Nothing Special   »   [go: up one dir, main page]

WO2024075276A1 - Flight vehicle and method for controlling flight vehicle - Google Patents

Flight vehicle and method for controlling flight vehicle Download PDF

Info

Publication number
WO2024075276A1
WO2024075276A1 PCT/JP2022/037613 JP2022037613W WO2024075276A1 WO 2024075276 A1 WO2024075276 A1 WO 2024075276A1 JP 2022037613 W JP2022037613 W JP 2022037613W WO 2024075276 A1 WO2024075276 A1 WO 2024075276A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
aircraft
flying
movable part
flying object
Prior art date
Application number
PCT/JP2022/037613
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木陽一
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to PCT/JP2022/037613 priority Critical patent/WO2024075276A1/en
Priority to CN202322677546.8U priority patent/CN220948591U/en
Priority to CN202311284754.XA priority patent/CN117842408A/en
Publication of WO2024075276A1 publication Critical patent/WO2024075276A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/10On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for adjusting control surfaces or rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/23Transmission of mechanical power to rotors or propellers with each propulsion means having an individual motor

Definitions

  • This disclosure relates to an aircraft and a method for controlling the aircraft.
  • flying objects such as drones and unmanned aerial vehicles (UAVs) (collectively referred to as “flying objects” below)
  • flying objects generally known as multicopters (collectively referred to as multicopters below) that are equipped with multiple fixed-pitch propellers and move by tilting the aircraft, require less area for takeoff and landing, making them ideal for transporting goods in narrow spaces.
  • Patent Document 1 discloses an aircraft that is equipped with an engine and a generator driven by the engine, making it a hybrid type that allows for improved fuel efficiency (see Patent Document 1, for example).
  • Patent Document 1 discloses an aircraft that can improve flight efficiency by using a hybrid aircraft in which multiple propellers are rotated using electricity generated by a generator driven by an engine or engine power.
  • one of the objectives of the aircraft of the present invention is to provide an aircraft that can improve fuel efficiency during cruising.
  • the present invention provides an aircraft that can improve fuel efficiency when the aircraft is in a forward-moving position by providing a specific movable part in the rotorcraft body.
  • an aircraft comprising a plurality of rotors, a main body supporting the plurality of rotors, and movable parts attached to the main body that can be displaced so that all or part of the movable parts are separated from the main body, the attitude of the aircraft during cruising being tilted forward in the cruising direction by controlling the rotation speed of the plurality of rotors, more so than the attitude of the aircraft during hovering, and the movable parts are controlled to be displaced from the main body during cruising.
  • the present disclosure also provides a method for controlling an aircraft, the aircraft comprising a plurality of rotors, a main body supporting the plurality of rotors, and movable parts provided on the main body that can be displaced so that all or part of the movable parts are separated from the main body, the method controlling the rotation speed of the plurality of rotors to tilt the attitude of the main body during cruising further forward than the attitude of the main body during hovering, and controlling the movable parts to be displaced from the main body during cruising.
  • This disclosure makes it possible to provide an aircraft that can improve fuel efficiency when a multicopter flies forward.
  • FIG. 1 is a conceptual side view of an aircraft with movable parts according to the present disclosure.
  • FIG. 2 is a side view of the aircraft shown in FIG. 1 during cruising.
  • 3 is a side view of the flying object shown in FIG. 2 when a movable part is in motion.
  • FIG. 4 is a side view of the aircraft shown in FIG. 3 in a landing state.
  • FIG. 2 is a plan view of the flying vehicle shown in FIG. 1 .
  • FIG. 4 is a plan view of the flying vehicle shown in FIG. 3 .
  • FIG. 2 is a functional block diagram of the aircraft shown in FIG. 1 .
  • FIG. 1 is a side view of a conventional aircraft.
  • FIG. 9 is a side view of the aircraft shown in FIG. 8 during cruising.
  • FIG. 2 is an enlarged side view of an example of a main body of an air vehicle according to the present disclosure.
  • 11 is a side view of the main body shown in FIG. 10 when a movable part is in motion.
  • FIG. 11 is a plan view of the main body shown in FIG. 10 .
  • FIG. 12 is a plan view of the main body shown in FIG. 11 .
  • FIG. 2 is a side view of an example of an embodiment of a main body of an aircraft according to the present disclosure.
  • FIG. 15 is a plan view of the flying vehicle shown in FIG. 14 .
  • FIG. 15 is a side view of the aircraft shown in FIG. 14 during cruising.
  • 17 is a side view of the flying object shown in FIG. 16 when the movable parts are in motion.
  • FIG. 15 is a plan view of the flying vehicle shown in FIG. 14 .
  • FIG. 15 is a side view of the aircraft shown in FIG. 14 during cruising.
  • 17 is a side view of the flying object shown in
  • FIG. 2 is a side view of an example of an embodiment of a main body of an aircraft according to the present disclosure.
  • FIG. 19 is a partially enlarged view of the main body shown in FIG. 18 .
  • FIG. 20 is a diagram showing the movable part shown in FIG. 19 in operation.
  • FIG. 19 is a plan view of the main body shown in FIG. 18 .
  • FIG. 2 is a side view of an example of a main body of an aircraft according to the present disclosure.
  • FIG. 23 is a plan view of the main body shown in FIG. 22.
  • FIG. 23 is a side view of the main body shown in FIG. 22 during cruising.
  • FIG. 2 is a side view of an example of a main body of an aircraft according to the present disclosure.
  • FIG. 26 is a side view of the main body shown in FIG.
  • FIG. 27 is a plan view of the main body shown in FIG. 26 .
  • FIG. 2 is a side view of an example of a main body of an aircraft according to the present disclosure.
  • FIG. 29 is a side view of the main body shown in FIG. 28 during cruising.
  • the flying object according to the embodiment of the present invention has the following configuration.
  • (Item 2) Item 1, the flying object according to the present invention, The movable part is controlled to be displaced when the attitude of the main body part with respect to the horizontal direction satisfies a predetermined condition.
  • Flying vehicle. (Item 3) 3. The flying object according to claim 1 or 2, The displacement amount of the movable part is controlled according to the flight mode of the aircraft.
  • Flying vehicle. (Item 4) Item 3. The flying object according to item 3, The flight mode includes a flight mode determined by conditions based on the flight direction and/or flight speed of the aircraft, Flying vehicle. (Item 5) The flying object according to any one of items 1 to 4, The movable part is displaced in a direction tilting backward relative to the main body during the cruising of the aircraft. Flying vehicle.
  • the flying object according to any one of items 1 to 5 The movable part is provided at the rear end of the main body or rearward of the center of the main body in the front-rear direction. Flying vehicle. (Item 7) 7. The flying object according to any one of items 1 to 6, The movable part is provided at a front end of the main body part or forward of a center of the main body part in a front-rear direction. Flying vehicle. (Item 8) The flying object according to any one of items 1 to 7, The movable part has a mechanism that is displaced by rotating about an axis in the width direction of the main body. Flying vehicle.
  • the flying object according to any one of items 1 to 8, a plane of rotation of at least one of the plurality of rotors is horizontal; Flying vehicle.
  • a method for controlling an aircraft comprising: The flying object is A plurality of rotors; A main body portion supporting the plurality of rotor blades; a movable part provided on the main body portion and capable of being displaced so that all or a part of the movable part is separated from the main body portion; By controlling the rotation speed of the plurality of rotors, the attitude of the main body unit during cruising is tilted forward more than the attitude of the main body unit during hovering; A method for controlling an aircraft, the method controlling the movable parts to be displaced from the main body during the cruising.
  • the flying object 100 is a rotorcraft capable of vertical takeoff and landing and horizontal movement.
  • the aircraft 100 takes off from a take-off point and flies to its destination. For example, if the aircraft 100 is making a delivery, the aircraft 100 that has reached the destination will land at a port or the like, or hover above a port or the like, and complete the delivery by separating the cargo it was carrying. After separating the cargo, the aircraft 100 will continue flying to another destination, such as the original take-off point or another delivery point.
  • the aircraft 100 includes one or more rotors 11 and a main body 50.
  • the rotor section 11 (111a, 111b, 111c, 111d, 111e, 111f) according to this embodiment is composed of a propeller 110 and a motor 111.
  • the rotor section 11 can be provided on a frame 120.
  • the rotor section 11 is provided on the front end, middle part, or rear end of the frame 120.
  • the frame 120 and the rotor section 11 may be connected directly or via an intermediate member such as a motor mount.
  • the flying object 100 is equipped with an energy source (e.g., a secondary battery, a fuel cell, or a fossil fuel) for powering the rotor section 11.
  • an energy source e.g., a secondary battery, a fuel cell, or a fossil fuel
  • the flying object 100 may be equipped with a battery in the main body section 50.
  • flying object 100 is depicted in a simplified manner to facilitate explanation of the structure of this disclosure, and detailed configuration of, for example, the control unit, etc. is not shown.
  • the forward direction of the flying object 100 is the direction of arrow D in the figure (-Y direction) (more details will be given later).
  • forward/backward direction +Y direction and -Y direction
  • up/down direction or vertical direction
  • left/right direction or horizontal direction
  • backward direction (rearward) +Y direction
  • the propeller 110 rotates upon receiving output from the motor 111.
  • the rotation of the propeller 110 generates a thrust force for flying the flying object 100.
  • the propeller 110 can rotate clockwise, stop, and rotate counterclockwise.
  • the propeller 110 of the aircraft of the present disclosure has one or more blades.
  • the blades can be flat, curved, kinked, tapered, or any combination thereof.
  • the blade shape can be variable (e.g., expandable, collapsible, bent, etc.).
  • the blades can be symmetric (having identical upper and lower surfaces) or asymmetric (having upper and lower surfaces with different shapes).
  • the blades can be formed into airfoils, wings, or any geometry suitable for generating aerodynamic forces (e.g., lift, thrust) as the blade moves through the air.
  • the blade geometry can be selected to optimize the blade's aerodynamic properties, such as increasing lift and thrust and reducing drag.
  • the propellers of the aircraft disclosed herein may be, but are not limited to, fixed pitch, variable pitch, or a combination of fixed pitch and variable pitch.
  • the propeller rotation control speed may be slower than with an electric motor, so it is desirable to use a variable pitch propeller.
  • the motor 111 generates the rotation of the propeller 110, and the drive unit can include, for example, an electric motor or an engine.
  • the blades can be driven by the motor and rotate around the motor's rotation axis (e.g., the motor's long axis).
  • the blades can all rotate in the same direction, or they can rotate independently. For example, some blades can rotate in one direction and others in the other direction.
  • the blades can all rotate at the same RPM, or they can each rotate at a different RPM.
  • the RPM can be determined automatically or manually based on the dimensions of the moving object (e.g., size, weight) and/or control state (speed, direction of movement, etc.).
  • the flying object 100 determines the rotation speed of each motor and the flight angle via a flight controller according to wind speed and direction, using input from a remote control (not shown) or a program. This allows the flying object to move by ascending and descending, accelerating and decelerating, and changing direction.
  • the aircraft 100 can fly autonomously according to routes and rules set in advance or during flight, or can fly by maneuvering it using a remote control.
  • the above-mentioned flying object 100 has some or all of the functional blocks shown in FIG. 7.
  • the functional blocks in FIG. 7 are an example of a minimum reference configuration.
  • the light controller 1001 is a so-called processing unit.
  • the processing unit may have one or more processors, such as a programmable processor (e.g., a central processing unit (CPU)).
  • the processing unit has a memory (not shown) and is accessible to the memory.
  • the memory stores logic, code, and/or program instructions that the processing unit can execute to perform one or more steps.
  • the memory may include, for example, a separable medium such as an SD card or a random access memory (RAM) or an external storage device.
  • Data acquired from the sensors 1002 may be directly transmitted to and stored in the memory. For example, still image and video data captured by a camera or the like is recorded in an internal memory or an external memory.
  • the processing unit includes a control module configured to control the state of the rotorcraft.
  • the control module controls the rotorcraft's propulsion mechanisms (e.g., motors) to regulate the rotorcraft's spatial configuration, speed, and/or acceleration, which has six degrees of freedom (translational motions x, y, and z, and rotational motions ⁇ x , ⁇ y , and ⁇ z ).
  • the control module can control one or more of the onboard and sensor states.
  • the processing unit can communicate with a transceiver 1005 configured to transmit and/or receive data from one or more external devices (e.g., a terminal, a display device, or other remote controller).
  • the transceiver 1006 can use any suitable communication means, such as wired or wireless communication.
  • the transceiver 1005 can utilize one or more of a local area network (LAN), a wide area network (WAN), infrared, radio, WiFi, a point-to-point (P2P) network, a telecommunications network, cloud communication, etc.
  • the transceiver 1005 can transmit and/or receive one or more of data acquired by the sensors 1002, processing results generated by the processing unit, predetermined control data, user commands from a terminal or a remote controller, etc.
  • the sensors 1002 in this embodiment may include inertial sensors (accelerometers, gyro sensors), GPS sensors, proximity sensors (e.g., lidar), or vision/image sensors (e.g., cameras).
  • inertial sensors accelerelerometers, gyro sensors
  • GPS sensors GPS sensors
  • proximity sensors e.g., lidar
  • vision/image sensors e.g., cameras
  • the plane of rotation of the propeller 110 equipped on the flying object 100 is a horizontal rotor that is approximately horizontal when hovering, allowing the flying object 100 to ascend by rotating the propeller.
  • the propeller is tilted forward in the direction of travel, and the forward-inclined plane of rotation of the propeller 110 generates upward lift and thrust in the direction of travel, thereby propelling the flying object 100.
  • the lift generated by the rotor section 11 allows the flying object 100 to rise up.
  • the flying body 100 may have a main body 50 that can house a processing unit and a battery 1000 to be mounted on the flying section, which includes a motor 111, a propeller 110, a frame 120, etc., and generates lift and thrust.
  • the main body 50 optimizes the shape of the flying body 100 in its cruising attitude, which is expected to be maintained for a long time while the flying body 100 is moving, and improves flight speed, thereby efficiently shortening flight time.
  • the main body 50 desirably has an outer skin that is strong enough to withstand cruising and takeoff and landing.
  • plastic or FRP, etc. are suitable materials for the outer skin because they are rigid and waterproof. These materials may be the same as the frame 120 (including the arms) included in the flying section, or they may be different materials.
  • the motor mount (not shown), frame 120, and main body 50 of the flying section may be constructed by connecting the individual parts, or may be molded as one piece using a monocoque structure or one-piece molding.
  • the motor mount and frame 120 may be molded as one piece, or the motor mount, frame 120, and main body 50 may all be molded as one piece.
  • the shape of the flying object 100 may be directional.
  • a directional shape may be, for example, a shape that improves flight efficiency when the nose of the flying object faces the wind directly, such as a streamlined body portion or a roughly wing-shaped body portion that creates little drag when the flying object 100 is cruising in a windless environment.
  • the flying object 100 may be equipped with a mounting section 20 capable of holding or placing cargo or the like (hereinafter collectively referred to as the payload 10) to be transported to a destination.
  • the mounting section 20 may be fixedly connected to the flying section 140, or, as shown in Figures 1 and 2, may be connected so as to be capable of independent displacement via a connection section 22 such as a pivot axis or a gimbal having one or more degrees of freedom. This allows the connection to be made so that the payload 10 can be maintained in a predetermined attitude (e.g. horizontal) regardless of the attitude of the flying object 100.
  • connection part 22 may be provided between the flight part 140 and the mount part 20, or a connection part 22 may be provided between the mount part 20 and the payload 10.
  • the connection part 22 may be provided at any position between the flight part 140 and the payload 10.
  • the position of the connection part 22 is not particularly limited.
  • the position and direction of the rotation axis used to displace the mounting unit 20 or the payload 10 are determined, for example, by the attitude of the flying body 100 during flight. If the flying body has a main propulsion direction in the fore-and-aft direction, the flying unit will tilt in the fore-and-aft direction, so by providing at least one axis that can rotate in the pitch direction, it is possible to cancel the tilt of the flying unit during flight and maintain the attitude of the payload. Furthermore, to accommodate tilt in other axial directions (roll, yaw), two or more rotation axes may be provided.
  • the displacement of the mounting unit 20 or the mounted object 10 may be performed by passive control, in which the attitude is maintained by the weight of the object to be maintained, or by active control, in which the attitude is controlled using a motor or servo.
  • passive control in which the attitude is maintained by the weight of the object to be maintained
  • active control in which the attitude is controlled using a motor or servo.
  • the mounting section 20 is preferably constructed from a material that is strong enough to withstand flight and takeoff and landing while holding the payload 10.
  • resin or FRP is suitable as a constituent material for the mounting section 20 because it is rigid and lightweight.
  • a metal is used as the material for the mounting section 20, it is preferable to use a material with a light specific gravity, such as aluminum, magnesium, or an alloy containing these. This makes it possible to prevent weight increase while improving strength. Note that these materials may be the same as the frame 120 included in the flight section 140, or they may be different materials.
  • the motor mount (not shown) and frame 120 provided in the flying section 140 may be constructed by connecting the respective parts, or may be molded as a single unit, such as a monocoque structure.
  • the motor mount and frame 120 may be molded as a single unit.
  • the aircraft 100 carrying the payload 10 lands or hovers, and then separates the payload 10.
  • the landing legs 130 provided on the aircraft 100 are designed to prevent the payload 10 from being subjected to impact by directly touching the landing surface when the aircraft lands.
  • the landing legs 130 are configured to be longer in the downward direction (-Z direction) than the payload 10, at least when viewed from the side when the aircraft lands on a flat surface.
  • the landing legs 130 may further include a shock absorbing device 131 such as a damper.
  • the air resistance generated by an object moving through a gas is related to the projected area and the position of the separation point.
  • the flying object 100 of the present disclosure tilts forward in the direction of travel.
  • the frontal projected area of the flying object as seen from the direction of travel increases compared to when it is hovering.
  • An increase in the frontal area leads to increased air resistance when the aircraft moves forward, which reduces the aircraft's fuel efficiency (energy efficiency) and can be one of the causes of a decrease in flight speed.
  • the movable parts 40 of the aircraft disclosed herein are displaced from their initial position by rotating, pivoting, expanding and contracting, thereby reducing the increase in the projected area of the aircraft when it is tilted forward (nose down) in a specified direction (e.g., forward of the aircraft).
  • the movable part 40 is provided so as to be displaceable relative to the main body 50.
  • the movable part 40 may be connected so as to be rotatable in the pitch direction.
  • the movable part 40 may also be connected so as to be displaceable by a deformation mechanism that slides, bends, or expands and contracts an arm.
  • the movable part 40 may be provided at the rear end of the main body 50 as shown in FIG. 1, etc., or may be provided rearward of the center of the main body 50 in the front-to-rear direction.
  • the amount of displacement of the movable part 40 may be one step, or it may be possible to displace it in multiple steps or continuously. It is preferable that the movable part 40 has a mechanism that can maintain the displaced state.
  • the displacement control of the movable parts 40 may be made to correspond to, for example, a predetermined flight mode in a linked manner. For example, if flight modes are divided into three types, a takeoff mode, a cruising mode, and a landing mode, the displacement can be controlled to a specific state only in the cruising mode, thereby making it possible to perform a displacement operation appropriate to the operation of the flying object.
  • the flying body 100 may also assume a forward-leaning attitude in order to adjust its attitude.
  • displacing the movable parts 40 when moving forward a short distance or at a low speed may consume more energy for forward movement or unintentionally increase the frontal projection area of the flying body 100.
  • appropriate displacement can be performed depending not only on the attitude state of the flying body 100 but also on flight conditions such as the outbound and return journeys.
  • flight efficiency can be improved by controlling the movable parts 40 to be appropriately displaced depending on whether the flight is on the outbound journey or whether the payload is connected or not.
  • the displacement of the movable parts 40 may also be automatically controlled to an appropriate amount of displacement calculated from the attitude (tilt angle) of the flying object obtained by a sensor or the like and the surrounding environment (wind speed, wind direction, etc.). For example, when the forward tilt angle of the flying object 100 reaches or exceeds a first threshold value (e.g., 15 degrees), the movable parts 40 are displaced to a predetermined state, and then when the forward tilt angle reaches or falls below a second threshold value (e.g., 10 degrees), the movable parts 40 can be controlled to return to their initial state.
  • a first threshold value e.g. 15 degrees
  • a second threshold value e.g. 10 degrees
  • the mechanism used to displace the movable part 40 may be any mechanism capable of performing the necessary displacement, such as rotation or sliding, and it is preferable to employ a suitable known method.
  • the part that serves as the rotation axis may use a hinge metal fitting or the like, or known technology used for the rotating parts of the wings of aircraft and radio-controlled airplanes.
  • the force for rotation may be a servo or actuator (motor, cylinder), or gravity may be used so that the movable part tilts backward under its own weight.
  • the main body 50 illustrated in Figs. 10 and 12 includes a movable part 40 that rotates under its own weight.
  • the movable part 40 is rotatably connected by a hinge-like rotating member 41.
  • the movable part 40 is supported by a latch-like locking member 42 (e.g., a striker, slide latch, flip latch, etc.) so that it does not rotate downward under its own weight.
  • a latch-like locking member 42 e.g., a striker, slide latch, flip latch, etc.
  • a holding member 43 may be provided between the locking members 42a and 42b to stop the rotation of the movable part 40 at a predetermined angle.
  • the mechanism used to displace the movable part 40 may be provided on the outside of the main body 50 (e.g., on the outside of the cowl) as shown in FIG. 10 and FIG. 21 described later, or on the inside of the main body 50 (e.g., on the inside of the cowl) as shown in FIG. 22 and FIG. 25 described later. If provided on the outside of the main body 50, it does not put a strain on the internal volume of the main body 50 and makes maintenance easier. Furthermore, if provided on the inside of the main body 50, improvements in aerodynamic characteristics and aesthetics can be expected.
  • the movable parts 40 it is desirable for the movable parts 40 to be smoothly connected to the main body 50 with few steps or unevenness at the joints. For example, as illustrated in Figures 1 and 10, if the movable parts 40 are designed to have a shape that appears to be integrated with the main body 50, the airflow around the flying object 100 flying with the movable parts 40 in the initial position is less likely to be disturbed.
  • the displacement control of the movable parts 40 can be performed not only automatically, but also manually or semi-automatically by a person directly or indirectly monitoring the status of the aircraft using a remote control or ground control stations (GCS).
  • GCS remote control or ground control stations
  • the control of the movable parts 40 can be set in the same way as the route and operation of the aircraft 100 that are set in advance or during flight.
  • information about the aircraft, such as the inclination angle and forward speed of the aircraft can be collected by sensors, etc., and adjustments can be made automatically to achieve an appropriate amount of displacement.
  • the plane of rotation of the rotor 210 of the flying object 200 according to the embodiment of the present disclosure is tilted forward in the direction of travel during cruising.
  • the height H2 of the main body in the hovering attitude is smaller than the height H1 when comparing the height H1 of the main body in the cruising attitude.
  • An flying object with such a body 250 shape can improve fuel efficiency because the frontal projected area is reduced during cruising.
  • the lift generated by the main body 250 may also decrease.
  • shapes that are easy to generate lift for example, shapes with flat bottoms, wing shapes, plate shapes, etc.
  • the change in the amount of lift generated when the angle of attack is positive and when it is zero or negative is likely to be large.
  • the force that lifts the flying object upward (floats it) is large.
  • the movable part 240 of the present disclosure illustrated in FIG. 17 can rotate or extend downward when the flying object 200 is cruising.
  • the movement of the movable part 240 can give the flying object a shape that is easy to generate lift, even in an aircraft in which the angle of attack of the main body 250 is more negative than when hovering. This can improve fuel efficiency during cruising.
  • the main body 250 illustrated in Figures 14 and 15 has a movable part 240 at the rear of the main body that rotates due to the operation of a servo 245.
  • Enlarged views of the rotation mechanism 300 of the flying object 200 shown in Figure 18 are shown in Figures 19 and 20.
  • a servo horn 246 of the servo 245 provided on the main body 250 and the movable part 240 are connected by a linkage rod 247 or the like.
  • the movable part 40 is displaced due to the rotation of the servo horn 46.
  • ⁇ Modification 1> 22 to 24 are rotatably connected to the upper rear part of the main body 450 (other configurations are omitted).
  • the movable part 440 is attached to the outside of the main body 450 and is movable, so that it is possible to increase the lift generated from the main body 450 during cruising without affecting the internal volume of the main body 450.
  • the height H2 is greater than the height H1 when comparing the height H1 of the main body in the hovering attitude with the height H2 of the main body in the cruising attitude. Therefore, the frontal projection area is greater when cruising than when hovering.
  • the shape of the main body 550, 650 viewed from the width direction is a teardrop-shaped or wing-shaped shape with low drag, the upward lift generated by the main body 550, 650 in the cruising attitude is small, or a downward (-Z direction) force is more likely to be generated.
  • the lift generated by the main body 550 can be increased by displacing the movable parts 540. This makes it possible to prevent the deterioration of fuel efficiency caused by an increase in the frontal projection area.
  • the main body 550 illustrated in FIG. 25-FIG. 27 increases lift by rotating the rear end of the main body 550 downward.
  • the main body 650 illustrated in Figures 28 and 29 has movable parts 640 at two locations: the leading edge of the main body and the upper rear part.
  • the two movable parts 640a, 640b are both intended to increase the lift generated by the main body 650 during cruising.
  • each of the movable parts 640 may be operated simultaneously, or only some of them may be operated. There is no particular limit to the number of movable parts 640.
  • the movable part 640b attached to the leading edge of the main body 650 moves forward of the flying object. By directing a portion of the airflow passing under the main body 650 to the upper surface to delay separation, the lift generated by the main body 650 is increased.
  • the movable part 640b may be attached to the leading end of the main body 650, or may be attached forward of the center of the main body 650 in the fore-aft direction.
  • the configuration of the aircraft in each embodiment can be implemented by combining multiple aircraft. In other words, it is desirable to consider an appropriate configuration according to the cost of manufacturing the aircraft, or the environment or characteristics of the location where the aircraft will be operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

[Problem] To provide a flight vehicle capable of improved fuel efficiency while cruising. [Solution] A flight vehicle 100 according to the present technology comprises: a plurality of rotor blades 11; a main body 50 supporting the plurality of rotor blades 11; and a movable part 40 which is provided on the main body 50 and which can be displaced, in full or in part, away from the main body 50, wherein the attitude of the flight vehicle 100 while cruising is tilted farther forward with respect to the cruising direction than the attitude of the flight vehicle 100 while hovering through control of the rotation rate of the plurality of rotor blades 11, and the movable part 40 is controlled to be displaced from the main body 50 while cruising.

Description

飛行体および飛行体の制御方法Aircraft and method for controlling aircraft
 本開示は、飛行体および飛行体の制御方法に関する。 This disclosure relates to an aircraft and a method for controlling the aircraft.
 近年、ドローン(Drone)および無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)を用いた多様なサービスの開発が進められている。特に、一般的にマルチコプターと呼ばれる、固定ピッチプロペラを複数備え、機体を傾けることで移動を行う飛行体(以下、マルチコプターと総称する)は、離着陸に要する面積が少なくて済むため、狭所への輸送用途に好適である。 In recent years, the development of various services using flying objects such as drones and unmanned aerial vehicles (UAVs) (collectively referred to as "flying objects" below) has been progressing. In particular, flying objects generally known as multicopters (collectively referred to as multicopters below) that are equipped with multiple fixed-pitch propellers and move by tilting the aircraft, require less area for takeoff and landing, making them ideal for transporting goods in narrow spaces.
 しかし、マルチコプターは、液体燃料を利用するエンジン機と比較して、航続距離が短くなる場合がある。撮影等の限られた時間や範囲で飛行が行われるケースと異なり、輸送や調査の用途においては、長時間、長距離の飛行が必要とされている。このような状況を鑑みて、特許文献1においては、エンジンと、エンジンで駆動される発電機とを備え、ハイブリッド式とすることで、燃費の向上を可能とする飛行体が開示されている(例えば、特許文献1参照)。 However, multicopters may have a shorter flight range than engine aircraft that use liquid fuel. Unlike flights for limited times or areas, such as for photography, transportation and research applications require long-term, long-distance flights. In light of this situation, Patent Document 1 discloses an aircraft that is equipped with an engine and a generator driven by the engine, making it a hybrid type that allows for improved fuel efficiency (see Patent Document 1, for example).
特開2020-69975号公報JP 2020-69975 A
  特許文献1では、複数のプロペラを、エンジンで駆動される発電機によって発電される電気又はエンジンの動力を用いて回転させるハイブリッド式の飛行体とすることで、飛行効率を向上させることが可能な飛行体が開示されている。 Patent Document 1 discloses an aircraft that can improve flight efficiency by using a hybrid aircraft in which multiple propellers are rotated using electricity generated by a generator driven by an engine or engine power.
 しかし、輸送や調査の用途では、離着陸場所が狭所であったり、第三者の物件の上空が飛行ルートとなったりする場合がある。一般に、エンジンおよび発電機は重量物であるため、これらを搭載した飛行体にアクシデントが発生した際に、該重量物により及ぼされる影響は大きい。 However, for transportation and research purposes, takeoff and landing locations may be narrow, and flight routes may pass over third-party property. Engines and generators are generally heavy objects, and if an accident occurs to an aircraft carrying them, the impact of such heavy objects can be significant.
 また、マルチコプターは複数のプロペラの回転数によって姿勢制御を行うため、固定ピッチのプロペラをエンジン出力によって回転させる場合には、電力で駆動するモータによって回転させるときと比較して、反応速度が遅くなることがある。これにより、飛行体の姿勢が不安定となり得る。そのため輸送や調査の用途に用いる飛行体は、飛行体の重量増加を押さえ、飛行体の安定性を保ちながら飛行体の燃費(エネルギー効率)を向上させることが求められる。 In addition, because multicopters control their attitude by the rotation speed of multiple propellers, when fixed-pitch propellers are rotated by engine output, the reaction speed can be slower than when they are rotated by an electrically powered motor. This can cause the attitude of the aircraft to become unstable. For this reason, aircraft used for transportation and research purposes are required to minimize weight gain and improve fuel efficiency (energy efficiency) while maintaining the stability of the aircraft.
 かかる状況に鑑み、本発明による飛行体は、飛行体の巡航時に、燃費向上が可能な飛行体を提供することを一つの目的とする。 In light of this situation, one of the objectives of the aircraft of the present invention is to provide an aircraft that can improve fuel efficiency during cruising.
 そこで、本発明は、回転翼機の本体部に所定の可動パーツを設けることで、飛行体の前進の姿勢において、燃費向上が可能な飛行体等を提供する。 The present invention provides an aircraft that can improve fuel efficiency when the aircraft is in a forward-moving position by providing a specific movable part in the rotorcraft body.
 本開示によれば、飛行体であって、複数の回転翼と、前記複数の回転翼を支持する本体部と、前記本体部に設けられ、前記本体部に対してその全部または一部が離れるように変位することが可能である可動パーツとを備え、前記飛行体の巡航時の姿勢は、前記複数の回転翼の回転数の制御により前記飛行体のホバリング時の姿勢よりも、巡航方向に対して前傾しており、前記可動パーツは、前記巡航時において前記本体部から変位するよう制御される、飛行体が提供される。 According to the present disclosure, there is provided an aircraft comprising a plurality of rotors, a main body supporting the plurality of rotors, and movable parts attached to the main body that can be displaced so that all or part of the movable parts are separated from the main body, the attitude of the aircraft during cruising being tilted forward in the cruising direction by controlling the rotation speed of the plurality of rotors, more so than the attitude of the aircraft during hovering, and the movable parts are controlled to be displaced from the main body during cruising.
 また本開示によれば、飛行体の制御方法であって、前記飛行体は、複数の回転翼と、前記複数の回転翼を支持する本体部と、前記本体部に設けられ、前記本体部に対してその全部または一部が離れるように変位することが可能である可動パーツとを備え、前記複数の回転翼の回転数を制御して、前記本体部の巡航時における姿勢を前記本体部のホバリング時における姿勢よりも前傾にし、前記巡航時において、前記可動パーツを前記本体部から変位するよう制御する、飛行体の制御方法が提供される。 The present disclosure also provides a method for controlling an aircraft, the aircraft comprising a plurality of rotors, a main body supporting the plurality of rotors, and movable parts provided on the main body that can be displaced so that all or part of the movable parts are separated from the main body, the method controlling the rotation speed of the plurality of rotors to tilt the attitude of the main body during cruising further forward than the attitude of the main body during hovering, and controlling the movable parts to be displaced from the main body during cruising.
 その他本願が開示する課題およびその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems and solutions disclosed in this application will be made clear in the description of the embodiments of the invention and the drawings.
 本開示によれば、マルチコプター機の前進時の燃費向上を実現可能な飛行体を提供することができる。 This disclosure makes it possible to provide an aircraft that can improve fuel efficiency when a multicopter flies forward.
本開示による可動パーツを備える飛行体を側面から見た概念図である。FIG. 1 is a conceptual side view of an aircraft with movable parts according to the present disclosure. 図1に示す飛行体の巡航時の側面図である。FIG. 2 is a side view of the aircraft shown in FIG. 1 during cruising. 図2に示す飛行体の可動パーツが動作した時の側面図である。3 is a side view of the flying object shown in FIG. 2 when a movable part is in motion. 図3に示す飛行体の着陸状態の側面図である。FIG. 4 is a side view of the aircraft shown in FIG. 3 in a landing state. 図1に示す飛行体の平面図である。FIG. 2 is a plan view of the flying vehicle shown in FIG. 1 . 図3に示す飛行体の平面図である。FIG. 4 is a plan view of the flying vehicle shown in FIG. 3 . 図1に示す飛行体の機能ブロック図である。FIG. 2 is a functional block diagram of the aircraft shown in FIG. 1 . 従来の飛行体の側面図である。FIG. 1 is a side view of a conventional aircraft. 図8に示す飛行体の巡航時の側面図である。FIG. 9 is a side view of the aircraft shown in FIG. 8 during cruising. 本開示による飛行体の本体部の例を拡大した側面図である。FIG. 2 is an enlarged side view of an example of a main body of an air vehicle according to the present disclosure. 図10に示す本体部の可動パーツが動作した時の側面図である。11 is a side view of the main body shown in FIG. 10 when a movable part is in motion. 図10に示す本体部の平面図である。FIG. 11 is a plan view of the main body shown in FIG. 10 . 図11に示す本体部の平面図である。FIG. 12 is a plan view of the main body shown in FIG. 11 . 本開示による飛行体の本体部の実施の一例の側面図である。FIG. 2 is a side view of an example of an embodiment of a main body of an aircraft according to the present disclosure. 図14に示す飛行体の平面図である。FIG. 15 is a plan view of the flying vehicle shown in FIG. 14 . 図14に示す飛行体の巡航時の側面図である。FIG. 15 is a side view of the aircraft shown in FIG. 14 during cruising. 図16に示す飛行体の可動パーツが動作した時の側面図である。17 is a side view of the flying object shown in FIG. 16 when the movable parts are in motion. 本開示による飛行体の本体部の実施の一例の側面図である。FIG. 2 is a side view of an example of an embodiment of a main body of an aircraft according to the present disclosure. 図18に示す本体部の一部拡大図である。FIG. 19 is a partially enlarged view of the main body shown in FIG. 18 . 図19に示す可動パーツが動作した時の図である。FIG. 20 is a diagram showing the movable part shown in FIG. 19 in operation. 図18に示す本体部の平面図である。FIG. 19 is a plan view of the main body shown in FIG. 18 . 本開示による飛行体の本体部の例を示した側面図である。FIG. 2 is a side view of an example of a main body of an aircraft according to the present disclosure. 図22に示す本体部の平面図である。FIG. 23 is a plan view of the main body shown in FIG. 22. 図22に示す本体部の巡航時の側面図である。FIG. 23 is a side view of the main body shown in FIG. 22 during cruising. 本開示による飛行体の本体部の例を示した側面図である。FIG. 2 is a side view of an example of a main body of an aircraft according to the present disclosure. 図25に示す本体部の巡航時の側面図である。FIG. 26 is a side view of the main body shown in FIG. 25 during cruising. 図26に示す本体部の平面図である。FIG. 27 is a plan view of the main body shown in FIG. 26 . 本開示による飛行体の本体部の例を示した側面図である。FIG. 2 is a side view of an example of a main body of an aircraft according to the present disclosure. 図28に示す本体部の巡航時の側面図である。FIG. 29 is a side view of the main body shown in FIG. 28 during cruising.
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態による飛行体は、以下のような構成を備える。
 (項目1)
 飛行体であって、
 複数の回転翼と、
 前記複数の回転翼を支持する本体部と、
 前記本体部に設けられ、前記本体部に対してその全部または一部が離れるように変位することが可能である可動パーツとを備え、
 前記飛行体の巡航時の姿勢は、前記複数の回転翼の回転数の制御により前記飛行体のホバリング時の姿勢よりも、巡航方向に対して前傾しており、
 前記可動パーツは、前記巡航時において前記本体部から変位するよう制御される、
 飛行体。
 (項目2)
 項目1に記載の飛行体であって、
 前記可動パーツは、前記本体部の水平方向に対する姿勢が所定の条件を満たしたときに変位するよう制御される、
 飛行体。
 (項目3)
 項目1または2に記載の飛行体であって、
 前記可動パーツの変位量は、前記飛行体の飛行モードに応じて制御される、
 飛行体。
 (項目4)
 項目3に記載の飛行体であって、
 前記飛行モードは、前記飛行体の飛行方向および/または前記飛行体の飛行速度に基づく条件により定まる飛行モードを含む、
 飛行体。
 (項目5)
 項目1~4のいずれか1項に記載の飛行体であって、
 前記可動パーツは、前記飛行体の前記巡航時に、前記本体部よりも後傾する方向に変位する、
 飛行体。
 (項目6)
 項目1~5のいずれか1項に記載の飛行体であって、
 前記可動パーツは、前記本体部の後端または前後方向における前記本体部の中央よりも後側に設けられる、
飛行体。
 (項目7)
 項目1~6のいずれか1項に記載の飛行体であって、
 前記可動パーツは、前記本体部の前端または前後方向における前記本体部の中央よりも前側に設けられる、
飛行体。
 (項目8)
 項目1~7のいずれか1項に記載の飛行体であって、
 前記可動パーツは、前記本体部の幅方向を軸として回動することにより変位する機構を有する、
飛行体。
 (項目9)
 項目1~8のいずれか1項に記載の飛行体であって、
 前記複数の回転翼の少なくとも一の回転面は水平である、
 飛行体。
 (項目10)
 飛行体の制御方法であって、
 前記飛行体は、
 複数の回転翼と、
 前記複数の回転翼を支持する本体部と、
 前記本体部に設けられ、前記本体部に対してその全部または一部が離れるように変位することが可能である可動パーツとを備え、
 前記複数の回転翼の回転数を制御して、前記本体部の巡航時における姿勢を前記本体部のホバリング時における姿勢よりも前傾にし、
 前記巡航時において、前記可動パーツを前記本体部から変位するよう制御する
、飛行体の制御方法。
The contents of the embodiments of the present invention will be described below. The flying object according to the embodiment of the present invention has the following configuration.
(Item 1)
An air vehicle,
A plurality of rotors;
A main body portion supporting the plurality of rotor blades;
a movable part provided on the main body portion and capable of being displaced so that all or a part of the movable part is separated from the main body portion;
a cruising attitude of the aircraft is tilted forward with respect to a cruising direction compared to a hovering attitude of the aircraft by controlling the rotation speed of the plurality of rotors,
The movable part is controlled to be displaced from the main body during the cruising.
Flying vehicle.
(Item 2)
Item 1, the flying object according to the present invention,
The movable part is controlled to be displaced when the attitude of the main body part with respect to the horizontal direction satisfies a predetermined condition.
Flying vehicle.
(Item 3)
3. The flying object according to claim 1 or 2,
The displacement amount of the movable part is controlled according to the flight mode of the aircraft.
Flying vehicle.
(Item 4)
Item 3. The flying object according to item 3,
The flight mode includes a flight mode determined by conditions based on the flight direction and/or flight speed of the aircraft,
Flying vehicle.
(Item 5)
The flying object according to any one of items 1 to 4,
The movable part is displaced in a direction tilting backward relative to the main body during the cruising of the aircraft.
Flying vehicle.
(Item 6)
6. The flying object according to any one of items 1 to 5,
The movable part is provided at the rear end of the main body or rearward of the center of the main body in the front-rear direction.
Flying vehicle.
(Item 7)
7. The flying object according to any one of items 1 to 6,
The movable part is provided at a front end of the main body part or forward of a center of the main body part in a front-rear direction.
Flying vehicle.
(Item 8)
The flying object according to any one of items 1 to 7,
The movable part has a mechanism that is displaced by rotating about an axis in the width direction of the main body.
Flying vehicle.
(Item 9)
The flying object according to any one of items 1 to 8,
a plane of rotation of at least one of the plurality of rotors is horizontal;
Flying vehicle.
(Item 10)
A method for controlling an aircraft, comprising:
The flying object is
A plurality of rotors;
A main body portion supporting the plurality of rotor blades;
a movable part provided on the main body portion and capable of being displaced so that all or a part of the movable part is separated from the main body portion;
By controlling the rotation speed of the plurality of rotors, the attitude of the main body unit during cruising is tilted forward more than the attitude of the main body unit during hovering;
A method for controlling an aircraft, the method controlling the movable parts to be displaced from the main body during the cruising.
<本発明による実施形態の詳細>
 以下、図1~図13を参照しながら、本開示の各実施形態による飛行体等について、図面を参照しながら説明する。
<Details of the embodiment of the present invention>
Hereinafter, with reference to the drawings, an aircraft according to each embodiment of the present disclosure will be described with reference to FIGS.
 <第1の実施の形態の詳細> <Details of the first embodiment>
 図1及び図2に例示されるように、本実施形態に係る飛行体100は、垂直離着陸及び水平移動が可能な回転翼機である。 As illustrated in Figures 1 and 2, the flying object 100 according to this embodiment is a rotorcraft capable of vertical takeoff and landing and horizontal movement.
 飛行体100は、離陸地点から離陸を行い、目的地まで飛行する。例えば、飛行体100が配送を行う場合には、目的地に到達した飛行体100が、ポート等に着陸するか、またはポート等の上空でホバリング行い、搭載した荷物を切り離すことで配送を完了する。荷物を切り離した飛行体100は、例えば、元の離陸地点や、他の配送地点など、他の目的地に向かうために飛行により移動を行う。 The aircraft 100 takes off from a take-off point and flies to its destination. For example, if the aircraft 100 is making a delivery, the aircraft 100 that has reached the destination will land at a port or the like, or hover above a port or the like, and complete the delivery by separating the cargo it was carrying. After separating the cargo, the aircraft 100 will continue flying to another destination, such as the original take-off point or another delivery point.
 図1~図5に例示されるように、本実施形態に係る飛行体100は、1又は複数の回転翼部11及び本体部50を備える。 As illustrated in Figures 1 to 5, the aircraft 100 according to this embodiment includes one or more rotors 11 and a main body 50.
 本実施形態に係る回転翼部11(111a、111b、111c、111d、111e、111f)は、プロペラ110及びモータ111により構成される。回転翼部11は、フレーム120に設けられ得る。例えば、回転翼部11は、フレーム120の前端、中間部または後端等に設けられる。フレーム120と回転翼部11とは、直接に接続してもよいし、モータマウントなどの中間部材を介して接続してもよい。 The rotor section 11 (111a, 111b, 111c, 111d, 111e, 111f) according to this embodiment is composed of a propeller 110 and a motor 111. The rotor section 11 can be provided on a frame 120. For example, the rotor section 11 is provided on the front end, middle part, or rear end of the frame 120. The frame 120 and the rotor section 11 may be connected directly or via an intermediate member such as a motor mount.
 飛行体100は、回転翼部11の動力のためのエネルギー源(例えば、二次電池、燃料電池または化石燃料等)を搭載していることが望ましい。例えば、後述するように、飛行体100は、本体部50にバッテリーを搭載してもよい。 It is desirable that the flying object 100 is equipped with an energy source (e.g., a secondary battery, a fuel cell, or a fossil fuel) for powering the rotor section 11. For example, as described below, the flying object 100 may be equipped with a battery in the main body section 50.
 なお、図示されている飛行体100は、本開示の構造の説明を容易にするため簡略化されて描かれており、例えば、制御部等の詳しい構成は図示していない。 Note that the illustrated flying object 100 is depicted in a simplified manner to facilitate explanation of the structure of this disclosure, and detailed configuration of, for example, the control unit, etc. is not shown.
 飛行体100は図の矢印Dの方向(-Y方向)を前進方向としている(詳しくは後述する)。 The forward direction of the flying object 100 is the direction of arrow D in the figure (-Y direction) (more details will be given later).
 なお、以下の説明において、以下の定義に従って用語を使い分けることがある。前後方向:+Y方向及び-Y方向、上下方向(または鉛直方向):+Z方向及び-Z方向、左右方向(または水平方向):+X方向及び-X方向、進行方向(前方):-Y方向、後退方向(後方):+Y方向、上昇方向(上方):+Z方向、下降方向(下方):-Z方向 In the following explanation, terms may be used according to the following definitions: forward/backward direction: +Y direction and -Y direction, up/down direction (or vertical direction): +Z direction and -Z direction, left/right direction (or horizontal direction): +X direction and -X direction, forward direction (forward): -Y direction, backward direction (rearward): +Y direction, upward direction (upward): +Z direction, downward direction (downward): -Z direction
 プロペラ110は、モータ111からの出力を受けて回転する。プロペラ110が回転することによって、飛行体100を飛行させるための推進力が発生する。なお、プロペラ110は、時計回り方向への回転、停止及び反時計回り方向への回転が可能である。 The propeller 110 rotates upon receiving output from the motor 111. The rotation of the propeller 110 generates a thrust force for flying the flying object 100. The propeller 110 can rotate clockwise, stop, and rotate counterclockwise.
 本開示の飛行体が備えるプロペラ110は、1以上の羽根を有している。任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。また、羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。なお、羽根の形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。羽根は対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。羽根はエアホイル、ウイング、または羽根が空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。羽根の幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、羽根の動的空気特性を最適化するために適宜選択可能である。 The propeller 110 of the aircraft of the present disclosure has one or more blades. There can be any number of blades (rotors) (e.g., 1, 2, 3, 4, or more blades). The blades can be flat, curved, kinked, tapered, or any combination thereof. The blade shape can be variable (e.g., expandable, collapsible, bent, etc.). The blades can be symmetric (having identical upper and lower surfaces) or asymmetric (having upper and lower surfaces with different shapes). The blades can be formed into airfoils, wings, or any geometry suitable for generating aerodynamic forces (e.g., lift, thrust) as the blade moves through the air. The blade geometry can be selected to optimize the blade's aerodynamic properties, such as increasing lift and thrust and reducing drag.
 また、本開示の飛行体が備えるプロペラは、固定ピッチ、可変ピッチ、また固定ピッチと可変ピッチの混合などが考えられるが、これに限らない。例えば、動力がエンジンの場合には、電気モータと比較してプロペラの回転制御速度が遅くなる場合があるため、可変ピッチプロペラを用いることが望ましい。 The propellers of the aircraft disclosed herein may be, but are not limited to, fixed pitch, variable pitch, or a combination of fixed pitch and variable pitch. For example, when the power source is an engine, the propeller rotation control speed may be slower than with an electric motor, so it is desirable to use a variable pitch propeller.
 モータ111は、プロペラ110の回転を生じさせるものであり、例えば、駆動ユニットは、電気モータ又はエンジン等を含むことが可能である。羽根は、モータによって駆動可能であり、モータの回転軸(例えば、モータの長軸)の周りに回転する。 The motor 111 generates the rotation of the propeller 110, and the drive unit can include, for example, an electric motor or an engine. The blades can be driven by the motor and rotate around the motor's rotation axis (e.g., the motor's long axis).
 羽根は、すべて同一方向に回転可能であるし、独立して回転することも可能である。例えば、羽根のいくつかは一方の方向に回転し、他の羽根は他方方向に回転してもよい。羽根は、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)および/または制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。 The blades can all rotate in the same direction, or they can rotate independently. For example, some blades can rotate in one direction and others in the other direction. The blades can all rotate at the same RPM, or they can each rotate at a different RPM. The RPM can be determined automatically or manually based on the dimensions of the moving object (e.g., size, weight) and/or control state (speed, direction of movement, etc.).
 飛行体100は、図示せぬプロポ等の入力やプログラムにより、風速と風向に応じて、フライトコントローラーを介して、各モータの回転数や、飛行角度を決定する。これにより、飛行体は上昇・下降したり、加速・減速したり、方向転換したりといった移動を行うことができる。 The flying object 100 determines the rotation speed of each motor and the flight angle via a flight controller according to wind speed and direction, using input from a remote control (not shown) or a program. This allows the flying object to move by ascending and descending, accelerating and decelerating, and changing direction.
 また、飛行体100は、事前または飛行中に設定されるルートやルールに準じた自律的な飛行や、プロポを用いた操縦による飛行を行うことができる。 Furthermore, the aircraft 100 can fly autonomously according to routes and rules set in advance or during flight, or can fly by maneuvering it using a remote control.
 上述した飛行体100は、図7に示される機能ブロックの一部または全部を有している。なお、図7の機能ブロックは最低限の参考構成の一例である。ライトコントローラ1001は、所謂処理ユニットである。処理ユニットは、プログラマブルプロセッサ(例えば、中央処理ユニット(CPU))などの1つ以上のプロセッサを有することができる。処理ユニットは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うために処理ユニットが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。センサ類1002から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。 The above-mentioned flying object 100 has some or all of the functional blocks shown in FIG. 7. The functional blocks in FIG. 7 are an example of a minimum reference configuration. The light controller 1001 is a so-called processing unit. The processing unit may have one or more processors, such as a programmable processor (e.g., a central processing unit (CPU)). The processing unit has a memory (not shown) and is accessible to the memory. The memory stores logic, code, and/or program instructions that the processing unit can execute to perform one or more steps. The memory may include, for example, a separable medium such as an SD card or a random access memory (RAM) or an external storage device. Data acquired from the sensors 1002 may be directly transmitted to and stored in the memory. For example, still image and video data captured by a camera or the like is recorded in an internal memory or an external memory.
 処理ユニットは、回転翼機の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する回転翼機の空間的配置、速度、および/または加速度を調整するために回転翼機の推進機構(モータ等)を制御する。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。 The processing unit includes a control module configured to control the state of the rotorcraft. For example, the control module controls the rotorcraft's propulsion mechanisms (e.g., motors) to regulate the rotorcraft's spatial configuration, speed, and/or acceleration, which has six degrees of freedom (translational motions x, y, and z, and rotational motions θ x , θ y , and θ z ). The control module can control one or more of the onboard and sensor states.
 処理ユニットは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部1005と通信可能である。送受信機1006は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。例えば、送受信部1005は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。送受信部1005は、センサ類1002で取得したデータ、処理ユニットが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。 The processing unit can communicate with a transceiver 1005 configured to transmit and/or receive data from one or more external devices (e.g., a terminal, a display device, or other remote controller). The transceiver 1006 can use any suitable communication means, such as wired or wireless communication. For example, the transceiver 1005 can utilize one or more of a local area network (LAN), a wide area network (WAN), infrared, radio, WiFi, a point-to-point (P2P) network, a telecommunications network, cloud communication, etc. The transceiver 1005 can transmit and/or receive one or more of data acquired by the sensors 1002, processing results generated by the processing unit, predetermined control data, user commands from a terminal or a remote controller, etc.
 本実施の形態によるセンサ類1002は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。 The sensors 1002 in this embodiment may include inertial sensors (accelerometers, gyro sensors), GPS sensors, proximity sensors (e.g., lidar), or vision/image sensors (e.g., cameras).
 本開示の実施の形態に係る飛行体100が備えるプロペラ110の回転面は、ホバリング時に略水平となる水平回転翼であるため、プロペラの回転により上昇可能である。進行時には進行方向に向かい前傾した角度となるため、前傾したプロペラ110の回転面により、上方への揚力と、進行方向への推力とが生み出され、これにより飛行体100が進行する。 The plane of rotation of the propeller 110 equipped on the flying object 100 according to the embodiment of the present disclosure is a horizontal rotor that is approximately horizontal when hovering, allowing the flying object 100 to ascend by rotating the propeller. When moving forward, the propeller is tilted forward in the direction of travel, and the forward-inclined plane of rotation of the propeller 110 generates upward lift and thrust in the direction of travel, thereby propelling the flying object 100.
 飛行体100の垂直方向の離着陸においては、回転翼部11が発生させる揚力により、飛行体100を浮き上がらせることができる。 When the flying object 100 takes off and lands vertically, the lift generated by the rotor section 11 allows the flying object 100 to rise up.
 飛行体100は、モータ111、プロペラ110、フレーム120等を備え、揚力及び推力を発生させる飛行部において、飛行部に搭載する処理ユニットやバッテリー1000等を内包可能な本体部50を備えていてもよい。本体部50は、飛行体100の移動中、長時間維持されることが期待される巡航時の飛行体100の姿勢における形状を最適化し、飛行速度を向上させることで、効率的に飛行時間を短縮することが可能である。 The flying body 100 may have a main body 50 that can house a processing unit and a battery 1000 to be mounted on the flying section, which includes a motor 111, a propeller 110, a frame 120, etc., and generates lift and thrust. The main body 50 optimizes the shape of the flying body 100 in its cruising attitude, which is expected to be maintained for a long time while the flying body 100 is moving, and improves flight speed, thereby efficiently shortening flight time.
 本体部50は、巡航および離着陸に耐え得る強度を持つ外皮を備えていることが望ましい。例えば、プラスチックまたはFRP等は、剛性および防水性を有するため、外皮の素材として好適である。これらの素材は、飛行部に含まれるフレーム120(アーム含む)と同じ素材であってもよいし、異なる素材であってもよい。 The main body 50 desirably has an outer skin that is strong enough to withstand cruising and takeoff and landing. For example, plastic or FRP, etc., are suitable materials for the outer skin because they are rigid and waterproof. These materials may be the same as the frame 120 (including the arms) included in the flying section, or they may be different materials.
 また、飛行部が備えるモータマウント(不図示)、フレーム120、及び本体部50は、夫々の部品を接続して構成してもよいし、モノコック構造や一体成形を利用して、一体となるように成形してもよい。例えば、モータマウントとフレーム120とが一体に成形されてもよいし、モータマウント、フレーム120および本体部50すべてが一体に成形されてもよい。部品を一体とすることで、各部品のつなぎ目を滑らかにすることが可能となる。よって、ブレンデッドウィングボディまたはリフティングボディと呼ばれるような飛行体の形状による抗力の軽減や燃費の向上効果が期待できる。 Furthermore, the motor mount (not shown), frame 120, and main body 50 of the flying section may be constructed by connecting the individual parts, or may be molded as one piece using a monocoque structure or one-piece molding. For example, the motor mount and frame 120 may be molded as one piece, or the motor mount, frame 120, and main body 50 may all be molded as one piece. By integrating the parts, it is possible to make the joints between the parts smooth. Therefore, it is expected that the shape of the flying body, known as a blended wing body or lifting body, will reduce drag and improve fuel efficiency.
 また、飛行体100の形状は指向性を持っていてもよい。指向性のある形状とは、例えば、飛行体100が無風下における巡航時の姿勢において抗力の少ない流線形の本体部または略翼型の本体部等、飛行体の機首が風に正対した際に飛行効率を向上させる形状であり得る。 Furthermore, the shape of the flying object 100 may be directional. A directional shape may be, for example, a shape that improves flight efficiency when the nose of the flying object faces the wind directly, such as a streamlined body portion or a roughly wing-shaped body portion that creates little drag when the flying object 100 is cruising in a windless environment.
 飛行体100は、目的地へと運搬する荷物など(以下、搭載物10と総称する)を保持又は載置可能な搭載部20を備えていてもよい。搭載部20は、飛行部140と固定して接続される、もしくは、図1および図2に示されるように、回動軸または1以上の自由度を有するジンバルといった接続部22を介して独立変位可能に接続することもできる。これにより、飛行体100の姿勢にかかわらず、搭載物10を所定の姿勢(例えば水平)に保つことが可能となるように接続される。 The flying object 100 may be equipped with a mounting section 20 capable of holding or placing cargo or the like (hereinafter collectively referred to as the payload 10) to be transported to a destination. The mounting section 20 may be fixedly connected to the flying section 140, or, as shown in Figures 1 and 2, may be connected so as to be capable of independent displacement via a connection section 22 such as a pivot axis or a gimbal having one or more degrees of freedom. This allows the connection to be made so that the payload 10 can be maintained in a predetermined attitude (e.g. horizontal) regardless of the attitude of the flying object 100.
 また、搭載物10を所定の姿勢に保つ方法として、飛行部140と搭載部20との間に接続部22が設けられてもよいし、搭載部20と搭載物10との間に接続部22が設けられてもよい。すなわち、飛行部140と搭載物10が接続される間のいずれかの位置に接続部22を設けることもできる。接続部22の位置は特に限定されない。 In addition, as a method of keeping the payload 10 in a predetermined attitude, a connection part 22 may be provided between the flight part 140 and the mount part 20, or a connection part 22 may be provided between the mount part 20 and the payload 10. In other words, the connection part 22 may be provided at any position between the flight part 140 and the payload 10. The position of the connection part 22 is not particularly limited.
 搭載部20もしくは搭載物10の変位に使用される回動軸の位置や方向は、例えば、飛行体100の飛行時の姿勢により決定される。主要な推進方向が前後方向である飛行体であれば、飛行部は前後方向に傾くため、少なくともピッチ方向に回動可能な1軸を備えることで飛行時の飛行部の傾きをキャンセルし、搭載物の姿勢を保つことが可能となる。さらに他の軸方向(ロール、ヨー)への傾きに対応させる場合には、2軸以上の回動軸を設けてもよい。 The position and direction of the rotation axis used to displace the mounting unit 20 or the payload 10 are determined, for example, by the attitude of the flying body 100 during flight. If the flying body has a main propulsion direction in the fore-and-aft direction, the flying unit will tilt in the fore-and-aft direction, so by providing at least one axis that can rotate in the pitch direction, it is possible to cancel the tilt of the flying unit during flight and maintain the attitude of the payload. Furthermore, to accommodate tilt in other axial directions (roll, yaw), two or more rotation axes may be provided.
 搭載部20もしくは搭載物10の変位は、夫々姿勢を保つべき物の自重により姿勢を保つパッシブ制御により行われてもよいし、モータまたはサーボ等を利用して姿勢を制御するアクティブ制御により行われてもよい。より精密に姿勢を制御する場合は、アクティブ制御を行うことが望ましいが、機構の追加による重量増加等につながるため、制御方法については目的に応じて適切に決定され得る。 The displacement of the mounting unit 20 or the mounted object 10 may be performed by passive control, in which the attitude is maintained by the weight of the object to be maintained, or by active control, in which the attitude is controlled using a motor or servo. When controlling the attitude more precisely, it is desirable to use active control, but since adding mechanisms leads to an increase in weight, the control method can be appropriately determined according to the purpose.
 搭載部20は、搭載物10を保持したまま、飛行や離着陸に耐え得る強度を持つ素材を含んで構成されていることが好ましい。例えば、樹脂またはFRP等は剛性があり、軽量のため、搭載部20の構成素材として好適である。また、搭載部20の素材として金属を用いる場合には、アルミニウム、マグネシウムまたはこれらを含む合金等、比重の軽いものを用いることが好ましい。これにより、強度を向上させながらも重量増加を防ぐことができる。なお、これらの素材は、飛行部140に含まれるフレーム120と同じ素材であってもよいし、異なる素材であってもよい。 The mounting section 20 is preferably constructed from a material that is strong enough to withstand flight and takeoff and landing while holding the payload 10. For example, resin or FRP is suitable as a constituent material for the mounting section 20 because it is rigid and lightweight. In addition, if a metal is used as the material for the mounting section 20, it is preferable to use a material with a light specific gravity, such as aluminum, magnesium, or an alloy containing these. This makes it possible to prevent weight increase while improving strength. Note that these materials may be the same as the frame 120 included in the flight section 140, or they may be different materials.
 また、飛行部140が備えるモータマウント(不図示)およびフレーム120は、夫々の部品を接続して構成してもよいし、モノコック構造のように、一体に成形されるものであってもよい。例えば、モータマウントとフレーム120は一体に成形されてもよい。部品を一体とすることで、各部品のつなぎ目を滑らかにすることが可能となるため、抗力の軽減や燃費が向上しうる。 Furthermore, the motor mount (not shown) and frame 120 provided in the flying section 140 may be constructed by connecting the respective parts, or may be molded as a single unit, such as a monocoque structure. For example, the motor mount and frame 120 may be molded as a single unit. By integrating the parts, it is possible to make the joints between the parts smooth, which can reduce drag and improve fuel efficiency.
 搭載物10を搭載した飛行体100は、目的地点上空に到達後、着陸又はホバリングを行い、搭載物10の切り離しを行う。着陸を行う飛行体100において、飛行体100が備える着陸脚130は、搭載物10が、飛行体の着陸時に着陸面へ直接触れることによって衝撃を受けないようにすることが好ましい。この場合、例えば、着陸脚130は、少なくとも平面への着陸状態の側面視において、搭載物10より下方向(-Z方向)に長くなるよう構成されていることが好ましい。着陸脚130は、さらにダンパ等の衝撃吸収装置131を備えていてもよい。 After arriving above the destination point, the aircraft 100 carrying the payload 10 lands or hovers, and then separates the payload 10. In an aircraft 100 that is landing, it is preferable that the landing legs 130 provided on the aircraft 100 are designed to prevent the payload 10 from being subjected to impact by directly touching the landing surface when the aircraft lands. In this case, for example, it is preferable that the landing legs 130 are configured to be longer in the downward direction (-Z direction) than the payload 10, at least when viewed from the side when the aircraft lands on a flat surface. The landing legs 130 may further include a shock absorbing device 131 such as a damper.
 気体の中を進む物体に発生する空気抵抗には、投影面積と剥離点の位置がかかわることが知られている。本開示の飛行体100は、水平方向の移動を行う際に、進行方向へと前傾する。このとき、飛行体を進行方向から見た前面投影面積は、ホバリングしている時と比較して、増加する。 It is known that the air resistance generated by an object moving through a gas is related to the projected area and the position of the separation point. When moving horizontally, the flying object 100 of the present disclosure tilts forward in the direction of travel. At this time, the frontal projected area of the flying object as seen from the direction of travel increases compared to when it is hovering.
 前面投影面積の増加は、飛行体が前進する際の空気抵抗の増加につながるため、飛行体の燃費(エネルギー効率)が低下し、飛行速度の低下の原因の一つとなる場合がある。 An increase in the frontal area leads to increased air resistance when the aircraft moves forward, which reduces the aircraft's fuel efficiency (energy efficiency) and can be one of the causes of a decrease in flight speed.
 図1と図2の飛行体を比較すると、本体部の高さ方向の高さHについて、ホバリング時の高さH1よりも、前進姿勢時の高さH2が長いことがわかる。図8及び図9に示される既存の飛行体は、この高さHの増加を抑える手段を備えないため、前進時に前面投影面積が大きく増加し、燃費が向上しにくい場合がある。 Comparing the flying bodies in Figures 1 and 2, it can be seen that the height H of the main body in the vertical direction is longer when in a forward-moving attitude (H2) than when in a hovering position (H1). The existing flying bodies shown in Figures 8 and 9 do not have a means for suppressing the increase in height H, so the frontal projection area increases significantly when flying forward, which can make it difficult to improve fuel efficiency.
 図1-図6に示される飛行体においては、高さH2を低減し、高さH1と高さH2との差を少なくすることで、前傾時における前面投影面積の増加量の低減を実現する。 In the flying vehicle shown in Figures 1 to 6, the increase in the frontal projection area when tilted forward is reduced by reducing height H2 and narrowing the difference between heights H1 and H2.
 本開示の飛行体が備える可動パーツ40は、初期位置から、回転、回動、伸縮等の可動による変位を行うことにより、所定の方向(例えば、飛行体の前方)へ前傾した(機首を下げた)飛行体の、投影面積の増加を低減する。 The movable parts 40 of the aircraft disclosed herein are displaced from their initial position by rotating, pivoting, expanding and contracting, thereby reducing the increase in the projected area of the aircraft when it is tilted forward (nose down) in a specified direction (e.g., forward of the aircraft).
 可動パーツ40は、図1~図6に例示される飛行体のように、本体部後方に設けられることで、飛行体前傾時に、より効果を得ることができる。 By providing the movable part 40 at the rear of the main body, as in the flying object illustrated in Figures 1 to 6, greater effectiveness can be achieved when the flying object is tilted forward.
 可動パーツ40は、本体部50に対して、変位可能に設けられる。例えば、図3に示されるように、可動パーツ40は、ピッチ方向に回動可能に接続されてもよい。また、可動パーツ40は、スライド、折り曲げまたはアームの伸縮による変形機構による変位が可能に接続されてもよい。可動パーツ40は、図1等に示すように、本体部50の後端に設けられてもよいし、本体部50の前後方向における中央よりも後側に設けられてもよい。 The movable part 40 is provided so as to be displaceable relative to the main body 50. For example, as shown in FIG. 3, the movable part 40 may be connected so as to be rotatable in the pitch direction. The movable part 40 may also be connected so as to be displaceable by a deformation mechanism that slides, bends, or expands and contracts an arm. The movable part 40 may be provided at the rear end of the main body 50 as shown in FIG. 1, etc., or may be provided rearward of the center of the main body 50 in the front-to-rear direction.
 可動パーツ40の変位量は、1段階でもよいし、複数段階や無段階に変位可能としてもよい。可動パーツ40は、変位した状態を保つことができるような機構であることが好ましい。 The amount of displacement of the movable part 40 may be one step, or it may be possible to displace it in multiple steps or continuously. It is preferable that the movable part 40 has a mechanism that can maintain the displaced state.
 可動パーツ40の変位制御は、例えば、所定の飛行モードに対応して連動するようにされてもよい。例えば、飛行モードが、離陸モード・巡航モード・着陸モードの3種類に分けられている場合に、巡航モード時のみ特定の状態に変位制御することで、飛行体の行う動作にあわせて適した変位動作を行うことができる。 The displacement control of the movable parts 40 may be made to correspond to, for example, a predetermined flight mode in a linked manner. For example, if flight modes are divided into three types, a takeoff mode, a cruising mode, and a landing mode, the displacement can be controlled to a specific state only in the cruising mode, thereby making it possible to perform a displacement operation appropriate to the operation of the flying object.
 また、飛行体100の離陸または着陸の前後にも、姿勢の調整のため、飛行体100が前傾姿勢となる場合も起こり得る。しかし、短距離の前進時や、低速の前進時に可動パーツ40を変位させることは、前進のためのエネルギーをより多く消費したり、意図せず飛行体100の前面投影面積を増加してしまう可能性がある。そのため、例えば、所定の条件(例えば前進の飛行時間または速度等)で前進することが予測できる「巡航モード」に切り替わったタイミングで可動パーツ40を変位させる制御を行うことが好ましい。これにより、飛行効率を向上させることができる。 Furthermore, before and after takeoff or landing of the flying body 100, the flying body 100 may also assume a forward-leaning attitude in order to adjust its attitude. However, displacing the movable parts 40 when moving forward a short distance or at a low speed may consume more energy for forward movement or unintentionally increase the frontal projection area of the flying body 100. For this reason, it is preferable to perform control to displace the movable parts 40 when, for example, switching to a "cruise mode" in which forward movement can be predicted under specified conditions (e.g., forward flight time or speed, etc.). This can improve flight efficiency.
 飛行モードに可動パーツ40の変位制御を連動させることで、飛行体100の姿勢状態だけでなく、往路と復路などの飛行状況によって適当な変位を行うことができる。例えば、本体部の内部に搭載物を搭載した飛行体100では、往路では搭載物10等のペイロードと物理的に干渉するために、可動パーツ40の変位量が制限されたり、変位が困難であったりする。しかし、復路ではペイロードが切り離されているため、可動パーツ40の変位可能量が増える場合がある。このような飛行体100においては、往復のいずれか、または搭載物の接続の有無に応じて可動パーツ40を好適に変位させるよう制御することで、飛行効率を向上させることができる。 By linking the displacement control of the movable parts 40 to the flight mode, appropriate displacement can be performed depending not only on the attitude state of the flying body 100 but also on flight conditions such as the outbound and return journeys. For example, in an flying body 100 with a payload mounted inside the main body, the amount of displacement of the movable parts 40 is limited or displacement is difficult due to physical interference with the payload such as the payload 10 on the outbound journey. However, on the return journey, the payload is detached, so the amount of possible displacement of the movable parts 40 may increase. In such a flying body 100, flight efficiency can be improved by controlling the movable parts 40 to be appropriately displaced depending on whether the flight is on the outbound journey or whether the payload is connected or not.
 また、可動パーツ40の変位は、センサ等で取得した飛行体の姿勢(傾斜角度)や周辺環境(風速、風向等)から算出される適切な変位量となるよう自動で制御されてもよい。例えば、飛行体100の前傾角度が第1の閾値(例えば、15度)に達するか、又は超えると、可動パーツ40が所定の状態へ変位し、その後、前傾角度が第2の閾値(例えば、10度)に達するか又は下回ると、可動パーツ40を初期状態に戻すというような制御を行うことが可能である。 The displacement of the movable parts 40 may also be automatically controlled to an appropriate amount of displacement calculated from the attitude (tilt angle) of the flying object obtained by a sensor or the like and the surrounding environment (wind speed, wind direction, etc.). For example, when the forward tilt angle of the flying object 100 reaches or exceeds a first threshold value (e.g., 15 degrees), the movable parts 40 are displaced to a predetermined state, and then when the forward tilt angle reaches or falls below a second threshold value (e.g., 10 degrees), the movable parts 40 can be controlled to return to their initial state.
 可動パーツ40がX軸を中心に回動して変位する場合には、回動方向は初期位置から下方(-Z方向)となり、可動パーツ40は後傾する。 When the movable part 40 rotates and displaces around the X-axis, the rotation direction becomes downward (-Z direction) from the initial position, and the movable part 40 tilts backward.
 可動パーツ40の変位に用いる機構は、回動やスライド等、必要な変位を行うことが可能な機構であればよく、好適な公知の方法を採用することが望ましい。例えば、回動軸となるパーツは、ヒンジ金具等を用いるほか、航空機やラジコン飛行機の動翼の回動部に用いられる公知の技術を用いてもよい。また、回動のための力は、サーボやアクチュエータ(モータ、シリンダ)等を用いてもよいし、可動パーツの自重で後傾するように重力を用いてもよい。 The mechanism used to displace the movable part 40 may be any mechanism capable of performing the necessary displacement, such as rotation or sliding, and it is preferable to employ a suitable known method. For example, the part that serves as the rotation axis may use a hinge metal fitting or the like, or known technology used for the rotating parts of the wings of aircraft and radio-controlled airplanes. The force for rotation may be a servo or actuator (motor, cylinder), or gravity may be used so that the movable part tilts backward under its own weight.
 例えば、図10及び図12に例示された本体部50は、自重によって回動する可動パーツ40を備えている。可動パーツ40は、ヒンジ状の回動部材41によって、回動可能に接続される。初期位置においては、ラッチ状のロック部材42(例えば、打掛錠、スライドラッチ、フリップラッチ等)により、可動パーツ40が自重で下方へと回動しないように支えられている。 For example, the main body 50 illustrated in Figs. 10 and 12 includes a movable part 40 that rotates under its own weight. The movable part 40 is rotatably connected by a hinge-like rotating member 41. In the initial position, the movable part 40 is supported by a latch-like locking member 42 (e.g., a striker, slide latch, flip latch, etc.) so that it does not rotate downward under its own weight.
 図11及び図13に示すように、ロック部材42aがZ軸を中心に回動すると、ロック部材42aによって支えられていたロック部材42bが解放されるため、可動パーツ40は自重によって下方(-Z方向)へと回動する。この場合、例えば、所定の角度で可動パーツ40の回動を止めるために、ロック部材42a、42bの間等に保持部材43が備えられていてもよい。 As shown in Figures 11 and 13, when the locking member 42a rotates around the Z axis, the locking member 42b supported by the locking member 42a is released, and the movable part 40 rotates downward (in the -Z direction) due to its own weight. In this case, for example, a holding member 43 may be provided between the locking members 42a and 42b to stop the rotation of the movable part 40 at a predetermined angle.
 可動パーツ40の変位に用いる機構は、図10や後述する図21に示すように、本体部50の外側(例えばカウルの外側)に設けてもよいし、後述する図22や図25に示すように本体部50の内側(例えばカウルの内側)に設けてもよい。本体部50の外側に設ける場合、本体部50の内部の容量を圧迫しないほか、メンテナンス等が簡便となる。また、本体部50の内側に設ける場合、空力特性や美観の向上等が期待できる。 The mechanism used to displace the movable part 40 may be provided on the outside of the main body 50 (e.g., on the outside of the cowl) as shown in FIG. 10 and FIG. 21 described later, or on the inside of the main body 50 (e.g., on the inside of the cowl) as shown in FIG. 22 and FIG. 25 described later. If provided on the outside of the main body 50, it does not put a strain on the internal volume of the main body 50 and makes maintenance easier. Furthermore, if provided on the inside of the main body 50, improvements in aerodynamic characteristics and aesthetics can be expected.
 可動パーツ40は、本体部50からスムーズにつながり、継ぎ目に段差や凹凸が少ない形状が望ましい。例えば、図1及び図10に例示されるように、可動パーツ40が、見かけ上、本体部50と一体となる形状に設計される場合、可動パーツ40が初期位置の状態で飛行している飛行体100の周囲の気流が乱れにくくなる。 It is desirable for the movable parts 40 to be smoothly connected to the main body 50 with few steps or unevenness at the joints. For example, as illustrated in Figures 1 and 10, if the movable parts 40 are designed to have a shape that appears to be integrated with the main body 50, the airflow around the flying object 100 flying with the movable parts 40 in the initial position is less likely to be disturbed.
 なお、可動パーツ40の変位制御は、自動だけではなく、人が飛行体の状況を直接または間接的に監視し、プロポや地上管制局(GCS:Ground Control Stations)等を用いて、手動または半自動により行ってもよい。また、自律的な飛行が可能な飛行体100においては、事前または飛行中に設定されるルートや飛行体100の動作と同様に、可動パーツ40の制御についても設定可能としてもよい。その他、飛行体の傾斜角度や、前進速度等、飛行体の情報をセンサ等によって収集し、好適な変位量となるよう自動で調整を行ってもよい。 The displacement control of the movable parts 40 can be performed not only automatically, but also manually or semi-automatically by a person directly or indirectly monitoring the status of the aircraft using a remote control or ground control stations (GCS). In addition, in an aircraft 100 capable of autonomous flight, the control of the movable parts 40 can be set in the same way as the route and operation of the aircraft 100 that are set in advance or during flight. In addition, information about the aircraft, such as the inclination angle and forward speed of the aircraft, can be collected by sensors, etc., and adjustments can be made automatically to achieve an appropriate amount of displacement.
 <第2の実施の形態の詳細>
 以下、図14~図21を参照しながら、本発明による可動パーツの第2の実施の形態の詳細において、飛行体100の第1の実施の形態と重複する構成要素は同様とすることができるため、再度の説明は省略する。
<Details of the second embodiment>
Below, with reference to Figures 14 to 21, in the details of the second embodiment of the movable parts according to the present invention, components that overlap with the first embodiment of the flying body 100 can be similar, so repeated explanations will be omitted.
 本開示の実施の形態に係る飛行体200が備える回転翼210の回転面は、巡航時に進行方向に向かい前傾した角度となる。図14-図16に例示される飛行体は、ホバリング姿勢の本体部高さH1と巡航姿勢の本体部高さH2を比較して、高さH1よりも高さH2が小さくなる。このような本体部250の形状の飛行体は、巡航時に前面投影面積が減少するため燃費が向上しうる。 The plane of rotation of the rotor 210 of the flying object 200 according to the embodiment of the present disclosure is tilted forward in the direction of travel during cruising. In the flying object exemplified in Figures 14-16, the height H2 of the main body in the hovering attitude is smaller than the height H1 when comparing the height H1 of the main body in the cruising attitude. An flying object with such a body 250 shape can improve fuel efficiency because the frontal projected area is reduced during cruising.
 しかし、本体部250の迎角がホバリング時よりも減少するために、本体部250から発生する揚力までもが減少することがある。特に、揚力を発生させやすい形状(例えば、底面が平らな形状や、翼型形状、板状など)においては、迎角がプラスの場合と、0またはマイナスの場合とで発生する揚力量の変化が大きくなりやすい。 However, because the angle of attack of the main body 250 is smaller than when hovering, the lift generated by the main body 250 may also decrease. In particular, in shapes that are easy to generate lift (for example, shapes with flat bottoms, wing shapes, plate shapes, etc.), the change in the amount of lift generated when the angle of attack is positive and when it is zero or negative is likely to be large.
 巡航時に本体部250が揚力を発生させる形状である場合、飛行体を上方へ持ち上げる(浮かせる)力が大きくなる。これにより、回転翼210が備えるモータ211は、本体部250が揚力を発生させない又はマイナスの揚力を発生させる場合と比較して、回転数を減らすことができる。モータの回転数が低下することで、飛行体200の燃費が向上したり、モータの負荷が低減されたりする。 When the main body 250 is shaped to generate lift during cruising, the force that lifts the flying object upward (floats it) is large. This allows the motor 211 equipped to the rotor 210 to reduce its rotation speed compared to when the main body 250 does not generate lift or generates negative lift. Reducing the motor rotation speed improves the fuel efficiency of the flying object 200 and reduces the load on the motor.
 図17に例示される本開示の可動パーツ240は、飛行体200の巡航時に下方へと回動または延伸することが可能である。可動パーツ240の動作により、本体部250の迎角がホバリング時よりもマイナスとなる飛行体においても、揚力を発生させやすい形状とすることができる。よって、巡航時の燃費が向上しうる。 The movable part 240 of the present disclosure illustrated in FIG. 17 can rotate or extend downward when the flying object 200 is cruising. The movement of the movable part 240 can give the flying object a shape that is easy to generate lift, even in an aircraft in which the angle of attack of the main body 250 is more negative than when hovering. This can improve fuel efficiency during cruising.
 図14及び図15に例示される本体部250は、本体部後方に、サーボ245の動作によって回動する可動パーツ240を備えている。図18に示す飛行体200の回動機構300の拡大図は図19及び図20において示される。本体部250に設けられたサーボ245が有するサーボホーン246と、可動パーツ240とが、リンケージロッド247等で接続される。サーボホーン46の回動によって可動パーツ40が変位する。 The main body 250 illustrated in Figures 14 and 15 has a movable part 240 at the rear of the main body that rotates due to the operation of a servo 245. Enlarged views of the rotation mechanism 300 of the flying object 200 shown in Figure 18 are shown in Figures 19 and 20. A servo horn 246 of the servo 245 provided on the main body 250 and the movable part 240 are connected by a linkage rod 247 or the like. The movable part 40 is displaced due to the rotation of the servo horn 46.
<変形例1>
 図22~図24に例示される可動パーツ440は、本体部450(他の構成は省略している)の後方上部に回動可能に接続されている。このとき、可動パーツ440は本体部450の外側に取り付けられて可動するため、本体部450の内部の容積に影響することなく、巡航時に本体部450から発生する揚力を増加させることが可能となる。
<Modification 1>
22 to 24 are rotatably connected to the upper rear part of the main body 450 (other configurations are omitted). At this time, the movable part 440 is attached to the outside of the main body 450 and is movable, so that it is possible to increase the lift generated from the main body 450 during cruising without affecting the internal volume of the main body 450.
<変形例2、変形例3>
 図25~図27及び図28~図29にそれぞれ例示される飛行体の本体部550、650(他の構成は省略している)は、ホバリング姿勢の本体部高さH1と巡航姿勢の本体部高さH2を比較して、高さH1よりも高さH2が大きくなる。そのため、ホバリング時よりも巡航時の方が、前面投影面積が大きくなる。また、本体部550、650の幅方向からみた形状が雫型や翼型等の抗力の低い形状であることから、巡航姿勢の本体部550、650から発生する上方への揚力は少なく、または下方(-Z方向)への力が発生しやすくなる。
<Modifications 2 and 3>
In the main body 550, 650 (other configurations are omitted) of the flying object illustrated in Figures 25 to 27 and Figures 28 to 29, the height H2 is greater than the height H1 when comparing the height H1 of the main body in the hovering attitude with the height H2 of the main body in the cruising attitude. Therefore, the frontal projection area is greater when cruising than when hovering. In addition, since the shape of the main body 550, 650 viewed from the width direction is a teardrop-shaped or wing-shaped shape with low drag, the upward lift generated by the main body 550, 650 in the cruising attitude is small, or a downward (-Z direction) force is more likely to be generated.
 そこで例えば、図26に示すように、可動パーツ540を変位させることで、本体部550から発生する揚力を増加させることができる。これにより、前面投影面積の増加による燃費の悪化を抑えることができる。図25-図27に例示される本体部550は、本体部550の後端が下方へ回動することで揚力を増加させる。 For example, as shown in FIG. 26, the lift generated by the main body 550 can be increased by displacing the movable parts 540. This makes it possible to prevent the deterioration of fuel efficiency caused by an increase in the frontal projection area. The main body 550 illustrated in FIG. 25-FIG. 27 increases lift by rotating the rear end of the main body 550 downward.
 図28及び図29に例示される本体部650は、本体部の前縁と、後方上部の2か所に可動パーツ640を設けている。2か所の可動パーツ640a、640bは、いずれも巡航中の本体部650から発生する揚力を増加させるものである。複数の可動パーツ640を備える本体部650においては、夫々の可動パーツ640を同時に動作させてもよいし、一部のみ動作させてもよい。可動パーツ640の数は特に限定されない。 The main body 650 illustrated in Figures 28 and 29 has movable parts 640 at two locations: the leading edge of the main body and the upper rear part. The two movable parts 640a, 640b are both intended to increase the lift generated by the main body 650 during cruising. In a main body 650 having multiple movable parts 640, each of the movable parts 640 may be operated simultaneously, or only some of them may be operated. There is no particular limit to the number of movable parts 640.
 本体部650の前縁に設けられた可動パーツ640bは、飛行体前方へと稼動する。本体部650の下側を通る気流の一部を上面に流して剥離を遅らせることにより、本体部650が発生させる揚力が増加する。なお、可動パーツ640bは、本体部650の前端に設けられてもよいし、本体部650の前後方向の中央より前側に設けられてもよい。 The movable part 640b attached to the leading edge of the main body 650 moves forward of the flying object. By directing a portion of the airflow passing under the main body 650 to the upper surface to delay separation, the lift generated by the main body 650 is increased. The movable part 640b may be attached to the leading end of the main body 650, or may be attached forward of the center of the main body 650 in the fore-aft direction.
 各実施の形態における飛行体の構成は、複数の飛行体を組み合わせて実施することが可能である。すなわち飛行体の製造におけるコスト、または飛行体が運用される場所の環境もしくは特性等に合わせて、適宜好適な構成を検討することが望ましい。 The configuration of the aircraft in each embodiment can be implemented by combining multiple aircraft. In other words, it is desirable to consider an appropriate configuration according to the cost of manufacturing the aircraft, or the environment or characteristics of the location where the aircraft will be operated.
 上述した実施の形態は、本技術の理解を容易にするための例示に過ぎず、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更、改良することができると共に、本開示にはその均等物が含まれることは言うまでもない。 The above-described embodiments are merely examples to facilitate understanding of the present technology, and are not intended to limit the interpretation of the present disclosure. This disclosure can be modified and improved without departing from its spirit, and it goes without saying that this disclosure includes equivalents.
11   回転翼部
40、40a~40b、240、440、540、640a~640b   可動パーツ
41   回動部材
42、42a~42b   ロック材
43   保持部材
245   サーボ
246   サーボホーン
247   リンケージロッド
50、250、450、550、650   本体部
100、200  飛行体
110a~110f、210a~210f  プロペラ
111a~111f、211a~211f  モータ
120、220  フレーム
130、230  着陸脚
140  飛行部
300  回動機構
1000  バッテリー
1001  フライトコントローラー
1002  センサ類
1003  ジンバル
1004  送受信部
1006  送受信機(プロポ)

 
11 Rotating wing section 40, 40a to 40b, 240, 440, 540, 640a to 640b Movable parts 41 Rotating member 42, 42a to 42b Locking material 43 Holding member 245 Servo 246 Servo horn 247 Linkage rod 50, 250, 450, 550, 650 Main body 100, 200 Air vehicle 110a to 110f, 210a to 210f Propeller 111a to 111f, 211a to 211f Motor 120, 220 Frame 130, 230 Landing leg 140 Flying section 300 Rotating mechanism 1000 Battery 1001 Flight controller 1002 Sensors 1003 Gimbal 1004 Transmitter/receiver 1006 Transmitter/receiver (radio)

Claims (10)

  1.  飛行体であって、
     複数の回転翼と、
     前記複数の回転翼を支持する本体部と、
     前記本体部に設けられ、前記本体部に対してその全部または一部が離れるように変位することが可能である可動パーツとを備え、
     前記飛行体の巡航時の姿勢は、前記複数の回転翼の回転数の制御により前記飛行体のホバリング時の姿勢よりも、巡航方向に対して前傾しており、
     前記可動パーツは、前記巡航時において前記本体部から変位するよう制御される、
     飛行体。
    An air vehicle,
    A plurality of rotors;
    A main body portion supporting the plurality of rotor blades;
    a movable part provided on the main body portion and capable of being displaced so that all or a part of the movable part is separated from the main body portion;
    a cruising attitude of the aircraft is tilted forward with respect to a cruising direction compared to a hovering attitude of the aircraft by controlling the rotation speed of the plurality of rotors,
    The movable part is controlled to be displaced from the main body during the cruising.
    Flying vehicle.
  2.  請求項1に記載の飛行体であって、
     前記可動パーツは、前記本体部の水平方向に対する姿勢が所定の条件を満たしたときに変位するよう制御される、
     飛行体。
    2. The flying object according to claim 1,
    The movable part is controlled to be displaced when the attitude of the main body part with respect to the horizontal direction satisfies a predetermined condition.
    Flying vehicle.
  3.  請求項1または2に記載の飛行体であって、
     前記可動パーツの変位量は、前記飛行体の飛行モードに応じて制御される、
     飛行体。
    3. The flying object according to claim 1 or 2,
    The displacement amount of the movable part is controlled according to the flight mode of the aircraft.
    Flying vehicle.
  4.  請求項3に記載の飛行体であって、
     前記飛行モードは、前記飛行体の飛行方向および/または前記飛行体の飛行速度に基づく条件により定まる飛行モードを含む、
     飛行体。
    4. The flying object according to claim 3,
    The flight mode includes a flight mode determined by conditions based on the flight direction and/or flight speed of the aircraft,
    Flying vehicle.
  5.  請求項1~4のいずれか1項に記載の飛行体であって、
     前記可動パーツは、前記飛行体の前記巡航時に、前記本体部よりも後傾する方向に変位する、
     飛行体。
    The flying object according to any one of claims 1 to 4,
    The movable part is displaced in a direction tilting backward relative to the main body during the cruising of the aircraft.
    Flying vehicle.
  6.  請求項1~5のいずれか1項に記載の飛行体であって、
     前記可動パーツは、前記本体部の後端または前後方向における前記本体部の中央よりも後側に設けられる、
    飛行体。
    The flying object according to any one of claims 1 to 5,
    The movable part is provided at the rear end of the main body or rearward of the center of the main body in the front-rear direction.
    Flying vehicle.
  7.  請求項1~6のいずれか1項に記載の飛行体であって、
     前記可動パーツは、前記本体部の前端または前後方向における前記本体部の中央よりも前側に設けられる、
    飛行体。
    The flying object according to any one of claims 1 to 6,
    The movable part is provided at a front end of the main body part or forward of a center of the main body part in a front-rear direction.
    Flying vehicle.
  8.  請求項1~7のいずれか1項に記載の飛行体であって、
     前記可動パーツは、前記本体部の幅方向を軸として回動することにより変位する機構を有する、
    飛行体。
    The flying object according to any one of claims 1 to 7,
    The movable part has a mechanism that is displaced by rotating about an axis in the width direction of the main body.
    Flying vehicle.
  9.  請求項1~8のいずれか1項に記載の飛行体であって、
     前記複数の回転翼の少なくとも一の回転面は水平である、
     飛行体。
    The flying object according to any one of claims 1 to 8,
    a plane of rotation of at least one of the plurality of rotors is horizontal;
    Flying vehicle.
  10.  飛行体の制御方法であって、
     前記飛行体は、
     複数の回転翼と、
     前記複数の回転翼を支持する本体部と、
     前記本体部に設けられ、前記本体部に対してその全部または一部が離れるように変位することが可能である可動パーツとを備え、
     前記複数の回転翼の回転数を制御して、前記本体部の巡航時における姿勢を前記本体部のホバリング時における姿勢よりも前傾にし、
     前記巡航時において、前記可動パーツを前記本体部から変位するよう制御する
    、飛行体の制御方法。

     
    A method for controlling an aircraft, comprising:
    The flying object is
    A plurality of rotors;
    A main body portion supporting the plurality of rotor blades;
    a movable part provided on the main body portion and capable of being displaced so that all or a part of the movable part is separated from the main body portion;
    By controlling the rotation speed of the plurality of rotors, the attitude of the main body unit during cruising is tilted forward more than the attitude of the main body unit during hovering;
    A method for controlling an aircraft, the method controlling the movable parts to be displaced from the main body during the cruising.

PCT/JP2022/037613 2022-10-07 2022-10-07 Flight vehicle and method for controlling flight vehicle WO2024075276A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/037613 WO2024075276A1 (en) 2022-10-07 2022-10-07 Flight vehicle and method for controlling flight vehicle
CN202322677546.8U CN220948591U (en) 2022-10-07 2023-09-28 Flying body
CN202311284754.XA CN117842408A (en) 2022-10-07 2023-09-28 Flying body and control method of flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037613 WO2024075276A1 (en) 2022-10-07 2022-10-07 Flight vehicle and method for controlling flight vehicle

Publications (1)

Publication Number Publication Date
WO2024075276A1 true WO2024075276A1 (en) 2024-04-11

Family

ID=90529378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037613 WO2024075276A1 (en) 2022-10-07 2022-10-07 Flight vehicle and method for controlling flight vehicle

Country Status (2)

Country Link
CN (2) CN117842408A (en)
WO (1) WO2024075276A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253828A (en) * 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US20130009016A1 (en) * 2011-07-05 2013-01-10 Fox Bruce R Retractable vortex generator for reducing stall speed
JP2017063960A (en) * 2015-09-29 2017-04-06 京商株式会社 Multi-copter toy
KR101838796B1 (en) * 2016-04-27 2018-03-14 한국항공우주연구원 Aerial vehicle having airfoil to control slope
US20200140061A1 (en) * 2018-11-01 2020-05-07 The Boeing Company Linkage assemblies for aircraft wing hinged panels
KR102217639B1 (en) * 2019-12-20 2021-02-22 (주)온톨로지 Unmanned aerial vehicle with drag reduction structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253828A (en) * 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US20130009016A1 (en) * 2011-07-05 2013-01-10 Fox Bruce R Retractable vortex generator for reducing stall speed
JP2017063960A (en) * 2015-09-29 2017-04-06 京商株式会社 Multi-copter toy
KR101838796B1 (en) * 2016-04-27 2018-03-14 한국항공우주연구원 Aerial vehicle having airfoil to control slope
US20200140061A1 (en) * 2018-11-01 2020-05-07 The Boeing Company Linkage assemblies for aircraft wing hinged panels
KR102217639B1 (en) * 2019-12-20 2021-02-22 (주)온톨로지 Unmanned aerial vehicle with drag reduction structure

Also Published As

Publication number Publication date
CN117842408A (en) 2024-04-09
CN220948591U (en) 2024-05-14

Similar Documents

Publication Publication Date Title
US11492106B2 (en) Vertical take-off and landing vehicle
US11919630B2 (en) Separated lift-thrust VTOL aircraft with articulated rotors
US20190389573A1 (en) Vertical take-off and landing unmanned aerial vehicle
JP2021176757A (en) Vertical takeoff and landing (vtol) air vehicle
JP7509427B2 (en) Aircraft
JP2024074891A (en) Rotary wing aircraft
WO2024075276A1 (en) Flight vehicle and method for controlling flight vehicle
JP6970479B1 (en) Flying object
WO2022049764A1 (en) Flying vehicle
WO2022145045A1 (en) Flying object control method
CN218258694U (en) Flying body
WO2023238289A1 (en) Aircraft and aircraft control method
WO2024201841A1 (en) Landing device, takeoff/landing system, and control method of landing device
WO2023089735A1 (en) Flying object provided with safety device
WO2022215266A1 (en) Flight vehicle landing method, flight vehicle, information processing device, and program
JP7584168B2 (en) Manned aircraft
US20240278943A1 (en) Aerial vehicle
CN117320963A (en) Flying body, landing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961462

Country of ref document: EP

Kind code of ref document: A1