Nothing Special   »   [go: up one dir, main page]

WO2024071078A1 - Communication device, base station, and communication method - Google Patents

Communication device, base station, and communication method Download PDF

Info

Publication number
WO2024071078A1
WO2024071078A1 PCT/JP2023/034831 JP2023034831W WO2024071078A1 WO 2024071078 A1 WO2024071078 A1 WO 2024071078A1 JP 2023034831 W JP2023034831 W JP 2023034831W WO 2024071078 A1 WO2024071078 A1 WO 2024071078A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
harq
harq process
bitmap information
timer
Prior art date
Application number
PCT/JP2023/034831
Other languages
French (fr)
Japanese (ja)
Inventor
樹 長野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024071078A1 publication Critical patent/WO2024071078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • This disclosure relates to a communication device, a base station, and a communication method used in a mobile communication system.
  • 3GPP registered trademark; the same applies below
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • XR Extended Reality
  • a communication device may be required to transmit small packets (e.g., pose/control information) that have very strict delay requirements. Even if the communication device retransmits such packets using a hybrid automatic repeat request (HARQ) process, the delay requirements may not be met, so it is expected that a conservative modulation and coding scheme (MCS) will be used to transmit reliable packets.
  • MCS modulation and coding scheme
  • Non-Patent Document 1 a communication device in DRX operation does not need to remain in an active state to monitor the physical downlink control channel (PDCCH) for retransmission by the HARQ process, and therefore power saving of the communication device can be achieved.
  • PDCCH physical downlink control channel
  • the communication device includes a receiving unit that receives bitmap information from a network that indicates whether or not to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • the base station includes a transmission unit that transmits bitmap information indicating whether or not to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process to a communication device for each HARQ process.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • a communication method is executed by a communication device, and includes a step of receiving, from a network, bitmap information indicating whether or not to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a protocol stack according to the embodiment.
  • FIG. 3 is a diagram for explaining a timer related to DRX.
  • FIG. 4 is a diagram showing a configuration of a UE according to the embodiment.
  • FIG. 5 is a diagram showing a configuration of a base station according to the embodiment.
  • FIG. 6 is a sequence diagram for explaining a first operation example according to the embodiment.
  • FIG. 7 is a flowchart for explaining an example of the operation of UE 100 in a first operation example according to the embodiment.
  • FIG. 8 is a sequence diagram for explaining a second operation example according to the embodiment.
  • FIG. 9 is a flowchart for explaining an example of the operation of UE 100 in the third operation example according to the embodiment.
  • the existing 3GPP technical specifications do not have a specific mechanism for stopping the DRX retransmission-related timer for each HARQ process. Therefore, if, for example, the DRX retransmission-related timer is uniformly disabled in all HARQ processes in order to save power in the communication device, there is a problem that a communication device in DRX operation cannot monitor the PDCCH for retransmission by the HARQ process even when retransmission by the HARQ process is enabled.
  • one of the objectives of this disclosure is to provide a communication device, base station, and communication method that enable flexible control of DRX retransmission-related timers for each HARQ process.
  • the mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS).
  • TS Technical Specification
  • the mobile communication system 1 will be described using a 3GPP standard 5th Generation System (5G system), i.e., a mobile communication system based on NR (New Radio) as an example.
  • 5G system 3GPP standard 5th Generation System
  • NR New Radio
  • the mobile communication system 1 has a network 10 and a user equipment (UE) 100 that communicates with the network 10.
  • the network 10 includes a 5G radio access network, NG-RAN (Next Generation Radio Access Network) 20, and a 5G core network, 5GC (5G Core Network) 30.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • UE100 is a communication device that communicates via base station 200.
  • UE100 may be a device used by a user.
  • UE100 may be a user device defined in the technical specifications of 3GPP.
  • UE100 is a mobile device such as a mobile phone terminal such as a smartphone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • UE100 may be a vehicle (e.g., a car, a train, etc.) or a device provided therein.
  • UE100 may be a transport vehicle other than a vehicle (e.g., a ship, an airplane, etc.) or a device provided therein.
  • UE100 may be a sensor or a device provided therein.
  • UE100 may be called by other names such as a terminal, a terminal device, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, or a remote unit.
  • UE 100 is an example of a terminal, and terminals may include factory equipment, etc.
  • NG-RAN20 includes multiple base stations 200.
  • Each base station 200 manages at least one cell.
  • a cell constitutes the smallest unit of a communication area.
  • One cell belongs to one frequency (carrier frequency).
  • the term "cell" may refer to a wireless communication resource, and may also refer to a communication target of UE100.
  • Each base station 200 can perform wireless communication with UE100 located in its own cell.
  • the base station 200 communicates with UE100 using a protocol stack of the RAN. Details of the protocol stack will be described later.
  • the base station 200 is connected to other base stations 200 (which may be referred to as adjacent base stations) via an Xn interface.
  • the base station 200 communicates with adjacent base stations via an Xn interface.
  • the base station 200 provides NR user plane and control plane protocol terminations toward the UE100, and is connected to the 5GC30 via an NG interface.
  • gNodeB gNodeB
  • the 5GC30 includes a core network device 300.
  • the core network device 300 includes, for example, an AMF (Access and Mobility Management Function) and/or a UPF (User Plane Function).
  • the AMF manages the mobility of the UE 100.
  • the UPF provides functions specialized for U-plane processing.
  • the AMF and the UPF are connected to the base station 200 via an NG interface.
  • the protocol for the wireless section between UE100 and base station 200 includes a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and an RRC layer.
  • PHY physical
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing using Hybrid ARQ (HARQ), random access procedures, etc.
  • Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of base station 200 via a transport channel.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resources to be allocated to UE100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression, and encryption/decryption.
  • the SDAP (Service Data Adaptation Protocol) layer may be provided as a layer above the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer maps IP flows, which are the units by which the core network performs QoS (Quality of Service) control, to radio bearers, which are the units by which the AS (Access Stratum) performs QoS control.
  • IP flows which are the units by which the core network performs QoS (Quality of Service) control
  • radio bearers which are the units by which the AS (Access Stratum) performs QoS control.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of base station 200.
  • UE100 When there is an RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC connected state.
  • UE100 When there is no RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC idle state.
  • UE100 is in an RRC inactive state.
  • the NAS layer which is located above the RRC layer in UE100, performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of the core network device 300.
  • UE100 has an application layer, etc. in addition to the radio interface protocol.
  • downlink transmission and uplink transmission are configured within a radio frame of 10 ms duration.
  • a radio frame is configured with 10 subframes.
  • one subframe may be 1 ms.
  • one subframe may be configured with one or more slots.
  • the number of symbols constituting one slot is 14 in a normal CP (Cyclic Prefix) and 12 in an extended CP.
  • the number of slots constituting one subframe changes according to the set subcarrier interval.
  • the number of slots per subframe is 1 (i.e., 14 symbols)
  • the number of slots per subframe is 2 (i.e., 28 symbols)
  • the number of slots per subframe is 4 (i.e., 56 symbols)
  • the number of slots per subframe is 8 (i.e., 112 symbols).
  • the number of slots per subframe is 4 (i.e., 48 symbols).
  • the number of slots constituting one subframe is determined based on the subcarrier interval set by the base station 200. Also, the number of symbols constituting one subframe is determined based on the subcarrier interval set by the base station 200. That is, the number of symbols constituting a 1 ms subframe is determined based on the subcarrier interval set by the base station 200, and the length of each symbol (length in the time direction) changes.
  • DRX discontinuous reception
  • Fig. 3A is a diagram for explaining a timer related to DRX in uplink transmission.
  • Fig. 3B is a diagram for explaining a timer related to DRX in downlink transmission.
  • UE100 does not constantly monitor the physical downlink control channel (PDCCH) of UE100 as an operation during DRX (hereinafter referred to as DRX operation), but monitors the PDCCH only at regular cycles (i.e., DRX cycles).
  • DRX operation DRX performed by UE100 in an RRC connected state is sometimes called C-DRX.
  • the UE 100 is set with a DRX cycle consisting of an on period and an off period.
  • the state of the UE 100 is an awake state in which the UE 100 monitors the PDCCH.
  • the UE 100 in the awake state is active to monitor the PDCCH.
  • the awake state may be referred to as, for example, an active state or a DRX activated state.
  • the on period may also be referred to as, for example, a DRX on period, on time, or active time as a period in which the PDCCH is monitored.
  • the state of the UE 100 is a sleep state in which the UE 100 does not need to monitor the PDCCH.
  • the UE 100 in the sleep state is inactive.
  • the sleep state may be referred to as, for example, a DRX sleep state, a sleep mode, a DRX mode, or a power saving mode.
  • the off period may also be referred to as, for example, a DRX off period, off time, or inactive time as a period in which the PDCCH is not monitored.
  • the long DRX cycle consists of an on period and an off period.
  • the short DRX cycle is an additional DRX cycle that is set together with the long DRX cycle.
  • the short DRX cycle is a DRX cycle that is shorter than the long DRX cycle.
  • DRX setting parameters such as drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, and drx-SlotOffset, are set individually for each cell group set in UE 100.
  • DRX Downlink Bandwidth Part
  • the operation in this embodiment may be an operation when DRX (DRX operation) is set for one cell group. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for one serving cell (for example, a downlink serving cell, also referred to as a downlink component carrier). Also, the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP (Downlink Bandwidth Part) set in each of one or more serving cells.
  • DL BWP Downlink Bandwidth Part
  • the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP in each of one or more serving cells. That is, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more cell groups. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more serving cells. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more DL BWPs.
  • drx-onDurationTimer may indicate the duration at the beginning of a DRX cycle.
  • drx-onDurationTimer is a parameter that specifies the amount of time of the DRX on period of each DRX cycle.
  • drx-onDurationTimer is set to the timer value of the DRX on duration timer (drx-onDurationTimer) used to time the DRX on period.
  • UE 100 is in an active state (e.g., considered to be in an active time) while the DRX on duration timer (hereinafter sometimes referred to as ODT) is running (operating). If UE 100 does not receive a PDCCH by the expiration of ODT, it transitions to a sleep state until the start of the next on period.
  • ODT DRX on duration timer
  • the drx-InactivityTimer may indicate the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission.
  • the PDCCH indicating the uplink transmission may include a DCI format used for uplink scheduling (e.g., PUSCH scheduling).
  • the PDCCH indicating the downlink transmission may include a DCI format used for downlink scheduling (e.g., PDSCH scheduling).
  • the drx-InactivityTimer is a parameter that specifies the period during which the UE 100 should be active after successfully decoding a PDCCH indicating a new transmission.
  • the drx-InactivityTimer is set to the timer value of the DRX inactivity timer (drx-InactivityTimer) used to time the active time, for example.
  • the DRX inactivity timer (hereinafter sometimes referred to as IAT) is started or restarted when the UE 100 receives a PDCCH for a new transmission (e.g., UL, DL, or SL (sidelink)) during the on period. Therefore, the UE 100 remains in an awake state while the IAT is running.
  • the IAT may be a timer indicating the period during which the UE 100 should be in an awake state after successfully decoding a PDCCH indicating a new transmission.
  • the UE 100 monitors the PDCCH until the IAT expires. When the IAT expires, the UE 100 transitions to a sleep state (DRX mode).
  • the drx-HARQ-RTT-TimerUL may indicate the minimum duration before a UL HARQ retransmission grant is expected.
  • the grant may include a PDCCH indicating an uplink transmission.
  • the drx-HARQ-RTT-TimerUL is a parameter used in the retransmission process of uplink data.
  • the drx-HARQ-RTT-TimerUL is a parameter that specifies the period during which the UE 100 can expect an uplink retransmission.
  • the drx-HARQ-RTT-TimerUL is set to the timer value of a timer (drx-HARQ-RTT-TimerUL (timer)) used to time the period.
  • the UE 100 maintains a sleep state while the timer is running.
  • the timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT UL timer.
  • the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerUL timer) with the first symbol immediately after transmitting the PUSCH.
  • the UE 100 transitions to an active state in response to expiration of the timer.
  • drx-HARQ-RTT-TimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
  • the drx-HARQ-RTT-TimerDL may indicate the minimum duration before a DL assignment for HARQ retransmission.
  • the downlink assignment may include a PDCCH indicating downlink transmission.
  • the drx-HARQ-RTT-TimerDL is a parameter used in the retransmission process of downlink data.
  • the drx-HARQ-RTT-TimerDL is a parameter that specifies the period during which the UE 100 can expect a retransmission.
  • the drx-HARQ-RTT-TimerDL is set to the timer value of a timer (drx-HARQ-RTT-TimerDL (timer)) used to time the period.
  • the UE 100 maintains a sleep state while the timer is running.
  • the timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT DL timer.
  • the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerDL timer) with the first symbol after transmitting a negative acknowledgement (NACK) in the uplink.
  • NACK negative acknowledgement
  • the UE 100 transitions to an active state in response to expiration of the timer.
  • drx-HARQ-RTT-TimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
  • drx-RetransmissionTimerUL may indicate the maximum duration until a grant for UL retransmission is received.
  • the grant for uplink retransmission may include a PDCCH indicating uplink retransmission.
  • drx-RetransmissionTimerUL is a parameter used in the retransmission process of uplink data.
  • drx-RetransmissionTimerUL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a grant for uplink retransmission.
  • the drx-RetransmissionTimerUL is set to the timer value of a timer (drx-RetransmissionTimerUL timer) used to time the duration of a specified slot.
  • This timer may be referred to as a DRX retransmission timer or a DRX retransmission UL timer.
  • This timer may be associated with each HARQ process.
  • the UE 100 starts the DRX retransmission UL timer at the next symbol when the drx-HARQ-RTT-TimerUL timer expires.
  • the UE 100 is in an awake state while this timer is running.
  • the UE 100 stops the DRX retransmission UL timer as soon as it detects an uplink transmission for the corresponding HARQ process.
  • drx-RetransmissionTimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
  • drx-RetransmissionTimerDL may indicate the maximum duration until a DL retransmission is received.
  • downlink retransmission may include retransmission of downlink data (i.e., retransmission in PDSCH).
  • Downlink data is also referred to as DL-SCH data.
  • drx-RetransmissionTimerDL is a parameter used in the retransmission process of downlink data.
  • drx-RetransmissionTimerDL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a retransmission from base station 200.
  • the drx-RetransmissionDL is set to the timer value of a timer (drx-RetransmissionTimerDL timer) used to time the duration of the specified slot.
  • This timer may be referred to as a DRX retransmission timer or a DRX retransmission DL timer.
  • This timer may be associated with each HARQ process.
  • the UE 100 starts the DRX retransmission DL timer at the next symbol. The UE 100 is in an awake state while this timer is running.
  • the UE 100 stops the DRX retransmission DL timer as soon as it detects a downlink transmission for the corresponding HARQ process.
  • drx-RetransmissionTimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
  • UE100 may consider the time when drx-onDurationTimer or drx-InactivityTimer set for one cell group is operating as the active time for the serving cell in that one cell group. Also, UE100 may consider the time when drx-RetransmissionTimerUL or drx-RetransmissionTimerDL is operating in any of the serving cells in that one cell group as the active time for the serving cell in that one cell group. For example, UE100 may monitor the PDCCH when the one cell group is in the active time. That is, UE100 may monitor the PDCCH in the serving cell in that one cell group when the one cell group is in the active time.
  • the cell group in which the parameters for DRX setting i.e., DRX (DRX operation)
  • the base station 200 may transmit an RRC message including information indicating a DRX group including one or more serving cells.
  • the UE 100 may identify the DRX group based on the information indicating the DRX group.
  • the DRX group may be a group of one or more serving cells that have (are set to have) the same active time.
  • the active time for the serving cells in one DRX group may include the time during which any of the drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerUL, and drx-RetransmissionTimerDL set for the one DRX group is operating.
  • drx-LongCycleStartOffset is a parameter for controlling the start position of the long DRX cycle.
  • drx-LongCycleStartOffset is used to determine the length of the long DRX cycle and the starting subframe number within the long DRX cycle.
  • drx-SlotOffset is a parameter that specifies the start of the on-period with respect to the start of the subframe.
  • UE 100 when UE 100 receives a DRX command MAC CE or a long DRX command MAC CE from the network (base station 200), it ends the current on-period (active time). Specifically, UE 100 stops ODT and IAT.
  • UE100 When UE100 receives the DRX command MAC CE, it transitions to a normal DRX cycle. Specifically, when a short DRX cycle is set in UE100, it transitions to a short DRX cycle mode. When a short DRX cycle is not set in UE100, it transitions to a long DRX cycle mode. On the other hand, when UE100 receives a long DRX command MAC CE, it transitions to a long DRX cycle.
  • XR traffic (XR service)
  • XR service a work item has been launched to study power saving technology suited to the characteristics of XR services.
  • the characteristics of XR traffic include, for example, a non-integer period such as 60, 120 fps (16.67, 8.33 ms), jitter (variation in the arrival timing of traffic due to encoding and NW transmission delay), and multiple data streams with different traffic characteristics and QoS requirements (multiple flows, for example, I frames and P frames, video and voice/data, etc.).
  • the UE 100 may be required to transmit small packets (e.g., pose/control information) with very strict delay requirements. Even if the UE 100 retransmits such packets using a hybrid automatic repeat request (HARQ) process, the delay requirements may not be met, so it is expected that a conservative modulation and coding scheme (MCS) will be used to transmit reliable packets.
  • MCS modulation and coding scheme
  • the UE 100 during DRX operation does not need to remain in an active state to monitor the physical downlink control channel (PDCCH) for retransmission by the HARQ process, which can reduce the power consumption of the UE 100.
  • PDCCH physical downlink control channel
  • the UE 100 includes a communication unit 110 and a control unit 120.
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving radio signals to and from the base station 200.
  • the communication unit 110 has at least one transmission unit 111 and at least one reception unit 112.
  • the transmission unit 111 and the reception unit 112 may be configured to include multiple antennas and RF circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space.
  • the antenna also receives radio waves in space and converts the radio waves into a signal.
  • the RF circuit performs analog processing of the signal transmitted and received via the antenna.
  • the RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
  • the control unit 120 performs various controls in the UE 100.
  • the control unit 120 controls communication with the base station 200 via the communication unit 110.
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120.
  • the control unit 120 may include at least one processor capable of executing programs and a memory for storing the programs.
  • the processor may execute the programs to perform the operations of the control unit 120.
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack.
  • the memory stores the programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or a portion of the memory may be contained within the processor.
  • the receiver 112 receives bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process from the network 10 (base station 200). This allows the control unit 120 of the UE 100 to determine whether or not to enable the DRX retransmission related timer for each HARQ process based on the bitmap information. As a result, it becomes possible to flexibly control the DRX retransmission related timer for each HARQ process.
  • the base station 200 includes a communication unit 210, a network communication unit 220, and a control unit 230.
  • the communication unit 210 receives a radio signal from the UE 100 and transmits a radio signal to the UE 100.
  • the communication unit 210 has at least one transmission unit 211 and at least one reception unit 212.
  • the transmission unit 211 and the reception unit 212 may be configured to include an RF circuit.
  • the RF circuit performs analog processing of the signal transmitted and received via the antenna.
  • the RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
  • the network communication unit 220 transmits and receives signals to the network.
  • the network communication unit 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations.
  • the network communication unit 220 also receives signals from a core network device 300 connected via an NG interface, and transmits signals to the core network device 300.
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls, for example, communication with the UE 100 via the communication unit 210.
  • the control unit 230 also controls, for example, communication with a node (e.g., an adjacent base station, a core network device 300) via the network communication unit 220.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230.
  • the control unit 230 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to perform the operations of the control unit 230.
  • the control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack.
  • the memory stores the program executed by the processor, parameters related to the program, and data related to the program. All or a part of the memory may be included in the processor.
  • the transmission unit 211 transmits to the UE 100 bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process.
  • This allows the control unit 120 of the UE 100 to determine whether or not to enable the DRX retransmission related timer for each HARQ process based on the bitmap information.
  • the network 10 controls the UE 100 to stop the DRX retransmission related timer of the HARQ process for small packets with very strict delay requirements, thereby eliminating the need for the UE 100 to maintain an active state and enabling power saving of the UE 100.
  • a first operation example of the mobile communication system 1 will be described with reference to Fig. 6 and Fig. 7.
  • a case where the UE 100 executes a retransmission process (HARQ process) in uplink transmission will be described.
  • HARQ process includes a HARQ process in a downlink (DL HARQ process) and/or a HARQ process in an uplink (UL HARQ process).
  • the HARQ process in a downlink includes a HARQ process used for downlink transmission (e.g., retransmission process).
  • the HARQ process in an uplink includes a HARQ process used for uplink transmission (e.g., retransmission process).
  • Step S101: 6 the transmitting unit 211 of the base station 200 transmits the bitmap information to the UE 100.
  • the receiving unit 112 of the UE 100 receives the bitmap information from the base station 200.
  • the bitmap information may be included in, for example, a radio resource control (RRC) message.
  • the bitmap information may be included in at least one of the following: a DRX configuration (DRX-config) used to set parameters related to DRX; a serving cell configuration (ServingCellConfig) used to set (add or change) a serving cell in a UE; a PDSCH serving cell configuration (PDSCH-ServingCellConfig) used to set UE-specific PDSCH parameters common to the entire bandwidth portion (BWP) of a UE of one serving cell; and a PUSCH serving cell configuration (PUSCH-ServingCellConfig) used to set UE-specific PUSCH parameters common to the entire bandwidth portion (BWP) of a UE of one serving cell.
  • DRX-config used to set parameters related to DRX
  • a serving cell configuration (ServingCellConfig) used to set (add or change) a serving cell in a UE
  • PDSCH serving cell configuration PD
  • the bitmap information may be included in the DRX settings, the serving cell settings, the DL BWP settings (PDSCH parameters included in the DL BWP settings), and/or the UL BWP settings (PUSCH parameters included in the UL BWP settings).
  • the bitmap information indicates whether or not to enable the DRX retransmission related timer for each HARQ process.
  • the bitmap information may be composed of multiple bits (bit strings).
  • the arrangement of multiple bits constituting the bitmap information may be associated with an identifier of the HARQ process (i.e., HARQ process ID).
  • the identifier of the HARQ process may be an identifier for identifying the HARQ process number.
  • whether or not to enable a timer e.g., a DRX retransmission related timer, IAT
  • IAT a DRX retransmission related timer
  • bitmap information may include information used to determine whether or not to start or restart a timer. Also, the bitmap information may include information used to determine whether or not to stop a timer.
  • the first (or leftmost) bit of the multiple bits indicated by the bitmap information may correspond to HARQ process ID 0, the next bit may correspond to HARQ process ID 1, and the nth bit may correspond to HARQ process ID n-1 (n is a natural number).
  • Each bit may indicate whether or not the DRX retransmission related timer of the corresponding HARQ process (i.e., HARQ process ID) is enabled.
  • each bit may be set to indicate "0" or "1".
  • the DRX retransmission related timer corresponding to a bit set to "0" may be enabled, and the DRX retransmission related timer corresponding to a bit set to "1" may be disabled. Or, the opposite may be true.
  • the DRX retransmission related timer is a timer for controlling retransmission during DRX operation in the HARQ process.
  • the DRX retransmission related timer is at least one of the drx-HARQ-RTT-TimerUL timer, the drx-HARQ-RTT-TimerDL timer, the drx-RetransmissionTimerUL timer, and the drx-RetransmissionTimerDL timer.
  • the bitmap information may also indicate whether or not to enable the IAT for each HARQ process, in addition to the DRX retransmission related timer.
  • the base station 200 may transmit information indicating whether or not to enable the IAT for each HARQ process (referred to as IAT bitmap information) to the UE 100, separate from the bitmap information.
  • the UE 100 may receive the IAT bitmap information from the base station 200 (network 10).
  • the bitmap information may further indicate the HARQ mode associated with the DRX retransmission related timer for each HARQ process.
  • the HARQ mode may be, for example, either mode A or mode B.
  • each bit constituting the bitmap information may indicate the HARQ mode of the corresponding HARQ process.
  • the HARQ mode corresponding to a bit set to "0" may be mode A
  • the HARQ mode corresponding to a bit set to "1" may be mode B.
  • the opposite may be true.
  • the UE 100 may enable the associated DRX retransmission related timer.
  • mode A may include a mode in which the associated DRX retransmission related timer is started or restarted.
  • mode B the UE 100 may not enable (may disable) the associated DRX retransmission related timer.
  • mode B may include a mode in which the associated DRX retransmission related timer is not started or restarted. For example, if the first bit (e.g., corresponding to HARQ process ID 0) in the bitmap information is set to "1" and the next bit (e.g., corresponding to HARQ process ID 1) is set to "0", HARQ process ID 0 may be set as mode A and HARQ process ID 1 may be set as mode B.
  • the DRX retransmission related timer associated with HARQ process ID 0 set as mode A may be enabled.
  • the UE 100 may control to start or restart the DRX retransmission related timer associated with HARQ process ID 0 set as mode A. Also, the DRX retransmission related timer associated with HARQ process ID 1 set as mode B may not be enabled (may be disabled). Also, the UE 100 may control not to start or restart the DRX retransmission related timer associated with HARQ process ID 1 set as mode B.
  • the bitmap information may be applied only to uplink transmission (i.e., uplink HARQ process).
  • uplink HARQ process may be configured individually in UE 100 only for uplink transmission.
  • the bitmap information may be applied only to downlink transmission (i.e., downlink HARQ process).
  • the bitmap information may be configured individually in UE 100 only for downlink transmission.
  • the bitmap information may be applied to both uplink transmission and downlink transmission.
  • one bitmap information may indicate for each HARQ process (for each uplink HARQ process and/or for each downlink HARQ process) whether to enable a DRX retransmission related timer for each of uplink transmission and/or downlink transmission.
  • the bitmap information may include bitmap information indicating for each HARQ process whether or not to enable a DRX retransmission related timer for uplink transmission (also referred to as uplink bitmap information, first bitmap information), and bitmap information indicating for each HARQ process whether or not to enable a DRX retransmission related timer for downlink transmission (also referred to as downlink bitmap information, second bitmap information).
  • uplink bitmap information also referred to as uplink bitmap information, first bitmap information
  • bitmap information indicating for each HARQ process whether or not to enable a DRX retransmission related timer for downlink transmission also referred to as downlink bitmap information, second bitmap information.
  • the control unit 230 of the base station 200 may generate bitmap information according to the number of HARQ processes supported by the UE 100.
  • the UE 100 may transmit information on the number of HARQ processes supported by the UE 100 to the network 10.
  • the number of HARQ processes supported by the UE 100 may be set independently for downlink transmission and uplink transmission.
  • the UE 100 may transmit the number of HARQ processes supported by the UE 100 (the number of HARQ processes in the downlink and/or the number of HARQ processes in the uplink) included in the capability information.
  • the number of HARQ processes supported by the UE 100 (the number of HARQ processes in the downlink and/or the number of HARQ processes in the uplink) may be specified in advance by a specification or the like.
  • the number of HARQ processes in the downlink supported by the UE 100 may be 16 (or 32).
  • the number of HARQ processes in the uplink supported by the UE 100 may be 16 (or 32).
  • the control unit 230 of the base station 200 may generate bitmap information to be applied (set) to the uplink transmission based on the number of HARQ processes (e.g., the number of HARQ processes in the uplink). For example, when the number of HARQ processes in the uplink transmission is 16 (or 32), the bitmap information may be configured with a bit string of 16 bits (or 32 bits).
  • control unit 230 of the base station 200 may generate bitmap information according to the maximum number of HARQ processes, regardless of the number of HARQ processes supported by the UE 100. For example, when the maximum number of HARQ processes in the uplink is 32, the bitmap information may be configured with a bit string of 32 bits.
  • UE 100 may process only bits in the bitmap information that correspond to the HARQ process IDs that are set (or indicated) for downlink and/or uplink transmission. For example, when HARQ process ID 0 and HARQ process ID 2 are set, UE 100 may process only the first bit (the first bit, corresponding to HARQ process ID 0) and the third bit (HARQ process ID 2) in the bitmap information. That is, UE 100 may ignore (or discard) bits in the bitmap information that do not correspond to the set HARQ process IDs. For example, when HARQ process ID 0 and HARQ process ID 2 are set, UE 100 may ignore (or discard) the second bit in the bitmap information (corresponding to HARQ process ID 1, which is not set).
  • the base station 200 may generate bitmap information corresponding to each DRX setting. That is, bitmap information may be configured for each of one or multiple DRX settings.
  • the control unit 120 of the UE 100 may control the DRX operation based on the DRX setting included in the RRC message in step S101, for example. Alternatively, the control unit 120 of the UE 100 may control the DRX operation based on the DRX setting received before step S101.
  • Step S102 The transmission unit 211 of the base station 200 transmits a PDCCH for scheduling a PUSCH to the UE 100.
  • the reception unit 112 of the UE 100 receives the PDCCH from the base station 200.
  • the transmission unit 211 of the base station 200 transmits downlink control information (DCI, also referred to as a DCI format) for scheduling a PUSCH on the PDCCH.
  • DCI downlink control information
  • the reception unit 112 of the UE 100 receives the DCI.
  • the PUSCH may be used to transmit uplink data (also referred to as data of an UL-SCH).
  • the transmitter 211 of the base station 200 may transmit one DCI (which may be one DCI format) for scheduling multiple PUSCHs to the UE 100.
  • the receiver 112 of the UE 100 may receive the one DCI (which may be one DCI format) from the base station 200. That is, the one DCI (which may be one DCI format) may include scheduling information (e.g., information used to allocate time and/or frequency resources) used for scheduling one or multiple PUSCHs.
  • Step S103 The transmitting unit 111 of the UE 100 may transmit the PUSCH scheduled in the DCI to the base station 200.
  • the receiving unit 212 of the base station 200 may receive the PUSCH from the UE 100.
  • the transmitting unit 111 of the UE 100 may transmit uplink data on the PUSCH to the base station 200.
  • the receiving unit 212 of the base station 200 may receive the uplink data from the UE 100 on the PUSCH.
  • the control unit 120 of the UE 100 may execute the process of step S104 for the HARQ process associated with the triggered DRX retransmission related timer. Also, when bitmap information is set from the network 10 (for example, in step S101), the control unit 120 of the UE 100 may execute the following process.
  • Step S104 The control unit 120 of the UE 100 determines whether or not to enable a DRX retransmission related timer for each HARQ process based on the bitmap information.
  • the control unit 120 of the UE 100 may execute the operation shown in FIG. 7 for each HARQ process.
  • the control unit 120 may determine whether or not to enable a DRX retransmission related timer for each HARQ process number used for communication with the base station 200.
  • control unit 120 may determine, based on the bitmap information, whether to enable the DRX retransmission-related timers corresponding to the HARQ processes used for each of the one or more PUSCH transmissions.
  • Step S121 As shown in FIG. 7, the control unit 120 determines whether to enable the DRX retransmission related timer based on the bitmap information. Therefore, the control unit 120 determines whether the bit corresponding to the target HARQ process ID indicates that the DRX retransmission related timer is enabled based on the bitmap information. The control unit 120 may determine whether to enable the DRX retransmission related timer based on each of the multiple bits constituting the bitmap information. If the bit indicates that the DRX retransmission related timer is enabled, the control unit 120 determines that the DRX retransmission related timer is enabled, and executes the process of step S122. On the other hand, if the bit indicates that the DRX retransmission related timer is disabled (or not enabled), the control unit 120 determines that the DRX retransmission related timer is disabled, and executes the process of step S123.
  • control unit 120 of the UE 100 may determine whether to enable the DRX retransmission related timer for the first PUSCH transmission in the multiple PUSCH transmissions and for subsequent PUSCH transmissions based on the bit corresponding to the corresponding HARQ process ID.
  • Step S122 The control unit 120 enables a DRX retransmission related timer.
  • the control unit 120 may, for example, set a value designated by a parameter received from the base station 200 to the DRX retransmission related timer and start (or restart) the DRX retransmission related timer.
  • the control unit 120 may execute an operation related to a DRX retransmission related timer defined in an existing specification.
  • Step S123 The control unit 120 disables the DRX retransmission related timer. As an operation of disabling the DRX retransmission related timer, the control unit 120 may not start (or restart) the DRX retransmission related timer. For example, the control unit 120 may set the DRX retransmission related timer to infinity or 0.
  • the control unit 120 starts (or restarts) the DRX retransmission-related timer when the trigger condition for starting the DRX retransmission-related timer is satisfied.
  • the control unit 120 does not start or restart the DRX retransmission-related timer even if the trigger condition for starting the DRX retransmission-related timer is not satisfied or is satisfied.
  • the control unit 120 starts (or restarts) the HARQ RTT timer with the first symbol immediately after transmitting the PUSCH.
  • the control unit 120 goes into a sleep state until the timer expires.
  • the valid DRX retransmission related timers include a DRX retransmission timer (e.g., a DRX retransmission UL timer)
  • the control unit 120 starts (or restarts) the DRX retransmission UL timer with the next symbol when the HARQ RTT UL timer expires.
  • the UE 100 goes into an awake state while the timer is running.
  • the control unit 120 of the UE 100 may determine whether or not to enable the IAT for each HARQ process based on the bitmap information.
  • the control unit 120 may determine whether or not to enable the IAT for each HARQ process based on the IAT bitmap information.
  • the control unit 120 of the UE 100 may determine whether to enable the IAT for each HARQ process based on the bitmap information.
  • the transmitting unit 211 of the base station 200 transmits to the UE 100 bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process.
  • the receiving unit 112 of the UE 100 receives from the network 10 (base station 200) bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process. This allows the control unit 120 of the UE 100 to determine whether or not to enable the DRX retransmission related timer for each HARQ process based on the bitmap information. As a result, it becomes possible to flexibly control the DRX retransmission related timer for each HARQ process.
  • the network 10 controls the UE 100 to stop the DRX retransmission related timer of the HARQ process for small packets with very strict delay requirements, thereby eliminating the need for the UE 100 to maintain an activated state and enabling power saving of the UE 100.
  • the order of the multiple bits constituting the bitmap information may be associated with an identifier of the HARQ process.
  • the control unit 120 may determine whether or not to enable the DRX retransmission related timer of the corresponding HARQ process based on each of the multiple bits. This allows the control unit 120 to regularly determine whether or not to enable the DRX retransmission related timer of the corresponding HARQ process based on the order of the multiple bits.
  • the receiving unit 112 may receive one DCI that schedules multiple PUSCHs.
  • the control unit 120 may determine whether or not to enable the DRX retransmission related timers corresponding to the HARQ processes of each of the multiple PUSCH transmissions based on the bitmap information. Even when multiple PUSCHs are scheduled by one DCI, the control unit 120 can flexibly control the DRX retransmission related timers for each HARQ process.
  • the bitmap information may also include uplink bitmap information indicating for each HARQ process whether or not to enable the DRX retransmission related timer for uplink transmission, and downlink bitmap information indicating for each HARQ process whether or not to enable the DRX retransmission related timer for downlink transmission.
  • This allows the control unit 120 to determine for each HARQ process whether or not to enable the DRX retransmission related timer for uplink transmission and downlink transmission independently. As a result, it becomes possible to flexibly control the DRX retransmission related timer.
  • bitmap information may be applied to both uplink transmission and downlink transmission. This reduces the amount of information sent from the network 10 to the UE 100, and saves communication resources, compared to when the bitmap information is applied to only one of the uplink transmission and the downlink transmission.
  • the bitmap information may further indicate the HARQ mode associated with the DRX retransmission related timer for each HARQ process. This allows the network 10 to omit the transmission of a bitmap indicating the HARQ mode for each HARQ process, thereby reducing the amount of information sent from the network 10 to the UE 100 and saving communication resources.
  • the bitmap information may also indicate for each HARQ process whether the DRX inactivity timer is enabled. This allows for flexible control of not only the DRX retransmission-related timers but also the DRX inactivity timer.
  • the receiving unit 112 may receive other bitmap information from the network, in addition to the bitmap information, that indicates whether or not to enable the DRX inactivity timer for each HARQ process.
  • the other bitmap information indicates the validity of the DRX inactivity timer independently of the DRX retransmission related timer, allowing for more flexible control of the DRX inactivity timer.
  • Step S201 This is the same as step S101. Note that the bitmap information indicates, for each HARQ process, whether or not to enable a DRX retransmission related timer for at least downlink transmission.
  • Step S202 The transmission unit 211 of the base station 200 transmits a PDCCH for scheduling a PDSCH to the UE 100.
  • the reception unit 112 of the UE 100 receives the PDCCH from the base station 200.
  • the transmission unit 211 of the base station 200 transmits a DCI for scheduling a PDSCH for downlink data transmission on the PDCCH.
  • the reception unit 112 of the UE 100 receives the DCI.
  • the transmission unit 211 of the base station 200 may transmit one DCI for scheduling a plurality of PDSCHs to the UE 100.
  • the reception unit 112 of the UE 100 may receive the DCI from the base station 200.
  • Step S203 The transmission unit 211 of the base station 200 transmits the PDSCH scheduled by the DCI to the UE 100.
  • the reception unit 112 of the UE 100 receives the PDSCH from the base station 200.
  • the transmission unit 211 of the base station 200 may transmit downlink data on the PDSCH to the UE 100.
  • the reception unit 112 of the UE 100 may receive the downlink data from the base station 200 on the PDSCH.
  • control unit 120 of the UE 100 performs control to execute the process of step S204.
  • Step S204 The transmission unit 111 of the UE 100 transmits a negative acknowledgement (NACK) to the base station 200 in a HARQ process in which the reception of the downlink data has not been successful.
  • the base station 200 receives the NACK from the UE 100.
  • NACK negative acknowledgement
  • the control unit 120 of the UE 100 may execute the process of step S205, for example, when a trigger condition for starting (or re-starting) a DRX retransmission related timer associated with (corresponding to) the HARQ process is satisfied.
  • the control unit 120 of the UE 100 may execute the following process when bitmap information is set from the network 10 (for example, in step S201).
  • control unit 120 may determine, based on the bitmap information, whether to enable the DRX retransmission related timers corresponding to each HARQ process of the multiple PDSCH transmissions scheduled by one DCI.
  • Step S205 The control unit 120 of the UE 100 executes the same operation as in step S104.
  • the control unit 120 determines whether to enable the DRX retransmission related timer based on the bitmap information.
  • the uplink (transmission) in step S104 is replaced with the downlink (transmission).
  • control unit 120 of the UE 100 may determine whether to enable the DRX retransmission related timer not only for the first PDSCH transmission of the multiple PDSCH transmissions but also for subsequent PDSCH transmissions based on the bit corresponding to the corresponding HARQ process ID.
  • a third operation example of the mobile communication system 1 will be described with reference to FIG. 9.
  • This operation example is a modified example of the operation of the UE 100 in step S104 or step S205.
  • the control unit 120 may perform the following operation for each HARQ process number used for communication with the base station 200.
  • the uplink transmission specifically, PUSCH
  • the same operation may also be performed for the downlink transmission (specifically, PDSCH). Note that the description of the same operation as above will be omitted as appropriate.
  • Step S301 The control unit 120 may determine whether the target HARQ process is a HARQ process for a first PUSCH transmission scheduled by one DCI (hereinafter, referred to as a specific HARQ process). If the target HARQ process is a specific HARQ process, the control unit 120 executes the process of step S302. On the other hand, if the target HARQ process is not a specific HARQ process, the control unit 120 executes the process of step S305.
  • a specific HARQ process for a first PUSCH transmission scheduled by one DCI
  • Steps S302 to S304 This corresponds to steps S121 to S123.
  • Step S305 The control unit 120 may determine whether the target HARQ process is a HARQ process for a subsequent PUSCH transmission scheduled by one DCI (hereinafter referred to as a specific HARQ process). If the target HARQ process is a specific HARQ process, the control unit 120 executes the process of step S306. On the other hand, if the target HARQ process is not a specific HARQ process, the control unit 120 executes the process of step S302.
  • Step S306 The control unit 120 may apply the same determination to the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission (hereinafter, sometimes referred to as the first DRX retransmission related timer) for the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission, regardless of the bitmap information. Therefore, when the control unit 120 determines that the first DRX retransmission related timer is valid, the control unit 120 determines that the subsequent DRX retransmission related timer is valid, regardless of the bitmap information (i.e., even if the bitmap information indicates that the bitmap information is invalid).
  • control unit 120 determines that the first DRX retransmission related timer is invalid, the control unit 120 determines that the subsequent DRX retransmission related timer is invalid, regardless of the bitmap information (i.e., even if the bitmap information indicates that the bitmap information is valid).
  • control unit 120 when determining the validity of a DRX retransmission-related timer corresponding to a HARQ process for (multiple) PDSCH transmissions scheduled by another DCI received after the above-mentioned DCI, the control unit 120 does not apply the same judgment as for the first DRX retransmission-related timer based on the above-mentioned DCI.
  • control unit 120 may determine whether to enable the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission or the first PDSCH transmission scheduled by one DCI based on the bitmap information.
  • the control unit 120 may apply the same determination to the DRX retransmission related timer corresponding to the HARQ process for the subsequent PUSCH transmission or the subsequent PDSCH transmission scheduled by one DCI as to the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission, regardless of the bitmap information.
  • the network 10 schedules multiple PUSCH transmissions or multiple PUSCH transmissions by one DCI for traffic with a large amount of data (e.g., video data), for example, it may not be necessary to change the validity of the DRX retransmission related timer for each HARQ process. In such a case, by applying the same determination to the subsequent DRX retransmission related timer as to the first DRX retransmission related timer, the processing load of the UE 100 can be reduced, and power saving of the UE 100 can be further achieved.
  • a large amount of data e.g., video data
  • the base station 200 may transmit an RRC message including a parameter (a parameter value) for DRX setting.
  • the UE 100 may specify a parameter (a parameter value) used for DRX operation based on the parameter for DRX setting.
  • the parameter (a parameter value) for DRX setting may include any of drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and drx-LongCycleStartOffset.
  • one or more HARQ processes (HARQ process IDs) used for downlink and/or uplink transmission may be set for the UE 100.
  • the base station 200 may transmit an RRC message including information indicating one or more HARQ processes (HARQ process IDs) used for downlink and/or uplink transmission.
  • the number of HARQ processes (the number of HARQ process IDs) used for downlink and/or uplink transmission may be predefined by a specification or the like and may be known information between the base station 200 and the UE 100.
  • the base station 200 may set bitmap information. For example, when DRX (DRX operation) is set, the UE 100 may control the processing of a timer (e.g., a retransmission-related timer and/or an IAT) based on the set bitmap information.
  • a timer e.g., a retransmission-related timer and/or an IAT
  • UE100 may determine whether to enable drx-RetransmissionTimerDL corresponding to the HARQ process based on the value of the bit of bitmap information corresponding to the HARQ process. For example, when the bit of bitmap information corresponding to the HARQ process is set to "1", UE100 may enable drx-RetransmissionTimerDL corresponding to the HARQ process (e.g., may start drx-RetransmissionTimerDL).
  • UE100 may enable drx-RetransmissionTimerDL in the first symbol after drx-HARQ-RTT-TimerDL expires (e.g., may start drx-RetransmissionTimerDL). Also, when the bit of the bitmap information corresponding to the HARQ process is set to "0", UE100 may not enable drx-RetransmissionTimerDL corresponding to the HARQ process (e.g., may not start drx-RetransmissionTimerDL).
  • UE100 may enable drx-RetransmissionTimerDL corresponding to the HARQ process (e.g., may start drx-RetransmissionTimerDL). For example, UE100 may enable drx-RetransmissionTimerDL (e.g., may start drx-RetransmissionTimerDL) in the first symbol after drx-HARQ-RTT-TimerDL expires.
  • the UE100 may determine whether or not to enable the drx-RetransmissionTimerUL corresponding to the HARQ process based on the value of the bit of the bitmap information corresponding to the HARQ process. For example, when the bit of the bitmap information corresponding to the HARQ process is set to "1", the UE100 may enable the drx-RetransmissionTimerUL corresponding to the HARQ process (for example, may start the drx-RetransmissionTimerUL).
  • UE100 may enable drx-RetransmissionTimerUL (e.g., may start drx-RetransmissionTimerUL) in the first symbol after drx-HARQ-RTT-TimerUL expires. Also, when the bit of the bitmap information corresponding to the HARQ process is set to "0", UE100 may not enable drx-RetransmissionTimerUL corresponding to the HARQ process (e.g., may not start drx-RetransmissionTimerUL).
  • UE100 may enable drx-RetransmissionTimerUL corresponding to the HARQ process (e.g., may start drx-RetransmissionTimerDL).
  • UE100 may enable drx-RetransmissionTimerUL (e.g., may start drx-RetransmissionTimerUL) in the first symbol after drx-HARQ-RTT-TimerUL expires.
  • UE100 may monitor the PDCCH in the serving cell in the DRX group when the DRX group is in active time.
  • UE100 may determine whether or not to enable the drx-HARQ-RTT-TimerDL corresponding to the HARQ process related to the reported HARQ feedback based on the value of the bit of the bitmap information corresponding to the HARQ process.
  • the case where the PDCCH indicates downlink transmission may include the reception (detection) of a DCI format used for scheduling the downlink transmission (e.g., PDSCH).
  • the reported HARQ feedback may be HARQ feedback (also referred to as downlink HARQ feedback) reported for the downlink transmission (e.g., PDSCH transmission).
  • HARQ feedback also referred to as downlink HARQ feedback
  • the UE 100 may enable the drx-HARQ-RTT-Timer DL corresponding to the HARQ process (for example, may start the drx-HARQ-RTT-Timer DL).
  • the UE 100 may enable the drx-HARQ-RTT-Timer DL (for example, may start the drx-HARQ-RTT-Timer DL) in the first symbol after the transmission of the HARQ feedback.
  • the UE 100 may not enable the drx-HARQ-RTT-Timer DL corresponding to the HARQ process (for example, may not start the drx-HARQ-RTT-Timer DL).
  • UE100 may enable the drx-HARQ-RTT-TimerDL corresponding to the HARQ process (e.g., may start the drx-HARQ-RTT-TimerDL). For example, UE100 may enable the drx-HARQ-RTT-TimerDL in the first symbol after the transmission of the HARQ feedback (e.g., may start the drx-HARQ-RTT-TimerDL).
  • UE 100 may stop the drx-RetransmissionTimerDL corresponding to the HARQ process related to the reported HARQ feedback.
  • the UE 100 may determine whether to enable the drx-HARQ-RTT-TimerUL corresponding to the HARQ process related to the PUSCH transmission based on the value of the bit of the bitmap information corresponding to the HARQ process.
  • the case where the PDCCH indicates uplink transmission may include the reception (detection) of a DCI format used for scheduling the uplink transmission (e.g., PUSCH).
  • the UE 100 may enable the drx-HARQ-RTT-TimerUL corresponding to the HARQ process (e.g., may start the drx-HARQ-RTT-TimerUL).
  • UE100 may enable drx-HARQ-RTT-TimerUL (e.g., may start drx-HARQ-RTT-TimerUL) in the first symbol after the corresponding PUSCH transmission.
  • UE100 may not enable drx-HARQ-RTT-TimerUL corresponding to the HARQ process (e.g., may not start drx-HARQ-RTT-TimerUL).
  • UE100 may enable the drx-HARQ-RTT-TimerUL corresponding to the HARQ process (e.g., may start the drx-HARQ-RTT-TimerUL).
  • UE100 may enable the drx-HARQ-RTT-TimerUL (e.g., may start the drx-HARQ-RTT-TimerUL) in the first symbol after the corresponding PUSCH transmission.
  • the UE 100 may stop the drx-RetransmissionTimerUL corresponding to the HARQ process related to the PUSCH transmission.
  • uplink transmission and downlink transmission are described as examples, but this is not limiting.
  • operations similar to those described above may be performed in sidelink communication, which is communication between terminals.
  • the mobile communication system 1 may be a system that complies with the TS of either LTE (Long Term Evolution) or another generation system of the 3GPP standard (e.g., the sixth generation).
  • the base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE.
  • the mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • the mobile communication system 1 may be a system that complies with the TS of either LTE or another generation system of the 3GPP standard (e.g., the 6th generation).
  • the base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE.
  • the mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
  • each of the above-described operation flows is not limited to being executed separately and independently, but can be executed by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • a program may be provided that causes a computer to execute each process performed by the UE 100 or the base station 200.
  • the program may be recorded in a computer-readable medium.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, and may be, for example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disk Read Only Memory).
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
  • transmit may mean performing processing of at least one layer in a protocol stack used for transmission, or may mean physically transmitting a signal wirelessly or wired.
  • transmit may mean a combination of performing processing of at least one layer and physically transmitting a signal wirelessly or wired.
  • receiveive may mean performing processing of at least one layer in a protocol stack used for reception, or may mean physically receiving a signal wirelessly or wired.
  • receiver may mean a combination of performing processing of at least one layer and physically receiving a signal wirelessly or wired.
  • “obtain/acquire” may mean obtaining information from stored information, obtaining information from information received from other nodes, or obtaining the information by generating the information.
  • the terms “based on” and “depending on/in response to” do not mean “based only on” or “only in response to,” unless expressly stated otherwise.
  • the term “based on” means both “based only on” and “based at least in part on.”
  • the term “in response to” means both “only in response to” and “at least in part on.”
  • “include” and “comprise” do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items.
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some manner.
  • articles are added by translation, such as a, an, and the in English, these articles are intended to include the plural unless the context clearly indicates otherwise.
  • a communication device (100), A communication device comprising: a receiving unit (112) that receives, from a network (10), bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a hybrid automatic repeat request (HARQ) process DRX operation is enabled for each HARQ process.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • an order of the plurality of bits constituting the bitmap information is associated with an identifier of the HARQ process;
  • a control unit (120) that determines whether to enable the DRX retransmission related timer for a corresponding HARQ process based on each of the plurality of bits.
  • the receiving unit receives one downlink control information (DCI) for scheduling a plurality of physical uplink shared channels (PUSCHs) or a plurality of physical downlink shared channels (PDSCHs);
  • DCI downlink control information
  • the communication device further comprising: a control unit that determines whether to enable a DRX retransmission related timer corresponding to each HARQ process of a plurality of PUSCH transmissions or a plurality of PDSCH transmissions scheduled by the one DCI, based on the bitmap information.
  • the receiving unit receives one downlink control information (DCI) for scheduling a plurality of physical uplink shared channels (PUSCHs) or a plurality of physical downlink shared channels (PDSCHs); a control unit that determines whether to enable the DRX retransmission related timer for each of the HARQ processes based on the bitmap information;
  • the control unit is Determine whether to enable a DRX retransmission related timer corresponding to a HARQ process of a first PUSCH transmission or a first PDSCH transmission scheduled by the one DCI based on the bitmap information;
  • the communication device according to claim 1 or 2, wherein, regardless of the bitmap information, the same determination is applied to a DRX retransmission related timer corresponding to a HARQ process for a subsequent PUSH transmission or a subsequent PDSCH transmission scheduled by the one DCI as to the DRX retransmission related timer corresponding to the HARQ process of the initial PUSH transmission.
  • bitmap information includes uplink bitmap information indicating, for each HARQ process, whether or not to enable the DRX retransmission related timer for uplink transmission, and downlink bitmap information indicating, for each HARQ process, whether or not to enable the DRX retransmission related timer for downlink transmission.
  • bitmap information indicates, in addition to the DRX retransmission related timer, whether to enable a DRX inactivity timer that specifies a period during which the communication device should be in an awake state after successfully decoding a physical downlink control channel (PDCCH) indicating a new transmission, for each HARQ process.
  • PDCCH physical downlink control channel
  • a base station (Appendix 10) A base station (200), A base station comprising: a transmitter (211) that transmits, to a communication device, bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process is enabled for each HARQ process.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • a communication method performed in a communication device comprising: A communication method comprising: receiving, from a network, bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process is enabled for each HARQ process.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication device (100) is provided with a reception unit (112) that receives, from a network (10), bitmap information indicating, for each Hybrid Automatic Repeat Request (HARQ) process, whether to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during DRX operation in the HARQ process.

Description

通信装置、基地局及び通信方法Communication device, base station, and communication method 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2022年9月28日に出願された特許出願番号2022-155588号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority to patent application serial number 2022-155588, filed September 28, 2022, the entire contents of which are incorporated herein by reference.
 本開示は、移動通信システムで用いる通信装置、基地局及び通信方法に関する。 This disclosure relates to a communication device, a base station, and a communication method used in a mobile communication system.
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)では、XR(Extended Reality)サービスの特性に適合した省電力技術を検討するためのワークアイテムが立ち上がっている。 3GPP (registered trademark; the same applies below) (3rd Generation Partnership Project), a standardization project for mobile communications systems, has launched a work item to consider power saving technologies suited to the characteristics of XR (Extended Reality) services.
 XRサービスの特性上、例えば、非常に厳しい遅延要件を持つ小さなパケット(例えば、姿勢/制御情報(pose/control information))の送信が通信装置に要求されることがある。通信装置がこのようなパケットをハイブリッド自動再送要求(HARQ)プロセスにより再送したとしても遅延要件を満たせないことがあるため、保守的な変調コーディング方式(Modulation and Coding Scheme:MCS)を用いて信頼性の高いパケットを送信することが想定される。 Due to the characteristics of XR services, for example, a communication device may be required to transmit small packets (e.g., pose/control information) that have very strict delay requirements. Even if the communication device retransmits such packets using a hybrid automatic repeat request (HARQ) process, the delay requirements may not be met, so it is expected that a conservative modulation and coding scheme (MCS) will be used to transmit reliable packets.
 そこで、HARQプロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマ、具体的には、drx-HARQ-RTT-Timer及び/又はdrx-RetransmissionTimerを停止することが提案されている(非特許文献1参照)。drx-HARQ-RTT-Timer及び/又はdrx-RetransmissionTimerを停止することで、DRX動作中の通信装置が、HARQプロセスによる再送のための物理下りリンク制御チャネル(PDCCH)を監視するために起動状態を維持する必要がなくなるため、通信装置の省電力化を図ることができる。 Therefore, it has been proposed to stop the DRX retransmission related timers for controlling retransmission during discontinuous reception (DRX) operation in the HARQ process, specifically the drx-HARQ-RTT-Timer and/or the drx-RetransmissionTimer (see Non-Patent Document 1). By stopping the drx-HARQ-RTT-Timer and/or the drx-RetransmissionTimer, a communication device in DRX operation does not need to remain in an active state to monitor the physical downlink control channel (PDCCH) for retransmission by the HARQ process, and therefore power saving of the communication device can be achieved.
 第1の態様に係る通信装置は、ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報をネットワークから受信する受信部を備える。 The communication device according to the first aspect includes a receiving unit that receives bitmap information from a network that indicates whether or not to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process.
 第2の態様に係る基地局は、ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報を通信装置へ送信する送信部を備える。 The base station according to the second aspect includes a transmission unit that transmits bitmap information indicating whether or not to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process to a communication device for each HARQ process.
 第3の態様に係る通信方法は、通信装置で実行される通信方法は、当該通信方法は、ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報をネットワークから受信するステップを備える。 A communication method according to a third aspect is executed by a communication device, and includes a step of receiving, from a network, bitmap information indicating whether or not to enable a discontinuous reception (DRX) retransmission-related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、DRXに関するタイマを説明するための図である。 図4は、実施形態に係るUEの構成を示す図である。 図5は、実施形態に係る基地局の構成を示す図である。 図6は、実施形態に係る第1動作例を説明するためのシーケンス図である。 図7は、実施形態に係る第1動作例におけるUE100の動作の一例を説明するためのフローチャートである。 図8は、実施形態に係る第2動作例を説明するためのシーケンス図である。 図9は、実施形態に係る第3動作例におけるUE100の動作の一例を説明するためのフローチャートである。
The objects, features, and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.
FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram illustrating an example of the configuration of a protocol stack according to the embodiment. FIG. 3 is a diagram for explaining a timer related to DRX. FIG. 4 is a diagram showing a configuration of a UE according to the embodiment. FIG. 5 is a diagram showing a configuration of a base station according to the embodiment. FIG. 6 is a sequence diagram for explaining a first operation example according to the embodiment. FIG. 7 is a flowchart for explaining an example of the operation of UE 100 in a first operation example according to the embodiment. FIG. 8 is a sequence diagram for explaining a second operation example according to the embodiment. FIG. 9 is a flowchart for explaining an example of the operation of UE 100 in the third operation example according to the embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 The mobile communication system according to the embodiment will be described with reference to the drawings. In the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 しかしながら、既存の3GPP技術仕様では、HARQプロセス毎にDRX再送関連タイマを停止するための具体的な仕組みが存在しない。従って、通信装置の省電力化を図るために、例えば、全てのHARQプロセスにおいてDRX再送関連タイマを一律に無効にすると、HARQプロセスによる再送が有効である場合にも、DRX動作中の通信装置がHARQプロセスによる再送のためのPDCCHを監視できないという問題がある。 However, the existing 3GPP technical specifications do not have a specific mechanism for stopping the DRX retransmission-related timer for each HARQ process. Therefore, if, for example, the DRX retransmission-related timer is uniformly disabled in all HARQ processes in order to save power in the communication device, there is a problem that a communication device in DRX operation cannot monitor the PDCCH for retransmission by the HARQ process even when retransmission by the HARQ process is enabled.
 そこで、本開示は、HARQプロセス毎にDRX再送関連タイマを柔軟に制御可能とする通信装置、基地局、及び通信方法を提供することを目的の一つとする。 Therefore, one of the objectives of this disclosure is to provide a communication device, base station, and communication method that enable flexible control of DRX retransmission-related timers for each HARQ process.
 (システム構成)
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5Gシステム)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
(System configuration)
First, the configuration of a mobile communication system 1 according to the present embodiment will be described with reference to Fig. 1. The mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS). In the following, the mobile communication system 1 will be described using a 3GPP standard 5th Generation System (5G system), i.e., a mobile communication system based on NR (New Radio) as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and a user equipment (UE) 100 that communicates with the network 10. The network 10 includes a 5G radio access network, NG-RAN (Next Generation Radio Access Network) 20, and a 5G core network, 5GC (5G Core Network) 30.
 UE100は、基地局200を介して通信する通信装置である。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、端末、端末装置、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。また、UE100は端末の一例であり、端末には工場機器等を含んでもよい。 UE100 is a communication device that communicates via base station 200. UE100 may be a device used by a user. UE100 may be a user device defined in the technical specifications of 3GPP. UE100 is a mobile device such as a mobile phone terminal such as a smartphone, a tablet terminal, a notebook PC, a communication module, or a communication card. UE100 may be a vehicle (e.g., a car, a train, etc.) or a device provided therein. UE100 may be a transport vehicle other than a vehicle (e.g., a ship, an airplane, etc.) or a device provided therein. UE100 may be a sensor or a device provided therein. Note that UE100 may be called by other names such as a terminal, a terminal device, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, or a remote unit. Additionally, UE 100 is an example of a terminal, and terminals may include factory equipment, etc.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属する。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックの詳細については後述する。また、基地局200は、Xnインターフェイスを介して他の基地局200(隣接基地局と称されてもよい)に接続される。基地局200は、Xnインターフェイスを介して隣接基地局と通信する。また、基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN20 includes multiple base stations 200. Each base station 200 manages at least one cell. A cell constitutes the smallest unit of a communication area. One cell belongs to one frequency (carrier frequency). The term "cell" may refer to a wireless communication resource, and may also refer to a communication target of UE100. Each base station 200 can perform wireless communication with UE100 located in its own cell. The base station 200 communicates with UE100 using a protocol stack of the RAN. Details of the protocol stack will be described later. In addition, the base station 200 is connected to other base stations 200 (which may be referred to as adjacent base stations) via an Xn interface. The base station 200 communicates with adjacent base stations via an Xn interface. In addition, the base station 200 provides NR user plane and control plane protocol terminations toward the UE100, and is connected to the 5GC30 via an NG interface. Such an NR base station 200 may be referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、U-plane処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 5GC30 includes a core network device 300. The core network device 300 includes, for example, an AMF (Access and Mobility Management Function) and/or a UPF (User Plane Function). The AMF manages the mobility of the UE 100. The UPF provides functions specialized for U-plane processing. The AMF and the UPF are connected to the base station 200 via an NG interface.
 (プロトコルスタックの構成例)
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。
(Example of protocol stack configuration)
Next, an example of the configuration of a protocol stack according to this embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。 The protocol for the wireless section between UE100 and base station 200 includes a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and an RRC layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via a physical channel.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing using Hybrid ARQ (HARQ), random access procedures, etc. Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of base station 200 via a transport channel. The MAC layer of base station 200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resources to be allocated to UE100.
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression, and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 The SDAP (Service Data Adaptation Protocol) layer may be provided as a layer above the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer maps IP flows, which are the units by which the core network performs QoS (Quality of Service) control, to radio bearers, which are the units by which the AS (Access Stratum) performs QoS control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers. RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of base station 200. When there is an RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC connected state. When there is no RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC idle state. When the RRC connection between the RRC of UE100 and the RRC of base station 200 is suspended, UE100 is in an RRC inactive state.
 UE100においてRRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。 The NAS layer, which is located above the RRC layer in UE100, performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of the core network device 300.
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 In addition, UE100 has an application layer, etc. in addition to the radio interface protocol.
 (無線フレーム構成)
 5Gシステムにおいて、下り送信及び上り送信は、10msの持続時間の無線フレーム内で構成される。例えば、無線フレームは、10個のサブフレームにより構成される。例えば、1つのサブフレームは、1msであってもよい。また、1つのサブフレームは、1以上のスロットにより構成されてもよい。例えば、1つのスロットを構成するシンボルの数は、通常CP(Cyclic Prefix)で14個であり、拡張CPで12個である。また、1つのサブフレームを構成するスロットの数は、設定されたサブキャリア間隔に応じて変化する。例えば、通常CPに対して、サブキャリア間隔として15kHzが設定された場合、サブフレーム当たりのスロットの数は1(すなわち、14シンボル)であり、サブキャリア間隔として30kHzが設定された場合、サブフレーム当たりのスロットの数は2(すなわち、28シンボル)であり、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、56シンボル)であり、サブキャリア間隔として120kHzが設定された場合、サブフレーム当たりのスロットの数は8(すなわち、112シンボル)である。また、拡張CPに対して、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、48シンボル)である。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するスロットの数が決定される。また、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するシンボルの数が決定される。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1msのサブフレームを構成するシンボルの数が決定され、各シンボルの長さ(時間方向の長さ)が変化する。
(Radio Frame Structure)
In the 5G system, downlink transmission and uplink transmission are configured within a radio frame of 10 ms duration. For example, a radio frame is configured with 10 subframes. For example, one subframe may be 1 ms. Also, one subframe may be configured with one or more slots. For example, the number of symbols constituting one slot is 14 in a normal CP (Cyclic Prefix) and 12 in an extended CP. Also, the number of slots constituting one subframe changes according to the set subcarrier interval. For example, for a normal CP, when the subcarrier interval is set to 15 kHz, the number of slots per subframe is 1 (i.e., 14 symbols), when the subcarrier interval is set to 30 kHz, the number of slots per subframe is 2 (i.e., 28 symbols), when the subcarrier interval is set to 60 kHz, the number of slots per subframe is 4 (i.e., 56 symbols), and when the subcarrier interval is set to 120 kHz, the number of slots per subframe is 8 (i.e., 112 symbols). Furthermore, when the subcarrier interval is set to 60 kHz for the extended CP, the number of slots per subframe is 4 (i.e., 48 symbols). That is, the number of slots constituting one subframe is determined based on the subcarrier interval set by the base station 200. Also, the number of symbols constituting one subframe is determined based on the subcarrier interval set by the base station 200. That is, the number of symbols constituting a 1 ms subframe is determined based on the subcarrier interval set by the base station 200, and the length of each symbol (length in the time direction) changes.
 (DRX)
 図3を参照して、実施形態に係る移動通信システム1における間欠受信(DRX)について説明する。図3Aは、上りリンク送信におけるDRXに関するタイマを説明するための図である。図3Bは、下りリンク送信におけるDRXに関するタイマを説明するための図である。
(DRX)
With reference to Fig. 3, the discontinuous reception (DRX) in the mobile communication system 1 according to the embodiment will be described. Fig. 3A is a diagram for explaining a timer related to DRX in uplink transmission. Fig. 3B is a diagram for explaining a timer related to DRX in downlink transmission.
 UE100の消費電力を削減するために、UE100は、DRX中の動作(以下、DRX動作と称する)として、UE100の物理下りリンク制御チャネル(PDCCH)を常に監視するのではなく、一定のサイクル(すなわち、DRXサイクル)毎でのみPDCCHを監視する。特に、RRCコネクティッド状態であるUE100が実行するDRXは、C-DRXと呼ばれることがある。 In order to reduce the power consumption of UE100, UE100 does not constantly monitor the physical downlink control channel (PDCCH) of UE100 as an operation during DRX (hereinafter referred to as DRX operation), but monitors the PDCCH only at regular cycles (i.e., DRX cycles). In particular, DRX performed by UE100 in an RRC connected state is sometimes called C-DRX.
 UE100には、オン期間とオフ期間とで構成されるDRXサイクルが設定される。オン期間では、UE100の状態が、UE100が、PDCCHを監視する起動(Awake)状態である。起動状態にあるUE100は、PDCCHを監視するためにアクティブである。起動状態は、例えば、アクティブ状態、又はDRX起動状態と称されてもよい。また、オン期間は、PDCCHを監視する期間として、例えば、DRXオン期間、オン時間、又はアクティブ時間と称されてもよい。オフ期間では、UE100の状態が、UE100がPDCCHを監視する必要がないスリープ状態である。スリープ状態にあるUE100は、インアクティブである。スリープ状態は、例えば、DRXスリープ状態、スリープモード、DRXモード、又は省電力モードと称されてもよい。オフ期間は、PDCCHを監視しない期間として、例えば、DRXオフ期間、オフ時間、又はインアクティブ時間と称されてもよい。 The UE 100 is set with a DRX cycle consisting of an on period and an off period. During the on period, the state of the UE 100 is an awake state in which the UE 100 monitors the PDCCH. The UE 100 in the awake state is active to monitor the PDCCH. The awake state may be referred to as, for example, an active state or a DRX activated state. The on period may also be referred to as, for example, a DRX on period, on time, or active time as a period in which the PDCCH is monitored. During the off period, the state of the UE 100 is a sleep state in which the UE 100 does not need to monitor the PDCCH. The UE 100 in the sleep state is inactive. The sleep state may be referred to as, for example, a DRX sleep state, a sleep mode, a DRX mode, or a power saving mode. The off period may also be referred to as, for example, a DRX off period, off time, or inactive time as a period in which the PDCCH is not monitored.
 DRXサイクルとして、ロングDRXサイクルとショートDRXサイクルとが規定されている。ロングDRXサイクルは、オン期間とオフ期間で構成されている。ショートDRXサイクルは、ロングDRXと共に設定される追加のDRXサイクルである。ショートDRXサイクルは、ロングDRXサイクルと比較して短いDRXサイクルである。 As DRX cycles, a long DRX cycle and a short DRX cycle are specified. The long DRX cycle consists of an on period and an off period. The short DRX cycle is an additional DRX cycle that is set together with the long DRX cycle. The short DRX cycle is a DRX cycle that is shorter than the long DRX cycle.
 DRX設定用のパラメータとして、例えば、drx-onDurationTimer、drx-InactivityTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL、drx-LongCycleStartOffset、drx-SlotOffset等が、UE100に設定されるセルグループ毎にUE個別に設定される。 DRX setting parameters, such as drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, and drx-SlotOffset, are set individually for each cell group set in UE 100.
 以下、本実施形態においては、説明を容易とするために、1つのセルグループに対してDRX(DRX動作)が設定されることを記載する。すなわち、本実施形態における動作は、1つのセルグループに対して、DRX(DRX動作)が設定された場合の動作であってもよい。すなわち、本実施形態における動作は、1つのサービングセル(例えば、下りリンクのサービングセル、下りリンクコンポーネントキャリアとも称する)に対して、DRX(DRX動作)が設定された場合の動作であってもよい。また、本実施形態における動作は、1つ又は複数のサービングセルのそれぞれにおいて設定されたDL BWP(Downlonk Bandwidth Part:下りリンク帯域幅部分)のそれぞれに対してDRX(DRX動作)が設定された場合の動作であってもよい。すなわち、本実施形態における動作は、1つ又は複数のサービングセルのそれぞれにおけるDL BWPのそれぞれに対して、DRX(DRX動作)が設定された場合の動作であってもよい。すなわち、本実施形態において、DRX設定用のパラメータ(すなわち、DRX(DRX動作))は、1つ又は複数のセルグループのそれぞれに対して設定されてもよい。また、本実施形態において、DRX設定用のパラメータ(すなわち、DRX(DRX動作))は、1つ又は複数のサービングセルのそれぞれに対して設定されてもよい。また、本実施形態において、DRX設定用のパラメータ(すなわち、DRX(DRX動作))は、1つ又は複数のDL BWPのそれぞれに対して設定されてもよい。 Hereinafter, in this embodiment, for ease of explanation, it will be described that DRX (DRX operation) is set for one cell group. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for one cell group. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for one serving cell (for example, a downlink serving cell, also referred to as a downlink component carrier). Also, the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP (Downlink Bandwidth Part) set in each of one or more serving cells. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP in each of one or more serving cells. That is, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more cell groups. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more serving cells. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more DL BWPs.
 drx-onDurationTimerは、DRXサイクルの開始の期間(the duration at the beginning of a DRX cycle)を示してもよい。例えば、drx-onDurationTimerは、各DRXサイクルのDRXオン期間の時間量を指定するパラメータである。従って、drx-onDurationTimerは、DRXオン期間を計時するために用いられるDRXオンデュレーションタイマ(drx-onDurationTimer)のタイマ値にセットされる。図3に示すように、UE100は、DRXオンデュレーションタイマ(以下、ODTと称することがある)が稼働(動作)している間、アクティブ状態である(例えば、アクティブ時間であるとみなす)。UE100は、ODTの満了までにPDCCHを受信しない場合、次のオン期間の開始まで、スリープ状態へ移行する。 drx-onDurationTimer may indicate the duration at the beginning of a DRX cycle. For example, drx-onDurationTimer is a parameter that specifies the amount of time of the DRX on period of each DRX cycle. Thus, drx-onDurationTimer is set to the timer value of the DRX on duration timer (drx-onDurationTimer) used to time the DRX on period. As shown in FIG. 3, UE 100 is in an active state (e.g., considered to be in an active time) while the DRX on duration timer (hereinafter sometimes referred to as ODT) is running (operating). If UE 100 does not receive a PDCCH by the expiration of ODT, it transitions to a sleep state until the start of the next on period.
 drx-InactivityTimerは、新規の上りリンク又は下りリンクの送信を示すPDCCHに対するPDCCH機会の後の期間(the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission)を示してもよい。ここで、上りリンクの送信を示すPDCCHは、上りリンクのスケジューリング(例えば、PUSCHのスケジューリング)に用いられるDCIフォーマットを含んでもよい。また、下りリンクの送信を示すPDCCHは、下りリンクのスケジューリング(例えば、PDSCHのスケジューリング)に用いられるDCIフォーマットを含んでもよい。例えば、drx-InactivityTimerは、新規送信(new transmission)を示すPDCCHのデコードに成功した後、UE100がアクティブであるべき期間を指定するパラメータである。従って、drx-InactivityTimerは、例えばアクティブ時間を計時するために用いられるDRXインアクティビティタイマ(drx-InactivityTimer)のタイマ値にセットされる。図3に示すように、DRXインアクティビティタイマ(以下、IATと称することがある)は、UE100がオン期間中に新規送信(例えば、UL、DL、又はSL(サイドリンク))用のPDCCHを受信すると、開始又は再開される。従って、UE100は、IATが稼働している間、起動状態を維持する。IATは、新規送信を示すPDCCHのデコードに成功した後にUE100が起動状態であるべき期間を示すタイマであってよい。UE100は、IATが満了するまでPDCCHを監視する。IATが満了すると、UE100は、スリープ状態(DRXモード)に移行する。 The drx-InactivityTimer may indicate the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission. Here, the PDCCH indicating the uplink transmission may include a DCI format used for uplink scheduling (e.g., PUSCH scheduling). Also, the PDCCH indicating the downlink transmission may include a DCI format used for downlink scheduling (e.g., PDSCH scheduling). For example, the drx-InactivityTimer is a parameter that specifies the period during which the UE 100 should be active after successfully decoding a PDCCH indicating a new transmission. Therefore, the drx-InactivityTimer is set to the timer value of the DRX inactivity timer (drx-InactivityTimer) used to time the active time, for example. As shown in FIG. 3, the DRX inactivity timer (hereinafter sometimes referred to as IAT) is started or restarted when the UE 100 receives a PDCCH for a new transmission (e.g., UL, DL, or SL (sidelink)) during the on period. Therefore, the UE 100 remains in an awake state while the IAT is running. The IAT may be a timer indicating the period during which the UE 100 should be in an awake state after successfully decoding a PDCCH indicating a new transmission. The UE 100 monitors the PDCCH until the IAT expires. When the IAT expires, the UE 100 transitions to a sleep state (DRX mode).
 drx-HARQ-RTT-TimerULは、上りリンクにおけるHARQの再送のためのグラントが期待される前の最小の期間(the minimum duration before a UL HARQ retransmission grant is expected)を示してもよい。ここで、グラントとは、上りリンクの送信を示すPDCCHを含んでもよい。例えば、drx-HARQ-RTT-TimerULは、上りリンクデータの再送処理で用いられるパラメータである。drx-HARQ-RTT-TimerULは、UE100が上りリンク再送を期待できる期間を規定するパラメータである。drx-HARQ-RTT-TimerULは、当該期間を計時するために用いられるタイマ(drx-HARQ-RTT-TimerUL(タイマ))のタイマ値にセットされる。UE100は、当該タイマが稼働中は、スリープ状態を維持する。当該タイマを、以下、HARQ・RTTタイマ又はHARQ・RTT・ULタイマと称することがある。図3Aに示すように、UE100は、PUSCHを送信した直後の最初のシンボルでHARQ・RTTタイマ(具体的には、drx-HARQ-RTT-TimerULタイマ)を開始する。UE100は、当該タイマの満了に応じて、アクティブ状態に移行する。また、drx-HARQ-RTT-TimerULは、上りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 The drx-HARQ-RTT-TimerUL may indicate the minimum duration before a UL HARQ retransmission grant is expected. Here, the grant may include a PDCCH indicating an uplink transmission. For example, the drx-HARQ-RTT-TimerUL is a parameter used in the retransmission process of uplink data. The drx-HARQ-RTT-TimerUL is a parameter that specifies the period during which the UE 100 can expect an uplink retransmission. The drx-HARQ-RTT-TimerUL is set to the timer value of a timer (drx-HARQ-RTT-TimerUL (timer)) used to time the period. The UE 100 maintains a sleep state while the timer is running. The timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT UL timer. As shown in FIG. 3A, the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerUL timer) with the first symbol immediately after transmitting the PUSCH. The UE 100 transitions to an active state in response to expiration of the timer. In addition, drx-HARQ-RTT-TimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
 drx-HARQ-RTT-TimerDLは、HARQの再送に対する下りリンクの割り当ての前の最小の期間(the minimum duration before a DL assignment for HARQ retransmission)を示してもよい。ここで、下りリンクの割り当てとは、下りリンクの送信を示すPDCCHを含んでもよい。例えば、drx-HARQ-RTT-TimerDLは、下りリンクデータの再送処理で用いられるパラメータである。drx-HARQ-RTT-TimerDLは、UE100が再送を期待できる期間を規定するパラメータである。drx-HARQ-RTT-TimerDLは、当該期間を計時するために用いられるタイマ(drx-HARQ-RTT-TimerDL(タイマ))のタイマ値にセットされる。UE100は、当該タイマが稼働中は、スリープ状態を維持する。当該タイマを、以下、HARQ・RTTタイマ又はHARQ・RTT・DLタイマと称することがある。図3Bに示すように、UE100は、新規下りリンク送信を受信した場合に、上りリンクで否定応答(NACK)の送信後に最初のシンボルでHARQ・RTTタイマ(具体的には、drx-HARQ-RTT-TimerDLタイマ)を開始する。UE100は、当該タイマの満了に応じて、アクティブ状態に移行する。また、drx-HARQ-RTT-TimerDLは、下りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 The drx-HARQ-RTT-TimerDL may indicate the minimum duration before a DL assignment for HARQ retransmission. Here, the downlink assignment may include a PDCCH indicating downlink transmission. For example, the drx-HARQ-RTT-TimerDL is a parameter used in the retransmission process of downlink data. The drx-HARQ-RTT-TimerDL is a parameter that specifies the period during which the UE 100 can expect a retransmission. The drx-HARQ-RTT-TimerDL is set to the timer value of a timer (drx-HARQ-RTT-TimerDL (timer)) used to time the period. The UE 100 maintains a sleep state while the timer is running. The timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT DL timer. As shown in FIG. 3B, when the UE 100 receives a new downlink transmission, the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerDL timer) with the first symbol after transmitting a negative acknowledgement (NACK) in the uplink. The UE 100 transitions to an active state in response to expiration of the timer. In addition, drx-HARQ-RTT-TimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
 drx-RetransmissionTimerULは、上りリンクの再送信に対するグラントを受信するまでの最大の期間(the maximum duration until a grant for UL retransmission is received)を示してもよい。ここで、上りリンクの再送信に対するグラントとは、上りリンクの再送信を示すPDCCHを含んでもよい。例えば、drx-RetransmissionTimerULは、上りリンクデータの再送処理で用いられるパラメータである。drx-RetransmissionTimerULは、上りリンク再送の許可(グラント)をUEが期待できる場合にUEがPDCCHをモニタすべきスロットの最大数にセットされる。drx-RetransmissionTimerULは、指定されたスロットの期間を計時するために用いられるタイマ(drx-RetransmissionTimerULタイマ)のタイマ値にセットされる。当該タイマは、DRX再送タイマ又はDRX再送ULタイマと称することがある。当該タイマは、HARQプロセス毎に対応付けられてよい。図3Aに示すように、UE100は、drx-HARQ-RTT-TimerULタイマが満了すると、次のシンボルでDRX再送ULタイマを開始する。UE100は、当該タイマの稼働している間、起動状態となる。UE100は、対応するHARQプロセス用の上りリンク送信を検出するとすぐに、DRX再送ULタイマを停止する。また、drx-RetransmissionTimerULは、上りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 drx-RetransmissionTimerUL may indicate the maximum duration until a grant for UL retransmission is received. Here, the grant for uplink retransmission may include a PDCCH indicating uplink retransmission. For example, drx-RetransmissionTimerUL is a parameter used in the retransmission process of uplink data. drx-RetransmissionTimerUL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a grant for uplink retransmission. The drx-RetransmissionTimerUL is set to the timer value of a timer (drx-RetransmissionTimerUL timer) used to time the duration of a specified slot. This timer may be referred to as a DRX retransmission timer or a DRX retransmission UL timer. This timer may be associated with each HARQ process. As shown in FIG. 3A, the UE 100 starts the DRX retransmission UL timer at the next symbol when the drx-HARQ-RTT-TimerUL timer expires. The UE 100 is in an awake state while this timer is running. The UE 100 stops the DRX retransmission UL timer as soon as it detects an uplink transmission for the corresponding HARQ process. In addition, drx-RetransmissionTimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
 drx-RetransmissionTimerDLは、下りリンクの再送を受信するまでの最大の期間(the maximum duration until a DL retransmission is received)を示してもよい。ここで、下りリンクの再送とは、下りリンクデータの再送(すなわち、PDSCHにおける再送)を含んでもよい。また、下りリンクデータは、DL-SCHのデータとも称される。例えば、drx-RetransmissionTimerDLは、下りリンクデータの再送処理で用いられるパラメータである。drx-RetransmissionTimerDLは、基地局200からの再送をUEが期待できる場合にUEがPDCCHをモニタすべきスロットの最大数にセットされる。drx-RetransmissionDLは、指定されたスロットの期間を計時するために用いられるタイマ(drx-RetransmissionTimerDLタイマ)のタイマ値にセットされる。当該タイマは、DRX再送タイマ又はDRX再送DLタイマと称することがある。当該タイマは、HARQプロセス毎に対応付けられてよい。図3Bに示すように、UE100は、drx-HARQ-RTT-TimerDLタイマが満了すると、次のシンボルでDRX再送DLタイマを開始する。UE100は、当該タイマの稼働している間、起動状態となる。UE100は、対応するHARQプロセス用の下りリンク送信を検出するとすぐに、DRX再送DLタイマを停止する。また、drx-RetransmissionTimerDLは、下りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 drx-RetransmissionTimerDL may indicate the maximum duration until a DL retransmission is received. Here, downlink retransmission may include retransmission of downlink data (i.e., retransmission in PDSCH). Downlink data is also referred to as DL-SCH data. For example, drx-RetransmissionTimerDL is a parameter used in the retransmission process of downlink data. drx-RetransmissionTimerDL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a retransmission from base station 200. The drx-RetransmissionDL is set to the timer value of a timer (drx-RetransmissionTimerDL timer) used to time the duration of the specified slot. This timer may be referred to as a DRX retransmission timer or a DRX retransmission DL timer. This timer may be associated with each HARQ process. As shown in FIG. 3B, when the drx-HARQ-RTT-TimerDL timer expires, the UE 100 starts the DRX retransmission DL timer at the next symbol. The UE 100 is in an awake state while this timer is running. The UE 100 stops the DRX retransmission DL timer as soon as it detects a downlink transmission for the corresponding HARQ process. In addition, drx-RetransmissionTimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
 例えば、UE100は、1つのセルグループに対して設定されたdrx-onDurationTimer又はdrx-InactivityTimerが動作している時間を、当該1つのセルグループにおけるサービングセルに対するアクティブ時間だとみなしてもよい。また、UE100は、1つのセルグループにおけるサービングセルのいずれかにおいて、drx-RetransmissionTimerUL又はdrx-RetransmissionTimerDLが動作している時間を、当該1つのセルグループにおけるサービングセルに対するアクティブ時間だとみなしてもよい。例えば、UE100は、当該1つのセルグループがアクティブ時間である場合に、PDCCHを監視してもよい。すなわち、UE100は、当該1つのセルグループがアクティブ時間である場合に、当該1つのセルグループにおけるサービングセルにおいてPDCCHを監視してもよい。ここで、DRX設定用のパラメータ(すなわち、DRX(DRX動作))が設定されるセルグループを、DRXグループとも称する。例えば、基地局200は、1つ又は複数のサービングセルを含むDRXグループを示す情報を含むRRCメッセージを送信してもよい。UE100は、DRXグループを示す情報に基づいて、DRXグループを特定してもよい。例えば、DRXグループは、1つ又は複数のサービングセルのグループであって、同じアクティブ時間を持つ(設定される)グループであってもよい。DRX(DRX動作)が設定された場合、1つのDRXグループにおけるサービングセルに対するアクティブ時間は、当該1つのDRXグループに対して設定されたdrx-onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimerUL、及び、drx-RetransmissionTimerDLのいずれかが動作している時間を含んでもよい。 For example, UE100 may consider the time when drx-onDurationTimer or drx-InactivityTimer set for one cell group is operating as the active time for the serving cell in that one cell group. Also, UE100 may consider the time when drx-RetransmissionTimerUL or drx-RetransmissionTimerDL is operating in any of the serving cells in that one cell group as the active time for the serving cell in that one cell group. For example, UE100 may monitor the PDCCH when the one cell group is in the active time. That is, UE100 may monitor the PDCCH in the serving cell in that one cell group when the one cell group is in the active time. Here, the cell group in which the parameters for DRX setting (i.e., DRX (DRX operation)) are set is also referred to as the DRX group. For example, the base station 200 may transmit an RRC message including information indicating a DRX group including one or more serving cells. The UE 100 may identify the DRX group based on the information indicating the DRX group. For example, the DRX group may be a group of one or more serving cells that have (are set to have) the same active time. When DRX (DRX operation) is set, the active time for the serving cells in one DRX group may include the time during which any of the drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerUL, and drx-RetransmissionTimerDL set for the one DRX group is operating.
 drx-LongCycleStartOffsetは、ロングDRXサイクルの開始位置を制御するためのパラメータである。drx-LongCycleStartOffsetは、ロングDRXサイクルの長さと、ロングDRXサイクル内の開始サブフレーム番号とを決定するために用いられる。drx-SlotOffsetは、サブフレームの開始に関してオン期間の開始を規定するパラメータである。 drx-LongCycleStartOffset is a parameter for controlling the start position of the long DRX cycle. drx-LongCycleStartOffset is used to determine the length of the long DRX cycle and the starting subframe number within the long DRX cycle. drx-SlotOffset is a parameter that specifies the start of the on-period with respect to the start of the subframe.
 また、UE100は、DRXコマンドMAC CE又はロングDRXコマンドMAC CEをネットワーク(基地局200)から受信した場合、現在のオン期間(アクティブ時間)を終了させる。具体的には、UE100は、ODT及びIATを停止する。 Furthermore, when UE 100 receives a DRX command MAC CE or a long DRX command MAC CE from the network (base station 200), it ends the current on-period (active time). Specifically, UE 100 stops ODT and IAT.
 UE100は、DRXコマンドMAC CEを受信した場合、通常のDRXサイクルに移行する。具体的には、UE100には、ショートDRXサイクルが設定されている場合には、ショートDRXサイクルモードに移行する。UE100には、ショートDRXサイクルが設定されていない場合には、ロングDRXサイクルモードに移行する。一方で、UE100は、ロングDRXコマンドMAC CEを受信した場合、ロングDRXサイクルに移行する。 When UE100 receives the DRX command MAC CE, it transitions to a normal DRX cycle. Specifically, when a short DRX cycle is set in UE100, it transitions to a short DRX cycle mode. When a short DRX cycle is not set in UE100, it transitions to a long DRX cycle mode. On the other hand, when UE100 receives a long DRX command MAC CE, it transitions to a long DRX cycle.
 (想定シナリオ)
 実施形態に係る移動通信システム1における想定シナリオについて説明する。移動通信システムの標準化プロジェクトである3GPPにおいて、XRサービスの特性に適合した省電力技術を検討するためのワークアイテムが立ち上がっている。XRトラフィック(XRサービス)の特性には、例えば、60, 120fps(16.67, 8.33ms)等の非整数周期、エンコーディングやNW送信遅延によるトラフィックの到着タイミングのばらつきジッタ(Jitter)、異なるトラフィック特性やQoS要件を持つ複数のデータストリーム(複数のフロー(Multiple flow)、例えば、IフレームとPフレーム、ビデオと音声/データなど)がある。
(Assumed scenario)
An assumed scenario in the mobile communication system 1 according to the embodiment will be described. In the 3GPP, which is a standardization project for mobile communication systems, a work item has been launched to study power saving technology suited to the characteristics of XR services. The characteristics of XR traffic (XR service) include, for example, a non-integer period such as 60, 120 fps (16.67, 8.33 ms), jitter (variation in the arrival timing of traffic due to encoding and NW transmission delay), and multiple data streams with different traffic characteristics and QoS requirements (multiple flows, for example, I frames and P frames, video and voice/data, etc.).
 XRトラフィックを提供するためのXRサービスの特性上、例えば、非常に厳しい遅延要件を持つ小さなパケット(例えば、姿勢/制御情報(pose/control information))の送信がUE100に要求されることがある。UE100がこのようなパケットをハイブリッド自動再送要求(HARQ)プロセスにより再送したとしても遅延要件を満たせないことがあるため、保守的な変調コーディング方式(Modulation and Coding Scheme:MCS)を用いて信頼性の高いパケットを送信することが想定される。 Due to the characteristics of the XR service for providing XR traffic, for example, the UE 100 may be required to transmit small packets (e.g., pose/control information) with very strict delay requirements. Even if the UE 100 retransmits such packets using a hybrid automatic repeat request (HARQ) process, the delay requirements may not be met, so it is expected that a conservative modulation and coding scheme (MCS) will be used to transmit reliable packets.
 そこで、HARQプロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマ、具体的には、HARQ・RTTタイマ及び/又はDRX再送タイマを停止することが提案されている。HARQ・RTTタイマ及び/又はDRX再送タイマを停止することで、DRX動作中のUE100が、HARQプロセスによる再送のための物理下りリンク制御チャネル(PDCCH)を監視するために起動状態を維持する必要がなくなるため、UE100の省電力化を図ることができる。 Therefore, it has been proposed to stop the DRX retransmission related timers for controlling retransmission during discontinuous reception (DRX) operation in the HARQ process, specifically the HARQ RTT timer and/or the DRX retransmission timer. By stopping the HARQ RTT timer and/or the DRX retransmission timer, the UE 100 during DRX operation does not need to remain in an active state to monitor the physical downlink control channel (PDCCH) for retransmission by the HARQ process, which can reduce the power consumption of the UE 100.
 しかしながら、既存の3GPP技術仕様では、HARQプロセス毎にDRX再送関連タイマを停止するための具体的な仕組みが存在しない。従って、UE100の省電力化を図るために、例えば、全てのHARQプロセスにおいてDRX再送関連タイマを一律に無効にすると、HARQプロセスによる再送が有効である場合にも、DRX動作中のUE100がHARQプロセスによる再送のためのPDCCHを監視できないという問題がある。そこで、本開示は、HARQプロセス毎にDRX再送関連タイマを柔軟に制御可能とするための動作について説明する。 However, in the existing 3GPP technical specifications, there is no specific mechanism for stopping the DRX retransmission related timer for each HARQ process. Therefore, if, for example, the DRX retransmission related timer is uniformly disabled in all HARQ processes in order to save power in the UE 100, there is a problem that the UE 100 in DRX operation cannot monitor the PDCCH for retransmission by the HARQ process even when retransmission by the HARQ process is enabled. Therefore, this disclosure describes an operation for enabling flexible control of the DRX retransmission related timer for each HARQ process.
 (UEの構成)
 図4を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
(UE Configuration)
A configuration of the UE 100 according to the embodiment will be described with reference to Fig. 4. The UE 100 includes a communication unit 110 and a control unit 120.
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving radio signals to and from the base station 200. The communication unit 110 has at least one transmission unit 111 and at least one reception unit 112. The transmission unit 111 and the reception unit 112 may be configured to include multiple antennas and RF circuits. The antenna converts a signal into radio waves and radiates the radio waves into space. The antenna also receives radio waves in space and converts the radio waves into a signal. The RF circuit performs analog processing of the signal transmitted and received via the antenna. The RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. The control unit 120 controls communication with the base station 200 via the communication unit 110. The operations of the UE 100 described above and below may be operations under the control of the control unit 120. The control unit 120 may include at least one processor capable of executing programs and a memory for storing the programs. The processor may execute the programs to perform the operations of the control unit 120. The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit. The digital processing includes processing of the RAN protocol stack. The memory stores the programs executed by the processor, parameters related to the programs, and data related to the programs. The memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or a portion of the memory may be contained within the processor.
 このように構成されたUE100では、受信部112は、DRX再送関連タイマを有効にするか否かをHARQプロセス毎に示すビットマップ情報をネットワーク10(基地局200)から受信する。これにより、UE100の制御部120は、ビットマップ情報に基づいて、HARQプロセス毎にDRX再送関連タイマを有効にするか否かを決定できる。その結果、HARQプロセス毎にDRX再送関連タイマを柔軟に制御可能となる。 In the UE 100 configured in this manner, the receiver 112 receives bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process from the network 10 (base station 200). This allows the control unit 120 of the UE 100 to determine whether or not to enable the DRX retransmission related timer for each HARQ process based on the bitmap information. As a result, it becomes possible to flexibly control the DRX retransmission related timer for each HARQ process.
 (基地局の構成)
 図5を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワーク通信部220と、制御部230とを有する。
(Base station configuration)
The configuration of the base station 200 according to the embodiment will be described with reference to Fig. 5. The base station 200 includes a communication unit 210, a network communication unit 220, and a control unit 230.
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 210, for example, receives a radio signal from the UE 100 and transmits a radio signal to the UE 100. The communication unit 210 has at least one transmission unit 211 and at least one reception unit 212. The transmission unit 211 and the reception unit 212 may be configured to include an RF circuit. The RF circuit performs analog processing of the signal transmitted and received via the antenna. The RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
 ネットワーク通信部220は、信号をネットワークと送受信する。ネットワーク通信部220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワーク通信部220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network communication unit 220 transmits and receives signals to the network. For example, the network communication unit 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations. The network communication unit 220 also receives signals from a core network device 300 connected via an NG interface, and transmits signals to the core network device 300.
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワーク通信部220を介したノード(例えば、隣接基地局、コアネットワーク装置300との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls, for example, communication with the UE 100 via the communication unit 210. The control unit 230 also controls, for example, communication with a node (e.g., an adjacent base station, a core network device 300) via the network communication unit 220. The operations of the base station 200 described above and below may be operations under the control of the control unit 230. The control unit 230 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to perform the operations of the control unit 230. The control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit. The digital processing includes processing of the RAN protocol stack. The memory stores the program executed by the processor, parameters related to the program, and data related to the program. All or a part of the memory may be included in the processor.
 このように構成された基地局200では、送信部211は、DRX再送関連タイマを有効にするか否かをHARQプロセス毎に示すビットマップ情報をUE100へ送信する。これにより、UE100の制御部120は、ビットマップ情報に基づいて、HARQプロセス毎にDRX再送関連タイマを有効にするか否かを決定できる。その結果、HARQプロセス毎にDRX再送関連タイマを柔軟に制御可能となる。ネットワーク10は、例えば、UE100が非常に厳しい遅延要件を持つ小さなパケットに対してHARQプロセスのDRX再送関連タイマを停止するように制御することで、UE100が起動状態を維持する必要がなくなり、UE100の省電力化を図ることができる。 In the base station 200 configured in this manner, the transmission unit 211 transmits to the UE 100 bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process. This allows the control unit 120 of the UE 100 to determine whether or not to enable the DRX retransmission related timer for each HARQ process based on the bitmap information. As a result, it becomes possible to flexibly control the DRX retransmission related timer for each HARQ process. For example, the network 10 controls the UE 100 to stop the DRX retransmission related timer of the HARQ process for small packets with very strict delay requirements, thereby eliminating the need for the UE 100 to maintain an active state and enabling power saving of the UE 100.
 (第1動作例)
 図6及び図7を参照して、移動通信システム1の第1動作例について説明する。第1動作例では、UE100が、上りリンク送信における再送処理(HARQプロセス)を実行するケースについて説明する。以下において、UE100とネットワーク10との通信(送信及び/又は受信)の一例として、UE100と基地局200との通信を例に挙げて説明する。本実施形態において、HARQプロセスは、下りリンクにおけるHARQプロセス(DL HARQ process)及び/又は上りリンクにおけるHARQプロセス(UL HARQ process)を含む。ここで、下りリンクにおけるHARQプロセスは、下りリンクの送信(例えば、再送処理)に対して用いられるHARQプロセスを含む。また、上りリンクにおけるHARQプロセスは、上りリンクの送信(例えば、再送処理)に対して用いられるHARQプロセスを含む。
(First operation example)
A first operation example of the mobile communication system 1 will be described with reference to Fig. 6 and Fig. 7. In the first operation example, a case where the UE 100 executes a retransmission process (HARQ process) in uplink transmission will be described. In the following, as an example of communication (transmission and/or reception) between the UE 100 and the network 10, communication between the UE 100 and the base station 200 will be described as an example. In this embodiment, the HARQ process includes a HARQ process in a downlink (DL HARQ process) and/or a HARQ process in an uplink (UL HARQ process). Here, the HARQ process in a downlink includes a HARQ process used for downlink transmission (e.g., retransmission process). In addition, the HARQ process in an uplink includes a HARQ process used for uplink transmission (e.g., retransmission process).
 ステップS101:
 図6に示すように、基地局200の送信部211は、ビットマップ情報をUE100に送信する。UE100の受信部112は、ビットマップ情報を基地局200から受信する。
Step S101:
6 , the transmitting unit 211 of the base station 200 transmits the bitmap information to the UE 100. The receiving unit 112 of the UE 100 receives the bitmap information from the base station 200.
 ビットマップ情報は、例えば、無線リソース管理(RRC)メッセージに含まれていてよい。ビットマップ情報は、例えば、DRXに関するパラメータを設定するために用いられるDRX設定(DRX-config)、サービングセルをUEに設定(追加又は変更)するために用いられるサービングセル設定(ServingCellConfig)、1つのサービングセルのUEの帯域幅部分(BWP)全体で共通のUE固有のPDSCHパラメータを設定するために用いられるPDSCHサービングセル設定(PDSCH-ServingCellConfig)、1つのサービングセルのUEの帯域幅部分(BWP)全体で共通のUE固有のPUSCHパラメータを設定するために用いられるPUSCHサービングセル設定(PUSCH-ServingCellConfig)の少なくともいずれかに含まれていてよい。すなわち、ビットマップ情報は、DRX設定、サービングセル設定、DL BWPの設定(DL BWPの設定に含まれるPDSCHのパラメータ)、及び/又は、UL BWPの設定(UL BWPの設定に含まれるPUSCHのパラメータ)に含まれてもよい。 The bitmap information may be included in, for example, a radio resource control (RRC) message. The bitmap information may be included in at least one of the following: a DRX configuration (DRX-config) used to set parameters related to DRX; a serving cell configuration (ServingCellConfig) used to set (add or change) a serving cell in a UE; a PDSCH serving cell configuration (PDSCH-ServingCellConfig) used to set UE-specific PDSCH parameters common to the entire bandwidth portion (BWP) of a UE of one serving cell; and a PUSCH serving cell configuration (PUSCH-ServingCellConfig) used to set UE-specific PUSCH parameters common to the entire bandwidth portion (BWP) of a UE of one serving cell. That is, the bitmap information may be included in the DRX settings, the serving cell settings, the DL BWP settings (PDSCH parameters included in the DL BWP settings), and/or the UL BWP settings (PUSCH parameters included in the UL BWP settings).
 ビットマップ情報は、DRX再送関連タイマを有効にするか否かをHARQプロセス毎に示す。ビットマップ情報は、複数のビット(ビット列)により構成されてよい。ビットマップ情報を構成する複数のビットの並び順は、HARQプロセスの識別子(すなわち、HARQプロセスID)と対応付けられていてよい。HARQプロセスの識別子は、HARQプロセス番号を識別するための識別子であってよい。本実施形態において、タイマ(例えば、DRX再送関連タイマ、IAT)を有効にするか否かは、タイマを開始又は再開始するか否かと同じ意味として用いられてもよい。すなわち、タイマを有効にするか否かは、タイマを開始又は再開始するか否かに置き換えられてもよい。すなわち、タイマを有効にするとは、タイマを開始又は再開始することに置き換えられてもよい。また、タイマを有効にしない(無効にする)とは、タイマを開始又は再開始しないことに置き換えられてもよい。すなわち、ビットマップ情報は、タイマを開始又は再開始するかどうかを決定するために用いられる情報を含んでもよい。また、ビットマップ情報は、タイマを停止するかどうかを決定するために用いられる情報を含んでもよい。 The bitmap information indicates whether or not to enable the DRX retransmission related timer for each HARQ process. The bitmap information may be composed of multiple bits (bit strings). The arrangement of multiple bits constituting the bitmap information may be associated with an identifier of the HARQ process (i.e., HARQ process ID). The identifier of the HARQ process may be an identifier for identifying the HARQ process number. In this embodiment, whether or not to enable a timer (e.g., a DRX retransmission related timer, IAT) may be used to mean the same as whether or not to start or restart the timer. That is, whether or not to enable a timer may be replaced with whether or not to start or restart the timer. That is, enabling a timer may be replaced with starting or restarting a timer. Also, not enabling (disabling) a timer may be replaced with not starting or restarting a timer. That is, the bitmap information may include information used to determine whether or not to start or restart a timer. Also, the bitmap information may include information used to determine whether or not to stop a timer.
 例えば、ビットマップ情報により示される複数のビットの最初(又は最も左)のビットがHARQプロセスID0に対応し、次のビットがHARQプロセスID1に対応してよい。n番目のビットがHARQプロセスIDn-1に対応してよい(nは自然数)。各ビットは、対応するHARQプロセス(すなわち、HARQプロセスID)のDRX再送関連タイマを有効にするか否かを示してよい。例えば、各ビットは、「0」又は「1」を示すように設定されていてよい。「0」に設定されたビットに対応するDRX再送関連タイマは有効であり、「1」に設定されたビットに対応するDRX再送関連タイマは無効であってよい。或いは、その逆であってもよい。 For example, the first (or leftmost) bit of the multiple bits indicated by the bitmap information may correspond to HARQ process ID 0, the next bit may correspond to HARQ process ID 1, and the nth bit may correspond to HARQ process ID n-1 (n is a natural number). Each bit may indicate whether or not the DRX retransmission related timer of the corresponding HARQ process (i.e., HARQ process ID) is enabled. For example, each bit may be set to indicate "0" or "1". The DRX retransmission related timer corresponding to a bit set to "0" may be enabled, and the DRX retransmission related timer corresponding to a bit set to "1" may be disabled. Or, the opposite may be true.
 DRX再送関連タイマは、HARQプロセスにおけるDRX動作中の再送を制御するためのタイマである。DRX再送関連タイマは、drx-HARQ-RTT-TimerULタイマ、drx-HARQ-RTT-TimerDLタイマ、drx-RetransmissionTimerULタイマ、及びdrx-RetransmissionTimerDLタイマの少なくともいずれかである。 The DRX retransmission related timer is a timer for controlling retransmission during DRX operation in the HARQ process. The DRX retransmission related timer is at least one of the drx-HARQ-RTT-TimerUL timer, the drx-HARQ-RTT-TimerDL timer, the drx-RetransmissionTimerUL timer, and the drx-RetransmissionTimerDL timer.
 また、ビットマップ情報は、DRX再送関連タイマに加えて、IATを有効にするか否かをHARQプロセス毎に示してもよい。なお、基地局200(ネットワーク10)は、ビットマップ情報とは別に、IATを有効にするか否かをHARQプロセス毎に示す情報(IATビットマップ情報と称する)をUE100へ送信してもよい。UE100は、IATビットマップ情報を基地局200(ネットワーク10)から受信してもよい。 The bitmap information may also indicate whether or not to enable the IAT for each HARQ process, in addition to the DRX retransmission related timer. Note that the base station 200 (network 10) may transmit information indicating whether or not to enable the IAT for each HARQ process (referred to as IAT bitmap information) to the UE 100, separate from the bitmap information. The UE 100 may receive the IAT bitmap information from the base station 200 (network 10).
 また、ビットマップ情報は、DRX再送関連タイマに関連するHARQモードをHARQプロセス毎に更に示してもよい。HARQモードは、例えば、モードAとモードBとのいずれかであってよい。上述と同様に、ビットマップ情報を構成する各ビットは、対応するHARQプロセスのHARQモードを示してよい。例えば、「0」に設定されたビットに対応するHARQモードがモードAであり、「1」に設定されたビットに対応するHARQモードがモードBであってよい。或いは、その逆であってもよい。なお、モードAでは、UE100は、関連するDRX再送関連タイマを有効にしてもよい。例えば、モードAは、関連するDRX再送関連タイマを開始又は再開始するモードを含んでもよい。また、モードBでは、UE100は、関連するDRX再送関連タイマを有効にしなくてもよい(無効にしてもよい)。例えば、モードBは、関連するDRX再送関連タイマを開始又は再開始しないモードを含んでもよい。例えば、ビットマップ情報における、最初のビット(例えば、HARQプロセスID0に対応する)が「1」に設定され、次のビット(例えば、HARQプロセスID1に対応する)が「0」に設定された場合、HARQプロセスID0がモードAとして設定され、HARQプロセスID1がモードBとして設定されてもよい。ここで、モードAとして設定されたHARQプロセスID0に関連するDRX再送関連タイマは有効にされてもよい。また、UE100は、モードAとして設定されたHARQプロセスID0に関連するDRX再送関連タイマを開始又は再開始するように制御してもよい。また、モードBとして設定されたHARQプロセスID1に関連するDRX再送関連タイマは有効にされなくてもよい(無効にされてもよい)。また、UE100は、モードBとして設定されたHARQプロセスID1に関連するDRX再送関連タイマを開始又は再開始しないように制御してもよい。 The bitmap information may further indicate the HARQ mode associated with the DRX retransmission related timer for each HARQ process. The HARQ mode may be, for example, either mode A or mode B. As described above, each bit constituting the bitmap information may indicate the HARQ mode of the corresponding HARQ process. For example, the HARQ mode corresponding to a bit set to "0" may be mode A, and the HARQ mode corresponding to a bit set to "1" may be mode B. Alternatively, the opposite may be true. In mode A, the UE 100 may enable the associated DRX retransmission related timer. For example, mode A may include a mode in which the associated DRX retransmission related timer is started or restarted. In mode B, the UE 100 may not enable (may disable) the associated DRX retransmission related timer. For example, mode B may include a mode in which the associated DRX retransmission related timer is not started or restarted. For example, if the first bit (e.g., corresponding to HARQ process ID 0) in the bitmap information is set to "1" and the next bit (e.g., corresponding to HARQ process ID 1) is set to "0", HARQ process ID 0 may be set as mode A and HARQ process ID 1 may be set as mode B. Here, the DRX retransmission related timer associated with HARQ process ID 0 set as mode A may be enabled. Also, the UE 100 may control to start or restart the DRX retransmission related timer associated with HARQ process ID 0 set as mode A. Also, the DRX retransmission related timer associated with HARQ process ID 1 set as mode B may not be enabled (may be disabled). Also, the UE 100 may control not to start or restart the DRX retransmission related timer associated with HARQ process ID 1 set as mode B.
 ビットマップ情報は、上りリンク送信(すなわち、上りリンクのHARQプロセス)に対してのみ適用されるものであってよい。従って、ビットマップ情報は、上りリンク送信に対してのみUE100に個別に設定されるものであってよい。或いは、ビットマップ情報は、下りリンク送信(すなわち、下りリンクのHARQプロセス)に対してのみ適用されるものであってよい。従って、ビットマップ情報は、下りリンク送信に対してのみUE100に個別に設定されるものであってよい。或いは、ビットマップ情報は、上りリンク送信及び下りリンク送信の両方に適用されるものであってもよい。従って、1つのビットマップ情報が、上りリンク送信及び/又は下りリンク送信のそれぞれに対するDRX再送関連タイマを有効にするか否かをHARQプロセス毎(上りリンクのHARQプロセス毎、及び/又は、下りリンクのHARQプロセス毎)に示してもよい。或いは、ビットマップ情報は、上りリンク送信についてDRX再送関連タイマを有効にするか否かをHARQプロセス毎に示すビットマップ情報(上りリンクビットマップ情報、第1のビットマップ情報とも称する)と、下りリンク送信についてDRX再送関連タイマを有効にするか否かをHARQプロセス毎に示すビットマップ情報(下りリンクビットマップ情報、第2のビットマップ情報とも称する)と、を含んでもよい。 The bitmap information may be applied only to uplink transmission (i.e., uplink HARQ process). Thus, the bitmap information may be configured individually in UE 100 only for uplink transmission. Alternatively, the bitmap information may be applied only to downlink transmission (i.e., downlink HARQ process). Thus, the bitmap information may be configured individually in UE 100 only for downlink transmission. Alternatively, the bitmap information may be applied to both uplink transmission and downlink transmission. Thus, one bitmap information may indicate for each HARQ process (for each uplink HARQ process and/or for each downlink HARQ process) whether to enable a DRX retransmission related timer for each of uplink transmission and/or downlink transmission. Alternatively, the bitmap information may include bitmap information indicating for each HARQ process whether or not to enable a DRX retransmission related timer for uplink transmission (also referred to as uplink bitmap information, first bitmap information), and bitmap information indicating for each HARQ process whether or not to enable a DRX retransmission related timer for downlink transmission (also referred to as downlink bitmap information, second bitmap information).
 基地局200の制御部230は、UE100によってサポートされるHARQプロセス数に応じて、ビットマップ情報を生成してもよい。UE100は、UE100がサポートするHARQプロセス数の情報をネットワーク10へ送信してもよい。UE100がサポートするHARQプロセス数は、下りリンク送信及び上りリンク送信で独立に設定されるものであってよい。例えば、UE100は、UE100がサポートするHARQプロセスの数(下りリンクにおけるHARQプロセスの数、及び/又は、上りリンクにおけるHARQプロセスの数)を能力情報に含めて送信してもよい。ここで、UE100によってサポートされるHARQプロセスの数(下りリンクにおけるHARQプロセスの数、及び/又は、上りリンクにおけるHARQプロセスの数)は、仕様書などによって事前に規定されてもよい。例えば、UE100によってサポートされる下りリンクにおけるHARQプロセスの数は、16(又は32)であってもよい。また、UE100によってサポートされる上りリンクにおけるHARQプロセスの数は、16(又は32)であってもよい。基地局200の制御部230は、HARQプロセス数(例えば、上りリンクにおけるHARQプロセスの数)に基づいて、上りリンク送信に対して適用(設定)されるビットマップ情報を生成してよい。例えば、上りリンク送信のHARQプロセス数が16(又は32)である場合、ビットマップ情報が16ビット(又は32ビット)のビット列により構成されてよい。もしくは、基地局200の制御部230は、UE100によってサポートされるHARQプロセスの数に関わらず、HARQプロセスの最大数に応じて、ビットマップ情報を生成してもよい。例えば、上りリンクにおけるHARQプロセスの最大数が32である場合、ビットマップ情報が32ビットのビット列により構成されてよい。 The control unit 230 of the base station 200 may generate bitmap information according to the number of HARQ processes supported by the UE 100. The UE 100 may transmit information on the number of HARQ processes supported by the UE 100 to the network 10. The number of HARQ processes supported by the UE 100 may be set independently for downlink transmission and uplink transmission. For example, the UE 100 may transmit the number of HARQ processes supported by the UE 100 (the number of HARQ processes in the downlink and/or the number of HARQ processes in the uplink) included in the capability information. Here, the number of HARQ processes supported by the UE 100 (the number of HARQ processes in the downlink and/or the number of HARQ processes in the uplink) may be specified in advance by a specification or the like. For example, the number of HARQ processes in the downlink supported by the UE 100 may be 16 (or 32). Also, the number of HARQ processes in the uplink supported by the UE 100 may be 16 (or 32). The control unit 230 of the base station 200 may generate bitmap information to be applied (set) to the uplink transmission based on the number of HARQ processes (e.g., the number of HARQ processes in the uplink). For example, when the number of HARQ processes in the uplink transmission is 16 (or 32), the bitmap information may be configured with a bit string of 16 bits (or 32 bits). Alternatively, the control unit 230 of the base station 200 may generate bitmap information according to the maximum number of HARQ processes, regardless of the number of HARQ processes supported by the UE 100. For example, when the maximum number of HARQ processes in the uplink is 32, the bitmap information may be configured with a bit string of 32 bits.
 ここで、UE100は、ビットマップ情報において、下りリンク及び/又は上りリンク送信に対して設定(又は、指示)されたHARQプロセスIDに対応するビットのみを処理してもよい。例えば、UE100は、HARQプロセスID0及びHARQプロセスID2が設定された場合、ビットマップ情報における最初のビット(1番目のビット、HARQプロセスID0に対応する)及び3番目のビット(HARQプロセスID2)のみを処理してもよい。すなわち、UE100は、ビットマップ情報において、設定されたHARQプロセスIDに対応しないビットを無視(又は、破棄)してもよい。例えば、UE100は、HARQプロセスID0及びHARQプロセスID2が設定された場合、ビットマップ情報における2番目のビット(設定されていないHARQプロセスID1に対応する)を無視(又は、破棄)してもよい。 Here, UE 100 may process only bits in the bitmap information that correspond to the HARQ process IDs that are set (or indicated) for downlink and/or uplink transmission. For example, when HARQ process ID 0 and HARQ process ID 2 are set, UE 100 may process only the first bit (the first bit, corresponding to HARQ process ID 0) and the third bit (HARQ process ID 2) in the bitmap information. That is, UE 100 may ignore (or discard) bits in the bitmap information that do not correspond to the set HARQ process IDs. For example, when HARQ process ID 0 and HARQ process ID 2 are set, UE 100 may ignore (or discard) the second bit in the bitmap information (corresponding to HARQ process ID 1, which is not set).
 なお、基地局200は、複数のDRXをUE100に設定する場合、すなわち、複数のDRX設定をUE100へ送信する場合、各DRX設定に対応するビットマップ情報を生成してよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、ビットマップ情報が設定されてもよい。 Note that when the base station 200 configures multiple DRX settings for the UE 100, i.e., when the base station 200 transmits multiple DRX settings to the UE 100, the base station 200 may generate bitmap information corresponding to each DRX setting. That is, bitmap information may be configured for each of one or multiple DRX settings.
 UE100の制御部120は、例えば、ステップS101において、RRCメッセージに含まれるDRX設定に基づいて、DRX動作を制御してよい。或いは、UE100の制御部120は、ステップS101よりも前に受信したDRX設定に基づいて、DRX動作を制御してよい。 The control unit 120 of the UE 100 may control the DRX operation based on the DRX setting included in the RRC message in step S101, for example. Alternatively, the control unit 120 of the UE 100 may control the DRX operation based on the DRX setting received before step S101.
 ステップS102:
 基地局200の送信部211は、PUSCHをスケジューリングするためのPDCCHをUE100へ送信する。UE100の受信部112は、PDCCHを基地局200から受信する。具体的には、基地局200の送信部211は、PUSCHをスケジューリングするための下りリンク制御情報(DCI、DCIフォーマットとも称する)をPDCCH上で送信する。UE100の受信部112は、DCIを受信する。例えば、PUSCHは、上りリンクデータ(UL-SCHのデータとも称する)の送信に用いられてもよい。
Step S102:
The transmission unit 211 of the base station 200 transmits a PDCCH for scheduling a PUSCH to the UE 100. The reception unit 112 of the UE 100 receives the PDCCH from the base station 200. Specifically, the transmission unit 211 of the base station 200 transmits downlink control information (DCI, also referred to as a DCI format) for scheduling a PUSCH on the PDCCH. The reception unit 112 of the UE 100 receives the DCI. For example, the PUSCH may be used to transmit uplink data (also referred to as data of an UL-SCH).
 なお、基地局200の送信部211は、複数のPUSCHをスケジューリングする1つのDCI(1つのDCIフォーマットでもよい)をUE100へ送信してもよい。UE100の受信部112は、当該1つのDCI(1つのDCIフォーマットでもよい)を基地局200から受信してもよい。すなわち、当該1つのDCI(1つのDCIフォーマットでもよい)には、1つ又は複数のPUSCHのスケジューリングに用いられるスケジューリング情報(例えば、時間及び/又は周波数のリソースを割り当てるために用いられる情報)が含まれてもよい。 The transmitter 211 of the base station 200 may transmit one DCI (which may be one DCI format) for scheduling multiple PUSCHs to the UE 100. The receiver 112 of the UE 100 may receive the one DCI (which may be one DCI format) from the base station 200. That is, the one DCI (which may be one DCI format) may include scheduling information (e.g., information used to allocate time and/or frequency resources) used for scheduling one or multiple PUSCHs.
 ステップS103:
 UE100の送信部111は、DCIでスケジューリングされたPUSCHを基地局200へ送信してもよい。基地局200の受信部212は、PUSCHをUE100から受信してもよい。具体的には、UE100の送信部111は、PUSCH上で上りリンクデータを基地局200へ送信してもよい。基地局200の受信部212は、PUSCH上で上りリンクデータをUE100から受信してもよい。
Step S103:
The transmitting unit 111 of the UE 100 may transmit the PUSCH scheduled in the DCI to the base station 200. The receiving unit 212 of the base station 200 may receive the PUSCH from the UE 100. Specifically, the transmitting unit 111 of the UE 100 may transmit uplink data on the PUSCH to the base station 200. The receiving unit 212 of the base station 200 may receive the uplink data from the UE 100 on the PUSCH.
 UE100の制御部120は、例えば、DRX再送関連タイマを開始(又は再開始)するトリガ条件が満たされた場合に、当該トリガされたDRX再送関連タイマに関連付けられたHARQプロセスについて、ステップS104の処理を実行してもよい。また、UE100の制御部120は、ネットワーク10からビットマップ情報が設定された場合に(例えば、ステップS101において)、以下の処理を実行してもよい。 For example, when a trigger condition for starting (or re-starting) a DRX retransmission related timer is satisfied, the control unit 120 of the UE 100 may execute the process of step S104 for the HARQ process associated with the triggered DRX retransmission related timer. Also, when bitmap information is set from the network 10 (for example, in step S101), the control unit 120 of the UE 100 may execute the following process.
 ステップS104:
 UE100の制御部120は、ビットマップ情報に基づいて、HARQプロセス毎にDRX再送関連タイマを有効にするか否かを判定する。UE100の制御部120は、例えば、HARQプロセス毎に、図7に示す動作を実行してよい。制御部120は、基地局200との通信に使用する各HARQプロセス番号について、DRX再送関連タイマを有効にするか否かを判定してよい。
Step S104:
The control unit 120 of the UE 100 determines whether or not to enable a DRX retransmission related timer for each HARQ process based on the bitmap information. The control unit 120 of the UE 100 may execute the operation shown in FIG. 7 for each HARQ process. The control unit 120 may determine whether or not to enable a DRX retransmission related timer for each HARQ process number used for communication with the base station 200.
 制御部120は、1つのDCIを用いて、1つ又は複数のPUSCHがスケジューリングされる場合、ビットマップ情報に基づいて、当該1つ又は複数のPUSCH送信のそれぞれに用いられるHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定してもよい。 When one or more PUSCHs are scheduled using one DCI, the control unit 120 may determine, based on the bitmap information, whether to enable the DRX retransmission-related timers corresponding to the HARQ processes used for each of the one or more PUSCH transmissions.
 ステップS121:
 図7に示すように、制御部120は、ビットマップ情報に基づいて、DRX再送関連タイマを有効にするか否かを判定する。従って、制御部120は、ビットマップ情報に基づいて、対象のHARQプロセスIDに対応するビットがDRX再送関連タイマを有効にすることを示すか判定する。制御部120は、ビットマップ情報を構成する複数のビットのそれぞれに基づいて、DRX再送関連タイマを有効にするか否かを判定してよい。制御部120は、ビットがDRX再送関連タイマを有効にすることを示す場合、DRX再送関連タイマを有効にすると判定し、ステップS122の処理を実行する。一方で、制御部120は、ビットがDRX再送関連タイマを無効にする(又は有効にしない)ことを示す場合、DRX再送関連タイマを無効にすると判定し、ステップS123の処理を実行する。
Step S121:
As shown in FIG. 7, the control unit 120 determines whether to enable the DRX retransmission related timer based on the bitmap information. Therefore, the control unit 120 determines whether the bit corresponding to the target HARQ process ID indicates that the DRX retransmission related timer is enabled based on the bitmap information. The control unit 120 may determine whether to enable the DRX retransmission related timer based on each of the multiple bits constituting the bitmap information. If the bit indicates that the DRX retransmission related timer is enabled, the control unit 120 determines that the DRX retransmission related timer is enabled, and executes the process of step S122. On the other hand, if the bit indicates that the DRX retransmission related timer is disabled (or not enabled), the control unit 120 determines that the DRX retransmission related timer is disabled, and executes the process of step S123.
 なお、UE100の制御部120は、1つのDCIを用いて、複数のPUSCHがスケジューリングされる場合、複数のPUSCH送信における最初のPUSCH送信、及び、後続のPUSCH送信に対して、対応するHARQプロセスIDに対応するビットに基づいて、DRX再送関連タイマを有効にするか否かを判定してよい。 In addition, when multiple PUSCHs are scheduled using one DCI, the control unit 120 of the UE 100 may determine whether to enable the DRX retransmission related timer for the first PUSCH transmission in the multiple PUSCH transmissions and for subsequent PUSCH transmissions based on the bit corresponding to the corresponding HARQ process ID.
 ステップS122:
 制御部120は、DRX再送関連タイマを有効にする。制御部120は、DRX再送関連タイマを有効にする動作として、例えば、基地局200から受信したパラメータが指定する値をDRX再送関連タイマにセットして、当該DRX再送関連タイマを開始(又は再開始)してよい。制御部120は、既存の仕様書に規定されているDRX再送関連タイマに関する動作を実行してよい。
Step S122:
The control unit 120 enables a DRX retransmission related timer. As an operation of enabling a DRX retransmission related timer, the control unit 120 may, for example, set a value designated by a parameter received from the base station 200 to the DRX retransmission related timer and start (or restart) the DRX retransmission related timer. The control unit 120 may execute an operation related to a DRX retransmission related timer defined in an existing specification.
 ステップS123:
 制御部120は、DRX再送関連タイマを無効にする。制御部120は、DRX再送関連タイマを無効にする動作として、DRX再送関連タイマを開始(又は再開始)しなくてよい。制御部120は、例えば、DRX再送関連タイマに無限大又は0をセットしてもよい。
Step S123:
The control unit 120 disables the DRX retransmission related timer. As an operation of disabling the DRX retransmission related timer, the control unit 120 may not start (or restart) the DRX retransmission related timer. For example, the control unit 120 may set the DRX retransmission related timer to infinity or 0.
 その後、制御部120は、DRX再送関連タイマが有効である場合、当該DRX再送関連タイマを起動するトリガ条件が満たされると、DRX再送関連タイマを開始(又は再開始)する。一方で、制御部120は、DRX再送関連タイマが無効である場合、当該DCX再送関連タイマを起動するトリガ条件が満たされない又は当該トリガ条件が満たされたとしても、DRX再送関連タイマを開始又は再開始しない。 Then, if the DRX retransmission-related timer is enabled, the control unit 120 starts (or restarts) the DRX retransmission-related timer when the trigger condition for starting the DRX retransmission-related timer is satisfied. On the other hand, if the DRX retransmission-related timer is disabled, the control unit 120 does not start or restart the DRX retransmission-related timer even if the trigger condition for starting the DRX retransmission-related timer is not satisfied or is satisfied.
 制御部120は、例えば、有効であるDRX再送関連タイマがHARQ・RTTタイマ(例えば、HARQ・RTT・ULタイマ)を含む場合、PUSCHを送信した直後の最初のシンボルでHARQ・RTTタイマを開始(又は再開始)する。制御部120は、タイマが満了するまで、スリープ状態になる。制御部120は、例えば、有効であるDRX再送関連タイマがDRX再送タイマ(例えば、DRX再送ULタイマ)を含む場合、HARQ・RTT・ULタイマが満了すると、次のシンボルでDRX再送ULタイマを開始(又は再開始)する。UE100は、当該タイマの稼働している間、起動状態となる。 For example, if the valid DRX retransmission related timers include a HARQ RTT timer (e.g., a HARQ RTT UL timer), the control unit 120 starts (or restarts) the HARQ RTT timer with the first symbol immediately after transmitting the PUSCH. The control unit 120 goes into a sleep state until the timer expires. For example, if the valid DRX retransmission related timers include a DRX retransmission timer (e.g., a DRX retransmission UL timer), the control unit 120 starts (or restarts) the DRX retransmission UL timer with the next symbol when the HARQ RTT UL timer expires. The UE 100 goes into an awake state while the timer is running.
 なお、UE100の制御部120は、ビットマップ情報がIATを有効にするか否かをHARQプロセス毎に示す場合、ビットマップ情報に基づいて、HARQプロセス毎にIATを有効にするか否かを判定してよい。或いは、制御部120は、IATビットマップ情報を受信している(IATビットマップ情報が設定されている)場合、IATビットマップ情報に基づいて、HARQプロセス毎にIATを有効にするか否かを判定してよい。 Note that, when the bitmap information indicates whether or not to enable the IAT for each HARQ process, the control unit 120 of the UE 100 may determine whether or not to enable the IAT for each HARQ process based on the bitmap information. Alternatively, when the control unit 120 has received IAT bitmap information (IAT bitmap information is set), it may determine whether or not to enable the IAT for each HARQ process based on the IAT bitmap information.
 また、UE100の制御部120は、ビットマップ情報が、DRX再送関連タイマの有効性に加えて、DRX再送関連タイマに関連するHARQモードをHARQプロセス毎に示す場合、ビットマップ情報に基づいて、HARQプロセス毎にIATを有効にするか否かを判定してよい。 Furthermore, when the bitmap information indicates the HARQ mode related to the DRX retransmission related timer for each HARQ process in addition to the validity of the DRX retransmission related timer, the control unit 120 of the UE 100 may determine whether to enable the IAT for each HARQ process based on the bitmap information.
 以上によれば、基地局200の送信部211は、DRX再送関連タイマを有効にするか否かをHARQプロセス毎に示すビットマップ情報をUE100へ送信する。UE100の受信部112は、DRX再送関連タイマを有効にするか否かをHARQプロセス毎に示すビットマップ情報をネットワーク10(基地局200)から受信する。これにより、UE100の制御部120は、ビットマップ情報に基づいて、HARQプロセス毎にDRX再送関連タイマを有効にするか否かを判定できる。その結果、HARQプロセス毎にDRX再送関連タイマを柔軟に制御可能となる。ネットワーク10は、例えば、UE100が非常に厳しい遅延要件を持つ小さなパケットに対してHARQプロセスのDRX再送関連タイマを停止するように制御することで、UE100が起動状態を維持する必要がなくなり、UE100の省電力化を図ることができる。 As described above, the transmitting unit 211 of the base station 200 transmits to the UE 100 bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process. The receiving unit 112 of the UE 100 receives from the network 10 (base station 200) bitmap information indicating whether or not to enable the DRX retransmission related timer for each HARQ process. This allows the control unit 120 of the UE 100 to determine whether or not to enable the DRX retransmission related timer for each HARQ process based on the bitmap information. As a result, it becomes possible to flexibly control the DRX retransmission related timer for each HARQ process. For example, the network 10 controls the UE 100 to stop the DRX retransmission related timer of the HARQ process for small packets with very strict delay requirements, thereby eliminating the need for the UE 100 to maintain an activated state and enabling power saving of the UE 100.
 また、ビットマップ情報を構成する複数のビットの並び順は、HARQプロセスの識別子と対応付けられていてよい。制御部120は、複数のビットのそれぞれに基づいて、対応するHARQプロセスのDRX再送関連タイマを有効にするか否かを判定してよい。これにより、制御部120は、複数のビットの並び順に基づいて、対応するHARQプロセスのDRX再送関連タイマを有効にするか否かを規則的に判定できる。 In addition, the order of the multiple bits constituting the bitmap information may be associated with an identifier of the HARQ process. The control unit 120 may determine whether or not to enable the DRX retransmission related timer of the corresponding HARQ process based on each of the multiple bits. This allows the control unit 120 to regularly determine whether or not to enable the DRX retransmission related timer of the corresponding HARQ process based on the order of the multiple bits.
 また、受信部112は、複数のPUSCHをスケジューリングする1つのDCIを受信してよい。制御部120は、ビットマップ情報に基づいて、複数のPUSCH送信のそれぞれのHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定してよい。制御部120は、1つのDCIにより複数のPUSCHがスケジューリングされる場合であっても、HARQプロセス毎にDRX再送関連タイマを柔軟に制御可能となる。 Furthermore, the receiving unit 112 may receive one DCI that schedules multiple PUSCHs. The control unit 120 may determine whether or not to enable the DRX retransmission related timers corresponding to the HARQ processes of each of the multiple PUSCH transmissions based on the bitmap information. Even when multiple PUSCHs are scheduled by one DCI, the control unit 120 can flexibly control the DRX retransmission related timers for each HARQ process.
 また、ビットマップ情報は、上りリンク送信についてDRX再送関連タイマを有効にするか否かをHARQプロセス毎に示す上りリンクビットマップ情報と、下りリンク送信についてDRX再送関連タイマを有効にするか否かをHARQプロセス毎に示す下りリンクビットマップ情報と、を含んでよい。これにより、制御部120は、上りリンク送信と下りリンク送信とで独立して、DRX再送関連タイマを有効にするか否かをHARQプロセス毎に判定できる。その結果、DRX再送関連タイマを柔軟に制御可能となる。 The bitmap information may also include uplink bitmap information indicating for each HARQ process whether or not to enable the DRX retransmission related timer for uplink transmission, and downlink bitmap information indicating for each HARQ process whether or not to enable the DRX retransmission related timer for downlink transmission. This allows the control unit 120 to determine for each HARQ process whether or not to enable the DRX retransmission related timer for uplink transmission and downlink transmission independently. As a result, it becomes possible to flexibly control the DRX retransmission related timer.
 また、ビットマップ情報は、上りリンク送信及び下りリンク送信の両方に適用されてよい。これにより、ビットマップ情報が上りリンク送信及び下りリンク送信の一方にのみ適用される場合と比較して、ネットワーク10からUE100への情報量を低減でき、通信リソースを節約できる。 In addition, the bitmap information may be applied to both uplink transmission and downlink transmission. This reduces the amount of information sent from the network 10 to the UE 100, and saves communication resources, compared to when the bitmap information is applied to only one of the uplink transmission and the downlink transmission.
 また、ビットマップ情報は、DRX再送関連タイマに関連するHARQモードをHARQプロセス毎に更に示してよい。これにより、ネットワーク10が、HARQモードをHARQプロセス毎に示すビットマップの送信を省略できるため、ネットワーク10からUE100への情報量を低減でき、通信リソースを節約できる。 The bitmap information may further indicate the HARQ mode associated with the DRX retransmission related timer for each HARQ process. This allows the network 10 to omit the transmission of a bitmap indicating the HARQ mode for each HARQ process, thereby reducing the amount of information sent from the network 10 to the UE 100 and saving communication resources.
 また、ビットマップ情報は、DRX再送関連タイマに加えて、DRXインアクティビティタイマを有効にするか否かをHARQプロセス毎に示してよい。これにより、DRX再送関連タイマだけでなく、DRXインアクティビティタイマを柔軟に制御可能となる。 In addition to the DRX retransmission-related timers, the bitmap information may also indicate for each HARQ process whether the DRX inactivity timer is enabled. This allows for flexible control of not only the DRX retransmission-related timers but also the DRX inactivity timer.
 受信部112は、ビットマップ情報とは別に、DRXインアクティビティタイマを有効にするか否かをHARQプロセス毎に示す他のビットマップ情報をネットワークから受信してよい。他のビットマップ情報は、DRX再送関連タイマとは独立してDRXインアクティビティタイマの有効性を示すため、DRXインアクティビティタイマをより柔軟に制御可能となる。 The receiving unit 112 may receive other bitmap information from the network, in addition to the bitmap information, that indicates whether or not to enable the DRX inactivity timer for each HARQ process. The other bitmap information indicates the validity of the DRX inactivity timer independently of the DRX retransmission related timer, allowing for more flexible control of the DRX inactivity timer.
 (第2動作例)
 図8を参照して、移動通信システム1の第2動作例について説明する。第2動作例では、UE100が、下りリンク送信における再送処理(HARQプロセス)を実行するケースについて説明する。なお、上述と同様の動作の説明については、適宜省略する。
(Second operation example)
A second operation example of the mobile communication system 1 will be described with reference to Fig. 8. In the second operation example, a case will be described in which the UE 100 executes a retransmission process (HARQ process) in downlink transmission. Note that the description of the same operation as that described above will be omitted as appropriate.
 ステップS201:
 ステップS101と同様である。なお、ビットマップ情報は、少なくとも下りリンク送信についてDRX再送関連タイマを有効にするか否かをHARQプロセス毎に示す。
Step S201:
This is the same as step S101. Note that the bitmap information indicates, for each HARQ process, whether or not to enable a DRX retransmission related timer for at least downlink transmission.
 ステップS202:
 基地局200の送信部211は、PDSCHをスケジューリングするためのPDCCHをUE100へ送信する。UE100の受信部112は、PDCCHを基地局200から受信する。具体的には、基地局200の送信部211は、下りリンクデータ送信用のPDSCHをスケジューリングするためのDCIをPDCCH上で送信する。UE100の受信部112は、DCIを受信する。なお、基地局200の送信部211は、複数のPDSCHをスケジューリングする1つのDCIをUE100へ送信してもよい。UE100の受信部112は、当該DCIを基地局200から受信してもよい。
Step S202:
The transmission unit 211 of the base station 200 transmits a PDCCH for scheduling a PDSCH to the UE 100. The reception unit 112 of the UE 100 receives the PDCCH from the base station 200. Specifically, the transmission unit 211 of the base station 200 transmits a DCI for scheduling a PDSCH for downlink data transmission on the PDCCH. The reception unit 112 of the UE 100 receives the DCI. Note that the transmission unit 211 of the base station 200 may transmit one DCI for scheduling a plurality of PDSCHs to the UE 100. The reception unit 112 of the UE 100 may receive the DCI from the base station 200.
 ステップS203:
 基地局200の送信部211は、DCIでスケジューリングされたPDSCHをUE100へ送信する。UE100の受信部112は、PDSCHを基地局200から受信する。具体的には、基地局200の送信部211は、PDSCH上で下りリンクデータをUE100へ送信してもよい。UE100の受信部112は、PDSCH上で下りリンクデータを基地局200から受信してもよい。
Step S203:
The transmission unit 211 of the base station 200 transmits the PDSCH scheduled by the DCI to the UE 100. The reception unit 112 of the UE 100 receives the PDSCH from the base station 200. Specifically, the transmission unit 211 of the base station 200 may transmit downlink data on the PDSCH to the UE 100. The reception unit 112 of the UE 100 may receive the downlink data from the base station 200 on the PDSCH.
 UE100の制御部120は、下りリンクデータの受信に成功しない場合、ステップS204の処理を実行する制御を行う。 If the downlink data is not successfully received, the control unit 120 of the UE 100 performs control to execute the process of step S204.
 ステップS204:
 UE100の送信部111は、下りリンクデータの受信に成功しなかったHARQプロセスにおいて、否定応答(NACK)を基地局200へ送信する。基地局200は、NACKをUE100から受信する。
Step S204:
The transmission unit 111 of the UE 100 transmits a negative acknowledgement (NACK) to the base station 200 in a HARQ process in which the reception of the downlink data has not been successful. The base station 200 receives the NACK from the UE 100.
 UE100の制御部120は、例えば、当該HARQプロセスに関連付けられた(対応する)DRX再送関連タイマを開始(又は再開始)するトリガ条件が満たされた場合に、ステップS205の処理を実行してもよい。また、UE100の制御部120は、ネットワーク10からビットマップ情報が設定された場合に(例えば、ステップS201において)、以下の処理を実行してもよい。 The control unit 120 of the UE 100 may execute the process of step S205, for example, when a trigger condition for starting (or re-starting) a DRX retransmission related timer associated with (corresponding to) the HARQ process is satisfied. In addition, the control unit 120 of the UE 100 may execute the following process when bitmap information is set from the network 10 (for example, in step S201).
 制御部120は、1つのDCIで複数のPDSCHがスケジューリングされる場合、ビットマップ情報に基づいて、1つのDCIによってスケジューリングされた複数のPDSCH送信のそれぞれのHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定してもよい。 When multiple PDSCHs are scheduled by one DCI, the control unit 120 may determine, based on the bitmap information, whether to enable the DRX retransmission related timers corresponding to each HARQ process of the multiple PDSCH transmissions scheduled by one DCI.
 ステップS205:
 UE100の制御部120は、ステップS104と同様の動作を実行する。制御部120は、ビットマップ情報に基づいて、DRX再送関連タイマを有効にするか否かを判定する。本ステップでは、ステップS104の上りリンク(送信)が下りリンク(送信)に置き換えられている。
Step S205:
The control unit 120 of the UE 100 executes the same operation as in step S104. The control unit 120 determines whether to enable the DRX retransmission related timer based on the bitmap information. In this step, the uplink (transmission) in step S104 is replaced with the downlink (transmission).
 なお、UE100の制御部120は、1つのDCIで複数のPDSCHがスケジューリングされる場合、複数のPDSCH送信の最初のPDSCH送信だけでなく、後続のPDSCH送信に対しても、対応するHARQプロセスIDに対応するビットに基づいて、DRX再送関連タイマを有効にするか否かを判定してよい。 In addition, when multiple PDSCHs are scheduled with one DCI, the control unit 120 of the UE 100 may determine whether to enable the DRX retransmission related timer not only for the first PDSCH transmission of the multiple PDSCH transmissions but also for subsequent PDSCH transmissions based on the bit corresponding to the corresponding HARQ process ID.
 (第3動作例)
 図9を参照して、移動通信システム1の第3動作例について説明する。第3動作例では、UE100が、一部の送信についてのHARQプロセスに対応するDRX再送関連タイマの有効性について、ビットマップ情報に基づかずに判定するケースの一例を説明する。本動作例は、ステップS104又はステップS205におけるUE100の動作の変更例である。制御部120は、基地局200との通信に使用するHARQプロセス番号毎に、以下の動作を実行してよい。上りリンク送信(具体的には、PUSCH)を例に挙げて説明するが、下りリンク送信(具体的には、PDSCH)も同様の動作が実行されてもよい。なお、上述と同様の動作の説明については、適宜省略する。
(Third operation example)
A third operation example of the mobile communication system 1 will be described with reference to FIG. 9. In the third operation example, an example of a case in which the UE 100 determines the validity of the DRX retransmission related timer corresponding to the HARQ process for some transmissions without using bitmap information will be described. This operation example is a modified example of the operation of the UE 100 in step S104 or step S205. The control unit 120 may perform the following operation for each HARQ process number used for communication with the base station 200. Although the uplink transmission (specifically, PUSCH) will be described as an example, the same operation may also be performed for the downlink transmission (specifically, PDSCH). Note that the description of the same operation as above will be omitted as appropriate.
 ステップS301:
 制御部120は、対象のHARQプロセスが、1つのDCIによってスケジューリングされた最初のPUSCH送信に対するHARQプロセス(以下、特定HARQプロセスと称する)であるか否かを判定してよい。制御部120は、対象のHARQプロセスが、特定HARQプロセスである場合、ステップS302の処理を実行する。一方で、制御部120は、対象のHARQプロセスが特定HARQプロセスでない場合、ステップS305の処理を実行する。
Step S301:
The control unit 120 may determine whether the target HARQ process is a HARQ process for a first PUSCH transmission scheduled by one DCI (hereinafter, referred to as a specific HARQ process). If the target HARQ process is a specific HARQ process, the control unit 120 executes the process of step S302. On the other hand, if the target HARQ process is not a specific HARQ process, the control unit 120 executes the process of step S305.
 ステップS302からS304:
 ステップS121からS123に対応する。
Steps S302 to S304:
This corresponds to steps S121 to S123.
 ステップS305:
 制御部120は、対象のHARQプロセスが、1つのDCIによってスケジューリングされた後続のPUSCH送信に対するHARQプロセス(以下、特定HARQプロセスと称する)であるか否かを判定してよい。制御部120は、対象のHARQプロセスが、特定HARQプロセスである場合、ステップS306の処理を実行する。一方で、制御部120は、対象のHARQプロセスが特定HARQプロセスでない場合、ステップS302の処理を実行する。
Step S305:
The control unit 120 may determine whether the target HARQ process is a HARQ process for a subsequent PUSCH transmission scheduled by one DCI (hereinafter referred to as a specific HARQ process). If the target HARQ process is a specific HARQ process, the control unit 120 executes the process of step S306. On the other hand, if the target HARQ process is not a specific HARQ process, the control unit 120 executes the process of step S302.
 ステップS306:
 制御部120は、ビットマップ情報に関わらず、1つのDCIによってスケジューリングされた後続のPUSCH送信又は後続のPDSCH送信に対するHARQプロセスに対応するDRX再送関連タイマ(以下、後続DRX再送関連タイマと称することがある)について、最初のPUSCH送信のHARQプロセスに対応するDRX再送関連タイマ(以下、最初のDRX再送関連タイマと称することがある)と同じ判定を適用してよい。従って、制御部120は、最初のDRX再送関連タイマを有効と判定した場合、ビットマップ情報に関わらず(すなわち、ビットマップ情報が無効であることを示していたとしても)、後続のDRX再送関連タイマを有効と判定する。一方で、制御部120は、最初のDRX再送関連タイマを無効と判定した場合、ビットマップ情報に関わらず(すなわち、ビットマップ情報が有効であることを示していたとしても)、後続のDRX再送関連タイマを無効と判定する。
Step S306:
The control unit 120 may apply the same determination to the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission (hereinafter, sometimes referred to as the first DRX retransmission related timer) for the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission, regardless of the bitmap information. Therefore, when the control unit 120 determines that the first DRX retransmission related timer is valid, the control unit 120 determines that the subsequent DRX retransmission related timer is valid, regardless of the bitmap information (i.e., even if the bitmap information indicates that the bitmap information is invalid). On the other hand, when the control unit 120 determines that the first DRX retransmission related timer is invalid, the control unit 120 determines that the subsequent DRX retransmission related timer is invalid, regardless of the bitmap information (i.e., even if the bitmap information indicates that the bitmap information is valid).
 なお、制御部120は、上述のDCIよりも後に受信した別のDCIでスケジューリングされた(複数の)PDSCH送信のHARQプロセスに対応するDRX再送関連タイマの有効性を決定する場合、上述のDCIに基づく最初のDRX再送関連タイマと同じ判定を適用しない。 Note that when determining the validity of a DRX retransmission-related timer corresponding to a HARQ process for (multiple) PDSCH transmissions scheduled by another DCI received after the above-mentioned DCI, the control unit 120 does not apply the same judgment as for the first DRX retransmission-related timer based on the above-mentioned DCI.
 以上のように、制御部120は、ビットマップ情報に基づいて、1つのDCIによってスケジューリングされた最初のPUSCH送信又は最初のPDSCH送信のHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定してよい。制御部120は、ビットマップ情報に関わらず、1つのDCIによってスケジューリングされた後続のPUSCH送信又は後続のPDSCH送信に対するHARQプロセスに対応するDRX再送関連タイマについて、最初のPUSCH送信のHARQプロセスに対応するDRX再送関連タイマと同じ判定を適用してよい。ネットワーク10が、例えば、データ量が大きいトラフィック(例えば、動画データ)に対して1つのDCIによって複数のPUSCH送信又は複数のPUSCH送信をスケジューリングする場合に、HARQプロセス毎にDRX再送関連タイマの有効性を変えなくてもよいことがある。このような場合に、後続DRX再送関連タイマについて、最初のDRX再送関連タイマと同じ判定を適用することで、UE100の処理負荷を軽減でき、UE100の省電力を更に図ることができる。 As described above, the control unit 120 may determine whether to enable the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission or the first PDSCH transmission scheduled by one DCI based on the bitmap information. The control unit 120 may apply the same determination to the DRX retransmission related timer corresponding to the HARQ process for the subsequent PUSCH transmission or the subsequent PDSCH transmission scheduled by one DCI as to the DRX retransmission related timer corresponding to the HARQ process of the first PUSCH transmission, regardless of the bitmap information. When the network 10 schedules multiple PUSCH transmissions or multiple PUSCH transmissions by one DCI for traffic with a large amount of data (e.g., video data), for example, it may not be necessary to change the validity of the DRX retransmission related timer for each HARQ process. In such a case, by applying the same determination to the subsequent DRX retransmission related timer as to the first DRX retransmission related timer, the processing load of the UE 100 can be reduced, and power saving of the UE 100 can be further achieved.
 (その他の実施形態)
 上述の少なくともいずれかの動作例において、以下の動作が実行されてもよい。基地局200は、DRX設定用のパラメータ(パラメータの値)を含むRRCメッセージを送信してもよい。UE100は、DRX設定用のパラメータに基づいて、DRX動作に用いられるパラメータ(パラメータの値)を特定してもよい。ここで、DRX設定用のパラメータ(パラメータの値)は、drx-onDurationTimer、drx-InactivityTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL、及び、drx-LongCycleStartOffsetのいずれかを含んでもよい。また、UE100に対して、下りリンク及び/又は上りリンクの送信に用いられる1つ又は複数のHARQプロセス(HARQプロセスID)が設定されてもよい。例えば、基地局200は、下りリンク及び/又は上りリンクの送信に用いられる1つ又は複数のHARQプロセス(HARQプロセスID)を示す情報を含むRRCメッセージを送信してもよい。ここで、下りリンク及び/又は上りリンクの送信に用いられるHARQプロセスの数(HARQプロセスIDの数)は、仕様書などによって事前に規定され、基地局200とUE100との間で既知の情報であってもよい。また、基地局200は、ビットマップ情報を設定してもよい。例えば、UE100は、DRX(DRX動作)が設定された場合、設定されたビットマップ情報に基づいて、タイマ(例えば、再送関連タイマ及び/又はIAT)の処理を制御してもよい。
Other Embodiments
In at least one of the above-described operation examples, the following operation may be performed. The base station 200 may transmit an RRC message including a parameter (a parameter value) for DRX setting. The UE 100 may specify a parameter (a parameter value) used for DRX operation based on the parameter for DRX setting. Here, the parameter (a parameter value) for DRX setting may include any of drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and drx-LongCycleStartOffset. Also, one or more HARQ processes (HARQ process IDs) used for downlink and/or uplink transmission may be set for the UE 100. For example, the base station 200 may transmit an RRC message including information indicating one or more HARQ processes (HARQ process IDs) used for downlink and/or uplink transmission. Here, the number of HARQ processes (the number of HARQ process IDs) used for downlink and/or uplink transmission may be predefined by a specification or the like and may be known information between the base station 200 and the UE 100. Also, the base station 200 may set bitmap information. For example, when DRX (DRX operation) is set, the UE 100 may control the processing of a timer (e.g., a retransmission-related timer and/or an IAT) based on the set bitmap information.
 例えば、UE100は、drx-HARQ-RTT-TimerDLが満了し、対応するHARQプロセスのデータ(例えば、下りリンクデータ)が成功裏にデコードされなかった場合には、当該HARQプロセスに対応するビットマップ情報のビットの値に基づいて、当該HARQプロセスに対応するdrx-RetransmissionTimerDLを有効とするか否かを決定してもよい。例えば、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「1」にセットされている場合には、当該HARQプロセスに対応するdrx-RetransmissionTimerDLを有効にしてもよい(例えば、drx-RetransmissionTimerDLを開始してもよい)。ここで、UE100は、drx-HARQ-RTT-TimerDLが満了した後の最初のシンボルにおいて、drx-RetransmissionTimerDLを有効にしてもよい(例えば、drx-RetransmissionTimerDLを開始してもよい)。また、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「0」にセットされている場合には、当該HARQプロセスに対応するdrx-RetransmissionTimerDLを有効にしなくてもよい(例えば、drx-RetransmissionTimerDLを開始しなくもよい)。 For example, when drx-HARQ-RTT-TimerDL expires and data (e.g., downlink data) of the corresponding HARQ process has not been successfully decoded, UE100 may determine whether to enable drx-RetransmissionTimerDL corresponding to the HARQ process based on the value of the bit of bitmap information corresponding to the HARQ process. For example, when the bit of bitmap information corresponding to the HARQ process is set to "1", UE100 may enable drx-RetransmissionTimerDL corresponding to the HARQ process (e.g., may start drx-RetransmissionTimerDL). Here, UE100 may enable drx-RetransmissionTimerDL in the first symbol after drx-HARQ-RTT-TimerDL expires (e.g., may start drx-RetransmissionTimerDL). Also, when the bit of the bitmap information corresponding to the HARQ process is set to "0", UE100 may not enable drx-RetransmissionTimerDL corresponding to the HARQ process (e.g., may not start drx-RetransmissionTimerDL).
 ここで、UE100は、ビットマップ情報が設定されていない(例えば、ビットマップ情報がRRCメッセージに含まれていない(存在しない))場合において、drx-HARQ-RTT-TimerDLが満了し、対応するHARQプロセスのデータ(例えば、下りリンクデータ)が成功裏にデコードされなかった場合、当該HARQプロセスに対応するdrx-RetransmissionTimerDLを有効にしてもよい(例えば、drx-RetransmissionTimerDLを開始してもよい)。例えば、UE100は、drx-HARQ-RTT-TimerDLが満了した後の最初のシンボルにおいて、drx-RetransmissionTimerDLを有効にしてもよい(例えば、drx-RetransmissionTimerDLを開始してもよい)。 Here, in the case where bitmap information is not set (e.g., bitmap information is not included (does not exist) in the RRC message), if drx-HARQ-RTT-TimerDL expires and data (e.g., downlink data) of the corresponding HARQ process is not successfully decoded, UE100 may enable drx-RetransmissionTimerDL corresponding to the HARQ process (e.g., may start drx-RetransmissionTimerDL). For example, UE100 may enable drx-RetransmissionTimerDL (e.g., may start drx-RetransmissionTimerDL) in the first symbol after drx-HARQ-RTT-TimerDL expires.
 また、UE100は、drx-HARQ-RTT-TimerULが満了した場合には、当該HARQプロセスに対応するビットマップ情報のビットの値に基づいて、当該HARQプロセスに対応するdrx-RetransmissionTimerULを有効とするか否かを決定してもよい。例えば、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「1」にセットされている場合には、当該HARQプロセスに対応するdrx-RetransmissionTimerULを有効にしてもよい(例えば、drx-RetransmissionTimerULを開始してもよい)。ここで、UE100は、drx-HARQ-RTT-TimerULが満了した後の最初のシンボルにおいて、drx-RetransmissionTimerULを有効にしてもよい(例えば、drx-RetransmissionTimerULを開始してもよい)。また、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「0」にセットされている場合には、当該HARQプロセスに対応するdrx-RetransmissionTimerULを有効にしなくてもよい(例えば、drx-RetransmissionTimerULを開始しなくもよい)。 Furthermore, when the drx-HARQ-RTT-TimerUL expires, the UE100 may determine whether or not to enable the drx-RetransmissionTimerUL corresponding to the HARQ process based on the value of the bit of the bitmap information corresponding to the HARQ process. For example, when the bit of the bitmap information corresponding to the HARQ process is set to "1", the UE100 may enable the drx-RetransmissionTimerUL corresponding to the HARQ process (for example, may start the drx-RetransmissionTimerUL). Here, UE100 may enable drx-RetransmissionTimerUL (e.g., may start drx-RetransmissionTimerUL) in the first symbol after drx-HARQ-RTT-TimerUL expires. Also, when the bit of the bitmap information corresponding to the HARQ process is set to "0", UE100 may not enable drx-RetransmissionTimerUL corresponding to the HARQ process (e.g., may not start drx-RetransmissionTimerUL).
 ここで、UE100は、ビットマップ情報が設定されていない場合において、drx-HARQ-RTT-TimerULが満了した場合には、当該HARQプロセスに対応するdrx-RetransmissionTimerULを有効にしてもよい(例えば、drx-RetransmissionTimerDLを開始してもよい)。例えば、UE100は、drx-HARQ-RTT-TimerULが満了した後の最初のシンボルにおいて、drx-RetransmissionTimerULを有効にしてもよい(例えば、drx-RetransmissionTimerULを開始してもよい)。 Here, in the case where bitmap information is not set and drx-HARQ-RTT-TimerUL expires, UE100 may enable drx-RetransmissionTimerUL corresponding to the HARQ process (e.g., may start drx-RetransmissionTimerDL). For example, UE100 may enable drx-RetransmissionTimerUL (e.g., may start drx-RetransmissionTimerUL) in the first symbol after drx-HARQ-RTT-TimerUL expires.
 また、上述の通り、UE100は、DRXグループがアクティブ時間である場合に、当該DRXグループにおけるサービングセルにおいてPDCCHをモニタしてもよい。ここで、UE100は、PDCCHが下りリンク送信を示す場合には、レポートしたHARQフィードバックに関連するHARQプロセスに対応するビットマップ情報のビットの値に基づいて、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerDLを有効とするか否かを決定してもよい。ここで、PDCCHが下りリンク送信を示す場合とは、下りリンク送信(例えば、PDSCH)のスケジューリングに用いられるDCIフォーマットを受信(検出)したことが含まれてもよい。また、レポートしたHARQフィードバックとは、下りリンク送信(例えば、PDSCH送信)に対してレポートしたHARQフィードバック(下りリンクHARQフィードバックとも称される)であってもよい。例えば、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「1」にセットされている場合には、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerDLを有効にしてもよい(例えば、drx-HARQ-RTT-TimerDLを開始してもよい)。例えば、UE100は、HARQフィードバックの送信の後の最初のシンボルにおいて、drx-HARQ-RTT-TimerDLを有効にしてもよい(例えば、drx-HARQ-RTT-TimerDLを開始してもよい)。また、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「0」にセットされている場合には、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerDLを有効にしなくてもよい(例えば、drx-HARQ-RTT-TimerDLを開始しなくもよい)。 Also, as described above, UE100 may monitor the PDCCH in the serving cell in the DRX group when the DRX group is in active time. Here, when the PDCCH indicates downlink transmission, UE100 may determine whether or not to enable the drx-HARQ-RTT-TimerDL corresponding to the HARQ process related to the reported HARQ feedback based on the value of the bit of the bitmap information corresponding to the HARQ process. Here, the case where the PDCCH indicates downlink transmission may include the reception (detection) of a DCI format used for scheduling the downlink transmission (e.g., PDSCH). Also, the reported HARQ feedback may be HARQ feedback (also referred to as downlink HARQ feedback) reported for the downlink transmission (e.g., PDSCH transmission). For example, when the bit of the bitmap information corresponding to the HARQ process is set to "1", the UE 100 may enable the drx-HARQ-RTT-Timer DL corresponding to the HARQ process (for example, may start the drx-HARQ-RTT-Timer DL). For example, the UE 100 may enable the drx-HARQ-RTT-Timer DL (for example, may start the drx-HARQ-RTT-Timer DL) in the first symbol after the transmission of the HARQ feedback. Also, when the bit of the bitmap information corresponding to the HARQ process is set to "0", the UE 100 may not enable the drx-HARQ-RTT-Timer DL corresponding to the HARQ process (for example, may not start the drx-HARQ-RTT-Timer DL).
 ここで、UE100は、ビットマップ情報が設定されていない場合において、PDCCHが下りリンク送信を示す場合には、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerDLを有効にしてもよい(例えば、drx-HARQ-RTT-TimerDLを開始してもよい)。例えば、UE100は、HARQフィードバックの送信の後の最初のシンボルにおいて、drx-HARQ-RTT-TimerDLを有効にしてもよい(例えば、drx-HARQ-RTT-TimerDLを開始してもよい)。 Here, in the case where bitmap information is not set and the PDCCH indicates downlink transmission, UE100 may enable the drx-HARQ-RTT-TimerDL corresponding to the HARQ process (e.g., may start the drx-HARQ-RTT-TimerDL). For example, UE100 may enable the drx-HARQ-RTT-TimerDL in the first symbol after the transmission of the HARQ feedback (e.g., may start the drx-HARQ-RTT-TimerDL).
 また、UE100は、PDCCHが下りリンク送信を示す場合には、レポートしたHARQフィードバックに関連するHARQプロセスに対応するdrx-RetransmissionTimerDLを停止してもよい。 In addition, when the PDCCH indicates downlink transmission, UE 100 may stop the drx-RetransmissionTimerDL corresponding to the HARQ process related to the reported HARQ feedback.
 また、UE100は、PDCCHが上りリンク送信を示す場合には、PUSCH送信に関連するHARQプロセスに対応するビットマップ情報のビットの値に基づいて、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerULを有効とするか否かを決定してもよい。ここで、PDCCHが上りリンク送信を示す場合とは、上りリンク送信(例えば、PUSCH)のスケジューリングに用いられるDCIフォーマットを受信(検出)したことが含まれてもよい。例えば、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「1」にセットされている場合には、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerULを有効にしてもよい(例えば、drx-HARQ-RTT-TimerULを開始してもよい)。例えば、UE100は、対応するPUSCH送信の後の最初のシンボルにおいて、drx-HARQ-RTT-TimerULを有効にしてもよい(例えば、drx-HARQ-RTT-TimerULを開始してもよい)。また、UE100は、当該HARQプロセスに対応するビットマップ情報のビットが「0」にセットされている場合には、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerULを有効にしなくてもよい(例えば、drx-HARQ-RTT-TimerULを開始しなくもよい)。 In addition, when the PDCCH indicates uplink transmission, the UE 100 may determine whether to enable the drx-HARQ-RTT-TimerUL corresponding to the HARQ process related to the PUSCH transmission based on the value of the bit of the bitmap information corresponding to the HARQ process. Here, the case where the PDCCH indicates uplink transmission may include the reception (detection) of a DCI format used for scheduling the uplink transmission (e.g., PUSCH). For example, when the bit of the bitmap information corresponding to the HARQ process is set to "1", the UE 100 may enable the drx-HARQ-RTT-TimerUL corresponding to the HARQ process (e.g., may start the drx-HARQ-RTT-TimerUL). For example, UE100 may enable drx-HARQ-RTT-TimerUL (e.g., may start drx-HARQ-RTT-TimerUL) in the first symbol after the corresponding PUSCH transmission. Also, when the bit of the bitmap information corresponding to the HARQ process is set to "0", UE100 may not enable drx-HARQ-RTT-TimerUL corresponding to the HARQ process (e.g., may not start drx-HARQ-RTT-TimerUL).
 ここで、UE100は、ビットマップ情報が設定されていない場合において、PDCCHが上りリンク送信を示す場合には、当該HARQプロセスに対応するdrx-HARQ-RTT-TimerULを有効にしてもよい(例えば、drx-HARQ-RTT-TimerULを開始してもよい)。例えば、UE100は、対応するPUSCH送信の後の最初のシンボルにおいて、drx-HARQ-RTT-TimerULを有効にしてもよい(例えば、drx-HARQ-RTT-TimerULを開始してもよい)。 Here, in the case where bitmap information is not set and the PDCCH indicates uplink transmission, UE100 may enable the drx-HARQ-RTT-TimerUL corresponding to the HARQ process (e.g., may start the drx-HARQ-RTT-TimerUL). For example, UE100 may enable the drx-HARQ-RTT-TimerUL (e.g., may start the drx-HARQ-RTT-TimerUL) in the first symbol after the corresponding PUSCH transmission.
 また、UE100は、PDCCHが上りリンク送信を示す場合には、PUSCH送信に関連するHARQプロセスに対応するdrx-RetransmissionTimerULを停止してもよい。 In addition, when the PDCCH indicates uplink transmission, the UE 100 may stop the drx-RetransmissionTimerUL corresponding to the HARQ process related to the PUSCH transmission.
 上述の実施形態では、上りリンク送信及び下りリンク送信を例に挙げて説明していたが、これに限られない。例えば、端末間通信であるサイドリンク通信において上述と同様の動作が実行されてよい。 In the above embodiment, uplink transmission and downlink transmission are described as examples, but this is not limiting. For example, operations similar to those described above may be performed in sidelink communication, which is communication between terminals.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above embodiment, a mobile communication system based on NR has been described as an example of the mobile communication system 1. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a system that complies with the TS of either LTE (Long Term Evolution) or another generation system of the 3GPP standard (e.g., the sixth generation). The base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE. The mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard. The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。 In the above embodiment, a mobile communication system based on NR has been described as an example of the mobile communication system 1. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a system that complies with the TS of either LTE or another generation system of the 3GPP standard (e.g., the 6th generation). The base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE. The mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
 上述の実施形態の動作におけるステップは、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。更に、上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The steps in the operations of the above-described embodiments do not necessarily have to be executed in chronological order according to the order depicted in the flow diagram or sequence diagram. For example, the steps in the operations may be executed in an order different from that depicted in the flow diagram or sequence diagram, or may be executed in parallel. Some of the steps in the operations may be deleted, and additional steps may be added to the process. Furthermore, each of the above-described operation flows is not limited to being executed separately and independently, but can be executed by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program may be provided that causes a computer to execute each process performed by the UE 100 or the base station 200. The program may be recorded in a computer-readable medium. Using the computer-readable medium, it is possible to install the program in the computer. Here, the computer-readable medium on which the program is recorded may be a non-transient recording medium. The non-transient recording medium is not particularly limited, and may be, for example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disk Read Only Memory). In addition, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。更に、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。従って、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiment, "transmit" may mean performing processing of at least one layer in a protocol stack used for transmission, or may mean physically transmitting a signal wirelessly or wired. Alternatively, "transmit" may mean a combination of performing processing of at least one layer and physically transmitting a signal wirelessly or wired. Similarly, "receive" may mean performing processing of at least one layer in a protocol stack used for reception, or may mean physically receiving a signal wirelessly or wired. Alternatively, "receive" may mean a combination of performing processing of at least one layer and physically receiving a signal wirelessly or wired. Similarly, "obtain/acquire" may mean obtaining information from stored information, obtaining information from information received from other nodes, or obtaining the information by generating the information. Similarly, the terms "based on" and "depending on/in response to" do not mean "based only on" or "only in response to," unless expressly stated otherwise. The term "based on" means both "based only on" and "based at least in part on." Similarly, the term "in response to" means both "only in response to" and "at least in part on." Similarly, "include" and "comprise" do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items. Similarly, in this disclosure, "or" does not mean an exclusive or, but does mean a logical or. Furthermore, any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some manner. In this disclosure, where articles are added by translation, such as a, an, and the in English, these articles are intended to include the plural unless the context clearly indicates otherwise.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、更には、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and spirit of the present disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Additional Note)
The following additional features relate to the above-described embodiment.
 (付記1)
 通信装置(100)であって、
 ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報をネットワーク(10)から受信する受信部(112)を備える
 通信装置。
(Appendix 1)
A communication device (100),
A communication device comprising: a receiving unit (112) that receives, from a network (10), bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a hybrid automatic repeat request (HARQ) process DRX operation is enabled for each HARQ process.
 (付記2)
 前記ビットマップ情報を構成する複数のビットの並び順は、前記HARQプロセスの識別子と対応付けられており、
 前記複数のビットのそれぞれに基づいて、対応するHARQプロセスの前記DRX再送関連タイマを有効にするか否かを判定する制御部(120)を備える
 付記1に記載の通信装置。
(Appendix 2)
an order of the plurality of bits constituting the bitmap information is associated with an identifier of the HARQ process;
A control unit (120) that determines whether to enable the DRX retransmission related timer for a corresponding HARQ process based on each of the plurality of bits.
 (付記3)
 前記受信部は、複数の物理上りリンク共有チャネル(PUSCH)又は複数の物理下りリンク共有チャネル(PDSCH)をスケジューリングする1つの下りリンク制御情報(DCI)を受信し、
 前記ビットマップ情報に基づいて、前記1つのDCIによってスケジューリングされた複数のPUSCH送信のそれぞれ又は複数のPDSCH送信のそれぞれのHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定する制御部を備える
 付記1又は2に記載の通信装置。
(Appendix 3)
The receiving unit receives one downlink control information (DCI) for scheduling a plurality of physical uplink shared channels (PUSCHs) or a plurality of physical downlink shared channels (PDSCHs);
The communication device according to claim 1 or 2, further comprising: a control unit that determines whether to enable a DRX retransmission related timer corresponding to each HARQ process of a plurality of PUSCH transmissions or a plurality of PDSCH transmissions scheduled by the one DCI, based on the bitmap information.
 (付記4)
 前記受信部は、複数の物理上りリンク共有チャネル(PUSCH)又は複数の物理下りリンク共有チャネル(PDSCH)をスケジューリングする1つの下りリンク制御情報(DCI)を受信し、
 前記ビットマップ情報に基づいて、前記HARQプロセス毎に前記DRX再送関連タイマを有効にするか否かを判定する制御部を備え、
 前記制御部は、
  前記ビットマップ情報に基づいて、前記1つのDCIによってスケジューリングされた最初のPUSCH送信又は最初のPDSCH送信のHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定し、
  前記ビットマップ情報に関わらず、前記1つのDCIによってスケジューリングされた後続のPUSCH送信又は後続のPDSCH送信に対するHARQプロセスに対応するDRX再送関連タイマについて、前記最初のPUSCH送信の前記HARQプロセスに対応する前記DRX再送関連タイマと同じ判定を適用する
 付記1又は2に記載の通信装置。
(Appendix 4)
The receiving unit receives one downlink control information (DCI) for scheduling a plurality of physical uplink shared channels (PUSCHs) or a plurality of physical downlink shared channels (PDSCHs);
a control unit that determines whether to enable the DRX retransmission related timer for each of the HARQ processes based on the bitmap information;
The control unit is
Determine whether to enable a DRX retransmission related timer corresponding to a HARQ process of a first PUSCH transmission or a first PDSCH transmission scheduled by the one DCI based on the bitmap information;
The communication device according to claim 1 or 2, wherein, regardless of the bitmap information, the same determination is applied to a DRX retransmission related timer corresponding to a HARQ process for a subsequent PUSH transmission or a subsequent PDSCH transmission scheduled by the one DCI as to the DRX retransmission related timer corresponding to the HARQ process of the initial PUSH transmission.
 (付記5)
 前記ビットマップ情報は、上りリンク送信について前記DRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示す上りリンクビットマップ情報と、下りリンク送信について前記DRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示す下りリンクビットマップ情報と、を含む
 付記1から4のいずれか1項に記載の通信装置。
(Appendix 5)
The communication device according to any one of Supplementary Notes 1 to 4, wherein the bitmap information includes uplink bitmap information indicating, for each HARQ process, whether or not to enable the DRX retransmission related timer for uplink transmission, and downlink bitmap information indicating, for each HARQ process, whether or not to enable the DRX retransmission related timer for downlink transmission.
 (付記6)
 前記ビットマップ情報は、上りリンク送信及び下りリンク送信の両方に適用される
 付記1から5のいずれか1項に記載の通信装置。
(Appendix 6)
6. The communication device according to claim 1, wherein the bitmap information is applied to both uplink transmission and downlink transmission.
 (付記7)
 前記ビットマップ情報は、前記DRX再送関連タイマに関連するHARQモードを前記HARQプロセス毎に更に示す
 付記1から6のいずれか1項に記載の通信装置。
(Appendix 7)
The communication device according to any one of Supplementary Notes 1 to 6, wherein the bitmap information further indicates, for each HARQ process, a HARQ mode associated with the DRX retransmission related timer.
 (付記8)
 前記ビットマップ情報は、前記DRX再送関連タイマに加えて、新規送信を示す物理下りリンク制御(PDCCH)のデコードに成功した後、前記通信装置が起動状態であるべき期間を指定するDRXインアクティビティタイマを有効にするか否かを前記HARQプロセス毎に示す
 付記1から7のいずれか1項に記載の通信装置。
(Appendix 8)
The communication device according to any one of Supplementary Notes 1 to 7, wherein the bitmap information indicates, in addition to the DRX retransmission related timer, whether to enable a DRX inactivity timer that specifies a period during which the communication device should be in an awake state after successfully decoding a physical downlink control channel (PDCCH) indicating a new transmission, for each HARQ process.
 (付記9)
 前記受信部は、前記ビットマップ情報とは別に、新規送信を示す物理下りリンク制御(PDCCH)のデコードの成功後に前記通信装置が起動状態であるべき期間を計時するためのDRXインアクティビティタイマを有効にするか否かを前記HARQプロセス毎に示す他のビットマップ情報を前記ネットワークから受信する
 付記1から8のいずれか1項に記載の通信装置。
(Appendix 9)
The communication device according to any one of Supplementary Notes 1 to 8, wherein the receiving unit receives from the network, separately from the bitmap information, other bitmap information indicating whether to enable a DRX inactivity timer for timing a period during which the communication device should be in an awake state after successful decoding of a physical downlink control channel (PDCCH) indicating a new transmission, for each HARQ process.
 (付記10)
 基地局(200)であって、
 ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報を通信装置へ送信する送信部(211)を備える
 基地局。
(Appendix 10)
A base station (200),
A base station comprising: a transmitter (211) that transmits, to a communication device, bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process is enabled for each HARQ process.
 (付記11)
 通信装置で実行される通信方法であって、
 ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報をネットワークから受信するステップを備える
 通信方法。
(Appendix 11)
1. A communication method performed in a communication device, comprising:
A communication method comprising: receiving, from a network, bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process is enabled for each HARQ process.

Claims (11)

  1.  通信装置(100)であって、
     ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報をネットワーク(10)から受信する受信部(112)を備える
     通信装置。
    A communication device (100),
    A communication device comprising: a receiving unit (112) that receives, from a network (10), bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a hybrid automatic repeat request (HARQ) process DRX operation is enabled for each HARQ process.
  2.  前記ビットマップ情報を構成する複数のビットの並び順は、前記HARQプロセスの識別子と対応付けられており、
     前記複数のビットのそれぞれに基づいて、対応するHARQプロセスの前記DRX再送関連タイマを有効にするか否かを判定する制御部(120)を備える
     請求項1に記載の通信装置。
    an order of the plurality of bits constituting the bitmap information is associated with an identifier of the HARQ process;
    The communication device according to claim 1 , further comprising: a control unit (120) that determines whether to enable the DRX retransmission related timer for a corresponding HARQ process based on each of the plurality of bits.
  3.  前記受信部は、複数の物理上りリンク共有チャネル(PUSCH)又は複数の物理下りリンク共有チャネル(PDSCH)をスケジューリングする1つの下りリンク制御情報(DCI)を受信し、
     前記ビットマップ情報に基づいて、前記1つのDCIによってスケジューリングされた複数のPUSCH送信のそれぞれ又は複数のPDSCH送信のそれぞれのHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定する制御部を備える
     請求項1又は2に記載の通信装置。
    The receiving unit receives one downlink control information (DCI) for scheduling a plurality of physical uplink shared channels (PUSCHs) or a plurality of physical downlink shared channels (PDSCHs);
    The communication device according to claim 1 or 2, further comprising: a control unit that determines whether to enable a DRX retransmission related timer corresponding to each HARQ process of each of a plurality of PUSCH transmissions or each of a plurality of PDSCH transmissions scheduled by the one DCI based on the bitmap information.
  4.  前記受信部は、複数の物理上りリンク共有チャネル(PUSCH)又は複数の物理下りリンク共有チャネル(PDSCH)をスケジューリングする1つの下りリンク制御情報(DCI)を受信し、
     前記ビットマップ情報に基づいて、前記HARQプロセス毎に前記DRX再送関連タイマを有効にするか否かを判定する制御部を備え、
     前記制御部は、
      前記ビットマップ情報に基づいて、前記1つのDCIによってスケジューリングされた最初のPUSCH送信又は最初のPDSCH送信のHARQプロセスに対応するDRX再送関連タイマを有効にするか否かを判定し、
      前記ビットマップ情報に関わらず、前記1つのDCIによってスケジューリングされた後続のPUSCH送信又は後続のPDSCH送信に対するHARQプロセスに対応するDRX再送関連タイマについて、前記最初のPUSCH送信の前記HARQプロセスに対応する前記DRX再送関連タイマと同じ判定を適用する
     請求項1又は2に記載の通信装置。
    The receiving unit receives one downlink control information (DCI) for scheduling a plurality of physical uplink shared channels (PUSCHs) or a plurality of physical downlink shared channels (PDSCHs);
    a control unit that determines whether to enable the DRX retransmission related timer for each of the HARQ processes based on the bitmap information;
    The control unit is
    Determine whether to enable a DRX retransmission related timer corresponding to a HARQ process of a first PUSCH transmission or a first PDSCH transmission scheduled by the one DCI based on the bitmap information;
    The communication device according to claim 1 or 2, wherein, regardless of the bitmap information, the same determination is applied to a DRX retransmission related timer corresponding to a HARQ process for a subsequent PUSH transmission or a subsequent PDSCH transmission scheduled by the one DCI as to the DRX retransmission related timer corresponding to the HARQ process of the initial PUSH transmission.
  5.  前記ビットマップ情報は、上りリンク送信について前記DRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示す上りリンクビットマップ情報と、下りリンク送信について前記DRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示す下りリンクビットマップ情報と、を含む
     請求項1又は2に記載の通信装置。
    The communication device according to claim 1 or 2, wherein the bitmap information includes uplink bitmap information indicating, for each HARQ process, whether or not to enable the DRX retransmission related timer for uplink transmission, and downlink bitmap information indicating, for each HARQ process, whether or not to enable the DRX retransmission related timer for downlink transmission.
  6.  前記ビットマップ情報は、上りリンク送信及び下りリンク送信の両方に適用される
     請求項1又は2に記載の通信装置。
    The communication device according to claim 1 or 2, wherein the bitmap information is applied to both uplink and downlink transmissions.
  7.  前記ビットマップ情報は、前記DRX再送関連タイマに関連するHARQモードを前記HARQプロセス毎に更に示す
     請求項1又は2に記載の通信装置。
    The communication device according to claim 1 or 2, wherein the bitmap information further indicates, for each of the HARQ processes, a HARQ mode associated with the DRX retransmission related timer.
  8.  前記ビットマップ情報は、前記DRX再送関連タイマに加えて、新規送信を示す物理下りリンク制御(PDCCH)のデコードに成功した後、前記通信装置が起動状態であるべき期間を指定するDRXインアクティビティタイマを有効にするか否かを前記HARQプロセス毎に示す
     請求項1又は2に記載の通信装置。
    The communication device according to claim 1 or 2, wherein the bitmap information indicates, in addition to the DRX retransmission related timer, whether to enable a DRX inactivity timer that specifies a period during which the communication device should be in an awake state after successfully decoding a physical downlink control channel (PDCCH) indicating a new transmission, for each HARQ process.
  9.  前記受信部は、前記ビットマップ情報とは別に、新規送信を示す物理下りリンク制御(PDCCH)のデコードの成功後に前記通信装置が起動状態であるべき期間を計時するためのDRXインアクティビティタイマを有効にするか否かを前記HARQプロセス毎に示す他のビットマップ情報を前記ネットワークから受信する
     請求項1又は2に記載の通信装置。
    The communication device according to claim 1 or 2, wherein the receiving unit receives from the network, separately from the bitmap information, other bitmap information indicating whether to enable a DRX inactivity timer for timing a period during which the communication device should be in an awake state after successful decoding of a physical downlink control channel (PDCCH) indicating a new transmission, for each HARQ process.
  10.  基地局(200)であって、
     ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報を通信装置へ送信する送信部(211)を備える
     基地局。
    A base station (200),
    A base station comprising: a transmitter (211) that transmits, to a communication device, bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process is enabled for each HARQ process.
  11.  通信装置で実行される通信方法であって、
     ハイブリッド自動再送要求(HARQ)プロセスにおける間欠受信(DRX)動作中の再送を制御するためのDRX再送関連タイマを有効にするか否かを前記HARQプロセス毎に示すビットマップ情報をネットワークから受信するステップを備える
     通信方法。
    1. A communication method performed in a communication device, comprising:
    A communication method comprising: receiving, from a network, bitmap information indicating whether or not a discontinuous reception (DRX) retransmission related timer for controlling retransmission during a discontinuous reception (DRX) operation in a hybrid automatic repeat request (HARQ) process is enabled for each HARQ process.
PCT/JP2023/034831 2022-09-28 2023-09-26 Communication device, base station, and communication method WO2024071078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155588 2022-09-28
JP2022-155588 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071078A1 true WO2024071078A1 (en) 2024-04-04

Family

ID=90477940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034831 WO2024071078A1 (en) 2022-09-28 2023-09-26 Communication device, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2024071078A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "XR specific power saving techniques", 3GPP TSG RAN WG1 #110 R1-2207351, 12 August 2022 (2022-08-12), XP052275286 *
INTERDIGITAL, INC.: "Disabling HARQ feedback in IoT-NTN", 3GPP RAN WG1 MEETING #110 R1-2207150, 12 August 2022 (2022-08-12), XP052275087 *
SAMSUNG: "Remaining Issues on HARQ Stalling, RNTI Capacity, UL Scheduling, LCP, and UL HARQ Behaviors for an NTN", 3GPP TSG RAN WG2 MEETING #114-E R2-2106068, 11 May 2021 (2021-05-11), XP052007440 *

Similar Documents

Publication Publication Date Title
CN110050495B (en) Terminal device, communication method, and integrated circuit
US8295240B2 (en) Discontinuous reception start offset coordinated with semi-persistent scheduling system and method
EP2443898B1 (en) Method and system for discontinuous reception operation for long term evolution advanced carrier aggregation
CN107710834B (en) Terminal device, communication method, and integrated circuit
CN107637139B (en) Terminal device, communication method, and integrated circuit
JP2011239388A (en) Method and apparatus for component carrier (cc) deactivation timer in wireless communication system
CN114128183A (en) Transceiver device and scheduling device
US20090303927A1 (en) Method and System for Controlling Discontinuous Reception/Transmission
US20240237056A9 (en) Communication apparatus, base station, and communication method
US20240107518A1 (en) Communication apparatus, base station, and communication method
US20240064774A1 (en) Communication apparatus, base station, and communication method
WO2024071078A1 (en) Communication device, base station, and communication method
WO2024071076A1 (en) Communication device and communication method
WO2023127636A1 (en) Communication device and communication method
WO2022260103A1 (en) Communication device, base station, and communication method
WO2023112961A1 (en) Communication device, base station, and communication method
WO2023112959A1 (en) Communication device, base station, and communication method
WO2022234834A1 (en) Communication device, base station, and method
WO2022234801A1 (en) Communication device, base station, and communication method
WO2023127634A1 (en) Communication device, base station, and communication method
JP7577856B2 (en) COMMUNICATION DEVICE, BASE STATION, AND COMMUNICATION METHOD
WO2023112960A1 (en) Communication device, base station, and communication method
WO2022234835A1 (en) User equipment, base station, and communication control method
WO2022234838A1 (en) Communication device, base station, and method
JP2022172972A (en) User device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872301

Country of ref document: EP

Kind code of ref document: A1