(60)ステアリルエーテル等が挙げられるが、これらに限定されるものではない。
 また、エマルションの安定性を補う等の目的で、(B-1)成分及び(B-2)成分以外の第4級アンモニウム塩、アルキルアミン酢酸塩等のカチオン系界面活性剤、アルキルベタイン、アルキルイミダゾリン等の両性界面活性剤を添加することは何ら問題ない。
 本発明では、カチオン系界面活性剤に加えて、以上のようなノニオン系若しくは両性界面活性剤を添加することもできるが、触媒作用が強いアニオン系界面活性剤は添加しなくてもよい。本発明では、アニオン系界面活性剤を添加せずに乳化重合エマルションを得ることができるので、本発明のエマルション組成物は、繊維処理用途や毛髪用化粧料用途などで使用されているカチオン系のエマルションや薬剤と共に用いることができ、安定性が良く、使用条件や配合条件が限定されないといった有用性がある。これは、従来のアニオン系界面活性剤を使用した乳化重合エマルションには見られない本発明の特徴である。
[その他の成分]
 本発明のエマルション組成物は、さらにアンモニア又は有機アミンのいずれか一方又は両方から成る塩基性物質と、酸性物質とから成る塩を含有するものであってよい。
 本発明のエマルション組成物は、アンモニア、又は、及び有機アミンから成る塩基性物質と、強酸性物質、又は、及び弱酸性物質から成る塩を含有することが望ましい。このアンモニア、又は、及び有機アミンから成る塩基性物質と、強酸性物質、又は、及び弱酸性物質から成る塩とは、後述する本発明のエマルション組成物を製造する際に重合を行うために使用する塩基性触媒(アルカリ触媒)を中和することにより生成する塩である。
 触媒としてアンモニア、又は、及び有機アミンを使用すると、本発明におけるオルガノポリシロキサンのエマルション組成物中のオルガノポリシロキサンの25℃における粘度が300,000mPa・s以上であることを満たしつつ、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の副生を大幅に抑制することが可能であり、各含有量を1,000ppm以下とすることができる。
 そのため、本発明において、重合を停止する中和剤として強酸性、又は、及び弱酸性の酸を添加すると、エマルション組成物中にアンモニア、又は、及び有機アミンから成る塩基性物質と、強酸性物質、又は、及び弱酸性物質から成る塩が生成することとなる。
 本発明のエマルション組成物は、その中に上記塩を含んでいても、良好な被膜形成性を有し、硬化後の被膜の強度、柔軟性に優れ、エマルションの保存安定性が良好である。しかしながら、エマルション組成物の安定性をより良くするためには、上記塩の含有量は少ない方が好ましい。エマルション組成物中の塩濃度は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。
 また、エマルション組成物の分離を抑制するためには、アルコールなど、一般的にエマルションの安定性を低下させる効果のある成分を多量に含まないことが好ましい。エマルション組成物中のアルコール濃度は、5質量%以下であることが好ましく、3質量%以下であることが更に好ましく、1質量%以下であることが更に好ましい。
 また、(B-1)成分や(B-2)成分のカチオン系界面活性剤は、エタノールやIPAのような溶剤(特にアルコール)に希釈された形態で販売されていることがあるが、溶剤(特にアルコール)の濃度が20質量%以下であることが好ましく、13質量%以下であることが更に好ましく、7質量%以下であることが更に好ましい。溶剤(特にアルコール)の濃度が20質量%より多い場合、エマルションの安定性が低下して経時で分離が起こりやすくなる恐れがある。なお、上記アルコールとは炭素数1~20の脂肪族アルコールを指す。なお、上記に示した数値範囲は1つの例を示したにすぎないためこれらに限定されず、その他成分も含めてエマルション組成物の安定性を考慮して設定すればよい。
 また、本発明のエマルション組成物の粒径に特に制限はないが、エマルションの安定性の観点から、エマルション組成物の平均粒径は1μm以下であることが好ましく、500nm以下であることがより好ましい。平均粒径が1μm以下であれば、エマルションが、粒子の体積に対応して粒子に加わる浮力が小さくなりエマルション中で均一に分散でき、粒子同士の凝集や合一が抑制され、長期に保存しても、濃淡分離や二層分離することがない。
 なお、本明細書において平均粒径とはレーザ回折/散乱式粒度分布測定装置を用いて測定した体積基準の粒度分布における積算値50%での粒径を示している。
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物は、前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量がそれぞれ1,000ppm以下であることができる。
 また、前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、及びエイコサメチルシクロデカシロキサン(D10)の各含有量の合計が1,000ppm以下のものであることもできる。
 後述するエマルション組成物の製造方法において、乳化重合に供される低分子量シロキサンとして、容易に入手でき、乳化と開環重合が容易なことから、オクタメチルシクロテトラシロキサンのような環状シロキサンオリゴマーが用いられている。しかしながら、環状シロキサンオリゴマーの開環重合は平衡化反応であって、乳化重合後のエマルションは、通常、オクタメチルシクロテトラシロキサンに代表される環状シロキサンオリゴマーが、ポリシロキサン中に残存する。
 そのため、保存中または使用中にエマルションから該オリゴマーが揮散して、乳化系の物理的安定性を損ねることがある。また、このようなエマルションを、たとえば毛髪化粧料として毛髪の処理などに多量に使用し、特に加熱ブロー処理を伴う場合には、揮散したオリゴマーが周囲環境を汚染したり、電気機器の接点障害を起こしたりすることがある。さらに、このようなエマルションを皮膚化粧料などに用いると、そこに含まれる低分子量の環状シロキサンオリゴマーが、その揮発特性によって感触を損ねたりすることがある。したがって、エマルション中の該環状シロキサンオリゴマーの量を抑制することが求められるようになった。特に環状シロキサン中でも、オクタメチルシクロテトラシロキサンやデカメチルシクロペンタシロキサンは平衡化反応で生成しやすく、安定な化合物であり、揮発性があることから、その含有量を抑制することが求められるようになった。
 このようなシラノール基末端ポリジオルガノシロキサンは、たとえば、ジメチルジクロロシランを加水分解して重縮合させることによって合成され、またたとえば、硫酸のような酸性触媒、または水酸化カリウム、カリウムシラノラートのようなアルカリ性触媒の存在下に、対応する環状シロキサンオリゴマーを開環重合させて合成される。生成物中には未反応の環状シロキサンオリゴマー、たとえば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサンなどが存在するが、乳化重合後に残存する環状シロキサンオリゴマーに起因する前述の問題を回避するために、原料中の環状シロキサンオリゴマーの含有量を抑制することが好ましい。このように(A)成分の環状シロキサンオリゴマーを制御するには、たとえば、開環重合によって得られた重合体から、存在する環状シロキサンオリゴマーを、減圧下に留去することによって達成できる。
 このように、近年オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、及びドデカメチルシクロヘキサシロキサンなどの含有量を抑制した製品が求められるようになっていることから、エマルション組成物中の環状シロキサン含有量を上記範囲とすることが好ましい。
 本発明のエマルション組成物は、25℃で6ヶ月保管した後のオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量も製造直後とほぼ変化がなく、製造直後にオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm未満のエマルション組成物は25℃で6ヶ月保管した後もオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下である。
 本発明のエマルション組成物は、被膜形成性を有している。被膜の作製方法に特に制限はないが、エマルション組成物中の水を除去することでエマルション組成物中のオルガノポリシロキサンが凝集し均一な被膜を形成する。水の除去方法に特に制限はないが、例えば100℃以上で短時間に水を除去してもよいし、25℃で徐々に水を除去してもよい。
 例えば、被膜はエマルション組成物を15cm×10cmのPP(ポリプロピレン)トレーに不揮発分が8.0gとなるように秤量し、25℃で48時間乾燥させた後、更に105℃で1時間乾燥させることで、被膜を形成させている。上記にて調製した被膜について、硬さ、引張強さ及び伸びをJISK6249に準じて測定することで被膜物性を評価している。
[エマルション組成物の製造方法]
 次に、本発明のエマルション組成物の製造方法は、以下の工程で行われる。すなわち、
 上記被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法であって、下記(I)~(III)の工程を含み、(I)の工程後に、(II)及び(III)の工程を任意の順序で、又は同時に行い、
下記(C-1)と(C-2)と(C-3)の合計量が30~3,000質量部となるように前記(C)水を加えることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
(I)下記(A-1)成分、(A-2)成分、(B)成分及び(C-1)成分を含む混合物を乳化してエマルション組成物を調製する工程、
(A-1)25℃における粘度が300,000mPa・s以下である末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサン
(A-2)下記式(3)で示されるアルコキシシラン
Si(OR4-e  (3)
(ここで、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基であり、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。eは0または1である。)
なお、(A-1)と(A-2)の合計は100質量部であり、(A-2)の(A-1)に対する割合は0~0.2である。
(B)カチオン性界面活性剤:0.1~30質量部
(C-1)水:30~3,000質量部
(II)得られたエマルション組成物に、必要により(C-2)水を更に加え、(F)塩基性触媒存在下、0~40℃で1~150時間重合を行い、更に中和を行う工程、
(III)更に(D)コロイダルシリカ:0.5~50質量部と、必要により(C-3)水を更に加える工程
 なお、(II)及び(III)の工程は、(I)の工程後であれば順序は問わず、また同時に行ってもよい。
[(A-1)成分]
 まず、(A-1)25℃における粘度が300,000mPa・s以下である末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサンは(A)成分であるオルガノポリシロキサンの原料となるものである。25℃における末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサンの粘度は好ましくは150,000mPa・s以下、より好ましくは50,000mPa・s以下である。25℃における粘度が300,000mPa・s以下であれば、エマルションの粒径が小さくなり安定性が高いエマルションとなる。なお、25℃における粘度が300,000mPa・s以下であれば分岐構造を有していても良い。なお、末端がメトキシ基やエトキシ基などのアルコキシ基の場合でも、エマルション組成物中で加水分解してシラノール基と成り得るため、末端アルコキシ基封鎖オルガノポリシロキサンでも同様に重合が可能である。
 前記(A-1)成分として、その中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下であるものを用いることができる。
 本発明のエマルション組成物の製造方法では、このような低分子量の環状シロキサンの含有量が少ない原料を用いることで、低分子量の環状シロキサンの含有量が少ないエマルション組成物を効率良く製造することができる。
 (A-1)成分の具体例としては、下記平均組成式が挙げられるが、これらに限定されるものではない。下記平均組成式中のg、h+i、h+i+jは末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサンの25℃における粘度が300,000mPa・s未満を満たす値である。また、下記一般式中のg、h+i、h+i+jは、典型的には1~2000という値を取り得る。
Figure JPOXMLDOC01-appb-C000009
[(A-2)成分]
 (A-2)成分であるオルガノアルコキシシランは、(A)成分となるオルガノポリシロキサンの原料となるものであり、下記式(3)で示されるオルガノアルコキシシランである。
 R Si(OR4-e  (3)
(ここで、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基であり、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。eは0または1である。)
 ここで、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。炭素原子数1~20の1価有機基としてはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのアルキル基、フェニル、トリル、ナフチルなどのアリール基、ビニル、アリルなどのアルケニル基、或いはこれらの有機基構造中の水素原子の一部をハロゲン原子や、アミノ、アクリロキシ、メタクリロキシ、エポキシ、メルカプト等の極性基含有の有機基で置換したものなどが挙げられる。ここで、Rの80%以上はメチル基であることが工業的及び特性的に望ましい。Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。Rの炭素原子数1~20の1価有機基としては上記Rと同じであり、メチル基、エチル基、プロピル基、ブチル基が好ましく、メチル基、エチル基がさらに好ましい。
 (A-2)成分の使用量としては、(A-1)成分と(A-2)成分の合計100質量部に対し、0~20質量部であり、好ましくは0~15質量部であり、より好ましくは0~10質量部であり、特に好ましくは0~5質量部である。(A-2)成分の配合量が上記範囲内であれば被膜化した際に十分な強度と耐久性を有する。
 (A-2)成分の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどが挙げられるが、これらに限定されるものではない。
[(B)成分、(D)成分、(E)成分]
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法は、前記(B)カチオン系界面活性剤として下記(B-1)又は(B-2)のいずれか又は両方を用いることができる。
(B-1)Q (CH)N・Xで示されるカチオン系界面活性剤:0~30質量部質量部
(B-2)Q α(CH4-α・Xで示されるカチオン系界面活性剤:0~30質量部質量部
(Qは同一又は異種の炭素原子数6~30の1価有機基、Qは炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数であり、ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
 また、前記(I)~(III)のいずれかの工程において、さらに(E)ノニオン系界面活性剤を前記(A-1)と(A-2)の合計100質量部に対して0.1~30質量部加えることもできる。
 更に、前記(E)成分として下記式で表されるノニオン系界面活性剤を用いることもできる。
O(EO)(PO)
(式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
 そして、前記(D)成分としてその粒子表面がケイ素を除く金属の酸化物で処理されているコロイダルシリカを用いることもできる。
 本発明のエマルション組成物の製造方法で用いる上記(B)成分、(D)成分及び(E)成分については上記と同様である。
[(C-1)成分、(C-2)成分、(C-3成分)]
 (C-1)成分、(C-2)成分及び(C-3)成分は、工程(I)と、必要により工程(II)、工程(III)で使用する水のことであり、(C-1)成分及び(C-2)成分及び(C-3)成分の使用量を合計したものが(C)成分の水の使用量である。
 工程(I)において、(C-1)成分の水の使用量は、(A)成分100質量部に対して30~3,000質量部であり、エマルション粒子を小粒径化する際に用いる乳化機の種類によって異なる。
 例えば、圧力を用いてエマルション粒子を小粒径化する高圧ホモジナイザー等の乳化機
を用いる場合は、(C-1)成分の使用量は、(A)成分100質量部に対して、30~3,000質量部と特に制限はされないが、せん断力を用いてエマルション粒子を小粒径化するホモディスパー(外周にノコギリ状の歯を持つ円形状ディスクからなる乳化機)、ホモミキサー(ローターとステーターからなる乳化機)、コロイドミル(高速回転するディスクと固定されたディスクの間隙に各成分を送り込み、乳化する乳化機)等の乳化機を用いる場合の(C-1)成分の使用量は、(A)成分100質量部に対して、1~200質量部が好ましく、より好ましくは2~100質量部であり、更に好ましくは5~50質量部である。
 せん断力を用いてエマルション粒子を小粒径化する乳化機を用いる場合は、(C-1)成分を200質量部以下で添加すると、せん断力が効率よく働き、エマルション粒子の粒径が小粒径化してエマルション組成物の安定性が良好になる。
 また、1質量部以上であればO/W型のエマルションとなり易い。
 工程(II)において、(C-2)成分は加えなくてもよいし、加えてもよいが、(A)成分100質量部に対して、(C-1)成分と(C-2)成分と(C-3)成分の使用量の合計((C)成分の水のことである)は30~3,000質量部が好ましい。
 (C-2)成分を加える場合には、使用用途に適切な濃度、粘度となるように、(C-2)成分の使用量を適宜調整すれば良い。なお、(C-2)成分の水は、通常、ホモディスパー、ホモミキサー及びコロイドミル等の乳化機を用いる場合は添加することが好ましい。
 工程(III)において、(C-3) 成分は加えなくてもよいし、加えてもよいが、(A)成分100質量部に対して、(C-1)成分と(C-2)成分と(C-3)成分の使用量の合計((C)成分の水のことである)は30~3,000質量部が好ましい。
(C-3)成分を加える場合には、使用用途に適切な濃度、粘度となるように、(C-3)成分の使用量を適宜調整すれば良い。なお、(D)成分のコロイダルシリカが水分散液の場合は、コロイダルシリカ水分散液中の水も(C-3)成分に含める。
[(F)成分]
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法では、工程(II)において得られたエマルション組成物に、必要により(C-2)水を更に加え、(F)塩基性触媒存在下、0~40℃で1~150時間重合を行い、更に中和を行う。
 この場合、前記(F)塩基性触媒としてアンモニア又は有機アミンのいずれか又は両方を用いることができる。
 (F)成分である塩基性触媒(アルカリ触媒)は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属水酸化物やアルカリ土類金属水酸化物、アンモニア、有機アミンなどが挙げられる。有機アミンの例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンや、モノメチルアミン、ジエチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミンが挙げられる。
 エマルション組成物中のオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンの各含有量を1,000ppm以下にするためには、アルカリ触媒はアンモニア、又は、及びトリエタノールアミンであることが好ましく、アンモニアであることがさらに好ましい。
 セチルトリメチルアンモニウムクロライドや牛脂のトリメチルアンモニウムクロライドに代表されるような一般的なカチオン系界面活性剤を使用した乳化重合は数多く報告されているが、これらカチオン系乳化剤は触媒作用が弱いことから、これを補うために触媒としては上述したようにアルカリ金属水酸化物やアルカリ土類金属水酸化物のような強塩基を使用することが一般的である。しかし、本発明では(B-1)成分を使用することで触媒作用を大幅に向上することができるため、強塩基を使用する必要がなく、弱塩基であるアンモニア、又は、及び有機アミンを使用するだけでも十分に重合を進行することができる。従って、重合を進行させる、かつ、環状シロキサン(オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等)をほとんど副生させないためには、アルカリ触媒としてアンモニア(アンモニア水)、又は、及び有機アミンを使用することが好ましく、アンモニア(アンモニア水)を使用することがより好ましい。
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法では、前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下となるようにすることが好ましく、また、前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、エイコサメチルシクロデカシロキサン(D10)各含有量の合計が1,000ppm以下となるようにすることが好ましい。
 アルカリ触媒の使用量としては、(B-1)成分であるカチオン系界面活性剤、及び(B-2)成分であるカチオン系界面活性剤の合計のモル量に対して0.1~10当量であることが好ましく、0.2~5当量であることが更に好ましい。
 (B-1)成分であるカチオン系界面活性剤、及び(B-2)成分であるカチオン系界面活性剤の合計のモル量に対して0.1当量以上使用すれば、短時間で高重合度オルガノポリシロキサンを含有するエマルション組成物を得られる。
 また、(B-1)成分であるカチオン系界面活性剤、及び(B-2)成分であるカチオン系界面活性剤の合計のモル量に対して10当量以下使用すれば、エマルション組成物の安定性が良好で、環状シロキサン(オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等)の副生量が1,000ppm以下に抑えられる。
 ただし、アルカリ触媒の使用量は上記に限定されず必要ならば上記使用量の範囲外であっても良い。また、使用するアルカリ触媒は使用用途で環状シロキサン(オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等)の含有量に特に制限がない場合は上述したアルカリ金属水酸化物やアルカリ土類金属水酸化物でも構わない。
 また、エマルション組成物にアルカリ触媒を添加する際には、事前にアルカリ触媒を水で希釈してから使用しても良い。このとき、希釈に使用する水の量は、(A)成分100質量部に対して、(C)成分30~3,000質量部の範囲であれば特に制限はない。このようにすれば、アルカリ触媒の濃度が適切になりエマルション組成物が安定化して扱いやすい。
 これらの(A-1)成分である末端シラノール基封鎖オルガノポリシロキサン、(A-2)成分であるオルガノアルコキシシラン、上述した(B)成分であるカチオン系界面活性剤、(C-1)成分である水をホモジナイザー、ホモディスパー、ホモミキサー、コロイドミル、ラインミキサーのような乳化機を用いて均一なエマルション組成物を調製し、得られたエマルション組成物に必要により(C-2)成分である水を更に加えた後に、(F)成分であるアルカリ触媒の存在下で、0~40℃で1~150時間重合を行い、更に中和を行う。その後、(D)成分であるコロイダルシリカと必要により(C-3)水を加える。
 また、重合温度は0~40℃であり、好ましくは5~30℃である。重合温度が、0℃以上であれば重合の進行が早く実用的であり、エマルションが凍結することなく安定性が良好であり、重合温度が、40℃以下であればエマルションの安定性が良好で、環状シロキサン(オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等)の副生量が1,000ppm以下に抑えられる。
 また、重合時間は1~150時間であり、好ましくは1~120時間である。1時間以上であれば重合が十分であり、150時間以下であれば工業的に十分である。
 所定の重合時間後、中和することにより、重合反応を停止することができる。ここでの中和は酸性化合物を添加することで行うことができる。酸性化合物(中和剤)としては、塩酸、ギ酸、酢酸、プロピオン酸、乳酸などが挙げられ、好ましくは、塩酸、ギ酸、酢酸である。なお、酸性化合物を使用する代わりにイオン交換樹脂を利用して中和することも可能である。
 以上の方法により得られる本発明の高重合度オルガノポリシロキサンのエマルション組成物は、繊維処理剤、離型剤、撥水剤、化粧品原料等として好適に用いられ、各種繊維、皮革、紙、毛髪等に処理することで優れた柔軟性、滑り性、撥水性、ボリューム感等を付与することができる。なお、繊維としては、綿、麻、絹、羊毛のような天然繊維、ポリエステル、ポリアミド、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ビニロン、ポリ塩化ビニル、スパンデックス等の合成繊維、アセテート等の半合成繊維などが挙げられるが、これらに限定されるものではない。
 本発明の高重合度オルガノポリシロキサンのエマルション組成物には、各種の増粘剤、顔料、染料、浸透剤、帯電防止剤、消泡剤、難燃剤、抗菌剤、防腐剤、撥水剤、架橋剤、密着向上剤や、他のシリコーンオイル、シリコーン樹脂、シリカ、アクリル樹脂、ウレタン樹脂等を適宜配合することができる。
 本発明の高重合度オルガノポリシロキサンのエマルション組成物は、乾燥後に被膜を形成することが可能であり、繊維、紙、金属、木材、ゴム、プラスチック、ガラス等各種基材表面に処理して、または含侵させて使用することができる。基材への塗布方法としては、浸漬法、スプレー法、ロールコート法、バーコート法、はけ塗り法等、従来公知の各種塗装法が可能である。
 また、本発明の高重合度オルガノポリシロキサンのエマルション組成物は、JIS L 1922における抗ウイルス活性値Mvが2.0以上であり抗ウイルス性能を有していてもよい。この抗ウイルス性能はエマルション組成物中のカチオン系界面活性剤により発現すると考えられる。また、本発明の高重合度オルガノポリシロキサンのエマルション組成物は、被膜形成能を有していることから、抗ウイルス性を付与したい基材などの対象物質にエマルション組成物を塗布して被膜を形成させることで、抗ウイルス性能を発現する物質を含む被膜となることから、耐久性に優れており、長期的な抗ウイルス性能が期待できる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において、特に断らない限り「%」は「質量%」を示す。
〔実施例1~25、比較例1~8〕
 以下のようにして実施例1~25のエマルションA~Yと比較例1~4,6,7のエマルションCA~CFを調製した。なお、比較例5,8ではエマルションを得ることができなかった。表1~3に(A)成分の100質量部に対する各成分の配合量(質量部)を示す。
[実施例1]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め85%水酸化カリウム((F-1)成分)1.4gをイオン交換水((C-2)成分)60.0gで希釈した水酸化カリウム水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸1.4gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製:(C-3)成分を含む。以下同じ)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションAを得た。エマルションAは105℃で3時間乾燥後の不揮発分が39.3%であった。
[実施例2]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)1.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸1.4gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションBを得た。エマルションBは105℃で3時間乾燥後の不揮発分が40.0%であった。
[実施例3]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、トリエタノールアミン((F-3)成分)3.2gをイオン交換水((C-2)成分)60.0gで希釈したトリエタノールアミン水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸1.4gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションCを得た。エマルションCは105℃で3時間乾燥後の不揮発分が40.2%であった。
[実施例4]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションDを得た。エマルションDは105℃で3時間乾燥後の不揮発分が40.4%であった。
[実施例5]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレンラウリルエーテル((E-1)成分)(エマルゲン109P:花王社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションEを得た。エマルションEは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例6]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションFを得た。エマルションFは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例7]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が50,000mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-2)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションGを得た。エマルションGは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例8]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が200,000mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-3)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションHを得た。エマルションHは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例9]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)30.0gを加えてホモミキサーを用いて均一に分散することでエマルションIを得た。エマルションIは105℃で3時間乾燥後の不揮発分が43.4%であった。
[実施例10]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)100.0gを加えてホモミキサーを用いて均一に分散することでエマルションJを得た。エマルションJは105℃で3時間乾燥後の不揮発分が40.0%であった。
[実施例11]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)298.5g、トリエトキシフェニルシラン((A-2-1)成分)1.5g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションKを得た。エマルションKは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例12]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)90.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)285.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションLを得た。エマルションLは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例13]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレンステアリルエーテル((E-3)成分)(エマルゲン350:花王社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションMを得た。エマルションMは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例14]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)30.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)30.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)0.4gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸0.4gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションNを得た。エマルションNは105℃で3時間乾燥後の不揮発分が41.1%であった。
[実施例15]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)1.5g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)1.5g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)7.4gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸8.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションOを得た。エマルションOは105℃で3時間乾燥後の不揮発分が44.3%であった。
[実施例16]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)11.1gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸12.9gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションPを得た。エマルションPは105℃で3時間乾燥後の不揮発分が42.6%であった。
[実施例17]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)22.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸25.8gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションQを得た。エマルションQは105℃で3時間乾燥後の不揮発分が43.2%であった。
[実施例18]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-2)成分)の有効成分20%の水分散液(スノーテックスC:日産化学社製)180.0gを加えてホモミキサーを用いて均一に分散することでエマルションRを得た。エマルションRは105℃で3時間乾燥後の不揮発分が39.4%であった。
[実施例19]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を30℃に上げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションSを得た。エマルションSは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例20]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、2時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションTを得た。エマルションTは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例21]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、144時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションUを得た。エマルションUは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例22]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sであり、分岐単位を持つオルガノポリシロキサン((A-1-4)成分)300.0g(一般式(1)中、R=メチル基、R=メトキシ基、a=3、b=450、c=1、d=0)、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションVを得た。エマルションVは105℃で3時間乾燥後の不揮発分が42.0%であった。
[実施例23]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、有効成分98%のステアリルトリメチルアンモニウムクロライド(B-2-2)成分)(東京化成工業社製)8.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションWを得た。エマルションWは105℃で3時間乾燥後の不揮発分が41.3%であった。
[実施例24]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、有効成分95%のトリオクタデシルメチルアンモニウムクロライド((B-1-2)成分)(AstaTech社製)9.0g、有効成分98%のステアリルトリメチルアンモニウムクロライド(B-2-2)成分)(東京化成工業社製)8.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションXを得た。エマルションXは105℃で3時間乾燥後の不揮発分が40.3%であった。
[実施例25]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、有効成分95%のトリオクタデシルメチルアンモニウムクロライド((B-1-2)成分)(AstaTech社製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションYを得た。エマルションYは105℃で3時間乾燥後の不揮発分が41.1%であった。
[比較例1]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションCAを得た。エマルションCAは105℃で3時間乾燥後の不揮発分が41.1%であった。
[比較例2]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、2時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、イオン交換水((C-3)成分)84.0gを加えてホモミキサーを用いて均一に分散することでエマルションCBを得た。エマルションCBは105℃で3時間乾燥後の不揮発分が39.6%であった。
[比較例3]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、イオン交換水((C-3)成分)84.0gを加えてホモミキサーを用いて均一に分散することでエマルションCCを得た。エマルションCCは105℃で3時間乾燥後の不揮発分が39.6%であった。
[比較例4]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)330.0gを加えてホモミキサーを用いて均一に分散した後に、予め30%アンモニア水溶液((F-2)成分)2.2gをイオン交換水((C-2)成分)60.0gで希釈したアンモニア水溶液を添加した。その後、液温度を15℃に下げ、24時間重合を行い、酢酸2.6gで中和して重合を停止した。次いで、イオン交換水((C-3)成分)84.0gを加えてホモミキサーを用いて均一に分散することでエマルションCDを得た。エマルションCDは105℃で3時間乾燥後の不揮発分が38.6%であった。
[比較例5]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)294.0g、トリエトキシフェニルシラン((A-2-1)成分)6.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)120.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製しようと試みたが、すぐに分離してしまい均一なエマルションを得ることができなかったため、エマルションの評価は行わなかった。
[比較例6]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端トリメチルシリル基封鎖ジメチルポリシロキサン((A-3)成分)300.0g、トリオクチルメチルアンモニウムクロライド((B-1-1)成分)の有効成分95%のエタノール品(TOMAC:Linyi Connect Chemical Technology Co.,Ltd製)9.0g、ベヘニルトリメチルアンモニウムクロライド((B-2-1)成分)の有効成分80%のエタノール品(リポカード22-80:ライオン・スペシャリティ・ケミカルズ社製)9.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)390.0gを加えてホモミキサーを用いて均一に分散した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションCEを得た。エマルションCEは105℃で3時間乾燥後の不揮発分が41.9%であった。
[比較例7]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端トリメチルシリル基封鎖ジメチルポリシロキサン((A-3)成分)300.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)24.0g、イオン交換水((C-1)成分)45.0gをホモミキサー、ディスパーを用いて均一に乳化分散することによりエマルションを調製し、このエマルションに更にイオン交換水((C-2)成分)390.0gを加えてホモミキサーを用いて均一に分散した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散することでエマルションCFを得た。エマルションCFは105℃で3時間乾燥後の不揮発分が41.0%であった。
[比較例8]
 予め、150℃で10mmHg以下の減圧下で加熱混合することでオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)等の環状シロキサンを各10ppm未満(検出限界)まで低減させた、25℃における粘度が1,500mPa・sである両末端シラノール基封鎖オルガノポリシロキサン((A-1-1)成分)300.0g、ポリオキシエチレントリデシルエーテル((E-2)成分)(ニューコール1310:日本乳化剤社製)6.0gとアニオン系界面活性剤であるドデシルベンゼンスルホン酸ナトリウム10.5部と、イオン交換水((C-1)成分)18.0gをホモディスパーにより乳化させた。このエマルションに更にイオン交換水((C-2)成分)254.7gを加えてホモミキサーを用いて均一に分散した後に、酸触媒である濃塩酸3.6gを加えた。その後、液温度を10℃に下げ、22時間重合を行い、トリエタノールアミン7.2gで中和して重合を停止した。次いで、コロイダルシリカ((D-1)成分)の有効成分30%の水分散液(スノーテックスAK-YL:日産化学社製)120.0gを加えてホモミキサーを用いて均一に分散させようと試みたが、すぐに分離してしまい、均一なエマルションを得ることができなかったため、エマルションの評価は行わなかった。
〔エマルションの評価〕
 上記実施例1~25、比較例1~4,6,7で得られた各エマルションの物性、特性を下記評価方法により測定し、結果を表1~3に示した。
 なお、得られた各エマルション組成物を15cm×10cmのPP(ポリプロピレン)トレーに不揮発分が8.0gとなるように秤量し、25℃で48時間乾燥し、水分を揮発させたところ、実施例1~25、比較例3はゴム状の被膜を形成し、比較例1、比較例2、及び比較例4は流動性のある液体であった。表1~3の「抽出粘度(mPa・s)」の欄には、下記の方法で粘度を測定できたエマルションについてはその抽出粘度を、測定できないものについては被膜の性状を示す。
[抽出したオルガノポリシロキサンの粘度]
 各エマルション組成物300gを2LのIPA中に撹拌しながら添加することでエマルションを破壊させてオルガノポリシロキサンを抽出し、このオルガノポリシロキサンを105℃で3時間乾燥した後、25℃においてBM型回転粘度計(TVB-10M)を用いて測定した。なお、BM型回転粘度計の中で最も高粘度を測定可能なロータであるM4(測定上限粘度2,000,000mPa・s)を用いても粘度が測定できないものや、BM型回転粘度計のロータに巻き付いてしまい測定できないもの、もしくはトルエンに溶解せず測定できないものの粘度は全て300,000mPa・s以上である。
[エマルションの平均粒径]
 レーザ回折/散乱式粒度分布測定装置((株)堀場製作所製、Partica LA-960)を用いて測定した体積基準の粒度分布における積算値50%での粒径である。
[環状シロキサン量の含有量]
 各エマルション組成物0.1gを、テトラデカンを内部標準として20ppm(質量)含有するアセトン10mLで抽出(3時間振とう)した後、一晩放置した後にアセトン層を採取してガスクロマトグラフィー分析(Agilent 7890B(アジレント・テクノロジー製))により、環状シロキサン(ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、及びエイコサメチルシクロデカシロキサン(D10))を定量した(質量換算値)。
[被膜形成性]
 各エマルション組成物を15cm×10cmのPP(ポリプロピレン)トレーに不揮発分が8.0gとなるように秤量し、25℃で48時間乾燥させた後、更に105℃で1時間乾燥させ、被膜が形成するか評価した。
 A:均一な被膜を形成し、ディスポトレーから容易に剥離ができる強度がある。
 B:均一な被膜を形成しているが、ディスポトレーから剥離ができない、もしくは剥離時に被膜が変形してしまう。
 C:均一な被膜を形成していない。
[被膜物性の評価]
 上記にて調製した被膜について、硬さ(タイプCデュロメータ硬さ)、引張強さ及び切断時伸びをJIS K6249に準じて測定した。評価結果を表1~3に併記する。
[エマルションの保存安定性(25℃)]
 各エマルション組成物100gをガラス瓶に取り、25℃の恒温槽に静置し保存した後、3ヶ月後、6ヶ月後、12ヶ月後に外観の目視観察及び上層と下層の不揮発分を測定して、下記評価基準に基づき保存安定性を評価した。
〈評価基準〉
 A:上層と下層で濃淡分離が全く認められない。
 B:上層と下層でわずかに濃淡分離が確認される。
 C:完全に二層に分離している。
[エマルションの保存安定性(40℃)]
 各エマルション組成物100gをガラス瓶に取り、40℃の恒温槽に30日間静置し保存した後、外観の目視観察及び上層と下層の不揮発分を測定して、下記評価基準に基づき保存安定性を評価した。
〈評価基準〉
 A:上層と下層で濃淡分離が全く認められない。
 B:上層と下層でわずかに濃淡分離が確認される。
 C:完全に二層に分離している。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1~3中の「抽出粘度(mPa・s)」の欄において、「ゴム状」とは、上記の方法で粘度が測定できず、被膜の性状がゴム状であり、25℃における粘度が300,000mPa・s以上であることを示す。
 表1、2に示される通り、実施例1~25の本発明の被膜形成性オルガノポリシロキサン(高重合度オルガノポリシロキサン)のエマルション組成物は強固な被膜形成能を有しており、また、保存安定性にも優れている。
 これに対して表3に示される通り、カチオン系界面活性剤を用いなかった比較例1,4では、抽出したオルガノポリシロキサンの粘度が低く、低分子量であったため、被膜形成性に劣り、カチオン系界面活性剤は用いたがコロイダルシリカを用いなかった比較例2,3では、抽出したオルガノポリシロキサンの粘度が高くなったものの、比較例2では、25℃における粘度が300,000mPa・s未満であり、均一な被膜を形成できず、比較例3では、粘度は十分であるものの被膜の硬さと引張強さが不十分であった。(B)成分を過剰に配合した比較例5では、エマルションが不安定になり、均一なエマルションを得ることができなかった。本発明の(A)成分に代えて重合(脱水又は脱アルコールによる縮重合)ができない低粘度の両末端トリメチルシリル基封鎖ジメチルポリシロキサンを用いた比較例6,7では、シリカを含んでいるものの、カチオン系界面活性剤だけ用いても、更にノニオン系界面活性剤を組み合わせても、十分な物性を有する被膜は得られなかった。カチオン系界面活性剤に代えて触媒作用が強いアニオン系界面活性剤を用いた比較例8では、より低温(10℃)で高粘度アニオン乳化重合が進行するものの、コロイダルシリカを加えるとエマルションが不安定になって、均一なエマルションを得ることができなかった。このように、比較例1~8の組成により得られたエマルション組成物は、そもそも均一なエマルションを得ることができなかったり、被膜を形成しなかったり、被膜を形成してもその被膜強度が弱いものであった。
 また、(F)塩基性触媒として水酸化カリウムを用いて調製した実施例1のエマルションAは、環状シロキサンD4~D6の含有量が5000質量ppmを超えるが、得られた被膜の物性(硬さ、引張強さ及び切断時伸び)も保存安定性も良好であった。このように本発明のエマルション組成物は、低分子量環状シロキサンが残存していても、得られる被膜の物性及び保存安定性は良好であり、低分子量環状シロキサンを除去する工程を省略できるので、製造コストを削減できる。
 これに対して、(F)塩基性触媒としてアンモニアを用いて調製した実施例2のエマルションBは、環状シロキサンD4~D6の含有量が200質量ppm未満と大幅に低減され、得られた被膜の物性と保存安定性は良好であった。このことから、本発明のエマルション組成物の製造方法によれば、エマルション原料の(A-1)成分として低分子量環状ポリシロキサンを予め低減した末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサンを適切な塩基性触媒と組み合わせて用いることで、得られるエマルション組成物中に含まれる環状シロキサンD4~D6の各含有量を1000ppm以下とすることができるだけでなく、前記エマルション組成物中に含まれる環状シロキサンD3~D10の各含有量の合計が1,000ppm以下とすることも容易に行うことができることが分かる。従って、本発明のエマルション組成物及びその製造方法は、産業上の利用価値が高い。
[処理布の抗ウイルス性能試験]
 エマルション組成物F及びZにイオン交換水を加え、固形分1%に希釈して試験液を調製した。該試験液に抗ウイルス性能試験用の標準綿布を10秒間浸漬した後、絞り率100%の条件でロールを用いて絞り、150℃で2分間乾燥することで各試験布を作製した。各試験布を下記試験方法にて抗ウイルス性能試験を実施した。規格・基準について表4に、結果を表5に示した。
[試験方法]JIS L 1922:2016
      ウイルス感染価の測定方法:Plaque assay
[試験ウイルス]インフルエンザウイルス Influenza A virus
        (H3N2):ATCC VR-1679
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 上表より、エマルションFは抗ウイルス性能を有することが確認された。
[産業上の利用可能性]
 本発明の被膜形成性オルガノポリシロキサンのエマルション組成物は良好な被膜形成性を有し、硬化後の被膜の強度に優れ、エマルションの保存安定性が良好な被膜形成性シリコーンエマルション組成物、及び被膜を提供することができる。また、本発明の被膜形成性オルガノポリシロキサンのエマルション組成物は環状シロキサンの含有量も極めて少なくすることが可能であることから、基材等に加熱処理などをした際に、環状シロキサンが揮発して装置内を汚したり、環状シロキサンや環状シロキサン由来の二酸化ケイ素の粉末などによる製品自体の汚染の心配も少ないため、工業的に有用であり、汎用性にも優れていることから、繊維処理剤以外にも、離型剤や撥水剤、化粧料、毛髪用化粧料等に広く応用が可能である。
 本明細書は、以下の態様を包含する。
 [1]:下記(A)~(D)を含有してなるものであることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物。
(A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサン:100質量部
Figure JPOXMLDOC01-appb-C000015
(式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、aは2~1,000の整数、bは10~10,000の整数、cは0~1,000の整数、dは0~1,000の整数であり、c+dは0~2,000を満たす整数であり、該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす値である。)
(B)カチオン系界面活性剤:0.1~30質量部
(C)水:30~3,000質量部
(D)コロイダルシリカ:0.5~50質量部
 [2]:前記(B)カチオン系界面活性剤が下記(B-1)又は(B-2)のいずれか又は両方を含むものであることを特徴とする[1]の被膜形成性オルガノポリシロキサンのエマルション組成物。
(B-1)Q (CH)N・X
で示されるカチオン系界面活性剤:0~30質量部
(B-2)Q α(CH4-α・X
で示されるカチオン系界面活性剤:0~30質量部
(Qは同一又は異種の炭素原子数6~30の1価有機基、Qは炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数である。ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
 [3]:さらに(E)ノニオン系界面活性剤を(A)成分100質量部に対して0.1~30質量部含有するものであることを特徴とする[1]又は[2]の被膜形成性オルガノポリシロキサンのエマルション組成物。
 [4]:前記(E)ノニオン系界面活性剤が下記式で表されるものであることを特徴とする[3]の被膜形成性オルガノポリシロキサンのエマルション組成物。
O(EO)(PO)
(式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
 [5]:前記(D)コロイダルシリカが、粒子表面がケイ素を除く金属の酸化物で処理されたものであることを特徴とする[1]から[4]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物。
 [6]:さらにアンモニア又は有機アミンのいずれか一方又は両方から成る塩基性物質と、酸性物質とから成る塩を含有するものであることを特徴とする[1]から[5]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物。
 [7]:前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量がそれぞれ1,000ppm以下のものであるであることを特徴とする[1]から[6]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物。
 [8]:前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、及びエイコサメチルシクロデカシロキサン(D10)の各含有量の合計が1,000ppm以下のものであることを特徴とする[1]から[7]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物。
 [9]:前記エマルション組成物中に含まれるエマルションの平均粒径が1μm以下であることを特徴とする[1]から[8]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物。
 [10]:前記エマルション組成物中に含まれるエマルションの平均粒径が500nm以下であることを特徴とする[9]の被膜形成性オルガノポリシロキサンのエマルション組成物。
 [11]:JIS L 1922における抗ウイルス活性値Mvが2.0以上であることを特徴とする[1]から[10]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物。
 [12]:[1]の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法であって、下記(I)~(III)の工程を含み、(I)の工程後に、(II)及び(III)の工程を任意の順序で、又は同時に行い、
下記(C-1)と(C-2)と(C-3)の合計量が30~3,000質量部となるように前記(C)水を加えることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
(I)下記(A-1)成分、(A-2)成分、(B)成分及び(C-1)成分を含む混合物を乳化してエマルション組成物を調製する工程、
(A-1)25℃における粘度が300,000mPa・s以下である末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサン
(A-2)下記式(3)で示されるアルコキシシラン
Si(OR4-e  (3)
(ここで、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基であり、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。eは0または1である。)
なお、(A-1)と(A-2)の合計は100質量部であり、(A-2)の(A-1)に対する割合は0~0.2である。
(B)カチオン性界面活性剤:0.1~30質量部
(C-1)水:30~3,000質量部
(II)得られたエマルション組成物に、必要により(C-2)水を更に加え、(F)塩基性触媒存在下、0~40℃で1~150時間重合を行い、更に中和を行う工程、
(III)更に(D)コロイダルシリカ:0.5~50質量部と、必要により(C-3)水を更に加える工程
 [13]:前記(F)塩基性触媒としてアンモニア又は有機アミンのいずれか又は両方を用いることを特徴とする[12]の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
 [14]:前記(B)カチオン系界面活性剤として下記(B-1)又は(B-2)のいずれか又は両方を用いることを特徴とする[12]又は[13]の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
(B-1)Q (CH)N・Xで示されるカチオン系界面活性剤:0~30質量部質量部
(B-2)Q α(CH4-α・Xで示されるカチオン系界面活性剤:0~30質量部質量部
(Qは同一又は異種の炭素原子数6~30の1価有機基、Qは炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数であり、ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
 [15]:前記(I)~(III)のいずれかの工程において、さらに(E)ノニオン系界面活性剤を前記(A-1)と(A-2)の合計100質量部に対して0.1~30質量部加えることを特徴とする[12]から[14]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
 [16]:前記(E)成分として下記式で表されるノニオン系界面活性剤を用いることを特徴とする[15]の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
O(EO)(PO)
(式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
 [17]:前記(D)成分としてその粒子表面がケイ素を除く金属の酸化物で処理されているコロイダルシリカを用いることを特徴とする[12]から[16]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
 [18]:前記(A-1)成分として、その中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下であるものを用いることを特徴とする[12]から[17]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
 [19]:前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下となるようにすることを特徴とする[12]から[18]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
 [20]:前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、エイコサメチルシクロデカシロキサン(D10)各含有量の合計が1,000ppm以下となるようにすることを特徴とする[12]から[19]のいずれか1つの被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (20)

  1.  下記(A)~(D)を含有してなるものであることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物。
    (A)下記平均組成式(1)で表される、25℃における粘度が300,000mPa・s以上であり、1分子中に少なくとも2個のケイ素原子に結合するアルコキシ基又はヒドロキシ基を含有するオルガノポリシロキサン:100質量部
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは互いに独立に、水素原子、又は、非置換又は置換の炭素原子数1~20の1価有機基であり、Rは非置換又は置換の炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~20のアルコキシ基又はヒドロキシ基であり、aは2~1,000の整数、bは10~10,000の整数、cは0~1,000の整数、dは0~1,000の整数であり、c+dは0~2,000を満たす整数であり、該オルガノポリシロキサンの25℃における粘度が300,000mPa・s以上を満たす値である。)
    (B)カチオン系界面活性剤:0.1~30質量部
    (C)水:30~3,000質量部
    (D)コロイダルシリカ:0.5~50質量部
  2.  前記(B)カチオン系界面活性剤が下記(B-1)又は(B-2)のいずれか又は両方を含むものであることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
    (B-1)Q (CH)N・X
    で示されるカチオン系界面活性剤:0~30質量部
    (B-2)Q α(CH4-α・X
    で示されるカチオン系界面活性剤:0~30質量部
    (Qは同一又は異種の炭素原子数6~30の1価有機基、Qは炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数である。ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
  3.  さらに(E)ノニオン系界面活性剤を(A)成分100質量部に対して0.1~30質量部含有するものであることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  4.  前記(E)ノニオン系界面活性剤が下記式で表されるものであることを特徴とする請求項3に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
    O(EO)(PO)
    (式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
  5.  前記(D)コロイダルシリカが、粒子表面がケイ素を除く金属の酸化物で処理されたものであることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  6.  さらにアンモニア又は有機アミンのいずれか一方又は両方から成る塩基性物質と、酸性物質とから成る塩を含有するものであることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  7.  前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量がそれぞれ1,000ppm以下のものであるであることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  8.  前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、及びエイコサメチルシクロデカシロキサン(D10)の各含有量の合計が1,000ppm以下のものであることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  9.  前記エマルション組成物中に含まれるエマルションの平均粒径が1μm以下であることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  10.  前記エマルション組成物中に含まれるエマルションの平均粒径が500nm以下であることを特徴とする請求項9に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  11.  JIS L 1922における抗ウイルス活性値Mvが2.0以上であることを特徴とする請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物。
  12.  請求項1に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法であって、下記(I)~(III)の工程を含み、(I)の工程後に、(II)及び(III)の工程を任意の順序で、又は同時に行い、
    下記(C-1)と(C-2)と(C-3)の合計量が30~3,000質量部となるように前記(C)水を加えることを特徴とする被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
    (I)下記(A-1)成分、(A-2)成分、(B)成分及び(C-1)成分を含む混合物を乳化してエマルション組成物を調製する工程、
    (A-1)25℃における粘度が300,000mPa・s以下である末端アルコキシ基、又は、及び末端シラノール基封鎖オルガノポリシロキサン
    (A-2)下記式(3)で示されるアルコキシシラン
    Si(OR4-e  (3)
    (ここで、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基であり、Rは互いに独立に、水素原子、又は、置換もしくは非置換の炭素原子数1~20の1価有機基である。eは0または1である。)
    なお、(A-1)と(A-2)の合計は100質量部であり、(A-2)の(A-1)に対する割合は0~0.2である。
    (B)カチオン性界面活性剤:0.1~30質量部
    (C-1)水:30~3,000質量部
    (II)得られたエマルション組成物に、必要により(C-2)水を更に加え、(F)塩基性触媒存在下、0~40℃で1~150時間重合を行い、更に中和を行う工程、
    (III)更に(D)コロイダルシリカ:0.5~50質量部と、必要により(C-3)水を更に加える工程
  13.  前記(F)塩基性触媒としてアンモニア又は有機アミンのいずれか又は両方を用いることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
  14.  前記(B)カチオン系界面活性剤として下記(B-1)又は(B-2)のいずれか又は両方を用いることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
    (B-1)Q (CH)N・Xで示されるカチオン系界面活性剤:0~30質量部質量部
    (B-2)Q α(CH4-α・Xで示されるカチオン系界面活性剤:0~30質量部質量部
    (Qは同一又は異種の炭素原子数6~30の1価有機基、Qは炭素原子数6~30の1価有機基、Xは互いに独立に、ハロゲン原子又は炭素原子数1~6の1価カルボキシル基、αは1または2の整数であり、ただし(B-1)と(B-2)の合計量は0.1~30質量部である。)
  15.  前記(I)~(III)のいずれかの工程において、さらに(E)ノニオン系界面活性剤を前記(A-1)と(A-2)の合計100質量部に対して0.1~30質量部加えることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
  16.  前記(E)成分として下記式で表されるノニオン系界面活性剤を用いることを特徴とする請求項15に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
    O(EO)(PO)
    (式中、Rは、炭素原子数8~30の直鎖又は分岐鎖のアルキル基であり、EOはエチレンオキシド基、POはプロピレンオキシド基を示し、それらの配列はブロック状でもランダム状でもよい。p及びqは互いに独立に、0~100の整数であり、ただし、p+q>0である。)
  17.  前記(D)成分としてその粒子表面がケイ素を除く金属の酸化物で処理されているコロイダルシリカを用いることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
  18.  前記(A-1)成分として、その中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下であるものを用いることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
  19.  前記エマルション組成物中に含まれるオクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)の各含有量が1,000ppm以下となるようにすることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
  20.  前記エマルション組成物中に含まれるヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、及び、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロノナシロキサン(D9)、エイコサメチルシクロデカシロキサン(D10)各含有量の合計が1,000ppm以下となるようにすることを特徴とする請求項12に記載の被膜形成性オルガノポリシロキサンのエマルション組成物の製造方法。
PCT/JP2023/033019 2022-10-12 2023-09-11 被膜形成性オルガノポリシロキサンのエマルション組成物及びその製造方法 WO2024080049A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-164234 2022-10-12
JP2022164234 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024080049A1 true WO2024080049A1 (ja) 2024-04-18

Family

ID=90669117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033019 WO2024080049A1 (ja) 2022-10-12 2023-09-11 被膜形成性オルガノポリシロキサンのエマルション組成物及びその製造方法

Country Status (2)

Country Link
TW (1) TW202424118A (ja)
WO (1) WO2024080049A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152275A (ja) * 1989-11-06 1991-06-28 Shin Etsu Chem Co Ltd ウール処理剤
JPH09316331A (ja) * 1996-03-29 1997-12-09 Shin Etsu Chem Co Ltd 水中油型オルガノポリシロキサン乳化物及びその製造方法
JPH10337946A (ja) * 1997-06-04 1998-12-22 Toray Ind Inc 記録シート
JP2000038452A (ja) * 1998-07-24 2000-02-08 Dai Ichi Kogyo Seiyaku Co Ltd シリコーンエマルション
JP2004332163A (ja) * 2003-05-08 2004-11-25 Nicca Chemical Co Ltd 繊維用消臭抗菌剤及び消臭抗菌性繊維製品
JP2015025095A (ja) * 2013-07-29 2015-02-05 三菱レイヨン株式会社 水性被覆材および塗装物
WO2020255894A1 (ja) * 2019-06-21 2020-12-24 ダウ・東レ株式会社 減摩性塗膜を形成する水性塗膜形成性組成物、それを用いるエアバッグ
WO2021117508A1 (ja) * 2019-12-13 2021-06-17 信越化学工業株式会社 ポリオルガノシロキサンのカチオン系エマルション組成物及びその製造方法
JP2021123646A (ja) * 2020-02-05 2021-08-30 信越化学工業株式会社 活性エネルギー線硬化性組成物、コーティング剤、および被膜物品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152275A (ja) * 1989-11-06 1991-06-28 Shin Etsu Chem Co Ltd ウール処理剤
JPH09316331A (ja) * 1996-03-29 1997-12-09 Shin Etsu Chem Co Ltd 水中油型オルガノポリシロキサン乳化物及びその製造方法
JPH10337946A (ja) * 1997-06-04 1998-12-22 Toray Ind Inc 記録シート
JP2000038452A (ja) * 1998-07-24 2000-02-08 Dai Ichi Kogyo Seiyaku Co Ltd シリコーンエマルション
JP2004332163A (ja) * 2003-05-08 2004-11-25 Nicca Chemical Co Ltd 繊維用消臭抗菌剤及び消臭抗菌性繊維製品
JP2015025095A (ja) * 2013-07-29 2015-02-05 三菱レイヨン株式会社 水性被覆材および塗装物
WO2020255894A1 (ja) * 2019-06-21 2020-12-24 ダウ・東レ株式会社 減摩性塗膜を形成する水性塗膜形成性組成物、それを用いるエアバッグ
WO2021117508A1 (ja) * 2019-12-13 2021-06-17 信越化学工業株式会社 ポリオルガノシロキサンのカチオン系エマルション組成物及びその製造方法
JP2021123646A (ja) * 2020-02-05 2021-08-30 信越化学工業株式会社 活性エネルギー線硬化性組成物、コーティング剤、および被膜物品

Also Published As

Publication number Publication date
TW202424118A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
JP5698915B2 (ja) 水中油型シリコーンエマルジョン組成物
US20110311723A1 (en) Silicate Shell Microcapsules For Treating Textiles
JPH0159390B2 (ja)
KR20110133603A (ko) 수중유 실리콘 에멀젼 조성물
JPS62276090A (ja) 合成繊維用処理剤
JP4819685B2 (ja) シリコーンmq樹脂強化シリコーンエラストマーエマルジョン
US20060111452A1 (en) Process for making silicone emulsions
JPH0284580A (ja) 繊維処理剤および繊維製品
JP6711111B2 (ja) 皮膜形成性シリコーンエマルション組成物
JP3966538B2 (ja) オルガノポリシロキサンエマルジョンの製造方法
KR101251168B1 (ko) 고중합도 오르가노실록산의 양이온계 에멀젼 조성물 및그의 제조 방법
EP3496817B1 (en) Stabilized solutions of alkylalkoxysilane hydrolysates and flexible films formed thereof
JP4678402B2 (ja) 皮膜形成性オルガノポリシロキサンエマルジョン組成物及び繊維用風合い改良剤
JPH10140480A (ja) 繊維処理剤
JP7368217B2 (ja) ポリオルガノシロキサンのカチオン系エマルション組成物及びその製造方法
WO2024080049A1 (ja) 被膜形成性オルガノポリシロキサンのエマルション組成物及びその製造方法
JPH11322945A (ja) ポリオルガノシロキサンエマルジョンおよびその製造方法
JP6149788B2 (ja) 皮膜形成性シリコーンエマルション組成物及び皮膜
JP4536752B2 (ja) 繊維処理剤
JPH09228255A (ja) 繊維処理剤
JPH0699868B2 (ja) 繊維処理剤
JP2006182936A (ja) 水系コーティング剤組成物
JPH0515827B2 (ja)
JP3891566B2 (ja) シリコーンエラストマー粒子の水性分散液
JP6909671B2 (ja) 電子線固着用繊維処理剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877055

Country of ref document: EP

Kind code of ref document: A1