WO2023238790A1 - Resin composition and molded article - Google Patents
Resin composition and molded article Download PDFInfo
- Publication number
- WO2023238790A1 WO2023238790A1 PCT/JP2023/020627 JP2023020627W WO2023238790A1 WO 2023238790 A1 WO2023238790 A1 WO 2023238790A1 JP 2023020627 W JP2023020627 W JP 2023020627W WO 2023238790 A1 WO2023238790 A1 WO 2023238790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- core
- shell elastomer
- silicone
- elastomer
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 87
- 229920001971 elastomer Polymers 0.000 claims abstract description 98
- 239000000806 elastomer Substances 0.000 claims abstract description 86
- 239000011258 core-shell material Substances 0.000 claims abstract description 70
- 229920006324 polyoxymethylene Polymers 0.000 claims abstract description 60
- 239000011347 resin Substances 0.000 claims abstract description 57
- 229920005989 resin Polymers 0.000 claims abstract description 57
- 229930182556 Polyacetal Natural products 0.000 claims abstract description 54
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 43
- 239000011163 secondary particle Substances 0.000 claims abstract description 19
- 239000008188 pellet Substances 0.000 claims description 22
- 238000004132 cross linking Methods 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 13
- -1 urea compound Chemical class 0.000 claims description 13
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 12
- 239000004925 Acrylic resin Substances 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 57
- 238000012360 testing method Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 15
- 238000004898 kneading Methods 0.000 description 14
- 238000001746 injection moulding Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000002516 radical scavenger Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 125000005702 oxyalkylene group Chemical group 0.000 description 5
- 238000004626 scanning electron microscopy Methods 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 2
- CZLMRJZAHXYRIX-UHFFFAOYSA-N 1,3-dioxepane Chemical compound C1CCOCOC1 CZLMRJZAHXYRIX-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 2
- 239000012285 osmium tetroxide Substances 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- ULAGGPJVDRGWTI-UHFFFAOYSA-N 1,3,5-trioxepane Chemical compound C1COCOCO1 ULAGGPJVDRGWTI-UHFFFAOYSA-N 0.000 description 1
- AUAGGMPIKOZAJZ-UHFFFAOYSA-N 1,3,6-trioxocane Chemical compound C1COCOCCO1 AUAGGMPIKOZAJZ-UHFFFAOYSA-N 0.000 description 1
- CJSITSBWCLTCAP-UHFFFAOYSA-N 1,3-dioxocane Chemical compound C1CCOCOCC1 CJSITSBWCLTCAP-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Chemical group 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine Substances NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000570 polyether Chemical group 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L59/00—Compositions of polyacetals; Compositions of derivatives of polyacetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
Definitions
- the resin composition has a weld elongation of 20% or more when the resin composition is molded into a 1.6 mm thick test piece having a weld part in the center and pulled at 10 mm/min according to ASTM D638. things are listed.
- a molded article obtained from a resin composition containing a polyacetal resin and an elastomer described in Patent Document 1 has excellent flexibility.
- resin compositions that can yield molded products that are flexible and have excellent sliding properties.
- silicone in order to improve sliding properties, it is conceivable to blend silicone into the polyacetal resin.
- the weld elongation of the resulting molded product tends to be poor.
- weld elongation deteriorates, the strength of the molded product decreases.
- the present invention aims to solve the above-mentioned problems, and provides a resin composition from which a molded article having moderate flexibility, excellent sliding properties, and excellent weld elongation can be obtained, and It is an object of the present invention to provide a molded article formed from the resin composition.
- the present inventor conducted a study and found that a predetermined amount of a core-shell elastomer having a predetermined average secondary particle diameter in the polyacetal resin and a silicone having a predetermined kinematic viscosity are blended into the polyacetal resin.
- a predetermined amount of a core-shell elastomer having a predetermined average secondary particle diameter in the polyacetal resin and a silicone having a predetermined kinematic viscosity are blended into the polyacetal resin.
- the core-shell elastomer (B) has an average secondary particle diameter of 10 to 250 nm in the polyacetal resin (A),
- the content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition
- a resin composition, wherein the silicone (C) has a kinematic viscosity at 25° C. of 4 million to 30 million cSt, and the content thereof is 0.3 to 1% by mass in the resin composition.
- ⁇ 2> The resin composition according to ⁇ 1>, wherein the core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30.
- ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, wherein in the core-shell elastomer (B), the core contains a butadiene-containing rubber and the shell contains an acrylic resin.
- ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, further comprising a hydrazide compound and/or a urea compound.
- ⁇ 5> The resin according to any one of ⁇ 1> to ⁇ 4>, wherein the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40.
- Composition. ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 5>, which is used for trim clip molding.
- the core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30, and in the core-shell elastomer (B), the core contains a butadiene-containing rubber, the shell contains an acrylic resin, and , contains a hydrazide compound and/or a urea compound, the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40, and is for trim clip molding, ⁇ 1 >The resin composition described in >. ⁇ 8> Pellets of the resin composition according to any one of ⁇ 1> to ⁇ 7>.
- ⁇ 9> A molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 7>.
- ⁇ 10> A molded article formed from the pellets described in ⁇ 8>.
- ⁇ 11> The molded product according to ⁇ 9>, which is a trim clip.
- ADVANTAGE OF THE INVENTION it has become possible to provide a resin composition from which a molded article with moderate flexibility, excellent sliding properties, and excellent weld elongation can be obtained, and a molded article formed from the resin composition. Ta.
- this embodiment a mode for carrying out the present invention (hereinafter simply referred to as “this embodiment”) will be described in detail.
- the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
- " ⁇ " is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
- various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated. If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
- the resin composition of the present embodiment is a resin composition containing a polyacetal resin (A), a core-shell elastomer (B), and a silicone (C), in which the core-shell elastomer (B) is contained in the polyacetal resin (A).
- the average secondary particle diameter is 10 to 250 nm
- the content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition
- the kinematic viscosity of the silicone (C) at 25°C is 4 million ⁇ 30 million cSt, and the content is 0.3 ⁇ 1% by mass in the resin composition.
- the interfacial force applied between the core-shell elastomer (B) and the polyacetal resin (A) can be reduced, and weld elongation can be increased. Guessed. Furthermore, it is presumed that by using a predetermined amount of silicone (C) having a predetermined kinematic viscosity, it was possible to effectively suppress a decrease in weld elongation while maintaining sliding properties.
- the resin composition (A) of this embodiment contains a polyacetal resin.
- the polyacetal resin is not particularly limited, and even if it is a homopolymer containing only divalent oxymethylene groups as a constituent unit, it may contain a divalent oxymethylene group and a divalent oxyalkylene having 2 to 6 carbon atoms. It may also be a copolymer containing the group as a constituent unit.
- Examples of the oxyalkylene group having 2 to 6 carbon atoms include oxyethylene group, oxypropylene group, and oxybutylene group.
- the proportion of the oxyalkylene group having 2 to 6 carbon atoms in the total number of moles of the oxymethylene group and the oxyalkylene group having 2 to 6 carbon atoms is not particularly limited, and is 0.5 to 10 mol. % is sufficient.
- trioxane is usually used as the main raw material.
- a cyclic formal or a cyclic ether can be used.
- Specific examples of cyclic formals include 1,3-dioxolane, 1,3-dioxane, 1,3-dioxepane, 1,3-dioxocane, 1,3,5-trioxepane, 1,3,6-trioxocane, etc.
- Specific examples of the cyclic ether include ethylene oxide, propylene oxide, and butylene oxide.
- the resin composition of this embodiment includes a core-shell elastomer (B).
- a core-shell elastomer By using an elastomer, flexibility can be imparted to the resulting molded product. Further, by using a core-shell elastomer as the elastomer, a decrease in weld elongation can be effectively suppressed. Furthermore, by adjusting the core-shell elastomer (B) to have an average secondary particle size of 10 to 250 nm in the polyacetal resin (A), it is possible to effectively reduce weld elongation while maintaining high flexibility.
- a core-shell elastomer is a polymer with a multilayer structure having a core part and a shell layer covering part or all of the core part, and Kaneka Corporation's Kane Ace series and Mitsubishi Chemical Corporation's Metablen series are known.
- the average secondary particle diameter of the core-shell elastomer (B) in the polyacetal resin (A) is 10 to 250 nm.
- the core-shell elastomer (B) is easily dispersed in the polyacetal resin (A), and weld elongation can be increased. This is because when the average secondary particle diameter of the core-shell elastomer (B) becomes large, the core-shell elastomer (B) becomes a starting point for fracture in the molded product.
- the interfacial force applied between the core-shell elastomer (B) and the polyacetal resin (A) is also reduced, and weld elongation can be increased.
- Such an average secondary particle diameter of the core-shell elastomer (B) in the polyacetal resin (A) can be achieved by adjusting the selection of the type of core-shell elastomer (B), the fluidity of the polyacetal resin, the melt-kneading conditions, etc. be done.
- the average secondary particle diameter of the core-shell elastomer (B) is preferably 240 nm or less, more preferably 210 nm or less, even more preferably 180 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less. It is even more preferable that Moreover, it is more preferably 30 nm or more, even more preferably 50 nm or more, even more preferably 80 nm or more, and even more preferably 100 nm or more.
- the average secondary particle diameter of the core-shell elastomer (B) is measured according to the description in the examples below.
- crosslinking index of the core-shell elastomer (B) can be adjusted, for example, by the polymerization conditions during production of the core-shell elastomer.
- the crosslinking index of the core-shell elastomer (B) is measured and calculated by the method described in the Examples below.
- the core is preferably a rubber-based polymer.
- the rubber-based polymer preferably contains at least one selected from butadiene-containing rubber, butyl acrylate-containing rubber, 2-ethylhexyl acrylate-containing rubber, and silicone-based rubber, and preferably contains butadiene-containing rubber. More preferred.
- the shell is preferably a polymer of one or more monomers such as (meth)acrylic esters and aromatic vinyl compounds, and units derived from (meth)acrylic esters account for 50% by mass or more of the whole. Polymers (acrylic resins) are more preferred.
- the core-shell elastomer (B) used in this embodiment it is preferable that the core contains a rubber-based polymer and the shell contains an acrylic resin.
- the effects of the present invention tend to be more effectively exhibited.
- the resin composition of this embodiment contains silicone (C).
- silicone (C) By including silicone (C), the slidability of the obtained molded product can be improved.
- the kinematic viscosity at 25° C. of the silicone compound (C) used in this embodiment is 4 million cSt or more, preferably 7 million cSt or more, and more preferably 10 million cSt or more. By setting it above the lower limit value, the limit PV value tends to be further improved. Further, the kinematic viscosity at 25°C of the silicone compound (C) is 30 million cSt or less, preferably 28 million cSt or less, more preferably 25 million cSt or less, and 20 million cSt or less. It is even more preferable. By setting it below the above-mentioned upper limit, the dispersibility of silicone (C) in the polyacetal resin is improved, and weld elongation tends to be further improved.
- the content of silicone (C) in the resin composition of this embodiment is preferably 0.3% by mass or more, more preferably 0.4% by mass or more. By making it equal to or more than the lower limit, sliding properties can be improved.
- the upper limit of the content of silicone (C) in the resin composition is 1% by mass or less, preferably 0.9% by mass or less, and more preferably 0.8% by mass or less. It is preferably 0.7% by mass or less, more preferably 0.6% by mass or less, and even more preferably 0.6% by mass or less. By setting it below the above-mentioned upper limit, weld elongation can be maintained at a high level.
- the resin composition of this embodiment may contain only one type of silicone (C), or may contain two or more types of silicone (C). When two or more types are included, it is preferable that the total amount falls within the above range.
- the ratio (B)/(C) is preferably 40 or less, more preferably 35 or less, even more preferably 32 or less, even more preferably 30 or less, and 25 or less. It is even more preferable that there be. By setting it below the above-mentioned upper limit value, slidability tends to be further improved.
- the resin composition of this embodiment may contain a formaldehyde scavenger.
- a formaldehyde scavenger By including a formaldehyde scavenger, the generation of formaldehyde from the resulting molded product can be effectively suppressed.
- the formaldehyde scavenger preferably contains at least one selected from the group consisting of a hydrazide compound, a hydrazone compound of a hydrazine compound, a guanamine compound, and a urea compound, and more preferably a hydrazide compound and/or a urea compound.
- the resin composition of the present embodiment preferably contains 0.05 parts by mass or more, and more preferably 0.10 parts by mass, of a formaldehyde scavenger based on 100 parts by mass of the polyacetal resin (A). Further, the formaldehyde scavenger is preferably contained in an amount of 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, based on 100 parts by mass of the polyacetal resin.
- the resin composition of this embodiment may contain only one type of formaldehyde scavenger, or may contain two or more types of formaldehyde scavengers. When two or more types are included, the total amount falls within the above range.
- the resin composition of the present embodiment may contain any conventionally known additives and fillers within a range that does not impair the object of the present invention.
- additives and fillers used in this embodiment include thermoplastic resins other than polyacetal resins, ultraviolet absorbers, antioxidants, heat stabilizers, stabilizers, antistatic agents, carbon fibers, dyes, and carbon black.
- organic pigments such as, inorganic pigments such as titanium oxide, glass fibers, glass flakes, potassium titanate whiskers, and the like.
- the resin composition of this embodiment has excellent weld elongation and does not break before yielding. Specifically, when the resin composition of this embodiment is molded into an ASTM tensile test piece (thickness 1.6 mm) and a tensile test is performed according to ASTM D638, the weld elongation is 14% or more. It is preferably 17% or more, more preferably 18% or more, and even more preferably 20% or more. Further, the upper limit of the weld elongation is, for example, 300% or less.
- the resin composition of this embodiment contains the above-mentioned essential components and, if necessary, the above-mentioned arbitrary components. Any manufacturing method is selected so that the average secondary particle diameter falls within the above-mentioned range. These raw materials may be mixed and kneaded using any conventionally known method for producing a resin composition.
- L/D which is the ratio of the length L (mm) of the screw to the diameter D (mm) of the same screw, is preferably 20 or more, more preferably 30 or more, and 100 or less.
- the shape of the die nozzle is also not particularly limited, but in terms of pellet shape, a circular nozzle with a diameter of 1 mm or more is preferable, a circular nozzle with a diameter of 2 mm or more is more preferable, a circular nozzle with a diameter of 10 mm or less is preferable, and a circular nozzle with a diameter of 7 mm or less is preferable. Nozzles are more preferred.
- the melting temperature of the resin composition during melt-kneading is preferably 170°C or higher, more preferably 190°C or higher, and preferably 250°C or lower, and preferably 230°C or lower. More preferred.
- the melting temperature is preferably 170° C. or higher, melting becomes sufficient and production volume tends to improve.
- the temperature is set to 250° C. or lower, discoloration of the resin composition due to thermal deterioration tends to be effectively suppressed.
- the screw configuration of the twin-screw extruder is not particularly limited, one preferred embodiment includes having at least two kneading sections.
- the kneading section has a kneading disk and mainly contributes to melting the resin and dispersing the elastomer.
- the screw rotation speed during melt-kneading is preferably 50 rpm or more, more preferably 70 rpm or more, and preferably 500 rpm or less, and more preferably 350 rpm or less.
- the screw rotation speed is preferably 50 rpm or more, more preferably 70 rpm or more, and preferably 500 rpm or less, and more preferably 350 rpm or less.
- the discharge rate is preferably 5 kg/hr or more, more preferably 7 kg/hr or more, preferably 1,000 kg/hr or less, and more preferably 800 kg/hr or less.
- the rate is preferably 5 kg/hr or more, more preferably 7 kg/hr or more, preferably 1,000 kg/hr or less, and more preferably 800 kg/hr or less.
- the ratio (Q/Ns) between the screw rotation speed (Ns) and the discharge amount (Q) during melt-kneading depends on the screw diameter and screw configuration of the extruder, but is preferably 0.5 or more, and 0.7
- the above is more preferable, 0.9 or more is particularly preferable, 1.5 or less is preferable, 1.3 or less is even more preferable, and 1.2 or less is particularly preferable.
- the above Q/Ns is particularly preferable in an embodiment in which the screw diameter is 18 to 75 mm (even 58 mm) and the screw configuration has two kneading sections.
- Examples of the kneading machine include a kneader, a Banbury mixer, and an extruder.
- the various conditions and equipment for mixing and kneading are also not particularly limited, and may be determined by appropriately selecting from any conventionally known conditions.
- the kneading is preferably carried out at a temperature higher than the melting temperature of the polyacetal resin, specifically at a temperature higher than the melting temperature of the polyacetal resin (generally 180° C. or higher).
- the molded article of this embodiment is formed from the resin composition of this embodiment. Further, the resin composition of the present embodiment is usually made into a molded product by injection molding the pellets obtained by directly or by pelletizing the resin composition. That is, a preferable example of the molded product of this embodiment is an injection molded product.
- An injection molded product is a molded product formed by injection molding, and a weak portion (weld portion) is usually formed at a portion where molten resin joins within a mold.
- the shape of the molded product is not particularly limited and can be appropriately selected depending on the use and purpose of the molded product, such as plate, plate, rod, sheet, film, cylindrical, annular, etc.
- the resin composition of the present embodiment and molded products formed from the resin composition are, for example, automotive parts such as trim clips, seatbelt members, and headrest guides, building material parts, electric/electronic parts, office equipment parts, and daily miscellaneous goods.
- automotive parts such as trim clips, seatbelt members, and headrest guides
- building material parts such as electric/electronic parts, office equipment parts, and daily miscellaneous goods.
- examples include containers for frozen foods and beverages, home appliances such as refrigerator gaskets, hose bands, gaskets, and cable ties.
- the resin composition and molded article of this embodiment are suitable for trim clips.
- the above MVR is a melt volume rate measured under the conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with ISO1133.
- the kinematic viscosity of the silicone oil and silicone gum described above is a value measured by the following method.
- 1.0 g of silicone oil or silicone gum was weighed out and dissolved in 10 mL of toluene, and the viscosity of the silicone-toluene solution was measured using a cone-plate viscometer TPE100.
- TPE100 cone-plate viscometer
- a SEM image was obtained using a scanning electron microscope (SEM). From the obtained SEM image, the average value of the maximum length of the island-shaped portions derived from the elastomer was defined as the average secondary particle diameter of the elastomer.
- the injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd.
- the osmium tetroxide was vapor-deposited using an "Osmium Coater" manufactured by Meiwaforsys under conditions of 8 mA and 60 seconds.
- the scanning electron microscope was a "Scanning Electron Microscope (SEM) S-4800" manufactured by Hitachi High Technologies, and the SEM was performed under the following conditions: acceleration voltage: 1 kV, signal: LA100 (U), emission current: 6 ⁇ A, probe current: Normal. The image was acquired.
- SEM Sccanning Electron Microscope
- this 4 mm thick multi-purpose test piece (ISO test piece) was subjected to a bending test using a fully automatic bending tester at a bending test speed of 2 mm/min according to the method described in ISO178. , the flexural modulus was measured. A fully automatic bending tester manufactured by Shimadzu Corporation was used. The unit is MPa.
- the evaluation criteria are as follows. A: 1500 MPa or more, less than 2400 MPa B: 1300 MPa or more, less than 1500 MPa, or 2400 MPa or more, less than 2450 MPa C: Less than 1300 MPa, or 2450 MPa or more The results are shown in Tables 2 to 6 below.
- ⁇ Formaldehyde generation amount> The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C. Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 210°C and the mold temperature set at 80°C, to produce a flat test piece of 100 mm x 40 mm x 2 mm. Regarding this test piece, the amount of formaldehyde generated in 1 g of polyacetal resin was determined by the following method in accordance with the method described in the German Automobile Industry Association standard VDA275 (Automotive interior parts - Determination of formaldehyde release amount by revised flask method). It was measured.
- the unit is the amount of formaldehyde generated ( ⁇ g) per gram of polyacetal resin, ie, ⁇ g/g-POM.
- the measurement results were evaluated according to the following criteria. A: Less than 5 ⁇ g/g-POM B: 5 ⁇ g/g-POM or more and less than 10 ⁇ g/g-POM C: 10 ⁇ g/g-POM or more
- the results are shown in Tables 2 to 6 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Provided are: a resin composition that yields molded articles having exceptional moderate flexibility, exceptional sliding properties, and exceptional weld elongation; and a molded article that is formed from the resin composition. A resin composition containing a polyacetal resin (A), a core-shell elastomer (B), and silicone (C), wherein the core-shell elastomer (B) has an average secondary particle size of 10-250 nm in the polyacetal resin (A), the content value for the core-shell elastomer (B) is 5-25 mass% in the resin composition, the kinematic viscosity at 25°C of the silicone (C) is 4,000,000 to 30,000,000 cSt, and the content value for the silicone (C) is 0.3-1 mass% in the resin composition.
Description
本発明は、樹脂組成物、および、成形品に関する。特に、ポリアセタール樹脂を主要成分とする樹脂組成物に関する。
The present invention relates to a resin composition and a molded article. In particular, it relates to a resin composition containing polyacetal resin as a main component.
ポリアセタール樹脂は、機械的性質、電気的性質、および、耐薬品性などの化学的性質に優れたプラスチックとして、広範囲の用途で使用されている。
ここで、ポリアセタール樹脂に軟質性を持たせるために、エラストマーを配合することが検討されている。
例えば、特許文献1には、ポリアセタール樹脂と、コアシェルエラストマーを含む樹脂組成物であって、前記樹脂組成物を4mm厚さの多目的試験片に成形し、ISO178に従って測定した曲げ弾性率が1700MPa以下であり、かつ、前記樹脂組成物を、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上である、樹脂組成物が記載されている。 Polyacetal resin is used in a wide range of applications as a plastic with excellent mechanical properties, electrical properties, and chemical properties such as chemical resistance.
Here, in order to impart flexibility to the polyacetal resin, consideration has been given to incorporating an elastomer into the polyacetal resin.
For example, Patent Document 1 describes a resin composition containing a polyacetal resin and a core-shell elastomer, in which the resin composition is molded into a multipurpose test piece with a thickness of 4 mm, and the bending elastic modulus measured according to ISO178 is 1700 MPa or less. and the resin composition has a weld elongation of 20% or more when the resin composition is molded into a 1.6 mm thick test piece having a weld part in the center and pulled at 10 mm/min according to ASTM D638. things are listed.
ここで、ポリアセタール樹脂に軟質性を持たせるために、エラストマーを配合することが検討されている。
例えば、特許文献1には、ポリアセタール樹脂と、コアシェルエラストマーを含む樹脂組成物であって、前記樹脂組成物を4mm厚さの多目的試験片に成形し、ISO178に従って測定した曲げ弾性率が1700MPa以下であり、かつ、前記樹脂組成物を、ウエルド部を中央に有する1.6mm厚さの試験片に成形し、ASTM D638に従い10mm/分で引張った時のウエルド伸びが20%以上である、樹脂組成物が記載されている。 Polyacetal resin is used in a wide range of applications as a plastic with excellent mechanical properties, electrical properties, and chemical properties such as chemical resistance.
Here, in order to impart flexibility to the polyacetal resin, consideration has been given to incorporating an elastomer into the polyacetal resin.
For example, Patent Document 1 describes a resin composition containing a polyacetal resin and a core-shell elastomer, in which the resin composition is molded into a multipurpose test piece with a thickness of 4 mm, and the bending elastic modulus measured according to ISO178 is 1700 MPa or less. and the resin composition has a weld elongation of 20% or more when the resin composition is molded into a 1.6 mm thick test piece having a weld part in the center and pulled at 10 mm/min according to ASTM D638. things are listed.
上記特許文献1に記載のポリアセタール樹脂とエラストマーを含む樹脂組成物から得られた成形品は優れた軟質性を有するものである。一方、近年のポリアセタール樹脂の用途拡大に伴い、軟質性がありながら、摺動性に優れた成形品が得られる樹脂組成物が求められている。
ここで、摺動性を高めるために、ポリアセタール樹脂にシリコーンを配合することが考えらえる。しかしながら、ポリアセタール樹脂にエラストマーやシリコーンを配合すると、得られる成形品のウエルド伸びが悪くなってしまう傾向にある。ウエルド伸びが悪くなると、成形品の強度が低下してしまう。
本発明は、上記課題を解決することを目的とするものであって、適度な軟質性に優れ、摺動性に優れ、かつ、ウエルド伸びに優れた成形品が得られる樹脂組成物、および、前記樹脂組成物から形成された成形品を提供することを目的とする。 A molded article obtained from a resin composition containing a polyacetal resin and an elastomer described in Patent Document 1 has excellent flexibility. On the other hand, as the uses of polyacetal resins have expanded in recent years, there has been a demand for resin compositions that can yield molded products that are flexible and have excellent sliding properties.
Here, in order to improve sliding properties, it is conceivable to blend silicone into the polyacetal resin. However, when an elastomer or silicone is blended with a polyacetal resin, the weld elongation of the resulting molded product tends to be poor. When weld elongation deteriorates, the strength of the molded product decreases.
The present invention aims to solve the above-mentioned problems, and provides a resin composition from which a molded article having moderate flexibility, excellent sliding properties, and excellent weld elongation can be obtained, and It is an object of the present invention to provide a molded article formed from the resin composition.
ここで、摺動性を高めるために、ポリアセタール樹脂にシリコーンを配合することが考えらえる。しかしながら、ポリアセタール樹脂にエラストマーやシリコーンを配合すると、得られる成形品のウエルド伸びが悪くなってしまう傾向にある。ウエルド伸びが悪くなると、成形品の強度が低下してしまう。
本発明は、上記課題を解決することを目的とするものであって、適度な軟質性に優れ、摺動性に優れ、かつ、ウエルド伸びに優れた成形品が得られる樹脂組成物、および、前記樹脂組成物から形成された成形品を提供することを目的とする。 A molded article obtained from a resin composition containing a polyacetal resin and an elastomer described in Patent Document 1 has excellent flexibility. On the other hand, as the uses of polyacetal resins have expanded in recent years, there has been a demand for resin compositions that can yield molded products that are flexible and have excellent sliding properties.
Here, in order to improve sliding properties, it is conceivable to blend silicone into the polyacetal resin. However, when an elastomer or silicone is blended with a polyacetal resin, the weld elongation of the resulting molded product tends to be poor. When weld elongation deteriorates, the strength of the molded product decreases.
The present invention aims to solve the above-mentioned problems, and provides a resin composition from which a molded article having moderate flexibility, excellent sliding properties, and excellent weld elongation can be obtained, and It is an object of the present invention to provide a molded article formed from the resin composition.
上記課題のもと、本発明者が検討を行った結果、ポリアセタール樹脂に、ポリアセタール樹脂中で所定の平均2次粒子径となるコアシェルエラストマーと、所定の動粘度を有するシリコーンを所定量配合することにより、上記課題を解決しうることを見出した。
具体的には、下記手段により、上記課題は解決された。
<1>ポリアセタール樹脂(A)とコアシェルエラストマー(B)とシリコーン(C)とを含む樹脂組成物であって、
前記コアシェルエラストマー(B)が、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmであり、
前記コアシェルエラストマー(B)の含有量が樹脂組成物中、5~25質量%であり、
前記シリコーン(C)の25℃における動粘度が400万~3000万cStであり、かつ、含有量が樹脂組成物中、0.3~1質量%である、樹脂組成物。
<2>前記コアシェルエラストマー(B)の架橋指数が0.11~0.30の範囲である、<1>に記載の樹脂組成物。
<3>前記コアシェルエラストマー(B)において、コアがブタジエン含有ゴムを含み、シェルがアクリル系樹脂を含む、<1>または<2>に記載の樹脂組成物。
<4>さらに、ヒドラジド化合物および/または尿素化合物を含む、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が、8~40である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>トリムクリップ成形用である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記コアシェルエラストマー(B)の架橋指数が0.11~0.30の範囲であり、前記コアシェルエラストマー(B)において、コアがブタジエン含有ゴムを含み、シェルがアクリル系樹脂を含み、さらに、ヒドラジド化合物および/または尿素化合物を含み、前記コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が8~40であり、トリムクリップ成形用である、<1>に記載の樹脂組成物。
<8><1>~<7>のいずれか1つに記載の樹脂組成物のペレット。
<9><1>~<7>のいずれか1つに記載の樹脂組成物から形成された成形品。
<10><8>に記載のペレットから形成された成形品。
<11>トリムクリップである、<9>に記載の成形品。 Based on the above-mentioned problem, the present inventor conducted a study and found that a predetermined amount of a core-shell elastomer having a predetermined average secondary particle diameter in the polyacetal resin and a silicone having a predetermined kinematic viscosity are blended into the polyacetal resin. We have found that the above problems can be solved by this method.
Specifically, the above problem was solved by the following means.
<1> A resin composition containing a polyacetal resin (A), a core-shell elastomer (B), and a silicone (C),
The core-shell elastomer (B) has an average secondary particle diameter of 10 to 250 nm in the polyacetal resin (A),
The content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition,
A resin composition, wherein the silicone (C) has a kinematic viscosity at 25° C. of 4 million to 30 million cSt, and the content thereof is 0.3 to 1% by mass in the resin composition.
<2> The resin composition according to <1>, wherein the core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30.
<3> The resin composition according to <1> or <2>, wherein in the core-shell elastomer (B), the core contains a butadiene-containing rubber and the shell contains an acrylic resin.
<4> The resin composition according to any one of <1> to <3>, further comprising a hydrazide compound and/or a urea compound.
<5> The resin according to any one of <1> to <4>, wherein the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40. Composition.
<6> The resin composition according to any one of <1> to <5>, which is used for trim clip molding.
<7> The core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30, and in the core-shell elastomer (B), the core contains a butadiene-containing rubber, the shell contains an acrylic resin, and , contains a hydrazide compound and/or a urea compound, the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40, and is for trim clip molding, <1 >The resin composition described in >.
<8> Pellets of the resin composition according to any one of <1> to <7>.
<9> A molded article formed from the resin composition according to any one of <1> to <7>.
<10> A molded article formed from the pellets described in <8>.
<11> The molded product according to <9>, which is a trim clip.
具体的には、下記手段により、上記課題は解決された。
<1>ポリアセタール樹脂(A)とコアシェルエラストマー(B)とシリコーン(C)とを含む樹脂組成物であって、
前記コアシェルエラストマー(B)が、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmであり、
前記コアシェルエラストマー(B)の含有量が樹脂組成物中、5~25質量%であり、
前記シリコーン(C)の25℃における動粘度が400万~3000万cStであり、かつ、含有量が樹脂組成物中、0.3~1質量%である、樹脂組成物。
<2>前記コアシェルエラストマー(B)の架橋指数が0.11~0.30の範囲である、<1>に記載の樹脂組成物。
<3>前記コアシェルエラストマー(B)において、コアがブタジエン含有ゴムを含み、シェルがアクリル系樹脂を含む、<1>または<2>に記載の樹脂組成物。
<4>さらに、ヒドラジド化合物および/または尿素化合物を含む、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が、8~40である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>トリムクリップ成形用である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記コアシェルエラストマー(B)の架橋指数が0.11~0.30の範囲であり、前記コアシェルエラストマー(B)において、コアがブタジエン含有ゴムを含み、シェルがアクリル系樹脂を含み、さらに、ヒドラジド化合物および/または尿素化合物を含み、前記コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が8~40であり、トリムクリップ成形用である、<1>に記載の樹脂組成物。
<8><1>~<7>のいずれか1つに記載の樹脂組成物のペレット。
<9><1>~<7>のいずれか1つに記載の樹脂組成物から形成された成形品。
<10><8>に記載のペレットから形成された成形品。
<11>トリムクリップである、<9>に記載の成形品。 Based on the above-mentioned problem, the present inventor conducted a study and found that a predetermined amount of a core-shell elastomer having a predetermined average secondary particle diameter in the polyacetal resin and a silicone having a predetermined kinematic viscosity are blended into the polyacetal resin. We have found that the above problems can be solved by this method.
Specifically, the above problem was solved by the following means.
<1> A resin composition containing a polyacetal resin (A), a core-shell elastomer (B), and a silicone (C),
The core-shell elastomer (B) has an average secondary particle diameter of 10 to 250 nm in the polyacetal resin (A),
The content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition,
A resin composition, wherein the silicone (C) has a kinematic viscosity at 25° C. of 4 million to 30 million cSt, and the content thereof is 0.3 to 1% by mass in the resin composition.
<2> The resin composition according to <1>, wherein the core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30.
<3> The resin composition according to <1> or <2>, wherein in the core-shell elastomer (B), the core contains a butadiene-containing rubber and the shell contains an acrylic resin.
<4> The resin composition according to any one of <1> to <3>, further comprising a hydrazide compound and/or a urea compound.
<5> The resin according to any one of <1> to <4>, wherein the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40. Composition.
<6> The resin composition according to any one of <1> to <5>, which is used for trim clip molding.
<7> The core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30, and in the core-shell elastomer (B), the core contains a butadiene-containing rubber, the shell contains an acrylic resin, and , contains a hydrazide compound and/or a urea compound, the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40, and is for trim clip molding, <1 >The resin composition described in >.
<8> Pellets of the resin composition according to any one of <1> to <7>.
<9> A molded article formed from the resin composition according to any one of <1> to <7>.
<10> A molded article formed from the pellets described in <8>.
<11> The molded product according to <9>, which is a trim clip.
本発明により、適度な軟質性に優れ、摺動性に優れ、かつ、ウエルド伸びに優れた成形品が得られる樹脂組成物、および、前記樹脂組成物から形成された成形品を提供可能になった。
ADVANTAGE OF THE INVENTION According to the present invention, it has become possible to provide a resin composition from which a molded article with moderate flexibility, excellent sliding properties, and excellent weld elongation can be obtained, and a molded article formed from the resin composition. Ta.
以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail. Note that the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
In addition, in this specification, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
In this specification, various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.
If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail. Note that the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
In addition, in this specification, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
In this specification, various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.
If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
本実施形態の樹脂組成物は、ポリアセタール樹脂(A)とコアシェルエラストマー(B)とシリコーン(C)とを含む樹脂組成物であって、前記コアシェルエラストマー(B)が、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmであり、前記コアシェルエラストマー(B)の含有量が樹脂組成物中、5~25質量%であり、前記シリコーン(C)の25℃における動粘度が400万~3000万cStであり、かつ、含有量が樹脂組成物中、0.3~1質量%であることを特徴とする。このような樹脂組成物を採用することにより、軟質性に優れ、摺動性に優れ、かつ、ウエルド伸びに優れた成形品が得られる樹脂組成物が得られる。
ポリアセタール樹脂(A)にエラストマーを配合すると、得られる成形品の軟質性が向上する傾向にある。一方、シリコーンを配合すると、摺動性が向上する傾向にある。しかしながら、ポリアセタール樹脂(A)にエラストマーやシリコーンを配合すると、ウエルド伸びが劣ってしまう傾向にある。本発明においては、かかる課題を解決するために、エラストマーとして、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmであるコアシェルエラストマー(B)を配合した。コアシェルエラストマー(B)の平均2次粒子径を所定の範囲とすることにより、コアシェルエラストマー(B)とポリアセタール樹脂(A)の間にかかる界面の力も小さくなり、ウエルド伸びを高くすることができると推測される。また、シリコーン(C)として所定の動粘度のものを所定量用いることにより、摺動性を維持しつつ、ウエルド伸びの低下を効果的に抑制できたと推測される。 The resin composition of the present embodiment is a resin composition containing a polyacetal resin (A), a core-shell elastomer (B), and a silicone (C), in which the core-shell elastomer (B) is contained in the polyacetal resin (A). , the average secondary particle diameter is 10 to 250 nm, the content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition, and the kinematic viscosity of the silicone (C) at 25°C is 4 million ~30 million cSt, and the content is 0.3~1% by mass in the resin composition. By employing such a resin composition, it is possible to obtain a resin composition from which a molded article having excellent flexibility, excellent sliding properties, and excellent weld elongation can be obtained.
When an elastomer is blended with the polyacetal resin (A), the flexibility of the resulting molded product tends to improve. On the other hand, when silicone is blended, the sliding properties tend to improve. However, when an elastomer or silicone is blended with the polyacetal resin (A), weld elongation tends to be poor. In the present invention, in order to solve this problem, a core-shell elastomer (B) having an average secondary particle diameter of 10 to 250 nm is blended into the polyacetal resin (A) as an elastomer. By setting the average secondary particle diameter of the core-shell elastomer (B) within a predetermined range, the interfacial force applied between the core-shell elastomer (B) and the polyacetal resin (A) can be reduced, and weld elongation can be increased. Guessed. Furthermore, it is presumed that by using a predetermined amount of silicone (C) having a predetermined kinematic viscosity, it was possible to effectively suppress a decrease in weld elongation while maintaining sliding properties.
ポリアセタール樹脂(A)にエラストマーを配合すると、得られる成形品の軟質性が向上する傾向にある。一方、シリコーンを配合すると、摺動性が向上する傾向にある。しかしながら、ポリアセタール樹脂(A)にエラストマーやシリコーンを配合すると、ウエルド伸びが劣ってしまう傾向にある。本発明においては、かかる課題を解決するために、エラストマーとして、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmであるコアシェルエラストマー(B)を配合した。コアシェルエラストマー(B)の平均2次粒子径を所定の範囲とすることにより、コアシェルエラストマー(B)とポリアセタール樹脂(A)の間にかかる界面の力も小さくなり、ウエルド伸びを高くすることができると推測される。また、シリコーン(C)として所定の動粘度のものを所定量用いることにより、摺動性を維持しつつ、ウエルド伸びの低下を効果的に抑制できたと推測される。 The resin composition of the present embodiment is a resin composition containing a polyacetal resin (A), a core-shell elastomer (B), and a silicone (C), in which the core-shell elastomer (B) is contained in the polyacetal resin (A). , the average secondary particle diameter is 10 to 250 nm, the content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition, and the kinematic viscosity of the silicone (C) at 25°C is 4 million ~30 million cSt, and the content is 0.3~1% by mass in the resin composition. By employing such a resin composition, it is possible to obtain a resin composition from which a molded article having excellent flexibility, excellent sliding properties, and excellent weld elongation can be obtained.
When an elastomer is blended with the polyacetal resin (A), the flexibility of the resulting molded product tends to improve. On the other hand, when silicone is blended, the sliding properties tend to improve. However, when an elastomer or silicone is blended with the polyacetal resin (A), weld elongation tends to be poor. In the present invention, in order to solve this problem, a core-shell elastomer (B) having an average secondary particle diameter of 10 to 250 nm is blended into the polyacetal resin (A) as an elastomer. By setting the average secondary particle diameter of the core-shell elastomer (B) within a predetermined range, the interfacial force applied between the core-shell elastomer (B) and the polyacetal resin (A) can be reduced, and weld elongation can be increased. Guessed. Furthermore, it is presumed that by using a predetermined amount of silicone (C) having a predetermined kinematic viscosity, it was possible to effectively suppress a decrease in weld elongation while maintaining sliding properties.
<ポリアセタール樹脂(A)>
本実施形態の樹脂組成物(A)は、ポリアセタール樹脂を含む。
ポリアセタール樹脂は特に限定されるものではなく、2価のオキシメチレン基のみを構成単位として含むホモポリマーであっても、2価のオキシメチレン基と、炭素数が2~6の2価のオキシアルキレン基とを構成単位として含むコポリマーであってもよい。 <Polyacetal resin (A)>
The resin composition (A) of this embodiment contains a polyacetal resin.
The polyacetal resin is not particularly limited, and even if it is a homopolymer containing only divalent oxymethylene groups as a constituent unit, it may contain a divalent oxymethylene group and a divalent oxyalkylene having 2 to 6 carbon atoms. It may also be a copolymer containing the group as a constituent unit.
本実施形態の樹脂組成物(A)は、ポリアセタール樹脂を含む。
ポリアセタール樹脂は特に限定されるものではなく、2価のオキシメチレン基のみを構成単位として含むホモポリマーであっても、2価のオキシメチレン基と、炭素数が2~6の2価のオキシアルキレン基とを構成単位として含むコポリマーであってもよい。 <Polyacetal resin (A)>
The resin composition (A) of this embodiment contains a polyacetal resin.
The polyacetal resin is not particularly limited, and even if it is a homopolymer containing only divalent oxymethylene groups as a constituent unit, it may contain a divalent oxymethylene group and a divalent oxyalkylene having 2 to 6 carbon atoms. It may also be a copolymer containing the group as a constituent unit.
炭素数が2~6のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、および、オキシブチレン基などが挙げられる。
Examples of the oxyalkylene group having 2 to 6 carbon atoms include oxyethylene group, oxypropylene group, and oxybutylene group.
ポリアセタール樹脂においては、オキシメチレン基および炭素数2~6のオキシアルキレン基の総モル数に占める炭素数2~6のオキシアルキレン基の割合は特に限定されるものではなく、0.5~10モル%であればよい。
In the polyacetal resin, the proportion of the oxyalkylene group having 2 to 6 carbon atoms in the total number of moles of the oxymethylene group and the oxyalkylene group having 2 to 6 carbon atoms is not particularly limited, and is 0.5 to 10 mol. % is sufficient.
上記ポリアセタール樹脂を製造するためには通常、主原料としてトリオキサンが用いられる。また、ポリアセタール樹脂中に炭素数2~6のオキシアルキレン基を導入するには、環状ホルマールや環状エーテルを用いることができる。環状ホルマールの具体例としては、1,3-ジオキソラン、1,3-ジオキサン、1,3-ジオキセパン、1,3-ジオキソカン、1,3,5-トリオキセパン、1,3,6-トリオキソカンなどが挙げられ、環状エーテルの具体例としては、エチレンオキシド、プロピレンオキシドおよびブチレンオキシドなどが挙げられる。ポリアセタール樹脂中にオキシエチレン基を導入するには、主原料として、1,3-ジオキソランを用いればよく、オキシプロピレン基を導入するには、主原料として、1,3-ジオキサンを用いればよく、オキシブチレン基を導入するには、主原料として、1,3-ジオキセパンを用いればよい。なお、ポリアセタール樹脂においては、ヘミホルマール末端基量、ホルミル末端基量、熱や酸、塩基に対して不安定な末端基量が少ない方がよい。ここで、ヘミホルマール末端基とは、-OCH2OHで表されるものであり、ホルミル末端基とは-CHOで表されるものである。
In order to manufacture the above polyacetal resin, trioxane is usually used as the main raw material. Further, in order to introduce an oxyalkylene group having 2 to 6 carbon atoms into the polyacetal resin, a cyclic formal or a cyclic ether can be used. Specific examples of cyclic formals include 1,3-dioxolane, 1,3-dioxane, 1,3-dioxepane, 1,3-dioxocane, 1,3,5-trioxepane, 1,3,6-trioxocane, etc. Specific examples of the cyclic ether include ethylene oxide, propylene oxide, and butylene oxide. To introduce oxyethylene groups into polyacetal resin, 1,3-dioxolane may be used as the main raw material, and to introduce oxypropylene groups, 1,3-dioxane may be used as the main raw material. In order to introduce an oxybutylene group, 1,3-dioxepane may be used as the main raw material. In addition, in the polyacetal resin, the amount of hemiformal terminal groups, the amount of formyl terminal groups, and the amount of terminal groups unstable to heat, acids, and bases is preferably small. Here, the hemiformal end group is represented by -OCH 2 OH, and the formyl end group is represented by -CHO.
ポリアセタール樹脂としては、上記の他、特開2015-074724号公報の段落0018~0043に記載のポリアセタール樹脂を用いることができ、これらの内容は本明細書に組み込まれる。
As the polyacetal resin, in addition to the above, polyacetal resins described in paragraphs 0018 to 0043 of JP 2015-074724A can be used, the contents of which are incorporated herein.
本実施形態の樹脂組成物(A)は、樹脂組成物(A)中、ポリアセタール樹脂を70質量%以上含むことが好ましく、75質量%以上含むことがより好ましく、80質量%以上含むことがさらに好ましく、85質量%以上含むことがさらに好ましい。上限は、95質量%以下であることが好ましく、92質量%以下であることがより好ましい。
本実施形態の樹脂組成物は、ポリアセタール樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The resin composition (A) of the present embodiment preferably contains 70% by mass or more of polyacetal resin, more preferably 75% by mass or more, and further preferably contains 80% by mass or more. Preferably, it is more preferably contained in an amount of 85% by mass or more. The upper limit is preferably 95% by mass or less, more preferably 92% by mass or less.
The resin composition of this embodiment may contain only one type of polyacetal resin, or may contain two or more types of polyacetal resin. When two or more types are included, it is preferable that the total amount falls within the above range.
本実施形態の樹脂組成物は、ポリアセタール樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The resin composition (A) of the present embodiment preferably contains 70% by mass or more of polyacetal resin, more preferably 75% by mass or more, and further preferably contains 80% by mass or more. Preferably, it is more preferably contained in an amount of 85% by mass or more. The upper limit is preferably 95% by mass or less, more preferably 92% by mass or less.
The resin composition of this embodiment may contain only one type of polyacetal resin, or may contain two or more types of polyacetal resin. When two or more types are included, it is preferable that the total amount falls within the above range.
<コアシェルエラストマー(B)>
本実施形態の樹脂組成物は、コアシェルエラストマー(B)を含む。エラストマーを用いることにより、得られる成形品に軟質性を付与することができる。また、エラストマーとして、コアシェルエラストマーを用いることにより、ウエルド伸びの低下を効果的に抑制できる。さらに、コアシェルエラストマー(B)が、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmとなるように調整することにより、軟質性を高く維持したまま、ウエルド伸びの低下を効果的に抑制できる。
コアシェルエラストマーとは、コア部とその一部または全部を被覆するシェル層を有する多層構造のポリマーであり、カネカ社のカネエースシリーズや三菱ケミカル社のメタブレンシリーズが知られている。 <Core shell elastomer (B)>
The resin composition of this embodiment includes a core-shell elastomer (B). By using an elastomer, flexibility can be imparted to the resulting molded product. Further, by using a core-shell elastomer as the elastomer, a decrease in weld elongation can be effectively suppressed. Furthermore, by adjusting the core-shell elastomer (B) to have an average secondary particle size of 10 to 250 nm in the polyacetal resin (A), it is possible to effectively reduce weld elongation while maintaining high flexibility. can be suppressed to
A core-shell elastomer is a polymer with a multilayer structure having a core part and a shell layer covering part or all of the core part, and Kaneka Corporation's Kane Ace series and Mitsubishi Chemical Corporation's Metablen series are known.
本実施形態の樹脂組成物は、コアシェルエラストマー(B)を含む。エラストマーを用いることにより、得られる成形品に軟質性を付与することができる。また、エラストマーとして、コアシェルエラストマーを用いることにより、ウエルド伸びの低下を効果的に抑制できる。さらに、コアシェルエラストマー(B)が、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmとなるように調整することにより、軟質性を高く維持したまま、ウエルド伸びの低下を効果的に抑制できる。
コアシェルエラストマーとは、コア部とその一部または全部を被覆するシェル層を有する多層構造のポリマーであり、カネカ社のカネエースシリーズや三菱ケミカル社のメタブレンシリーズが知られている。 <Core shell elastomer (B)>
The resin composition of this embodiment includes a core-shell elastomer (B). By using an elastomer, flexibility can be imparted to the resulting molded product. Further, by using a core-shell elastomer as the elastomer, a decrease in weld elongation can be effectively suppressed. Furthermore, by adjusting the core-shell elastomer (B) to have an average secondary particle size of 10 to 250 nm in the polyacetal resin (A), it is possible to effectively reduce weld elongation while maintaining high flexibility. can be suppressed to
A core-shell elastomer is a polymer with a multilayer structure having a core part and a shell layer covering part or all of the core part, and Kaneka Corporation's Kane Ace series and Mitsubishi Chemical Corporation's Metablen series are known.
コアシェルエラストマー(B)の平均2次粒子径は、ポリアセタール樹脂(A)中において10~250nmである。コアシェルエラストマー(B)の平均2次粒子径を250nm以下とすることにより、ポリアセタール樹脂(A)中でコアシェルエラストマー(B)が分散しやすくなり、ウエルド伸びを高くすることができる。これは、コアシェルエラストマー(B)の平均2次粒子径が大きくなると、コアシェルエラストマー(B)が成形品中の破壊起点となってしまうためである。また、コアシェルエラストマー(B)とポリアセタール樹脂(A)の間にかかる界面の力も小さくなり、ウエルド伸びを高くできる。このようなポリアセタール樹脂(A)中のコアシェルエラストマー(B)の平均2次粒子径は、コアシェルエラストマー(B)の種類の選択、ポリアセタール樹脂の流動性、溶融混練の条件などを調整することによって達成される。
The average secondary particle diameter of the core-shell elastomer (B) in the polyacetal resin (A) is 10 to 250 nm. By setting the average secondary particle diameter of the core-shell elastomer (B) to 250 nm or less, the core-shell elastomer (B) is easily dispersed in the polyacetal resin (A), and weld elongation can be increased. This is because when the average secondary particle diameter of the core-shell elastomer (B) becomes large, the core-shell elastomer (B) becomes a starting point for fracture in the molded product. Moreover, the interfacial force applied between the core-shell elastomer (B) and the polyacetal resin (A) is also reduced, and weld elongation can be increased. Such an average secondary particle diameter of the core-shell elastomer (B) in the polyacetal resin (A) can be achieved by adjusting the selection of the type of core-shell elastomer (B), the fluidity of the polyacetal resin, the melt-kneading conditions, etc. be done.
コアシェルエラストマー(B)の平均2次粒子径は、240nm以下であることが好ましく、210nm以下であることがより好ましく、180nm以下であることがさらに好ましく、150nm以下であることが一層好ましく、120nm以下であることがより一層好ましい。また、30nm以上であることがより好ましく、50nm以上であることがさらに好ましく、80nm以上であることが一層好ましく、100nm以上であることがより一層好ましい。
コアシェルエラストマー(B)の平均2次粒子径は、後述する実施例の記載に従って測定される。 The average secondary particle diameter of the core-shell elastomer (B) is preferably 240 nm or less, more preferably 210 nm or less, even more preferably 180 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less. It is even more preferable that Moreover, it is more preferably 30 nm or more, even more preferably 50 nm or more, even more preferably 80 nm or more, and even more preferably 100 nm or more.
The average secondary particle diameter of the core-shell elastomer (B) is measured according to the description in the examples below.
コアシェルエラストマー(B)の平均2次粒子径は、後述する実施例の記載に従って測定される。 The average secondary particle diameter of the core-shell elastomer (B) is preferably 240 nm or less, more preferably 210 nm or less, even more preferably 180 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less. It is even more preferable that Moreover, it is more preferably 30 nm or more, even more preferably 50 nm or more, even more preferably 80 nm or more, and even more preferably 100 nm or more.
The average secondary particle diameter of the core-shell elastomer (B) is measured according to the description in the examples below.
本実施形態で用いるコアシェルエラストマー(B)は、架橋指数が0.11~0.30の範囲であることが好ましい。
コアシェルエラストマー(B)の架橋指数は、0.15以上がより好ましく、0.19以上がさらに好ましく、また、0.29以下が好ましく、0.28以下がより好ましく、0.27以下がさらに好ましい。架橋指数とは、コアシェルエラストマーのコア部における分子間架橋の度合いを意味する。すなわち架橋指数が大きいほどエラストマーとしては硬く、架橋指数が小さいほどエラストマーとしては柔らかくなる。架橋指数を前記下限値以上とすることにより、ウエルド伸びが高くなる。これは、エラストマーが硬い方が成形時にウエルド部にかかる力により変形せず、その球状の形状を保てるためと推測される。また、架橋指数を前記上限値以下とすることにより、エラストマーの役割である衝撃吸収ができず耐衝撃性がより効果的に発揮される傾向にある。
コアシェルエラストマー(B)の架橋指数は、例えば、コアシェルエラストマー生産時の重合条件によって調整することができる。
コアシェルエラストマー(B)の架橋指数は、後述する実施例に記載の方法によって、測定し、算出される。 The core-shell elastomer (B) used in this embodiment preferably has a crosslinking index in the range of 0.11 to 0.30.
The crosslinking index of the core-shell elastomer (B) is more preferably 0.15 or more, further preferably 0.19 or more, and preferably 0.29 or less, more preferably 0.28 or less, and even more preferably 0.27 or less. . The crosslinking index means the degree of intermolecular crosslinking in the core portion of the core-shell elastomer. That is, the larger the crosslinking index, the harder the elastomer, and the smaller the crosslinking index, the softer the elastomer. By setting the crosslinking index to the lower limit value or more, weld elongation becomes high. This is presumably because the harder the elastomer is, the more it will not be deformed by the force applied to the weld portion during molding, and will be able to maintain its spherical shape. Furthermore, by setting the crosslinking index to be less than or equal to the upper limit value, the impact resistance, which is the role of the elastomer, cannot be absorbed, and impact resistance tends to be more effectively exhibited.
The crosslinking index of the core-shell elastomer (B) can be adjusted, for example, by the polymerization conditions during production of the core-shell elastomer.
The crosslinking index of the core-shell elastomer (B) is measured and calculated by the method described in the Examples below.
コアシェルエラストマー(B)の架橋指数は、0.15以上がより好ましく、0.19以上がさらに好ましく、また、0.29以下が好ましく、0.28以下がより好ましく、0.27以下がさらに好ましい。架橋指数とは、コアシェルエラストマーのコア部における分子間架橋の度合いを意味する。すなわち架橋指数が大きいほどエラストマーとしては硬く、架橋指数が小さいほどエラストマーとしては柔らかくなる。架橋指数を前記下限値以上とすることにより、ウエルド伸びが高くなる。これは、エラストマーが硬い方が成形時にウエルド部にかかる力により変形せず、その球状の形状を保てるためと推測される。また、架橋指数を前記上限値以下とすることにより、エラストマーの役割である衝撃吸収ができず耐衝撃性がより効果的に発揮される傾向にある。
コアシェルエラストマー(B)の架橋指数は、例えば、コアシェルエラストマー生産時の重合条件によって調整することができる。
コアシェルエラストマー(B)の架橋指数は、後述する実施例に記載の方法によって、測定し、算出される。 The core-shell elastomer (B) used in this embodiment preferably has a crosslinking index in the range of 0.11 to 0.30.
The crosslinking index of the core-shell elastomer (B) is more preferably 0.15 or more, further preferably 0.19 or more, and preferably 0.29 or less, more preferably 0.28 or less, and even more preferably 0.27 or less. . The crosslinking index means the degree of intermolecular crosslinking in the core portion of the core-shell elastomer. That is, the larger the crosslinking index, the harder the elastomer, and the smaller the crosslinking index, the softer the elastomer. By setting the crosslinking index to the lower limit value or more, weld elongation becomes high. This is presumably because the harder the elastomer is, the more it will not be deformed by the force applied to the weld portion during molding, and will be able to maintain its spherical shape. Furthermore, by setting the crosslinking index to be less than or equal to the upper limit value, the impact resistance, which is the role of the elastomer, cannot be absorbed, and impact resistance tends to be more effectively exhibited.
The crosslinking index of the core-shell elastomer (B) can be adjusted, for example, by the polymerization conditions during production of the core-shell elastomer.
The crosslinking index of the core-shell elastomer (B) is measured and calculated by the method described in the Examples below.
本実施形態で用いるコアシェルエラストマー(B)の種類は特に問わないが、コアは、ゴム系ポリマーが好ましい。ゴム系ポリマーとしては、ブタジエン含有ゴム、ブチルアクリレ-ト含有ゴム、2-エチルヘキシルアクリレ-ト含有ゴム、シリコ-ン系ゴムから選ばれる少なくとも1種を含むことが好ましく、ブタジエン含有ゴムを含むことがより好ましい。シェルは、(メタ)アクリル酸エステル、芳香族ビニル化合物等の1種または2種以上の単量体の重合体が好ましく、(メタ)アクリル酸エステル由来の単位が全体の50質量%以上を占める重合体(アクリル系樹脂)がより好ましい。
本実施形態で用いるコアシェルエラストマー(B)は、コアがゴム系ポリマーを含み、シェルがアクリル系樹脂を含むことが好ましい。このようなコアシェルエラストマーを用いると、本発明の効果がより効果的に発揮される傾向にある。 Although the type of core-shell elastomer (B) used in this embodiment is not particularly limited, the core is preferably a rubber-based polymer. The rubber-based polymer preferably contains at least one selected from butadiene-containing rubber, butyl acrylate-containing rubber, 2-ethylhexyl acrylate-containing rubber, and silicone-based rubber, and preferably contains butadiene-containing rubber. More preferred. The shell is preferably a polymer of one or more monomers such as (meth)acrylic esters and aromatic vinyl compounds, and units derived from (meth)acrylic esters account for 50% by mass or more of the whole. Polymers (acrylic resins) are more preferred.
In the core-shell elastomer (B) used in this embodiment, it is preferable that the core contains a rubber-based polymer and the shell contains an acrylic resin. When such a core-shell elastomer is used, the effects of the present invention tend to be more effectively exhibited.
本実施形態で用いるコアシェルエラストマー(B)は、コアがゴム系ポリマーを含み、シェルがアクリル系樹脂を含むことが好ましい。このようなコアシェルエラストマーを用いると、本発明の効果がより効果的に発揮される傾向にある。 Although the type of core-shell elastomer (B) used in this embodiment is not particularly limited, the core is preferably a rubber-based polymer. The rubber-based polymer preferably contains at least one selected from butadiene-containing rubber, butyl acrylate-containing rubber, 2-ethylhexyl acrylate-containing rubber, and silicone-based rubber, and preferably contains butadiene-containing rubber. More preferred. The shell is preferably a polymer of one or more monomers such as (meth)acrylic esters and aromatic vinyl compounds, and units derived from (meth)acrylic esters account for 50% by mass or more of the whole. Polymers (acrylic resins) are more preferred.
In the core-shell elastomer (B) used in this embodiment, it is preferable that the core contains a rubber-based polymer and the shell contains an acrylic resin. When such a core-shell elastomer is used, the effects of the present invention tend to be more effectively exhibited.
本実施形態の樹脂組成物は、コアシェルエラストマー(B)を5質量%以上含み、6質量%以上含むことが好ましく、7質量%以上含むことがより好ましく、8質量%以上含むことがさらに好ましい。前記下限値以上とすることにより、得られる成形品の軟質性が向上する傾向にある。前記コアシェルエラストマー(B)の含有量の上限は、25質量%以下であり、22質量%以下であることが好ましく、18質量%以下であることが一層好ましく、16質量%以下であることがより一層好ましく、14質量%以下であってもよい。上記上限値以下とすることにより、軟質性とウエルド伸びをバランスよく向上させることができる。
本実施形態の樹脂組成物は、コアシェルエラストマー(B)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The resin composition of the present embodiment contains the core-shell elastomer (B) in an amount of 5% by mass or more, preferably 6% by mass or more, more preferably 7% by mass or more, and even more preferably 8% by mass or more. When the content is equal to or more than the lower limit, the resulting molded product tends to have improved flexibility. The upper limit of the content of the core-shell elastomer (B) is 25% by mass or less, preferably 22% by mass or less, more preferably 18% by mass or less, and more preferably 16% by mass or less. More preferably, it may be 14% by mass or less. By setting it below the above-mentioned upper limit, softness and weld elongation can be improved in a well-balanced manner.
The resin composition of this embodiment may contain only one type of core-shell elastomer (B), or may contain two or more types of core-shell elastomer (B). When two or more types are included, it is preferable that the total amount falls within the above range.
本実施形態の樹脂組成物は、コアシェルエラストマー(B)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The resin composition of the present embodiment contains the core-shell elastomer (B) in an amount of 5% by mass or more, preferably 6% by mass or more, more preferably 7% by mass or more, and even more preferably 8% by mass or more. When the content is equal to or more than the lower limit, the resulting molded product tends to have improved flexibility. The upper limit of the content of the core-shell elastomer (B) is 25% by mass or less, preferably 22% by mass or less, more preferably 18% by mass or less, and more preferably 16% by mass or less. More preferably, it may be 14% by mass or less. By setting it below the above-mentioned upper limit, softness and weld elongation can be improved in a well-balanced manner.
The resin composition of this embodiment may contain only one type of core-shell elastomer (B), or may contain two or more types of core-shell elastomer (B). When two or more types are included, it is preferable that the total amount falls within the above range.
<シリコーン(C)>
本実施形態の樹脂組成物は、シリコーン(C)を含む。シリコーン(C)を含むことにより、得られる成形品の摺動性を向上させることができる。
本実施形態で用いるシリコーン化合物(C)の25℃における動粘度は400万cSt以上であり、700万cSt以上であることが好ましく、1000万cSt以上であることがより好ましい。前記下限値以上とすることにより、限界PV値がより向上する傾向にある。また、前記シリコーン化合物(C)の25℃における動粘度は、3000万cSt以下であり、2800万cSt以下であることが好ましく、2500万cSt以下であることがより好ましく、2000万cSt以下であることがさらに好ましい。前記上限値以下とすることにより、シリコーン(C)のポリアセタール樹脂への分散性が向上し、ウエルド伸びがより向上する傾向にある。 <Silicone (C)>
The resin composition of this embodiment contains silicone (C). By including silicone (C), the slidability of the obtained molded product can be improved.
The kinematic viscosity at 25° C. of the silicone compound (C) used in this embodiment is 4 million cSt or more, preferably 7 million cSt or more, and more preferably 10 million cSt or more. By setting it above the lower limit value, the limit PV value tends to be further improved. Further, the kinematic viscosity at 25°C of the silicone compound (C) is 30 million cSt or less, preferably 28 million cSt or less, more preferably 25 million cSt or less, and 20 million cSt or less. It is even more preferable. By setting it below the above-mentioned upper limit, the dispersibility of silicone (C) in the polyacetal resin is improved, and weld elongation tends to be further improved.
本実施形態の樹脂組成物は、シリコーン(C)を含む。シリコーン(C)を含むことにより、得られる成形品の摺動性を向上させることができる。
本実施形態で用いるシリコーン化合物(C)の25℃における動粘度は400万cSt以上であり、700万cSt以上であることが好ましく、1000万cSt以上であることがより好ましい。前記下限値以上とすることにより、限界PV値がより向上する傾向にある。また、前記シリコーン化合物(C)の25℃における動粘度は、3000万cSt以下であり、2800万cSt以下であることが好ましく、2500万cSt以下であることがより好ましく、2000万cSt以下であることがさらに好ましい。前記上限値以下とすることにより、シリコーン(C)のポリアセタール樹脂への分散性が向上し、ウエルド伸びがより向上する傾向にある。 <Silicone (C)>
The resin composition of this embodiment contains silicone (C). By including silicone (C), the slidability of the obtained molded product can be improved.
The kinematic viscosity at 25° C. of the silicone compound (C) used in this embodiment is 4 million cSt or more, preferably 7 million cSt or more, and more preferably 10 million cSt or more. By setting it above the lower limit value, the limit PV value tends to be further improved. Further, the kinematic viscosity at 25°C of the silicone compound (C) is 30 million cSt or less, preferably 28 million cSt or less, more preferably 25 million cSt or less, and 20 million cSt or less. It is even more preferable. By setting it below the above-mentioned upper limit, the dispersibility of silicone (C) in the polyacetal resin is improved, and weld elongation tends to be further improved.
シリコーン化合物(C)は、具体的には特に定めるものではないが、ポリオルガノシロキサンが好ましい。ポリオルガノシロキサンが有していてもよい有機基としては、炭素数が2~20のアルキル基、フェニル基、ハロゲン化フェニル基、シリコーン含有基、エポキシ基、アミノ基、アルコール性水酸基、ポリエーテル基などが例示される。
本実施形態においては、シリコーン化合物(C)はシリコンガムが好ましい。 The silicone compound (C) is not specifically defined, but polyorganosiloxane is preferable. Examples of organic groups that polyorganosiloxane may have include alkyl groups having 2 to 20 carbon atoms, phenyl groups, halogenated phenyl groups, silicone-containing groups, epoxy groups, amino groups, alcoholic hydroxyl groups, and polyether groups. Examples include.
In this embodiment, the silicone compound (C) is preferably silicone gum.
本実施形態においては、シリコーン化合物(C)はシリコンガムが好ましい。 The silicone compound (C) is not specifically defined, but polyorganosiloxane is preferable. Examples of organic groups that polyorganosiloxane may have include alkyl groups having 2 to 20 carbon atoms, phenyl groups, halogenated phenyl groups, silicone-containing groups, epoxy groups, amino groups, alcoholic hydroxyl groups, and polyether groups. Examples include.
In this embodiment, the silicone compound (C) is preferably silicone gum.
本実施形態の樹脂組成物におけるシリコーン(C)の含有量は、樹脂組成物中、0.3質量%以上であることが好ましく、0.4質量%以上であることがより好ましい。前記下限値以上とすることにより、摺動性を向上させることができる。また、前記シリコーン(C)の含有量の上限値は、樹脂組成物中、1質量%以下であり、0.9質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.7質量%以下であることがさらに好ましく、0.6質量%以下であることが一層好ましい。前記上限値以下とすることにより、ウエルド伸びを高く維持することができる。
本実施形態の樹脂組成物は、シリコーン(C)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The content of silicone (C) in the resin composition of this embodiment is preferably 0.3% by mass or more, more preferably 0.4% by mass or more. By making it equal to or more than the lower limit, sliding properties can be improved. Further, the upper limit of the content of silicone (C) in the resin composition is 1% by mass or less, preferably 0.9% by mass or less, and more preferably 0.8% by mass or less. It is preferably 0.7% by mass or less, more preferably 0.6% by mass or less, and even more preferably 0.6% by mass or less. By setting it below the above-mentioned upper limit, weld elongation can be maintained at a high level.
The resin composition of this embodiment may contain only one type of silicone (C), or may contain two or more types of silicone (C). When two or more types are included, it is preferable that the total amount falls within the above range.
本実施形態の樹脂組成物は、シリコーン(C)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。 The content of silicone (C) in the resin composition of this embodiment is preferably 0.3% by mass or more, more preferably 0.4% by mass or more. By making it equal to or more than the lower limit, sliding properties can be improved. Further, the upper limit of the content of silicone (C) in the resin composition is 1% by mass or less, preferably 0.9% by mass or less, and more preferably 0.8% by mass or less. It is preferably 0.7% by mass or less, more preferably 0.6% by mass or less, and even more preferably 0.6% by mass or less. By setting it below the above-mentioned upper limit, weld elongation can be maintained at a high level.
The resin composition of this embodiment may contain only one type of silicone (C), or may contain two or more types of silicone (C). When two or more types are included, it is preferable that the total amount falls within the above range.
本実施形態の樹脂組成物は、ポリアセタール樹脂(A)とコアシェルエラストマー(B)とシリコーン(C)の合計量が樹脂組成物の96質量%以上を占めることが好ましく、97質量%以上を占めることがより好ましく、98質量%以上を占めることがさらに好ましく、99質量%以上を占めていてもよい。ただし、ポリアセタール樹脂(A)とコアシェルエラストマー(B)とシリコーン(C)の合計が100質量%を超えることはない。
また、本実施形態の樹脂組成物は、コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が、8以上であることが好ましく、9以上であることがさらに好ましく、10以上であることが一層好ましい。前記下限値以上とすることにより、ウエルド伸びがより向上する傾向にある。また、前記(B)/(C)は、40以下であることが好ましく、35以下であることがより好ましく、32以下であることがさらに好ましく、30以下であることが一層好ましく、25以下であることがより一層好ましい。前記上限値以下とすることにより、摺動性がより向上する傾向にある。 In the resin composition of the present embodiment, the total amount of polyacetal resin (A), core shell elastomer (B), and silicone (C) preferably accounts for 96% by mass or more, and preferably 97% by mass or more of the resin composition. is more preferable, more preferably 98% by mass or more, and may be 99% by mass or more. However, the total amount of polyacetal resin (A), core-shell elastomer (B), and silicone (C) does not exceed 100% by mass.
Further, in the resin composition of the present embodiment, the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is preferably 8 or more, and more preferably 9 or more. It is preferably 10 or more, and more preferably 10 or more. By setting it above the lower limit value, weld elongation tends to be further improved. Further, the ratio (B)/(C) is preferably 40 or less, more preferably 35 or less, even more preferably 32 or less, even more preferably 30 or less, and 25 or less. It is even more preferable that there be. By setting it below the above-mentioned upper limit value, slidability tends to be further improved.
また、本実施形態の樹脂組成物は、コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が、8以上であることが好ましく、9以上であることがさらに好ましく、10以上であることが一層好ましい。前記下限値以上とすることにより、ウエルド伸びがより向上する傾向にある。また、前記(B)/(C)は、40以下であることが好ましく、35以下であることがより好ましく、32以下であることがさらに好ましく、30以下であることが一層好ましく、25以下であることがより一層好ましい。前記上限値以下とすることにより、摺動性がより向上する傾向にある。 In the resin composition of the present embodiment, the total amount of polyacetal resin (A), core shell elastomer (B), and silicone (C) preferably accounts for 96% by mass or more, and preferably 97% by mass or more of the resin composition. is more preferable, more preferably 98% by mass or more, and may be 99% by mass or more. However, the total amount of polyacetal resin (A), core-shell elastomer (B), and silicone (C) does not exceed 100% by mass.
Further, in the resin composition of the present embodiment, the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is preferably 8 or more, and more preferably 9 or more. It is preferably 10 or more, and more preferably 10 or more. By setting it above the lower limit value, weld elongation tends to be further improved. Further, the ratio (B)/(C) is preferably 40 or less, more preferably 35 or less, even more preferably 32 or less, even more preferably 30 or less, and 25 or less. It is even more preferable that there be. By setting it below the above-mentioned upper limit value, slidability tends to be further improved.
<ホルムアルデヒド捕捉剤>
本実施形態の樹脂組成物は、ホルムアルデヒド捕捉剤を含んでいてもよい。ホルムアルデヒド捕捉剤を含むことにより、得られる成形品からのホルムアルデヒドの発生を効果的に抑制できる。
ホルムアルデヒド捕捉剤は、ヒドラジド化合物、ヒドラジン化合物のヒドラゾン体、グアナミン化合物、および、尿素化合物からなる群から選択される少なくとも1種を含むことが好ましく、ヒドラジド化合物および/または尿素化合物がより好ましい。 <Formaldehyde scavenger>
The resin composition of this embodiment may contain a formaldehyde scavenger. By including a formaldehyde scavenger, the generation of formaldehyde from the resulting molded product can be effectively suppressed.
The formaldehyde scavenger preferably contains at least one selected from the group consisting of a hydrazide compound, a hydrazone compound of a hydrazine compound, a guanamine compound, and a urea compound, and more preferably a hydrazide compound and/or a urea compound.
本実施形態の樹脂組成物は、ホルムアルデヒド捕捉剤を含んでいてもよい。ホルムアルデヒド捕捉剤を含むことにより、得られる成形品からのホルムアルデヒドの発生を効果的に抑制できる。
ホルムアルデヒド捕捉剤は、ヒドラジド化合物、ヒドラジン化合物のヒドラゾン体、グアナミン化合物、および、尿素化合物からなる群から選択される少なくとも1種を含むことが好ましく、ヒドラジド化合物および/または尿素化合物がより好ましい。 <Formaldehyde scavenger>
The resin composition of this embodiment may contain a formaldehyde scavenger. By including a formaldehyde scavenger, the generation of formaldehyde from the resulting molded product can be effectively suppressed.
The formaldehyde scavenger preferably contains at least one selected from the group consisting of a hydrazide compound, a hydrazone compound of a hydrazine compound, a guanamine compound, and a urea compound, and more preferably a hydrazide compound and/or a urea compound.
これらのホルムアルデヒド捕捉剤の詳細は、特開2020-132662号公報の段落0021~0036の記載を参酌でき、この内容は本明細書に組み込まれる。
For details of these formaldehyde scavengers, the descriptions in paragraphs 0021 to 0036 of JP-A No. 2020-132662 can be referred to, the contents of which are incorporated herein.
本実施形態の樹脂組成物は、ホルムアルデヒド捕捉剤を、ポリアセタール樹脂(A)100質量部に対し、0.05質量部以上含むことが好ましく、0.10質量部含むことがより好ましい。また、ホルムアルデヒド捕捉剤は、また、前記ポリアセタール樹脂100質量部に対し、0.5質量部以下含むことが好ましく、0.3質量部以下含むことがより好ましい。
本実施形態の樹脂組成物は、ホルムアルデヒド捕捉剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となる。 The resin composition of the present embodiment preferably contains 0.05 parts by mass or more, and more preferably 0.10 parts by mass, of a formaldehyde scavenger based on 100 parts by mass of the polyacetal resin (A). Further, the formaldehyde scavenger is preferably contained in an amount of 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, based on 100 parts by mass of the polyacetal resin.
The resin composition of this embodiment may contain only one type of formaldehyde scavenger, or may contain two or more types of formaldehyde scavengers. When two or more types are included, the total amount falls within the above range.
本実施形態の樹脂組成物は、ホルムアルデヒド捕捉剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となる。 The resin composition of the present embodiment preferably contains 0.05 parts by mass or more, and more preferably 0.10 parts by mass, of a formaldehyde scavenger based on 100 parts by mass of the polyacetal resin (A). Further, the formaldehyde scavenger is preferably contained in an amount of 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, based on 100 parts by mass of the polyacetal resin.
The resin composition of this embodiment may contain only one type of formaldehyde scavenger, or may contain two or more types of formaldehyde scavengers. When two or more types are included, the total amount falls within the above range.
<その他の成分>
本実施形態の樹脂組成物は、本発明の目的を損なわない範囲内で、従来公知の任意の添加剤や充填剤を含んでいてもよい。本実施形態に用いる添加剤や充填剤としては、例えば、ポリアセタール樹脂以外の熱可塑性樹脂、紫外線吸収剤、酸化防止剤、熱安定剤、安定剤、帯電防止剤、炭素繊維、染料、カーボンブラックのような有機顔料、酸化チタンのような無機顔料、ガラス繊維、ガラスフレーク、チタン酸カリウムウイスカー等が挙げられる。これらの詳細は、特開2017-025257号公報の段落0113~0124の記載を参酌することができ、これらの内容は本明細書に組み込まれる。 <Other ingredients>
The resin composition of the present embodiment may contain any conventionally known additives and fillers within a range that does not impair the object of the present invention. Examples of additives and fillers used in this embodiment include thermoplastic resins other than polyacetal resins, ultraviolet absorbers, antioxidants, heat stabilizers, stabilizers, antistatic agents, carbon fibers, dyes, and carbon black. Examples include organic pigments such as, inorganic pigments such as titanium oxide, glass fibers, glass flakes, potassium titanate whiskers, and the like. For these details, the descriptions in paragraphs 0113 to 0124 of JP 2017-025257 A can be referred to, and the contents thereof are incorporated herein.
本実施形態の樹脂組成物は、本発明の目的を損なわない範囲内で、従来公知の任意の添加剤や充填剤を含んでいてもよい。本実施形態に用いる添加剤や充填剤としては、例えば、ポリアセタール樹脂以外の熱可塑性樹脂、紫外線吸収剤、酸化防止剤、熱安定剤、安定剤、帯電防止剤、炭素繊維、染料、カーボンブラックのような有機顔料、酸化チタンのような無機顔料、ガラス繊維、ガラスフレーク、チタン酸カリウムウイスカー等が挙げられる。これらの詳細は、特開2017-025257号公報の段落0113~0124の記載を参酌することができ、これらの内容は本明細書に組み込まれる。 <Other ingredients>
The resin composition of the present embodiment may contain any conventionally known additives and fillers within a range that does not impair the object of the present invention. Examples of additives and fillers used in this embodiment include thermoplastic resins other than polyacetal resins, ultraviolet absorbers, antioxidants, heat stabilizers, stabilizers, antistatic agents, carbon fibers, dyes, and carbon black. Examples include organic pigments such as, inorganic pigments such as titanium oxide, glass fibers, glass flakes, potassium titanate whiskers, and the like. For these details, the descriptions in paragraphs 0113 to 0124 of JP 2017-025257 A can be referred to, and the contents thereof are incorporated herein.
<樹脂組成物の物性>
本実施形態の樹脂組成物は、ウエルド伸びに優れ、かつ降伏前破断を生じないことが好ましい。具体的には、本実施形態の樹脂組成物をASTM引張試験片(厚み1.6mm)に成形し、ASTM D638に準じて、引張試験を行ったときのウエルド伸びが14%以上であることが好ましく、17%以上であることがより好ましく、18%以上がさらに好ましく、20%以上が一層好ましい。また、前記ウエルド伸びの上限は、例えば、300%以下である。 <Physical properties of resin composition>
It is preferable that the resin composition of this embodiment has excellent weld elongation and does not break before yielding. Specifically, when the resin composition of this embodiment is molded into an ASTM tensile test piece (thickness 1.6 mm) and a tensile test is performed according to ASTM D638, the weld elongation is 14% or more. It is preferably 17% or more, more preferably 18% or more, and even more preferably 20% or more. Further, the upper limit of the weld elongation is, for example, 300% or less.
本実施形態の樹脂組成物は、ウエルド伸びに優れ、かつ降伏前破断を生じないことが好ましい。具体的には、本実施形態の樹脂組成物をASTM引張試験片(厚み1.6mm)に成形し、ASTM D638に準じて、引張試験を行ったときのウエルド伸びが14%以上であることが好ましく、17%以上であることがより好ましく、18%以上がさらに好ましく、20%以上が一層好ましい。また、前記ウエルド伸びの上限は、例えば、300%以下である。 <Physical properties of resin composition>
It is preferable that the resin composition of this embodiment has excellent weld elongation and does not break before yielding. Specifically, when the resin composition of this embodiment is molded into an ASTM tensile test piece (thickness 1.6 mm) and a tensile test is performed according to ASTM D638, the weld elongation is 14% or more. It is preferably 17% or more, more preferably 18% or more, and even more preferably 20% or more. Further, the upper limit of the weld elongation is, for example, 300% or less.
本実施形態の樹脂組成物(A)は、前記樹脂組成物(A)を4mm厚さの多目的試験片(ISO試験片)に成形し、ISO178に従って測定した曲げ弾性率が1000MPa以上であることが好ましく、1500MPa以上であることがより好ましく、また、3000MPa以下であることが好ましく、2500MPa以下であることがより好ましい。
本実施形態では、上記範囲とすることにより、適度な軟質性を有する成形品とすることができる。
上記曲げ弾性率は、主に、コアエラストマーを配合することによって達成される。 The resin composition (A) of this embodiment has a flexural modulus of 1000 MPa or more when the resin composition (A) is molded into a 4 mm thick multipurpose test piece (ISO test piece) and measured according to ISO178. It is preferably at least 1,500 MPa, more preferably at most 3,000 MPa, and more preferably at most 2,500 MPa.
In this embodiment, by setting it within the above range, a molded product having appropriate flexibility can be obtained.
The above flexural modulus is achieved primarily by blending a core elastomer.
本実施形態では、上記範囲とすることにより、適度な軟質性を有する成形品とすることができる。
上記曲げ弾性率は、主に、コアエラストマーを配合することによって達成される。 The resin composition (A) of this embodiment has a flexural modulus of 1000 MPa or more when the resin composition (A) is molded into a 4 mm thick multipurpose test piece (ISO test piece) and measured according to ISO178. It is preferably at least 1,500 MPa, more preferably at most 3,000 MPa, and more preferably at most 2,500 MPa.
In this embodiment, by setting it within the above range, a molded product having appropriate flexibility can be obtained.
The above flexural modulus is achieved primarily by blending a core elastomer.
<樹脂組成物の製造方法>
本実施形態の樹脂組成物は、上述した必須成分および必要に応じ上述した任意の成分を含有させてなる。そしてその製造方法は平均2次粒子径が前述の範囲になるように任意の方法が選定される。であり、従来公知の任意の、樹脂組成物の製造方法を使用し、これらの原料を混合・混練すればよい。 <Method for manufacturing resin composition>
The resin composition of this embodiment contains the above-mentioned essential components and, if necessary, the above-mentioned arbitrary components. Any manufacturing method is selected so that the average secondary particle diameter falls within the above-mentioned range. These raw materials may be mixed and kneaded using any conventionally known method for producing a resin composition.
本実施形態の樹脂組成物は、上述した必須成分および必要に応じ上述した任意の成分を含有させてなる。そしてその製造方法は平均2次粒子径が前述の範囲になるように任意の方法が選定される。であり、従来公知の任意の、樹脂組成物の製造方法を使用し、これらの原料を混合・混練すればよい。 <Method for manufacturing resin composition>
The resin composition of this embodiment contains the above-mentioned essential components and, if necessary, the above-mentioned arbitrary components. Any manufacturing method is selected so that the average secondary particle diameter falls within the above-mentioned range. These raw materials may be mixed and kneaded using any conventionally known method for producing a resin composition.
平均2次粒子径を上記範囲とするための方法の1つとして、ポリアセタール樹脂とコアシェルエラストマーをタンブラーで混合した後、溶融混練機にて押出し、ストランド状とした後に切断してペレットとする方法が挙げられる。この際、溶融混練機としては単軸押出機では二次凝集が発生しやすいことから、二軸押出機を用いることが好ましい。中でもスクリューの長さL(mm)と同スクリューの直径D(mm)の比であるL/Dが、20以上であることが好ましく、30以上であることがより好ましく、また、100以下であることが好ましく、70以下であることがより好ましい。前記L/Dを20以上とすることにより、コアシェルエラストマーが微分散しやすくなり、コアシェルエラストマーの二次凝集を効果的に抑制することができる。また、前記L/Dを100以下とすることにより、熱劣化による樹脂組成物の変色を効果的に抑制できる傾向にある。
ダイノズルの形状も特に限定されないが、ペレット形状の点で、直径1mm以上の円形ノズルが好ましく、直径2mm以上の円形ノズルがより好ましく、また、直径10mm以下の円形ノズルが好ましく、直径7mm以下の円形ノズルがより好ましい。 One method for making the average secondary particle size within the above range is to mix the polyacetal resin and core-shell elastomer in a tumbler, extrude it in a melt kneader, make it into strands, and then cut it into pellets. Can be mentioned. At this time, it is preferable to use a twin-screw extruder as the melt-kneading machine, since a single-screw extruder tends to cause secondary agglomeration. Among them, L/D, which is the ratio of the length L (mm) of the screw to the diameter D (mm) of the same screw, is preferably 20 or more, more preferably 30 or more, and 100 or less. It is preferably 70 or less, and more preferably 70 or less. By setting the L/D to 20 or more, the core-shell elastomer becomes easily finely dispersed, and secondary aggregation of the core-shell elastomer can be effectively suppressed. Further, by setting the L/D to 100 or less, discoloration of the resin composition due to thermal deterioration tends to be effectively suppressed.
The shape of the die nozzle is also not particularly limited, but in terms of pellet shape, a circular nozzle with a diameter of 1 mm or more is preferable, a circular nozzle with a diameter of 2 mm or more is more preferable, a circular nozzle with a diameter of 10 mm or less is preferable, and a circular nozzle with a diameter of 7 mm or less is preferable. Nozzles are more preferred.
ダイノズルの形状も特に限定されないが、ペレット形状の点で、直径1mm以上の円形ノズルが好ましく、直径2mm以上の円形ノズルがより好ましく、また、直径10mm以下の円形ノズルが好ましく、直径7mm以下の円形ノズルがより好ましい。 One method for making the average secondary particle size within the above range is to mix the polyacetal resin and core-shell elastomer in a tumbler, extrude it in a melt kneader, make it into strands, and then cut it into pellets. Can be mentioned. At this time, it is preferable to use a twin-screw extruder as the melt-kneading machine, since a single-screw extruder tends to cause secondary agglomeration. Among them, L/D, which is the ratio of the length L (mm) of the screw to the diameter D (mm) of the same screw, is preferably 20 or more, more preferably 30 or more, and 100 or less. It is preferably 70 or less, and more preferably 70 or less. By setting the L/D to 20 or more, the core-shell elastomer becomes easily finely dispersed, and secondary aggregation of the core-shell elastomer can be effectively suppressed. Further, by setting the L/D to 100 or less, discoloration of the resin composition due to thermal deterioration tends to be effectively suppressed.
The shape of the die nozzle is also not particularly limited, but in terms of pellet shape, a circular nozzle with a diameter of 1 mm or more is preferable, a circular nozzle with a diameter of 2 mm or more is more preferable, a circular nozzle with a diameter of 10 mm or less is preferable, and a circular nozzle with a diameter of 7 mm or less is preferable. Nozzles are more preferred.
また、溶融混練時の樹脂組成物の溶融温度は170℃以上であることが好ましく、190℃以上であることがより好ましく、また、250℃以下であることが好ましく、230℃以下であることがより好ましい。溶融温度を170℃以上とすることにより、溶融が十分となり、生産量が向上する傾向にある。また、250℃以下とすることにより、熱劣化による樹脂組成物の変色を効果的に抑制できる傾向にある。
Further, the melting temperature of the resin composition during melt-kneading is preferably 170°C or higher, more preferably 190°C or higher, and preferably 250°C or lower, and preferably 230°C or lower. More preferred. By setting the melting temperature to 170° C. or higher, melting becomes sufficient and production volume tends to improve. Moreover, by setting the temperature to 250° C. or lower, discoloration of the resin composition due to thermal deterioration tends to be effectively suppressed.
2軸押出機のスクリュー構成は特に制限されるものでは無いが、好ましい実施形態の1つとして少なくとも2つの混練部を有することが挙げられる。混練部はニーディングディスクを有し、主に樹脂の溶融やエラストマーの分散に寄与する。
Although the screw configuration of the twin-screw extruder is not particularly limited, one preferred embodiment includes having at least two kneading sections. The kneading section has a kneading disk and mainly contributes to melting the resin and dispersing the elastomer.
溶融混練時のスクリュー回転数は、50rpm以上であることが好ましく、70rpm以上であることがより好ましく、また、500rpm以下であることが好ましく、350rpm以下であることがより好ましい。スクリュー回転数を50rpm以上とすることにより、コアシェルエラストマーが微分散しやすくなり、二次凝集の発生をより効果的に抑制できる傾向にある。また、500rpm以下とすることにより、溶融混練時の発熱を抑制でき、熱劣化による樹脂組成物の変色を効果的に抑制できる傾向にある。また、吐出量は、5kg/hr以上であることが好ましく、7kg/hr以上であることがより好ましく、1,000kg/hr以下であることが好ましく、800kg/hr以下であることがより好ましい。5kg/hr以上とすることにより、コアシェルエラストマーがより微分散しやすくなり、二次凝集の発生を効果的に抑制できる。また、1,000kg/hr以下とすることにより、溶融混練時の発熱を効果的に抑制でき、熱劣化による樹脂組成物の変色を効果的に抑制できる傾向にある。
The screw rotation speed during melt-kneading is preferably 50 rpm or more, more preferably 70 rpm or more, and preferably 500 rpm or less, and more preferably 350 rpm or less. By setting the screw rotation speed to 50 rpm or more, the core-shell elastomer tends to be finely dispersed, and the occurrence of secondary aggregation can be more effectively suppressed. Furthermore, by setting the speed to 500 rpm or less, heat generation during melt-kneading can be suppressed, and discoloration of the resin composition due to thermal deterioration tends to be effectively suppressed. Further, the discharge rate is preferably 5 kg/hr or more, more preferably 7 kg/hr or more, preferably 1,000 kg/hr or less, and more preferably 800 kg/hr or less. By setting the rate to 5 kg/hr or more, the core-shell elastomer becomes more easily finely dispersed, and the occurrence of secondary aggregation can be effectively suppressed. Further, by controlling the amount to be 1,000 kg/hr or less, heat generation during melt-kneading can be effectively suppressed, and discoloration of the resin composition due to thermal deterioration tends to be effectively suppressed.
溶融混練時のスクリュー回転数(Ns)と吐出量(Q)の比(Q/Ns)は、押出機のスクリュー径やスクリュー構成にもよるが、例えば、0.5以上が好ましく、0.7以上がさらに好ましく、0.9以上が特に好ましく、また、1.5以下が好ましく、1.3以下がさらに好ましく、1.2以下が特に好ましい。上記Q/Nsは、スクリュー径が18~75mm(さらには、58mm)、スクリュー構成として混練部を2つ有する実施形態において特に好ましい。
The ratio (Q/Ns) between the screw rotation speed (Ns) and the discharge amount (Q) during melt-kneading depends on the screw diameter and screw configuration of the extruder, but is preferably 0.5 or more, and 0.7 The above is more preferable, 0.9 or more is particularly preferable, 1.5 or less is preferable, 1.3 or less is even more preferable, and 1.2 or less is particularly preferable. The above Q/Ns is particularly preferable in an embodiment in which the screw diameter is 18 to 75 mm (even 58 mm) and the screw configuration has two kneading sections.
混練機は、ニーダー、バンバリーミキサー、押出機等が例示される。混合・混練の各種条件や装置についても、特に制限はなく、従来公知の任意の条件から適宜選択して決定すればよい。混練はポリアセタール樹脂が溶融する温度以上、具体的にはポリアセタール樹脂の融解温度以上(一般的には180℃以上)で行うことが好ましい。
Examples of the kneading machine include a kneader, a Banbury mixer, and an extruder. The various conditions and equipment for mixing and kneading are also not particularly limited, and may be determined by appropriately selecting from any conventionally known conditions. The kneading is preferably carried out at a temperature higher than the melting temperature of the polyacetal resin, specifically at a temperature higher than the melting temperature of the polyacetal resin (generally 180° C. or higher).
<成形品>
本実施形態の成形品は、本実施形態の樹脂組成物から形成される。また、本実施形態の樹脂組成物は、直接に、あるいは、ペレタイズして得られたペレットは、通常、射出成形して成形品とされる。
すなわち、本実施形態の成形品の好ましい一例は、射出成形品である。射出成形品とは、射出成形により、成形された成形品であり、通常、金型内で溶融樹脂が合流する部分に脆弱部分(ウエルド部)が形成されてしまう。
成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、歯車状、多角形形状、異形品、中空品、枠状、箱状、パネル状、キャップ状のもの等が挙げられる。本発明の成形品は、部品であっても、完成品であってもよい。 <Molded product>
The molded article of this embodiment is formed from the resin composition of this embodiment. Further, the resin composition of the present embodiment is usually made into a molded product by injection molding the pellets obtained by directly or by pelletizing the resin composition.
That is, a preferable example of the molded product of this embodiment is an injection molded product. An injection molded product is a molded product formed by injection molding, and a weak portion (weld portion) is usually formed at a portion where molten resin joins within a mold.
The shape of the molded product is not particularly limited and can be appropriately selected depending on the use and purpose of the molded product, such as plate, plate, rod, sheet, film, cylindrical, annular, etc. Examples include circular shapes, elliptical shapes, gear shapes, polygonal shapes, irregularly shaped products, hollow products, frame shapes, box shapes, panel shapes, cap shapes, and the like. The molded product of the present invention may be a component or a finished product.
本実施形態の成形品は、本実施形態の樹脂組成物から形成される。また、本実施形態の樹脂組成物は、直接に、あるいは、ペレタイズして得られたペレットは、通常、射出成形して成形品とされる。
すなわち、本実施形態の成形品の好ましい一例は、射出成形品である。射出成形品とは、射出成形により、成形された成形品であり、通常、金型内で溶融樹脂が合流する部分に脆弱部分(ウエルド部)が形成されてしまう。
成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、歯車状、多角形形状、異形品、中空品、枠状、箱状、パネル状、キャップ状のもの等が挙げられる。本発明の成形品は、部品であっても、完成品であってもよい。 <Molded product>
The molded article of this embodiment is formed from the resin composition of this embodiment. Further, the resin composition of the present embodiment is usually made into a molded product by injection molding the pellets obtained by directly or by pelletizing the resin composition.
That is, a preferable example of the molded product of this embodiment is an injection molded product. An injection molded product is a molded product formed by injection molding, and a weak portion (weld portion) is usually formed at a portion where molten resin joins within a mold.
The shape of the molded product is not particularly limited and can be appropriately selected depending on the use and purpose of the molded product, such as plate, plate, rod, sheet, film, cylindrical, annular, etc. Examples include circular shapes, elliptical shapes, gear shapes, polygonal shapes, irregularly shaped products, hollow products, frame shapes, box shapes, panel shapes, cap shapes, and the like. The molded product of the present invention may be a component or a finished product.
<用途>
本実施形態の樹脂組成物および樹脂組成物から形成される成形品は、例えば、トリムクリップやシートベルト部材、ヘッドレストガイドなどの自動車部品、建材部品、電気・電子部品、事務機器部品、日用雑貨部品の他、凍食品、飲料、などの容器、冷蔵庫のパッキン等の家電用品、ホースバンドやパッキン、結束バンドなどが例示される。
特に、本実施形態の樹脂組成物および成形品は、トリムクリップに適している。 <Application>
The resin composition of the present embodiment and molded products formed from the resin composition are, for example, automotive parts such as trim clips, seatbelt members, and headrest guides, building material parts, electric/electronic parts, office equipment parts, and daily miscellaneous goods. In addition to parts, examples include containers for frozen foods and beverages, home appliances such as refrigerator gaskets, hose bands, gaskets, and cable ties.
In particular, the resin composition and molded article of this embodiment are suitable for trim clips.
本実施形態の樹脂組成物および樹脂組成物から形成される成形品は、例えば、トリムクリップやシートベルト部材、ヘッドレストガイドなどの自動車部品、建材部品、電気・電子部品、事務機器部品、日用雑貨部品の他、凍食品、飲料、などの容器、冷蔵庫のパッキン等の家電用品、ホースバンドやパッキン、結束バンドなどが例示される。
特に、本実施形態の樹脂組成物および成形品は、トリムクリップに適している。 <Application>
The resin composition of the present embodiment and molded products formed from the resin composition are, for example, automotive parts such as trim clips, seatbelt members, and headrest guides, building material parts, electric/electronic parts, office equipment parts, and daily miscellaneous goods. In addition to parts, examples include containers for frozen foods and beverages, home appliances such as refrigerator gaskets, hose bands, gaskets, and cable ties.
In particular, the resin composition and molded article of this embodiment are suitable for trim clips.
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
以下の表1に示す原料を用いた。 The present invention will be explained in more detail with reference to Examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
If the measuring equipment used in the examples is difficult to obtain due to discontinuation or the like, measurements can be made using other equipment with equivalent performance.
1. Raw Materials The raw materials shown in Table 1 below were used.
実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
以下の表1に示す原料を用いた。 The present invention will be explained in more detail with reference to Examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
If the measuring equipment used in the examples is difficult to obtain due to discontinuation or the like, measurements can be made using other equipment with equivalent performance.
1. Raw Materials The raw materials shown in Table 1 below were used.
上記MVRは、ISO1133に従い、温度190℃、荷重2.16kgの条件で測定したメルトボリュームレートである。
上記シリコンオイルおよびシリコンガムの動粘度は、以下の方法により測定した値である。
(i)シリコンオイルまたはシリコンガムを1.0g量り取り、トルエン10mLに溶解させ、シリコンートルエン溶液の粘度を、コーン・プレート型粘度計TPE100を用いて測定した。
(ii)同様の方法により、動粘度が既知であるシリコンオイルの粘度を測定し、検量線を作製した。
(iii)検量線を用いた外挿法により、シリコンオイルまたはシリコンガムの動粘度を算出した。 The above MVR is a melt volume rate measured under the conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with ISO1133.
The kinematic viscosity of the silicone oil and silicone gum described above is a value measured by the following method.
(i) 1.0 g of silicone oil or silicone gum was weighed out and dissolved in 10 mL of toluene, and the viscosity of the silicone-toluene solution was measured using a cone-plate viscometer TPE100.
(ii) Using the same method, the viscosity of silicone oil whose kinematic viscosity was known was measured, and a calibration curve was prepared.
(iii) The kinematic viscosity of silicone oil or silicone gum was calculated by extrapolation using a calibration curve.
上記シリコンオイルおよびシリコンガムの動粘度は、以下の方法により測定した値である。
(i)シリコンオイルまたはシリコンガムを1.0g量り取り、トルエン10mLに溶解させ、シリコンートルエン溶液の粘度を、コーン・プレート型粘度計TPE100を用いて測定した。
(ii)同様の方法により、動粘度が既知であるシリコンオイルの粘度を測定し、検量線を作製した。
(iii)検量線を用いた外挿法により、シリコンオイルまたはシリコンガムの動粘度を算出した。 The above MVR is a melt volume rate measured under the conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with ISO1133.
The kinematic viscosity of the silicone oil and silicone gum described above is a value measured by the following method.
(i) 1.0 g of silicone oil or silicone gum was weighed out and dissolved in 10 mL of toluene, and the viscosity of the silicone-toluene solution was measured using a cone-plate viscometer TPE100.
(ii) Using the same method, the viscosity of silicone oil whose kinematic viscosity was known was measured, and a calibration curve was prepared.
(iii) The kinematic viscosity of silicone oil or silicone gum was calculated by extrapolation using a calibration curve.
<コアシェルエラストマー架橋指数>
各実施例および比較例にて使用した各コアシェルエラストマーについて、Bruker製Minispec mq20を用いてT2緩和時間の測定を行った。測定は-40℃、0℃、23℃、80℃で実施し、それぞれのT2緩和時間を得た。測定温度をX軸、T2緩和時間をY軸とした際に得られるプロットの近似直線について、傾きが大きいほど分子運動性が高い、すなわち分子の運動を制限する架橋構造が少なく、傾きが小さいほど分子運動性が低い、すなわち分子の運動を制限する架橋構造が多いと考え、前記近似直線の傾きの逆数を架橋指数とした。測定温度-40℃および0℃はSolid echo法で想定し、測定温度23℃および80℃はSpin echo法で測定した。
T2緩和時間は以下の条件で測定した。
観測周波数:25MHz
測定法:Solid echo法/Spin echo法
繰り返し時間:4sec/4sec
積算回数:16回/4回
測定温度:-40℃、0℃/23℃、80℃ <Core-shell elastomer crosslinking index>
For each core-shell elastomer used in each Example and Comparative Example, the T 2 relaxation time was measured using Minispec mq20 manufactured by Bruker. Measurements were performed at -40°C, 0°C, 23°C, and 80°C, and the respective T2 relaxation times were obtained. Regarding the approximate straight line of the plot obtained when the measurement temperature is set on the X axis and the T2 relaxation time is set on the Y axis, the larger the slope, the higher the molecular mobility.In other words, there are fewer crosslinked structures that restrict the movement of molecules, and the slope is smaller. Considering that the lower the molecular mobility, that is, there are more crosslinked structures that restrict the movement of molecules, the reciprocal of the slope of the approximate straight line was used as the crosslinking index. The measurement temperatures of -40°C and 0°C were assumed by the solid echo method, and the measurement temperatures of 23°C and 80°C were measured by the spin echo method.
T2 relaxation time was measured under the following conditions.
Observation frequency: 25MHz
Measurement method: Solid echo method/Spin echo method Repetition time: 4sec/4sec
Total number of times: 16 times/4 times Measurement temperature: -40℃, 0℃/23℃, 80℃
各実施例および比較例にて使用した各コアシェルエラストマーについて、Bruker製Minispec mq20を用いてT2緩和時間の測定を行った。測定は-40℃、0℃、23℃、80℃で実施し、それぞれのT2緩和時間を得た。測定温度をX軸、T2緩和時間をY軸とした際に得られるプロットの近似直線について、傾きが大きいほど分子運動性が高い、すなわち分子の運動を制限する架橋構造が少なく、傾きが小さいほど分子運動性が低い、すなわち分子の運動を制限する架橋構造が多いと考え、前記近似直線の傾きの逆数を架橋指数とした。測定温度-40℃および0℃はSolid echo法で想定し、測定温度23℃および80℃はSpin echo法で測定した。
T2緩和時間は以下の条件で測定した。
観測周波数:25MHz
測定法:Solid echo法/Spin echo法
繰り返し時間:4sec/4sec
積算回数:16回/4回
測定温度:-40℃、0℃/23℃、80℃ <Core-shell elastomer crosslinking index>
For each core-shell elastomer used in each Example and Comparative Example, the T 2 relaxation time was measured using Minispec mq20 manufactured by Bruker. Measurements were performed at -40°C, 0°C, 23°C, and 80°C, and the respective T2 relaxation times were obtained. Regarding the approximate straight line of the plot obtained when the measurement temperature is set on the X axis and the T2 relaxation time is set on the Y axis, the larger the slope, the higher the molecular mobility.In other words, there are fewer crosslinked structures that restrict the movement of molecules, and the slope is smaller. Considering that the lower the molecular mobility, that is, there are more crosslinked structures that restrict the movement of molecules, the reciprocal of the slope of the approximate straight line was used as the crosslinking index. The measurement temperatures of -40°C and 0°C were assumed by the solid echo method, and the measurement temperatures of 23°C and 80°C were measured by the spin echo method.
T2 relaxation time was measured under the following conditions.
Observation frequency: 25MHz
Measurement method: Solid echo method/Spin echo method Repetition time: 4sec/4sec
Total number of times: 16 times/4 times Measurement temperature: -40℃, 0℃/23℃, 80℃
2.実施例1~14、比較例1~9、参考例1~3
<樹脂組成物(ペレット)の製造>
表2~表6に示す各成分を表2~表6に示す割合(質量部)で、川田製作所社製スーパーミキサーを用いて均一に混合した。得られた混合物をスクリュー径30mm、スクリュー長さ760、ダイノズル径3.5mmのベント付き二軸押出機(株式会社池貝製「PCM-30」)を用いて、シリンダー温度200℃、スクリュー回転数120rpm、吐出量10kg/時間で溶融せん断混合し、樹脂組成物のペレットを製造した。 2. Examples 1 to 14, Comparative Examples 1 to 9, Reference Examples 1 to 3
<Manufacture of resin composition (pellets)>
The components shown in Tables 2 to 6 were uniformly mixed in the proportions (parts by mass) shown in Tables 2 to 6 using a super mixer manufactured by Kawada Seisakusho. The obtained mixture was heated at a cylinder temperature of 200° C. and a screw rotation speed of 120 rpm using a vented twin-screw extruder (“PCM-30” manufactured by Ikegai Co., Ltd.) with a screw diameter of 30 mm, a screw length of 760 mm, and a die nozzle diameter of 3.5 mm. , melting and shear mixing were carried out at a discharge rate of 10 kg/hour to produce pellets of the resin composition.
<樹脂組成物(ペレット)の製造>
表2~表6に示す各成分を表2~表6に示す割合(質量部)で、川田製作所社製スーパーミキサーを用いて均一に混合した。得られた混合物をスクリュー径30mm、スクリュー長さ760、ダイノズル径3.5mmのベント付き二軸押出機(株式会社池貝製「PCM-30」)を用いて、シリンダー温度200℃、スクリュー回転数120rpm、吐出量10kg/時間で溶融せん断混合し、樹脂組成物のペレットを製造した。 2. Examples 1 to 14, Comparative Examples 1 to 9, Reference Examples 1 to 3
<Manufacture of resin composition (pellets)>
The components shown in Tables 2 to 6 were uniformly mixed in the proportions (parts by mass) shown in Tables 2 to 6 using a super mixer manufactured by Kawada Seisakusho. The obtained mixture was heated at a cylinder temperature of 200° C. and a screw rotation speed of 120 rpm using a vented twin-screw extruder (“PCM-30” manufactured by Ikegai Co., Ltd.) with a screw diameter of 30 mm, a screw length of 760 mm, and a die nozzle diameter of 3.5 mm. , melting and shear mixing were carried out at a discharge rate of 10 kg/hour to produce pellets of the resin composition.
<コアシェルエラストマーの平均2次粒子径(nm)>
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ウエルド部を中央に有するASTM引張試験片(厚み3.2mm)を作製した。
このASTM引張試験片から、成形時の流動方向に並行で、かつ、ウエルド部を含むようにダイヤモンドナイフで走査型電子顕微鏡(SEM)観察用試験片を切り出した。
得られたSEM観察用試験片の観察面に四酸化オスミウムを蒸着させた後、走査型電子顕微鏡(SEM)を用いてSEM画像を取得した。
得られたSEM画像から、エラストマー由来の島状部の最大長さの平均値を、エラストマーの平均2次粒子径とした。
射出成形機は、芝浦機械社製、EC-100Sを用いた。
四酸化オスミウムの蒸着は、メイワフォーシス社製「オスミウムコータ」を用いて8mA、60秒の条件で行った。走査型電子顕微鏡は日立ハイテクノロジーズ社製「走査型電子顕微鏡(SEM)S-4800」を用い、加速電圧:1kV、信号:LA100(U)、エミッション電流:6μA、プローブ電流:Normalの条件でSEM画像を取得した。 <Average secondary particle diameter (nm) of core-shell elastomer>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were molded into an ASTM tensile test piece (thickness: 3.2 mm) using an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 90°C. ) was created.
From this ASTM tensile test piece, a test piece for scanning electron microscopy (SEM) observation was cut out using a diamond knife parallel to the flow direction during molding and including the weld portion.
After osmium tetroxide was deposited on the observation surface of the obtained SEM observation specimen, a SEM image was obtained using a scanning electron microscope (SEM).
From the obtained SEM image, the average value of the maximum length of the island-shaped portions derived from the elastomer was defined as the average secondary particle diameter of the elastomer.
The injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd.
The osmium tetroxide was vapor-deposited using an "Osmium Coater" manufactured by Meiwaforsys under conditions of 8 mA and 60 seconds. The scanning electron microscope was a "Scanning Electron Microscope (SEM) S-4800" manufactured by Hitachi High Technologies, and the SEM was performed under the following conditions: acceleration voltage: 1 kV, signal: LA100 (U), emission current: 6 μA, probe current: Normal. The image was acquired.
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ウエルド部を中央に有するASTM引張試験片(厚み3.2mm)を作製した。
このASTM引張試験片から、成形時の流動方向に並行で、かつ、ウエルド部を含むようにダイヤモンドナイフで走査型電子顕微鏡(SEM)観察用試験片を切り出した。
得られたSEM観察用試験片の観察面に四酸化オスミウムを蒸着させた後、走査型電子顕微鏡(SEM)を用いてSEM画像を取得した。
得られたSEM画像から、エラストマー由来の島状部の最大長さの平均値を、エラストマーの平均2次粒子径とした。
射出成形機は、芝浦機械社製、EC-100Sを用いた。
四酸化オスミウムの蒸着は、メイワフォーシス社製「オスミウムコータ」を用いて8mA、60秒の条件で行った。走査型電子顕微鏡は日立ハイテクノロジーズ社製「走査型電子顕微鏡(SEM)S-4800」を用い、加速電圧:1kV、信号:LA100(U)、エミッション電流:6μA、プローブ電流:Normalの条件でSEM画像を取得した。 <Average secondary particle diameter (nm) of core-shell elastomer>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were molded into an ASTM tensile test piece (thickness: 3.2 mm) using an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 90°C. ) was created.
From this ASTM tensile test piece, a test piece for scanning electron microscopy (SEM) observation was cut out using a diamond knife parallel to the flow direction during molding and including the weld portion.
After osmium tetroxide was deposited on the observation surface of the obtained SEM observation specimen, a SEM image was obtained using a scanning electron microscope (SEM).
From the obtained SEM image, the average value of the maximum length of the island-shaped portions derived from the elastomer was defined as the average secondary particle diameter of the elastomer.
The injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd.
The osmium tetroxide was vapor-deposited using an "Osmium Coater" manufactured by Meiwaforsys under conditions of 8 mA and 60 seconds. The scanning electron microscope was a "Scanning Electron Microscope (SEM) S-4800" manufactured by Hitachi High Technologies, and the SEM was performed under the following conditions: acceleration voltage: 1 kV, signal: LA100 (U), emission current: 6 μA, probe current: Normal. The image was acquired.
<ウエルド伸び>
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ウエルド部を中央に有するASTM引張試験片(厚み1.6mm)を作製し、ASTM D638に準じて、引張試験を行って、ウエルド伸びを測定した。
射出成形機は、芝浦機械社製、EC-100Sを用いた。
単位は、%で示した。測定結果を以下の基準により評価した。
A:14%以上
B:10%以上、14%未満
C:10%未満
結果を下記表2~表6に示した。 <Weld elongation>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were molded into an ASTM tensile test piece (thickness 1.6 mm) using an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 90°C. ) was prepared and subjected to a tensile test according to ASTM D638 to measure weld elongation.
The injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd.
The unit is shown in %. The measurement results were evaluated according to the following criteria.
A: 14% or more B: 10% or more, less than 14% C: less than 10% The results are shown in Tables 2 to 6 below.
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ウエルド部を中央に有するASTM引張試験片(厚み1.6mm)を作製し、ASTM D638に準じて、引張試験を行って、ウエルド伸びを測定した。
射出成形機は、芝浦機械社製、EC-100Sを用いた。
単位は、%で示した。測定結果を以下の基準により評価した。
A:14%以上
B:10%以上、14%未満
C:10%未満
結果を下記表2~表6に示した。 <Weld elongation>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were molded into an ASTM tensile test piece (thickness 1.6 mm) using an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 90°C. ) was prepared and subjected to a tensile test according to ASTM D638 to measure weld elongation.
The injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd.
The unit is shown in %. The measurement results were evaluated according to the following criteria.
A: 14% or more B: 10% or more, less than 14% C: less than 10% The results are shown in Tables 2 to 6 below.
<動摩擦係数>
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を80℃に設定して、円筒形スラスト試験片、接触面積2cm2の試験片を作製した。この試験片について、鈴木式摩擦摩耗試験機を用いて、温度23℃、湿度50%雰囲気下で、荷重10kgf、線速度10cm/sにて同一材同士で測定し、動摩擦係数(μ)を求めた。測定結果を以下の基準により評価した。
A:0.32未満
B:0.32以上、0.34未満
C:0.34以上
結果を下記表2~表6に示した。 <Dynamic friction coefficient>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 80°C, to produce a cylindrical thrust test piece and a test piece with a contact area of 2cm2 . did. This test piece was measured using a Suzuki friction and wear tester at a temperature of 23°C and a humidity of 50%, with a load of 10 kgf and a linear velocity of 10 cm/s, and the coefficient of dynamic friction (μ) was determined. Ta. The measurement results were evaluated according to the following criteria.
A: Less than 0.32 B: 0.32 or more, less than 0.34 C: 0.34 or more The results are shown in Tables 2 to 6 below.
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を80℃に設定して、円筒形スラスト試験片、接触面積2cm2の試験片を作製した。この試験片について、鈴木式摩擦摩耗試験機を用いて、温度23℃、湿度50%雰囲気下で、荷重10kgf、線速度10cm/sにて同一材同士で測定し、動摩擦係数(μ)を求めた。測定結果を以下の基準により評価した。
A:0.32未満
B:0.32以上、0.34未満
C:0.34以上
結果を下記表2~表6に示した。 <Dynamic friction coefficient>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 80°C, to produce a cylindrical thrust test piece and a test piece with a contact area of 2cm2 . did. This test piece was measured using a Suzuki friction and wear tester at a temperature of 23°C and a humidity of 50%, with a load of 10 kgf and a linear velocity of 10 cm/s, and the coefficient of dynamic friction (μ) was determined. Ta. The measurement results were evaluated according to the following criteria.
A: Less than 0.32 B: 0.32 or more, less than 0.34 C: 0.34 or more The results are shown in Tables 2 to 6 below.
<比摩耗量>
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を80℃に設定して、円筒形スラスト試験片、接触面積2cm2の試験片を作製した。この試験片について、鈴木式摩擦摩耗試験機を用いて、温度23℃、湿度50%雰囲気下で、荷重3kgf、線速度30cm/s、同一材同士にて走行時間20時間で行い、試験前後の円筒型スラスト試験片の質量を基に比摩耗量を算出した。比摩耗量は、摩耗試験に用いた試験片の両方の比摩耗量の合計である。
単位は、×10-2(mm3/kgf・km)で示した。
また、測定結果を以下の基準により評価した。
A:20×10-2(mm3/kgf・km)未満
B:20×10-2(mm3/kgf・km)以上30×10-2(mm3/kgf・km)未満
C:30×10-2(mm3/kgf・km)以上
結果を下記表2~表6に示した。 <Specific wear amount>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 80°C, to produce a cylindrical thrust test piece and a test piece with a contact area of 2cm2 . did. This test piece was tested using a Suzuki type friction and wear tester in an atmosphere of temperature 23°C and humidity 50%, load 3 kgf, linear speed 30 cm/s, and running time of 20 hours between the same materials. The specific wear amount was calculated based on the mass of the cylindrical thrust test piece. The specific wear amount is the sum of the specific wear amounts of both test pieces used in the wear test.
The unit is ×10 −2 (mm 3 /kgf·km).
In addition, the measurement results were evaluated based on the following criteria.
A: Less than 20×10 −2 (mm 3 /kgf・km) B: 20×10 −2 (mm 3 /kgf・km) or more and less than 30×10 −2 (mm 3 /kgf・km) C: 30× 10 −2 (mm 3 /kgf·km) or more The results are shown in Tables 2 to 6 below.
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を80℃に設定して、円筒形スラスト試験片、接触面積2cm2の試験片を作製した。この試験片について、鈴木式摩擦摩耗試験機を用いて、温度23℃、湿度50%雰囲気下で、荷重3kgf、線速度30cm/s、同一材同士にて走行時間20時間で行い、試験前後の円筒型スラスト試験片の質量を基に比摩耗量を算出した。比摩耗量は、摩耗試験に用いた試験片の両方の比摩耗量の合計である。
単位は、×10-2(mm3/kgf・km)で示した。
また、測定結果を以下の基準により評価した。
A:20×10-2(mm3/kgf・km)未満
B:20×10-2(mm3/kgf・km)以上30×10-2(mm3/kgf・km)未満
C:30×10-2(mm3/kgf・km)以上
結果を下記表2~表6に示した。 <Specific wear amount>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 80°C, to produce a cylindrical thrust test piece and a test piece with a contact area of 2cm2 . did. This test piece was tested using a Suzuki type friction and wear tester in an atmosphere of temperature 23°C and humidity 50%, load 3 kgf, linear speed 30 cm/s, and running time of 20 hours between the same materials. The specific wear amount was calculated based on the mass of the cylindrical thrust test piece. The specific wear amount is the sum of the specific wear amounts of both test pieces used in the wear test.
The unit is ×10 −2 (mm 3 /kgf·km).
In addition, the measurement results were evaluated based on the following criteria.
A: Less than 20×10 −2 (mm 3 /kgf・km) B: 20×10 −2 (mm 3 /kgf・km) or more and less than 30×10 −2 (mm 3 /kgf・km) C: 30× 10 −2 (mm 3 /kgf·km) or more The results are shown in Tables 2 to 6 below.
<曲げ弾性率>
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ISO9988-2規格に準拠して、射出成形した。射出成形機は、芝浦機械社製、EC-100Sを用いた。こうして、4mm厚さの多目的試験片(ISO試験片)を得た。
次に、この4mm厚さの多目的試験片(ISO試験片)について、曲げ試験機である全自動曲げ試験機を用いて、ISO178に記載の方法に従って、曲げ試験速度2mm/分で曲げ試験を行い、曲げ弾性率を測定した。全自動曲げ試験機は、島津製作所社製のものを用いた。単位はMPaで示した。評価基準は以下の通りである。
A:1500MPa以上、2400MPa未満
B:1300MPa以上、1500MPa未満または2400MPa以上、2450MPa未満
C:1300MPa未満、または2450MPa以上
結果を下記表2~表6に示した。 <Bending elastic modulus>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were injection molded using an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 90°C, in accordance with the ISO9988-2 standard. The injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd. In this way, a multi-purpose test piece (ISO test piece) with a thickness of 4 mm was obtained.
Next, this 4 mm thick multi-purpose test piece (ISO test piece) was subjected to a bending test using a fully automatic bending tester at a bending test speed of 2 mm/min according to the method described in ISO178. , the flexural modulus was measured. A fully automatic bending tester manufactured by Shimadzu Corporation was used. The unit is MPa. The evaluation criteria are as follows.
A: 1500 MPa or more, less than 2400 MPa B: 1300 MPa or more, less than 1500 MPa, or 2400 MPa or more, less than 2450 MPa C: Less than 1300 MPa, or 2450 MPa or more The results are shown in Tables 2 to 6 below.
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度195℃に設定し、金型温度を90℃に設定して、ISO9988-2規格に準拠して、射出成形した。射出成形機は、芝浦機械社製、EC-100Sを用いた。こうして、4mm厚さの多目的試験片(ISO試験片)を得た。
次に、この4mm厚さの多目的試験片(ISO試験片)について、曲げ試験機である全自動曲げ試験機を用いて、ISO178に記載の方法に従って、曲げ試験速度2mm/分で曲げ試験を行い、曲げ弾性率を測定した。全自動曲げ試験機は、島津製作所社製のものを用いた。単位はMPaで示した。評価基準は以下の通りである。
A:1500MPa以上、2400MPa未満
B:1300MPa以上、1500MPa未満または2400MPa以上、2450MPa未満
C:1300MPa未満、または2450MPa以上
結果を下記表2~表6に示した。 <Bending elastic modulus>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were injection molded using an injection molding machine, with the cylinder temperature set at 195°C and the mold temperature set at 90°C, in accordance with the ISO9988-2 standard. The injection molding machine used was EC-100S manufactured by Shibaura Kikai Co., Ltd. In this way, a multi-purpose test piece (ISO test piece) with a thickness of 4 mm was obtained.
Next, this 4 mm thick multi-purpose test piece (ISO test piece) was subjected to a bending test using a fully automatic bending tester at a bending test speed of 2 mm/min according to the method described in ISO178. , the flexural modulus was measured. A fully automatic bending tester manufactured by Shimadzu Corporation was used. The unit is MPa. The evaluation criteria are as follows.
A: 1500 MPa or more, less than 2400 MPa B: 1300 MPa or more, less than 1500 MPa, or 2400 MPa or more, less than 2450 MPa C: Less than 1300 MPa, or 2450 MPa or more The results are shown in Tables 2 to 6 below.
<ホルムアルデヒド発生量>
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度210℃に設定し、金型温度を80℃に設定して、100mm×40mm×2mmの平板試験片を作製した。この試験片について、ドイツ自動車工業組合規格VDA275(自動車室内部品-改定フラスコ法によるホルムアルデヒド放出量の定量)に記載された方法に準拠して、下記の方法により、ポリアセタール樹脂1g中のホルムアルデヒド発生量を測定した。
(i)ポリエチレン容器内の蒸留水50mLを入れ、上記平板試験片を空中に吊るした状態で蓋を閉め、密閉状態で60℃にて3時間加熱した。
(ii)室温で60分間放置した後、平板試験片を取り出した。
(iii)ポリエチレン容器内の蒸留水中に吸収されたホルムアルデヒド量を、UVスペクトロメーターにより、アセチルアセトン比色法で測定し、このホルムアルデヒド量を平板試験片中のPOMの質量で除した値をホルムアルデヒド発生量とした。
単位は、ポリアセタール樹脂1g当たりのホルムアルデヒド発生量(μg)、すなわち、μg/g-POMで示した。測定結果を以下の基準により評価した。
A:5μg/g-POM未満
B:5μg/g-POM以上10μg/g-POM未満
C:10μg/g-POM以上
結果を下記表2~表6に示した。 <Formaldehyde generation amount>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 210°C and the mold temperature set at 80°C, to produce a flat test piece of 100 mm x 40 mm x 2 mm. Regarding this test piece, the amount of formaldehyde generated in 1 g of polyacetal resin was determined by the following method in accordance with the method described in the German Automobile Industry Association standard VDA275 (Automotive interior parts - Determination of formaldehyde release amount by revised flask method). It was measured.
(i) 50 mL of distilled water was placed in a polyethylene container, the lid was closed with the flat test piece hanging in the air, and the container was heated at 60° C. for 3 hours in a sealed state.
(ii) After being left at room temperature for 60 minutes, the flat test piece was taken out.
(iii) The amount of formaldehyde absorbed in the distilled water in the polyethylene container is measured using the acetylacetone colorimetric method using a UV spectrometer, and the amount of formaldehyde generated is calculated by dividing the amount of formaldehyde by the mass of POM in the flat test piece. And so.
The unit is the amount of formaldehyde generated (μg) per gram of polyacetal resin, ie, μg/g-POM. The measurement results were evaluated according to the following criteria.
A: Less than 5 μg/g-POM B: 5 μg/g-POM or more and less than 10 μg/g-POM C: 10 μg/g-POM or more The results are shown in Tables 2 to 6 below.
上記で得られたペレットを、温度80℃の熱風循環式乾燥機にて4時間熱処理を行った。
次に、上記乾燥後のペレットを、射出成形機を用い、シリンダー温度210℃に設定し、金型温度を80℃に設定して、100mm×40mm×2mmの平板試験片を作製した。この試験片について、ドイツ自動車工業組合規格VDA275(自動車室内部品-改定フラスコ法によるホルムアルデヒド放出量の定量)に記載された方法に準拠して、下記の方法により、ポリアセタール樹脂1g中のホルムアルデヒド発生量を測定した。
(i)ポリエチレン容器内の蒸留水50mLを入れ、上記平板試験片を空中に吊るした状態で蓋を閉め、密閉状態で60℃にて3時間加熱した。
(ii)室温で60分間放置した後、平板試験片を取り出した。
(iii)ポリエチレン容器内の蒸留水中に吸収されたホルムアルデヒド量を、UVスペクトロメーターにより、アセチルアセトン比色法で測定し、このホルムアルデヒド量を平板試験片中のPOMの質量で除した値をホルムアルデヒド発生量とした。
単位は、ポリアセタール樹脂1g当たりのホルムアルデヒド発生量(μg)、すなわち、μg/g-POMで示した。測定結果を以下の基準により評価した。
A:5μg/g-POM未満
B:5μg/g-POM以上10μg/g-POM未満
C:10μg/g-POM以上
結果を下記表2~表6に示した。 <Formaldehyde generation amount>
The pellets obtained above were heat-treated for 4 hours in a hot air circulation dryer at a temperature of 80°C.
Next, the dried pellets were used in an injection molding machine, with the cylinder temperature set at 210°C and the mold temperature set at 80°C, to produce a flat test piece of 100 mm x 40 mm x 2 mm. Regarding this test piece, the amount of formaldehyde generated in 1 g of polyacetal resin was determined by the following method in accordance with the method described in the German Automobile Industry Association standard VDA275 (Automotive interior parts - Determination of formaldehyde release amount by revised flask method). It was measured.
(i) 50 mL of distilled water was placed in a polyethylene container, the lid was closed with the flat test piece hanging in the air, and the container was heated at 60° C. for 3 hours in a sealed state.
(ii) After being left at room temperature for 60 minutes, the flat test piece was taken out.
(iii) The amount of formaldehyde absorbed in the distilled water in the polyethylene container is measured using the acetylacetone colorimetric method using a UV spectrometer, and the amount of formaldehyde generated is calculated by dividing the amount of formaldehyde by the mass of POM in the flat test piece. And so.
The unit is the amount of formaldehyde generated (μg) per gram of polyacetal resin, ie, μg/g-POM. The measurement results were evaluated according to the following criteria.
A: Less than 5 μg/g-POM B: 5 μg/g-POM or more and less than 10 μg/g-POM C: 10 μg/g-POM or more The results are shown in Tables 2 to 6 below.
<総合評価>
上記ウエルド伸び、動摩擦係数、比摩耗量、曲げ弾性率、ホルムアルデヒド発生量の評価結果のうち、最も悪い結果を総合評価とした。
結果を表2~表6に示した。 <Comprehensive evaluation>
Among the evaluation results of the weld elongation, dynamic friction coefficient, specific wear amount, flexural modulus, and formaldehyde generation amount, the worst result was taken as the overall evaluation.
The results are shown in Tables 2 to 6.
上記ウエルド伸び、動摩擦係数、比摩耗量、曲げ弾性率、ホルムアルデヒド発生量の評価結果のうち、最も悪い結果を総合評価とした。
結果を表2~表6に示した。 <Comprehensive evaluation>
Among the evaluation results of the weld elongation, dynamic friction coefficient, specific wear amount, flexural modulus, and formaldehyde generation amount, the worst result was taken as the overall evaluation.
The results are shown in Tables 2 to 6.
上記表2~6から明らかなとおり、本発明の樹脂組成物は、摺動性に優れ、かつ、耐摩耗性に優れていた(実施例1~14)。
これに対し、ポリアセタール樹脂(A)中のコアシェルエラストマー(B)の平均2次粒子径が大きい場合(比較例1、2)、ウエルド伸びが小さかったり、樹脂組成物(ペレット)が得られなかった。
また、コアシェルエラストマー(B)の含有量が少ない場合(比較例3)、弾性率が高く、また、多すぎる場合(比較例4)、弾性率が低すぎ、いずれの場合も、適度な軟質性を保てなかった。
また、シリコーン化合物(C)の含有量多すぎる場合(比較例5、7)、ウエルド伸びが低く、また、多すぎる場合(比較例6)、摺動性が劣っていた。
さらに、シリコーン化合物(C)の動粘度が低い場合(比較例8、9)、摺動性が劣っていた。
また、シリコーン化合物(C)以外の摺動性改良剤を用いた場合(参考例1~3)、摺動性が不十分であったり、ホルムアルデヒドが発生してしまったりした。 As is clear from Tables 2 to 6 above, the resin compositions of the present invention had excellent sliding properties and excellent abrasion resistance (Examples 1 to 14).
On the other hand, when the average secondary particle diameter of the core-shell elastomer (B) in the polyacetal resin (A) was large (Comparative Examples 1 and 2), the weld elongation was small or the resin composition (pellet) could not be obtained. .
In addition, when the content of the core-shell elastomer (B) is small (Comparative Example 3), the elastic modulus is high, and when it is too large (Comparative Example 4), the elastic modulus is too low. I couldn't keep it.
Moreover, when the content of the silicone compound (C) was too high (Comparative Examples 5 and 7), weld elongation was low, and when the content was too high (Comparative Example 6), the sliding properties were poor.
Furthermore, when the kinematic viscosity of the silicone compound (C) was low (Comparative Examples 8 and 9), the sliding properties were poor.
Furthermore, when a sliding property improver other than the silicone compound (C) was used (Reference Examples 1 to 3), the sliding property was insufficient or formaldehyde was generated.
これに対し、ポリアセタール樹脂(A)中のコアシェルエラストマー(B)の平均2次粒子径が大きい場合(比較例1、2)、ウエルド伸びが小さかったり、樹脂組成物(ペレット)が得られなかった。
また、コアシェルエラストマー(B)の含有量が少ない場合(比較例3)、弾性率が高く、また、多すぎる場合(比較例4)、弾性率が低すぎ、いずれの場合も、適度な軟質性を保てなかった。
また、シリコーン化合物(C)の含有量多すぎる場合(比較例5、7)、ウエルド伸びが低く、また、多すぎる場合(比較例6)、摺動性が劣っていた。
さらに、シリコーン化合物(C)の動粘度が低い場合(比較例8、9)、摺動性が劣っていた。
また、シリコーン化合物(C)以外の摺動性改良剤を用いた場合(参考例1~3)、摺動性が不十分であったり、ホルムアルデヒドが発生してしまったりした。 As is clear from Tables 2 to 6 above, the resin compositions of the present invention had excellent sliding properties and excellent abrasion resistance (Examples 1 to 14).
On the other hand, when the average secondary particle diameter of the core-shell elastomer (B) in the polyacetal resin (A) was large (Comparative Examples 1 and 2), the weld elongation was small or the resin composition (pellet) could not be obtained. .
In addition, when the content of the core-shell elastomer (B) is small (Comparative Example 3), the elastic modulus is high, and when it is too large (Comparative Example 4), the elastic modulus is too low. I couldn't keep it.
Moreover, when the content of the silicone compound (C) was too high (Comparative Examples 5 and 7), weld elongation was low, and when the content was too high (Comparative Example 6), the sliding properties were poor.
Furthermore, when the kinematic viscosity of the silicone compound (C) was low (Comparative Examples 8 and 9), the sliding properties were poor.
Furthermore, when a sliding property improver other than the silicone compound (C) was used (Reference Examples 1 to 3), the sliding property was insufficient or formaldehyde was generated.
Claims (11)
- ポリアセタール樹脂(A)とコアシェルエラストマー(B)とシリコーン(C)とを含む樹脂組成物であって、
前記コアシェルエラストマー(B)が、ポリアセタール樹脂(A)中において、平均2次粒子径が10~250nmであり、
前記コアシェルエラストマー(B)の含有量が樹脂組成物中、5~25質量%であり、
前記シリコーン(C)の25℃における動粘度が400万~3000万cStであり、かつ、含有量が樹脂組成物中、0.3~1質量%である、樹脂組成物。 A resin composition comprising a polyacetal resin (A), a core-shell elastomer (B) and a silicone (C),
The core-shell elastomer (B) has an average secondary particle diameter of 10 to 250 nm in the polyacetal resin (A),
The content of the core-shell elastomer (B) is 5 to 25% by mass in the resin composition,
A resin composition, wherein the silicone (C) has a kinematic viscosity at 25° C. of 4 million to 30 million cSt, and the content thereof is 0.3 to 1% by mass in the resin composition. - 前記コアシェルエラストマー(B)の架橋指数が0.11~0.30の範囲である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30.
- 前記コアシェルエラストマー(B)において、コアがブタジエン含有ゴムを含み、シェルがアクリル系樹脂を含む、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein in the core-shell elastomer (B), the core contains a butadiene-containing rubber and the shell contains an acrylic resin.
- さらに、ヒドラジド化合物および/または尿素化合物を含む、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising a hydrazide compound and/or a urea compound.
- 前記コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が8~40である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40.
- トリムクリップ成形用である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which is used for trim clip molding.
- 前記コアシェルエラストマー(B)の架橋指数が0.11~0.30の範囲であり、
前記コアシェルエラストマー(B)において、コアがブタジエン含有ゴムを含み、シェルがアクリル系樹脂を含み、
さらに、ヒドラジド化合物および/または尿素化合物を含み、
前記コアシェルエラストマー(B)とシリコーン(C)の質量比率である(B)/(C)が8~40であり、
トリムクリップ成形用である、請求項1に記載の樹脂組成物。 The core-shell elastomer (B) has a crosslinking index in the range of 0.11 to 0.30,
In the core-shell elastomer (B), the core contains a butadiene-containing rubber, the shell contains an acrylic resin,
Furthermore, it contains a hydrazide compound and/or a urea compound,
The mass ratio (B)/(C) of the core-shell elastomer (B) and silicone (C) is 8 to 40,
The resin composition according to claim 1, which is used for trim clip molding. - 請求項1、2または7に記載の樹脂組成物のペレット。 Pellets of the resin composition according to claim 1, 2 or 7.
- 請求項1、2または7に記載の樹脂組成物から形成された成形品。 A molded article formed from the resin composition according to claim 1, 2, or 7.
- 請求項8に記載のペレットから形成された成形品。 A molded article formed from the pellet according to claim 8.
- トリムクリップである、請求項9に記載の成形品。 The molded article according to claim 9, which is a trim clip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023552593A JP7550321B2 (en) | 2022-06-09 | 2023-06-02 | Resin composition and molded article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022094010 | 2022-06-09 | ||
JP2022-094010 | 2022-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238790A1 true WO2023238790A1 (en) | 2023-12-14 |
Family
ID=89118290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/020627 WO2023238790A1 (en) | 2022-06-09 | 2023-06-02 | Resin composition and molded article |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7550321B2 (en) |
TW (1) | TW202409186A (en) |
WO (1) | WO2023238790A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7519553B2 (en) | 2022-06-09 | 2024-07-19 | グローバルポリアセタール株式会社 | Resin composition and molded article |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH051712A (en) * | 1990-02-07 | 1993-01-08 | Nippon Cable Syst Inc | Control cable |
JP2005029713A (en) * | 2003-07-08 | 2005-02-03 | Polyplastics Co | Sliding parts made of polyacetal resin |
JP2008019430A (en) * | 2006-06-15 | 2008-01-31 | Mitsubishi Engineering Plastics Corp | Polyacetal resin composition, process for its production and sliding member produced by molding the resin composition |
JP2008214490A (en) * | 2007-03-05 | 2008-09-18 | Mitsubishi Engineering Plastics Corp | Polyacetal resin composition |
JP2016534171A (en) * | 2013-10-21 | 2016-11-04 | ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Inherently low friction polyoxymethylene |
WO2021002315A1 (en) * | 2019-07-03 | 2021-01-07 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
WO2021002314A1 (en) * | 2019-07-03 | 2021-01-07 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
WO2021002316A1 (en) * | 2019-07-03 | 2021-01-07 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
JP2021011562A (en) * | 2019-07-03 | 2021-02-04 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
JP2021011563A (en) * | 2019-07-03 | 2021-02-04 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7519553B2 (en) | 2022-06-09 | 2024-07-19 | グローバルポリアセタール株式会社 | Resin composition and molded article |
-
2023
- 2023-06-02 WO PCT/JP2023/020627 patent/WO2023238790A1/en unknown
- 2023-06-02 JP JP2023552593A patent/JP7550321B2/en active Active
- 2023-06-07 TW TW112121214A patent/TW202409186A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH051712A (en) * | 1990-02-07 | 1993-01-08 | Nippon Cable Syst Inc | Control cable |
JP2005029713A (en) * | 2003-07-08 | 2005-02-03 | Polyplastics Co | Sliding parts made of polyacetal resin |
JP2008019430A (en) * | 2006-06-15 | 2008-01-31 | Mitsubishi Engineering Plastics Corp | Polyacetal resin composition, process for its production and sliding member produced by molding the resin composition |
JP2008214490A (en) * | 2007-03-05 | 2008-09-18 | Mitsubishi Engineering Plastics Corp | Polyacetal resin composition |
JP2016534171A (en) * | 2013-10-21 | 2016-11-04 | ティコナ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Inherently low friction polyoxymethylene |
WO2021002315A1 (en) * | 2019-07-03 | 2021-01-07 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
WO2021002314A1 (en) * | 2019-07-03 | 2021-01-07 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
WO2021002316A1 (en) * | 2019-07-03 | 2021-01-07 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
JP2021011562A (en) * | 2019-07-03 | 2021-02-04 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
JP2021011563A (en) * | 2019-07-03 | 2021-02-04 | 三菱エンジニアリングプラスチックス株式会社 | Resin composition and molded article |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7519553B2 (en) | 2022-06-09 | 2024-07-19 | グローバルポリアセタール株式会社 | Resin composition and molded article |
Also Published As
Publication number | Publication date |
---|---|
TW202409186A (en) | 2024-03-01 |
JP7550321B2 (en) | 2024-09-12 |
JPWO2023238790A1 (en) | 2023-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102002186A (en) | Mineral filled low-shrinkage modified polypropylene composite material and preparation method thereof | |
JP2021011562A (en) | Resin composition and molded article | |
JP7550321B2 (en) | Resin composition and molded article | |
WO2021002314A1 (en) | Resin composition and molded article | |
JP7519553B2 (en) | Resin composition and molded article | |
JP2021011563A (en) | Resin composition and molded article | |
KR101535398B1 (en) | Oxymethylene copolymer composition for stretching material, stretching material, structures, and process for producing the same | |
WO2021002315A1 (en) | Resin composition and molded article | |
WO2021002316A1 (en) | Resin composition and molded article | |
WO2023238789A1 (en) | Resin composition, molded body, and multicolored injection-molded body | |
EP3640299B1 (en) | Polyacetal resin composition, molded article, and method for producing polyacetal resin composition | |
JP6373727B2 (en) | Resin molded body | |
WO1989012660A1 (en) | Polyacetal resin composition | |
EP4299664A1 (en) | Powder-type additive comprising cross-linked resin, and resin composition comprising same | |
CN112662112B (en) | Polypropylene composite material with long-acting heat-oxygen aging resistance and low odor and stickiness resistance and preparation method thereof | |
JP3341790B2 (en) | Polyacetal resin composition | |
JP2021098767A (en) | Polyacetal resin composition and molding | |
JP7109962B2 (en) | Polyacetal resin composition | |
Jagtap et al. | Influence of ethylene-methacrylic acid copolymer on thermo-mechanical, morphological and rheological properties of recycled PET/SEBS blend | |
JP2023180589A (en) | Resin composition and molded article | |
Nakason et al. | Influence of oil contents in dynamically cured natural rubber and polypropylene blends | |
WO2016022922A1 (en) | Composition comprising polypropylene and polyol, and method of making the same | |
JPH0436341A (en) | Polyacetal resin composition | |
JP7398029B1 (en) | Resin composition, molded body, and multicolor injection molded body | |
WO2024202730A1 (en) | Insert molded body, anchor for attaching seat belt, and method for producing insert molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023552593 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23819770 Country of ref document: EP Kind code of ref document: A1 |