Nothing Special   »   [go: up one dir, main page]

WO2024070616A1 - 医療画像解析装置、医療画像解析方法及びプログラム - Google Patents

医療画像解析装置、医療画像解析方法及びプログラム Download PDF

Info

Publication number
WO2024070616A1
WO2024070616A1 PCT/JP2023/032971 JP2023032971W WO2024070616A1 WO 2024070616 A1 WO2024070616 A1 WO 2024070616A1 JP 2023032971 W JP2023032971 W JP 2023032971W WO 2024070616 A1 WO2024070616 A1 WO 2024070616A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
medical image
key
interest
region
Prior art date
Application number
PCT/JP2023/032971
Other languages
English (en)
French (fr)
Inventor
太郎 初谷
晶路 一ノ瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024070616A1 publication Critical patent/WO2024070616A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present invention relates to a medical image analysis device, a medical image analysis method, and a program, and in particular to a technology for utilizing key images in training a learning model.
  • a key image is a representative image that indicates a region of interest.
  • the region of interest may be a lesion, for example.
  • the original image is a three-dimensional medical image such as a CT image or an MRI image
  • a slice of the region of interest may be saved as a key image, a slice may be further cropped and saved, or the region of interest may be saved with an annotation such as a rectangle or arrow.
  • the positional relationship between the key image and the original image is lost when the image is created, and in other cases, image information is missing due to the addition of annotations when the image is created.
  • Patent Document 1 discloses a technique for acquiring a key image, acquiring a cross-sectional image parallel to the key image, and generating a supplementary image.
  • Patent Document 2 discloses a technique for analyzing the key image, separating it into a medical image and an annotation image, and acquiring medical image information corresponding to the medical image.
  • the present invention has been made in consideration of these circumstances, and aims to provide a medical image analysis device, a medical image analysis method, and a program that identify the region of interest intended by a doctor in the medical image from which a key image is created.
  • a medical image analysis device includes at least one processor and at least one memory that stores instructions to be executed by the at least one processor, and the at least one processor is a medical image analysis device that acquires a key image created from a medical image, the key image including a region of interest, analyzes the key image to extract linking information with the medical image from which the key image was created, and identifies the region of interest in the medical image based on the linking information.
  • the at least one processor is a medical image analysis device that acquires a key image created from a medical image, the key image including a region of interest, analyzes the key image to extract linking information with the medical image from which the key image was created, and identifies the region of interest in the medical image based on the linking information.
  • At least one processor estimates a region of interest from a key image and adds the estimated region of interest to the medical image.
  • a medical image analysis device is preferably a medical image analysis device according to the first or second aspect, in which the key image includes an annotation indicating a region of interest, and at least one processor adds the annotation to the medical image and identifies the region of interest in the medical image based on the added annotation.
  • At least one processor detects annotations from the key image.
  • the medical images include at least one of a two-dimensional still image, a three-dimensional still image, and a moving image.
  • the key image is the result of volume rendering created from the medical image.
  • a medical image analysis device is a medical image analysis device according to any one of the first to sixth aspects, wherein at least one processor analyzes characters in the key image by character recognition to extract linking information, and the linking information preferably includes at least one of the window width, window level, slice number, and series number of the key image.
  • the medical image analysis device is a medical image analysis device according to any one of the first to seventh aspects, in which at least one processor performs image recognition on the key image to extract linking information, and it is preferable that the linking information includes at least one of the window width, window level, and annotation of the key image.
  • the medical image analysis device which is a medical image analysis device according to any one of the first to eighth aspects, it is preferable that at least one processor extracts linking information from the result of aligning the medical image with the key image.
  • the medical image analysis device which is a medical image analysis device according to any one of the first to ninth aspects, it is preferable that at least one processor estimates the corresponding position of the key image in the medical image based on the linking information.
  • the region of interest is at least one of a mask, a bounding box, and a heat map.
  • the medical image is a DICOM (Digital imaging and communications in medicine) image.
  • DICOM Digital imaging and communications in medicine
  • a medical image analysis method is a medical image analysis method that includes obtaining a key image created from a medical image, the key image including a region of interest, analyzing the key image to extract linking information with the medical image from which the key image was created, and identifying the region of interest in the medical image based on the linking information. According to this aspect, it is possible to identify the region of interest intended by the doctor in the medical image from which the key image was created, and therefore the medical image can be used as learning data for a learning model.
  • the program according to the fourteenth aspect of the present disclosure is a program that causes a computer to execute the medical image analysis method of the thirteenth aspect.
  • a non-transitory computer-readable recording medium such as a CD-ROM (Compact Disk-Read Only Memory) that stores the program according to the fourteenth aspect, is also included in the present disclosure.
  • the present invention makes it possible to identify the region of interest intended by the doctor in the medical image from which the key image was created.
  • FIG. 1 is a diagram showing the overall configuration of a medical image analysis system.
  • FIG. 2 is a block diagram showing the electrical configuration of the medical image analysis apparatus.
  • FIG. 3 is a block diagram showing the functional configuration of the medical image analyzing apparatus.
  • FIG. 4 is a flowchart showing the medical image analysis method according to the first embodiment.
  • FIG. 5 is a diagram showing a key image and a medical image from which the key image is created.
  • FIG. 6 is a flowchart showing a medical image analysis method according to the second embodiment.
  • FIG. 7 is a diagram showing an example of a key image.
  • FIG. 8 is a flowchart showing a medical image analysis method according to the third embodiment.
  • the medical image analysis system is a system for identifying an area of interest in an original medical image from a key image created by a doctor.
  • the original medical image from which the area of interest has been identified can be used as learning data for a learning model.
  • FIG. 1 is an overall configuration diagram of a medical image analysis system 10. As shown in FIG. 1, the medical image analysis system 10 is configured with a medical image inspection device 12, a medical image database 14, a user terminal device 16, an image interpretation report database 18, and a medical image analysis device 20.
  • the medical image inspection equipment 12, medical image database 14, user terminal device 16, image interpretation report database 18, and medical image analysis device 20 are connected via a network 22 so that they can send and receive data.
  • the network 22 includes a wired or wireless LAN (Local Area Network) that connects various devices within the medical institution for communication.
  • the network 22 may also include a WAN (Wide Area Network) that connects the LANs of multiple medical institutions.
  • the medical imaging inspection equipment 12 is an imaging device that captures the area of the subject to be examined and generates a medical image.
  • medical imaging inspection equipment 12 include an X-ray device, a CT (Computed Tomography) device, an MRI (Magnetic Resonance Imaging) device, a PET (Positron Emission Tomography) device, an ultrasound device, a CR (Computed Radiography) device using a flat X-ray detector, and an endoscopic device.
  • the medical image database 14 is a database that manages medical images taken by the medical image inspection equipment 12.
  • the medical image database 14 is implemented using a computer equipped with a large-capacity storage device for storing medical images.
  • Software that provides the functions of a database management system is installed in the computer.
  • the medical image may be a two-dimensional or three-dimensional still image taken by an X-ray device, a CT device, an MRI device, etc., or a moving image taken by an endoscopic device.
  • the format of medical images can be in accordance with the Dicom (Digital Imaging and Communications in Medicine) standard. Supplementary information (Dicom tag information) defined in the Dicom standard may be added to medical images.
  • image in this specification includes not only the image itself, such as a photograph, but also image data, which is a signal that represents an image.
  • the user terminal device 16 is a terminal device for the doctor to create and view the image interpretation report.
  • the user terminal device 16 is, for example, a personal computer.
  • the user terminal device 16 may be a workstation or a tablet terminal.
  • the user terminal device 16 has an input device 16A and a display 16B.
  • the doctor uses the input device 16A to input instructions to display the medical image.
  • the user terminal device 16 causes the medical image to be displayed on the display 16B.
  • the doctor interprets the medical image displayed on the display 16B, creates a key image from the medical image using the input device 16A, and creates an image interpretation report by inputting a statement of findings that are the image interpretation results.
  • a key image is an image into which doctor information has been input.
  • a key image is an image that is linked to the original medical image at the patient and imaging date and time level, but has lost information about its positional relationship with the original medical image.
  • a key image may be an image in which the amount of information is reduced from the original medical image by converting the original medical image into an image such as a bitmap, or it may be an image that has been converted into an image without losing information.
  • a key image may be an image in which image information from the original medical image at the position where annotations were added has been lost.
  • a key image may be the result of volume rendering created from a medical image.
  • the key image includes an area of interest that is of interest to the physician.
  • the key image may include annotations that indicate the area of interest.
  • the annotations on the key image may be at least one of a circle, a rectangle, an arrow, a line segment, a point, and a scribble.
  • the key image may include text information.
  • the text information may include at least one of the window width, window level, slice number, and series number of the key image.
  • the image interpretation report database 18 is a database that manages image interpretation reports generated by users on the user terminal device 16.
  • the image interpretation report includes a key image.
  • the image interpretation report database 18 is implemented by a computer equipped with a large-capacity storage device for storing image interpretation reports.
  • the computer is equipped with software that provides the functions of a database management system.
  • the medical image database 14 and the image interpretation report database 18 may be configured on a single computer.
  • the medical image analysis device 20 is a device that identifies a region of interest in a medical image.
  • the medical image analysis device 20 can be a personal computer or a workstation (an example of a "computer").
  • Figure 2 is a block diagram showing the electrical configuration of the medical image analysis device 20. As shown in Figure 2, the medical image analysis device 20 includes a processor 20A, a memory 20B, and a communication interface 20C.
  • Processor 20A executes instructions stored in memory 20B.
  • the hardware structure of processor 20A is various processors as shown below.
  • the various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, a GPU (Graphics Processing Unit), which is a processor specialized for image processing, a PLD (Programmable Logic Device), which is a processor whose circuit configuration can be changed after manufacture such as an FPGA (Field Programmable Gate Array), and a dedicated electrical circuit, such as an ASIC (Application Specific Integrated Circuit), which is a processor with a circuit configuration designed specifically to execute specific processing.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • PLD Programmable Logic Device
  • ASIC Application Specific Integrated Circuit
  • a single processing unit may be configured with one of these various processors, or may be configured with two or more processors of the same or different types (for example, multiple FPGAs, or a combination of a CPU and an FPGA, or a combination of a CPU and a GPU).
  • Multiple functional units may also be configured with one processor.
  • multiple functional units As an example of configuring multiple functional units with one processor, first, there is a form in which one processor is configured with a combination of one or more CPUs and software, as represented by a computer such as a client or server, and this processor acts as multiple functional units. Second, there is a form in which a processor is used that realizes the functions of the entire system including multiple functional units with a single IC (Integrated Circuit) chip, as represented by a SoC (System On Chip). In this way, the various functional units are configured using one or more of the above-mentioned various processors as a hardware structure.
  • IC Integrated Circuit
  • the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor elements.
  • Memory 20B stores instructions to be executed by processor 20A.
  • Memory 20B includes a RAM (Random Access Memory) and a ROM (Read Only Memory), not shown.
  • Processor 20A uses the RAM as a working area, executes software using various programs and parameters, including a medical image analysis program described below, stored in the ROM, and also executes various processes of medical image analysis device 20 by using parameters stored in the ROM, etc.
  • the communication interface 20C controls communication with the medical image inspection equipment 12, the medical image database 14, the user terminal device 16, and the image interpretation report database 18 via the network 22 according to a specified protocol.
  • the medical image analysis device 20 may be a cloud server accessible from multiple medical institutions via the Internet.
  • the processing performed by the medical image analysis device 20 may be a cloud service that is charged or fixed fee.
  • Fig. 3 is a block diagram showing the functional configuration of the medical image analysis device 20.
  • Each function of the medical image analysis device 20 is realized by the processor 20A executing a program stored in the memory 20B.
  • the medical image analysis device 20 includes a key image acquisition unit 32, a linking information extraction unit 34, a region of interest identification unit 42, and an output unit 48.
  • the key image acquisition unit 32 acquires a key image including a region of interest from the image interpretation report database 18.
  • the linking information extraction unit 34 analyzes the key image and extracts linking information with the medical image from which the key image was created.
  • the linking information is information for linking the key image with the medical image from which the key image was created.
  • the linking information is, for example, information that is captured in the key image separately from the subject.
  • the linking information includes, for example, at least one of the series number, slice number, window width, window level, and annotation of the medical image from which the key image was created.
  • the linking information may be the result of alignment between the key image and the medical image from which the key image was created.
  • the linking information extraction unit 34 includes a character recognition unit 36, an image recognition unit 38, and an alignment result acquisition unit 40.
  • the character recognition unit 36 analyzes the characters in the key image using a known character recognition method such as OCR (Optical Character Recognition) to extract the linking information.
  • the linking information extracted by the character recognition unit 36 may include at least one of the window width, window level, slice number, and series number of the key image.
  • the image recognition unit 38 performs image recognition on the key image to extract the linking information.
  • the linking information extracted by the image recognition unit 38 may include at least one of the window width, window level, and annotation of the key image.
  • the image recognition unit 38 includes an image recognition model 38A.
  • the image recognition model 38A that extracts the window width or window level of the key image is a classification model using a convolutional neural network (CNN) or a regression model.
  • the image recognition model 38A that recognizes the annotation of the key image is a segmentation model to which a convolutional neural network is applied or a detection model.
  • the image recognition unit 38 may include a plurality of image recognition models 38A from among a classification model, a regression model, a segmentation model, and a detection model.
  • the image recognition model 38A is stored in the memory 20B.
  • the image recognition unit 38 detects annotations added to the key image.
  • the annotations detected by the image recognition unit 38 may include at least one of a circle, a rectangle, an arrow, a line segment, a point, and a scribble.
  • the alignment result acquisition unit 40 acquires the results of alignment between the key image and the medical image by the alignment unit 44, which will be described later.
  • the region of interest identification unit 42 identifies a region of interest based on the linking information extracted by the linking information extraction unit 34. Using the linking information, the region of interest identification unit 42, for example, first estimates a position corresponding to the key image in the medical image from which the key image was created, and then identifies the region of interest in the medical image.
  • the region of interest identification unit 42 may identify the region of interest from a two-dimensional image, or may identify the region of interest from a three-dimensional image.
  • the identified region of interest may be a two-dimensional region, or may be a three-dimensional region.
  • the region of interest identification unit 42 includes a region of interest estimation model 42A, an alignment unit 44, and an annotation addition unit 46.
  • the region of interest estimation model 42A is a deep learning model that, when an image is given as input, outputs the position of the region of interest within the input image.
  • the region of interest estimation model 42A may be a trained model to which CNN is applied.
  • the region of interest estimation model 42A is stored in memory 20B.
  • the alignment unit 44 aligns the key image with the medical image from which the key image was created. Aligning the key image with the medical image from which the key image was created means matching the pixels of both images that show the same subject, such as an organ. The result of aligning the key image with the medical image by the alignment unit 44 includes the correspondence between the pixels of the key image and the pixels of the medical image.
  • the annotation addition unit 46 adds annotations to the medical image from which the key image was created.
  • the output unit 48 outputs the region of interest identified by the region of interest identification unit 42 and records it in a learning database (not shown).
  • the region of interest that is output may be at least one of a mask, a bounding box, and a heat map that is added to the medical image from which the key image is created.
  • First Embodiment> 4 is a flowchart showing a medical image analysis method according to the first embodiment using the medical image analysis device 20.
  • the medical image analysis method is a method for identifying a region of interest in a medical image from which a key image is created.
  • the medical image analysis method is realized by the processor 20A executing a medical image analysis program stored in the memory 20B.
  • the medical image analysis program may be provided by a computer-readable non-transitory storage medium or via the Internet.
  • step S1 the key image acquisition unit 32 acquires a key image from the image interpretation report database 18.
  • the key image acquisition unit 32 may acquire a key image from a source other than the image interpretation report database 18 via the network 22.
  • the linking information extraction unit 34 performs image analysis on the acquired key image, and extracts linking information required to link the key image to the medical image from which the key image was created.
  • Image analysis includes character recognition and image recognition.
  • the region of interest identification unit 42 identifies the region of interest in the medical image from which the key image was created, based on the linking information extracted in step S1.
  • FIG. 5 shows a key image and the medical image from which the key image was created.
  • the key image IK1 shown in FIG. 5 is a two-dimensional image.
  • the key image IK1 includes the text information "20220908", “SE: 2", “Compressed and diagnostic record image”, and "IM: 8".
  • the character recognition unit 36 recognizes these characters and extracts at least one of the window width, window level, slice number, and series number of the key image IK1 as linking information.
  • the key image IK1 includes an arrow annotation AN1.
  • the image recognition unit 38 performs image recognition on the key image IK1 and extracts the annotation AN1 as the linking information.
  • the image recognition unit 38 may perform image recognition on the key image IK1 and extract at least one of the slice number, series number, window width, and window level as the linking information.
  • the medical image ID shown in FIG. 5 is a three-dimensional image from which the key image IK1 was created, and is an image in which a rectangular annotation AN2 has been added to the region of interest identified by the region of interest identification unit 42.
  • the enlarged image IZ shown in Figure 5 is an enlarged image of the area to which the medical image ID annotation AN2 has been added.
  • the coronal image IC shown in Figure 5 is an image of a coronal section including the area to which the medical image ID annotation AN2 has been added.
  • FIG. 6 is a flowchart showing a medical image analysis method according to the second embodiment.
  • Step S11 is the same as step S1 in the first embodiment.
  • the image recognition unit 38 extracts the linking information from the key image using the image recognition model 38A.
  • the character recognition unit 36 extracts the linking information from the key image using OCR.
  • step S12 if an annotation has been added to the key image acquired in step S11, the image recognition unit 38 detects the annotation from the key image.
  • step S13 the region of interest identification unit 42 identifies a slice image of the original medical image that is located at the same position as the key image, based on the slice number in the linking information extracted in step S11. If the slice number cannot be extracted in step S11, the region of interest identification unit 42 identifies a slice image of the original medical image that is located at the same position as the key image, using a known method.
  • step S14 the alignment unit 44 aligns the key image with the slice image identified in step S13. Since the key image may have been cropped or rotated from the slice image of the original medical image, alignment may be necessary.
  • Figure 7 is a diagram showing an example of a key image. Key image IK2 shown in Figure 7 is a cropped key image without annotations.
  • step S15 if an annotation has been added to the key image acquired in step S11, the annotation adding unit 46 adds the annotation to the slice image identified in step S13.
  • the annotation adding unit 46 can add the annotation to the slice image at the same position as the annotation in the key image by the alignment in step S14.
  • the region of interest identification unit 42 identifies the region of interest in the slice image based on the annotation added in step S15.
  • the region of interest identification unit 42 identifies the region of interest using the region of interest estimation model 42A.
  • the result of identifying the region of interest may be at least one of a mask, a bounding box, and a heat map.
  • the output unit 48 outputs the identified region of interest.
  • the region of interest estimation model 42A can also estimate a region of interest from a key image that does not include annotations.
  • FIG. 8 is a flowchart showing a medical image analysis method according to the third embodiment.
  • Step S21 is the same as step S11 in the second embodiment. Also, step S22 is the same as step S12 in the second embodiment.
  • step S23 the region of interest identification unit 42 identifies the region of interest in the key image acquired in step S21.
  • the region of interest identification unit 42 identifies the region of interest using the region of interest estimation model 42A.
  • Step S24 is the same as step S13 in the second embodiment. Also, step S25 is the same as step S14 in the second embodiment.
  • step S26 the region of interest identification unit 42 adds the region of interest of the key image identified in step S23 to the slice image identified in step S24, and identifies the added region of interest as the region of interest of the slice image.
  • the region of interest identification unit 42 can add the region of interest to the same position of the slice image as the position of the region of interest in the key image.
  • the region of interest in the medical image may be identified by adding the region of interest identified in the key image to the medical image.
  • the region of interest identifying unit 42 estimates the corresponding position of the key image in the medical image from which the key image was created based on the linking information.
  • a method of estimating the corresponding position will be described.
  • the region of interest identification unit 42 identifies the series of the medical image from which the key image was created. If the series number cannot be extracted, the region of interest identification unit 42 searches through all series to identify the series of the medical image from which the key image was created.
  • the region of interest identification unit 42 identifies the slice position of the original medical image. If the slice number cannot be extracted from the key image, the region of interest identification unit 42 searches through all slices to identify the slice position of the original medical image.
  • the region of interest identification unit 42 estimates the window level and window width from the key image.
  • the region of interest identification unit 42 may estimate the window level and window width from the key image using a window level/window width estimation model (not shown) to which CNN is applied.
  • the registration unit 44 normalizes the original image from which the key image was created using the window level and window width estimated by the region of interest identification unit 42. Finally, the registration unit 44 estimates the corresponding positions using common non-rigid registration techniques.
  • Non-rigid registration techniques include rotation, translation, and scaling.
  • the region of interest identifying unit estimates the region of interest using region of interest estimation model 42 A.
  • region of interest estimation model 42 A a learning method of region of interest estimation model 42 A will be described.
  • the user prepares a medical image with a known location of the region of interest, and creates a learning medical image from this medical image.
  • the training medical image may be, for example, an image obtained by cropping the area surrounding the area of interest of the medical image.
  • the training medical image may be an image in which a rectangle is added to the area of interest of the medical image.
  • a rectangle that is larger than the size of the area of interest is often added, so it is preferable to follow this for the size of the rectangle.
  • the training medical image may be an image in which an arrow is added to the area of interest of the medical image.
  • the training medical image may be a two-dimensional image like the key image.
  • a model is learned that estimates the region of interest in the original medical image, i.e., solves the inverse problem. This makes it possible to create a region of interest estimation model 42A.
  • region of interest estimation model 42A is generated by machine learning using a training data set that is a set of training medical images and regions of interest of the images based on the training medical images.
  • region of interest estimation model 42A outputs the region of interest of the input image.
  • the region of interest estimation model 42A thus trained can estimate the region of interest from the medical image from which the key image was created, and from the key image.
  • a key image is analyzed using image recognition technology, its corresponding position in the original medical image is estimated, and the analysis results and the original medical image are used to identify the region of interest intended by the doctor. Therefore, the medical image with the identified region of interest can be used as training data for a learning model that estimates regions of interest from medical images.
  • the image analysis method according to the present embodiment can be applied to other than medical images, for example, a technology for acquiring a diagnostic image of a region of interest created from an original image of social infrastructure facilities such as transportation, electricity, gas, and water, and identifying the region of interest of the original image from which the diagnostic image was created.
  • a technology for acquiring a diagnostic image of a region of interest created from an original image of social infrastructure facilities such as transportation, electricity, gas, and water and identifying the region of interest of the original image from which the diagnostic image was created.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

キー画像の作成元の医療画像において医師が意図した関心領域を特定する医療画像解析装置、医療画像解析方法及びプログラムを提供する。少なくとも1つのプロセッサと、少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、を備え、少なくとも1つのプロセッサは、医療画像から作成されたキー画像であって、関心領域を含むキー画像を取得し、キー画像を解析してキー画像の作成元の医療画像との紐付け情報を抽出し、紐付け情報に基づいて医療画像の関心領域を特定する医療画像解析装置によって上記課題を解決する。

Description

医療画像解析装置、医療画像解析方法及びプログラム
 本発明は医療画像解析装置、医療画像解析方法及びプログラムに係り、特にキー画像を学習モデルの学習に活用する技術に関する。
 病院には、医師が医療画像を読影した際に作成したキー画像が大量に存在する。キー画像とは、関心領域を指し示す代表画像である。関心領域は、例えば病変である。元画像がCT画像及びMRI画像等の3次元医療画像である場合は、キー画像として、関心領域のスライスを保存するケース、スライスをさらにクロップして保存するケース、及び関心領域に対して矩形又は矢印等のアノテーションを付けて保存するケースがある。
 このキー画像は、作成時に元画像との位置関係が失われているケース、及び作成時にアノテーションの追加等によって画像情報に欠損が生じているケースが存在する。
 特許文献1には、キー画像を取得し、キー画像と平行な断面画像を取得し、補足画像を生成する技術が開示されている。また、特許文献2には、キー画像を解析し、医用画像とアノテーション画像に分離し、医用画像に対応する医用画像情報を取得する技術が開示されている。
特開2020-28583号公報 特開2015-156898号公報
 深層学習モデルを学習するには大量のデータを必要とするため、このキー画像を活用することが考えられる。しかしながら、キー画像が元画像のどの位置と対応しているかわからない、例えばどのスライスのどの位置から作成されたのかが不明であるという課題があった。また、キー画像にアノテーションがないケース、及びキー画像に矢印でしかアノテーションがないケースなどでは、医師が意図した関心領域がコンピュータには判別できないという課題がある。
 本発明はこのような事情に鑑みてなされたもので、キー画像の作成元の医療画像において医師が意図した関心領域を特定する医療画像解析装置、医療画像解析方法及びプログラムを提供することを目的とする。
 上記目的を達成するために、本開示の第1態様に係る医療画像解析装置は、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、を備え、少なくとも1つのプロセッサは、医療画像から作成されたキー画像であって、関心領域を含むキー画像を取得し、キー画像を解析してキー画像の作成元の医療画像との紐付け情報を抽出し、紐付け情報に基づいて医療画像の関心領域を特定する医療画像解析装置である。本態様によれば、キー画像の作成元の医療画像において医師が意図した関心領域を特定することができるので、関心領域が特定された医療画像を、医療画像から関心領域を推定する学習モデルの学習データに活用することができる。
 本開示の第2態様に係る医療画像解析装置は、第1態様に係る医療画像解析装置において、少なくとも1つのプロセッサは、キー画像から関心領域を推定し、推定した関心領域を医療画像に付加することが好ましい。
 本開示の第3態様に係る医療画像解析装置は、第1態様又は第2態様に係る医療画像解析装置において、キー画像は、関心領域を示すアノテーションを含み、少なくとも1つのプロセッサは、アノテーションを医療画像に付加し、付加したアノテーションに基づいて医療画像の関心領域を特定することが好ましい。
 本開示の第4態様に係る医療画像解析装置は、第3態様に係る医療画像解析装置において、少なくとも1つのプロセッサは、キー画像からアノテーションを検出することが好ましい。
 本開示の第5態様に係る医療画像解析装置は、第1態様から第4態様のいずれかに係る医療画像解析装置において、医療画像は、2次元静止画像、3次元静止画像、及び動画像のうちの少なくとも1つを含むことが好ましい。
 本開示の第6態様に係る医療画像解析装置は、第1態様から第5態様のいずれかに係る医療画像解析装置において、キー画像は、医療画像から作成されたボリュームレンダリングの結果であることが好ましい。
 本開示の第7態様に係る医療画像解析装置は、第1態様から第6態様のいずれかに係る医療画像解析装置において、少なくとも1つのプロセッサは、文字認識によってキー画像内の文字を解析して紐付け情報を抽出し、紐付け情報は、キー画像のウィンドウ幅、ウィンドウレベル、スライス番号、及びシリーズ番号のうちの少なくとも1つを含むことが好ましい。
 本開示の第8態様に係る医療画像解析装置は、第1態様から第7態様のいずれかに係る医療画像解析装置において、少なくとも1つのプロセッサは、キー画像を画像認識して紐付け情報を抽出し、紐付け情報は、キー画像のウィンドウ幅、ウィンドウレベル、及びアノテーションのうちの少なくとも1つを含むことが好ましい。
 本開示の第9態様に係る医療画像解析装置は、第1態様から第8態様のいずれかに係る医療画像解析装置において、少なくとも1つのプロセッサは、医療画像とキー画像との位置合わせの結果から紐付け情報を抽出することが好ましい。
 本開示の第10態様に係る医療画像解析装置は、第1態様から第9態様のいずれかに係る医療画像解析装置において、少なくとも1つのプロセッサは、紐付け情報に基づいて医療画像におけるキー画像の対応する位置を推定することが好ましい。
 本開示の第11態様に係る医療画像解析装置は、第1態様から第10態様のいずれかに係る医療画像解析装置において、関心領域は、マスク、バウンディングボックス、及びヒートマップのうちの少なくとも1つであることが好ましい。
 本開示の第12態様に係る医療画像解析装置は、第1態様から第11態様のいずれかに係る医療画像解析装置において、医療画像は、DICOM(Digital imaging and communications in medicine)画像であることが好ましい。
 上記目的を達成するために、本開示の第13態様に係る医療画像解析方法は、医療画像から作成されたキー画像であって、関心領域を含むキー画像を取得することと、キー画像を解析してキー画像の作成元の医療画像との紐付け情報を抽出することと、紐付け情報に基づいて医療画像の関心領域を特定することと、を含む医療画像解析方法である。本態様によれば、キー画像の作成元の医療画像において医師が意図した関心領域を特定することができるので、医療画像を学習モデルの学習データに活用することができる。
 上記目的を達成するために、本開示の第14態様に係るプログラムは、第13態様の医療画像解析方法をコンピュータに実行させるプログラムである。第14態様に係るプログラムを記憶したCD-ROM(Compact Disk-Read Only Memory)等の非一時的かつコンピュータ読取可能な記録媒体も本開示に含まれる。
 本発明によれば、キー画像の作成元の医療画像において医師が意図した関心領域を特定することができる。
図1は、医療画像解析システムの全体構成図である。 図2は、医療画像解析装置の電気的構成を示すブロック図である。 図3は、医療画像解析装置の機能構成を示すブロック図である。 図4は、第1の実施形態に係る医療画像解析方法を示すフローチャートである。 図5は、キー画像とキー画像の作成元の医療画像とを示す図である。 図6は、第2の実施形態に係る医療画像解析方法を示すフローチャートである。 図7は、キー画像の一例を示す図である。 図8は、第3の実施形態に係る医療画像解析方法を示すフローチャートである。
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。
 <医療画像解析システム>
 本実施形態に係る医療画像解析システムは、医師が作成したキー画像から、作成元の医療画像の関心領域を特定するシステムである。関心領域が特定された作成元の医療画像は、学習モデルの学習データとして活用することができる。
 図1は、医療画像解析システム10の全体構成図である。図1に示すように、医療画像解析システム10は、医療画像検査機器12と、医療画像データベース14と、ユーザ端末装置16と、読影レポートデータベース18と、医療画像解析装置20と、を備えて構成される。
 医療画像検査機器12と、医療画像データベース14と、ユーザ端末装置16と、読影レポートデータベース18と、医療画像解析装置20とは、ネットワーク22を介してそれぞれデータを送受信可能に接続される。ネットワーク22は、医療機関内の各種機器を通信接続する有線、又は無線のLAN(Local Area Network)を含む。ネットワーク22は、複数の医療機関のLAN同士を接続するWAN(Wide Area Network)を含んでもよい。
 医療画像検査機器12は、被検体の検査対象部位を撮像し、医療画像を生成する撮影装置である。医療画像検査機器12の例として、X線撮影装置、CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置、PET(Positron Emission Tomography)装置、超音波装置、平面X線検出器を用いたCR(Computed Radiography)装置、及び内視鏡装置が挙げられる。
 医療画像データベース14は、医療画像検査機器12によって撮影された医療画像を管理するデータベースである。医療画像データベース14は、医療画像を保存するための大容量ストレージ装置を備えるコンピュータが適用される。コンピュータには、データベース管理システムの機能を提供するソフトウェアが組み込まれる。
 医療画像は、X線撮影装置、CT装置、MRI装置等によって撮影された2次元静止画像又は3次元静止画像であってもよいし、内視鏡装置によって撮影された動画像であってもよい。
 医療画像のフォーマットは、Dicom(Digital Imaging and COmmunications in Medicine)規格を適用可能である。医療画像は、Dicom規格において規定された付帯情報(Dicomタグ情報)が付加されてもよい。なお、本明細書における画像という用語には、写真等の画像自身の意味の他に、画像を表す信号である画像データの意味が含まれる。
 ユーザ端末装置16は、医師が読影レポートを作成、及び閲覧するための端末機器である。ユーザ端末装置16は、例えばパーソナルコンピュータが適用される。ユーザ端末装置16は、ワークステーションであってもよいし、タブレット端末であってもよい。ユーザ端末装置16は、入力装置16A及びディスプレイ16Bを備える。医師は、入力装置16Aを使用して医療画像の表示の指示を入力する。ユーザ端末装置16は、医療画像をディスプレイ16Bに表示させる。さらに、医師は、ディスプレイ16Bに表示された医療画像を読影し、入力装置16Aを使用して医療画像からキー画像を作成し、読影結果である所見文を入力することで、読影レポートを作成する。
 キー画像は、医師の情報が入力された画像である。キー画像は、患者及び撮影日時レベルでは作成元の医療画像と紐付けられている画像であるが、作成元の医療画像との位置関係の情報が失われた画像である。キー画像は、作成元の医療画像からビットマップ等の画像に変換することで作成元の医療画像から情報量が落ちた画像であってもよいし、情報量が落ちない画像に変換された画像であってもよい。キー画像は、元の医療画像の画像情報のうち、アノテーションが付加された位置の画像情報が失われた画像であってもよい。キー画像は、医療画像から作成されたボリュームレンダリングの結果であってもよい。
 キー画像は、医師が関心を持った関心領域を含む。キー画像は、関心領域を示すアノテーションを含んでもよい。キー画像のアノテーションは、円、矩形、矢印、線分、点、及びスクリブルのうちの少なくとも1つであってもよい。
 キー画像は、文字情報を含んでもよい。文字情報は、キー画像のウィンドウ幅、ウィンドウレベル、スライス番号、及びシリーズ番号のうちの少なくとも1つを含んでもよい。
 読影レポートデータベース18は、ユーザ端末装置16においてユーザが生成した読影レポートを管理するデータベースである。読影レポートは、キー画像を含む。読影レポートデータベース18は、読影レポート保存するための大容量ストレージ装置を備えるコンピュータが適用される。コンピュータには、データベース管理システムの機能を提供するソフトウェアが組み込まれる。医療画像データベース14と読影レポートデータベース18とは、1つのコンピュータで構成されてもよい。
 医療画像解析装置20は、医療画像の関心領域を特定する装置である。医療画像解析装置20は、パーソナルコンピュータ、又はワークステーション(「コンピュータ」の一例)を適用可能である。図2は、医療画像解析装置20の電気的構成を示すブロック図である。図2に示すように、医療画像解析装置20は、プロセッサ20Aと、メモリ20Bと、通信インターフェース20Cと、を備える。
 プロセッサ20Aは、メモリ20Bに記憶された命令を実行する。プロセッサ20Aのハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の機能部として作用する汎用的なプロセッサであるCPU(Central Processing Unit)、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるPLD(Programmable Logic Device)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、又はCPUとFPGAの組み合わせ、あるいはCPUとGPUの組み合わせ)で構成されてもよい。また、複数の機能部を1つのプロセッサで構成してもよい。複数の機能部を1つのプロセッサで構成する例としては、第1に、クライアント又はサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の機能部として作用させる形態がある。第2に、SoC(System On Chip)等に代表されるように、複数の機能部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の機能部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。
 メモリ20Bは、プロセッサ20Aに実行させるための命令を記憶する。メモリ20Bは、不図示のRAM(Random Access Memory)、及びROM(Read Only Memory)を含む。プロセッサ20Aは、RAMを作業領域とし、ROMに記憶された後述する医療画像解析プログラムを含む各種のプログラム及びパラメータを使用してソフトウェアを実行し、かつROM等に記憶されたパラメータを使用することで、医療画像解析装置20の各種の処理を実行する。
 通信インターフェース20Cは、所定のプロトコルに従って、ネットワーク22を介した医療画像検査機器12、医療画像データベース14、ユーザ端末装置16、及び読影レポートデータベース18との通信を制御する。
 医療画像解析装置20は、インターネットを介して複数の医療機関からアクセス可能なクラウドサーバであってもよい。医療画像解析装置20で行う処理は、課金制、又は固定料金制のクラウドサービスであってもよい。
 〔医療画像解析装置としての機能構成〕
 図3は、医療画像解析装置20の機能構成を示すブロック図である。医療画像解析装置20の各機能は、プロセッサ20Aがメモリ20Bに記憶されたプログラムを実行することで具現化される。図3に示すように、医療画像解析装置20は、キー画像取得部32と、紐付け情報抽出部34と、関心領域特定部42と、出力部48と、を備える。
 キー画像取得部32は、読影レポートデータベース18から関心領域を含むキー画像を取得する。
 紐付け情報抽出部34は、キー画像を解析してキー画像の作成元の医療画像との紐付け情報を抽出する。すなわち、紐付け情報とは、キー画像とキー画像の作成元の医療画像とを紐付けるための情報である。紐付け情報は、例えば、被写体とは別にキー画像に写り込んだ情報である。紐付け情報は、例えば、キー画像の作成元の医療画像のシリーズ番号、スライス番号、ウィンドウ幅、ウィンドウレベル、及びアノテーションのうちの少なくとも1つを含む。紐付け情報は、キー画像とキー画像の作成元の医療画像との位置合わせの結果であってもよい。紐付け情報抽出部34は、文字認識部36と、画像認識部38と、位置合わせ結果取得部40と、を含む。
 文字認識部36は、OCR(Optical Character Recognition)等の既知の手法の文字認識によってキー画像内の文字を解析して紐付け情報を抽出する。文字認識部36によって抽出する紐付け情報は、キー画像のウィンドウ幅、ウィンドウレベル、スライス番号、及びシリーズ番号のうちの少なくとも1つを含んでもよい。
 画像認識部38は、キー画像を画像認識して紐付け情報を抽出する。画像認識部38が抽出する紐付け情報は、キー画像のウィンドウ幅、ウィンドウレベル、及びアノテーションのうちの少なくとも1つを含んでもよい。画像認識部38は、画像認識モデル38Aを備える。キー画像のウィンドウ幅、又はウィンドウレベルを抽出する画像認識モデル38Aは、畳み込みニューラルネットワーク(CNN:Convolution Neural Network)を用いた分類モデル、又は回帰モデルである。また、キー画像のアノテーションを認識する画像認識モデル38Aは、畳み込みニューラルネットワークが適用されたセグメンテーションモデル、又は検出モデルである。画像認識部38は、分類モデル、回帰モデル、セグメンテーションモデル、及び検出モデルのうちの複数の画像認識モデル38Aを備えてもよい。画像認識モデル38Aは、メモリ20Bに記憶される。
 また、画像認識部38は、キー画像に付加されたアノテーションを検出する。画像認識部38が検出するアノテーションは、円、矩形、矢印、線分、点、及びスクリブルのうちの少なくとも1つを含んでもよい。
 位置合わせ結果取得部40は、後述する位置合わせ部44によるキー画像と医療画像との位置合わせの結果を取得する。
 関心領域特定部42は、紐付け情報抽出部34が抽出した紐付け情報に基づいて関心領域を特定する。関心領域特定部42は、紐付け情報を用いて、例えば、まずキー画像の作成元の医療画像のうちキー画像に対応する位置を推定し、次に医療画像の関心領域を特定する。
 関心領域特定部42は、2次元画像から関心領域を特定してもよいし、3次元画像から関心領域を特定してもよい。特定される関心領域は、2次元の領域であってもよいし、3次元の領域であってもよい。
 関心領域特定部42は、関心領域推定モデル42Aと、位置合わせ部44と、アノテーション付加部46と、を含む。関心領域推定モデル42Aは、画像を入力として与えると入力された画像内の関心領域の位置を出力する深層学習モデルである。関心領域推定モデル42Aは、CNNが適用された学習済みモデルであってもよい。関心領域推定モデル42Aは、メモリ20Bに記憶される。
 位置合わせ部44は、キー画像とキー画像の作成元の医療画像との位置合わせを行う。キー画像とキー画像の作成元の医療画像と位置合わせとは、臓器等の同じ被写体を示す両画像のそれぞれの画素を対応付けることをいう。位置合わせ部44によるキー画像と医療画像との位置合わせの結果とは、キー画像の画素と医療画像の画素との対応関係を含む。アノテーション付加部46は、キー画像の作成元の医療画像にアノテーションを付加する。
 出力部48は、関心領域特定部42によって特定された関心領域を出力し、不図示の学習用データベースに記録する。出力する関心領域は、キー画像の作成元の医療画像に付与されたマスク、バウンディングボックス、及びヒートマップのうちの少なくとも1つであってもよい。
 <医療画像解析方法:第1の実施形態>
 図4は、医療画像解析装置20を用いた第1の実施形態に係る医療画像解析方法を示すフローチャートである。医療画像解析方法は、キー画像の作成元の医療画像の関心領域を特定する方法である。医療画像解析方法は、プロセッサ20Aがメモリ20Bに記憶された医療画像解析プログラムを実行することで実現される。医療画像解析成プログラムは、コンピュータが読み取り可能な非一時的記憶媒体によって提供されてもよいし、インターネットを介して提供されてもよい。
 ステップS1では、キー画像取得部32は、読影レポートデータベース18からキー画像を取得する。キー画像取得部32は、ネットワーク22を介して読影レポートデータベース18以外からキー画像を取得してもよい。紐付け情報抽出部34は、取得したキー画像を画像解析し、キー画像からキー画像の作成元の医療画像と紐付けるのに必要な紐付け情報を抽出する。画像解析とは、文字認識、及び画像認識を含む。
 続くステップS2では、関心領域特定部42は、ステップS1で抽出した紐付け情報に基づいて、キー画像の作成元の医療画像の関心領域を特定する。
 図5は、キー画像とキー画像の作成元の医療画像とを示す図である。図5に示すキー画像IK1は、2次元の画像である。キー画像IK1は、「20220908」、「SE:2」、「圧縮・診断記録画像」、及び「IM:8」の文字情報を含む。文字認識部36は、これらの文字を認識し、紐付け情報としてキー画像IK1のウィンドウ幅、ウィンドウレベル、スライス番号、及びシリーズ番号のうちの少なくとも1つを抽出する。
 また、キー画像IK1は、矢印のアノテーションAN1を含む。画像認識部38は、キー画像IK1を画像認識し、紐付け情報としてアノテーションAN1を抽出する。画像認識部38は、キー画像IK1を画像認識し、紐付け情報としてスライス番号、シリーズ番号、ウィンドウ幅、及びウィンドウレベルのうちの少なくとも1つを抽出してもよい。
 図5に示す医療画像IDは、キー画像IK1の作成元の3次元の画像であって、関心領域特定部42によって特定された関心領域に矩形のアノテーションAN2が付加された画像である。
 図5に示す拡大画像IZは、医療画像IDのアノテーションAN2が付加された領域を拡大した画像である。また、図5に示すコロナル画像ICは、医療画像IDのアノテーションAN2が付加された領域を含むコロナル断面の画像である。このように、キー画像の作成元の3次元の医療画像の関心領域を特定することで、医療画像の関心領域を3次元的に特定することができる。これにより、関心領域を含む様々な形式の画像を作成できるので、関心領域が特定された医療画像を、画像から関心領域を抽出する学習モデルの学習データとして活用することができる。
 <医療画像解析方法:第2の実施形態>
 図6は、第2の実施形態に係る医療画像解析方法を示すフローチャートである。
 ステップS11は、第1の実施形態のステップS1と同様である。ここでは、画像認識部38は、画像認識モデル38Aによりキー画像から紐付け情報を抽出する。また、文字認識部36は、OCRによりキー画像から紐付け情報を抽出する。
 ステップS12では、ステップS11で取得したキー画像にアノテーションが付加されている場合、画像認識部38はキー画像からアノテーションを検出する。
 ステップS13では、関心領域特定部42は、ステップS11で抽出した紐付け情報のうちのスライス番号に基づいて、作成元の医療画像のスライス画像であって、キー画像と同じ位置のスライス画像を特定する。ステップS11において、スライス番号を抽出できなかった場合は、既知の方法でキー画像と同じ位置のスライス画像を特定する。
 ステップS14では、位置合わせ部44は、キー画像とステップS13で特定したスライス画像との位置合わせを行う。キー画像は、作成元の医療画像のスライス画像からクロップ、又は回転されている場合があるので、位置合わせが必要なケースがある。図7は、キー画像の一例を示す図である。図7に示すキー画像IK2は、アノテーションがなく、クロップされたキー画像である。
 ステップS15では、ステップS11で取得したキー画像にアノテーションが付加されている場合、アノテーション付加部46は、ステップS13で特定したスライス画像にアノテーションを付加する。アノテーション付加部46は、ステップS14での位置合わせにより、キー画像のアノテーションの位置と同じスライス画像の位置にアノテーションを付加することができる。
 ステップS16では、関心領域特定部42は、ステップS15で付加したアノテーションに基づいてスライス画像の関心領域を特定する。ここでは、関心領域特定部42は、関心領域推定モデル42Aを用いて関心領域を特定する。関心領域を特定した結果は、マスク、バウンディングボックス、及びヒートマップのうちの少なくとも1つであってもよい。出力部48は、特定された関心領域を出力する。
 このように、キー画像のアノテーションをキー画像の作成元のスライス画像に付加し、これに基づいて関心領域を推定することで、スライス画像の関心領域を特定することができる。したがって、作成元の医療画像の関心領域を特定することができる。
 ここでは、ステップS11で取得したキー画像にアノテーションが付加されている場合について説明したが、関心領域推定モデル42Aは、アノテーションが含まれないキー画像から関心領域を推定することも可能である。
 <医療画像解析方法:第3の実施形態>
 図8は、第3の実施形態に係る医療画像解析方法を示すフローチャートである。
 ステップS21は、第2の実施形態のステップS11と同様である。また、ステップS22は、第2の実施形態のステップS12と同様である。
 ステップS23では、関心領域特定部42は、ステップS21で取得したキー画像の関心領域を特定する。ここでは、関心領域特定部42は、関心領域推定モデル42Aを用いて関心領域を特定する。
 ステップS24は、第2の実施形態のステップS13と同様である。また、ステップS25は、第2の実施形態のステップS14と同様である。
 ステップS26では、関心領域特定部42は、ステップS23で特定したキー画像の関心領域を、ステップS24で特定されたスライス画像に付加し、付加した関心領域をスライス画像の関心領域として特定する。関心領域特定部42は、ステップS25での位置合わせにより、キー画像の関心領域の位置と同じスライス画像の位置に関心領域を付加することができる。
 以上のように、キー画像内で特定した関心領域を医療画像に付加することで、医療画像の関心領域を特定してもよい。
 <対応する位置の推定方法:第4の実施形態>
 関心領域特定部42は、紐付け情報に基づいてキー画像の作成元の医療画像におけるキー画像の対応する位置を推定する。ここでは、対応する位置の推定方法について説明する。
 関心領域特定部42は、紐付け情報抽出部34によってキー画像から紐付け情報としてシリーズ番号が抽出できた場合、キー画像の作成元の医療画像のシリーズを特定する。シリーズ番号が抽出できない場合は、関心領域特定部42は、すべてのシリーズを検索してキー画像の作成元の医療画像のシリーズを特定する。
 関心領域特定部42は、紐付け情報抽出部34によってキー画像からスライス番号が抽出できた場合、作成元の医療画像のスライス位置を特定する。キー画像からスライス番号が抽出できない場合は、関心領域特定部42は、すべてのスライスを検索して作成元の医療画像のスライス位置を特定する。
 関心領域特定部42は、キー画像からウィンドウレベルとウィンドウ幅とを推定する。関心領域特定部42は、CNNが適用された不図示のウィンドウレベル/ウィンドウ幅推定モデルを使用して、キー画像からウィンドウレベルとウィンドウ幅とを推定してもよい。
 位置合わせ部44は、キー画像の作成元の画像を、関心領域特定部42が推定したウィンドウレベルとウィンドウ幅とを用いて正規化する。最後に、位置合わせ部44は、一般的な非剛体位置合わせの技術を用いて、対応する位置を推定する。非剛体位置合わせの技術は、回転、平行移動、及び拡大縮小を含む。
 <関心領域推定モデルの学習方法:第5の実施形態>
 関心領域特定部は、関心領域推定モデル42Aを用いて関心領域を推定している。ここでは、関心領域推定モデル42Aの学習方法について説明する。
 まず、ユーザが、関心領域の位置が既知の医療画像を用意し、この医療画像から学習用医療画像を作成する。
 学習用医療画像は、例えば、医療画像の関心領域の周辺の領域をクロップした画像である。学習用医療画像は、医療画像の関心領域に対して矩形を付与した画像であってもよい。キー画像作成時には、関心領域の大きさに対して大きめの矩形を付与されることが多いため、矩形の大きさはこれに倣うことが好ましい。学習用医療画像は、医療画像の関心領域に対して矢印を付与した画像であってもよい。学習用医療画像は、キー画像のように2次元の画像であってもよい。
 作成した学習用医療画像から、元の医療画像の関心領域を推定する、すなわち逆問題を解くようなモデルを学習する。これにより、関心領域推定モデル42Aを作成することができる。
 すなわち、関心領域推定モデル42Aは、学習用医療画像と学習用医療画像の元に画像の関心領域とをセットとする学習用の学習データセットにより機械学習が行われたものである。関心領域推定モデル42Aは、クロップされた画像、矩形が付与された画像、及び矢印が付与された画像を入力として与えると、入力された画像の関心領域を出力する。
 このように学習された関心領域推定モデル42Aによって、キー画像の作成元の医療画像、及びキー画像から関心領域を推定することができる。
 医療画像解析方法によれば、キー画像を画像認識技術で解析し、作成元の医療画像と対応する位置を推定し、解析結果と作成元の医療画像の解析によって医師が意図した関心領域を特定するようにしたので、関心領域が特定された医療画像を、医療画像から関心領域を推定する学習モデルの学習データに活用することができる。
 <その他>
 本実施形態に係る画像解析方法は、医療画像以外にも適用可能である。例えば、交通、電気、ガス、及び水道等の社会的インフラ設備の元画像から作成された関心領域の診断画像を取得し、診断画像の作成元の画像の関心領域を特定する技術に適用することができる。
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
10…医療画像解析システム
12…医療画像検査機器
14…医療画像データベース
16…ユーザ端末装置
16A…入力装置
16B…ディスプレイ
18…読影レポートデータベース
20…医療画像解析装置
20A…プロセッサ
20B…メモリ
20C…通信インターフェース
22…ネットワーク
32…キー画像取得部
34…情報抽出部
36…文字認識部
38…画像認識部
38A…画像認識モデル
40…結果取得部
42…関心領域特定部
42A…関心領域推定モデル
44…位置合わせ部
46…アノテーション付加部
48…出力部
AN1…アノテーション
AN2…アノテーション
IC…コロナル画像
ID…医療画像
IK1…キー画像
IK2…キー画像
IZ…拡大画像
S1~S2、S11~S16、S21~S26…医療画像解析方法のステップ

Claims (15)

  1.  少なくとも1つのプロセッサと、
     前記少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、
     を備え、
     前記少なくとも1つのプロセッサは、
     医療画像から作成されたキー画像であって、関心領域を含むキー画像を取得し、
     前記キー画像を解析して前記キー画像の作成元の医療画像との紐付け情報を抽出し、
     前記紐付け情報に基づいて前記医療画像の前記関心領域を特定する、
     医療画像解析装置。
  2.  前記少なくとも1つのプロセッサは、
     前記キー画像から前記関心領域を推定し、
     前記推定した前記関心領域を前記医療画像に付加する、
     請求項1に記載の医療画像解析装置。
  3.  前記キー画像は、前記関心領域を示すアノテーションを含み、
     前記少なくとも1つのプロセッサは、
     前記アノテーションを前記医療画像に付加し、
     前記付加したアノテーションに基づいて前記医療画像の前記関心領域を特定する、
     請求項1に記載の医療画像解析装置。
  4.  前記少なくとも1つのプロセッサは、
     前記キー画像からアノテーションを検出する、
     請求項3に記載の医療画像解析装置。
  5.  前記医療画像は、2次元静止画像、3次元静止画像、及び動画像のうちの少なくとも1つを含む、
     請求項1に記載の医療画像解析装置。
  6.  前記キー画像は、前記医療画像から作成されたボリュームレンダリングの結果である、
     請求項1に記載の医療画像解析装置。
  7.  前記少なくとも1つのプロセッサは、
     文字認識によって前記キー画像内の文字を解析して前記紐付け情報を抽出し、
     前記紐付け情報は、前記キー画像のウィンドウ幅、ウィンドウレベル、スライス番号、及びシリーズ番号のうちの少なくとも1つを含む、
     請求項1に記載の医療画像解析装置。
  8.  前記少なくとも1つのプロセッサは、
     前記キー画像を画像認識して前記紐付け情報を抽出し、
     前記紐付け情報は、前記キー画像のウィンドウ幅、ウィンドウレベル、及びアノテーションのうちの少なくとも1つを含む、
     請求項1に記載の医療画像解析装置。
  9.  前記少なくとも1つのプロセッサは、
     前記医療画像と前記キー画像との位置合わせの結果から前記紐付け情報を抽出する、
     請求項1に記載の医療画像解析装置。
  10.  前記少なくとも1つのプロセッサは、
     前記紐付け情報に基づいて前記医療画像における前記キー画像の対応する位置を推定する、
     請求項1に記載の医療画像解析装置。
  11.  前記関心領域は、マスク、バウンディングボックス、及びヒートマップのうちの少なくとも1つである、
     請求項1に記載の医療画像解析装置。
  12.  前記医療画像は、DICOM(Digital imaging and communications in medicine)画像である、
     請求項1から11のいずれか1項に記載の医療画像解析装置。
  13.  医療画像から作成されたキー画像であって、関心領域を含むキー画像を取得することと、
     前記キー画像を解析して前記キー画像の作成元の医療画像との紐付け情報を抽出することと、
     前記紐付け情報に基づいて前記医療画像の前記関心領域を特定することと、
     を含む医療画像解析方法。
  14.  請求項13に記載の医療画像解析方法をコンピュータに実行させるプログラム。
  15.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項14に記載のプログラムが記録された記録媒体。
PCT/JP2023/032971 2022-09-28 2023-09-11 医療画像解析装置、医療画像解析方法及びプログラム WO2024070616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154572 2022-09-28
JP2022-154572 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070616A1 true WO2024070616A1 (ja) 2024-04-04

Family

ID=90477517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032971 WO2024070616A1 (ja) 2022-09-28 2023-09-11 医療画像解析装置、医療画像解析方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2024070616A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130221A (ja) * 2004-11-09 2006-05-25 Konica Minolta Medical & Graphic Inc 医用画像転送装置、プログラム及び記憶媒体
JP2009022368A (ja) * 2007-07-17 2009-02-05 Toshiba Corp 医用画像観察支援システム
JP2009070201A (ja) * 2007-09-14 2009-04-02 Fujifilm Corp 読影レポート作成システム及び読影レポート作成装置並びに読影レポート作成方法
JP2012008796A (ja) * 2010-06-24 2012-01-12 Toshiba Corp 医用画像処理サーバ
JP2017108851A (ja) * 2015-12-15 2017-06-22 キヤノン株式会社 制御装置、制御システム、制御方法、及びプログラム
JP2019000315A (ja) * 2017-06-14 2019-01-10 キヤノンメディカルシステムズ株式会社 超音波診断装置、及び医用画像処理装置
JP2020009186A (ja) * 2018-07-09 2020-01-16 キヤノンメディカルシステムズ株式会社 診断支援装置、診断支援方法、及び診断支援プログラム
JP2021027867A (ja) * 2019-08-09 2021-02-25 富士フイルム株式会社 ファイリング装置、ファイリング方法及びプログラム
JP2021111283A (ja) * 2020-01-15 2021-08-02 キヤノンメディカルシステムズ株式会社 医用情報処理装置、学習用データ生成プログラムおよび学習用データ生成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130221A (ja) * 2004-11-09 2006-05-25 Konica Minolta Medical & Graphic Inc 医用画像転送装置、プログラム及び記憶媒体
JP2009022368A (ja) * 2007-07-17 2009-02-05 Toshiba Corp 医用画像観察支援システム
JP2009070201A (ja) * 2007-09-14 2009-04-02 Fujifilm Corp 読影レポート作成システム及び読影レポート作成装置並びに読影レポート作成方法
JP2012008796A (ja) * 2010-06-24 2012-01-12 Toshiba Corp 医用画像処理サーバ
JP2017108851A (ja) * 2015-12-15 2017-06-22 キヤノン株式会社 制御装置、制御システム、制御方法、及びプログラム
JP2019000315A (ja) * 2017-06-14 2019-01-10 キヤノンメディカルシステムズ株式会社 超音波診断装置、及び医用画像処理装置
JP2020009186A (ja) * 2018-07-09 2020-01-16 キヤノンメディカルシステムズ株式会社 診断支援装置、診断支援方法、及び診断支援プログラム
JP2021027867A (ja) * 2019-08-09 2021-02-25 富士フイルム株式会社 ファイリング装置、ファイリング方法及びプログラム
JP2021111283A (ja) * 2020-01-15 2021-08-02 キヤノンメディカルシステムズ株式会社 医用情報処理装置、学習用データ生成プログラムおよび学習用データ生成方法

Similar Documents

Publication Publication Date Title
Zhong et al. An attention-guided deep regression model for landmark detection in cephalograms
KR101857624B1 (ko) 임상 정보를 반영한 의료 진단 방법 및 이를 이용하는 장치
EP3611699A1 (en) Image segmentation using deep learning techniques
US8958614B2 (en) Image-based detection using hierarchical learning
US8494238B2 (en) Redundant spatial ensemble for computer-aided detection and image understanding
US20190295248A1 (en) Medical image specifying apparatus, method, and program
WO2019146358A1 (ja) 学習システム、方法及びプログラム
US20220366151A1 (en) Document creation support apparatus, method, and program
JP2006325638A (ja) 異常陰影候補の検出方法及び医用画像処理システム
US20230005580A1 (en) Document creation support apparatus, method, and program
Rocha et al. STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images
Gaggion et al. CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images
US20240266056A1 (en) Information processing apparatus, information processing method, and information processing program
US11923069B2 (en) Medical document creation support apparatus, method and program, learned model, and learning apparatus, method and program
WO2024070616A1 (ja) 医療画像解析装置、医療画像解析方法及びプログラム
CN111226287A (zh) 用于分析医学成像数据集的方法、用于分析医学成像数据集的系统、计算机程序产品以及计算机可读介质
US20230410305A1 (en) Information management apparatus, method, and program and information processing apparatus, method, and program
US11978274B2 (en) Document creation support apparatus, document creation support method, and document creation support program
Xu et al. Lung segmentation in chest X‐ray image using multi‐interaction feature fusion network
Amara et al. Augmented reality for medical practice: a comparative study of deep learning models for ct-scan segmentation
US20220391599A1 (en) Information saving apparatus, method, and program and analysis record generation apparatus, method, and program
US20220076796A1 (en) Medical document creation apparatus, method and program, learning device, method and program, and trained model
WO2022145988A1 (ko) 인공지능을 이용한 안면부 골절 판독 장치 및 방법
JP2024054748A (ja) 言語特徴抽出モデルの生成方法、情報処理装置、情報処理方法及びプログラム
CN116631584A (zh) 通用型医学影像报告生成方法与系统、电子设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871852

Country of ref document: EP

Kind code of ref document: A1