Nothing Special   »   [go: up one dir, main page]

WO2024061066A1 - 波束恢复方法、装置及终端 - Google Patents

波束恢复方法、装置及终端 Download PDF

Info

Publication number
WO2024061066A1
WO2024061066A1 PCT/CN2023/118442 CN2023118442W WO2024061066A1 WO 2024061066 A1 WO2024061066 A1 WO 2024061066A1 CN 2023118442 W CN2023118442 W CN 2023118442W WO 2024061066 A1 WO2024061066 A1 WO 2024061066A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
link performance
target signal
condition
Prior art date
Application number
PCT/CN2023/118442
Other languages
English (en)
French (fr)
Inventor
姜大洁
鲍炜
姚健
李健之
丁圣利
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024061066A1 publication Critical patent/WO2024061066A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application belongs to the technical field of synaesthesia integration, and specifically relates to a beam recovery method, device and terminal.
  • the New Radio (NR) beam failure detection and recovery process in the Release 15 (R15) protocol specification of the 3rd Generation Partnership Project (3GPP) is as follows:
  • the physical layer measures at least one reference signal (Reference Signal, RS) indicated by the parameter failureDetectionResources sent by the high-level signaling, and calculates the corresponding physical downlink control channel (Physical Downlink Control Channel, PDCCH) Receive block error rate (BLER) performance;
  • Reference Signal Reference Signal
  • PDCCH Physical Downlink Control Channel
  • the RS can be a synchronization signal and a physical broadcast channel (Synchronization Signal and PBCH block, SSB) signal or a channel state information reference signal (Channel-State-Information Reference Signal, CSI-RS) or a mixture of the two.
  • SSB Synchronization Signal and PBCH block
  • CSI-RS Channel State Information Reference Signal
  • the physical layer reports the beam failure instance to the upper layer (Medium Access Control (Medium Access Control, MAC) layer);
  • Beam failure instance will be reported only when all RS meet the conditions.
  • the user equipment searches for the candidate RS. If an RS that meets the threshold is found, the UE reports the CRI/L1-RSRP or SSBRI/L1-RSRP that meets the threshold to the MAC layer;
  • the MAC layer selects the RS that meets the threshold and the corresponding physical random access channel (Physical Random Access Channel, PRACH) resources;
  • the UE sends (or resends) a beam failure recovery request to the base station.
  • the base station If the base station receives the beam failure recovery request, it will send a response (response) through the PDCCH on the corresponding resource;
  • the link recovery is successful; if the beam failure recovery request reaches the maximum number of times and the response is not received, the link recovery fails.
  • the embodiments of the present application provide a beam recovery method, device, and terminal to achieve beam recovery in a scenario of synaesthesia integration.
  • a beam recovery method including:
  • the terminal obtains the link performance corresponding to the target signal by measuring the target signal
  • the terminal determines that the link performance corresponding to the target signal cannot meet the requirements, perform a random access process or a beam failure recovery process;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • a beam recovery device including:
  • a monitoring module used to obtain the link performance corresponding to the target signal by measuring the target signal
  • An execution module configured to execute a random access process or a beam failure recovery process when it is determined that the link performance corresponding to the target signal cannot meet the requirements
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to obtain the link performance corresponding to the target signal by measuring the target signal; after determining that the target signal corresponds to If the link performance cannot meet the requirements, perform the random access process or beam failure recovery process;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a perception signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • a beam recovery system comprising: a terminal and a network side device, wherein the terminal can be used to execute the steps of the beam recovery method as described in the first aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface and the Coupled with a processor, the processor is used to run programs or instructions to implement the method described in the first aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect Steps of the beam recovery method.
  • At least one first signal is measured to obtain at least the perceptual link performance corresponding to the first signal.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • FIG2 is a schematic diagram of a flow chart of a beam recovery method according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of one-dimensional image SNR calculation
  • Figure 4 is a schematic module diagram of a beam recovery device according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet device
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • Vehicle user equipment VUE
  • pedestrian terminal pedestrian terminal
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment and core network equipment, where the access network equipment may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Networks (WLAN) access points or WiFi nodes, etc.
  • WLAN Wireless Local Area Networks
  • the base station can be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, sending and receiving point ( Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the NR system is used The base station is introduced as an example, and the specific type of base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc.
  • small base stations with high-frequency and large-bandwidth capabilities such as millimeter waves and terahertz in 6G networks
  • the resolution of perception will be significantly improved compared to centimeter waves, allowing 6G networks to provide more refined perception services.
  • Typical sensing functions and application scenarios are shown in Table 1.
  • sensing signal sending node and the receiving node. According to the difference between the sensing signal sending node and the receiving node, it is divided into 6 basic sensing methods, including:
  • the base station spontaneously receives and senses. In this sensing mode, base station A sends a sensing signal and performs sensing measurements by receiving the echo of the sensing signal.
  • base station B receives the sensing signal sent by base station A and performs sensing measurement.
  • base station A receives the sensing signal sent by terminal A and performs sensing measurement.
  • terminal B receives the sensing signal sent by base station B and performs sensing measurement.
  • terminal A spontaneously receives and perceives. At this time, terminal A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
  • terminal B receives the sensing signal sent by terminal A and performs sensing measurement.
  • each sensing method can have one or more sending nodes and receiving nodes.
  • this embodiment of the present application provides a beam recovery method, which includes:
  • Step 201 The terminal obtains the link performance corresponding to the target signal by measuring the target signal;
  • Step 202 When the terminal determines that the link performance corresponding to the target signal cannot meet the requirements, it performs a random access process or a beam failure recovery process;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the sensing link performance corresponding to the first signal when performing sensing measurement on the first signal, can be obtained; when performing sensing measurement and communication measurement on the first signal, the sensing link corresponding to the first signal can be obtained path performance and communication link performance; when sensing measurement is performed on the first signal and communication measurement is performed on the second signal, the sensing link performance corresponding to the first signal and the communication link performance corresponding to the second signal can be obtained.
  • sensing services can be supported by receiving sensing signals, for example, sensing measurements or sensing results can be obtained by receiving the signals.
  • the first signal mentioned in the embodiment of the present application may be a signal that does not contain transmission information, such as the LTE/NR synchronization and reference signals in the related technology, including synchronization signals and physical broadcast channel (Synchronization Signal and PBCH block, SSB) signals, channel state information reference signals (Channel State Information-Reference Signal, CSI-RS), demodulation reference signals (Demodulation Reference Signal, DMRS), channel sounding reference signals (Sounding Reference Signal, DMRS).
  • synchronization signals and physical broadcast channel Synchrom Signal and Physical broadcast channel
  • CSI-RS Channel State Information-Reference Signal
  • DMRS demodulation reference signals
  • Sounding Reference Signal Sounding Reference Signal
  • the new signal may be a single frequency continuous wave (CW), a frequency modulated continuous wave (FMCW), or an ultra-wideband Gaussian pulse commonly used in radars; or a newly designed dedicated signal with good correlation characteristics and a low peak-to-average power ratio, or a newly designed synaesthesia integrated signal that carries certain information and has good perception performance.
  • the new signal is a splicing/combination/superposition of at least one dedicated perception signal/reference signal and at least one communication signal in the time domain and/or frequency domain.
  • the second signal is similar in form to the first signal and will not be described in detail here.
  • the sensing link performance includes at least one of the following:
  • it can be the power value of the sensing path.
  • the power value of the signal component associated with the sensing target is the power of the signal component in the received first signal that is greatly affected by the sensing target, and may be at least one of the following:
  • the power value is calculated by taking the amplitude corresponding to the sample point with the largest amplitude in the frequency domain channel response of the received first signal as the target amplitude, or by taking the amplitude corresponding to multiple sample points with the largest amplitude as the target amplitude. power value; or the power value calculated using the amplitude of the sample point corresponding to a specified subcarrier or Physical Resource Block (PRB) as the target amplitude, or the power value calculated using the sample points corresponding to multiple specified subcarriers or PRBs
  • the amplitude of is the power value calculated from the target amplitude.
  • A1012 calculated based on the amplitude corresponding to the sample point with the largest amplitude in the inverse Fast Fourier Transform (IFFT) result (time delay domain) of the frequency domain channel response of the received first signal as the target amplitude.
  • Power value or the power value calculated by taking the amplitude corresponding to the multiple sample points with the largest amplitude as the target amplitude;
  • the power value is calculated by taking the amplitude corresponding to the sampling point with the largest amplitude within a specific time delay range as the target amplitude, or the power value is calculated by taking the amplitude corresponding to multiple sampling points with the largest amplitudes as the target amplitude.
  • A1013. The power value calculated by taking the amplitude corresponding to the sample point with the largest amplitude in the Fourier Transform (FFT) result (Doppler domain) of the time domain channel response of the received first signal as the target amplitude. , or the power value calculated by taking the amplitude corresponding to the multiple sample points with the largest amplitude as the target amplitude;
  • FFT Fourier Transform
  • the power value calculated by taking the amplitude corresponding to the sample point with the largest amplitude in a specific Doppler range as the target amplitude or the power value calculated by taking the amplitude corresponding to multiple sample points with the largest amplitude as the target amplitude.
  • the power value calculated by taking the two-dimensional Fourier transform result of the channel response of the received first signal that is, the amplitude corresponding to the sample point with the largest amplitude in the delay-Doppler domain result as the target amplitude, or taking the amplitude
  • the amplitude corresponding to the largest multiple sample points is the power value calculated from the target amplitude
  • the power value calculated by taking the amplitude corresponding to the sample point with the largest amplitude within a specific delay-Doppler range as the target amplitude or the power value calculated by taking the amplitude corresponding to multiple sample points with the largest amplitude as the target amplitude.
  • the maximum amplitude may be or the amplitude exceeds a specific threshold value.
  • the specific threshold value may be indicated by the network side device or calculated by the terminal based on noise and/or interference power.
  • the specific delay/Doppler range is related to the sensing requirements, and may be indicated by the network side device, or may be obtained by the terminal according to the sensing requirements.
  • the power value of the signal component associated with the sensing target is the echo power.
  • the method for obtaining the echo signal power can be at least one of the following options:
  • B11 Perform constant false alarm detection (CFAR) based on the time-delay one-dimensional map obtained by fast time-dimensional FFT processing of the echo signal.
  • the sample point with the maximum amplitude of CFAR crossing the threshold is the target sample point.
  • Amplitude is the target signal amplitude, as shown in Figure 3;
  • CFAR is performed based on the Doppler one-dimensional image obtained by slow time dimension FFT processing of the echo signal, and the maximum amplitude sample point of CFAR over the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude, as shown in FIG3;
  • the delay-Doppler two-dimensional map obtained by 2D-FFT processing of the echo signal is entered into CFAR, and the sample point with the maximum amplitude of the CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude;
  • the target signal amplitude in addition to the above method of determining the target signal amplitude, using the maximum sample point where the CFAR crosses the threshold as the target sample point, it can also be based on the maximum sample point where the CFAR crosses the threshold and its nearest neighbor. Several passed The mean value of the threshold sample points is used as the target signal amplitude.
  • the perception SNR may be the ratio of the power value of the signal component associated with the perception target to the noise power.
  • A103 Perceived signal-to-noise and interference ratio (SINR);
  • the perceived SINR may be the ratio of the power value of the signal component associated with the sensing target to the sum of the powers of noise and interference.
  • the method for acquiring the SNR/SINR may be:
  • B21 Perform constant false alarm detection (CFAR) based on the time-delay one-dimensional map obtained by fast time-dimensional FFT processing of the echo signal.
  • the sample point with the maximum amplitude of CFAR crossing the threshold is the target sample point, and its amplitude is the target signal amplitude.
  • CFAR constant false alarm detection
  • the target signal amplitude can also be determined by taking the maximum sample point where CFAR crosses the threshold and its nearest neighbor. The average of several threshold-passing sample points is used as the target signal amplitude;
  • the interference/noise sample points can also be determined by further screening based on the interference/noise sample points determined above.
  • the screening method is: for the delay one-dimensional graph, remove several samples with delay near 0. Sample points, use the remaining interference/noise sample points as noise sample points; for the Doppler one-dimensional map, remove several sample points near Doppler 0, use the remaining interference/noise samples The value points are interference/noise sample points; for the delay-Doppler two-dimensional diagram, remove the interference/noise sample points in the strip range composed of several points near the delay 0 and the entire Doppler range.
  • the remaining noise sample points are used as interference/noise sample points; for the delay-Doppler-angle three-dimensional diagram, remove the time dimension 0 attachment Several points, the entire Doppler range and the entire angle range form a slice-like range of interference/noise sample points, and the remaining interference/noise sample points are used as interference/noise sample points.
  • A104 Sense whether the target exists
  • the number of targets that have sensing targets within the preset range of distance or delay is the number of targets that have sensing targets within the preset range of distance or delay.
  • A104 and A105 may be notified to the terminal by other devices (for example, other terminals, access network equipment or core network equipment) according to sensing requirements.
  • the way to determine whether there is a sensing target can be: for example, whether there is a sample point with an amplitude exceeding a specific threshold in the delay/Doppler one-dimensional or two-dimensional map. If it exists, it is considered to be detected.
  • Perception target the number of sample points in the delay/Doppler one-dimensional or two-dimensional map whose amplitude exceeds a specific threshold is considered as the number of perception targets.
  • A106 Sense the radar cross section area (RCS) information of the target
  • the RCS information may be the RCS information of a single sensing target or the RCS information of multiple sensing targets.
  • the spectrum information may include at least one of the following: delay power spectrum, Doppler power spectrum, delay/range-Doppler/velocity spectrum, angle power spectrum, delay/range-angle spectrum, Doppler/Velocity-Angle Spectrum, Time Delay/Distance-Doppler/Velocity-Angle Spectrum.
  • A109 the distance of at least one perceived target
  • A111 The speed of at least one perceived target
  • the communication link performance includes at least one of the following:
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indication
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • CQI Channel Quality Indicator
  • SNR Signal to Physical Network
  • SINR bit error probability (Bit Error Ratio, BER), block error rate (Block Error Rate, BLER).
  • the terminal obtains the link performance corresponding to the target signal by measuring the target signal, including:
  • the physical layer of the terminal measures at least one target signal every first period to obtain the target signal.
  • the link performance corresponding to the number.
  • the target signal is configured to the terminal by the network side device (such as the base station), that is, the specific implementation method for the terminal to measure the target signal configured by the network side device is: the terminal's physical layer In the first period, at least one target signal configured by the network side device is measured once.
  • the terminal measures the signal based on the first signal and the parameter configuration information of the first signal and the second signal, and the parameter configuration information is configured by the network side device for the terminal.
  • parameter configuration information of different signals includes at least one of the following:
  • Waveform type such as orthogonal frequency division multiplexing (OFDM), single-carrier frequency division multiple access (Single-carrier Frequency-Division Multiple Access, SC-FDMA), orthogonal time-frequency-space (Orthogonal Time Frequency Space (OTFS), Frequency Modulated Continuous Wave (FMCW), pulse signal, etc.;
  • subcarrier spacing For example, the subcarrier spacing of the OFDM system is 30KHz;
  • Guard interval the time interval from the time when the signal ends sending to the time when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance; for example, it can be calculated by 2d max /c, d max is the maximum sensing distance (belonging to sensing requirements). For example, for a target signal that is spontaneously received, d max represents the maximum distance from the target signal receiving point to the signal transmitting point; in some cases, OFDM signal cyclic prefix CP can provide minimum protection The role of intervals;
  • C105 Burst duration
  • This parameter is inversely proportional to the rate resolution (belongs to the perception requirements).
  • This parameter is the time span of the target signal, mainly for calculating the Doppler frequency offset; this parameter can be calculated by c/(2f c ⁇ v) ;where, ⁇ v is the velocity resolution; f c is the carrier frequency of the target signal;
  • This parameter can be calculated by c/(2f c v range ); where v range is the maximum rate minus the minimum rate (perceived requirement); this parameter is the time interval between two adjacent target signals;
  • C107 Transmit signal power, for example, take a value every 2dBm from -20dBm to 23dBm;
  • Signal format such as channel sounding reference signal (Sounding Reference Signal, SRS), demodulation reference signal (Demodulation Reference Signal, DMRS), positioning reference signal (Positioning Reference Signal, PRS), etc., or other predefined signals, and related sequence format and other information;
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • PRS positioning reference signal
  • C109 signal direction; such as the direction or beam information of the target signal;
  • Time resources such as the time slot index where the target signal is located or the symbol index of the time slot; there are two types of time resources, one is a one-time time resource, such as one symbol transmitting an omnidirectional target signal; one One is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (can include start time and end time). Each group of periodic time resources sends a target signal in the same direction, and different groups of time resources send target signals in the same direction. The beam directions on periodic time resources are different;
  • Frequency resources including the center frequency point of the target signal, bandwidth, and resource block (RB) Or subcarrier, point A (Point A), starting bandwidth position, etc.
  • the target signal includes multiple resources, each resource is associated with an SSB QCL, and the QCL includes Type A, B, C or D;
  • the antenna configuration information of the sensing node includes at least one of the following:
  • Antenna element ID or antenna port ID used to send and/or receive target signals
  • the position information of the antenna element used to send and/or receive target signals relative to a local reference point on the antenna array can use Cartesian coordinates (x, y, z) or spherical coordinates express);
  • the position information of the panel used to send and/or receive target signals relative to a local reference point on the antenna array can use Cartesian coordinates (x, y, z) or spherical coordinates Represented), and the position information of these antenna elements used to transmit target signals in the selected panel relative to a unified reference point in the panel (such as the center point of the panel) (can use Cartesian coordinates (x, y, z) or spherical coordinate express);
  • bitmap information of the antenna array element For example: the bitmap uses “1” to indicate that the array element is selected to send and/or receive target signals, and uses “0" to indicate that the array element is not selected (the reverse can also be done);
  • bitmap information of array panel For example: the bitmap uses “1” to indicate that the panel is selected for sending and/or receiving target signals, and uses “0" to indicate that the array element is not selected (the reverse can also be true). And the bitmap information of these array elements in the selected panel;
  • Threshold information that is, a threshold value used for at least one of the source node, the first device, and the candidate node to determine whether the obtained sensing measurement value meets the first condition.
  • the threshold values may be different; for any candidate node and/or candidate tag, the perceptual measurement quantity and its corresponding threshold value may be greater than 1; the first condition is : The corresponding candidate node/candidate tag that obtains the perceptual measurement value can be used as the target node/target tag.
  • the method further includes:
  • the second situation includes at least one of the following:
  • the terminal only measures the perceptual link performance based on the first signal.
  • the terminal measures the perceptual link performance and communication link performance based on the first signal.
  • the perception link performance corresponding to the first signal does not meet the first condition, and the communication link performance corresponding to the second signal Can the second condition not be met;
  • the perceived link performance corresponding to the first signal does not meet the first condition or the communication link performance corresponding to the second signal does not meet the second condition;
  • the terminal senses the link performance based on the first signal and measures the communication link performance based on the second signal.
  • the first condition includes at least one of the following:
  • a power value of a perception target associated signal component of at least one first signal satisfies a first threshold
  • the SINR of at least one first signal meets the third threshold.
  • At least Y sensing targets are detected
  • Y is configured by the base station, and Y is a positive integer.
  • this situation corresponds to the situation of detecting multiple targets at the same time.
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • each bit in the bitmap represents a certain target.
  • a bit of 1 means that the target has been detected, and a bit of 0 means that the target has not been detected.
  • this situation corresponds to the situation of detecting multiple targets at the same time.
  • the RCS may be the RCS information of a single sensing target or the RCS information of multiple sensing targets.
  • the first preset condition is that the RCS reaches K1 square meters, where K1 is a positive real number.
  • the range-rate spectrum of the sensing target satisfies the second preset condition.
  • the second preset condition at this time is that the sensing target can be distinguished on the range-rate spectrum (the range-rate spectrum has a point or a region whose amplitude reaches the predetermined level). set value); or, the delay-Doppler spectrum of the perceived target satisfies the second preset condition.
  • the second preset condition is that the perceived target (time-delay-Doppler spectrum) can be distinguished on the delay-Doppler spectrum.
  • the Puler spectrum has a point or a region where the amplitude reaches a preset value);
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • the first parameter may be the first parameter of a single sensing target or the first parameters of multiple sensing targets.
  • the time delay of sensing the target satisfies the third preset condition (for example, the time delay satisfies an interval value); for another example, the distance of the sensing target satisfies the third preset condition (for example, the distance satisfies an interval value); for another example, the sensing target
  • the Doppler of the sensor satisfies the third preset condition (for example, the Doppler satisfies an interval value); for another example, the velocity of the perceived target satisfies the third preset condition (for example, the velocity satisfies an interval value); for another example, the angle of the perceived target
  • the information satisfies the third preset condition (for example, the angle information satisfies an interval value).
  • the second condition is the threshold corresponding to the specific parameter.
  • the RSRP may be lower than a preset value such as -90dBm, or the SNR or SINR may be lower than a preset value such as 5dBm.
  • the terminal when the terminal determines that the link performance corresponding to the target signal cannot meet the requirements, it performs a random access process or a beam failure recovery process, including:
  • the terminal determines that the link performance corresponding to the target signal cannot meet the requirements, the terminal adds 1 to the first counter;
  • the count value of the first counter is greater than or equal to the maximum count value, a random access process or a beam failure recovery process is performed.
  • adding 1 to the first counter includes:
  • the physical layer of the terminal reports the first information to the higher layer (for example, the Media Access Control (Medium Access Control, MAC) layer), and the first information Used to indicate that the link performance corresponding to the target signal cannot meet the requirements;
  • the higher layer for example, the Media Access Control (Medium Access Control, MAC) layer
  • the upper layer of the terminal receives the first information and adds 1 to the first counter.
  • the physical layer of the terminal can send second information to the higher layer, where the second information is used to indicate that the link performance corresponding to the target signal can meet the requirements. Require.
  • the method further includes:
  • the terminal sets the count value of the first counter to zero;
  • the first situation includes at least one of the following:
  • the first timer times out
  • the higher layer of the serving cell reconfigures the first timer, the first counter or the first signal.
  • the terminal when the terminal determines that the link performance corresponding to the target signal cannot meet the requirements, the terminal starts or restarts the first timer.
  • the implementation method of starting or restarting the first timer includes:
  • the physical layer of the terminal reports first information to the higher layer, and the first information is used to indicate that the link performance corresponding to the target signal cannot meet the requirements;
  • the upper layer of the terminal receives the first information and starts or restarts the first timer.
  • the terminal determines that the link performance corresponding to the target signal cannot meet the requirements, it starts or restarts the first timer and adds 1 to the first counter.
  • the execution of a random access procedure or a beam failure recovery procedure includes one of the following:
  • the serving cell is a Special cell (SpCell) or communication beam loss occurs in the serving cell, If failed, execute the random access process;
  • SpCell Special cell
  • the special cell refers to the primary cell (PCell) under the main cell group (MCG) and the primary secondary cell (PSCell) under the secondary cell group (SCG).
  • the executing terminal starts to execute the random access process
  • the serving cell is a Secondary Cell (Scell) or there is no communication beam failure in the serving cell, execute the beam failure recovery process;
  • Scell Secondary Cell
  • the terminal triggers the beam failure recovery process.
  • the following items are also included:
  • the physical layer of the terminal measures the first target signal set, obtains at least one first target signal that can meet the first condition, and sends the index of the at least one first target signal to the higher layer;
  • the physical layer may further send the perceived link performance corresponding to at least one first target signal to the higher layer.
  • the terminal only measures the perceptual link performance based on the first signal.
  • the physical layer of the terminal measures the second target signal set, obtains at least one second target signal, and sends the index of the at least one second target signal to the higher layer.
  • the perceived link performance corresponding to the second target signal The first condition is met and/or the communication link performance corresponding to the second target signal satisfies the second condition;
  • the physical layer may further send the perceived link performance and communication link performance corresponding to the at least one second target signal to the higher layer.
  • the terminal performs sensing link performance and communication link performance measurement based on the first signal, or it may be that the terminal performs sensing link performance based on the first signal and performs communication link performance based on the second signal. Measurement of performance.
  • the physical layer of the terminal measures the third target signal set and the fourth target signal set, obtains at least one third target signal and at least one fourth target signal, and combines the index of the at least one third target signal with the The index of at least one fourth target signal is sent to the higher layer, the perception link performance corresponding to the third target signal satisfies the first condition, and the communication link performance corresponding to the fourth target signal satisfies the second condition;
  • the physical layer may further send the perceptual link performance and communication link performance corresponding to at least one third target signal and the perceptual link performance and communication link performance corresponding to at least one fourth target signal to the higher layer.
  • the terminal senses the link performance based on the first signal and measures the communication link performance based on the second signal.
  • performing a random access process includes:
  • the higher layer of the terminal selects the physical random access channel PRACH parameter corresponding to the signal that meets the preset threshold in the specific signal.
  • the terminal sends a preamble to the network side device according to the PRACH parameter.
  • the terminal sends a preamble in the first time window. Monitor the response information of network-side devices;
  • the specific signal includes one of the following:
  • the PRACH parameters include at least one of the following:
  • PRACH time domain resources PRACH frequency domain resources, and PRACH preamble sequence parameters.
  • the above time domain resource is the time domain resource location for transmitting the above PRACH
  • the above frequency domain resource is the frequency domain resource location for transmitting the above PRACH
  • the above preamble sequence parameter may be a preamble sequence format or a preamble sequence index, etc.
  • the terminal when there is only one specific signal that satisfies the first condition and/or the second condition obtained through the signal set, the terminal can only send the preamble to the network side device based on the PRACH parameter corresponding to the one specific signal.
  • the preset threshold can be considered to be the same as the threshold indicated in the first condition above; when there are multiple specific signals that meet the first condition and/or the second condition obtained through the signal set, the terminal can Certain signals are selected based on preset thresholds, and preambles are sent to the network side device based on the PRACH parameters corresponding to these selected signals. At this time, it can be considered that the preset threshold is different from the threshold indicated in the first condition above.
  • the terminal can also send the preamble to the network side device based on the PRACH parameters corresponding to these signals.
  • the preamble can be considered Let the threshold be the same as that indicated in the first condition above.
  • the preamble sent by the terminal to the network side device according to the PRACH parameter may be a contention-based preamble or a contention-free preamble.
  • the terminal does not receive the response information when the number of times the preamble is sent reaches the maximum number of times, it is determined that the link recovery fails;
  • the terminal triggers a radio resource control (RRC) connection reconstruction process or performs a cell switch based on a switching process triggered by a network side device.
  • RRC radio resource control
  • the terminal receives the response information, send the cause of the beam failure and/or the identification information of the signal that meets the preset threshold to the network side device.
  • the identification information is an index or a number.
  • H21 and H22 correspond to the situation of sending a non-competition preamble; H23 corresponds to the situation of sending a competition preamble.
  • the beam failure recovery process includes:
  • the beam failure recovery information includes at least one of the following:
  • the specific signals include one of the following:
  • At least one third target signal and at least one fourth target signal are provided.
  • the communication beam recovery process and the sensing beam recovery process are performed independently; the measurement signal sets and process parameters of the two processes are independently configured.
  • the physical layer of the UE measures one or more first signals configured by the base station to evaluate the perceived link performance (i.e., perceived link performance); parameter configuration information of the first signal is configured by the base station;
  • the physical layer of the UE reports the first information to the upper layer (MAC layer) (the first information can be understood as a beam failure instance indication). ;
  • the random access process starts; if the serving cell is Scell or there is no communication beam failure in the serving cell, beam failure recovery (Beam Failure) is triggered. Recovery, BFR) process;
  • the first timer and the first counter are configured by the base station for the UE, the initial value of the first counter is 0, and the initial value of the first timer is non-0.
  • the first counter is set to zero.
  • the first counter is set to zero, the first timer is stopped, and the sensing beam recovery process is successfully completed.
  • the main process of the random access process is:
  • the UE searches the first target signal set. If one or more first target signals that meet the first condition are found, the UE physical layer reports the index of the first target signal that meets the condition and the corresponding perceived link performance to the higher layer (such as MAC layer).
  • the first target signal set is configured by the base station.
  • the higher layer selects the first target signal that meets the preset threshold and the PRACH resource corresponding to the first target signal; the preset threshold is optional;
  • the UE sends a preamble to the base station.
  • the preamble corresponds to the first target signal that meets the preset threshold; optionally, the preamble is a contention free preamble;
  • the base station If the base station receives the preamble, it sends a response; for example, the base station sends the response (such as MSG2) through the PDCCH scrambled by the Cell-Radio Network Temporary Identifier (C-RNTI) on the corresponding resource;
  • the base station sends the response (such as MSG2) through the PDCCH scrambled by the Cell-Radio Network Temporary Identifier (C-RNTI) on the corresponding resource;
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the UE monitors the response in the time window configured by the base station
  • Link Recovery succeeds. If the preamble reaches the maximum number of times it has been sent but the UE still has not received a response, Link Recovery fails.
  • the UE can perform RRC connection reestablishment or the base station triggers a handover process.
  • the random access process can also be that the UE sends a contention-based preamble. After receiving MSG2, the UE reports the cause of beam failure or the index of the first target signal that meets the preset threshold to the base station through MSG3.
  • the main processes of the BFR process are:
  • the UE reports the BFR to the serving cell (spcell or scell) through the MAC Control Element (MAC CE);
  • BFR MAC CE contains at least one of the following:
  • the ID of the cell where the beam failure occurs the index of the first target signal that satisfies the first condition corresponding to the cell where the beam failure occurs, and the corresponding perceived link performance.
  • the UE searches the first target signal set. If one or more first target signals that meet the first condition are found, the UE physical layer reports the index of the first target signal that meets the first condition and the corresponding sensing Link performance is given to higher layers such as the MAC layer.
  • the first target signal set is configured by the base station.
  • Application case 2 Beam recovery (jointly considering the performance of sensing and communication): Evaluate whether the sensing link performance of the first signal meets the first condition and whether the communication link performance meets the second condition. If not, then start from the second target The signal concentration selects signals whose sensing link performance and/or communication link performance meet the conditions.
  • the physical layer of the UE measures one or more first signals configured by the base station to evaluate its perceived link performance (ie, perceived link performance) and communication link performance. (i.e. communication link performance); the parameter configuration information of the first signal is configured by the base station;
  • the first counter is greater than the maximum count value, if the serving cell is Spcell or a communication beam failure occurs in the serving cell, the random access process starts; if the serving cell is Scell or there is no communication beam failure in the serving cell, the BFR process is triggered;
  • the first timer and the first counter are configured by the base station for the UE, the initial value of the first counter is 0, and the initial value of the first timer is non-0.
  • the first counter is set to zero.
  • the first counter is set to zero, the first timer is stopped, and the sensing beam recovery process is successfully completed.
  • the main process of the random access process is:
  • the UE searches for the second target signal set. If the perceived link performance of a second target signal meets the first perception condition and its communication link performance meets the second condition, or if the perceived link performance of a second target signal meets the first condition or its communication link performance meets the second condition, the UE physical layer reports the index of the second target signal that meets the above conditions and the corresponding perceived link performance and communication link performance to the higher layer (such as the MAC layer).
  • the higher layer such as the MAC layer
  • the second target signal set is configured by the base station.
  • the higher layer selects the second target signal that meets the preset threshold and the PRACH resource corresponding to the second target signal; the preset threshold is optional;
  • the UE sends a preamble to the base station, where the preamble corresponds to the second target signal that meets the preset threshold;
  • the preamble is a contention free preamble
  • the base station If the base station receives the preamble, it sends a response; for example, the base station sends the response through the C-RNTI scrambled PDCCH on the corresponding resource (such as MSG2);
  • the UE monitors the response in the time window configured by the base station
  • Link Recovery is successful; if the preamble reaches the maximum number of times but the UE has not received the response, Link Recovery fails;
  • the UE can perform RRC connection reestablishment or the base station triggers a handover process.
  • the random access process can also be that the UE sends a contention-based preamble. After receiving MSG2, the UE reports the cause of beam failure or the index of the second target signal that meets the preset threshold to the base station through MSG3.
  • the main processes of the BFR process are:
  • the UE reports the BFR to the serving cell (spcell/scell) through the MAC CE;
  • BFR MAC CE contains at least one of the following:
  • the UE searches for the second target signal set. If the perceived link performance of a certain second target signal satisfies the first condition and its communication link performance meets the second condition, or if the sensing link performance of a certain second target signal satisfies the second condition, When the performance of the sensing link meets the first condition or the performance of its communication link meets the second condition, the UE physical layer reports the second target signal index that meets the above conditions and the corresponding sensing link performance and communication link performance to the higher layer (such as MAC layer) ).
  • the higher layer such as MAC layer
  • the second target signal set is configured by the base station.
  • Application case 3 Beam recovery (jointly considering the performance of sensing and communication): Evaluate whether the sensing link performance of the first signal meets the first condition and evaluate whether the communication link performance of the second signal meets the second condition. If not, Then select a signal whose perceptual link performance and/or communication link performance satisfies the conditions from the second target signal set (or the third target signal set and the fourth target signal set).
  • the physical layer of the UE measures one or more first signals configured by the base station to evaluate its perceived link performance (perceived link performance); the UE simultaneously measures the base station configuration One or more second signals to evaluate its communication link performance (communication link performance); the parameter configuration information of the first signal and the second signal is configured by the base station;
  • the physical layer of the UE reports the first information to the higher layer (MAC layer); otherwise, the second information is reported;
  • the first counter is greater than the maximum count value, if the serving cell is Spcell or a communication beam failure occurs in the serving cell, the random access process starts; if the serving cell is Scell or there is no communication beam failure in the serving cell, the BFR process is triggered;
  • the first timer and the first counter are configured by the base station for the UE, the initial value of the first counter is 0, and the initial value of the first timer is non-0.
  • the first counter is set to zero.
  • the first counter is set to zero, the first timer is stopped, and the sensing beam recovery process is successfully completed.
  • the main process of the random access process is:
  • the UE searches the second target signal set. If the perceived link performance of a certain second target signal meets the first condition and its communication link performance meets the second condition, or the perceived link performance of a certain second target signal If the first condition is met or the communication link performance meets the second condition, the UE reports the second target signal index that meets the above conditions and the corresponding sensing link performance and communication link performance to the higher layer (such as the MAC layer);
  • the second target signal set is configured by the base station.
  • the UE searches the third target signal set. If the perceived link performance of a certain third target signal meets the first condition, the UE reports the index of the third target signal that meets the above conditions and the corresponding perceived link performance and communication link performance to Higher layers such as the MAC layer; at the same time, the UE searches for the fourth target signal set. If the communication link performance of a certain fourth target signal meets the second condition, the UE reports the index of the fourth target signal that meets the above conditions and the corresponding sensing link. Performance and communication link performance to higher layers (such as MAC layer);
  • the third target signal set and the fourth target signal set are configured by the base station.
  • the upper layer selects the second target signal (or the third target signal or the fourth target signal) that meets the preset threshold and the corresponding second target signal (or the third target signal or the fourth target signal). PRACH resources; this preset threshold is optional;
  • the UE sends a preamble to the base station, where the preamble corresponds to the second target signal (or the third target signal or the fourth target signal) that meets the preset threshold;
  • the preamble is a contention free preamble
  • the base station If the base station receives the preamble, it sends the response; for example, the base station sends the response through the C-RNTI scrambled PDCCH on the corresponding resource (such as MSG2);
  • the UE monitors the response in the time window configured by the base station
  • Link Recovery is successful; if the preamble reaches the maximum number of times but the UE has not received the response, Link Recovery fails;
  • the UE can perform RRC connection reestablishment or the base station triggers a handover process.
  • the random access process can also be that the UE sends a contention-based preamble. After receiving MSG2, the UE will use MSG3 to report the cause of the beam failure or the second target signal that meets the preset threshold (or the third target signal or the third target signal). Four target signals) are reported to the base station.
  • the main processes of the BFR process are:
  • the UE reports the BFR to the serving cell (spcell/scell) through the MAC CE;
  • BFR MAC CE contains at least one of the following:
  • the ID of the cell where the beam failure occurred the index of the second target signal (or the third target signal, or the fourth target signal) that meets the conditions corresponding to the cell where the beam failure occurred, and the corresponding perceived link performance.
  • the UE searches for the second target signal set. If the perceived link performance of a certain second target signal satisfies the first condition and its communication link performance meets the second condition, or if the sensing link performance of a certain second target signal satisfies the second condition, If the sensing link performance meets the first condition or the communication link performance meets the second condition, the UE reports the second target signal index that meets the above conditions and the corresponding sensing link performance and communication link performance to the higher layer (such as the MAC layer);
  • the higher layer such as the MAC layer
  • the second target signal set is configured by the base station.
  • the UE searches for the third target signal set. If the perceived link performance of a certain third target signal meets the first condition, the UE Report the index of the third target signal that meets the above conditions and the corresponding sensing link performance and communication link performance to higher layers such as the MAC layer; at the same time, the UE searches for the fourth target signal set. If the communication link of a fourth target signal If the performance meets the second condition, the UE reports the index of the fourth target signal that meets the above conditions and the corresponding sensing link performance and communication link performance to the higher layer (such as the MAC layer);
  • the third target signal set and the fourth target signal set are configured by the base station.
  • the perceptual measurement quantity mentioned in the embodiment of this application includes at least one of the following:
  • the first-level measurement quantity includes at least one of the following: in-phase (I) channel data and quadrature (quadrature, Q) channel data of the frequency domain channel response of the receiving object.
  • the result of the operation that is, the operation result of the I-channel data and the Q-channel data
  • the result of the frequency domain channel response of the receiving object for example, the result of the frequency domain channel response can be obtained through channel estimation; usually, the frequency domain channel response result
  • the result of domain channel response is in complex form
  • the amplitude of the frequency domain channel response of the receiving object, the phase of the frequency domain channel response of the receiving object, the I data of the frequency domain channel response of the receiving object, the frequency domain channel response of the receiving object Q-channel data, the receiving object includes receiving signals or receiving channels;
  • the above-mentioned operations may include addition, subtraction, multiplication, division, matrix addition, subtraction, multiplication, matrix transposition, trigonometric relation operations, square root operations, power operations, etc., as well as threshold detection results and maximum results of the above operation results.
  • Minimum value extraction results, etc. operations also include Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), Discrete Fourier Transform (DFT) /Inverse Discrete Fourier Transform (IDFT), 2D-FFT, 3D-FFT, matched filtering, autocorrelation operation, wavelet transform and digital filtering, etc., as well as the threshold detection results, maximum/minimum of the above operation results Value extraction results, etc.
  • FFT Fast Fourier Transform
  • IFFT Discrete Fourier Transform
  • DFT Discrete Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • 2D-FFT 3D-FFT
  • matched filtering autocorrelation operation
  • the result of the operation of I channel data and Q channel data can be determined according to I ⁇ cos(theta)+Q ⁇ sin(theta), where theta is a certain angle value, I represents the I channel data, and Q represents the Q channel data.
  • the second-level measurement quantities include at least one of the following: delay, Doppler, angle, and signal strength;
  • This second-level measurement quantity can be regarded as a basic measurement quantity.
  • the third-level measurement quantity includes at least one of the following: the distance of the perceived target, the speed of the perceived target, the direction of the perceived target, the spatial position of the perceived target, and the acceleration of the perceived target;
  • This third-level measurement quantity can be regarded as the basic attribute/state of the perceived target.
  • the fourth level measurement quantity includes: target existence, trajectory, movement, expression, vital signs, quantity, imaging results, weather, air quality, shape, material, and composition.
  • the above-mentioned perceptual measurement quantity may also include corresponding label information, and the label information includes at least one of the following:
  • Sensing business information for example, sensing business ID
  • Sense node information for example, UE ID, node location, device orientation
  • Sensing link information for example, sensing link sequence number, sending and receiving node identification
  • Measurement quantity description information (forms such as amplitude, phase, complex number, resource information such as antenna/antenna pair/antenna group, PRB, symbol)
  • Measurement quantity index information for example, SNR, perceived SNR.
  • the perception result mentioned in the embodiment of the present application includes at least one of the following:
  • Perceive the shape of the target perceive the outline of the target, perceive the existence of the target, perceive the trajectory of the target, perceive the movement of the target, perceive the expression of the target, perceive the vital signs of the target, perceive the number of targets, perceive the imaging results of the target, weather, air Quality, the material of the perceived target, the composition of the perceived target, the gesture of the perceived target, the breathing rate of the perceived target, the heartbeat rate of the perceived target, and the sleep quality of the perceived target.
  • the embodiment of the present application provides a perception beam recovery process and a joint beam recovery process of perception and communication, which can promptly discover that the perception performance of the beam does not meet the requirements, thereby finding a new beam to meet the perception requirements.
  • the execution subject may be a beam restoration device.
  • the beam restoration method performed by the beam restoration device is used as an example to illustrate the beam restoration device provided by the embodiment of this application.
  • an embodiment of the present application provides a beam restoration device 400, which is applied to a terminal and includes:
  • the monitoring module 401 is used to obtain the link performance corresponding to the target signal by measuring the target signal;
  • Execution module 402 configured to execute a random access process or a beam failure recovery process when it is determined that the link performance corresponding to the target signal cannot meet the requirements;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the monitoring module 401 is used for:
  • the physical layer measures at least one target signal every first cycle to obtain the link performance corresponding to the target signal.
  • the execution module 402 includes:
  • a first processing unit configured to add 1 to the first counter when it is determined that the link performance corresponding to the target signal cannot meet the requirements
  • An execution unit configured to execute a random access process or a beam failure recovery process if the count value of the first counter is greater than or equal to the maximum count value.
  • the first processing unit is used for:
  • the first priority is reported to the upper layer through the physical layer.
  • Information the first information is used to indicate that the link performance corresponding to the target signal cannot meet the requirements;
  • the upper layer receives the first information and adds 1 to the first counter.
  • the device also includes:
  • a processing module configured to set the count value of the first counter to zero if the first condition is met
  • the first situation includes at least one of the following:
  • the first timer times out
  • the higher layer of the serving cell reconfigures the first timer, the first counter or the first signal.
  • the execution module 402 includes:
  • the second processing unit is configured to start or restart the first timer when it is determined that the link performance corresponding to the target signal cannot meet the requirements.
  • the second processing unit is used for:
  • the first information is received through the upper layer, and the first timer is started or restarted.
  • the device also includes:
  • a determination module used to determine that the link performance corresponding to the target signal cannot meet the requirements if the second situation is met
  • the second situation includes at least one of the following:
  • the performance of the sensing link corresponding to the first signal does not meet the first condition
  • the performance of the sensing link corresponding to the first signal does not meet the first condition, and the performance of the communication link corresponding to the first signal does not meet the second condition;
  • the performance of the sensing link corresponding to the first signal does not meet the first condition or the performance of the communication link corresponding to the first signal does not meet the second condition;
  • the performance of the sensing link corresponding to the first signal does not meet the first condition, and the performance of the communication link corresponding to the second signal does not meet the second condition;
  • the perception link performance corresponding to the first signal does not meet the first condition or the communication link performance corresponding to the second signal does not meet the second condition.
  • the execution module 402 is used to implement at least one of the following:
  • the serving cell is a special cell or a communication beam failure occurs in the serving cell, a random access procedure is performed;
  • the serving cell is a secondary cell or no communication beam failure occurs in the serving cell, a beam failure recovery process is performed.
  • the execution module 402 executes the random access process or the beam failure recovery process.
  • a first acquisition module configured to measure the first target signal set through the physical layer, acquire at least one first target signal that can meet the first condition, and send the index of the at least one first target signal to the higher layer;
  • the second acquisition module is used to measure the second target signal set through the physical layer, acquire at least one second target signal, and send the index of the at least one second target signal to the higher layer.
  • the sensing chain corresponding to the second target signal road performance
  • the first condition is met and/or the communication link performance corresponding to the second target signal satisfies the second condition;
  • a third acquisition module configured to measure the third target signal set and the fourth target signal set through the physical layer, acquire at least one third target signal and at least one fourth target signal, and sum the index of the at least one third target signal
  • the index of the at least one fourth target signal is sent to the higher layer, the perception link performance corresponding to the third target signal satisfies the first condition, and the communication link performance corresponding to the fourth target signal satisfies the second condition.
  • the execution module 402 executes the random access process, it includes:
  • a selection unit used to select the physical random access channel PRACH parameters corresponding to signals that meet the preset threshold in specific signals through the higher layer;
  • a first sending unit configured to send a preamble to the network side device according to the PRACH parameter
  • the monitoring unit is used to monitor the response information of the network side device in the first time window
  • the specific signal includes one of the following:
  • the PRACH parameters include at least one of the following:
  • PRACH time domain resources PRACH frequency domain resources, and PRACH preamble sequence parameters.
  • the monitoring unit monitors the response information of the network side device in the first time window.
  • a first determining unit configured to determine that link recovery is successful if the terminal receives the response information
  • the second determination unit is configured to determine that link recovery fails if the terminal does not receive the response information when the number of times the preamble is sent reaches the maximum number of times;
  • the second sending unit is configured to, if the terminal receives the response information, send the cause of the beam failure and/or the identification information of the signal that meets the preset threshold to the network side device.
  • the device also includes:
  • a triggering unit configured to trigger the RRC connection reestablishment process or perform cell switching based on the switching process triggered by the network side device when the link recovery fails.
  • the execution module 402 executes the beam failure recovery process, it includes:
  • the third sending unit is used to send beam failure recovery information to the network side device
  • the beam failure recovery information includes at least one of the following:
  • the specific signals include one of the following:
  • At least one third target signal and at least one fourth target signal are provided.
  • the first condition includes at least one of the following:
  • the power value of the sensing target-related signal component of at least one first signal satisfies the first threshold
  • the perceived signal-to-noise ratio SNR of at least one first signal satisfies the second threshold
  • the perceived signal to interference plus noise ratio SINR of at least one first signal satisfies the third threshold
  • At least Y sensing targets are detected
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • the radar cross-sectional area RCS of the perceived target meets the first preset condition
  • the spectral information of the perceived target satisfies the second preset condition
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • Y is a positive integer.
  • the perceived link performance includes at least one of the following:
  • the communication link performance includes at least one of the following:
  • Reference signal received power RSRP Reference signal received power RSRP, received signal strength indication RSSI, precoding matrix indication PMI, rank indication RI, channel quality indication CQI, SNR, SINR, bit error probability BER, block error rate BLER.
  • this device embodiment is a device corresponding to the above-mentioned method. All implementation methods in the above-mentioned method embodiment are applicable to this device embodiment and can achieve the same technical effect, which will not be described again here.
  • the detection device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 4 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the beam recovery device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the terminal may include but is not limited to the types of terminal 11 listed above, which Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application.
  • the beam recovery device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to obtain the link performance corresponding to the target signal by measuring the target signal; in determining the link corresponding to the target signal If the performance cannot meet the requirements, execute the random access process or beam failure recovery process;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the processor is used for:
  • the physical layer measures at least one target signal every first cycle to obtain the link performance corresponding to the target signal.
  • the processor is used for:
  • the count value of the first counter is greater than or equal to the maximum count value, a random access process or a beam failure recovery process is performed.
  • the communication interface is used for:
  • the processor is used by the upper layer to receive the first information, start or restart the first timer, and add 1 to the first counter.
  • the processor is used for:
  • the first situation includes at least one of the following:
  • the first timer times out
  • the higher layer of the serving cell reconfigures the first timer, the first counter or the first signal.
  • the processor is used for:
  • the first timer is started or restarted.
  • the communication interface is used for:
  • the processor is configured to: receive the first information through a high layer, and start or restart a first timer.
  • the processor is used for:
  • the second situation includes at least one of the following:
  • the performance of the sensing link corresponding to the first signal does not meet the first condition
  • the performance of the sensing link corresponding to the first signal does not meet the first condition, and the performance of the communication link corresponding to the first signal does not meet the second condition;
  • the performance of the sensing link corresponding to the first signal does not meet the first condition or the performance of the communication link corresponding to the first signal does not meet the second condition;
  • the performance of the sensing link corresponding to the first signal does not meet the first condition, and the performance of the communication link corresponding to the second signal does not meet the second condition;
  • the perception link performance corresponding to the first signal does not meet the first condition or the communication link performance corresponding to the second signal does not meet the second condition.
  • the processor is used to implement one of the following:
  • the serving cell is a special cell or the communication beam fails in the serving cell, a random access process is performed
  • the serving cell is a secondary cell or no communication beam failure occurs in the serving cell, a beam failure recovery process is performed.
  • the communication interface is also used to implement one of the following:
  • Measure the first target signal set through the physical layer obtain at least one first target signal that can meet the first condition, and send the index of the at least one first target signal to the higher layer;
  • the sensing link performance corresponding to the second target signal satisfies the first condition and /or the communication link performance corresponding to the second target signal meets the second condition;
  • Measure the third target signal set and the fourth target signal set through the physical layer obtain at least one third target signal and at least one fourth target signal, and combine the index of the at least one third target signal with the at least one fourth target signal.
  • the index of the signal is sent to the higher layer, the perception link performance corresponding to the third target signal satisfies the first condition, and the communication link performance corresponding to the fourth target signal satisfies the second condition.
  • the processor is used for:
  • the higher layer selects the physical random access channel PRACH parameters corresponding to the signal that meets the preset threshold in a specific signal
  • the communication interface is used to: send a preamble to a network side device according to the PRACH parameter;
  • the specific signal includes one of the following:
  • the PRACH parameter includes at least one of the following:
  • PRACH time domain resources PRACH frequency domain resources, and PRACH preamble sequence parameters.
  • the processor is configured to: if the terminal receives the response information, determine that the link recovery is successful;
  • the processor is configured to: if the terminal does not receive the response information when the number of times the preamble is sent reaches the maximum number of times, determine that link recovery fails;
  • the communication interface is used to: if the terminal receives the response information, send the cause of the beam failure and/or the identification information of the signal that meets the preset threshold to the network side device.
  • the processor is also used to:
  • the terminal triggers an RRC connection reestablishment process or performs cell switching based on a handover process triggered by the network side device.
  • the communication interface is used for:
  • the beam failure recovery information includes at least one of the following:
  • the specific signals include one of the following:
  • At least one third target signal and at least one fourth target signal are provided.
  • the first condition includes at least one of the following:
  • a power value of a perceptual target associated signal component of at least one first signal satisfies a first threshold
  • the perceived signal-to-noise ratio SNR of at least one first signal satisfies the second threshold
  • a perceived signal to interference plus noise ratio SINR of at least one first signal satisfies a third threshold
  • At least Y sensing targets are detected
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • the radar cross-sectional area RCS of the perceived target meets the first preset condition
  • the spectral information of the perceived target satisfies the second preset condition
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: delay, distance, Doppler, speed, and angle information;
  • Y is a positive integer.
  • the perceived link performance includes at least one of the following:
  • the communication link performance includes at least one of the following:
  • Reference signal received power RSRP Reference signal received power RSRP, received signal strength indicator RSSI, precoding matrix indicator PMI, rank indicator RI, channel quality indicator CQI, SNR, SINR, bit error probability BER, and block error rate BLER.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 500 includes but is not limited to: radio frequency unit 501, network module 502, audio output unit 503, input unit 504, sensor 505, display unit 506, user input unit 507, interface unit 508, memory 509, processor 510, etc. at least some parts of it.
  • the terminal 500 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 510 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072 . Touch panel 5071, also called touch screen.
  • the touch panel 5071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 501 receives the downlink data from the network side device and then sends it to the processor 510 for processing; in addition, it sends the uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store the operating system, at least one function required Applications or instructions (such as sound playback function, image playback function, etc.), etc.
  • the memory 509 may include high-speed random access memory and may also include non-volatile memory, where the non-volatile memory may be a read-only memory (Read-Only Memory, ROM) or a programmable read-only memory (Programmable ROM).
  • PROM erasable programmable read-only memory
  • Erasable PROM EPROM
  • Electrically erasable programmable read-only memory Electrically EPROM, EEPROM
  • flash memory For example, at least one disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 510.
  • the processor 510 is used to implement: obtaining the link performance corresponding to the target signal by measuring the target signal; and executing a random access process or a beam failure recovery process when it is determined that the link performance corresponding to the target signal cannot meet the requirements;
  • the target signal includes: a first signal, or the target signal includes: a first signal and a second signal; the first signal is a reference signal or a sensing signal;
  • the link performance includes: perceived link performance, or the link performance includes: perceived link performance and communication link performance.
  • the processor 510 is used for:
  • the physical layer measures at least one target signal every first cycle to obtain the link performance corresponding to the target signal.
  • the processor 510 is used for:
  • the count value of the first counter is greater than or equal to the maximum count value, a random access process or a beam failure recovery process is performed.
  • the radio frequency unit 501 is used for:
  • the processor is used by the upper layer to receive the first information, start or restart the first timer, and add 1 to the first counter.
  • the processor 510 is used for:
  • the first situation includes at least one of the following:
  • the first timer times out
  • the higher layer of the serving cell reconfigures the first timer, the first counter or the first signal.
  • the processor 510 is configured to:
  • the first timer is started or restarted.
  • the radio frequency unit 501 is used for:
  • the processor 510 is configured to: receive the first information through a higher layer, and start or restart the first timer.
  • the processor 510 is used for:
  • the second situation includes at least one of the following:
  • the perceived link performance corresponding to the first signal does not satisfy the first condition
  • the performance of the sensing link corresponding to the first signal does not meet the first condition, and the performance of the communication link corresponding to the first signal does not meet the second condition;
  • the performance of the sensing link corresponding to the first signal does not meet the first condition or the performance of the communication link corresponding to the first signal does not meet the second condition;
  • the performance of the sensing link corresponding to the first signal does not meet the first condition, and the performance of the communication link corresponding to the second signal does not meet the second condition;
  • the perceived link performance corresponding to the first signal does not satisfy the first condition or the communication link performance corresponding to the second signal does not satisfy the second condition.
  • processor 510 is used to implement one of the following:
  • the serving cell is a special cell or the communication beam fails in the serving cell, a random access process is performed
  • the serving cell is a secondary cell or no communication beam failure occurs in the serving cell, a beam failure recovery process is performed.
  • the communication interface is also used to implement one of the following:
  • Measure the first target signal set through the physical layer obtain at least one first target signal that can meet the first condition, and send the index of the at least one first target signal to the higher layer;
  • the sensing link performance corresponding to the second target signal satisfies the first condition and /or the communication link performance corresponding to the second target signal meets the second condition;
  • Measure the third target signal set and the fourth target signal set through the physical layer obtain at least one third target signal and at least one fourth target signal, and combine the index of the at least one third target signal with the at least one fourth target signal.
  • the index of the signal is sent to the higher layer, the perception link performance corresponding to the third target signal satisfies the first condition, and the communication link performance corresponding to the fourth target signal satisfies the second condition.
  • the processor 510 is used for:
  • the higher layer selects the physical random access channel PRACH parameters corresponding to the signal that meets the preset threshold in a specific signal
  • the radio frequency unit 501 is configured to: send a preamble to the network side device according to the PRACH parameter;
  • the specific signal includes one of the following:
  • the PRACH parameters include at least one of the following:
  • PRACH time domain resources PRACH frequency domain resources, and PRACH preamble sequence parameters.
  • the processor 510 is configured to: if the terminal receives the response information, determine that the link recovery is successful;
  • the processor 510 is configured to: if the terminal does not receive the response information when the number of times the preamble is sent reaches the maximum number of times, determine that the link recovery fails;
  • the radio frequency unit 501 is configured to: if the terminal receives the response information, send the cause of the beam failure and/or the identification information of the signal that meets the preset threshold to the network side device.
  • processor 510 is also used to:
  • the terminal triggers an RRC connection reestablishment process or performs cell switching based on a handover process triggered by the network side device.
  • the radio frequency unit 501 is used for:
  • the beam failure recovery information includes at least one of the following:
  • the specific signals include one of the following:
  • At least one third target signal and at least one fourth target signal are provided.
  • the first condition includes at least one of the following:
  • the power value of the sensing target-related signal component of at least one first signal satisfies the first threshold
  • the perceived signal-to-noise ratio SNR of at least one first signal satisfies the second threshold
  • the perceived signal to interference plus noise ratio SINR of at least one first signal satisfies the third threshold
  • At least Y sensing targets are detected
  • the bitmap corresponding to the sensing target determined based on monitoring is consistent with the preset bitmap configured on the network side device;
  • the radar cross-sectional area RCS of the perceived target meets the first preset condition
  • the spectral information of the perceived target satisfies the second preset condition
  • the first parameter of the sensing target satisfies the third preset condition, and the first parameter includes at least one of the following: time delay, distance Distance, Doppler, velocity, angle information;
  • Y is a positive integer.
  • the perceived link performance includes at least one of the following:
  • the communication link performance includes at least one of the following:
  • Reference signal received power RSRP Reference signal received power RSRP, received signal strength indicator RSSI, precoding matrix indicator PMI, rank indicator RI, channel quality indicator CQI, SNR, SINR, bit error probability BER, and block error rate BLER.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned beam recovery method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • this embodiment of the present application also provides a communication device 600, including a processor 601, a memory 602, and programs or instructions stored on the memory 602 and executable on the processor 601.
  • a communication device 600 including a processor 601, a memory 602, and programs or instructions stored on the memory 602 and executable on the processor 601.
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the above beam recovery method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above beam recovery method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above beam restoration method.
  • Each process of the method embodiment can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a beam restoration system, including: a terminal and a network-side device, wherein the terminal can be used to execute the steps of the beam restoration method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束恢复方法、装置及终端,属于通感一体化技术领域,本申请实施例的波束恢复方法,包括:终端通过对目标信号进行测量,获取所述目标信号对应的链路性能;所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。

Description

波束恢复方法、装置及终端
相关申请的交叉引用
本申请主张在2022年09月20日在中国提交的中国专利申请No.202211146430.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通感一体化技术领域,具体涉及一种波束恢复方法、装置及终端。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的第15版(Release 15,R15)协议规范中新空口(New Radio,NR)波束失败检测和恢复流程如下:
1、每个运行实例(time instance),物理层测量高层信令发送的参数failureDetectionResources指示的至少一个参考信号(Reference Signal,RS),推算出对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的接收块误码率(block error rate,BLER)性能;
RS可以是同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号或者信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS)或者二者的混合。
2、如果BLER性能高于目标BLER门限如10%,则物理层向高层(媒体接入控制(Medium Access Control,MAC)层)上报波束失败实例(beam failure instance);
所有RS都满足条件才上报beam failure instance。
3、如果物理层上报的beam failure instance达到预设次数,声明beam failure;
4、用户设备(User Equipment,UE)搜索候选RS,如果找到了满足门限的RS,UE上报满足门限的CRI/L1-RSRP或SSBRI/L1-RSRP给MAC层;
5、MAC层选择满足门限的RS以及对应的物理随机接入信道(Physical Random Access Channel,PRACH)资源;
6、UE向基站发送(或重新发送)波束失败恢复请求(beam failure recovery request);
7、如果基站收到了beam failure recovery request,则在对应的资源上通过PDCCH发送响应(response);
8、UE接收到response,则链路恢复(Link Recovery)成功;若beam failure recovery request达到最大次数仍未收到response,则Link Recovery失败。
但是目前的波束恢复流程不适用于通感一体化的场景。
发明内容
本申请实施例提供一种波束恢复方法、装置及终端,以实现通感一体化的场景下的波束恢复。
第一方面,提供了一种波束恢复方法,包括:
终端通过对目标信号进行测量,获取所述目标信号对应的链路性能;
所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
第二方面,提供了一种波束恢复装置,包括:
监测模块,用于通过对目标信号进行测量,获取所述目标信号对应的链路性能;
执行模块,用于在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于通过对目标信号进行测量,获取所述目标信号对应的链路性能;在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
第五方面,提供了一种波束恢复系统,包括:终端和网络侧设备,所述终端可用于执行如第一方面所述的波束恢复方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述 处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的波束恢复方法的步骤。
在本申请实施例中,通过对至少一个第一信号进行测量,以至少获取第一信号对应的感知链路性能,在至少所述第一信号对应的感知链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程,以至少实现通感一体化的场景下的波束恢复。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例的波束恢复方法的流程示意图;
图3是一维图SNR计算示意图;
图4是本申请实施例的波束恢复装置的模块示意图;
图5是本申请实施例的终端的结构示意图;
图6是本申请实施例的通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统, 并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备和核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面先对本申请所涉及的相关技术进行描述如下:
一、通信感知一体化
未来移动通信系统例如超5代移动通信系统(Beyond Fifth Generation,B5G)系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的小基站在6G网络的部署,感知的分辨率相比厘米波将明显提升,从而使得6G网络能够提供更精细的感知服务。典型的感知功能与应用场景如表1所示。
表1典型的感知功能与应用场景对照表
根据感知信号发送节点和接收节点的不同,分为6种基本感知方式,具体包括:
(1)基站自发自收感知。在这种感知方式下,基站A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
(2)基站间空口感知。此时,基站B接收基站A发送的感知信号,进行感知测量。
(3)上行空口感知。此时,基站A接收终端A发送的感知信号,进行感知测量。
(4)下行空口感知。此时,终端B接收基站B发送的感知信号,进行感知测量。
(5)终端自发自收感知。此时,终端A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
(6)终端间旁链路(Sidelink,SL)感知。此时,终端B接收终端A发送的感知信号,进行感知测量。
值得注意的是,实际系统中,根据不同的感知用例和感知需求可以选择一种或多种不同的感知方式,且每种感知方式的发送节点和接收节点可以有一个或多个。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的波束恢复方法、 装置及终端进行详细地说明。
如图2所示,本申请实施例提供一种波束恢复方法,包括:
步骤201,终端通过对目标信号进行测量,获取所述目标信号对应的链路性能;
步骤202,所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,当对第一信号进行感知测量时,可以获取到第一信号对应的感知链路性能;当对第一信号进行感知测量和通信测量时,可以获取到第一信号对应的感知链路性能和通信链路性能;当对第一信号进行感知测量,对第二信号进行通信测量时,可以获取到第一信号对应的感知链路性能以及第二信号对应的通信链路性能。
需要说明的是,通过接收感知信号可以支持感知业务,例如通过接收该信号可得到感知测量量或者感知结果。
需要说明的是,通过对至少一个第一信号进行测量,以至少获取感知链路监测性能,以实现通感一体化的场景下的无线链路监测。
可选地,本申请实施例中所说的第一信号可以是不包含传输信息的信号,如相关技术中的LTE/NR同步和参考信号,包括同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、信道探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、相位追踪参考信号(Phase Tracking Reference Signal,PTRS)等;也可以是雷达常用的单频连续波(Continuous Wave,CW)、调频连续波(Frequency Modulated CW,FMCW),以及超宽带高斯脉冲等;还可以是新设计的专用信号,具有良好的相关特性和低峰均功率比,或者新设计的通感一体化信号,既承载一定信息,同时具有较好的感知性能。例如,该新信号为至少一种专用感知信号/参考信号,和至少一种通信信号在时域和/或频域上拼接/组合/叠加而成。该第二信号与第一信号的形式类似,在此不再赘述。
可选地,本申请的另一实施例中,所述感知链路性能包括以下至少一项:
A101、感知目标关联信号分量的功率值;
例如,可以为感知径的功率值。
需要说明的是,所述感知目标关联信号分量的功率值为接收的第一信号中受感知目标影响较大的信号分量功率,可以是以下至少一项:
A1011、以接收的第一信号的频域信道响应中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率 值;或以某一个指定子载波或物理资源块(Physical Resource Block,PRB)对应的样值点的幅度为目标幅度计算得到的功率值,或以多个指定子载波或PRB对应的样值点的幅度为目标幅度计算得到的功率值。
A1012、以接收的第一信号的频域信道响应的快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)结果(时延域)中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;
或者以特定时延范围内幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值。
A1013、以接收的第一信号的时域信道响应的傅里叶变换(Fast Fourier Transform,FFT)结果(多普勒域)中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;
或者以特定多普勒范围内幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值。
A1014、以接收的第一信号的信道响应的二维傅里叶变换结果,即时延-多普勒域结果中幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值;
或者以特定时延-多普勒范围内幅度最大的样值点对应的幅度为目标幅度计算得到的功率值,或以幅度最大的多个样值点对应的幅度为目标幅度计算得到的功率值。
需要说明的是,所述幅度最大也可以是或幅度超过特定门限值,所述特定门限值可以是网络侧设备指示的,也可以是终端根据噪声和/或干扰功率计算得到的。
所述特定时延/多普勒范围与感知需求相关,可以是网络侧设备指示的,也可以是终端根据感知需求得到的。
以雷达检测为例,所述感知目标关联信号分量的功率值为回波功率,回波信号功率的获取方法,可以是以下选项中的至少一项:
B11、基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(Constant False Alarm Rate,CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,如图3所示;
B12、基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,同图3所示;
B13、基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
B14、基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
需要说明的是,目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过 门限样值点的均值作为目标信号幅度。
A102、感知信噪比(signal-to-noise Ratio,SNR);
例如,该感知SNR可以是感知目标关联信号分量的功率值与噪声功率的比值。
A103、感知信号与干扰加噪声比(signal-to-noise and interference ratio,SINR);
例如,该感知SINR可以是感知目标关联信号分量的功率值与噪声和干扰的功率之和的比值。
具体地,所述SNR/SINR的获取方法可以是:
B21、基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,如图3所示,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
B22、基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
B23、基于回波信号2D-FFT处理得到的时延-多普勒二维图进CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
B24、基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
需要说明的是,目标信号幅度的确定方式除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度;
需要说明的是,干扰/噪声样值点的确定方式还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方式是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除以时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除以时间维0附件 若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。
A104、感知目标是否存在;
可以包括以下至少一项:
是否存在速度或多普勒预设范围内的感知目标;
是否存在距离或时延预设范围内的感知目标。
A105、感知目标存在的目标个数;
可以包括以下至少一项:
存在速度或多普勒预设范围内的感知目标的目标个数;
存在距离或时延预设范围内的感知目标的目标个数。
需要说明的是,上述的A104和A105可以是根据感知需求由其他设备(例如,其他终端,接入网设备或核心网设备)通知给终端的。
需要说明的是,判断是否有感知目标存在的方式可以是:例如,时延/多普勒一维或二维图中是否存在幅度超过特定门限值的样值点,若存在则认为检测到感知目标;时延/多普勒一维或二维图中幅度超过特定门限值的样值点的个数认为是感知目标的个数。
A106、感知目标的雷达截面面积(Radar Cross Section,RCS)信息;
需要说明的是,该RCS信息可以是单个感知目标的RCS信息,也可以是多个感知目标的RCS信息。
A107、感知目标的谱信息;
需要说明的是,该谱信息可以包括以下至少一项:时延功率谱、多普勒功率谱、时延/距离-多普勒/速度谱、角度功率谱、时延/距离-角度谱、多普勒/速度-角度谱、时延/距离-多普勒/速度-角度谱。
A108、至少一个感知目标的时延;
A109、至少一个感知目标的距离;
A110、至少一个感知目标的多普勒;
A111、至少一个感知目标的速度;
A112、至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率(Reference Signal Received Power,RSRP)、接收信号强度指示(Received Signal Strength Indication,RSSI)、预编码矩阵指示(Precoding matrix indicator,PMI)、秩指示(Rank indicator,RI)、信道质量指示(Channel quality indicator,CQI)、SNR、SINR、比特出错概率(Bit Error Ratio,BER)、误块率(Block Error Rate,BLER)。
可选地,本申请的另一实施例中,所述终端通过对目标信号进行测量,获取所述目标信号对应的链路性能,包括:
所述终端的物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信 号对应的链路性能。
需要说明的是,可选地,该目标信号是由网络侧设备(例如基站)配置给终端的,即终端对网络侧设备配置的目标信号进行测量的具体实现方式为:终端的物理层每隔第一周期对网络侧设备配置的至少一个目标信号进行一次测量。
需要说明的是,终端基于第一信号、第一信号和第二信号的参数配置信息对信号进行测量,该参数配置信息是网络侧设备为终端配置的。
需要说明的是,不同信号的参数配置信息包括以下至少一项:
C101、波形类型,例如,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA),正交时频空(Orthogonal Time Frequency Space,OTFS),调频连续波(Frequency Modulated Continuous Wave,FMCW),脉冲信号等;
C102、子载波间隔:例如,OFDM系统的子载波间隔30KHz;
C103、保护间隔:从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),例如对于自发自收的目标信号,dmax代表目标信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀CP可以起到最小保护间隔的作用;
C104、带宽:该参数反比于距离分辨率,可以通过c/(2Δd)得到,其中Δd是距离分辨率(属于感知需求);c是光速;
C105、Burst持续时间:该参数反比于速率分辨率(属于感知需求),该参数是目标信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/(2fcΔv)计算得到;其中,Δv是速度分辨率;fc是目标信号的载频;
C106、时域间隔:该参数可通过c/(2fcvrange)计算得到;其中,vrange是最大速率减去最小速度(属于感知需求);该参数是相邻的两个目标信号之间的时间间隔;
C107、发送信号功率,例如从-20dBm到23dBm每隔2dBm取一个值;
C108、信号格式,例如是信道探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息;
C109、信号方向;例如目标信号的方向或者波束信息;
C110、时间资源,例如目标信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的目标信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的目标信号,不同组的周期性时间资源上的波束方向不同;
C111、频率资源,包括目标信号的中心频点,带宽,资源块(Resource block,RB) 或者子载波,点A(Point A),起始带宽位置等
C112、准共址(Quasi Co-Location,QCL)关系,例如目标信号包括多个资源,每个资源与一个SSB QCL,QCL包括Type A,B,C或者D;
C113、感知节点(基站或UE的)天线配置信息;
该感知节点(基站或UE的)天线配置信息包括以下至少一项:
C1131、用于发送和/或接收目标信号的天线阵元ID或者天线端口ID;
C1132、用于发送和/或接收目标信号的panel ID+阵元ID;
C1133、用于发送和/或接收目标信号的天线阵元相对天线阵列上某个局部参考点的位置信息(可以用笛卡尔坐标(x,y,z)或者球坐标表示);
C1134、用于发送和/或接收目标信号的panel相对天线阵列上某个局部参考点的位置信息(可以用笛卡尔坐标(x,y,z)或者球坐标表示),以及这些被选择panel内的用于发送目标信号的天线阵元相对panel某个统一参考点(例如panel中心点)的位置信息(可以用笛卡尔坐标(x,y,z)或者球坐标表示);
C1135、天线阵元的比特位图(bitmap)信息。例如:该bitmap使用“1”指示阵元被选择用于发送和/或接收目标信号,使用“0”表示阵元未被选择(也可反过来);
C1136、阵列panel的bitmap信息。例如:该bitmap使用“1”指示panel被选择用于发送和/或接收目标信号,使用“0”表示阵元未被选择(也可以反过来)。以及这些被选择panel内的阵元bitmap信息;
C1137、门限信息,即用于给源节点、第一设备、候选节点任意至少一者判决所获得的感知测量量测量值是否满足第一条件的门限值。对于不同候选节点和/或候选标签(tag),门限值可以不同;对于任意一个候选节点和/或候选tag,感知测量量及其对应门限值可以大于1个;所述第一条件为:获得感知测量量测量值的对应候选节点/候选tag可以作为目标节点/目标tag。
可选地,本申请的另一实施例中,所述方法,还包括:
若满足第二情况,确定目标信号对应的链路性能不能满足要求;
其中,所述第二情况包括以下至少一项:
D11、第一信号对应的感知链路性能不满足第一条件;
需要说明的是,此种情况下,终端只基于第一信号进行感知链路性能的测量。
D12、第一信号对应的感知链路性能不满足第一条件、且第一信号对应的通信链路性能不满足第二条件;
D13、第一信号对应的感知链路性能不满足第一条件或第一信号对应的通信链路性能不满足第二条件;
需要说明的是,在D12和D13的情况下,终端基于第一信号进行感知链路性能和通信链路性能的测量。
D14、第一信号对应的感知链路性能不满足第一条件、且第二信号对应的通信链路性 能不满足第二条件;
D15、第一信号对应的感知链路性能不满足第一条件或第二信号对应的通信链路性能不满足第二条件;
需要说明的是,在D14和D15的情况下,终端基于第一信号进行感知链路性能以及基于第二信号进行通信链路性能的测量。
这里需要说明的是,该第一条件包括以下至少一项:
E11、至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
E12、至少一个第一信号的SNR满足第二门限;
E13、至少一个第一信号的SINR满足第三门限。
E14、至少检测到Y个感知目标;
Y是基站配置的,Y为正整数。
需要说明的是,此种情况对应同时检测多个目标的情况。
E15、基于监测所确定的感知目标对应的比特位图(bitmap)与网络侧设备配置的预设比特位图一致;
例如,bitmap的每bit的位置代表某一个目标,bit为1代表检测到了该目标,为0代表没有检测到该目标。
需要说明的是,此种情况对应同时检测多个目标的情况。
E16、感知目标的RCS满足第一预设条件;
需要说明的是,该RCS可以是单个感知目标的RCS信息,也可以是多个感知目标的RCS信息。
例如,该第一预设条件为RCS达到K1平方米,K1为正实数。
E17、感知目标的谱信息满足第二预设条件;
例如,感知目标的距离-速率谱满足第二预设条件,此时的第二预设条件是距离-速率谱上能分辨出感知目标(距离-速率谱有一个点或者一个区域的幅度达到预设值);或者,感知目标的时延-多普勒谱满足第二预设条件,此时的第二预设条件是时延-多普勒谱上能分辨出感知目标(时延-多普勒谱有一个点或者一个区域的幅度达到预设值);
E18、感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
需要说明的是,该第一参量可以是单个感知目标的第一参量,也可以是多个感知目标的第一参量。
例如,感知目标的时延满足第三预设条件(例如时延满足一个区间值);再例如,感知目标的距离满足第三预设条件(例如距离满足一个区间值);再例如,感知目标的多普勒满足第三预设条件(例如多普勒满足一个区间值);再例如,感知目标的速度满足第三预设条件(例如速度满足一个区间值);再例如,感知目标的角度信息满足第三预设条件(例如角度信息满足一个区间值)。
可选地,因所述通信链路性能包括RSRP、RSSI、PMI、RI、CQI、SNR、SINR、BER、BLER等参数中的至少一项,该第二条件即为与特定参数对应的门限值,例如,通信链路性能不满足第二条件可以是RSRP低于预设值例如-90dBm,或者,SNR或SINR低于预设值如5dBm。
可选地,本申请的另一实施例中,所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程,包括:
所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,将第一计数器加1;
若第一计数器的计数值大于或等于最大计数值,执行随机接入流程或波束失败恢复流程。
可选地,另一实施例中,所述在确定目标信号对应的链路性能不能满足要求的情况下,将第一计数器加1,包括:
在确定目标信号对应的链路性能不能满足要求的情况下,所述终端的物理层向高层(例如,媒体接入控制(Medium Access Control,MAC)层)上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
所述终端的高层收到所述第一信息,将第一计数器加1。
还需要说明的是,若目标信号对应的链路性能能够满足要求,则终端的物理层可以向高层发送第二信息,所述第二信息用于指示所述目标信号对应的链路性能能够满足要求。
可选地,本申请的另一实施例中,所述方法,还包括:
若满足第一情况,所述终端将所述第一计数器的计数值置零;
其中,所述第一情况包括以下至少一项:
第一定时器超时;
服务小区的高层重配置了第一定时器、第一计数器或第一信号。
可选地,所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器。
可选地,所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器的实现方式,包括:
在确定目标信号对应的链路性能不能满足要求的情况下,所述终端的物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
所述终端的高层收到所述第一信息,启动或重启第一定时器。
可以理解为,当所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器,并将第一计数器加1。
可选地,本申请的另一实施例中,所述执行随机接入流程或波束失败恢复流程,包括以下一项:
F11、若服务小区为特殊小区(Special cell,SpCell)或者服务小区发生了通信波束失 败,执行随机接入流程;
需要说明的是,该特殊小区指的是主小区组(MCG)下的主小区(Primary Cell,PCell),辅小区组(SCG)下的主辅小区(Primary Secondary Cell,PSCell)。
可以理解为,若第一计数器的计数值大于或等于最大计数值,若服务小区为Spcell或者服务小区发生了通信波束失败,则执行终端开始执行随机接入流程;
F12、若服务小区为辅小区(Secondary Cell,Scell)或服务小区没有发生通信波束失败,执行波束失败恢复流程;
可以理解为,若第一计数器的计数值大于或等于最大计数值,若服务小区为Scell或服务小区没有发生通信波束失败,则终端触发波束失败恢复流程。
可选地,在所述执行随机接入流程或波束失败恢复流程之前,还包括以下一项:
H11、所述终端的物理层测量第一目标信号集,获取能够满足第一条件的至少一个第一目标信号,并将所述至少一个第一目标信号的索引发送给高层;
可选地,物理层还可以进一步的将至少一个第一目标信号对应的感知链路性能发送给高层。
需要说明的是,此种情况下,终端只基于第一信号进行感知链路性能的测量。
H12、所述终端的物理层测量第二目标信号集,获取至少一个第二目标信号,将所述至少一个第二目标信号的索引发送给高层,所述第二目标信号对应的感知链路性能满足第一条件和/或所述第二目标信号对应的通信链路性能满足第二条件;
可选地,物理层还可以进一步的将至少一个第二目标信号对应的感知链路性能和通信链路性能发送给高层。
需要说明的是,此种情况下,终端基于第一信号进行感知链路性能和通信链路性能的测量,也可以是终端基于第一信号进行感知链路性能以及基于第二信号进行通信链路性能的测量。
H13、所述终端的物理层测量第三目标信号集和第四目标信号集,获取至少一个第三目标信号以及至少一个第四目标信号,将所述至少一个第三目标信号的索引和所述至少一个第四目标信号的索引发送给高层,所述第三目标信号对应的感知链路性能满足第一条件,所述第四目标信号对应的通信链路性能满足第二条件;
可选地,物理层还可以进一步的将至少一个第三目标信号对应的感知链路性能和通信链路性能以及至少一个第四目标信号对应的感知链路性能和通信链路性能发送给高层。
需要说明的是,此种情况下,终端基于第一信号进行感知链路性能以及基于第二信号进行通信链路性能的测量。
可选地,本申请的另一实施例中,所述执行随机接入流程,包括:
所述终端的高层在特定信号中选择满足预设门限的信号对应的物理随机接入信道PRACH参数,所述终端根据所述PRACH参数向网络侧设备发送前导码,所述终端在第一时间窗口监听网络侧设备的应答信息;
其中,所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号;
所述PRACH参数包括如下至少一项:
PRACH的时域资源、PRACH的频域资源、PRACH的前导码序列参数。
上述时域资源为发送上述PRACH的时域资源位置,上述频域资源为发送上述PRACH的频域资源位置,上述前导码序列参数可以是前导码序列格式或者前导码序列索引等。
需要说明的是,当通过信号集得到的满足第一条件和/或第二条件的特定信号只有一个时,则终端只能基于该一个特定信号对应的PRACH参数向网络侧设备发送前导码,此时可以认为该预设门限与上述第一条件中所指示的门限相同;当通过信号集得到的满足第一条件和/或第二条件的特定信号有多个时,则终端可以在这个多个信号中在基于预设门限选择某一些信号,基于选择出的这些信号对应的PRACH参数向网络侧设备发送前导码,此时可以认为该预设门限与上述第一条件中所指示的门限不相同;当通过信号集得到的满足第一条件和/或第二条件的特定信号有多个时,则终端也可以基于这些信号对应的PRACH参数向网络侧设备发送前导码,此时可以认为该预设门限与上述第一条件中所指示的门限相同。
需要说明的是,终端根据所述PRACH参数向网络侧设备发送前导码可以是基于竞争(contention based)的前导码,也可以是非竞争(contention free)的前导码。
可选地,在所述在第一时间窗口监听网络侧设备的应答信息之后,还包括以下一项:
H21、若所述终端接收到所述应答信息,则确定链路恢复成功;
H22、若所述终端在前导码的发送次数达到最大发送次数的情况下未收到所述应答信息,则确定链路恢复失败;
可选地,在所述链路恢复失败的情况下,所述终端触发无线资源控制(Radio Resource Control,RRC)连接重建过程或基于网络侧设备触发的切换流程进行小区切换。
H23、若所述终端接收到所述应答信息,向网络侧设备发送波束失败原因和/或满足预设门限的信号的标识信息。
例如,该标识信息为索引或编号。
需要说明的是,H21和H22,对应发送非竞争的前导码的情况;H23对应发送竞争的前导码的情况。
可选地,本申请的另一实施例中,所述执行波束失败恢复流程,包括:
向网络侧设备发送波束失败恢复信息;
其中,所述波束失败恢复信息包括以下至少一项:
H31、发生波束失败的小区的标识信息;
H32、发生波束失败的小区对应的特定信号的标识信息;
H33、发生波束失败的小区对应的特定信号对应的感知链路性能;
所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号。
下面在实际应用中对本申请实施例进行详细说明如下。
应用情况一、感知波束恢复
评估第一信号是否满足感知链路性能,若不满足,则从第一目标信号集中选择满足感知链路性能的信号
需要说明的是,此时的通信波束恢复流程和感知波束恢复流程分别独立进行的;两套流程的测量信号集合以及流程参数是独立配置的。
主要包括如下过程:
S101、每隔固定周期(该周期是基站配置的),UE的物理层测量基站配置的一个或多个第一信号,以评估感知链路性能(即感知链路性能);第一信号的参数配置信息是基站配置的;
S102、如果所述感知链路性能无法满足第一条件,则UE的物理层向高层(MAC层)上报第一信息(该第一信息可以理解为是波束失败实例指示(beam failure instance indication));
S103、如果MAC层收到第一信息,启动或重启第一定时器,并且第一计数器加1;
如果第一计数器大于最大计数值,如果服务小区是Spcell或者服务小区发生了通信波束失败,开始随机接入流程;如果服务小区是Scell或者服务小区没有发生通信波束失败,触发波束失败恢复(Beam Failure Recovery,BFR)流程;
其中,第一定时器和第一计数器是基站配置给UE的,第一计数器初始值为0,第一定时器初始值非0。
如果第一定时器超时,或者服务小区的高层重配置了第一定时器或第一计数器或第一信号,则将第一计数器置零。
如果所述随机接入流程或所述BFR流程成功完成,则将第一计数器置零,停止第一定时器,感知波束恢复流程成功完成。
可选地,随机接入流程的主要过程为:
S104、UE搜索第一目标信号集,如果找到了满足第一条件的一个或多个第一目标信号,UE物理层上报满足条件的第一目标信号的索引以及对应的感知链路性能给高层(如MAC层)。
可选地,该第一目标信号集是基站配置的。
S105、高层(MAC层)选择满足预设门限的第一目标信号以及该第一目标信号对应的PRACH资源;该预设门限是可选的;
S106、UE向基站发送前导码(preamble),该preamble对应满足预设门限的第一目标信号;可选的,该preamble是contention free的preamble;
S107、如果基站收到了preamble,则发送response;例如,在对应的资源上通过小区无线网络临时标识(Cell-RadioNetworkTemporaryIdentifier,C-RNTI)加扰的PDCCH发送response(如MSG2);
S108、UE在基站配置的时间窗口监听response;
S109、若UE接收到response,则Link Recovery成功;若preamble达到最大发送次数但UE仍未收到response,则Link Recovery失败;
可选地,此时UE可以进行RRC连接重建或者基站触发切换流程。
需要说明的是,随机接入流程还可以是UE发送基于竞争的preamble,UE收到MSG2之后,通过MSG3将波束失败的原因或满足预设门限的第一目标信号的索引上报给基站。
可选地,BFR流程的主要过程为:
S110、UE通过MAC控制单元(MAC Control Element,MAC CE)将BFR上报给服务小区(spcell或scell);
BFR MAC CE包含的内容是以下至少一项:
发生波束失败的小区ID,以及发生波束失败的小区对应的满足第一条件的第一目标信号的的索引,以及对应的感知链路性能。
S111、在S110之前,UE搜索第一目标信号集,如果找到了满足第一条件的一个或多个第一目标信号,UE物理层上报满足第一条件的第一目标信号的索引以及对应的感知链路性能给高层如MAC层。
可选地,第一目标信号集是基站配置的。
应用情况二、波束恢复(联合考虑感知和通信的性能):评估第一信号的感知链路性能是否满足第一条件以及通信链路性能是否满足第二条件,若不满足,则从第二目标信号集中选择感知链路性能和/或通信链路性能满足条件的信号。
主要包括如下过程:
S201、每隔固定周期(该周期是基站配置的),UE的物理层测量基站配置的一个或多个第一信号,以评估其感知链路性能(即感知链路性能)和通信链路性能(即通信链路性能);第一信号的参数配置信息是基站配置的;
S202、(方案A)如果一个或多个第一信号的感知链路性能无法满足第一条件且相同的第一信号的通信链路性能无法满足第二条件,或者,一个或多个第一信号的感知链路性能无法满足第一条件且另外的一个或多个第一信号的通信链路性能无法满足第二条件,则UE的物理层向高层(MAC层)上报第一信息;否则,上报第二信息;
或者,
(方案B)如果一个或多个第一信号的感知链路性能无法满足第一条件或者相同的第一信号的通信链路性能无法满足第二条件,或者,一个或多个第一信号的感知链路性能无 法满足第一条件或者另外的一个或多个第一信号的通信链路性能无法满足第二条件,则UE的物理层向高层(MAC层)上报第一信息;否则,上报第二信息;
其中,只要有一个第一信号满足第二条件就意味着通信链路性能满足第二条件。
S203、如果MAC层收到第一信息,启动或重启第一定时器,并且第一计数器加1;
如果第一计数器大于最大计数值,如果服务小区是Spcell或者服务小区发生了通信波束失败,开始随机接入流程;如果服务小区是Scell或者服务小区没有发生通信波束失败,触发BFR流程;
其中,第一定时器和第一计数器是基站配置给UE的,第一计数器初始值为0,第一定时器初始值非0。
如果第一定时器超时,或者服务小区的高层重配置了第一定时器或第一计数器或第一信号,则将第一计数器置零。
如果所述随机接入流程或所述BFR流程成功完成,则将第一计数器置零,停止第一定时器,感知波束恢复流程成功完成。
可选地,随机接入流程的主要过程为:
S204、UE搜索第二目标信号集,如果某个第二目标信号的感知链路性能满足感知第一条件且其通信链路性能满足第二条件,或者,如果某个第二目标信号的感知链路性能满足第一条件或其通信链路性能满足第二条件,UE物理层上报符合上述条件的第二目标信号的索引以及对应的感知链路性能和通信链路性能给高层(如MAC层)。
可选地,该第二目标信号集是基站配置的。
S205、高层(MAC层)选择满足预设门限的第二目标信号以及该第二目标信号对应的PRACH资源;该预设门限是可选的;
S206、UE向基站发送preamble,该preamble对应满足预设门限的第二目标信号;
可选的,该preamble是contention free的preamble;
S207、如果基站收到了preamble,则发送response;例如,在对应的资源上通过C-RNTI加扰的PDCCH发送response(如MSG2);
S208、UE在基站配置的时间窗口监听response;
S209、若UE接收到response,则Link Recovery成功;若preamble达到最大发送次数但UE仍未收到response,则Link Recovery失败;
可选地,此时UE可以进行RRC连接重建或者基站触发切换流程。
需要说明的是,随机接入流程还可以是UE发送基于竞争的preamble,UE收到MSG2之后,通过MSG3将波束失败的原因或满足预设门限的第二目标信号的索引上报给基站。
可选地,BFR流程的主要过程为:
S210、UE通过MAC CE将BFR上报给服务小区(spcell/scell);
BFR MAC CE包含的内容是以下至少一项:
发生波束失败的小区ID,以及发生波束失败的小区对应的满足第一条件的第二目标 信号的索引,以及对应的感知链路性能。
S211、在S210之前,UE搜索第二目标信号集,如果某个第二目标信号的感知链路性能满足第一条件且其通信链路性能满足第二条件,或者,如果某个第二信号的感知链路性能满足第一条件或其通信链路性能满足第二条件,UE物理层上报符合上述条件的第二目标信号索引以及对应的感知链路性能和通信链路性能给高层(如MAC层)。
可选地,第二目标信号集是基站配置的。
应用情况三、波束恢复(联合考虑感知和通信的性能):评估第一信号的感知链路性能是否满足第一条件并评估第二信号的通信链路性能是否满足第二条件,若不满足,则从第二目标信号集(或第三目标信号集及第四目标信号集)中选择感知链路性能和/或通信链路性能均满足条件的信号。
主要包括如下过程:
S301、每隔固定周期(该周期是基站配置的),UE的物理层测量基站配置的一个或多个第一信号,以评估其感知链路性能(感知链路性能);UE同时测量基站配置的一个或多个第二信号,以评估其通信链路性能(通信链路性能);第一信号和第二信号的参数配置信息是基站配置的;
S302、如果一个或多个第一信号的感知链路性能无法满足第一条件且一个或多个第二信号的通信链路性能无法满足第二条件,或者,一个或多个第一信号的感知链路性能无法满足第一条件或一个或多个第二信号的通信链路性能无法满足第二条件,则UE的物理层向高层(MAC层)上报第一信息;否则,上报第二信息;
其中,只要有一个第二信号满足通信条件就意味着通信链路性能满足通信条件;
S303、如果MAC层收到第一信息,启动或重启第一定时器,并且第一计数器加1;
如果第一计数器大于最大计数值,如果服务小区是Spcell或者服务小区发生了通信波束失败,开始随机接入流程;如果服务小区是Scell或者服务小区没有发生通信波束失败,触发BFR流程;
其中,第一定时器和第一计数器是基站配置给UE的,第一计数器初始值为0,第一定时器初始值非0。
如果第一定时器超时,或者服务小区的高层重配置了第一定时器或第一计数器或第一信号,则将第一计数器置零。
如果所述随机接入流程或所述BFR流程成功完成,则将第一计数器置零,停止第一定时器,感知波束恢复流程成功完成。
可选地,随机接入流程的主要过程为:
S304、UE搜索第二目标信号集,如果某个第二目标信号的感知链路性能满足第一条件且其通信链路性能满足第二条件,或者,某个第二目标信号的感知链路性能满足第一条件或通信链路性能满足第二条件,UE上报符合上述条件的第二目标信号索引以及对应的感知链路性能和通信链路性能给高层(如MAC层);
可选地,该第二目标信号集是基站配置的。
或,
UE搜索第三目标信号集,如果某个第三目标信号的感知链路性能满足第一条件,UE上报符合上述条件的第三目标信号的索引以及对应的感知链路性能和通信链路性能给高层如MAC层;同时,UE搜索第四目标信号集,如果某个第四目标信号的通信链路性能满足第二条件,UE上报符合上述条件的第四目标信号的索引以及对应的感知链路性能和通信链路性能给高层(如MAC层);
可选地,该第三目标信号集和第四目标信号集是基站配置的。
S305、高层(MAC层)选择满足预设门限的第二目标信号(或者第三目标信号或者第四目标信号)以及该的第二目标信号(或者第三目标信号或者第四目标信号)对应的PRACH资源;该预设门限是可选的;
S306、UE向基站发送preamble,该preamble对应满足预设门限的第二目标信号(或者第三目标信号或者第四目标信号);
可选的,该preamble是contention free的preamble;
S307、如果基站收到了preamble,则发送response;例如,在对应的资源上通过C-RNTI加扰的PDCCH发送response(如MSG2);
S308、UE在基站配置的时间窗口监听response;
S309、若UE接收到response,则Link Recovery成功;若preamble达到最大发送次数但UE仍未收到response,则Link Recovery失败;
可选地,此时UE可以进行RRC连接重建或者基站触发切换流程。
需要说明的是,随机接入流程还可以是UE发送基于竞争的preamble,UE收到MSG2之后,通过MSG3将波束失败的原因或满足预设门限的第二目标信号(或者第三目标信号或者第四目标信号)的索引上报给基站。
可选地,BFR流程的主要过程为:
S310、UE通过MAC CE将BFR上报给服务小区(spcell/scell);
BFR MAC CE包含的内容是以下至少一项:
发生波束失败的小区ID,以及发生波束失败的小区对应的满足条件的第二目标信号(或者第三目标信号或者第四目标信号)的索引,以及对应的感知链路性能。
S311、在S310之前,UE搜索第二目标信号集,如果某个第二目标信号的感知链路性能满足第一条件且其通信链路性能满足第二条件,或者,某个第二目标信号的感知链路性能满足第一条件或通信链路性能满足第二条件,UE上报符合上述条件的第二目标信号索引以及对应的感知链路性能和通信链路性能给高层(如MAC层);
可选地,该第二目标信号集是基站配置的。
或,
UE搜索第三目标信号集,如果某个第三目标信号的感知链路性能满足第一条件,UE 上报符合上述条件的第三目标信号的索引以及对应的感知链路性能和通信链路性能给高层如MAC层;同时,UE搜索第四目标信号集,如果某个第四目标信号的通信链路性能满足第二条件,UE上报符合上述条件的第四目标信号的索引以及对应的感知链路性能和通信链路性能给高层(如MAC层);
可选地,该第三目标信号集和第四目标信号集是基站配置的。
可选地,本申请实施例所说的所述感知测量量包括以下至少一项:
Q11、第一级测量量,所述第一级测量量包括以下至少一项:接收对象的频域信道响应的同相(in-phase,I)路数据与正交(quadrature,Q)路数据进行运算的结果(即I路数据与Q路数据的运算结果)、接收对象的频域信道响应的结果(例如,该频域信道响应的结果可以通过信道估计的方式获取;通常情况下,该频域信道响应的结果为复数形式)、接收对象的频域信道响应的幅度、接收对象的频域信道响应的相位、接收对象的频域信道响应的I路数据、接收对象的频域信道响应的Q路数据,该接收对象包括接收信号或接收信道;
可选地,上述所说的运算可以包括加、减、乘、除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算和幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等;运算还包括快速傅里叶变换(Fast Fourier Transform,FFT)/快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、2D-FFT、3D-FFT、匹配滤波、自相关运算、小波变换和数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等。
例如,I路数据和Q路数据进行运算的结果可以根据I×cos(theta)+Q×sin(theta)确定得到,其中,theta为某一角度值,I代表I路数据,Q代表Q路数据。
Q12、第二级测量量,所述第二级测量量包括以下至少一项:时延、多普勒、角度、信号强度;
该第二级测量量可以看作是基本测量量。
Q13、第三级测量量,所述第三级测量量包括以下至少一项:感知目标的距离、感知目标的速度、感知目标的朝向、感知目标的空间位置、感知目标的加速度;
该第三级测量量可以看作是感知目标的基本属性/状态。
Q14、第四级测量量(进阶属性/状态),包括:目标是否存在、轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分。
可选地,上述感知测量量还可以包括对应的标签信息,该标签信息包括以下至少一项:
Q301、感知信号标识信息
Q302、感知测量配置标识信息
Q303、感知业务信息(例如,感知业务ID)
Q304、数据订阅ID
Q305、测量量用途(通信、感知、通感)
Q306、时间信息
Q307、感知节点信息(例如,UE ID、节点位置、设备朝向)
Q308、感知链路信息(例如,感知链路序号、收发节点标识)
Q309、测量量说明信息(形式例如幅度、相位、复数,资源信息例如天线/天线对/天线组、PRB、符号)
Q310、测量量指标信息(例如,SNR、感知SNR)。
可选地,本申请实施例中所提到的感知结果,包括以下至少一项:
感知目标的形状、感知目标的轮廓、感知目标是否存在、感知目标的轨迹、感知目标的动作、感知目标的表情、感知目标的生命体征、感知目标的数量、感知目标的成像结果、天气、空气质量、感知目标的材质、感知目标的成分、感知目标的手势、感知目标的呼吸频率、感知目标的心跳频率、感知目标的睡眠质量。
综上可知,本申请实施例给出了一种感知波束恢复流程,并且给出了感知和通信的联合波束恢复流程,能及时发现波束的感知性能不满足需求,从而寻找新的波束来满足感知需求。
本申请实施例提供的波束恢复方法,执行主体可以为波束恢复装置。本申请实施例中以波束恢复装置执行波束恢复方法为例,说明本申请实施例提供的波束恢复装置。
如图4所示,本申请实施例提供一种波束恢复装置400,应用于终端,包括:
监测模块401,用于通过对目标信号进行测量,获取所述目标信号对应的链路性能;
执行模块402,用于在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,所述监测模块401,用于:
通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
可选地,所述执行模块402,包括:
第一处理单元,用于在确定所述目标信号对应的链路性能不能满足要求的情况下,将第一计数器加1;
执行单元,用于若第一计数器的计数值大于或等于最大计数值,执行随机接入流程或波束失败恢复流程。
可选地,所述第一处理单元,用于:
在确定目标信号对应的链路性能不能满足要求的情况下,通过物理层向高层上报第一 信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
高层收到所述第一信息,将第一计数器加1。
可选地,所述装置,还包括:
处理模块,用于若满足第一情况,将所述第一计数器的计数值置零;
其中,所述第一情况包括以下至少一项:
第一定时器超时;
服务小区的高层重配置了第一定时器、第一计数器或第一信号。
可选地,所述执行模块402,包括:
第二处理单元,用于在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器。
可选地,所述第二处理单元,用于:
在确定目标信号对应的链路性能不能满足要求的情况下,通过物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
通过高层收到所述第一信息,启动或重启第一定时器。
可选地,所述装置,还包括:
确定模块,用于若满足第二情况,确定目标信号对应的链路性能不能满足要求;
其中,所述第二情况包括以下至少一项:
第一信号对应的感知链路性能不满足第一条件;
第一信号对应的感知链路性能不满足第一条件、且第一信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件或第一信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件、且第二信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件或第二信号对应的通信链路性能不满足第二条件。
可选地,所述执行模块402用于实现以下至少一项:
若服务小区为特殊小区或者服务小区发生了通信波束失败,执行随机接入流程;
若服务小区为辅小区或服务小区没有发生通信波束失败,执行波束失败恢复流程。
可选地,在所述执行模块402执行随机接入流程或波束失败恢复流程之前,还包括以下一项:
第一获取模块,用于通过物理层测量第一目标信号集,获取能够满足第一条件的至少一个第一目标信号,并将所述至少一个第一目标信号的索引发送给高层;
第二获取模块,用于通过物理层测量第二目标信号集,获取至少一个第二目标信号,将所述至少一个第二目标信号的索引发送给高层,所述第二目标信号对应的感知链路性能 满足第一条件和/或所述第二目标信号对应的通信链路性能满足第二条件;
第三获取模块,用于通过物理层测量第三目标信号集和第四目标信号集,获取至少一个第三目标信号以及至少一个第四目标信号,将所述至少一个第三目标信号的索引和所述至少一个第四目标信号的索引发送给高层,所述第三目标信号对应的感知链路性能满足第一条件,所述第四目标信号对应的通信链路性能满足第二条件。
可选地,所述执行模块402执行随机接入流程时,包括:
选择单元,用于通过高层在特定信号中选择满足预设门限的信号对应的物理随机接入信道PRACH参数;
第一发送单元,用于根据所述PRACH参数向网络侧设备发送前导码;
监听单元,用于在第一时间窗口监听网络侧设备的应答信息;
其中,所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号;
所述PRACH参数包括如下至少一项:
PRACH的时域资源、PRACH的频域资源、PRACH的前导码序列参数。
可选地,在所述监听单元在第一时间窗口监听网络侧设备的应答信息之后,还包括以下一项:
第一确定单元,用于若所述终端接收到所述应答信息,则确定链路恢复成功;
第二确定单元,用于若所述终端在前导码的发送次数达到最大发送次数的情况下未收到所述应答信息,则确定链路恢复失败;
第二发送单元,用于若所述终端接收到所述应答信息,向网络侧设备发送波束失败原因和/或满足预设门限的信号的标识信息。
可选地,所述装置,还包括:
触发单元,用于在所述链路恢复失败的情况下,所述终端触发RRC连接重建过程或基于网络侧设备触发的切换流程进行小区切换。
可选地,所述执行模402块执行波束失败恢复流程时,包括:
第三发送单元,用于向网络侧设备发送波束失败恢复信息;
其中,所述波束失败恢复信息包括以下至少一项:
发生波束失败的小区的标识信息;
发生波束失败的小区对应的特定信号的标识信息;
发生波束失败的小区对应的特定信号对应的感知链路性能;
所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号。
可选地,所述第一条件包括以下至少一项:
至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
至少一个第一信号的感知信噪比SNR满足第二门限;
至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
至少检测到Y个感知目标;
基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
感知目标的雷达截面面积RCS满足第一预设条件;
感知目标的谱信息满足第二预设条件;
感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
其中,Y为正整数。
可选地,所述感知链路性能包括以下至少一项:
感知目标关联信号分量的功率值;
感知SNR;
感知SINR;
感知目标是否存在;
感知目标存在的目标个数;
感知目标的RCS信息;
感知目标的谱信息;
至少一个感知目标的时延;
至少一个感知目标的距离;
至少一个感知目标的多普勒;
至少一个感知目标的速度;
至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例提供的检测装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的波束恢复装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其 他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的波束恢复装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述处理器用于通过对目标信号进行测量,获取所述目标信号对应的链路性能;在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,所述处理器用于:
通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
可选地,所述处理器用于:
在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器,并将第一计数器加1;
若第一计数器的计数值大于或等于最大计数值,执行随机接入流程或波束失败恢复流程。
可选地,所述通信接口用于:
在确定目标信号对应的链路性能不能满足要求的情况下,通过物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
所述处理器用于高层收到所述第一信息,启动或重启第一定时器,并将第一计数器加1。
可选地,所述处理器用于:
若满足第一情况,将所述第一计数器的计数值置零;
其中,所述第一情况包括以下至少一项:
第一定时器超时;
服务小区的高层重配置了第一定时器、第一计数器或第一信号。
可选地,所述处理器用于:
在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器。
可选地,所述通信接口用于:
在确定目标信号对应的链路性能不能满足要求的情况下,通过物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
所述处理器用于:通过高层收到所述第一信息,启动或重启第一定时器。
可选地,所述处理器用于:
若满足第二情况,确定目标信号对应的链路性能不能满足要求;
其中,所述第二情况包括以下至少一项:
第一信号对应的感知链路性能不满足第一条件;
第一信号对应的感知链路性能不满足第一条件、且第一信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件或第一信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件、且第二信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件或第二信号对应的通信链路性能不满足第二条件。
可选地,所述处理器用于实现以下一项:
若服务小区为特殊小区或者服务小区发生了通信波束失败,执行随机接入流程;
若服务小区为辅小区或服务小区没有发生通信波束失败,执行波束失败恢复流程。
可选地,所述通信接口,还用于实现以下一项:
通过物理层测量第一目标信号集,获取能够满足第一条件的至少一个第一目标信号,并将所述至少一个第一目标信号的索引发送给高层;
通过物理层测量第二目标信号集,获取至少一个第二目标信号,将所述至少一个第二目标信号的索引发送给高层,所述第二目标信号对应的感知链路性能满足第一条件和/或所述第二目标信号对应的通信链路性能满足第二条件;
通过物理层测量第三目标信号集和第四目标信号集,获取至少一个第三目标信号以及至少一个第四目标信号,将所述至少一个第三目标信号的索引和所述至少一个第四目标信号的索引发送给高层,所述第三目标信号对应的感知链路性能满足第一条件,所述第四目标信号对应的通信链路性能满足第二条件。
可选地,所述处理器用于:
通过高层在特定信号中选择满足预设门限的信号对应的物理随机接入信道PRACH参数;
所述通信接口,用于:根据所述PRACH参数向网络侧设备发送前导码;
在第一时间窗口监听网络侧设备的应答信息;
其中,所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号;
所述PRACH参数包括如下至少一项:
PRACH的时域资源、PRACH的频域资源、PRACH的前导码序列参数。
可选地,还包括以下一项:
所述处理器用于:若所述终端接收到所述应答信息,则确定链路恢复成功;
所述处理器用于:若所述终端在前导码的发送次数达到最大发送次数的情况下未收到所述应答信息,则确定链路恢复失败;
所述通信接口用于:若所述终端接收到所述应答信息,向网络侧设备发送波束失败原因和/或满足预设门限的信号的标识信息。
可选地,所述处理器还用于:
在所述链路恢复失败的情况下,所述终端触发RRC连接重建过程或基于网络侧设备触发的切换流程进行小区切换。
可选地,所述通信接口,用于:
向网络侧设备发送波束失败恢复信息;
其中,所述波束失败恢复信息包括以下至少一项:
发生波束失败的小区的标识信息;
发生波束失败的小区对应的特定信号的标识信息;
发生波束失败的小区对应的特定信号对应的感知链路性能;
所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号。
可选地,所述第一条件包括以下至少一项:
至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
至少一个第一信号的感知信噪比SNR满足第二门限;
至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
至少检测到Y个感知目标;
基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
感知目标的雷达截面面积RCS满足第一预设条件;
感知目标的谱信息满足第二预设条件;
感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距离、多普勒、速度、角度信息;
其中,Y为正整数。
可选地,所述感知链路性能包括以下至少一项:
感知目标关联信号分量的功率值;
感知SNR;
感知SINR;
感知目标是否存在;
感知目标存在的目标个数;
感知目标的RCS信息;
感知目标的谱信息;
至少一个感知目标的时延;
至少一个感知目标的距离;
至少一个感知目标的多普勒;
至少一个感知目标的速度;
至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501将来自网络侧设备的下行数据接收后,给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需 的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510用于实现:通过对目标信号进行测量,获取所述目标信号对应的链路性能;在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
可选地,所述处理器510用于:
通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
可选地,所述处理器510用于:
在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器,并将第一计数器加1;
若第一计数器的计数值大于或等于最大计数值,执行随机接入流程或波束失败恢复流程。
可选地,所述射频单元501用于:
在确定目标信号对应的链路性能不能满足要求的情况下,通过物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
所述处理器用于高层收到所述第一信息,启动或重启第一定时器,并将第一计数器加1。
可选地,所述处理器510用于:
若满足第一情况,将所述第一计数器的计数值置零;
其中,所述第一情况包括以下至少一项:
第一定时器超时;
服务小区的高层重配置了第一定时器、第一计数器或第一信号。
可选地,所述处理器510用于:
在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器。
可选地,所述射频单元501用于:
在确定目标信号对应的链路性能不能满足要求的情况下,通过物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
所述处理器510用于:通过高层收到所述第一信息,启动或重启第一定时器。
可选地,所述处理器510用于:
若满足第二情况,确定目标信号对应的链路性能不能满足要求;
其中,所述第二情况包括以下至少一项:
第一信号对应的感知链路性能不满足第一条件;
第一信号对应的感知链路性能不满足第一条件、且第一信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件或第一信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件、且第二信号对应的通信链路性能不满足第二条件;
第一信号对应的感知链路性能不满足第一条件或第二信号对应的通信链路性能不满足第二条件。
可选地,所述处理器510用于实现以下一项:
若服务小区为特殊小区或者服务小区发生了通信波束失败,执行随机接入流程;
若服务小区为辅小区或服务小区没有发生通信波束失败,执行波束失败恢复流程。
可选地,所述通信接口,还用于实现以下一项:
通过物理层测量第一目标信号集,获取能够满足第一条件的至少一个第一目标信号,并将所述至少一个第一目标信号的索引发送给高层;
通过物理层测量第二目标信号集,获取至少一个第二目标信号,将所述至少一个第二目标信号的索引发送给高层,所述第二目标信号对应的感知链路性能满足第一条件和/或所述第二目标信号对应的通信链路性能满足第二条件;
通过物理层测量第三目标信号集和第四目标信号集,获取至少一个第三目标信号以及至少一个第四目标信号,将所述至少一个第三目标信号的索引和所述至少一个第四目标信号的索引发送给高层,所述第三目标信号对应的感知链路性能满足第一条件,所述第四目标信号对应的通信链路性能满足第二条件。
可选地,所述处理器510用于:
通过高层在特定信号中选择满足预设门限的信号对应的物理随机接入信道PRACH参数;
所述射频单元501,用于:根据所述PRACH参数向网络侧设备发送前导码;
在第一时间窗口监听网络侧设备的应答信息;
其中,所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号;
所述PRACH参数包括如下至少一项:
PRACH的时域资源、PRACH的频域资源、PRACH的前导码序列参数。
可选地,还包括以下一项:
所述处理器510用于:若所述终端接收到所述应答信息,则确定链路恢复成功;
所述处理器510用于:若所述终端在前导码的发送次数达到最大发送次数的情况下未收到所述应答信息,则确定链路恢复失败;
所述射频单元501用于:若所述终端接收到所述应答信息,向网络侧设备发送波束失败原因和/或满足预设门限的信号的标识信息。
可选地,所述处理器510还用于:
在所述链路恢复失败的情况下,所述终端触发RRC连接重建过程或基于网络侧设备触发的切换流程进行小区切换。
可选地,所述射频单元501,用于:
向网络侧设备发送波束失败恢复信息;
其中,所述波束失败恢复信息包括以下至少一项:
发生波束失败的小区的标识信息;
发生波束失败的小区对应的特定信号的标识信息;
发生波束失败的小区对应的特定信号对应的感知链路性能;
所述特定信号包括以下一项:
至少一个第一目标信号;
至少一个第二目标信号;
至少一个第三目标信号和至少一个第四目标信号。
可选地,所述第一条件包括以下至少一项:
至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
至少一个第一信号的感知信噪比SNR满足第二门限;
至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
至少检测到Y个感知目标;
基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
感知目标的雷达截面面积RCS满足第一预设条件;
感知目标的谱信息满足第二预设条件;
感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距 离、多普勒、速度、角度信息;
其中,Y为正整数。
可选地,所述感知链路性能包括以下至少一项:
感知目标关联信号分量的功率值;
感知SNR;
感知SINR;
感知目标是否存在;
感知目标存在的目标个数;
感知目标的RCS信息;
感知目标的谱信息;
至少一个感知目标的时延;
至少一个感知目标的距离;
至少一个感知目标的多普勒;
至少一个感知目标的速度;
至少一个感知目标的角度信息。
可选地,所述通信链路性能包括以下至少一项:
参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述波束恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述波束恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述波束恢复方 法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种波束恢复系统,包括:终端和网络侧设备,所述终端可用于执行如上所述的波束恢复方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (20)

  1. 一种波束恢复方法,包括:
    终端通过对目标信号进行测量,获取所述目标信号对应的链路性能;
    所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
    其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
    所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
  2. 根据权利要求1所述的方法,其中,所述终端通过对目标信号进行测量,获取所述目标信号对应的链路性能,包括:
    所述终端通过物理层每隔第一周期对至少一个目标信号进行一次测量,获取所述目标信号对应的链路性能。
  3. 根据权利要求1所述的方法,其中,所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程,包括:
    所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,将第一计数器加1;
    当第一计数器的计数值大于或等于最大计数值,执行随机接入流程或波束失败恢复流程。
  4. 根据权利要求3所述的方法,其中,所述在确定目标信号对应的链路性能不能满足要求的情况下,将第一计数器加1,包括:
    在确定目标信号对应的链路性能不能满足要求的情况下,所述终端的物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
    所述终端的高层收到所述第一信息,将第一计数器加1。
  5. 根据权利要求3所述的方法,其中,还包括:
    若满足第一情况,所述终端将所述第一计数器的计数值置零;
    其中,所述第一情况包括以下至少一项:
    第一定时器超时;
    服务小区的高层重配置了第一定时器、第一计数器或第一信号。
  6. 根据权利要求3所述的方法,其中,还包括:
    所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器。
  7. 根据权利要求6所述的方法,其中,所述终端在确定所述目标信号对应的链路性能不能满足要求的情况下,启动或重启第一定时器,包括:
    在确定目标信号对应的链路性能不能满足要求的情况下,所述终端通过物理层向高层上报第一信息,所述第一信息用于指示所述目标信号对应的链路性能不能满足要求;
    所述终端的高层收到所述第一信息,启动或重启第一定时器。
  8. 根据权利要求1所述的方法,其中,还包括:
    若满足第二情况,确定目标信号对应的链路性能不能满足要求;
    其中,所述第二情况包括以下一项:
    第一信号对应的感知链路性能不满足第一条件;
    第一信号对应的感知链路性能不满足第一条件、且第一信号对应的通信链路性能不满足第二条件;
    第一信号对应的感知链路性能不满足第一条件或第一信号对应的通信链路性能不满足第二条件;
    第一信号对应的感知链路性能不满足第一条件、且第二信号对应的通信链路性能不满足第二条件;
    第一信号对应的感知链路性能不满足第一条件或第二信号对应的通信链路性能不满足第二条件。
  9. 根据权利要求1或3所述的方法,其中,所述执行随机接入流程或波束失败恢复流程,包括以下一项:
    若服务小区为特殊小区或者服务小区发生了通信波束失败,执行随机接入流程;
    若服务小区为辅小区或服务小区没有发生通信波束失败,执行波束失败恢复流程。
  10. 根据权利要求1所述的方法,其中,在所述执行随机接入流程或波束失败恢复流程之前,还包括以下一项:
    所述终端的物理层测量第一目标信号集,获取能够满足第一条件的至少一个第一目标信号,并将所述至少一个第一目标信号的索引发送给高层;
    所述终端的物理层测量第二目标信号集,获取至少一个第二目标信号,将所述至少一个第二目标信号的索引发送给高层,所述第二目标信号对应的感知链路性能满足第一条件和/或所述第二目标信号对应的通信链路性能满足第二条件;
    所述终端的物理层测量第三目标信号集和第四目标信号集,获取至少一个第三目标信号以及至少一个第四目标信号,将所述至少一个第三目标信号的索引和所述至少一个第四目标信号的索引发送给高层,所述第三目标信号对应的感知链路性能满足第一条件,所述第四目标信号对应的通信链路性能满足第二条件。
  11. 根据权利要求10所述的方法,其中,所述执行随机接入流程,包括:
    所述终端的高层在特定信号中选择满足预设门限的信号对应的物理随机接入信道PRACH参数;
    所述终端根据所述PRACH参数向网络侧设备发送前导码;
    所述终端在第一时间窗口监听网络侧设备的应答信息;
    其中,所述特定信号包括以下一项:
    至少一个第一目标信号;
    至少一个第二目标信号;
    至少一个第三目标信号和至少一个第四目标信号;
    所述PRACH参数包括如下至少一项:
    PRACH的时域资源、PRACH的频域资源、PRACH的前导码序列参数。
  12. 根据权利要求11所述的方法,其中,在所述在第一时间窗口监听网络侧设备的应答信息之后,还包括以下一项:
    若所述终端接收到所述应答信息,则确定链路恢复成功;
    若所述终端在前导码的发送次数达到最大发送次数的情况下未收到所述应答信息,则确定链路恢复失败;
    若所述终端接收到所述应答信息,向网络侧设备发送波束失败原因和/或满足预设门限的信号的标识信息。
  13. 根据权利要求12所述的方法,其中,还包括:
    在所述链路恢复失败的情况下,所述终端触发RRC连接重建过程或基于网络侧设备触发的切换流程进行小区切换。
  14. 根据权利要求10所述的方法,其中,所述执行波束失败恢复流程,包括:
    向网络侧设备发送波束失败恢复信息;
    其中,所述波束失败恢复信息包括以下至少一项:
    发生波束失败的小区的标识信息;
    发生波束失败的小区对应的特定信号的标识信息;
    发生波束失败的小区对应的特定信号对应的感知链路性能;
    所述特定信号包括以下一项:
    至少一个第一目标信号;
    至少一个第二目标信号;
    至少一个第三目标信号和至少一个第四目标信号。
  15. 根据权利要求8或10所述的方法,其中,所述第一条件包括以下至少一项:
    至少一个第一信号的感知目标关联信号分量的功率值满足第一门限;
    至少一个第一信号的感知信噪比SNR满足第二门限;
    至少一个第一信号的感知信号与干扰加噪声比SINR满足第三门限;
    至少检测到Y个感知目标;
    基于监测所确定的感知目标对应的比特位图与网络侧设备配置的预设比特位图一致;
    感知目标的雷达截面面积RCS满足第一预设条件;
    感知目标的谱信息满足第二预设条件;
    感知目标的第一参量满足第三预设条件,所述第一参量包括以下至少一项:时延、距 离、多普勒、速度、角度信息;
    其中,Y为正整数。
  16. 根据权利要求1所述的方法,其中,所述感知链路性能包括以下至少一项:
    感知目标关联信号分量的功率值;
    感知SNR;
    感知SINR;
    感知目标是否存在;
    感知目标存在的目标个数;
    感知目标的RCS信息;
    感知目标的谱信息;
    至少一个感知目标的时延;
    至少一个感知目标的距离;
    至少一个感知目标的多普勒;
    至少一个感知目标的速度;
    至少一个感知目标的角度信息。
  17. 根据权利要求1所述的方法,其中,所述通信链路性能包括以下至少一项:
    参考信号接收功率RSRP、接收信号强度指示RSSI、预编码矩阵指示PMI、秩指示RI、信道质量指示CQI、SNR、SINR、比特出错概率BER、误块率BLER。
  18. 一种波束恢复装置,应用于终端,包括:
    监测模块,用于通过对目标信号进行测量,获取所述目标信号对应的链路性能;
    执行模块,用于在确定所述目标信号对应的链路性能不能满足要求的情况下,执行随机接入流程或波束失败恢复流程;
    其中,所述目标信号包括:第一信号,或者,所述目标信号包括:第一信号和第二信号;所述第一信号为参考信号或者感知信号;
    所述链路性能包括:感知链路性能,或者,所述链路性能包括:感知链路性能和通信链路性能。
  19. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17任一项所述的波束恢复方法的步骤。
  20. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至17任一项所述的波束恢复方法的步骤。
PCT/CN2023/118442 2022-09-20 2023-09-13 波束恢复方法、装置及终端 WO2024061066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211146430.5A CN117793770A (zh) 2022-09-20 2022-09-20 波束恢复方法、装置及终端
CN202211146430.5 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024061066A1 true WO2024061066A1 (zh) 2024-03-28

Family

ID=90398612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118442 WO2024061066A1 (zh) 2022-09-20 2023-09-13 波束恢复方法、装置及终端

Country Status (2)

Country Link
CN (1) CN117793770A (zh)
WO (1) WO2024061066A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803275A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 一种波束失败恢复请求发送、接收方法、装置及系统
WO2021187938A1 (ko) * 2020-03-20 2021-09-23 삼성전자 주식회사 무선 통신 시스템에서 빔 실패 복구를 알리기 위한 방법 및 장치
CN113766552A (zh) * 2020-06-04 2021-12-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114430311A (zh) * 2020-10-29 2022-05-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114762262A (zh) * 2019-11-25 2022-07-15 三星电子株式会社 用于网络协作通信中波束故障恢复的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803275A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 一种波束失败恢复请求发送、接收方法、装置及系统
CN114762262A (zh) * 2019-11-25 2022-07-15 三星电子株式会社 用于网络协作通信中波束故障恢复的方法和装置
WO2021187938A1 (ko) * 2020-03-20 2021-09-23 삼성전자 주식회사 무선 통신 시스템에서 빔 실패 복구를 알리기 위한 방법 및 장치
CN113766552A (zh) * 2020-06-04 2021-12-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114430311A (zh) * 2020-10-29 2022-05-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117793770A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2023001184A1 (zh) 感知信号测量方法、装置、网络设备及终端
EP4375694A1 (en) Communication sensing method, apparatus and device
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
WO2023045840A1 (zh) 感知定位方法、装置及通信设备
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2024061066A1 (zh) 波束恢复方法、装置及终端
WO2024061067A1 (zh) 链路监测方法、装置及终端
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2024061065A1 (zh) 前导码发送方法、终端及存储介质
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2024169815A1 (zh) 感知信号发送方法、感知信号测量方法、装置及设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2024078378A1 (zh) 多普勒测量方法、装置及通信设备
WO2024131691A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2024208205A1 (zh) 感知能力的上报方法、接收方法、装置、通信设备及介质
WO2024078382A1 (zh) 多普勒测量方法、装置及通信设备
WO2024078379A1 (zh) 多普勒测量方法、装置及通信设备
WO2024099126A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023186123A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2024032460A1 (zh) 数据收集方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867355

Country of ref document: EP

Kind code of ref document: A1