WO2024069967A1 - Liquid hydrogen tank and method for operating same - Google Patents
Liquid hydrogen tank and method for operating same Download PDFInfo
- Publication number
- WO2024069967A1 WO2024069967A1 PCT/JP2022/036794 JP2022036794W WO2024069967A1 WO 2024069967 A1 WO2024069967 A1 WO 2024069967A1 JP 2022036794 W JP2022036794 W JP 2022036794W WO 2024069967 A1 WO2024069967 A1 WO 2024069967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- pressure
- inter
- region
- liquid hydrogen
- Prior art date
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 174
- 239000001257 hydrogen Substances 0.000 title claims abstract description 142
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 142
- 239000007788 liquid Substances 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 24
- 150000002431 hydrogen Chemical class 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 15
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 238000009413 insulation Methods 0.000 description 13
- 230000005494 condensation Effects 0.000 description 7
- 238000009833 condensation Methods 0.000 description 7
- 238000011017 operating method Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D90/00—Component parts, details or accessories for large containers
- B65D90/02—Wall construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/04—Vessels not under pressure with provision for thermal insulation by insulating layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- This disclosure relates to a liquid hydrogen tank that contains liquid hydrogen.
- double-shell tanks have been known as liquefied gas tanks for storing low-temperature liquefied gas, and are equipped with an inner tank and an outer tank surrounding the inner tank, with the inter-tank area between the inner and outer tanks filled with gas.
- Patent Document 1 discloses a double-shell tank having an inner and outer tank, in which the space between the inner and outer tanks is filled with boil-off gas discharged from the inner tank. In addition, the space between the tanks is packed with insulating material.
- the gas filled between the tanks may condense and liquefy due to pressure fluctuations in the area between the tanks. If the gas between the tanks liquefies, the tank components may fall below their allowable lower limit temperature and be damaged, the insulation material placed between the tanks may deteriorate, or the heat input may increase due to the heat pipe effect.
- This disclosure has been made in consideration of the above circumstances, and its purpose is to suppress liquefaction of the gas in the inter-tank region in a liquid hydrogen tank having an inner tank containing liquid hydrogen, an outer tank surrounding the inner tank, and the inter-tank region between the inner tank and the outer tank filled with vaporized liquid hydrogen gas.
- a liquid hydrogen tank comprises: an inner tank for accommodating liquid hydrogen; An outer tank surrounding the inner tank; a thermal barrier layer disposed in an inter-tank region between the inner tank and the outer tank and covering an outer wall of the inner tank, During storage, when the inter-cell region is filled with hydrogen gas and the inner tank contains liquid hydrogen, the inter-cell pressure, which is the pressure in the inter-cell region, is lower than the saturated vapor pressure of hydrogen at a specified temperature.
- a method for operating a liquid hydrogen tank is a method for operating a liquid hydrogen tank comprising an inner tank for accommodating liquid hydrogen, an outer tank surrounding the inner tank, and a thermal barrier layer disposed in an inter-tank region between the inner tank and the outer tank and covering an outer wall of the inner tank, the method comprising the steps of: During storage, when the inter-cell region is filled with hydrogen gas and the inner tank contains liquid hydrogen, the inter-cell pressure, which is the pressure in the inter-cell region, is maintained lower than the saturated vapor pressure of hydrogen at a specified temperature.
- a liquid hydrogen tank having an inner tank containing liquid hydrogen, an outer tank surrounding the inner tank, and the space between the inner and outer tanks filled with vaporized liquid hydrogen gas, liquefaction of the gas in the space between the tanks can be suppressed.
- FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a liquid hydrogen tank according to one embodiment of the present disclosure.
- FIG. 2 is a vertical sectional view showing a schematic configuration of a liquid hydrogen tank according to a modified example.
- Fig. 1 is a vertical cross-sectional view showing the schematic configuration of a liquid hydrogen tank 1 according to one embodiment of the present disclosure.
- the liquid hydrogen tank 1 shown in Fig. 1 is a container that contains cryogenic liquid hydrogen.
- the liquid hydrogen tank 1 may be a cargo tank that stores liquid hydrogen as cargo, or a fuel tank that stores liquid hydrogen as fuel.
- the liquid hydrogen tank 1 may be mounted on a ship or a floating structure, or may be installed on land.
- the liquid hydrogen tank 1 comprises an inner tank 21 that contains liquid hydrogen L, and an outer tank 22 that surrounds the inner tank 21.
- the liquid hydrogen tank 1 is not limited to being a double-shelled tank, and may be a triple or more multi-shelled tank that comprises at least one tank that surrounds the outer tank 22.
- the ship's hull may function as the outer tank 22.
- the inner tank 21 and the outer tank 22 are spaced apart in the radial direction of the liquid hydrogen tank 1, and an intertank region 23 is provided between the inner tank 21 and the outer tank 22.
- a thermal barrier layer 24 is disposed in the intertank region 23.
- the thermal barrier layer 24 covers the outer wall of the inner tank 21 in the intertank region 23.
- the thermal barrier layer 24 is made of a heat insulating material, and examples of the heat insulating material include a heat insulating panel, a heat insulating sheet, and a fibrous heat insulating material.
- annular region 25 the region between the outer wall of the inner tank 21 and the thermal barrier layer 24 in the intertank region 23 is referred to as the "annular region 25", and the region between the thermal barrier layer 24 and the inner wall of the outer tank 22 is referred to as the thermal barrier outer peripheral region 26.
- the annular region 25 may be formed by a gap provided between the outer wall of the inner tank 21 and the thermal barrier layer 24, or the annular region 25 may be formed by gaps or holes formed on the surface of the thermal barrier layer 24 facing the outer wall of the inner tank 21.
- the inter-tank region 23 is filled with the same type of gas as the vaporized gas of the liquid hydrogen L contained in the inner tank 21, i.e., hydrogen gas G.
- the hydrogen gas G may be a vaporized gas produced by vaporizing the liquid hydrogen L inside the inner tank 21, or it may be a gas supplied from outside the liquid hydrogen tank 1.
- the pressure in the inter-tank region 23 is adjusted so that the hydrogen gas G in the inter-tank region 23 does not liquefy due to condensation.
- the interior of the inner tank 21 and the intertank region 23 are independent spaces.
- the intertank region 23 may be (i) connected to the annular region 25 and the outer periphery region 26 of the thermal insulation layer, or (ii) independent spaces between the annular region 25 and the outer periphery region 26 of the thermal insulation layer. If the thermal insulation layer 24 is an airtight layer, the annular region 25 and the outer periphery region 26 of the thermal insulation layer will be independent spaces between each other. Therefore, the following describes a method of adjusting the pressure in the intertank region 23 of the liquid hydrogen tank 1 during storage in both cases (i) and (ii).
- the inner tank 21 is filled with liquid hydrogen L and the inter-tank region 23 is filled with hydrogen gas G so that the inner tank pressure P1 is a predetermined inner tank standard pressure and the inter-tank pressure P3 is a predetermined inter-tank standard pressure.
- the liquid hydrogen tank 1 is provided with an inner tank pressure sensor 31 and an inner tank safety valve 32.
- the inner tank pressure sensor 31 detects the pressure of the gas phase portion of the inner tank 21, i.e., the inner tank pressure P1.
- the inner tank safety valve 32 is configured to open when the inner tank pressure P1 exceeds a specified inner tank allowable pressure to release the vaporized gas in the inner tank 21 to the outside, so that the inner tank pressure P1 does not exceed a specified inner tank design pressure.
- the inner tank allowable pressure is equal to or lower than the inner tank design pressure and is sufficiently higher than the inner tank standard pressure.
- the liquid hydrogen tank 1 is equipped with a pressure regulating device 3 that adjusts the pressure in the inter-tank region 23.
- the pressure regulating device 3 adjusts the inter-tank pressure P3 in the liquid hydrogen tank 1 during storage to be lower than the inner tank pressure P1 and lower than the saturated vapor pressure of hydrogen at a specified temperature.
- the pressure regulating device 3 in this embodiment includes an inter-tank safety valve 33, a connecting pipe 36, and a differential pressure safety valve 35.
- the inter-tank safety valve 33 is provided in the outer tank 22 or in a pipe connected to the inter-tank region 23.
- the inter-tank safety valve 33 is normally closed and opens when the inter-tank pressure P3 exceeds the inter-tank allowable pressure, and corresponds to the first valve in the claims.
- the inter-tank safety valve 33 is a self-acting automatic valve that operates using the force generated by the fluid pressure, pilot pressure, spring pressure, etc.
- the inter-tank safety valve 33 is not limited to a self-acting automatic valve, and a control valve (i.e., a passive automatic valve) that opens when the inter-tank allowable pressure is exceeded by an actuator controlled by a control device, or a manual valve may be used.
- the forced exhaust system may include a compressor that forcibly exhausts hydrogen gas G, a release tower that safely releases hydrogen gas G into the atmosphere, and a hydrogen fuel consuming device that consumes hydrogen gas G as fuel, etc.
- the inter-vessel allowable pressure is lower than the inner vessel standard pressure and lower than the saturated vapor pressure of hydrogen at a predetermined temperature.
- the predetermined temperature is the temperature of the liquid hydrogen contained in the inner vessel 21, the temperature of the inner surface of the inner vessel 21, the outer surface of the inner vessel 21, or the temperature of the hydrogen gas G filled in the inter-vessel region 23, and is not limited to the actually measured temperature, and may be an estimated or set temperature between -259°C and -240°C.
- the inter-vessel allowable pressure may be set to the expected minimum value of the inner vessel pressure P1.
- the inter-vessel pressure P3 becomes a negative pressure less than 0 KPaG, so the minimum value of the inner vessel pressure P1 is higher than 0 KPaG, preferably higher than 5 KPaG. In this way, liquefaction due to condensation of the hydrogen gas G in the inter-vessel region 23 is prevented by adjusting the inter-vessel pressure P3 not to exceed the predetermined inter-vessel allowable pressure.
- the pressure regulating device 3 may be provided with an on-off valve 37 provided in a pipe or the like connected to the intertank region 23, in addition to the intertank safety valve 33.
- the liquid hydrogen tank 1 has two discharge flow paths, a first discharge flow path which is a discharge flow path of hydrogen gas G from the intertank region 23 through the on-off valve 37, and a second discharge flow path which is a discharge flow path of hydrogen gas G from the intertank region 23 through the intertank safety valve 33.
- the first discharge flow path and the second discharge flow path are preferably independent of each other, and although these flow paths may merge on the way, it is preferable that they are independent of each other at least at the outlet from the intertank region 23.
- the on-off valve 37 is closed in a normal state, and when it is opened, the hydrogen gas G in the intertank region 23 is released to the outside of the liquid hydrogen tank 1 through the first discharge flow path.
- the on-off valve 37 may be a manual valve operated by an operator, or a control valve whose opening and closing is controlled by a control device.
- intertank allowable pressure When the liquid hydrogen tank 1 has two discharge flow paths from the intertank region 23 as described above, two levels of intertank allowable pressure are provided: a first intertank allowable pressure and a second intertank allowable pressure higher than the first intertank allowable pressure. Both the first intertank allowable pressure and the second intertank allowable pressure are lower than the saturated vapor pressure of hydrogen at a predetermined temperature.
- the on-off valve 37 is set to open when the intertank pressure P3 exceeds the first allowable pressure
- the intertank safety valve 33 is set to open when the intertank pressure P3 exceeds the second intertank allowable pressure.
- the on-off valve 37 When the intertank pressure P3 exceeds the first intertank allowable pressure, the on-off valve 37 is first opened and the hydrogen gas G in the intertank region 23 is released to the outside through the first discharge flow path.
- An intertank pressure sensor 38 for detecting the intertank pressure P3 is provided in the liquid hydrogen tank 1, and an alarm may be issued to notify the pressure detected by the intertank pressure sensor 38 of the first intertank allowable pressure.
- the opening of the on-off valve 37 does not cause the inter-tank pressure P3 to fall below the first inter-tank allowable pressure, but the inter-tank safety valve 33 opens if the inter-tank pressure P3 exceeds the second inter-tank allowable pressure.
- the on-off valve 37 and the inter-tank safety valve 33 By opening the on-off valve 37 and the inter-tank safety valve 33, hydrogen gas G is released to the outside through the first release flow path and the second release flow path, and the inter-tank pressure P3 falls to below the first inter-t
- the connecting pipe 36 is a pipe that connects the gas phase in the inner tank 21 to the intertank region 23.
- the differential pressure safety valve 35 is a valve that opens and closes the flow path in the connecting pipe 36, and corresponds to the first valve in the claims.
- the differential pressure safety valve 35 maintains the differential pressure between the inner tank pressure P1 and the intertank pressure P3 greater than 0 and equal to or less than the differential pressure set value by introducing the vaporized gas of the inner tank 21 into the intertank region 23.
- the differential pressure safety valve 35 is configured to open while the differential pressure between the inner tank pressure P1 and the intertank pressure P3 exceeds the differential pressure set value, thereby communicating the inner tank 21 and the intertank region 23 via the connecting pipe 36, and introducing the vaporized gas of the inner tank 21 into the intertank region 23.
- the differential pressure set value is an arbitrary value that suppresses condensation of hydrogen gas G in the intertank region 23.
- the differential pressure safety valve 35 maintains the pressure difference between the inner tank pressure P1 and the inter-tank pressure P3, thereby keeping the pressure difference between the inter-tank area 23 and the inner tank 21 within an appropriate range and preventing excessive load from being placed on the components of the liquid hydrogen tank 1.
- differential pressure safety valve 35 is a self-acting automatic valve that operates based on the pressure difference between the inner tank pressure P1 and the inter-tank pressure P3, but it may also be a control valve that opens when the pressure difference between the inner tank pressure P1 and the inter-tank pressure P3 exceeds a set pressure difference value using an actuator controlled by a control device.
- the liquid hydrogen tank 1 includes an inner tank pressure sensor 31, an inner tank safety valve 32, and a pressure regulating device 3.
- the pressure regulating device 3 includes an inter-tank safety valve 33, a connecting pipe 36, and a differential pressure safety valve 35.
- the annular region 25 is spatially independent from other regions of the intertank region 23 (i.e., the outer peripheral region 26 of the thermal insulation layer).
- the pressure in the annular region 25 of the intertank region 23 is referred to as the annular pressure P2
- the pressure in the region of the intertank region 23 other than the annular region 25 is referred to as the intertank pressure P3.
- the annular region 25 is filled with hydrogen gas G in advance to achieve the annular standard pressure.
- the annular pressure P2 becomes lower than the annular standard pressure due to the cold heat of the liquid hydrogen L contained in the inner tank 21 when loaded, but never becomes higher than the annular standard pressure.
- the annular standard pressure is lower than the saturated vapor pressure of hydrogen at the temperature of the liquid hydrogen contained in the inner tank 21.
- the temperature of the liquid hydrogen contained in the inner tank 21 is not limited to the actually measured temperature, and may be an estimated or set temperature between -259°C and -240°C. In this way, liquefaction due to condensation of hydrogen gas G in the annular region 25 is prevented by setting the annular standard pressure.
- the inter-tank pressure P3 becomes lower than the annular pressure P2, there is a risk that the thermal insulation layer 24 supported by the inner tank 21 may float up or the support portion may be damaged, so the inter-tank pressure P3 is adjusted to be equal to or higher than the annular pressure P2.
- the annular pressure P2 is equal to or lower than the standard annular pressure, so the inter-tank pressure P3 may be adjusted to be equal to or higher than the standard annular pressure.
- the standard inter-tank pressure is set to a value equal to or higher than the standard annular pressure
- the differential pressure setting value of the differential pressure safety valve 35 is set so that the inter-tank pressure P3 is equal to or higher than the standard annular pressure.
- the liquid hydrogen tank 1 comprises: An inner tank 21 in which liquid hydrogen L is contained; An outer tank 22 surrounding the inner tank 21; a heat insulating layer 24 disposed in an inter-tank region 23 between the inner tank 21 and the outer tank 22 and covering an outer wall of the inner tank 21;
- the inter-tank region 23 is filled with hydrogen gas G and the inner tank 21 contains liquid hydrogen L during storage, the inter-tank pressure P3, which is the pressure in the inter-tank region 23, is lower than the saturated vapor pressure of hydrogen at a specified temperature.
- the hydrogen gas G filled in the inter-chamber region 23 can drop to substantially the same temperature as the liquid hydrogen L contained in the inner tank 21. Therefore, if the inter-chamber pressure P3 becomes lower than the saturated vapor pressure at the temperature of the liquid hydrogen L stored in the inner tank 21, the hydrogen gas G in the inter-chamber region 23 may condense. In the liquid hydrogen tank 1 configured as above, the inter-chamber pressure P3 is maintained at a value lower than the saturated vapor pressure of hydrogen at a predetermined temperature so that the hydrogen gas G does not condense and liquefy even if the temperature of the hydrogen gas G in the inter-chamber region 23 drops.
- the liquid hydrogen tank 1 according to the second item is the liquid hydrogen tank 1 according to the first item, in which during storage, the inter-tank pressure P3 is lower than the inner tank pressure P1, which is the pressure of the gas phase portion inside the inner tank 21.
- the inter-tank pressure P3 is maintained at a value lower than the inner tank pressure P1
- the inter-tank pressure P3 is maintained at a value lower than the saturated vapor pressure at the temperature of the liquid hydrogen L contained in the inner tank 21. Therefore, with the liquid hydrogen tank 1 configured as described above, even if the temperature of the hydrogen gas G in the inter-tank region 23 drops, liquefaction due to condensation of the hydrogen gas G in the inter-tank region 23 is suppressed.
- the liquid hydrogen tank 1 pertaining to the third item is the liquid hydrogen tank 1 pertaining to the first or second item, in which the predetermined temperature is the temperature of the liquid hydrogen contained in the inner tank 21, the temperature of the inner surface of the inner tank 21, or the temperature of the outer surface of the inner tank 21.
- the inter-vessel pressure P3 is maintained at a value lower than the saturated vapor pressure of hydrogen at the temperature of the liquid hydrogen L contained in the inner vessel 21, so that liquefaction due to condensation of the hydrogen gas G can be prevented even if the temperature of the hydrogen gas G filled in the inter-vessel region 23 drops.
- the liquid hydrogen tank 1 according to the fourth item is a liquid hydrogen tank 1 according to any one of the first to third items, and is equipped with a pressure adjustment device 3 that adjusts the inter-tank pressure P3.
- the liquid hydrogen tank 1 according to the fifth item is the liquid hydrogen tank 1 according to the fourth item, in which the pressure adjustment device 3 has a first valve that releases hydrogen gas G in the inter-tank region 23 to the outside when the inter-tank pressure P3 exceeds a predetermined inter-tank allowable pressure that is lower than the saturated vapor pressure of hydrogen at the temperature of the liquid hydrogen L contained in the inner tank 21.
- the liquid hydrogen tank 1 according to the fourth and fifth items can prevent liquefaction of hydrogen gas G in the inter-tank region 23 without relying on the operator's operation.
- the first valve corresponds to the inter-tank safety valve 33 in the above embodiment.
- the liquid hydrogen tank 1 according to the sixth item is a liquid hydrogen tank 1 according to any one of the first to fifth items, in which the inter-tank region 23 includes an airtight annular region 25 filled with hydrogen gas G between the inner tank 21 and the thermal insulation layer 24, and during storage, the pressure P2 of the annular region 25 is lower than the inner tank pressure P1.
- the liquid hydrogen tank 1 according to the seventh item is the liquid hydrogen tank 1 according to the sixth item, in which the pressure P2 in the annular region 25 is lower than the pressure P3 in the inter-vessel region 23 excluding the annular region 25.
- the liquid hydrogen tank 1 according to the eighth item is the liquid hydrogen tank 1 according to the fourth item, in which the pressure adjustment device 3 maintains the differential pressure between the inner tank pressure P1 and the inter-tank pressure P3 at or below a predetermined differential pressure setting value.
- the liquid hydrogen tank 1 according to the ninth item is the liquid hydrogen tank 1 according to the eighth item, in which the pressure adjustment device 3 has a connecting pipe 36 that connects the gas phase of the inner tank 21 to the inter-tank region 23, and a second valve that introduces vaporized gas from the gas phase of the inner tank 21 into the inter-tank region 23 through the connecting pipe 36 when the pressure difference between the inner tank pressure P1 and the inter-tank pressure P3 exceeds the set pressure difference value.
- the second valve corresponds to the differential pressure safety valve 35 in the above embodiment.
- the pressure difference between the inside of the inner tank 21 and the inter-tank region 23 is managed without relying on the operation of an operator.
- the inter-tank pressure P3 can be adjusted based on the relative relationship between the inner tank pressure P1 and the inter-tank pressure P3 without measuring the pressure of the inter-tank pressure P3.
- a method for operating a liquid hydrogen tank 1 is a method for operating a liquid hydrogen tank 1 comprising an inner tank 21 for accommodating liquid hydrogen L, an outer tank 22 surrounding the inner tank 21, and a thermal barrier layer 24 disposed in an inter-tank region 23 between the inner tank 21 and the outer tank 22 and covering an outer wall of the inner tank 21, comprising:
- the inter-tank pressure P3 which is the pressure in the inter-tank region 23, is maintained lower than the saturated vapor pressure of hydrogen at a specified temperature.
- the operating method of the liquid hydrogen tank 1 according to the eleventh item is the operating method of the liquid hydrogen tank 1 according to the tenth item, in which, during storage, when the inter-tank pressure P3 exceeds a predetermined inter-tank allowable pressure that is lower than the saturated vapor pressure of hydrogen at a predetermined temperature, hydrogen gas G is released from the inter-tank region 23 to reduce the inter-tank pressure P3 to below the inter-tank allowable pressure.
- the inter-tank pressure P3 is maintained at a value lower than the saturated vapor pressure of hydrogen at a predetermined temperature, so that liquefaction due to condensation of the hydrogen gas G is suppressed even if the temperature of the hydrogen gas G in the inter-tank region 23 drops.
- This makes it possible to suppress damage to the tank components caused by liquefaction of the hydrogen gas G in the inter-tank region 23, deterioration of the thermal insulation layer 24 arranged in the inter-tank region 23, and an increase in the amount of heat input due to the heat pipe effect.
- the operating method of the liquid hydrogen tank 1 according to the twelfth item is the operating method of the liquid hydrogen tank 1 according to the tenth item, in which, during storage, when the inter-tank pressure P3 exceeds a predetermined first inter-tank allowable pressure that is lower than the saturated vapor pressure of hydrogen at a predetermined temperature, hydrogen gas G is released from the inter-tank region 23 through the first release flow path, and when the inter-tank pressure P3 exceeds a second inter-tank allowable pressure that is lower than the saturated vapor pressure of hydrogen at a predetermined temperature and higher than the first inter-tank allowable pressure, hydrogen gas G is released from the inter-tank region 23 through the first and second release flow paths, thereby lowering the inter-tank pressure P3 to below the first inter-tank allowable pressure.
- the first release flow path corresponds to the release flow path that releases hydrogen gas G from the inter-tank region 23 through the on-off valve 37 in the above embodiment.
- the second release flow path corresponds to the release flow path that releases hydrogen gas G from the inter-tank region 23 through the inter-tank safety valve 33 in the above embodiment.
- hydrogen gas G can be released from the inter-tank region 23 of the liquid hydrogen tank 1 in two stages: a first stage using the first release flow path, and a second stage using the first and second release flow paths.
- the functions performed by the control device described herein may be implemented in a circuitry or processing circuit, including general purpose processors, application specific processors, integrated circuits, ASICs (Application Specific Integrated Circuits), CPUs (Central Processing Units), conventional circuits, and/or combinations thereof, programmed to perform the described functions.
- Processors include transistors and other circuits and are considered to be circuitry or processing circuitry.
- a processor may be a programmed processor that executes a program stored in a memory.
- a circuitry, unit, or means is hardware that is programmed to perform or executes the described functions.
- the hardware may be any hardware disclosed in this specification or any hardware that is programmed to perform or is known to perform the described functions. If the hardware is a processor, which is considered to be a type of circuitry, the circuitry, means, or unit is a combination of hardware and software used to configure the hardware and/or processor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
本開示は、液体水素を収容する液体水素タンクに関する。 This disclosure relates to a liquid hydrogen tank that contains liquid hydrogen.
従来から、低温の液化ガスを収容する液化ガスタンクとして、内槽と、内槽を囲む外槽とを備え、内槽と外槽との間の槽間領域にガスが充填された二重殻タンクが知られている。例えば、特許文献1には、内槽と外槽とを有する二重殻タンクが開示されており、この二重殻タンクにおける内槽と外槽との間の槽間には、内槽から排出されたボイルオフガスが充填されている。また、槽間には断熱材が詰め込まれている。 Conventionally, double-shell tanks have been known as liquefied gas tanks for storing low-temperature liquefied gas, and are equipped with an inner tank and an outer tank surrounding the inner tank, with the inter-tank area between the inner and outer tanks filled with gas. For example, Patent Document 1 discloses a double-shell tank having an inner and outer tank, in which the space between the inner and outer tanks is filled with boil-off gas discharged from the inner tank. In addition, the space between the tanks is packed with insulating material.
槽間領域の圧力変動等によって槽間に充填されたガスは凝縮して液化する可能性がある。槽間ガスが液化すると、タンクの構成要素が当該構成要素の許容下限温度以下となって損傷したり、槽間に配置された断熱材が劣化したり、ヒートパイプ効果によって入熱量が増加するおそれがある。 The gas filled between the tanks may condense and liquefy due to pressure fluctuations in the area between the tanks. If the gas between the tanks liquefies, the tank components may fall below their allowable lower limit temperature and be damaged, the insulation material placed between the tanks may deteriorate, or the heat input may increase due to the heat pipe effect.
本開示は以上の事情に鑑みてされたものであり、その目的は、液体水素を収容した内槽と、内槽を囲む外槽と、内槽と外槽の槽間領域に液体水素の気化ガスが充填された液体水素がタンクにおいて、槽間領域のガスの液化を抑制することにある。 This disclosure has been made in consideration of the above circumstances, and its purpose is to suppress liquefaction of the gas in the inter-tank region in a liquid hydrogen tank having an inner tank containing liquid hydrogen, an outer tank surrounding the inner tank, and the inter-tank region between the inner tank and the outer tank filled with vaporized liquid hydrogen gas.
上記課題を解決するために、本開示の一態様に係る液体水素タンクは、
液体水素が収容される内槽と、
前記内槽を囲む外槽と、
前記内槽と前記外槽との間の槽間領域に配置されて前記内槽の外壁を被覆する防熱層と、を備え、
前記槽間領域に水素ガスが充填され、且つ、前記内槽に前記液体水素が収容されている貯蔵時に、前記槽間領域の圧力である槽間圧力が所定の温度の水素の飽和蒸気圧よりも低いものである。
In order to solve the above problems, a liquid hydrogen tank according to one aspect of the present disclosure comprises:
an inner tank for accommodating liquid hydrogen;
An outer tank surrounding the inner tank;
a thermal barrier layer disposed in an inter-tank region between the inner tank and the outer tank and covering an outer wall of the inner tank,
During storage, when the inter-cell region is filled with hydrogen gas and the inner tank contains liquid hydrogen, the inter-cell pressure, which is the pressure in the inter-cell region, is lower than the saturated vapor pressure of hydrogen at a specified temperature.
また、本開示の一態様に係る液体水素タンクの運転方法は、液体水素が収容される内槽と、前記内槽を囲む外槽と、前記内槽と前記外槽との間の槽間領域に配置されて前記内槽の外壁を被覆する防熱層と、を備える液体水素タンクの運転方法であって、
前記槽間領域に水素ガスが充填され、且つ、前記内槽に前記液体水素が収容されている貯蔵時に、前記槽間領域の圧力である槽間圧力を所定の温度の水素の飽和蒸気圧よりも低く保持するものである。
Further, a method for operating a liquid hydrogen tank according to one aspect of the present disclosure is a method for operating a liquid hydrogen tank comprising an inner tank for accommodating liquid hydrogen, an outer tank surrounding the inner tank, and a thermal barrier layer disposed in an inter-tank region between the inner tank and the outer tank and covering an outer wall of the inner tank, the method comprising the steps of:
During storage, when the inter-cell region is filled with hydrogen gas and the inner tank contains liquid hydrogen, the inter-cell pressure, which is the pressure in the inter-cell region, is maintained lower than the saturated vapor pressure of hydrogen at a specified temperature.
本開示によれば、液体水素を収容した内槽と、内槽を囲む外槽と、内槽と外槽の槽間領域に液体水素の気化ガスが充填された液体水素がタンクにおいて、槽間領域のガスの液化を抑制できる。 According to the present disclosure, in a liquid hydrogen tank having an inner tank containing liquid hydrogen, an outer tank surrounding the inner tank, and the space between the inner and outer tanks filled with vaporized liquid hydrogen gas, liquefaction of the gas in the space between the tanks can be suppressed.
次に、図面を参照して本開示の実施の形態を説明する。図1は本開示の一態様に係る液体水素タンク1の概略構成を示す垂直断面図である。図1に示す液体水素タンク1は、極低温の液体水素を収容する容器である。液体水素タンク1は、貨物としての液体水素を貯蔵する貨物タンクであってもよいし、燃料としての液体水素を貯蔵する燃料タンクであってもよい。液体水素タンク1は、船舶や浮体構造物に搭載されてもよいし、地上に設置されてもよい。 Next, an embodiment of the present disclosure will be described with reference to the drawings. Fig. 1 is a vertical cross-sectional view showing the schematic configuration of a liquid hydrogen tank 1 according to one embodiment of the present disclosure. The liquid hydrogen tank 1 shown in Fig. 1 is a container that contains cryogenic liquid hydrogen. The liquid hydrogen tank 1 may be a cargo tank that stores liquid hydrogen as cargo, or a fuel tank that stores liquid hydrogen as fuel. The liquid hydrogen tank 1 may be mounted on a ship or a floating structure, or may be installed on land.
液体水素タンク1は、液体水素Lを収容する内槽21と、内槽21を囲む外槽22とを備える。但し、液体水素タンク1は二重殻タンクに限定されず、外槽22を包囲する少なくとも1つの槽を備える三重以上の多重殻タンクであってもよい。また、液体水素タンク1が船体に搭載されたものである場合には、船体が外槽22として機能してもよい。
The liquid hydrogen tank 1 comprises an
内槽21と外槽22は液体水素タンク1の径方向に離間しており、内槽21と外槽22の間に槽間領域23が設けられている。槽間領域23には防熱層24が配置されている。防熱層24は槽間領域23において内槽21の外壁を被覆している。防熱層24は断熱材で構成されており、断熱材としては、断熱パネルや、断熱シート、繊維状断熱材等が例示される。本明細書では、槽間領域23のうち、内槽21の外壁と防熱層24との間の領域を「アニュラ領域25」と称し、防熱層24と外槽22の内壁との間の領域を防熱層外周領域26と称する。ここで、内槽21の外壁と防熱層24の間に設けられた隙間によってアニュラ領域25が形成されていてもよいし、内槽21の外壁と対峙する防熱層24の表面に形成された空隙や空孔によってアニュラ領域25が形成されていてもよい。
The
槽間領域23には、内槽21に収容された液体水素Lの気化ガスと同種のガス、即ち、水素ガスGが充填されている。水素ガスGは、内槽21の内部で液体水素Lが気化することよって生じた気化ガスであってもよいし、液体水素タンク1の外部から供給されたガスであってもよい。内槽21に液体水素Lが収容された状態の貯蔵時の液体水素タンク1では、槽間領域23の水素ガスGが凝縮によって液化しないように、槽間領域23の圧力が調整されている。
The
内槽21の内部と槽間領域23は、互いに独立した空間である。一方で、槽間領域23は、(i)アニュラ領域25と防熱層外周領域26とが連通されている場合と、(ii)アニュラ領域25と防熱層外周領域26が互いに独立した空間である場合とがある。防熱層24が気密層であれば、アニュラ領域25と防熱層外周領域26が互いに独立した空間となる。そこで、以下では、上記(i)(ii)の両ケースにおける貯蔵時の液体水素タンク1の槽間領域23の圧力調整方法を説明する。
The interior of the
(i)アニュラ領域25と防熱層外周領域26とが連通されている場合
内槽21の内部の圧力を「内槽圧力P1」と称し、槽間領域23の圧力を「槽間圧力P3」と称する。アニュラ領域25と防熱層外周領域26は連通されているので、これらの領域の圧力はいずれも槽間圧力P3である。
(i) When the annular region 25 and the thermal insulation layer outer peripheral region 26 are in communication, the pressure inside the
液体水素タンク1に液体水素Lが収容される初期設定時に、内槽圧力P1は所定の内槽標準圧力であり、槽間圧力P3は所定の槽間標準圧力であるように、内槽21に液体水素Lが充填され、槽間領域23に水素ガスGが充填される。
At the initial setting when liquid hydrogen L is stored in the liquid hydrogen tank 1, the
液体水素タンク1には、内槽圧力センサ31と内槽安全弁32が設けられている。内槽圧力センサ31は、内槽21の気相部分の圧力、即ち、内槽圧力P1を検出する。内槽安全弁32は、内槽圧力P1が所定の内槽設計圧力を超えないように、内槽圧力P1が所定の内槽許容圧力を超えると開放されて内槽21内の気化ガスを外部へ逃がすように構成されている。内槽許容圧力は、内槽設計圧力以下であり、且つ、内槽標準圧力よりも十分に高い。
The liquid hydrogen tank 1 is provided with an inner
液体水素タンク1は、槽間領域23の圧力を調整する圧力調整装置3を備える。圧力調整装置3は、貯蔵時の液体水素タンク1において、槽間圧力P3を、内槽圧力P1より低く、且つ、所定の温度における水素の飽和蒸気圧よりも低くなるように調整する。本実施形態に係る圧力調整装置3は、槽間安全弁33と、接続管36及び差圧安全弁35とを含む。
The liquid hydrogen tank 1 is equipped with a pressure regulating
槽間安全弁33は、外槽22、又は、槽間領域23と連通された配管等に設けられている。槽間安全弁33は、定常時閉止しており、槽間圧力P3が槽間許容圧力を超えると開放される弁であって、請求の範囲の第1弁に相当する。槽間安全弁33は流体の圧力、パイロット圧、及びバネ圧等により発生する力を利用して作動する自力式自動弁である。但し、槽間安全弁33は自力式自動弁に限定されず、制御装置によって制御されるアクチュエータによって槽間許容圧力を超えると開放される制御弁(即ち、他動式自動弁)や手動弁が用いられてもよい。槽間安全弁33が開放されると、槽間領域23の水素ガスGが強制排気系統を介して液体水素タンク1の外部へ逃がされ、槽間圧力P3は槽間許容圧力以下まで低下する。なお、強制排気系統には、水素ガスGを強制的に排気させる圧縮機と、水素ガスGを安全に大気へ放出する放出塔や、水素ガスGを燃料等として消費する水素燃料消費機器等とが含まれていてよい。
The
槽間許容圧力は、内槽標準圧力よりも低く、所定の温度の水素の飽和蒸気圧よりも低い。ここで、所定の温度は、内槽21に収容される液体水素の温度、内槽21の内表面の温度、内槽21の外表面、又は、槽間領域23に充填された水素ガスGの温度であって、実測温度に限らず、-259℃から-240℃までの間の推定又は設定された温度であってよい。槽間許容圧力は、内槽圧力P1の想定される最低値に設定されてよい。内槽圧力P1が0KPaGを下回ると槽間圧力P3が0KPaG未満の負圧となることから、内槽圧力P1の最低値は0KPaGより高く、好ましくは5KPaGより高い。このように、槽間圧力P3が所定の槽間許容圧力を超えないように調整されることによって、槽間領域23における水素ガスGの凝縮による液化が防止される。
The inter-vessel allowable pressure is lower than the inner vessel standard pressure and lower than the saturated vapor pressure of hydrogen at a predetermined temperature. Here, the predetermined temperature is the temperature of the liquid hydrogen contained in the
上記において、図2に示すように、圧力調整装置3は、槽間安全弁33とは別に、槽間領域23と連通された配管等に設けられたる開閉弁37を備えていてもよい。これにより、液体水素タンク1は、開閉弁37を通じた槽間領域23からの水素ガスGの放出流路である第1放出流路と、槽間安全弁33を通じた槽間領域23からの水素ガスGの放出流路である第2放出流路との、2つの放出流路を備える。第1放出流路と第2放出流路は、互いに独立した流路であることが好ましく、これらの流路は途中で合流してもよいが少なくとも槽間領域23からの出口において互いに独立していることが好ましい。開閉弁37は、定常時は閉止されており、開放されると槽間領域23の水素ガスGが第1放出流路を介して液体水素タンク1の外部へ逃がされる。開閉弁37は、オペレータによって操作される手動弁であってもよいし、制御装置によって開閉制御される制御弁であってもよい。
In the above, as shown in FIG. 2, the
上記のように液体水素タンク1が槽間領域23からの2系統の放出流路を有する場合、第1槽間許容圧力と、第1槽間許容圧力よりも高い第2槽間許容圧力との二段階の槽間許容圧力が与えられる。第1槽間許容圧力及び第2槽間許容圧力はいずれも所定の温度の水素の飽和蒸気圧よりも低い値である。開閉弁37は槽間圧力P3が第1許容圧力を超えると開放され、槽間安全弁33は槽間圧力P3が第2槽間許容圧力を超えると開放するように設定される。槽間圧力P3が第1槽間許容圧力を超えると、まず、開閉弁37が開放されて槽間領域23の水素ガスGが第1放出流路を通じて外部へ逃がされる。槽間圧力P3を検出する槽間圧力センサ38が液体水素タンク1に設けられ、槽間圧力センサ38で検出された圧力が第1槽間許容圧力を超えると、それを報知するために警報が発されてもよい。そして、開閉弁37の開放では槽間圧力P3が第1槽間許容圧力以下に低下せずに、槽間圧力P3が第2槽間許容圧力を超えた場合は、槽間安全弁33が開放される。開閉弁37と槽間安全弁33の開放によって、水素ガスGは第1放出流路及び第2放出流路を通じて外部へ放出され、槽間圧力P3が第1槽間許容圧力以下まで低下する。
When the liquid hydrogen tank 1 has two discharge flow paths from the
図1に戻って、接続管36は、内槽21内の気相部と槽間領域23とを接続する配管である。差圧安全弁35は、接続管36内の流路を開閉する弁であって、請求の範囲の第1弁に相当する。差圧安全弁35は、内槽21の気化ガスを槽間領域23へ導入することによって、内槽圧力P1と槽間圧力P3の差圧を0より大きく差圧設定値以下に保持する。例えば、差圧安全弁35は、内槽圧力P1と槽間圧力P3の差圧が差圧設定値を超えている間は開放して内槽21と槽間領域23とを接続管36を介して連通させ、内槽21の気化ガスを槽間領域23へ導入するように構成されている。差圧設定値は、槽間領域23の水素ガスGの凝縮が抑制されるような任意の値である。差圧安全弁35によって、内槽圧力P1と槽間圧力P3の差圧が保持されることによって、槽間領域23と内槽21内の圧力差が適正範囲に保たれて液体水素タンク1の構成要素に過大な負荷がかかることを防止できる。なお、差圧安全弁35は内槽圧力P1と槽間圧力P3の差圧によって動作する自力式自動弁であるが、制御装置によって制御されるアクチュエータによって内槽圧力P1と槽間圧力P3の差圧が差圧設定値を超えると開放される制御弁であってもよい。
Returning to FIG. 1, the connecting
(ii)アニュラ領域25と防熱層外周領域26とが互いに独立した空間である場合
上記と同様に、液体水素タンク1は、内槽圧力センサ31、内槽安全弁32、及び圧力調整装置3を備える。圧力調整装置3は、槽間安全弁33、接続管36、及び差圧安全弁35を含む。
(ii) In the case where the annular region 25 and the thermal barrier outer peripheral region 26 are independent spaces, similarly to the above, the liquid hydrogen tank 1 includes an inner
槽間領域23において、アニュラ領域25は槽間領域23の他の領域(即ち、防熱層外周領域26)から空間的に独立している。ここでは、槽間領域23のうちアニュラ領域25の圧力をアニュラ圧力P2とし、槽間領域23のうちアニュラ領域25を除く領域(即ち、防熱層外周領域26)の圧力を槽間圧力P3とする。
In the
アニュラ領域25には、内槽21に液体水素Lが収容されていないとき又は初期設定時に、予めアニュラ標準圧力となるように水素ガスGが充填されている。アニュラ圧力P2は、積載時には内槽21に収容された液体水素Lの冷熱によってアニュラ標準圧力より低くなるが、アニュラ標準圧力より高くなることはない。アニュラ標準圧力は、内槽21に収容される液体水素の温度の水素の飽和蒸気圧よりも低い。ここで、内槽21に収容される液体水素の温度は、実測温度に限らず、-259℃から-240℃までの間の推定又は設定された温度であってよい。このように、アニュラ標準圧力が設定されることによって、アニュラ領域25における水素ガスGの凝縮による液化が防止される。
When liquid hydrogen L is not contained in the
槽間圧力P3がアニュラ圧力P2よりも低くなると、内槽21に支持されている防熱層24が浮き上がったり、支持部が損傷したりするおそれがあることから、槽間圧力P3はアニュラ圧力P2以上となるように調整される。前述の通りアニュラ圧力P2はアニュラ標準圧力以下であるから、槽間圧力P3はアニュラ標準圧力以上となるように調整されればよい。例えば、槽間標準圧力はアニュラ標準圧力以上の値に設定され、槽間圧力P3がアニュラ標準圧力以上となるように差圧安全弁35の差圧設定値が設定される。
If the inter-tank pressure P3 becomes lower than the annular pressure P2, there is a risk that the
〔総括〕
本開示の第1の項目に係る液体水素タンク1は、
液体水素Lが収容される内槽21と、
内槽21を囲む外槽22と、
内槽21と外槽22との間の槽間領域23に配置されて内槽21の外壁を被覆する防熱層24と、を備え、
槽間領域23に水素ガスGが充填され、且つ、内槽21に液体水素Lが収容されている貯蔵時に、槽間領域23の圧力である槽間圧力P3が所定の温度の水素の飽和蒸気圧よりも低いものである。
[Summary]
The liquid hydrogen tank 1 according to the first aspect of the present disclosure comprises:
An
An
a
When the
上記構成の液体水素タンク1において、槽間領域23に充填された水素ガスGは、内槽21に収容された液体水素Lと実質的に同じ温度まで低下し得る。したがって、槽間圧力P3が内槽21内に貯蔵された液体水素Lの温度における飽和蒸気圧よりも低い状態となれば、槽間領域23の水素ガスGが凝縮するおそれがある。上記構成の液体水素タンク1では、槽間領域23の水素ガスGの温度が低下しても水素ガスGが凝縮して液化しないように、槽間圧力P3が所定の温度の水素の飽和蒸気圧よりも低い値に保持されている。よって、槽間領域23内の水素ガスGの液化に起因するタンク構成要素の損傷や、槽間領域23に配置された防熱層24の劣化や、ヒートパイプ効果による入熱量の増加を抑制できる。
In the liquid hydrogen tank 1 configured as above, the hydrogen gas G filled in the
第2の項目に係る液体水素タンク1は、第1の項目に係る液体水素タンク1において、貯蔵時に、槽間圧力P3は内槽21内の気相部分の圧力である内槽圧力P1よりも低いものである。
The liquid hydrogen tank 1 according to the second item is the liquid hydrogen tank 1 according to the first item, in which during storage, the inter-tank pressure P3 is lower than the inner tank pressure P1, which is the pressure of the gas phase portion inside the
内槽21内の液体水素Lの温度は、内槽圧力P1に応じた温度(即ち、圧力P1の飽和温度)に収束する。ここで、仮に、槽間圧力P3が内槽圧力P1以上であれば、槽間領域23の水素ガスGの飽和温度は液体水素Lの温度(=内槽21の温度)以上となり、槽間領域23では内槽21の外表面において水素ガスGの液化が起こる。これに対し、本開示に係る液体水素タンク1では、槽間圧力P3を内槽圧力P1より低い値に維持することによって、槽間圧力P3は内槽21に収容された液体水素Lの温度における飽和蒸気圧よりも低い値に維持されることとなる。したがって、上記構成の液体水素タンク1によれば、槽間領域23内の水素ガスGの温度が低下しても、槽間領域23内の水素ガスGの凝縮による液化が抑制される。よって、槽間領域23内の水素ガスGの液化に起因するタンク構成要素の損傷や、槽間領域23に配置された防熱層24の劣化や、ヒートパイプ効果による入熱量の増加を抑制できる。
The temperature of the liquid hydrogen L in the
第3の項目に係る液体水素タンク1は、第1又は2の項目に係る液体水素タンク1において、前記所定の温度が、内槽21に収容されている液体水素の温度、内槽21の内表面の温度、又は、内槽21の外表面の温度であるものである。
The liquid hydrogen tank 1 pertaining to the third item is the liquid hydrogen tank 1 pertaining to the first or second item, in which the predetermined temperature is the temperature of the liquid hydrogen contained in the
上記構成の液体水素タンク1によれば、槽間圧力P3が内槽21に収容されている液体水素Lの温度の水素の飽和蒸気圧よりも低い値に保持されているので、槽間領域23に充填された水素ガスGの温度が低下しても水素ガスGの凝縮による液化を防止できる。
With the liquid hydrogen tank 1 configured as described above, the inter-vessel pressure P3 is maintained at a value lower than the saturated vapor pressure of hydrogen at the temperature of the liquid hydrogen L contained in the
第4の項目に係る液体水素タンク1は、第1乃至3のいずれかの項目に係る液体水素タンク1において、槽間圧力P3を調整する圧力調整装置3を備えるものである。
The liquid hydrogen tank 1 according to the fourth item is a liquid hydrogen tank 1 according to any one of the first to third items, and is equipped with a
第5の項目に係る液体水素タンク1は、第4の項目に係る液体水素タンク1において、圧力調整装置3は、槽間圧力P3が、内槽21に収容されている液体水素Lの温度における水素の飽和蒸気圧よりも低い所定の槽間許容圧力を超えると、槽間領域23の水素ガスGを外部へ逃がす第1弁を有するものである。
The liquid hydrogen tank 1 according to the fifth item is the liquid hydrogen tank 1 according to the fourth item, in which the
第4及び第5の項目に係る液体水素タンク1によれば、オペレータのオペレーションに拠らずに槽間領域23の水素ガスGの液化を防止できる。上記の第1弁は、上記実施形態において槽間安全弁33に相当する。
The liquid hydrogen tank 1 according to the fourth and fifth items can prevent liquefaction of hydrogen gas G in the
第6の項目に係る液体水素タンク1は、第1乃至5のいずれかの項目に係る液体水素タンク1において、槽間領域23は内槽21と防熱層24との間に水素ガスGが充填された気密なアニュラ領域25を含み、貯蔵時に、アニュラ領域25の圧力P2は内槽圧力P1よりも低いものである。
The liquid hydrogen tank 1 according to the sixth item is a liquid hydrogen tank 1 according to any one of the first to fifth items, in which the
これにより、アニュラ領域25に充填された水素ガスGの温度が低下しても、当該水素ガスGの凝縮による液化を防止できる。 As a result, even if the temperature of the hydrogen gas G filled in the annular region 25 drops, the hydrogen gas G can be prevented from condensing and becoming liquefied.
第7の項目に係る液体水素タンク1は、第6の項目に係る液体水素タンク1において、アニュラ領域25の圧力P2は、アニュラ領域25を除く槽間領域23の圧力P3よりも低いものである。
The liquid hydrogen tank 1 according to the seventh item is the liquid hydrogen tank 1 according to the sixth item, in which the pressure P2 in the annular region 25 is lower than the pressure P3 in the
これにより、防熱層24やその支持部材の損傷や、防熱層24の浮き上がりを防止できる。
This prevents damage to the
第8の項目に係る液体水素タンク1は、第4の項目に係る液体水素タンク1において、圧力調整装置3は、内槽圧力P1と槽間圧力P3の差圧を所定の差圧設定値以下に保持するものである。
The liquid hydrogen tank 1 according to the eighth item is the liquid hydrogen tank 1 according to the fourth item, in which the
このように、内槽21の内部と槽間領域23との差圧が差圧設定値内に管理されることによって、差圧が過大となることに起因するタンク構成要素の損傷を防止できる。
In this way, the pressure difference between the inside of the
第9の項目に係る液体水素タンク1は、第8の項目に係る液体水素タンク1において、圧力調整装置3は、内槽21の気相部と槽間領域23とを接続する接続管36と、内槽圧力P1と槽間圧力P3の差圧が差圧設定値を超えると、接続管36を通じて内槽21の気相部の気化ガスを槽間領域23へ導入する第2弁を有するものである。第2弁は、上記実施形態において差圧安全弁35に相当する。
The liquid hydrogen tank 1 according to the ninth item is the liquid hydrogen tank 1 according to the eighth item, in which the
上記構成の液体水素タンク1では、内槽21の内部と槽間領域23との差圧がオペレータのオペレーションに拠らずに管理される。また、槽間圧力P3の圧力を測定することなく、内槽圧力P1と槽間圧力P3の相対的関係によって槽間圧力P3を調整できる。
In the liquid hydrogen tank 1 configured as described above, the pressure difference between the inside of the
本開示の第10の項目に係る液体水素タンク1の運転方法は、液体水素Lが収容される内槽21と、内槽21を囲む外槽22と、内槽21と外槽22との間の槽間領域23に配置されて内槽21の外壁を被覆する防熱層24と、を備える液体水素タンク1の運転方法であって、
槽間領域23に水素ガスGが充填され、且つ、内槽21に液体水素Lが収容されている貯蔵時に、槽間領域23の圧力である槽間圧力P3を所定の温度の水素の飽和蒸気圧よりも低く保持するものである。
A method for operating a liquid hydrogen tank 1 according to a tenth aspect of the present disclosure is a method for operating a liquid hydrogen tank 1 comprising an
During storage, when the
また、第11の項目に係る液体水素タンク1の運転方法は、第10の項目に係る液体水素タンク1の運転方法において、貯蔵時に、槽間圧力P3が所定の温度の水素の飽和蒸気圧よりも低い所定の槽間許容圧力を超えると槽間領域23から水素ガスGを逃がして槽間圧力P3を槽間許容圧力未満に低下させるものである。
The operating method of the liquid hydrogen tank 1 according to the eleventh item is the operating method of the liquid hydrogen tank 1 according to the tenth item, in which, during storage, when the inter-tank pressure P3 exceeds a predetermined inter-tank allowable pressure that is lower than the saturated vapor pressure of hydrogen at a predetermined temperature, hydrogen gas G is released from the
第10及び第11の項目に係る液体水素タンク1の運転方法によれば、槽間圧力P3が所定の温度の水素の飽和蒸気圧よりも低い値に保持されることによって、槽間領域23の水素ガスGの温度が低下しても水素ガスGの凝縮による液化が抑制される。よって、槽間領域23内の水素ガスGの液化に起因するタンク構成要素の損傷や、槽間領域23に配置された防熱層24の劣化や、ヒートパイプ効果による入熱量の増加を抑制できる。
According to the operating method of the liquid hydrogen tank 1 relating to the tenth and eleventh items, the inter-tank pressure P3 is maintained at a value lower than the saturated vapor pressure of hydrogen at a predetermined temperature, so that liquefaction due to condensation of the hydrogen gas G is suppressed even if the temperature of the hydrogen gas G in the
第12の項目に係る液体水素タンク1の運転方法は、第10の項目に係る液体水素タンク1の運転方法において、貯蔵時に、槽間圧力P3が所定の温度の水素の飽和蒸気圧よりも低い所定の第1槽間許容圧力を超えると第1放出流路を通じて槽間領域23から水素ガスGを逃がし、槽間圧力P3が所定の温度の水素の飽和蒸気圧よりも低く且つ第1槽間許容圧力よりも高い第2槽間許容圧力を超えると第1放出流路及び第2放出流路を通じて槽間領域23から水素ガスGを逃がして、槽間圧力P3を第1槽間許容圧力未満に低下させるものである。第1放出流路は、上記実施形態において開閉弁37を通じて槽間領域23から水素ガスGを放出する放出流路に相当する。第2放出流路は、上記実施形態において槽間安全弁33通じて槽間領域23から水素ガスGを放出する放出流路に相当する。
The operating method of the liquid hydrogen tank 1 according to the twelfth item is the operating method of the liquid hydrogen tank 1 according to the tenth item, in which, during storage, when the inter-tank pressure P3 exceeds a predetermined first inter-tank allowable pressure that is lower than the saturated vapor pressure of hydrogen at a predetermined temperature, hydrogen gas G is released from the
上記液体水素タンク1の運転方法によれば、液体水素タンク1の槽間領域23から、第1放出流路を利用した第1段階、第1放出流路及び第2放出流路を利用した第2段階の二段階で水素ガスGを放出できる。
According to the above-mentioned operating method of the liquid hydrogen tank 1, hydrogen gas G can be released from the
本明細書中に記載されている制御装置により実現される機能は、当該記載された機能を実現するようにプログラムされた、汎用プロセッサ、特定用途プロセッサ、集積回路、ASICs(Application Specific Integrated Circuits)、CPU(Central Processing Unit)、従来型の回路、及び/又は それらの組合せを含む、circuitry又は processing circuitryにおいて実装されてもよい。プロセッサは、トランジスタやその他の回路を含み、circuitry又はprocessing circuitryとみなされる。プロセッサは、メモリに格納されたプログラムを実行する、programmed processorであってもよい。本明細書において、circuitry、ユニット、手段は、記載された機能を実現するようにプログラムされたハードウェア、又は実行するハードウェアである。当該ハードウェアは、本明細書に開示されているあらゆるハードウェア、又は、当該記載された機能を実現するようにプログラムされた、又は、実行するものとして知られているあらゆるハードウェアであってもよい。当該ハードウェアがcircuitryのタイプであるとみなされるプロセッサである場合、当該circuitry、手段、又はユニットは、ハードウェアと、当該ハードウェア及び又はプロセッサを構成する為に用いられるソフトウェアの組合せである。 The functions performed by the control device described herein may be implemented in a circuitry or processing circuit, including general purpose processors, application specific processors, integrated circuits, ASICs (Application Specific Integrated Circuits), CPUs (Central Processing Units), conventional circuits, and/or combinations thereof, programmed to perform the described functions. Processors include transistors and other circuits and are considered to be circuitry or processing circuitry. A processor may be a programmed processor that executes a program stored in a memory. In this specification, a circuitry, unit, or means is hardware that is programmed to perform or executes the described functions. The hardware may be any hardware disclosed in this specification or any hardware that is programmed to perform or is known to perform the described functions. If the hardware is a processor, which is considered to be a type of circuitry, the circuitry, means, or unit is a combination of hardware and software used to configure the hardware and/or processor.
以上の本開示の議論は、例示及び説明の目的で提示されたものであり、本開示を本明細書に開示される形態に限定することを意図するものではない。例えば、前述の詳細な説明では、本開示の様々な特徴は、本開示を合理化する目的で1つの実施形態に纏められているが、複数の特徴のうち幾つかが組み合わされてもよい。また、本開示に含まれる複数の特徴は、上記で論じたもの以外の代替の実施形態、構成、又は態様に組み合わされてもよい。 The foregoing discussion of the present disclosure has been presented for purposes of illustration and description, and is not intended to limit the present disclosure to the form disclosed herein. For example, in the foregoing detailed description, various features of the present disclosure are grouped together in a single embodiment for purposes of streamlining the disclosure, but some of the features may be combined. Additionally, the features included in the present disclosure may be combined into alternative embodiments, configurations, or aspects other than those discussed above.
Claims (12)
前記内槽を囲む外槽と、
前記内槽と前記外槽との間の槽間領域に配置されて前記内槽の外壁を被覆する防熱層と、を備え、
前記槽間領域に水素ガスが充填され、且つ、前記内槽に前記液体水素が収容されている貯蔵時に、前記槽間領域の圧力である槽間圧力が所定の温度の水素の飽和蒸気圧よりも低い、
液体水素タンク。 an inner tank for accommodating liquid hydrogen;
An outer tank surrounding the inner tank;
a thermal barrier layer disposed in an inter-tank region between the inner tank and the outer tank and covering an outer wall of the inner tank,
during storage in which the inter-chamber region is filled with hydrogen gas and the inner chamber contains liquid hydrogen, an inter-chamber pressure, which is the pressure in the inter-chamber region, is lower than a saturated vapor pressure of hydrogen at a predetermined temperature;
Liquid hydrogen tank.
請求項1に記載の液体水素タンク。 During the storage, the inter-tank pressure is lower than an inner tank pressure which is a pressure of a gas phase portion in the inner tank.
2. The liquid hydrogen tank according to claim 1.
請求項1又は2に記載の液体水素タンク。 the predetermined temperature is a temperature of the liquid hydrogen contained in the inner tank, a temperature of the inner surface of the inner tank, or a temperature of the outer surface of the inner tank;
3. A liquid hydrogen tank according to claim 1 or 2.
請求項1乃至3のいずれか一項に記載の液体水素タンク。 A pressure adjusting device for adjusting the inter-tank pressure is provided.
A liquid hydrogen tank according to any one of claims 1 to 3.
請求項4に記載の液体水素タンク。 the pressure regulating device has a first valve that releases the hydrogen gas in the inter-cell region to the outside when the inter-cell pressure exceeds a predetermined inter-cell allowable pressure that is lower than a saturated vapor pressure of hydrogen at the predetermined temperature.
5. The liquid hydrogen tank according to claim 4.
前記貯蔵時に、前記アニュラ領域の圧力は前記内槽の圧力よりも低い、
請求項1乃至5のいずれか一項に記載の液体水素タンク。 The inter-vessel region includes an airtight annular region filled with the hydrogen gas between the inner vessel and the thermal barrier layer,
During the storage, the pressure in the annular region is lower than the pressure in the inner vessel.
A liquid hydrogen tank according to any one of claims 1 to 5.
請求項6に記載の液体水素タンク。 During the storage, the pressure in the annular region is lower than the pressure in the inter-vessel region excluding the annular region;
7. The liquid hydrogen tank according to claim 6.
請求項4に記載の液体水素タンク。 The pressure regulating device maintains a pressure difference between the pressure in the inner tank and the pressure between the tanks at a predetermined pressure difference set value or less.
5. The liquid hydrogen tank according to claim 4.
請求項8に記載の液体水素タンク。 the pressure regulating device includes a connecting pipe connecting the gas phase part of the inner tank and the inter-tank region, and a second valve introducing vaporized gas from the gas phase part of the inner tank through the connecting pipe into the inter-tank region when a pressure difference between the inner tank pressure and the inter-tank pressure exceeds the differential pressure setting value.
9. The liquid hydrogen tank according to claim 8.
前記槽間領域に水素ガスが充填され、且つ、前記内槽に前記液体水素が収容されている貯蔵時に、前記槽間領域の圧力である槽間圧力を所定の温度の水素の飽和蒸気圧よりも低く保持する、
液体水素タンクの運転方法。 1. A method for operating a liquid hydrogen tank comprising: an inner tank for accommodating liquid hydrogen; an outer tank surrounding the inner tank; and a thermal barrier layer disposed in an inter-tank region between the inner tank and the outer tank and covering an outer wall of the inner tank, comprising:
During storage in which the inter-chamber region is filled with hydrogen gas and the inner chamber contains liquid hydrogen, an inter-chamber pressure, which is the pressure in the inter-chamber region, is maintained lower than a saturated vapor pressure of hydrogen at a predetermined temperature.
How to operate a liquid hydrogen tank.
請求項10に記載の液体水素タンクの運転方法。 during the storage, when the inter-cell pressure exceeds a predetermined inter-cell allowable pressure which is lower than the saturated vapor pressure of hydrogen at the predetermined temperature, the hydrogen gas is released from the inter-cell region to reduce the inter-cell pressure to below the inter-cell allowable pressure;
A method for operating a liquid hydrogen tank according to claim 10.
請求項10に記載の液体水素タンクの運転方法。 during the storage, when the inter-cell pressure exceeds a predetermined first inter-cell allowable pressure that is lower than the saturated vapor pressure of hydrogen at the predetermined temperature, the hydrogen gas is released from the inter-cell region through a first release flow path, and when the inter-cell pressure exceeds a second inter-cell allowable pressure that is lower than the saturated vapor pressure of hydrogen at the predetermined temperature and higher than the first inter-cell allowable pressure, the hydrogen gas is released from the inter-cell region through the first release flow path and the second release flow path, thereby reducing the inter-cell pressure to less than the first inter-cell allowable pressure;
A method for operating a liquid hydrogen tank according to claim 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/036794 WO2024069967A1 (en) | 2022-09-30 | 2022-09-30 | Liquid hydrogen tank and method for operating same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/036794 WO2024069967A1 (en) | 2022-09-30 | 2022-09-30 | Liquid hydrogen tank and method for operating same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024069967A1 true WO2024069967A1 (en) | 2024-04-04 |
Family
ID=90476704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/036794 WO2024069967A1 (en) | 2022-09-30 | 2022-09-30 | Liquid hydrogen tank and method for operating same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024069967A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6132699U (en) * | 1984-07-30 | 1986-02-27 | 石川島播磨重工業株式会社 | Low temperature double shell tank |
JPH06323498A (en) * | 1993-05-14 | 1994-11-25 | Ishikawajima Harima Heavy Ind Co Ltd | Liquid gas storage device and its carrier |
JPH1182889A (en) * | 1997-09-10 | 1999-03-26 | I H I Plantec:Kk | Vertical type heat insulating low temperature tank |
-
2022
- 2022-09-30 WO PCT/JP2022/036794 patent/WO2024069967A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6132699U (en) * | 1984-07-30 | 1986-02-27 | 石川島播磨重工業株式会社 | Low temperature double shell tank |
JPH06323498A (en) * | 1993-05-14 | 1994-11-25 | Ishikawajima Harima Heavy Ind Co Ltd | Liquid gas storage device and its carrier |
JPH1182889A (en) * | 1997-09-10 | 1999-03-26 | I H I Plantec:Kk | Vertical type heat insulating low temperature tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023282116A1 (en) | Ship and liquefied hydrogen tank | |
US7165408B2 (en) | Method of operating a cryogenic liquid gas storage tank | |
JPH06159598A (en) | Storage facility for liquefied gas | |
JP4969383B2 (en) | Natural gas supply equipment | |
WO2024069967A1 (en) | Liquid hydrogen tank and method for operating same | |
EP4129815A1 (en) | Ship | |
KR101637415B1 (en) | Pressure control method and system for liquid cargo tank | |
KR101751841B1 (en) | Leakage Liquefied Gas of Storage Tank Treatment System and Method | |
KR20230160381A (en) | Multi-angle tank, vessel and gas pressure adjustment method | |
JPH0123040Y2 (en) | ||
CN210259661U (en) | Low pressure nitrogen of environment-friendly seals cold-insulated vault jar equipment | |
JP2022101284A (en) | Vacuum heat insulating pipe unit for liquefied gas, and damage detection method for vacuum heat insulating pipe for liquefied gas | |
KR20090036361A (en) | LNK carrier having a pressure regulating device and a pressure regulating device when unloading the LNK carrier | |
KR20160131471A (en) | Pressure control method and system for liquid cargo tank | |
KR20240132087A (en) | Cooling down method of liquefied gas storage tank | |
Gorbachev et al. | Process flow diagrams of cryogenic double-wall tanks for LNG storage | |
US20230167947A1 (en) | Cryogenic storage system | |
WO2024166242A1 (en) | Low temperature gas discharge system, structure, and low temperature gas discharge method | |
US20250033788A1 (en) | Double-wall pipe for an aircraft fuel system | |
WO2023182367A1 (en) | Cooling-down method for liquefied gas storage tank | |
WO2022211088A1 (en) | Multi-shell tank, ship, and gas pressure adjustment method | |
WO2023182362A1 (en) | Method for cooling down liquefied gas storage tank | |
KR20240132088A (en) | Cooling down method of liquefied gas storage tank | |
KR20240132092A (en) | Cooling down method of liquefied gas storage tank | |
WO2024166241A1 (en) | Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22961026 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024549053 Country of ref document: JP |