Nothing Special   »   [go: up one dir, main page]

WO2024044931A1 - Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint - Google Patents

Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint Download PDF

Info

Publication number
WO2024044931A1
WO2024044931A1 PCT/CN2022/115711 CN2022115711W WO2024044931A1 WO 2024044931 A1 WO2024044931 A1 WO 2024044931A1 CN 2022115711 W CN2022115711 W CN 2022115711W WO 2024044931 A1 WO2024044931 A1 WO 2024044931A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
aqueous
mass
resin dispersion
Prior art date
Application number
PCT/CN2022/115711
Other languages
French (fr)
Inventor
Hiroshi Matsuzawa
Shiliang Wang
Qiong Wu
Original Assignee
Dic Corporation
Shiliang Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation, Shiliang Wang filed Critical Dic Corporation
Priority to PCT/CN2022/115711 priority Critical patent/WO2024044931A1/en
Publication of WO2024044931A1 publication Critical patent/WO2024044931A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6254Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/6266Polymers of amides or imides from alpha-beta ethylenically unsaturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to an aqueous resin dispersion, an aqueous paint, and an article coated with the aqueous paint.
  • Patent Literature 1 an aqueous resin dispersion obtained by copolymerizing a urethane acrylate oligomer and another acrylic monomer has been proposed (see, for example, Patent Literature 1) .
  • the material has problems such as workability because it is a two-pack curing type that uses an amino resin as a curing agent.
  • a problem to be solved by the present invention is to provide an aqueous resin dispersion that provides a cured coating film with excellent appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance, an aqueous paint containing the aqueous dispersion, and an article coated with the paint.
  • the inventors of the present invention have made intensive studies to solve the above problem. As a result, the inventors have found that an aqueous resin dispersion obtained by a radical polymerization of a specific (meth) acrylate in resin particles dispersed in an aqueous medium can solve the above problem, and have completed the present invention.
  • the present invention relates to an aqueous resin dispersion obtained by a radical polymerization of (meth) acrylate (X) in resin particles dispersed in an aqueous medium, wherein the (meth) acrylate (X) is a product of a reaction of an acrylic polymer (A) having a hydroxyl group and a carboxyl group with a urethane (meth) acrylate (B) having an isocyanate group, an aqueous paint containing the aqueous dispersion, and an article coated with the aqueous paint.
  • the aqueous resin dispersion of the present invention is useful for water-based paints because it provides a cured coating film with excellent appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance, and the aqueous paint can be applied to various articles. Therefore, the aqueous resin dispersion of the present invention can be suitably used as an aqueous paint to coat articles, for example, bodies of home appliances such as refrigerators, televisions, and air conditioners, housings for information terminals such as mobile phones, smartphones, and personal computers, automotive interior parts, cosmetic containers, and highly designed packaging materials.
  • bodies of home appliances such as refrigerators, televisions, and air conditioners
  • housings for information terminals such as mobile phones, smartphones, and personal computers, automotive interior parts, cosmetic containers, and highly designed packaging materials.
  • the aqueous resin dispersion of the present invention is an aqueous resin dispersion obtained by a radical polymerization of (meth) acrylate (X) in resin particles dispersed in an aqueous medium, wherein the (meth) acrylate (X) is a product of a reaction of an acrylic polymer (A) having a hydroxyl group and a carboxyl group with a urethane (meth) acrylate (B) having an isocyanate group.
  • the acrylic polymer (A) is obtained by copolymerizing an unsaturated monomer (a1) having a hydroxyl group, an unsaturated monomer (a2) having a carboxyl group, and another unsaturated monomer (a3) .
  • Examples of the unsaturated monomer (a1) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and lactone-modified (meth) acrylate having a terminal hydroxyl group.
  • Examples of the unsaturated monomer (a2) having a carboxyl group include unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid, ⁇ -carboxyethyl (meth) acrylate, ⁇ -carboxy-polycaprolactone mono (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, and 2- (meth) acryloyloxyethylhexahydrophthalic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and half esters of these unsaturated dicarboxylic acids.
  • (meth) acrylic acid is preferable because of its excellent dispersibility in water.
  • These unsaturated monomers (a2) may be used alone or in combination of two or more.
  • examples of the unsaturated monomer (a3) include aromatic vinyl monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (me
  • a (meth) acrylate having an oxyethylene chain such as methoxypolyethylene glycol (meth) acrylate and ethoxypolyethylene glycol (meth) acrylate is preferable from the viewpoint of water dispersibility
  • a (meth) acryl compound having a carbonyl group such as diacetone (meth) acrylamide is preferable because it can form a crosslink with a dihydrazide compound.
  • These unsaturated monomers (a3) may be used alone or in combination of two or more.
  • the amount of the acrylic monomer (a1) used is preferably 3 to 50%by mass, more preferably 5 to 30%by mass, in the monomer components that are the raw materials of the acrylic polymer (A) .
  • the amount of the acrylic monomer (a2) used is preferably 1 to 20%by mass, more preferably 3 to 10%by mass, in the monomer components that are the raw materials of the acrylic polymer (A) .
  • the amount of the acrylic monomer (a3) used is the remainder obtained by subtracting the use ratio of the unsaturated monomers (a1) and (a2) from a total 100%by mass of the monomer components that are the raw materials of the acrylic polymer (A) .
  • Examples of a method of producing the acrylic polymer (A) include a method of copolymerizing the acrylic monomer (a1) and the unsaturated monomer (a2) in an organic solvent using a polymerization initiator.
  • the organic solvent used herein is preferably an alcohol compound, a ketone compound, an ester compound, an ether compound, an amide compound, a sulfoxide compound, or a hydrocarbon compound, and specific examples thereof include methanol, ethanol, propanol, n-butanol, iso-butanol, tert-butanol, 3-methoxybutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glyco
  • dialkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and dipropylene glycol dimethyl ether are more preferable from the viewpoint of improving the storage stability of the obtained aqueous resin dispersion.
  • polymerization initiator examples include ketone peroxide compounds such as cyclohexanone peroxide, 3, 3, 5-trimethylcyclohexanone peroxide, and methylcyclohexanone peroxide; peroxyketal compounds such as 1, 1-bis (tert-butylperoxy) -3, 3, 5-trimethylcyclohexane, 1, 1-bis (tert-butylperoxy) cyclohexane, n-butyl-4, 4-bis (tert-butylperoxy) valerate, 2, 2-bis (4, 4-ditert-butylperoxycyclohexyl) propane, 2, 2-bis (4, 4-ditert-amylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-hexylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-octylperoxycyclohexyl) propane, and 2, 2-bis (4, 4-dicumylperoxycyclohex
  • a chain transfer agent such as lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid and octylthioglycolic acid may be used where necessary.
  • the hydroxyl value of the acrylic polymer (A) is preferably 10 to 200 mgKOH/g, more preferably 20 to 100 mgKOH/g, from the viewpoint of the reaction point with the urethane (meth) acrylate (B) .
  • the acid value of the acrylic polymer (A) is preferably 10 to 150 mgKOH/g, more preferably 20 to 80 mgKOH/g, from the viewpoint of water dispersibility.
  • the hydroxyl value and acid value in the present invention are values calculated from the raw materials used.
  • the weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 3,000 to 200,000, more preferably 5,000 to 150,000, from the viewpoint of further improving the water dispersibility and storage stability of the obtained aqueous resin dispersion.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value based on gel permeation chromatography (hereinafter, abbreviated as “GPC” ) measurement.
  • the urethane (meth) acrylate (B) having an isocyanate group has an isocyanate group and a (meth) acryloyl group.
  • the urethane (meth) acrylate (B) is obtained, for example, by a urethane reaction between a polyisocyanate (b1) and an (meth) acrylate (b2) having a hydroxyl group.
  • polyisocyanate (b1) examples include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, and m-phenylenebis (dimethylmethylene) diisocyanate; and aliphatic or alicyclic diisocyanate compounds such as hexamethylene diisocyanate, lysine diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, 2-methyl-1, 3-diisocyanatocyclohexane, 2-methyl-1, 5-diisocyanatocyclohexane, 4, 4'-dicyclohexylmethane diisocyanate, and isophorone diisocyanate.
  • aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, and m-pheny
  • polyisocyanate (b1) a prepolymer having an isocyanate group obtained by subjecting the above diisocyanate compound to an addition reaction with a polyhydric alcohol; a compound having an isocyanurate ring obtained by cyclotrimerizing the above diisocyanate compound; a polyisocyanate compound having a urea bond or a burette bond obtained by reacting the above diisocyanate compound with water; homopolymers of acrylic monomers having an isocyanate group such as 2-isocyanatoethyl (meth) acrylate, 3-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and (meth) acryloyl isocyanate; and a copolymer having an isocyanate group obtained by copolymerizing the acrylic monomer having an isocyanate group with other monomers such as an acrylic monomer, a vinyl ester compound, a vinyl ether compound, an aromatic vinyl monomer, and flu
  • the above polyisocyanate (b1) may be used alone or in combination of two or more.
  • Examples of the (meth) acrylate (b2) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and lactone-modified (meth) acrylate having a terminal hydroxyl group.
  • the urethane reaction can be carried out without a catalyst, and it can also be carried out in the presence of a urethane-forming catalyst in order to promote the progress of the reaction.
  • a urethane-forming catalyst examples include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphine compounds such as triphenylphosphine and triethylphosphine; organotin compounds such as dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin diacetate and tin octoate; and organometallic compounds such as zinc octoate.
  • the content of the isocyanate group in the urethane (meth) acrylate (B) is preferably 3 to 20%by mass from the viewpoint of the reaction point with the acrylic polymer (A) .
  • the urethane (meth) acrylate (B) preferably has a weight average molecular weight of 200 to 2,000.
  • the (meth) acrylate (X) is obtained by a urethane reaction between the acrylic polymer (A) having a hydroxyl group and the urethane (meth) acrylate (B) having an isocyanate group.
  • the mass ratio (A/B) of the acrylic polymer (A) and the urethane (meth) acrylate (B) is preferably in the range of 0.25 to 4, more preferably in the range of 0.5 to 3, from the viewpoint of improving the water dispersibility and improving the storage stability of the resulting aqueous resin dispersion.
  • the molar ratio (A/B) of the hydroxyl group of the acrylic polymer (A) and the isocyanate group of the urethane (meth) acrylate (B) is preferably in the range of 0.8 to 1.2, more preferably in the range of 0.9 to 1.1, from the viewpoint of improving the water dispersibility and improving the storage stability of the resulting aqueous resin dispersion.
  • the acid value of the (meth) acrylate (X) is preferably 10 to 60 mgKOH/g from the viewpoint of further improving the water dispersibility.
  • the (meth) acrylate (X) is a product of an reaction of the acrylic polymer (A) having a hydroxyl group with the urethane (meth) acrylate (B) having an isocyanate group.
  • a polymer polyol (P) it is preferable to further use as a reaction raw material.
  • polymer polyol (P) examples include polycarbonate diol, polyester diol, and polyether diol. These polymer polyols (P) may be used alone or in combination of two or more.
  • the number average molecular weight of the polymer polyol (P) is preferably 500 to 3000, more preferably 500 to 2000, from the viewpoint of water dispersibility.
  • the amount of the polymer polyol (P) used is preferably 5 to 20%by mass, more preferably 5 to 10%by mass, based on the raw material of the (meth) acrylate (X) from the viewpoint of further improving the chemical resistance and coating film hardness.
  • Examples of a reaction method of the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polymer polyol (P) include a method of reacting the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polymer polyol (P) at the same time, and a method of, when obtaining the urethane (meth) acrylate (B) , reacting the polyisocyanate (b1) and the polymer polyol (P) and then reacting the (meth) acrylate (b2) having a hydroxyl group.
  • Preferable examples of a method of dispersing the (meth) acrylate (X) as resin particles in an aqueous medium include a method of neutralizing the carboxyl group of the (meth) acrylate (X) with a basic compound and then mixing with the aqueous medium.
  • Examples of the basic compound include organic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, butylamine, dibutylamine, tributylamine, N, N-dimethylethanolamine, 2-aminoethanol and other monoalkanolamines, diethanolamine, diisopropanolamine, and dibutanolamine; inorganic basic compounds such as ammonia, sodium hydroxide, and potassium hydroxide; and quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetra-n-butylammonium hydroxide, and trimethylbenzylammonium hydroxide.
  • organic amines and ammonia aqueous ammonia may be used
  • These basic compounds may be used alone or in combination of two or more.
  • the amount of the basic compound used is preferably such that the neutralization rate of the carboxyl group of the (meth) acrylate (X) is in the range of 50 to 100%from the viewpoint of further improving the storage stability of the aqueous resin dispersion.
  • aqueous medium examples include water, hydrophilic organic solvents, and mixtures thereof.
  • hydrophilic organic solvent a water-miscible organic solvent that is miscible with water without separating is preferable, and among these solvents, an organic solvent having a solubility in water (number of grams of organic solvent dissolved in 100 g of water) of 3 g or more at 25°C is preferable.
  • water-miscible organic solvents examples include alcohol solvents such as methanol, ethanol, propanol, butanol, 3-methoxybutanol, and 3-methyl-3-methoxybutanol; ketone solvents such as acetone and methyl ethyl ketone; and glycol ether-based solvents such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether,
  • aqueous resin dispersion of the present invention is obtained by radical polymerization of the (meth) acrylate (X) in resin particles dispersed in an aqueous medium, it may also be obtained by copolymerization of other (meth) acrylic monomers (Y) .
  • the unsaturated monomers (a1) to (a3) described above as raw materials for the acrylic polymer (A) may be used.
  • a water-soluble polymerization initiator such as ammonium persulfate, potassium persulfate and sodium persulfate in the radical polymerization of the (meth) acrylate (X) .
  • the aqueous resin dispersion of the present invention may contain a dihydrazide compound because it can form higher density crosslinks.
  • the aqueous paint of the present invention contains the aforementioned aqueous resin dispersion.
  • additives such as antistatic agents, antifoaming agents, viscosity modifiers, light stabilizers, weather stabilizers, heat stabilizers, UV absorbers, antioxidants, leveling agents, and pigment dispersants may be used.
  • the aqueous paint of the present invention can be used as a paint to coat various articles, and examples of the articles that can be coated with the aqueous paint of the present invention include bodies of home appliances such as refrigerators, televisions, and air conditioners, housings for information terminals such as mobile phones, smartphones, and personal computers, automotive interior parts, cosmetic containers, and highly designed packaging materials.
  • Examples of the method of applying the aqueous paint of the present invention include methods using a gravure coater, a roll coater, a comma coater, a knife coater, an air knife coater, a curtain coater, a kiss coater, a shower coater, a whirler coater, a spin coater, dipping, screen printing, spraying, an applicator, a bar coater or a brush.
  • examples of a method of forming a coating film after coating include a method of drying in the range of room temperature to 120°C.
  • Measurement device High-speed GPC device ( “HLC-8220 GPC” manufactured by Tosoh Corporation)
  • TKgel G4000 (7.8 mm I.D. ⁇ 30 cm) ⁇ 1
  • TKgel G2000 (7.8 mm I.D. ⁇ 30 cm) ⁇ 1
  • RI differential refractometer
  • Injection volume 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 4 mg/mL)
  • Standard sample A calibration curve was created using the following monodisperse polystyrenes.
  • a reactor equipped with a stirring, cooling and heating devices was loaded with 283 parts by mass of diethylene glycol dimethyl ether (hereinafter abbreviated as “MDM” ) , and the mixture was heated to 135°C. Then, a monomer mixture of 70 parts by mass of methyl methacrylate (hereinafter abbreviated as “MMA” ) , 160 parts by mass of n-butyl methacrylate (hereinafter abbreviated as “nBMA” ) , 70 parts by mass of 2-hydroxyethyl methacrylate (hereinafter abbreviated as “HEMA” ) and 60 parts by mass of styrene (hereinafter abbreviated as “St” ) , and a solution prepared by dissolving 20 parts by mass of tert-butylperoxy-2-ethylhexanate (hereinafter abbreviated as “P-O” ) in 20 parts by mass of MDM were added dropwise over 2 hours at two lines at
  • nBA n-butyl acrylate
  • HEMA n-butyl acrylate
  • AA acrylic acid
  • DAAM diacetone acrylamide
  • the solution had a solid content of 70.0%by mass, a hydroxyl value of 52, an acid value of 39, and a weight average molecular weight of 33,000.
  • a reactor equipped with a stirring, cooling and heating devices was loaded with 222 parts by mass of isophorone diisocyanate, 0.07 parts by mass of 4-methoxyphenol (MEHQ) , and dibutyltin dilaurate, and stirring was started. Then, the reaction temperature was maintained at 25 to 35°C, and 139 parts by mass of HEMAwas added dropwise over 2 hours. Thirty minutes after the completion of dropping, the reaction temperature was raised to 40°Cand maintained until the isocyanate group content became less than 11%to obtain urethane (meth) acrylate (B-1) having an isocyanate group and a (meth) acryloyl group. The isocyanate group content of the urethane (meth) acrylate (B-1) was 10.8%.
  • a reactor equipped with a stirring, cooling and heating devices was loaded with 890 parts by mass of a solution of the acrylic polymer (A-1) obtained in Synthesis Example 1, 200 parts by mass of the urethane (meth) acrylate (B-1) obtained in Synthesis Example 2, and 0.1 parts by mass of MEHQ, and the mixture was heated to 80°C. The temperature was maintained for about 3 hours until the isocyanate group content became less than 0.2%to obtain (meth) acrylate (X-1) . Then, the mixture was cooled to 60°C, and 80 parts by mass of MMA and 28 parts by mass oftriethylamine (TEA) were added.
  • TSA triethylamine
  • the mixture was cooled to 60°C, and an aqueous solution prepared by dissolving 12 parts by mass of adipic acid hydrazide (ADH) in 50 parts by mass of deionized water was added over 30 minutes, followed by cooling to obtain an aqueous resin dispersion (1) .
  • the aqueous resin dispersion (1) had a resin solid content of 40.9%by mass.
  • a reactor equipped with a stirring, cooling and heating devices was loaded with 860 parts by mass of a solution of the acrylic polymer (A-1) obtained in Synthesis Example 1, 150 parts by mass of polycarbonate diol ( “DURANOL T5651” manufactured by Asahi Kasei Corporation) , 280 parts by mass of the urethane (meth) acrylate (B-1) , and 0.1 parts by mass of MEHQ, and the mixture was heated to 80°C. The temperature was maintained for about 4 hours until the isocyanate group content became less than 0.2%to obtain (meth) acrylate (X-2) . Then, the mixture was cooled to 60°C, and 27 parts by mass of TEA were added.
  • aqueous dispersion (2) After holding for about 30 minutes, 1200 parts by mass of deionized water was added with stirring to obtain an aqueous dispersion containing the (meth) acrylate (X-2) in the particles. Then, the mixture was heated to 60°C, an aqueous solution prepared by dissolving 0.5 parts by mass of ammonium persulfate in 28 parts by mass of deionized water was added, and the mixture was heated to 80°C and held for 1 hour. Thereafter, the mixture was cooled to 60°C, and an aqueous solution prepared by dissolving 12 parts by mass of ADH in 70 parts by mass of deionized water was added over 30 minutes, followed by cooling to obtain an aqueous resin dispersion (2) .
  • the aqueous resin dispersion (2) had a resin solid content of 41.1%by mass.
  • a reactor equipped with a stirring, cooling and heating devices was loaded with 283 parts by mass of MDM, and the mixture was heated to 135°C. Then, a monomer mixture of 70 parts by mass of MMA, 160 parts by mass of nBMA, 70 parts by mass of HEMA and 60 parts by mass of St, and a solution prepared by dissolving 20 parts by mass of P-O in 20 parts by mass of MDM were added dropwise over 2 hours at two lines at a constant speed.
  • a monomer mixture of 210 parts by mass of MMA, 73 parts by mass of nBA, 27 parts by mass of HEMA, 40 parts by mass of St, 40 parts by mass of AA, 10 parts by mass of methoxypolyethylene glycol methacrylate and 40 parts by mass of DAAM, and a solution prepared by dissolving 10 parts by mass of P-O in 10 parts by mass of MDM were added dropwise over 2 hours and 30 minutes at two lines at a constant speed. After maintaining the temperature at 135°C for 60 minutes, the mixture was cooled to 60°C and 36 parts by mass of TEAwas added.
  • aqueous dispersion After holding for about 30 minutes, 810 parts by mass ofdeionized water was added with stirring to obtain an aqueous dispersion of an acrylic polymer having a carboxyl group and a hydroxyl group. Thereafter, the mixture was cooled to 60°C, and an aqueous solution prepared by dissolving 16 parts by mass of ADH in 50 parts by mass of deionized water was added over 30 minutes. The mixture was cooled to obtain an aqueous resin dispersion (R1) .
  • the aqueous resin dispersion (R1) had a resin solid content of 40.0%by mass.
  • the aqueous resin dispersion obtained above was spray-coated onto an ABS (acrylonitrile-butadiene-styrene copolymer) plate, a PC (polycarbonate) plate, and an aluminum plate such that the film thickness after drying was 20 ⁇ m. After pre-drying in a dryer at 80°C for 30 minutes, the coatings were cured at 25°C for 1 week to obtain cured coating films.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • the coating film appearance of the cured coating film prepared on the ABS plate was visually observed, and the coating film appearance was evaluated according to the following criteria.
  • the hardness of the hardest pencil that did not cause scars was measured as the pencil hardness in accordance with JIS K 5600-5-4: 1999 using a pencil specified in JIS S 6006: 2007.
  • Measurement was conducted based on the JIS K-5600 cross-cut test method. On the cured coating film prepared on the PC plate, cuts with a width of 1 mm were made with a cutter such that the number of grids was 100, and cellophane tape was attached so as to cover all the grids and was quickly peeled off. Judgment was made by counting the number of grids remaining attached. Evaluation criteria are as follows.
  • the peeling area is 1%or more and less than 65%of the total grid area.
  • the peeling area is 65%or more of the total grid area.
  • the coating film obtained from the aqueous resin dispersion of the present invention is excellent in appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance.
  • Comparative Example 1 which is an example in which the urethane (meth) acrylate (B) , which is an essential raw material of the present invention, was not used, the hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance are insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided is an aqueous resin dispersion obtained by a radical polymerization of (meth) acrylate (X) in resin particles dispersed in an aqueous medium, wherein the (meth) acrylate (X) is a product of a reaction of an acrylic polymer (A) having a hydroxyl group and a carboxyl group with a urethane (meth) acrylate (B) having an isocyanate group. The aqueous resin dispersion is useful for aqueous paints because it provides a cured coating film with excellent appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance, and the aqueous paint can be applied to various articles.

Description

AQUEOUS RESIN DISPERSION, AQUEOUS PAINT, AND ARTICLE COATED WITH THE AQUEOUS PAINT TECHNICAL FIELD
The present invention relates to an aqueous resin dispersion, an aqueous paint, and an article coated with the aqueous paint.
BACKGROUND ART
Against the backdrop of VOC regulations, the use of aqueous paints is progressing in various applications. However, automobile interior paints face a high hurdle to be aqueous due to high performance requirements such as coating film appearance, adhesion, and chemical resistance, and solvent-based paints are the mainstream.
Under such circumstances, an aqueous resin dispersion obtained by copolymerizing a urethane acrylate oligomer and another acrylic monomer has been proposed (see, for example, Patent Literature 1) . However, the material has problems such as workability because it is a two-pack curing type that uses an amino resin as a curing agent.
Therefore, there has been a demand for a one-pack aqueous material that provides a cured coating film excellent in various physical properties such as appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance.
CITATION LIST
PATENT LITERATURE
PTL 1: CN105601832B
SUMMARY OF INVENTION
TECHNICAL PROBLEM
A problem to be solved by the present invention is to provide an aqueous resin dispersion that provides a cured coating film with excellent appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance, an aqueous paint containing  the aqueous dispersion, and an article coated with the paint.
SOLUTION TO PROBLEM
The inventors of the present invention have made intensive studies to solve the above problem. As a result, the inventors have found that an aqueous resin dispersion obtained by a radical polymerization of a specific (meth) acrylate in resin particles dispersed in an aqueous medium can solve the above problem, and have completed the present invention.
That is, the present invention relates to an aqueous resin dispersion obtained by a radical polymerization of (meth) acrylate (X) in resin particles dispersed in an aqueous medium, wherein the (meth) acrylate (X) is a product of a reaction of an acrylic polymer (A) having a hydroxyl group and a carboxyl group with a urethane (meth) acrylate (B) having an isocyanate group, an aqueous paint containing the aqueous dispersion, and an article coated with the aqueous paint.
ADVANTAGEOUS EFFECTS OF INVENTION
The aqueous resin dispersion of the present invention is useful for water-based paints because it provides a cured coating film with excellent appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance, and the aqueous paint can be applied to various articles. Therefore, the aqueous resin dispersion of the present invention can be suitably used as an aqueous paint to coat articles, for example, bodies of home appliances such as refrigerators, televisions, and air conditioners, housings for information terminals such as mobile phones, smartphones, and personal computers, automotive interior parts, cosmetic containers, and highly designed packaging materials.
DESCRIPTION OF EMBODIMENTS
The aqueous resin dispersion of the present invention is an aqueous resin dispersion obtained by a radical polymerization of (meth) acrylate (X) in resin particles dispersed in an aqueous medium, wherein the (meth) acrylate (X) is a product of a reaction of an acrylic polymer (A) having a hydroxyl group and a carboxyl group with a urethane (meth) acrylate (B) having an isocyanate group.
First, the acrylic polymer (A) will be described. The acrylic polymer (A) is  obtained by copolymerizing an unsaturated monomer (a1) having a hydroxyl group, an unsaturated monomer (a2) having a carboxyl group, and another unsaturated monomer (a3) .
Examples of the unsaturated monomer (a1) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and lactone-modified (meth) acrylate having a terminal hydroxyl group. These unsaturated monomers (a1) may be used alone or in combination of two or more.
Examples of the unsaturated monomer (a2) having a carboxyl group include unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid, β-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone mono (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, and 2- (meth) acryloyloxyethylhexahydrophthalic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and half esters of these unsaturated dicarboxylic acids. Among these, (meth) acrylic acid is preferable because of its excellent dispersibility in water. These unsaturated monomers (a2) may be used alone or in combination of two or more.
Further, examples of the unsaturated monomer (a3) include aromatic vinyl monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, methoxypolyethyleneglycol (meth) acrylate, ethoxypolyethyleneglycol (meth) acrylate, phenoxypolyethyleneglycol (meth) acrylate, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, diacetone  (meth) acrylamide, (meth) acrylonitrile, 3- (meth) acryloylpropyltrimethoxysilane, N, N-dimethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, styrene, α-methylstyrene, p-methylstyrene, and p-methoxystyrene. Among these, a (meth) acrylate having an oxyethylene chain such as methoxypolyethylene glycol (meth) acrylate and ethoxypolyethylene glycol (meth) acrylate is preferable from the viewpoint of water dispersibility, and a (meth) acryl compound having a carbonyl group such as diacetone (meth) acrylamide is preferable because it can form a crosslink with a dihydrazide compound. These unsaturated monomers (a3) may be used alone or in combination of two or more.
From the viewpoint of the reaction point with the urethane acrylate (B) , the amount of the acrylic monomer (a1) used is preferably 3 to 50%by mass, more preferably 5 to 30%by mass, in the monomer components that are the raw materials of the acrylic polymer (A) .
From the viewpoint of water dispersibility, the amount of the acrylic monomer (a2) used is preferably 1 to 20%by mass, more preferably 3 to 10%by mass, in the monomer components that are the raw materials of the acrylic polymer (A) .
The amount of the acrylic monomer (a3) used is the remainder obtained by subtracting the use ratio of the unsaturated monomers (a1) and (a2) from a total 100%by mass of the monomer components that are the raw materials of the acrylic polymer (A) .
Examples of a method of producing the acrylic polymer (A) include a method of copolymerizing the acrylic monomer (a1) and the unsaturated monomer (a2) in an organic solvent using a polymerization initiator. The organic solvent used herein is preferably an alcohol compound, a ketone compound, an ester compound, an ether compound, an amide compound, a sulfoxide compound, or a hydrocarbon compound, and specific examples thereof include methanol, ethanol, propanol, n-butanol, iso-butanol, tert-butanol, 3-methoxybutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether,  propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, tetrahydrofuran, dioxane, toluene, and xylene. Among these, dialkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and dipropylene glycol dimethyl ether are more preferable from the viewpoint of improving the storage stability of the obtained aqueous resin dispersion.
Examples of the polymerization initiator include ketone peroxide compounds such as cyclohexanone peroxide, 3, 3, 5-trimethylcyclohexanone peroxide, and methylcyclohexanone peroxide; peroxyketal compounds such as 1, 1-bis (tert-butylperoxy) -3, 3, 5-trimethylcyclohexane, 1, 1-bis (tert-butylperoxy) cyclohexane, n-butyl-4, 4-bis (tert-butylperoxy) valerate, 2, 2-bis (4, 4-ditert-butylperoxycyclohexyl) propane, 2, 2-bis (4, 4-ditert-amylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-hexylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-octylperoxycyclohexyl) propane, and 2, 2-bis (4, 4-dicumylperoxycyclohexyl) propane; hydroperoxides such as cumene hydroperoxide and 2, 5-dimethylhexane-2, 5-dihydroperoxide; dialkyl peroxide compounds such as 1, 3-bis (tert-butylperoxy-m-isopropyl) benzene, 2, 5-dimethyl-2, 5-di (tert-butylperoxy) hexane, diisopropylbenzene peroxide, and tert-butylcumyl peroxide; diacyl peroxide compounds such as decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, and 2, 4-dichlorobenzoyl peroxide; peroxycarbonate compounds such as bis (tert-butylcyclohexyl) peroxydicarbonate; organic peroxides of peroxyester compounds and the like such as tert-butylperoxy-2-ethylhexanoate, tert-butylperoxybenzoate, and 2, 5-dimethyl-2, 5-di (benzoylperoxy) hexane, and azo compounds such as 2, 2'-azobisisobutyronitrile and 1, 1’-azobis (cyclohexane-1-carbonitrile) .
Further, when producing the acrylic polymer (A) , a chain transfer agent such as lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid and octylthioglycolic acid may be used where necessary.
The hydroxyl value of the acrylic polymer (A) is preferably 10 to 200 mgKOH/g, more preferably 20 to 100 mgKOH/g, from the viewpoint of the reaction point with the  urethane (meth) acrylate (B) .
The acid value of the acrylic polymer (A) is preferably 10 to 150 mgKOH/g, more preferably 20 to 80 mgKOH/g, from the viewpoint of water dispersibility.
The hydroxyl value and acid value in the present invention are values calculated from the raw materials used.
The weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 3,000 to 200,000, more preferably 5,000 to 150,000, from the viewpoint of further improving the water dispersibility and storage stability of the obtained aqueous resin dispersion. Here, the weight average molecular weight (Mw) is a polystyrene-equivalent value based on gel permeation chromatography (hereinafter, abbreviated as “GPC” ) measurement.
The urethane (meth) acrylate (B) having an isocyanate group has an isocyanate group and a (meth) acryloyl group.
The urethane (meth) acrylate (B) is obtained, for example, by a urethane reaction between a polyisocyanate (b1) and an (meth) acrylate (b2) having a hydroxyl group.
Examples of the polyisocyanate (b1) include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, and m-phenylenebis (dimethylmethylene) diisocyanate; and aliphatic or alicyclic diisocyanate compounds such as hexamethylene diisocyanate, lysine diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, 2-methyl-1, 3-diisocyanatocyclohexane, 2-methyl-1, 5-diisocyanatocyclohexane, 4, 4'-dicyclohexylmethane diisocyanate, and isophorone diisocyanate. Among these, aliphatic or alicyclic diisocyanate compounds are preferable because they are excellent in yellowing resistance.
Further, for the polyisocyanate (b1) , a prepolymer having an isocyanate group obtained by subjecting the above diisocyanate compound to an addition reaction with a polyhydric alcohol; a compound having an isocyanurate ring obtained by cyclotrimerizing the  above diisocyanate compound; a polyisocyanate compound having a urea bond or a burette bond obtained by reacting the above diisocyanate compound with water; homopolymers of acrylic monomers having an isocyanate group such as 2-isocyanatoethyl (meth) acrylate, 3-isopropenyl-α, α-dimethylbenzyl isocyanate, and (meth) acryloyl isocyanate; and a copolymer having an isocyanate group obtained by copolymerizing the acrylic monomer having an isocyanate group with other monomers such as an acrylic monomer, a vinyl ester compound, a vinyl ether compound, an aromatic vinyl monomer, and fluoroolefin may also be used.
The above polyisocyanate (b1) may be used alone or in combination of two or more.
Examples of the (meth) acrylate (b2) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and lactone-modified (meth) acrylate having a terminal hydroxyl group. These (meth) acrylate (b2) having a hydroxyl group may be used alone or in combination of two or more.
In the present invention, the urethane reaction can be carried out without a catalyst, and it can also be carried out in the presence of a urethane-forming catalyst in order to promote the progress of the reaction. Examples of the urethane-forming catalysts include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphine compounds such as triphenylphosphine and triethylphosphine; organotin compounds such as dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin diacetate and tin octoate; and organometallic compounds such as zinc octoate.
The content of the isocyanate group in the urethane (meth) acrylate (B) is preferably  3 to 20%by mass from the viewpoint of the reaction point with the acrylic polymer (A) .
The urethane (meth) acrylate (B) preferably has a weight average molecular weight of 200 to 2,000.
The (meth) acrylate (X) is obtained by a urethane reaction between the acrylic polymer (A) having a hydroxyl group and the urethane (meth) acrylate (B) having an isocyanate group.
The mass ratio (A/B) of the acrylic polymer (A) and the urethane (meth) acrylate (B) is preferably in the range of 0.25 to 4, more preferably in the range of 0.5 to 3, from the viewpoint of improving the water dispersibility and improving the storage stability of the resulting aqueous resin dispersion.
The molar ratio (A/B) of the hydroxyl group of the acrylic polymer (A) and the isocyanate group of the urethane (meth) acrylate (B) is preferably in the range of 0.8 to 1.2, more preferably in the range of 0.9 to 1.1, from the viewpoint of improving the water dispersibility and improving the storage stability of the resulting aqueous resin dispersion.
The acid value of the (meth) acrylate (X) is preferably 10 to 60 mgKOH/g from the viewpoint of further improving the water dispersibility.
The (meth) acrylate (X) is a product of an reaction of the acrylic polymer (A) having a hydroxyl group with the urethane (meth) acrylate (B) having an isocyanate group. However, it is preferable to further use a polymer polyol (P) as a reaction raw material.
Examples of the polymer polyol (P) include polycarbonate diol, polyester diol, and polyether diol. These polymer polyols (P) may be used alone or in combination of two or more.
The number average molecular weight of the polymer polyol (P) is preferably 500 to 3000, more preferably 500 to 2000, from the viewpoint of water dispersibility.
The amount of the polymer polyol (P) used is preferably 5 to 20%by mass, more preferably 5 to 10%by mass, based on the raw material of the (meth) acrylate (X) from the viewpoint of further improving the chemical resistance and coating film hardness.
Examples of a reaction method of the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polymer polyol (P) include a method of reacting the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polymer polyol (P) at the same time, and a method of, when obtaining the urethane (meth) acrylate (B) , reacting the polyisocyanate (b1) and the polymer polyol (P) and then reacting the (meth) acrylate (b2) having a hydroxyl group.
Preferable examples of a method of dispersing the (meth) acrylate (X) as resin particles in an aqueous medium include a method of neutralizing the carboxyl group of the (meth) acrylate (X) with a basic compound and then mixing with the aqueous medium.
Examples of the basic compound include organic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, butylamine, dibutylamine, tributylamine, N, N-dimethylethanolamine, 2-aminoethanol and other monoalkanolamines, diethanolamine, diisopropanolamine, and dibutanolamine; inorganic basic compounds such as ammonia, sodium hydroxide, and potassium hydroxide; and quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetra-n-butylammonium hydroxide, and trimethylbenzylammonium hydroxide. Among these, it is preferable to use organic amines and ammonia (aqueous ammonia may be used) . These basic compounds may be used alone or in combination of two or more.
In addition, the amount of the basic compound used is preferably such that the neutralization rate of the carboxyl group of the (meth) acrylate (X) is in the range of 50 to 100%from the viewpoint of further improving the storage stability of the aqueous resin dispersion.
Examples of the aqueous medium include water, hydrophilic organic solvents, and  mixtures thereof. For the hydrophilic organic solvent, a water-miscible organic solvent that is miscible with water without separating is preferable, and among these solvents, an organic solvent having a solubility in water (number of grams of organic solvent dissolved in 100 g of water) of 3 g or more at 25℃ is preferable. Examples of these water-miscible organic solvents include alcohol solvents such as methanol, ethanol, propanol, butanol, 3-methoxybutanol, and 3-methyl-3-methoxybutanol; ketone solvents such as acetone and methyl ethyl ketone; and glycol ether-based solvents such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol dimethyl ether. These water-miscible organic solvents may be used alone or in combination of two or more.
Although the aqueous resin dispersion of the present invention is obtained by radical polymerization of the (meth) acrylate (X) in resin particles dispersed in an aqueous medium, it may also be obtained by copolymerization of other (meth) acrylic monomers (Y) .
For the (meth) acrylic monomer (Y) , the unsaturated monomers (a1) to (a3) described above as raw materials for the acrylic polymer (A) may be used.
When copolymerizing the (meth) acrylic monomer (Y) , it is preferable to mix the (meth) acrylate (X) and the (meth) acrylic monomer (Y) before dispersing the (meth) acrylate (X) in the aqueous medium.
Moreover, it is preferable to use a water-soluble polymerization initiator such as ammonium persulfate, potassium persulfate and sodium persulfate in the radical polymerization of the (meth) acrylate (X) .
The aqueous resin dispersion of the present invention may contain a dihydrazide compound because it can form higher density crosslinks.
The aqueous paint of the present invention contains the aforementioned aqueous resin dispersion. However, as other compounds, additives such as antistatic agents, antifoaming agents, viscosity modifiers, light stabilizers, weather stabilizers, heat stabilizers, UV absorbers, antioxidants, leveling agents, and pigment dispersants may be used.
In addition, the aqueous paint of the present invention can be used as a paint to coat various articles, and examples of the articles that can be coated with the aqueous paint of the present invention include bodies of home appliances such as refrigerators, televisions, and air conditioners, housings for information terminals such as mobile phones, smartphones, and personal computers, automotive interior parts, cosmetic containers, and highly designed packaging materials.
Examples of the method of applying the aqueous paint of the present invention include methods using a gravure coater, a roll coater, a comma coater, a knife coater, an air knife coater, a curtain coater, a kiss coater, a shower coater, a whirler coater, a spin coater, dipping, screen printing, spraying, an applicator, a bar coater or a brush. In addition, examples of a method of forming a coating film after coating include a method of drying in the range of room temperature to 120℃.
Examples
The present invention will be described in more detail below with specific examples. In addition, the weight average molecular weight (Mw) of the polymer was measured under the following GPC measurement conditions.
[GPC Measurement Conditions]
Measurement device: High-speed GPC device ( “HLC-8220 GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
“TSKgel G5000” (7.8 mm I.D. × 30 cm) × 1
“TSKgel G4000” (7.8 mm I.D. × 30 cm) × 1
“TSKgel G3000” (7.8 mm I.D. × 30 cm) × 1
“TSKgel G2000” (7.8 mm I.D. × 30 cm) × 1
Detector: RI (differential refractometer)
Column temperature: 40℃
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL/min
Injection volume: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg/mL) Standard sample: A calibration curve was created using the following monodisperse polystyrenes.
(Monodisperse Polystyrenes)
“TSKgel standard polystyrene A-500” manufactured by Tosoh Corporation
“TSKgel standard polystyrene A-1000” manufactured by Tosoh Corporation
“TSKgel standard polystyrene A-2500” manufactured by Tosoh Corporation
“TSKgel standard polystyrene A-5000” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-1” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-2” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-4” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-10” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-20” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-40” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-80” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-128” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-288” manufactured by Tosoh Corporation
“TSKgel standard polystyrene F-550” manufactured by Tosoh Corporation
(Synthesis Example 1: Synthesis of acrylic polymer (A-1) )
A reactor equipped with a stirring, cooling and heating devices was loaded with 283 parts by mass of diethylene glycol dimethyl ether (hereinafter abbreviated as “MDM” ) , and the mixture was heated to 135℃. Then, a monomer mixture of 70 parts by mass of methyl  methacrylate (hereinafter abbreviated as “MMA” ) , 160 parts by mass of n-butyl methacrylate (hereinafter abbreviated as “nBMA” ) , 70 parts by mass of 2-hydroxyethyl methacrylate (hereinafter abbreviated as “HEMA” ) and 60 parts by mass of styrene (hereinafter abbreviated as “St” ) , and a solution prepared by dissolving 20 parts by mass of tert-butylperoxy-2-ethylhexanate (hereinafter abbreviated as “P-O” ) in 20 parts by mass of MDM were added dropwise over 2 hours at two lines at a constant speed. Then, a monomer mixture of 210 parts by mass of MMA, 73 parts by mass of n-butyl acrylate (hereinafter abbreviated as “nBA” ) , 27 parts by mass of HEMA, 40 parts by mass of St, 40 parts by mass of acrylic acid (hereinafter abbreviated as “AA” ) , 10 parts by mass of methoxypolyethylene glycol methacrylate (number of repeating units of oxyethylene: 23) and 40 parts by mass of diacetone acrylamide (hereinafter abbreviated as “DAAM” ) , and a solution prepared by dissolving 10 parts by mass of P-O in 10 parts by mass of MDM were added dropwise over 2 hours and 30 minutes at two lines at a constant speed. After maintaining the temperature at 135℃ for 60 minutes, the mixture was cooled to obtain a solution of acrylic polymer (A-1) having a carboxyl group and a hydroxyl group. The solution had a solid content of 70.0%by mass, a hydroxyl value of 52, an acid value of 39, and a weight average molecular weight of 33,000.
(Synthesis Example 2: Synthesis of urethane (meth) acrylate (B-1) )
A reactor equipped with a stirring, cooling and heating devices was loaded with 222 parts by mass of isophorone diisocyanate, 0.07 parts by mass of 4-methoxyphenol (MEHQ) , and dibutyltin dilaurate, and stirring was started. Then, the reaction temperature was maintained at 25 to 35℃, and 139 parts by mass of HEMAwas added dropwise over 2 hours. Thirty minutes after the completion of dropping, the reaction temperature was raised to 40℃and maintained until the isocyanate group content became less than 11%to obtain urethane (meth) acrylate (B-1) having an isocyanate group and a (meth) acryloyl group. The isocyanate group content of the urethane (meth) acrylate (B-1) was 10.8%.
(Example 1: synthesis and evaluation of aqueous resin dispersion (1) )
A reactor equipped with a stirring, cooling and heating devices was loaded with 890 parts by mass of a solution of the acrylic polymer (A-1) obtained in Synthesis Example 1, 200 parts by mass of the urethane (meth) acrylate (B-1) obtained in Synthesis Example 2, and 0.1  parts by mass of MEHQ, and the mixture was heated to 80℃. The temperature was maintained for about 3 hours until the isocyanate group content became less than 0.2%to obtain (meth) acrylate (X-1) . Then, the mixture was cooled to 60℃, and 80 parts by mass of MMA and 28 parts by mass oftriethylamine (TEA) were added. After holding for about 30 minutes, 1000 parts by mass of deionized water was added with stirring to obtain an aqueous dispersion containing the (meth) acrylate (X-1) and MMA in the particles. Then, the mixture was heated to 60℃, an aqueous solution prepared by dissolving 0.45 parts by mass of ammonium persulfate in 40 parts by mass of deionized water was added, and the mixture was heated to 80℃ and held for 1 hour. Thereafter, the mixture was cooled to 60℃, and an aqueous solution prepared by dissolving 12 parts by mass of adipic acid hydrazide (ADH) in 50 parts by mass of deionized water was added over 30 minutes, followed by cooling to obtain an aqueous resin dispersion (1) . The aqueous resin dispersion (1) had a resin solid content of 40.9%by mass.
(Example 2: synthesis and evaluation of aqueous resin dispersion (2) )
A reactor equipped with a stirring, cooling and heating devices was loaded with 860 parts by mass of a solution of the acrylic polymer (A-1) obtained in Synthesis Example 1, 150 parts by mass of polycarbonate diol ( “DURANOL T5651” manufactured by Asahi Kasei Corporation) , 280 parts by mass of the urethane (meth) acrylate (B-1) , and 0.1 parts by mass of MEHQ, and the mixture was heated to 80℃. The temperature was maintained for about 4 hours until the isocyanate group content became less than 0.2%to obtain (meth) acrylate (X-2) . Then, the mixture was cooled to 60℃, and 27 parts by mass of TEA were added. After holding for about 30 minutes, 1200 parts by mass of deionized water was added with stirring to obtain an aqueous dispersion containing the (meth) acrylate (X-2) in the particles. Then, the mixture was heated to 60℃, an aqueous solution prepared by dissolving 0.5 parts by mass of ammonium persulfate in 28 parts by mass of deionized water was added, and the mixture was heated to 80℃ and held for 1 hour. Thereafter, the mixture was cooled to 60℃, and an aqueous solution prepared by dissolving 12 parts by mass of ADH in 70 parts by mass of deionized water was added over 30 minutes, followed by cooling to obtain an aqueous resin dispersion (2) . The aqueous resin dispersion (2) had a resin solid content of 41.1%by mass.
(Comparative Example 1: synthesis and evaluation of aqueous resin dispersion (R1) )
A reactor equipped with a stirring, cooling and heating devices was loaded with 283 parts by mass of MDM, and the mixture was heated to 135℃. Then, a monomer mixture of 70 parts by mass of MMA, 160 parts by mass of nBMA, 70 parts by mass of HEMA and 60 parts by mass of St, and a solution prepared by dissolving 20 parts by mass of P-O in 20 parts by mass of MDM were added dropwise over 2 hours at two lines at a constant speed. Then, a monomer mixture of 210 parts by mass of MMA, 73 parts by mass of nBA, 27 parts by mass of HEMA, 40 parts by mass of St, 40 parts by mass of AA, 10 parts by mass of methoxypolyethylene glycol methacrylate and 40 parts by mass of DAAM, and a solution prepared by dissolving 10 parts by mass of P-O in 10 parts by mass of MDM were added dropwise over 2 hours and 30 minutes at two lines at a constant speed. After maintaining the temperature at 135℃ for 60 minutes, the mixture was cooled to 60℃ and 36 parts by mass of TEAwas added. After holding for about 30 minutes, 810 parts by mass ofdeionized water was added with stirring to obtain an aqueous dispersion of an acrylic polymer having a carboxyl group and a hydroxyl group. Thereafter, the mixture was cooled to 60℃, and an aqueous solution prepared by dissolving 16 parts by mass of ADH in 50 parts by mass of deionized water was added over 30 minutes. The mixture was cooled to obtain an aqueous resin dispersion (R1) . The aqueous resin dispersion (R1) had a resin solid content of 40.0%by mass.
[Preparation of cured coating film for evaluation]
The aqueous resin dispersion obtained above was spray-coated onto an ABS (acrylonitrile-butadiene-styrene copolymer) plate, a PC (polycarbonate) plate, and an aluminum plate such that the film thickness after drying was 20 μm. After pre-drying in a dryer at 80℃ for 30 minutes, the coatings were cured at 25℃ for 1 week to obtain cured coating films.
[Evaluation of appearance of coating film]
The coating film appearance of the cured coating film prepared on the ABS plate was visually observed, and the coating film appearance was evaluated according to the following criteria.
A: No occurrence of whitening.
B: Slight whitening is observed.
C: Occurrence of whitening.
[Evaluation of hardness of coating film]
For the cured coating film prepared on the aluminum plate, the hardness of the hardest pencil that did not cause scars was measured as the pencil hardness in accordance with JIS K 5600-5-4: 1999 using a pencil specified in JIS S 6006: 2007.
[Evaluation of adhesion of coating film]
Measurement was conducted based on the JIS K-5600 cross-cut test method. On the cured coating film prepared on the PC plate, cuts with a width of 1 mm were made with a cutter such that the number of grids was 100, and cellophane tape was attached so as to cover all the grids and was quickly peeled off. Judgment was made by counting the number of grids remaining attached. Evaluation criteria are as follows.
A: No peeling.
B: The peeling area is 1%or more and less than 65%of the total grid area.
C: The peeling area is 65%or more of the total grid area.
[Evaluation of alcohol resistance]
After rubbing the cured coating film prepared on the ABS plate with a felt impregnated with ethanol reciprocally 100 times with a load of 500 g, the state of the cured coating film was evaluated by finger touch and visual observation. Evaluation criteria are as follows.
A: No softening or loss of gloss is observed.
B: Slight softening or loss of gloss is observed.
C: Significant softening or loss of gloss is observed.
[Evaluation of hot water resistance]
After immersing the cured coating film prepared on the ABS plate in hot water at 80℃ for 4 hours, the appearance of the cured coating film immediately after being removed from the hot water was visually evaluated according to the following evaluation criteria.
A: No whitening or blistering
B: Whitening or blistering is observed.
C: Peeling from the substrate is observed.
[Evaluation of solvent resistance]
After rubbing the cured coating film prepared on the ABS plate with a felt impregnated with methyl ethyl ketone reciprocally 50 times with a load of 500 g, the state of the cured coating film was evaluated by finger touch and visual observation. Evaluation criteria are as follows.
A: No softening or loss of gloss is observed.
B: Slight softening or loss of gloss is observed.
C: Significant softening or loss of gloss is observed.
The evaluation results of Examples 1 to 2 and Comparative Example 1 are shown in Table 1.
[Table 1]
Figure PCTCN2022115711-appb-000001
It was found that the coating film obtained from the aqueous resin dispersion of the present invention is excellent in appearance, hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance.
It was also found that in Comparative Example 1, which is an example in which the urethane (meth) acrylate (B) , which is an essential raw material of the present invention, was not used, the hardness, adhesion, alcohol resistance, hot water resistance, and solvent resistance are insufficient.

Claims (6)

  1. An aqueous resin dispersion obtained by a radical polymerization of (meth) acrylate (X) in resin particles dispersed in an aqueous medium, wherein the (meth) acrylate (X) is a product of a reaction of an acrylic polymer (A) having a hydroxyl group and a carboxyl group with a urethane (meth) acrylate (B) having an isocyanate group.
  2. The aqueous resin dispersion according to claim 1, wherein the urethane (meth) acrylate (B) is a product of a reaction of polyisocyanate (b 1) with (meth) acrylate (b2) having a hydroxyl group.
  3. The aqueous resin dispersion according to claim 1, wherein the radical polymerization is copolymerization of the (meth) acrylate (X) and a (meth) acrylic monomer (Y) .
  4. The aqueous resin dispersion according to claim 1, wherein the reaction product contains polymer polyol (P) as an essential raw material.
  5. An aqueous paint containing the aqueous resin dispersion according to any one of claims 1 to 4.
  6. An article coated with the aqueous paint according to claim 5.
PCT/CN2022/115711 2022-08-30 2022-08-30 Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint WO2024044931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115711 WO2024044931A1 (en) 2022-08-30 2022-08-30 Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115711 WO2024044931A1 (en) 2022-08-30 2022-08-30 Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint

Publications (1)

Publication Number Publication Date
WO2024044931A1 true WO2024044931A1 (en) 2024-03-07

Family

ID=90100141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115711 WO2024044931A1 (en) 2022-08-30 2022-08-30 Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint

Country Status (1)

Country Link
WO (1) WO2024044931A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008691A1 (en) * 1998-02-27 2001-07-19 Takashi Isogai Uv curable resin composition for coating
JP2006169412A (en) * 2004-12-17 2006-06-29 Nippon Synthetic Chem Ind Co Ltd:The Radiation-curable resin composition and multilayer structure using the same
CN103261924A (en) * 2010-12-24 2013-08-21 大日本印刷株式会社 Hard coat film, polarizing plate and image display device
JP2022077778A (en) * 2020-11-12 2022-05-24 三菱ケミカルインフラテック株式会社 Curable composition, coating material composition, and cured products thereof
JP2022078856A (en) * 2020-11-13 2022-05-25 三菱ケミカルインフラテック株式会社 Curable resin composition and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008691A1 (en) * 1998-02-27 2001-07-19 Takashi Isogai Uv curable resin composition for coating
JP2006169412A (en) * 2004-12-17 2006-06-29 Nippon Synthetic Chem Ind Co Ltd:The Radiation-curable resin composition and multilayer structure using the same
CN103261924A (en) * 2010-12-24 2013-08-21 大日本印刷株式会社 Hard coat film, polarizing plate and image display device
JP2022077778A (en) * 2020-11-12 2022-05-24 三菱ケミカルインフラテック株式会社 Curable composition, coating material composition, and cured products thereof
JP2022078856A (en) * 2020-11-13 2022-05-25 三菱ケミカルインフラテック株式会社 Curable resin composition and laminate

Similar Documents

Publication Publication Date Title
EP3040353B1 (en) Polycarbonate-modified acrylic resin, coating, and plastic molding coated with said coating
US9605174B2 (en) Active energy ray curable aqueous resin composition, active energy ray curable aqueous coating material, and article coated with the coating material
US12116441B2 (en) Polycarbonate-modified acrylic resin, paint, and plastic molded article painted by said paint
WO2024044931A1 (en) Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint
JP7024927B2 (en) Polycarbonate modified acrylic resin, paint and plastic molded products painted with the paint
CN110678516B (en) Aqueous resin composition, aqueous coating material, and article
EP4043507B1 (en) Water-based resin composition, water-based paint, and plastic molded article painted by said water-based paint
WO2022087885A1 (en) Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material
JP7298150B2 (en) Polycarbonate-modified acrylic resin, paint, and plastic molded article coated with said paint
CN105073802B (en) Resin combination, bottom-coating and by the formed products after the paint spraying
JP7338807B2 (en) Aqueous dispersion for metallic paint and aqueous metallic paint
WO2022259740A1 (en) Curable resin composition, coating material, and article
CN114008094A (en) Polycarbonate-modified acrylic resin, coating material, and plastic molded article coated with the coating material
WO2019065571A1 (en) Curable resin composition, paint, and article
WO2022252148A1 (en) Acrylic resin water dispersion, method for producing thereof, and aqueous coating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956766

Country of ref document: EP

Kind code of ref document: A1