WO2024045331A1 - 一种混凝土结构5d打印方法及打印系统 - Google Patents
一种混凝土结构5d打印方法及打印系统 Download PDFInfo
- Publication number
- WO2024045331A1 WO2024045331A1 PCT/CN2022/130456 CN2022130456W WO2024045331A1 WO 2024045331 A1 WO2024045331 A1 WO 2024045331A1 CN 2022130456 W CN2022130456 W CN 2022130456W WO 2024045331 A1 WO2024045331 A1 WO 2024045331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- printing
- concrete
- concrete structure
- performance
- analysis
- Prior art date
Links
- 238000007639 printing Methods 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004458 analytical method Methods 0.000 claims abstract description 51
- 238000013461 design Methods 0.000 claims abstract description 32
- 230000007613 environmental effect Effects 0.000 claims abstract description 22
- 230000002787 reinforcement Effects 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 21
- 230000003014 reinforcing effect Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000009529 body temperature measurement Methods 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 4
- 238000007405 data analysis Methods 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000010146 3D printing Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000011022 operating instruction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004886 head movement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/02—Conveying or working-up concrete or similar masses able to be heaped or cast
- E04G21/04—Devices for both conveying and distributing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3058—Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0796—Safety measures, i.e. ensuring safe condition in the event of error, e.g. for controlling element
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3089—Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
Definitions
- the invention relates to the field of civil construction, in particular to a 5D printing method and printing system for concrete structures.
- 3D printers based on light-curing technology were officially launched, marking the birth of additive manufacturing technology (commonly known as 3D printing).
- 3D printing This technology combines special materials based on digital model files through software and CNC systems. , stacked layer by layer according to a certain process to create physical items.
- Traditional manufacturing generally follows the processing model of removing, cutting, and then assembling raw materials.
- additive manufacturing is a "bottom-up" manufacturing method through material accumulation, which makes the manufacturing of complex structural parts impossible to achieve with the traditional manufacturing model. as possible.
- the purpose of the present invention is to provide a widely applicable 5D printing method and printing system for concrete structures, which breaks through the concept of three-dimensional space based on the existing 3D coordinate axes and adds "environmental axes" and “environmental axes”.
- "Timeline” introduces measurement and calculation analysis methods to carry out personalized design of concrete structures in 5D space and dynamically control construction parameters to ensure the smooth construction and safe service of concrete structures in complex 5D space.
- the present invention provides a 5D printing method for concrete structures, which includes the following steps:
- the spatial data at least includes the surface morphology of the location.
- the environmental data includes at least temperature and humidity.
- the 5D performance of the concrete structure in space, environment and time includes: the evolution of concrete material properties and structural properties over time obtained by considering the influence of environmental factors.
- reinforcement printing is specifically:
- the concrete proportion and printing parameters for reinforcing printing are obtained according to the design of unsafe parts, and reinforcing printing is performed on the unsafe parts.
- the present invention provides a concrete structure 5D printing system, including:
- Measuring equipment used to collect spatial data and environmental data of the concrete structure to be printed, and to monitor and obtain 5D data of the spatial environment of the completed concrete structure within a period of time when receiving monitoring instructions;
- Computing and analysis equipment used to obtain the 5D performance of the concrete structure to be printed in space, environment and time based on the simulation analysis of the spatial data and environmental data, design and obtain the concrete proportion and printing parameters based on the analysis results, and obtain the concrete proportion and printing parameters according to the measurement equipment
- the monitored 5D data analysis obtains the 5D performance of the currently completed concrete structure in space, environment and time. Based on the 5D performance, it is judged whether the concrete structure is in a safe state. If so, an end printing command is issued. If not, an end printing command is issued. Reinforcement printing instructions for unsafe parts;
- a printing device configured to print the concrete structure according to the concrete proportion and printing parameters, end printing when receiving the end printing instruction, and perform reinforcing printing after receiving the reinforcing printing instruction.
- the measurement device includes a spatial position measurement module, a temperature measurement module and a humidity measurement module.
- the spatial position measurement module includes a camera and a laser scanner.
- computing and analysis equipment includes:
- the concrete material analysis module is used to analyze the evolution process of concrete material properties in the time dimension based on the input data
- the structural mixing analysis module is used to obtain the 5D performance of the concrete structure in space, environment and time based on the input data and the evolution process analysis of the concrete material analysis module;
- the decision-making design module is used to form a personalized design of concrete proportions and printing parameters based on the 5D performance, or to determine whether there are unsafe parts based on the 5D performance. If so, generate a reinforced printed concrete mix for the unsafe parts. Compared with the personalized design of printing parameters, a supplementary printing command is issued. If not, an end printing command is issued.
- the printing device includes a feeding module for receiving concrete proportions, a mechanical movement module for receiving printing parameters, and a pumping and extruding module for transporting prepared concrete.
- the present invention has the following beneficial effects:
- This invention collects four-dimensional data of the space and environment where the concrete structure is to be printed, and analyzes the 5D performance of the concrete structure in space, environment and time, quantitatively and individually designs the concrete structure, and simultaneously monitors the constructed concrete structure cyclically Whether there are dangerous parts breaks through the limitations of traditional three-dimensional physical space.
- the construction process is automatically controlled, the safety status of the structure is judged in real time, and the design and printing plan are dynamically adjusted to ensure that the concrete structure is in complex 5D Smooth construction and safe structural service within broad space and time.
- This invention has the characteristics of wide versatility, high accuracy and high degree of intelligence for the additive construction of concrete structures. It meets the urgent need to reduce the number of people in engineering construction in extremely complex environments and creates good economic and social benefits. .
- Figure 1 is a schematic flow diagram of the present invention
- Figure 2 is a schematic diagram of the measurement equipment of the present invention.
- Figure 3 is a schematic diagram of the calculation and analysis equipment of the present invention.
- Figure 4 is a schematic diagram of the printing device of the present invention.
- the invention provides a 5D printing method for concrete structures, which includes the following steps:
- the 5D performance includes: considering the influence of environmental factors on the evolution of concrete material properties and structural properties over time;
- step 4) Collection and analysis to obtain the 5D performance of the currently completed concrete structure in space, environment and time. Based on the 5D performance, it is judged whether the concrete structure is in a safe state. If so, the printing is ended. If not, the unsafe parts are repaired. For strong printing, step 4) is repeated, where the reinforcing printing specifically includes: obtaining the concrete proportion and printing parameters for reinforcing printing according to the design of the unsafe parts, and performing reinforcing printing on the unsafe parts.
- concrete structures can be designed quantitatively and individually, the safety status of the structure can be determined in real time, and the design and printing plans can be dynamically adjusted to ensure the smooth construction and safe service of the concrete structure in the complex 5D generalized space and time.
- the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
- the above method can be realized through a set of 5D printing system for concrete structures.
- the 5D printing system includes: measuring equipment, used to collect spatial data and environmental data of the concrete structure to be printed, and monitor and obtain the constructed data when receiving monitoring instructions. 5D data of the spatial environment of the completed concrete structure over a period of time; calculation and analysis equipment, used to simulate and analyze the spatial data and environmental data to obtain the 5D performance of the concrete structure to be printed in space, environment and time, and design according to the analysis results Obtain the concrete proportion and printing parameters, and obtain the 5D performance of the currently constructed concrete structure in space, environment and time based on the 5D data analysis monitored by the measurement equipment, and determine whether the concrete structure is in a safe state based on the 5D performance.
- the printing device is used to print the concrete structure according to the concrete proportion and printing parameters, after receiving the end The printing ends when the printing instruction is given, and the supplementary printing is performed after receiving the supplementary printing instruction.
- the measurement device may include a spatial position measurement module, a temperature measurement module, and a humidity measurement module.
- the computing and analysis equipment includes: a concrete material analysis module, used to analyze the evolution process of concrete material properties in the time dimension according to the input data; a structural mixing analysis module, used to analyze the evolution process of the concrete material properties in the time dimension according to the input data and the concrete
- the evolution process analysis of the material analysis module obtains the 5D performance of the concrete structure in space, environment and time; the decision-making design module is used to form a personalized design of concrete proportions and printing parameters based on the 5D performance, or based on the 5D performance Determine whether there are unsafe parts. If so, generate a personalized design of reinforced printing concrete proportions and printing parameters for the unsafe parts, and issue a reinforcing printing command. If not, issue an end printing command.
- the printing device includes a feeding module for receiving concrete proportions, a mechanical movement module for receiving printing parameters, and a pumping and extrusion module for transporting prepared concrete.
- the 5D printing method of concrete structure in this embodiment includes the following steps:
- the measurement equipment E1 used includes a spatial position measurement module M1, a temperature measurement module M2 and a humidity measurement module M3, as shown in Figure 2.
- the spatial position measurement module M1 uses photogrammetry and laser scanning technology to measure The surface shape of the surrounding rock has an accuracy of 0.01mm;
- the temperature measurement module M2 uses infrared measurement technology to measure the ambient temperature in the tunnel, with a temperature measurement range of 0-100°C and an accuracy of 0.1°C;
- the humidity measurement module M3 uses a non-contact, capacitance-based relative Humidity measurement sensor, measures the ambient humidity in the tunnel, with a measurement range of 0% RH to 100% RH and an accuracy of 2%.
- the measurement data of the device is transmitted to the computing and analysis device E2 through wireless propagation technology.
- the calculation and analysis equipment E2 takes the 4D data transmitted from the measurement equipment E1 as input.
- the calculation and analysis equipment E2 includes a concrete material analysis module M4, a structural mixing analysis module M5 and a decision-making design module M6, as shown in Figure 3 , first analyze the evolution process of concrete material performance in the time dimension on the concrete material analysis module M4, and then provide the analysis results to the structural mixing analysis module M5 to analyze the performance of the printed lining structure in 5D time space. Finally, based on the analysis results A personalized design of concrete proportions and printing parameters is formed on the decision-making design module M6. The design parameters are sent to the printing device E3 in the form of operating instructions.
- the printing device E3 includes a feeding module M7, a mechanical movement module M8 and a pumping and extruding module M9.
- the concrete proportioning instructions received by the printing device E3 are handed over to the feeding module M7 for processing.
- Printable concrete is prepared according to the designed ratio; the printing parameter instructions are processed by the mechanical motion module M8, and the printing position, thickness, and print head movement speed are controlled according to the design; the prepared concrete is pumped and extruded by the module M9 and applied to the surface of the surrounding rock .
- the calculation and analysis equipment E2 takes the 5D monitoring data transmitted from the measurement equipment E1 as input, analyzes the concrete material properties on the concrete material analysis module M4, and analyzes the stress of the printed lining structure on the structural mixing analysis module M5. Performance, finally, the safe parts and dangerous parts are judged on the decision-making design module M6, and the reinforced printing concrete ratio and printing parameter design are carried out for the dangerous parts, and the results are transmitted to the printing device E3 again in the form of operating instructions.
- the concrete proportion instructions received by the printing device E3 are processed by the feeding module M7, and printable concrete is prepared according to the designed proportion; the printing parameter instructions are processed by the mechanical motion module M8, and the printing position and thickness are controlled according to the design. , the moving speed of the print head; the prepared concrete is pumped through the extrusion module M9 and applied to the parts that need to be reinforced for printing.
Landscapes
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computing Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Ink Jet (AREA)
Abstract
本发明涉及一种混凝土结构5D打印方法及打印系统,所述方法包括以下步骤:1)获取拟打印混凝土结构所处的空间数据和环境数据;2)分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数;3)以所述混凝土配比和打印参数生成打印指令,建造混凝土结构;4)采集分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土结构是否处于安全状态,若是,则结束打印,若否,则针对不安全部位进行补强打印,重复执行步骤4)。与现有技术相比,本发明能够在5D空间内对混凝土结构进行个性化设计、动态控制建造参数,保证混凝土结构顺利建造且结构安全服役。
Description
本发明涉及土木建筑领域,尤其是一种混凝土结构5D打印方法及打印系统。
20世纪90年代,基于光固化技术的3D打印机正式问世,标志着增材制造技术(俗称3D打印)的诞生,这项技术融合了以数字模型文件为基础,通过软件与数控系统将专用的材料,按照一定工艺逐层堆积,制造出实体物品。传统制造一般遵循对原材料去除、切削,然后组装的加工模式,然而增材制造是一种“自下而上”通过材料累加的制造方法,这使得传统制造模式无法实现的复杂结构件的制造变为可能。
增材制造的先进理念也吸引了土木建筑领域的广泛关注。近几年已有大量3D打印混凝土建筑结构的成功案例,实践证明这项技术大大节约了建造时间和建造成本,相应地也会使用更少的能源,排放更少的二氧化碳,更为重要的是显著节省了人力,符合智能建造发展方向。但目前混凝土结构3D打印建造技术应用局限于施工环境较好的地上小型建筑、桥梁、雕塑、景观物体等。然而,极端复杂环境下的工程建设对减人少人的智能建造技术需求更加旺盛。典型的极端复杂环境包括高岩温、高严寒、高水压、高海拔等,打印混凝土的性能在复杂环境下随时间的变化差异较大,造成打印材料和设备不相容、打印结构性能差、质量难以保证等问题,成为限制现有混凝土结构3D打印技术应用于复杂环境工程建设的关键瓶颈。
发明内容
针对上述的混凝土结构3D打印技术缺陷,本发明的目的是提供一种广泛适用的混凝土结构5D打印方法及打印系统,在现有3D坐标轴基础上突破三维空间概念,增加“环境轴”和“时间轴”,引入量测、计算分析手段,对5D空间内的混凝土结构进行个性化设计、动态控制建造参数,保证混凝土结构在复 杂5D空间内的顺利建造和结构安全服役。
本发明的目的可以通过以下技术方案来实现:
一个方面,本发明提供一种混凝土结构5D打印方法,包括以下步骤:
1)获取拟打印混凝土结构所处的空间数据和环境数据;
2)根据所述空间数据和环境数据模拟分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数;
3)以所述混凝土配比和打印参数生成打印指令,建造混凝土结构;
4)采集分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土结构是否处于安全状态,若是,则结束打印,若否,则针对不安全部位进行补强打印,重复执行步骤4)。
进一步地,所述空间数据至少包括所处位置表面形态。
进一步地,所述环境数据至少包括温度和湿度。
进一步地,所述混凝土结构在空间、环境和时间上的5D性能包括:考虑环境因素影响获得的混凝土材料性能和结构性能随时间演化的情况。
进一步地,所述补强打印具体为:
根据不安全部位设计获得用于补强打印的混凝土配比和打印参数,在所述不安全部位进行补强打印。
另一方面,本发明提供一种混凝土结构5D打印系统,包括:
测量设备,用于采集拟打印混凝土结构所处的空间数据和环境数据,并在获得监测指令时监测获得已建造完成的混凝土结构在一段时间内的空间环境5D数据;
计算分析设备,用于根据所述空间数据和环境数据模拟分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数,并根据所述测量设备监测的所述5D数据分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土结构是否处于安全状态,若是,则发出结束打印指令,若否,则发出针对不安全部位的补强打印指令;
打印设备,用于根据所述混凝土配比和打印参数进行混凝土结构的打印,在接收到所述结束打印指令时结束打印,在接收到所述补强打印指令进行补强 打印。
进一步地,所述测量设备包括空间位置测量模块、温度测量模块和湿度测量模块。
进一步地,所述空间位置测量模块包括摄影机和激光扫描仪。
进一步地,所述计算分析设备包括:
混凝土材料分析模块,用于根据输入的数据分析混凝土材料性能在时间维度上的演化过程;
结构混合分析模块,用于根据输入的数据及所述混凝土材料分析模块的演化过程分析获得混凝土结构在空间、环境和时间上的5D性能;
决策设计模块,用于根据所述5D性能形成混凝土配比和打印参数的个性化设计,或根据所述5D性能判断是否存在不安全部位,若是,则针对不安全部位生成补强打印的混凝土配比和打印参数的个性化设计,发出补强打印指令,若否,则发出结束打印指令。
进一步地,所述打印设备包括用于接收混凝土配比的供料模块、用于接收打印参数的机械运动模块和用于输送配制好的混凝土的泵送挤压模块。
与现有技术相比,本发明具有以下有益效果:
1、本发明采集拟打印混凝土结构所处的空间和环境的四维数据,并分析混凝土结构在空间、环境和时间上的5D性能,定量、个性化设计混凝土结构,同时循环监测所建造的混凝土结构是否存在危险部位,突破了传统三维物理空间限制,在空间、环境、时间构成的五维时空里,自动控制建造过程,实时判别结构安全状态,动态调整设计和打印方案,保证混凝土结构在复杂5D广义时空内的顺利建造和结构安全服役。
2、本发明对混凝土结构增材建造,具有通用性广、准确性高、智能化程度高的特点,满足极端复杂环境下工程建设减人少人的迫切需求,创造良好的经济效益和社会效益。
图1为本发明的流程示意图;
图2为本发明量测设备的示意图;
图3为本发明计算分析设备的示意图;
图4为本发明打印设备的示意图。
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明提供一种混凝土结构5D打印方法,包括以下步骤:
1)获取拟打印混凝土结构所处的空间数据和环境数据,其中,空间数据至少包括所处位置表面形态,环境数据至少包括温度和湿度;
2)根据所述空间数据和环境数据模拟分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数,其中,混凝土结构在空间、环境和时间上的5D性能包括:考虑环境因素影响获得的混凝土材料性能和结构性能随时间演化的情况;
3)以所述混凝土配比和打印参数生成打印指令,建造混凝土结构;
4)采集分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土结构是否处于安全状态,若是,则结束打印,若否,则针对不安全部位进行补强打印,重复执行步骤4),其中,补强打印具体为:根据不安全部位设计获得用于补强打印的混凝土配比和打印参数,在所述不安全部位进行补强打印。
通过上述方法,能够定量、个性化设计混凝土结构,实时判别结构安全状态,动态调整设计和打印方案,保证混凝土结构在复杂5D广义时空内的顺利建造和结构安全服役。
上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包 括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,上述方法可以通过一套混凝土结构5D打印系统实现,该5D打印系统包括:测量设备,用于采集拟打印混凝土结构所处的空间数据和环境数据,并在获得监测指令时监测获得已建造完成的混凝土结构在一段时间内的空间环境5D数据;计算分析设备,用于根据所述空间数据和环境数据模拟分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数,并根据所述测量设备监测的所述5D数据分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土结构是否处于安全状态,若是,则发出结束打印指令,若否,则发出针对不安全部位的补强打印指令;打印设备,用于根据所述混凝土配比和打印参数进行混凝土结构的打印,在接收到所述结束打印指令时结束打印,在接收到所述补强打印指令进行补强打印。
在具体的实施方式中,测量设备可以包括空间位置测量模块、温度测量模块和湿度测量模块。
在具体的实施方式中,计算分析设备包括:混凝土材料分析模块,用于根据输入的数据分析混凝土材料性能在时间维度上的演化过程;结构混合分析模块,用于根据输入的数据及所述混凝土材料分析模块的演化过程分析获得混凝土结构在空间、环境和时间上的5D性能;决策设计模块,用于根据所述5D性能形成混凝土配比和打印参数的个性化设计,或根据所述5D性能判断是否存在不安全部位,若是,则针对不安全部位生成补强打印的混凝土配比和打印参数的个性化设计,发出补强打印指令,若否,则发出结束打印指令。
在具体的实施方式中,打印设备包括用于接收混凝土配比的供料模块、用于接收打印参数的机械运动模块和用于输送配制好的混凝土的泵送挤压模块。
实施例
根据本发明在高岩温隧道衬砌结构建造中的实施例,对上述方法的各个步骤进行详细说明。
如图1所示,本实施例的混凝土结构5D打印方法包括以下步骤:
S100:获取空间和环境构成的4D数据
在该步骤中,采用的量测设备E1包含空间位置测量模块M1、温度测量模块M2和湿度测量模块M3,如图2所示,其中,空间位置测量模块M1采用摄影测量和激光扫描技术,测量围岩表面形态,精度达到0.01mm;温度测量模块M2采用红外测量技术,测量隧道内环境温度,温度测量范围0-100℃,精度0.1℃;湿度测量模块M3采用非接触式、基于电容的相对湿度测量传感器,测量隧道内环境湿度,测量范围0%RH至100%RH,精度2%。该设备的量测数据通过无线传播技术传递到计算分析设备E2。
S200:考虑5D空间里性能演化规律,设计混凝土配比和打印参数
在该步骤中,在计算分析设备E2以量测设备E1传输来的4D数据为输入,计算分析设备E2包括混凝土材料分析模块M4、结构混合分析模块M5和决策设计模块M6,如图3所示,首先在混凝土材料分析模块M4上分析混凝土材料性能在时间维度上的演化过程,然将分析结果提供给结构混合分析模块M5,分析打印衬砌结构在5D时空间内的性能,最后,基于分析结果在决策设计模块M6上形成混凝土配比和打印参数的个性化设计。设计参数以操作指令的方式发送给打印设备E3。
S300:实施混凝土结构5D打印建造
在该步骤中,打印设备E3包括供料模块M7、机械运动模块M8和泵送挤压模块M9,如图4所示,打印设备E3接收到的混凝土配比指令交由供料模块M7处理,按照设计配比配制可打印混凝土;打印参数指令交由机械运动模块M8处理,按照设计控制打印位置、厚度、打印头移动速度;配制好的混凝土经泵送挤压模块M9,涂抹至围岩表面。
S400:监测5D数据
在该步骤中,继续调用量测设备E1的空间位置测量模块M1、温度测量模块M2和湿度测量模块M3,监测衬砌结构变形、温度、湿度随时间的变化数据,实时传输给计算分析设备E2。
S500:分析结构的安全状态,设计补强打印混凝土配比和打印参数
在该步骤中,在计算分析设备E2以量测设备E1传输来的5D监测数据为输入,在混凝土材料分析模块M4上分析混凝土材料性能,在结构混合分析模 块M5,分析打印衬砌结构的受力性能,最后,在决策设计模块M6上判断安全部位和危险部位,针对危险部位进行补强打印混凝土配比和打印参数设计,并将结果以操作指令方式再次传递给打印设备E3。
S600:在危险的部位进行补强打印
在该步骤中,打印设备E3接收到的混凝土配比指令交由供料模块M7处理,按照设计配比配制可打印混凝土;打印参数指令交由机械运动模块M8处理,按照设计控制打印位置、厚度、打印头移动速度;配制好的混凝土经泵送挤压模块M9,涂抹至需补强打印的部位。
重复步骤S400、S500、S600直至衬砌结构上不存在危险部位。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
Claims (10)
- 一种混凝土结构5D打印方法,其特征在于,包括以下步骤:1)获取拟打印混凝土结构所处的空间数据和环境数据;2)根据所述空间数据和环境数据模拟分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数;3)以所述混凝土配比和打印参数生成打印指令,建造混凝土结构;4)采集分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土结构是否处于安全状态,若是,则结束打印,若否,则针对不安全部位进行补强打印,重复执行步骤4)。
- 根据权利要求1所述的混凝土结构5D打印方法,其特征在于,所述空间数据至少包括所处位置表面形态。
- 根据权利要求1所述的混凝土结构5D打印方法,其特征在于,所述环境数据至少包括温度和湿度。
- 根据权利要求1所述的混凝土结构5D打印方法,其特征在于,所述混凝土结构在空间、环境和时间上的5D性能包括:考虑环境因素影响获得的混凝土材料性能和结构性能随时间演化的情况。
- 根据权利要求1所述的混凝土结构5D打印方法,其特征在于,所述补强打印具体为:根据不安全部位设计获得用于补强打印的混凝土配比和打印参数,在所述不安全部位进行补强打印。
- 一种混凝土结构5D打印系统,其特征在于,包括:测量设备,用于采集拟打印混凝土结构所处的空间数据和环境数据,并在获得监测指令时监测获得已建造完成的混凝土结构在一段时间内的空间环境5D数据;计算分析设备,用于根据所述空间数据和环境数据模拟分析获得拟打印混凝土结构在空间、环境和时间上的5D性能,根据分析结果设计获得混凝土配比和打印参数,并根据所述测量设备监测的所述5D数据分析获得当前建造完成的混凝土结构在空间、环境和时间上的5D性能,基于该5D性能判断混凝土 结构是否处于安全状态,若是,则发出结束打印指令,若否,则发出针对不安全部位的补强打印指令;打印设备,用于根据所述混凝土配比和打印参数进行混凝土结构的打印,在接收到所述结束打印指令时结束打印,在接收到所述补强打印指令进行补强打印。
- 根据权利要求6所述的混凝土结构5D打印系统,其特征在于,所述测量设备包括空间位置测量模块、温度测量模块和湿度测量模块。
- 根据权利要求7所述的混凝土结构5D打印系统,其特征在于,所述空间位置测量模块包括摄影机和激光扫描仪。
- 根据权利要求6所述的混凝土结构5D打印系统,其特征在于,所述计算分析设备包括:混凝土材料分析模块,用于根据输入的数据分析混凝土材料性能在时间维度上的演化过程;结构混合分析模块,用于根据输入的数据及所述混凝土材料分析模块的演化过程分析获得混凝土结构在空间、环境和时间上的5D性能;决策设计模块,用于根据所述5D性能形成混凝土配比和打印参数的个性化设计,或根据所述5D性能判断是否存在不安全部位,若是,则针对不安全部位生成补强打印的混凝土配比和打印参数的个性化设计,发出补强打印指令,若否,则发出结束打印指令。
- 根据权利要求6或8所述的混凝土结构5D打印系统,其特征在于,所述打印设备包括用于接收混凝土配比的供料模块、用于接收打印参数的机械运动模块和用于输送配制好的混凝土的泵送挤压模块。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22927598.7A EP4357555A4 (en) | 2022-08-30 | 2022-11-08 | METHOD AND SYSTEM FOR 5D PRINTING A CONCRETE STRUCTURE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211050885.7A CN115306157B (zh) | 2022-08-30 | 2022-08-30 | 一种混凝土结构5d打印方法及打印系统 |
CN202211050885.7 | 2022-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024045331A1 true WO2024045331A1 (zh) | 2024-03-07 |
Family
ID=83864286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/130456 WO2024045331A1 (zh) | 2022-08-30 | 2022-11-08 | 一种混凝土结构5d打印方法及打印系统 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4357555A4 (zh) |
CN (1) | CN115306157B (zh) |
WO (1) | WO2024045331A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116945318A (zh) * | 2023-06-27 | 2023-10-27 | 深圳大学 | 智能化的混凝土3d打印方法、装置及打印设备 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117648876B (zh) * | 2024-01-30 | 2024-04-12 | 中南大学 | 基于性能与balance-cgan的tpms梯度分级结构逆设计制造方法 |
CN118288385A (zh) * | 2024-06-04 | 2024-07-05 | 深圳大学 | 一种混凝土打印方法、系统、终端设备及计算机可读存储介质 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005291743A (ja) * | 2004-03-31 | 2005-10-20 | Takahide Sakagami | 補強板によって補強されたコンクリートの欠陥検出方法および装置 |
CN105408092A (zh) * | 2013-07-18 | 2016-03-16 | 三菱电机株式会社 | 使用增材制造法和具有平移旋转轴线的材料挤压机打印3d物体的设备及方法 |
CN109057078A (zh) * | 2018-09-06 | 2018-12-21 | 江苏建筑职业技术学院 | 一种3d打印建筑保温隔声墙体的方法 |
CN109367002A (zh) * | 2018-10-18 | 2019-02-22 | 西安理工大学 | 基于螺旋线的6d打印系统 |
CN109553364A (zh) * | 2019-01-21 | 2019-04-02 | 河北工业大学 | 基于3d与喷射打印的双层电磁吸波混凝土及其制备方法 |
US20190248932A1 (en) * | 2018-02-14 | 2019-08-15 | Mighty Buildings, Inc. | Composition of 3D printing construction material |
CN110682400A (zh) * | 2019-11-04 | 2020-01-14 | 清华大学 | 一种基于3d打印平台的数字孪生结构试验系统和方法 |
CN110954442A (zh) * | 2019-11-12 | 2020-04-03 | 同济大学 | 一种水泥基材料3d打印动态特性在线测试方法 |
CN112759314A (zh) * | 2021-04-07 | 2021-05-07 | 西南交通大学 | 一种玄武岩纤维复合筋混凝土智能3d打印装置 |
CN113063930A (zh) * | 2021-03-22 | 2021-07-02 | 上海建工建材科技集团股份有限公司 | 一种基于神经网络的3d打印混凝土力学性能在线监测方法 |
CN113561490A (zh) * | 2021-07-01 | 2021-10-29 | 浙江大学 | 一种4d打印折叠空间结构智能建造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103967276B (zh) * | 2014-04-29 | 2016-03-02 | 同济大学 | 基于3d打印技术的建筑工程施工装置 |
CN208586502U (zh) * | 2017-12-29 | 2019-03-08 | 上海建工集团股份有限公司 | 3d打印桥梁 |
US11511493B2 (en) * | 2019-11-15 | 2022-11-29 | The Regents Of The University Of California | Method for automated quality monitoring and control of cementitious/concrete 3D printing/additive manufacturing |
CN111267226A (zh) * | 2020-03-24 | 2020-06-12 | 江苏迈博智能科技有限公司 | 一种3d打印用建筑材料水泥制备装置及其使用方法 |
CN113944334A (zh) * | 2021-10-20 | 2022-01-18 | 上海应用技术大学 | 建筑用3d打印监测系统 |
CN114136820B (zh) * | 2021-11-29 | 2024-02-02 | 东南大学 | 一种原位表征3d打印混凝土各向异性的测试方法 |
CN114442968B (zh) * | 2022-02-10 | 2023-09-22 | 中交第一公路勘察设计研究院有限公司 | 一种3d打印工程参数匹配方法 |
-
2022
- 2022-08-30 CN CN202211050885.7A patent/CN115306157B/zh active Active
- 2022-11-08 WO PCT/CN2022/130456 patent/WO2024045331A1/zh unknown
- 2022-11-08 EP EP22927598.7A patent/EP4357555A4/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005291743A (ja) * | 2004-03-31 | 2005-10-20 | Takahide Sakagami | 補強板によって補強されたコンクリートの欠陥検出方法および装置 |
CN105408092A (zh) * | 2013-07-18 | 2016-03-16 | 三菱电机株式会社 | 使用增材制造法和具有平移旋转轴线的材料挤压机打印3d物体的设备及方法 |
US20190248932A1 (en) * | 2018-02-14 | 2019-08-15 | Mighty Buildings, Inc. | Composition of 3D printing construction material |
CN109057078A (zh) * | 2018-09-06 | 2018-12-21 | 江苏建筑职业技术学院 | 一种3d打印建筑保温隔声墙体的方法 |
CN109367002A (zh) * | 2018-10-18 | 2019-02-22 | 西安理工大学 | 基于螺旋线的6d打印系统 |
CN109553364A (zh) * | 2019-01-21 | 2019-04-02 | 河北工业大学 | 基于3d与喷射打印的双层电磁吸波混凝土及其制备方法 |
CN110682400A (zh) * | 2019-11-04 | 2020-01-14 | 清华大学 | 一种基于3d打印平台的数字孪生结构试验系统和方法 |
CN110954442A (zh) * | 2019-11-12 | 2020-04-03 | 同济大学 | 一种水泥基材料3d打印动态特性在线测试方法 |
CN113063930A (zh) * | 2021-03-22 | 2021-07-02 | 上海建工建材科技集团股份有限公司 | 一种基于神经网络的3d打印混凝土力学性能在线监测方法 |
CN112759314A (zh) * | 2021-04-07 | 2021-05-07 | 西南交通大学 | 一种玄武岩纤维复合筋混凝土智能3d打印装置 |
CN113561490A (zh) * | 2021-07-01 | 2021-10-29 | 浙江大学 | 一种4d打印折叠空间结构智能建造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4357555A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116945318A (zh) * | 2023-06-27 | 2023-10-27 | 深圳大学 | 智能化的混凝土3d打印方法、装置及打印设备 |
CN116945318B (zh) * | 2023-06-27 | 2024-09-27 | 深圳大学 | 智能化的混凝土3d打印方法、装置及打印设备 |
Also Published As
Publication number | Publication date |
---|---|
EP4357555A4 (en) | 2024-10-02 |
CN115306157B (zh) | 2024-01-26 |
CN115306157A (zh) | 2022-11-08 |
EP4357555A1 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024045331A1 (zh) | 一种混凝土结构5d打印方法及打印系统 | |
Shen et al. | Research on large-scale additive manufacturing based on multi-robot collaboration technology | |
CN105930647B (zh) | 一种考虑多失效模式的梁结构非概率可靠性求解方法 | |
Battaglia et al. | Sub-additive 3D printing of optimized double curved concrete lattice structures | |
CN108182318A (zh) | 一种基于ug nx系统的塑件几何可模塑性分析的方法 | |
CN114719962B (zh) | 基于机器学习的机械振动数字孪生模型构建方法 | |
Ren et al. | Improved modeling of kinematics-induced geometric variations in extrusion-based additive manufacturing through between-printer transfer learning | |
Mondal et al. | Artificial intelligence in civil infrastructure health monitoring—Historical perspectives, current trends, and future visions | |
Bello et al. | A deep learning approach to concrete water-cement ratio prediction | |
Yao et al. | Multi-volume variable scale bitmap data object classification algorithm architectural concrete color difference detection | |
Wei et al. | Coupling physics-informed neural networks and constitutive relation error concept to solve a parameter identification problem | |
Du et al. | A BIM-enabled robot control system for automated integration between rebar reinforcement and 3D concrete printing | |
CN112100706A (zh) | 一种基于catia软件的简支梁钢筋快速建模方法及系统 | |
Baghdadi et al. | Parametric design of in-plane concrete dry joints by FE method and Fuzzy logic toward utilising additive manufacturing technique | |
CN111622105B (zh) | 剪力键模具的制作方法及桥面板铺装结构 | |
Zhao et al. | Artificial intelligence powered real-time quality monitoring for additive manufacturing in construction | |
Yang et al. | Adaptive deposit compensation of construction materials in a 3d printing process | |
CN114594760A (zh) | 一种基于动态事件触发的多无人船航向一致性控制方法 | |
Kostavelis et al. | RoBétArmé Project: Human-robot collaborative construction system for shotcrete digitization and automation through advanced perception, cognition, mobility and additive manufacturing skills | |
Wang et al. | Small-sample learning of 3D printed thin-wall structures using printing primitives | |
Barros et al. | A multidisciplinary engineering-based approach for tunnelling strengthening with a new fibre reinforced shotcrete technology | |
Liang et al. | Applications of 4D Point Clouds (4DPC) in Digital Twin Construction: A SWOT Analysis | |
Li et al. | Frontiers in construction 3D printing: self-monitoring, multi-robot, drone-assisted processes | |
FI20225596A1 (en) | Method and system for three-dimensional printing of an object | |
Lu et al. | Game-Theoretic Lane Change Decision-Making Method Considering Traffic Trend |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022927598 Country of ref document: EP Effective date: 20230831 |