WO2023236596A1 - 计算设备、节点及基于相变浸没液冷系统的管理控制装置 - Google Patents
计算设备、节点及基于相变浸没液冷系统的管理控制装置 Download PDFInfo
- Publication number
- WO2023236596A1 WO2023236596A1 PCT/CN2023/078941 CN2023078941W WO2023236596A1 WO 2023236596 A1 WO2023236596 A1 WO 2023236596A1 CN 2023078941 W CN2023078941 W CN 2023078941W WO 2023236596 A1 WO2023236596 A1 WO 2023236596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- storage component
- liquid storage
- component
- management
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 94
- 238000007654 immersion Methods 0.000 title claims abstract description 73
- 239000007788 liquid Substances 0.000 claims abstract description 552
- 230000008859 change Effects 0.000 claims abstract description 89
- 238000009833 condensation Methods 0.000 claims abstract description 47
- 230000005494 condensation Effects 0.000 claims abstract description 47
- 239000012530 fluid Substances 0.000 claims description 131
- 230000004308 accommodation Effects 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000000498 cooling water Substances 0.000 claims description 15
- 239000000945 filler Substances 0.000 claims description 13
- 230000017525 heat dissipation Effects 0.000 claims description 13
- 238000011049 filling Methods 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 3
- 238000009834 vaporization Methods 0.000 abstract description 14
- 230000008016 vaporization Effects 0.000 abstract description 14
- 238000004891 communication Methods 0.000 abstract description 7
- 238000007726 management method Methods 0.000 description 96
- 239000003507 refrigerant Substances 0.000 description 38
- 238000010586 diagram Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 25
- 238000012423 maintenance Methods 0.000 description 20
- 230000001105 regulatory effect Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 13
- 238000009835 boiling Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 10
- 238000002637 fluid replacement therapy Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
Definitions
- Embodiments of the present application relate to the field of terminals, and in particular, to a computing device and a management and control device based on a phase change immersion liquid cooling system.
- immersed liquid cooling can be divided into single-phase immersed liquid cooling and phase change immersed liquid cooling.
- phase change immersion liquid cooling uses the boiling and vaporization of the coolant to take away the heat generated by the equipment. It usually adopts a closed design, fills a certain amount of phase change working fluid, and reserves part of the space for the vaporization of the working fluid. There is normal pressure air in some spaces to ensure pressure balance inside and outside the closed chamber. After the server is running, the heat generated by the equipment causes the working fluid in the cooling system to become vapor and mix with air.
- a typical treatment solution in the prior art uses an air/working fluid vapor separation device. Specifically, the mixed gas of air and refrigerant vapor collected in the internal space of the cooling system is pumped through a compressor to a gas-vapor separator for separation, and then Blow the air out.
- This treatment plan is equipped with two sets of condensation systems, the plan is relatively complex, and the energy consumption of compressor operation is relatively high.
- Embodiments of the present application provide a computing device and a management and control device based on a phase change immersion liquid cooling system, which can effectively reduce the energy consumption of gas-vapor separation on the basis of avoiding the influence of air on the heat exchange capacity of working fluid liquefaction.
- the first aspect of the embodiment of the present application provides a management and control device based on a phase change immersion liquid cooling system.
- the adjustment component includes a body with an inner cavity.
- the body of the adjustment component can be deformed under the pressure of the inner cavity side. And the accommodation space of its inner cavity can be changed accordingly; its liquid storage part is connected with the inner cavity of the adjustment part, and the liquid storage part includes a steam vent and a liquid vent, and the steam vent and the liquid vent are respectively used to communicate with the immersion
- the equipment chassis of the liquid cooling system is connected to establish a vapor path connection and a liquid path connection relationship between the liquid storage component and the equipment chassis; its condensation component is arranged in the inner cavity of the liquid storage component.
- the heat generated by the operation of the device is exchanged to the liquid working fluid immersed in the corresponding device.
- the liquid working fluid vaporizes.
- the air above the liquid level in the equipment chassis can be discharged to Liquid storage component; the pressure will increase as the amount of vaporization increases.
- the air in the system can be transported to the regulating component, and the continuously vaporized vapor working medium enters the liquid storage component and It is liquefied under the action of the condensation component.
- the liquid working medium can be backflowed into the equipment chassis through the liquid storage component.
- the adjusting component can further deform and expand, which can avoid the adverse effects caused by the increase in internal pressure, such as but not limited to, excessive pressure causing the liquid-cooled working fluid to The boiling point rises, which may cause damage to the chip due to overtemperature, affect the normal operation of some pressure-sensitive components, and cause other safety hazards.
- the management and control device provided by the embodiment of the present application can be used as a working node device of the phase change immersed liquid cooling system, providing basic condensation and liquefaction functions, and integrating air management and pressure control functions; at the same time, based on regulation
- the adjustable capacity of the component accommodation space, the realization of air management and pressure control functions without power drive, and the system power consumption can be reasonably controlled.
- the management and control device provided by the embodiment of the present application is independent of the equipment chassis.
- the equipment chassis can be opened by decoupling the gas and liquid connections between the equipment chassis and the management control device. It has good operability for daily maintenance needs.
- embodiments of the present application also provide a third implementation mode of the first aspect.
- the condensation coil of the condensation component is located in the upper area of the inner cavity of the liquid storage component. This setting can adapt to the upward trend of the vapor working fluid and improve the condensation heat transfer efficiency of the vapor working fluid.
- the liquid storage component also includes a liquid injection port and a pressure safety valve.
- the cooling water outlet and the cooling water inlet are located at one end of the liquid storage component to meet the functional needs of the internal refrigeration cycle of the system; accordingly, the liquid injection port and The pressure safety valve is located at the other end of the liquid storage component.
- the present invention also provides a fifth implementation manner of the first aspect: the regulating component is arranged above the liquid storage component, and the bottom opening of the regulating component is sealed and fixed with the top opening of the liquid storage component, which can avoid abnormal escape of the refrigerant. out of the system.
- the vaporized refrigerant in the phase-change refrigeration refrigerant cycle moves upward, and the liquid refrigerant can move downward based on its own weight.
- the actual calorific value of the server heating components can be combined to rationally configure the adjustment components
- the expansion capacity, the heat exchange capacity of the condensing part, and the pre-installed liquid working medium capacity of the liquid storage part eliminate the need to configure power components such as a drain pump for liquid working medium. In this way, system configuration costs can be further reduced and operating noise can be reduced.
- the embodiment of the present application also provides the sixth implementation manner of the first aspect: it also includes a power component configured to: based on the liquid path connection relationship, the liquid in the equipment chassis can be The working fluid is pumped back to the liquid storage component, and the power component can also pump the liquid working fluid from the storage component to the equipment chassis based on the liquid path connection relationship; in this way, when node maintenance is required, the power component can be started to move the node chassis The refrigerant in the system is withdrawn and stored in the liquid storage component, and then decoupled from the system. No refrigerant is retained in the nodes decoupled from the system, making it easier to perform operation and maintenance operations.
- the embodiment of the present application also provides the seventh implementation manner of the first aspect: further including a rehydration pump switch arranged outside the liquid storage component , rehydration pump switch for manual operation control Start and stop the liquid return pump.
- a rehydration pump switch arranged outside the liquid storage component , rehydration pump switch for manual operation control Start and stop the liquid return pump.
- the operator can manually start the liquid return pump according to the preparation situation on the working fluid tank side to pump the liquid working fluid from the working fluid tank into the management control system; at the same time, node maintenance needs to be decoupled from the system.
- the operator can also manually start the liquid return pump according to the actual situation on site to extract the liquid working fluid from the node chassis to the management control system, which has better operability.
- the embodiments of the present application also provide A ninth implementation manner of the first aspect: multiple liquid storage components may be provided, and each liquid storage component is respectively connected with the inner cavity of the adjustment component. That is to say, the expansion capacity of the adjustment component should be reasonably configured, and the adjustment component with a larger volume can be adapted to multiple liquid storage components to select according to the needs of the actual application scenario.
- the computing node also includes an air balance valve, which is used to control the connection between outside air and the inside of the node chassis.
- the air balance valve can be configured at the upper side wall of the node chassis, that is, above the level of the internal liquid working fluid.
- the normally closed air balance valve is opened in one direction, so that external air can enter the node chassis for pressure compensation, and the internal working fluid can be extracted quickly and smoothly; when the internal temperature drops to the boiling point of the working fluid, It can further avoid the generation of negative pressure.
- the embodiment of the present application also provides a first implementation manner of the second aspect: the liquid port of the node chassis includes a first liquid port and a second liquid port; the first liquid port is used to establish The first liquid path connection relationship is used to send the liquid working medium from the liquid storage component to the node chassis; the second liquid port is used to establish a second liquid path connection relationship to pump the liquid working fluid back from the node chassis to the liquid storage component. part.
- the power supply components and delivery paths can be set separately for the liquid return and liquid supply. The two operate independently. The specific operations of injecting the liquid working medium into the chassis and withdrawing the liquid working medium can be performed at the same time, and the independent controls have no interaction. interference.
- the second liquid port is provided with a second liquid return joint, and the second liquid return joint is configured to be disconnected and automatically closed.
- the position of the liquid return interface of the node chassis remains sealed, and the system is in normal operation;
- the computing node needs to be inspected and maintained, after the operation of pumping out the working fluid in the chassis is completed, the second liquid return joint is automatically closed again, and the node status can be reliably switched.
- embodiments of the present application also provide a second implementation manner of the third aspect: a management and control device based on a phase change immersion liquid cooling system, which is arranged above the equipment chassis.
- a management and control device based on a phase change immersion liquid cooling system, which is arranged above the equipment chassis.
- the equipment chassis may include multiple immersed liquid cooling node equipment chassis, and the steam vents and liquid ports of the liquid storage component are connected to the steam vents and liquid ports of the multiple node device chassis in a one-to-one correspondence.
- the reserved air volume in each equipment chassis can be simultaneously taken into account, and the corresponding liquid storage redundancy and gas holding space redundancy can be balanced between each equipment chassis. Overall It can effectively reduce the total cost of system configuration and operation.
- the computing device may be a computer, a server, or other product types.
- the computing device may be a server, and the device chassis may be an immersed liquid-cooled node device chassis installed in a server cabinet.
- Figure 1 is a schematic structural diagram of a management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention
- FIG 2 is a schematic diagram of the assembly relationship of the management control device shown in Figure 1;
- Figure 3 is a schematic diagram of a usage state of the management and control device based on the phase change immersion liquid cooling system shown in Figure 1;
- Figure 4 is a schematic diagram of an application status of the management and control device based on the phase change immersion liquid cooling system provided by the embodiment of the present invention
- FIG 5 is a schematic diagram of a usage state of the management and control device based on the phase change immersion liquid cooling system shown in Figure 4;
- Figure 6 is an F-direction view of the management and control device based on the phase change immersion liquid cooling system shown in Figure 1;
- Figure 7 is an R-direction view of the management and control device based on the phase change immersion liquid cooling system shown in Figure 1;
- Figure 8 is a top view of the liquid storage component shown in Figure 1;
- Figure 9 is a schematic structural diagram of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- Figure 10 is a schematic diagram of a usage state of the management and control device based on the phase change immersion liquid cooling system shown in Figure 9;
- Figure 11 is a schematic structural diagram of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- Figure 12 is a schematic diagram of a usage state of the management and control device based on the phase change immersion liquid cooling system shown in Figure 11;
- Figure 13 is a schematic diagram of another application state of the management and control device based on the phase change immersion liquid cooling system provided by the embodiment of the present invention.
- Figure 14 is a schematic diagram of an application state of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- Figure 15 is a schematic diagram of the computing node shown in Figure 14 performing maintenance operations
- Figure 16 is a schematic diagram of another application state of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- Figure 17 is a schematic diagram of another application state of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- Figure 18 is a schematic diagram of another application state of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- Embodiments of the present application provide a management and control device based on a phase change immersion liquid cooling system, which integrates air management and pressure control functions without requiring additional power drive requirements.
- phase change immersion liquid cooling technology refers to completely immersing heating equipment in a non-conductive cooling liquid (phase change working fluid), and using the non-conductive liquid to boil and vaporize to take away the heat generated when the equipment is working.
- the main advantages include: 1) low noise, no pollution, and no risk of leakage; 2) energy saving and consumption reduction, reducing the operating cost of the system; 3) reducing the space occupied by the cooling system, which can improve the overall compactness and integration of computing equipment; 4) Reduce equipment failure rate.
- a typical treatment method is to use a compressor to pump the mixed gas of air and refrigerant vapor collected in the space to an air/working fluid vapor separation device, and then discharge the separated air.
- this treatment solution is equipped with two sets of condensation systems, which is relatively complex.
- the compressor consumes relatively high energy, and the system PUE (Power Usage Efficiency, power utilization rate) cannot be reasonably controlled.
- embodiments of the present application provide a management and control device based on a phase change immersion liquid cooling system, which includes an adjustment component and a liquid storage component, and the inner cavities of the two are communicated.
- the body of the adjusting component can deform under the pressure of its inner cavity side, so that the accommodation space of its inner cavity increases or decreases with the change of pressure.
- “Deformation” here includes the situation where the adjusting component body can deform along a single dimension, and also includes the situation where it can be deformed in multiple dimensions.
- Its liquid storage component can accommodate two-phase refrigerant fluid, and has a built-in condensation component.
- the liquid storage component can be adapted to the chassis of phase change immersed computing equipment, and can be connected to the steam vents of the equipment chassis respectively. and liquid port to establish the relationship between steam path connection and liquid path connection.
- the devices in the equipment chassis generate heat, and the heat is exchanged to the liquid working fluid in the equipment chassis.
- it exceeds the boiling point of the two-phase refrigerant fluid, it vaporizes.
- the liquid level in the equipment chassis is first The air above is discharged into the liquid storage component; at the same time, the internal pressure will increase as the amount of vaporization increases. Based on the characteristic that the regulating component can deform under pressure, the air in the system can be transported to the regulating component.
- the continuously vaporized vapor working fluid also enters the liquid storage component and is liquefied under the action of the condensation component.
- the liquid The liquid working fluid is returned and injected into the equipment chassis through the liquid storage component.
- the air is discharged into the regulating component, which does not substantially interfere with the heat exchange between the vaporized working fluid and the condensing component. Therefore, the impact of the reserved air on the relationship between the vaporized working fluid and the condensing component can be effectively reduced. This good performance is achieved without the involvement of any energy-consuming components.
- the adjusting component can further deform and expand, which can avoid the adverse effects caused by the increase in internal pressure. For example, but not limited to, excessive pressure will increase the boiling point of the liquid-cooled working fluid, which may cause It will cause damage to the chip due to overheating, affect the normal operation of some pressure-sensitive components, and cause other safety hazards.
- the management and control device provided by the embodiment of the present application can be used as a working node device of the phase change immersed liquid cooling system, providing basic condensation and liquefaction functions, and integrating air management and pressure control functions; at the same time, based on the adjustment component accommodation
- the space adjustability, air management and pressure control functions can be realized without additional power drive, and the system power consumption can be reasonably controlled.
- the management and control device provided by the embodiment of the present application is set up independently of the equipment chassis.
- the steam and liquid connections between the equipment chassis and the management control device can be decoupled, and the equipment can be opened.
- the chassis undergoes routine maintenance and has good operability.
- the management and control device based on the phase change immersion liquid cooling system may include an adjustment component 10 and a liquid storage component 20.
- Figure 1 shows the Schematic structural diagram of the management and control device.
- Figure 2 is a schematic diagram of the assembly relationship of the management and control device based on the phase change immersion liquid cooling system shown in Figure 1.
- the lower edge of the adjustment component 10 can be installed on the upper edge of the liquid storage component 20.
- the bottom opening of the adjustment component 10 and the top opening of the liquid storage component 20 are sealed and fixed, and the inner cavities of the two are connected.
- this embodiment implements threaded fasteners, which makes the assembly operation convenient and easy to repair and maintain.
- a mechanical snap structure or other implementation methods can be used between the two. It should be noted that, on the basis of meeting the basic assembly and fixing functions, the joint between the two should also have good sealing performance to prevent the refrigerant from escaping the inner cavity of the device.
- the body of the adjusting component 10 has a stacked and expandable structure, which can deform under the action of internal pressure and change the volume of its inner cavity accommodation space.
- Figure 3 shows a schematic view of the adjusting component in an unfolded state.
- the main body of the stacked and expandable structure can be unfolded.
- the height of the adjustment component is as shown in dimension L2, and the accommodation space increases accordingly.
- the body of the stackable and expandable structure can automatically fold when the internal pressure decreases.
- the height of the adjusting component is shown as dimension L1 in Figure 1, and the accommodation space is reduced accordingly.
- the accommodation space in the inner cavity of the adjustment component 10 can increase or decrease as the internal pressure changes.
- the body of the adjusting component 10 can deform under the action of internal pressure and change the volume of its inner cavity accommodation space, in addition to its body structure, in other specific implementations, the above can also be achieved through the selection of the material of the adjusting component body.
- Functions such as but not limited to, using a flexible body after molding and based on material properties It is elastic and can also adjust or change the size of the internal accommodation space under the action of internal pressure; it is understood that elastic materials should be compatible with the refrigerant working fluid and be able to avoid leakage and escape of the vapor working fluid.
- the adjusting component can also adopt such a design, and the overall structure is in the form of a cylinder (not shown in the figure).
- the inner chamber of the cylinder can be divided by a piston to form two chambers.
- One side chamber is used to communicate with the inner chamber of the liquid storage component, and can push the piston displacement under pressure to expand the internal space of the side chamber.
- the adjustment component in the form of a cylinder is not a deformation expansion in the strict sense, and can also achieve the function of accommodating air and vapor working fluids.
- the inner cavity of the liquid storage component 20 is used to accommodate the two-phase refrigerant fluid, and a condensation component 30 is also built-in therein.
- the liquid storage component 20 includes a liquid port 21 and a steam port 22.
- the management control device provided in this embodiment is adapted to a phase change immersion server. Please refer to Figure 4 as well, which shows the phase change immersion-based server. An application state of the management control device of the liquid cooling system.
- the steam vent 22 of the liquid storage component 20 is connected with the steam vent 42 of the server equipment chassis 45, forming a steam path connection relationship; during the operation of the server, the device generates heat and the heat is exchanged to the liquid in the equipment chassis.
- the working fluid vaporizes when the temperature exceeds the boiling point of the two-phase refrigerating fluid.
- a pressure difference is formed between the equipment chassis 45 of the server node 40 and the inner cavity of the liquid storage component 20.
- the equipment chassis 45 is The air is discharged into the liquid storage component; as the working heat continues to increase, the vaporized vapor working medium also enters the liquid storage component 20 through the vapor path connection relationship. Based on the characteristics of the regulating component 10 that can be deformed under pressure, it is The air discharged first is further pushed and transported into the regulating component 10 .
- the liquid storage component 20 also includes a cooling water outlet 23 and a cooling water inlet 24, which are connected to the pipe ends on both sides of the condensation coil respectively to establish a cooling water circulation.
- the heat generated by the system is taken away.
- the cooling water outlet 23 and the cooling water inlet 24 are located at the same end side of the liquid storage component 20 to facilitate specific operations and pipeline layout. It should be understood that the specific implementation of the condensation circulation water path is not the core invention of this application, and those skilled in the art can implement it based on the existing technology, so it will not be described again here.
- the liquid port 21 of the liquid storage component 20 is connected with the first liquid port 41 of the equipment chassis 45, forming a liquid path connection relationship; the liquid working fluid in the liquid storage component 20 can flow back. Inject into the equipment chassis 45 to establish a working cycle of the two-phase refrigerant.
- the amount of liquid working fluid injected into the liquid storage component 20 should satisfy the immersion principle of the heat dissipation capacity of the server heating device 44 .
- the injection amount can be preset according to the overall design, such as but not limited to completely immersing the heating device as shown in the figure. Of course, the heating device can also be partially submerged.
- the management and control device based on the phase change immersion liquid cooling system also includes a liquid injection port 25 and a pressure safety valve 26 .
- a liquid injection port 25 and a pressure safety valve 26 .
- Figure 6 is a view along the direction F in Figure 1
- Figure 7 is a view along the direction R in Figure 1 .
- the liquid injection port 25 is used to communicate with the refrigerant supply pipeline outside the server. In this way, the liquid refrigerant can be pre-installed in the management and control device.
- the management and control device serves as an independent entity to provide air management, pressure control and refrigerant. cyclic replenishment function.
- a threshold value is preset based on the maximum pressure-bearing capacity of the system.
- the pressure safety valve 26 opens to relieve pressure and provide a safety protection function.
- the pressure safety valve 26 can be disposed on the top body of the liquid storage component 20. In other words, as long as it is disposed above the working fluid level in the liquid storage component 20, it can be opened when the internal pressure of the system is too high, and part of the vapor can be released. Release avoids the risk of high pressure.
- the cooling water outlet 23 and the cooling water inlet 24 can be located on the rear side of the liquid storage component 20 to meet the functional needs of the refrigeration cycle inside the system.
- the liquid filling port 25 and the pressure safety valve 26 can be located on the front side of the liquid storage component 20.
- a liquid filling pump 27 and a liquid draining pump 28 may be provided inside the liquid storage component 20 in this embodiment.
- FIG. 8 is a top view of the liquid storage component 20 shown in FIG. 1 .
- the condensation component is not shown in the figure.
- the liquid replenishing pump 27 is connected to the liquid filling port 25 to provide power for preloading or refilling the refrigerant into the liquid storage component 20 .
- the drain pump 28 is connected to the liquid port 21 to provide power to backflow the liquid working fluid stored at the bottom of the liquid storage component 20 into the equipment chassis 45 .
- the fluid replacement pump 27 and the fluid drainage pump 28 are respectively connected to the controller 29 through cables to realize power supply and corresponding control processing.
- the heat generated by the heating device 44 is transferred to the liquid refrigeration medium, and when the temperature rises above the boiling point of the working medium, the liquid vaporizes, and the internal pressure of the system increases with the increase in the amount of vapor. big.
- the upper cavity of the server equipment chassis 45 and the upper cavity of the management control device are connected through the steam pipe 70. As the gas pressure inside the server equipment chassis 45 increases, the two upper cavities of the server equipment chassis 45 and the management control device A pressure difference will be generated between the chambers, causing the air in the inner chamber of the server equipment chassis 45 to flow into the upper chamber of the liquid storage component 20 through the steam pipe 70, and at the same time, the vapor working fluid also enters the management and control device.
- Figure 5 shows that due to the entry of air (initially reserved in the upper cavity of the equipment chassis 45 and the upper cavity of the management control device) in Figure 4, the expansion and accommodation space of the adjusting component 10 increases, so that Accommodating the air entering from the server equipment chassis side will not affect the heat exchange efficiency between the subsequent entering vapor working fluid and the condensation coil.
- the regulating component 10 is arranged above the liquid storage component 20 , and the steam vent 22 on the liquid storage component 20 is located below the condensation coil of the condensation component 30 .
- the air in the management control device can be further effectively separated from the vaporized working fluid and located in the top area; the vaporized working fluid entering the liquid storage component 20 is in the condensation coil
- the water circulation in the condensation coil can ensure that its surface temperature meets the requirements of the liquefied working fluid.
- the liquid working fluid falls and accumulates at the bottom of the liquid storage component 20 to form a liquid pool, and can be returned to the server equipment through the water pipe 60 Chassis 45, enter the next cycle.
- the pressure inside the entire system will gradually increase.
- the regulating component 10 of the management control device is further extended, and the accommodation space of the internal cavity is expanded. It can also accommodate vaporized refrigerants that are not condensed in time to solve short-term pressure shocks.
- the pressure in the inner cavity of the server equipment chassis 45 becomes smaller accordingly, and the air will automatically return from the management control device to the cavity above the server to achieve a pressure balance in the system.
- the management and control device is configured above the server equipment chassis 45, and the regulating component 10 is configured above the liquid storage component 20, where the vaporized refrigerant in the phase change refrigerant cycle moves upward, and the liquid state
- the working medium can flow downward based on its own weight.
- the expansion capacity of the adjustment component 10 the heat exchange capacity of the condensation component 30, and the pre-installation of the liquid storage component 20 are adjusted through reasonable configuration. If the liquid working medium capacity is small, there is no need to configure power components such as a drainage pump 28 for the return of liquid working medium. Overall, system configuration costs can be further reduced and operating noise can be reduced.
- Figure 9 is a schematic structural diagram of another management and control device based on a phase change immersion liquid cooling system.
- Figure 10 is a management control based on the phase change immersion liquid cooling system shown in Figure 9. A schematic diagram of the device in use.
- the internal filling 90 can be relatively fixed at the lower position of the adjusting component 10.
- the internal filling 90 will not follow, thus avoiding the influence of excessive expansion resistance. , capable of timely and effective expansion.
- the internal filling can also be fixed at an upper position of the adjusting component (not shown in the figure), and can be deployed synchronously with the deformation of the adjusting component.
- the bottom edge of the internal filler 90 can also extend downward to the top of the condensation coil (not shown in the figure). It can be understood that the actual space occupied by the internal filler 90 needs to be reasonably considered. Heat exchange efficiency between chemicals and condensation coil.
- the adjusting component 10 is disposed above the liquid storage component 20 . According to different application scenarios, the adjusting component can also be arranged next to the liquid storage component. Please refer to Figures 11 and 12 together.
- Figure 11 is a schematic structural diagram of another management and control device based on a phase change immersion liquid cooling system.
- Figure 12 is a management control based on the phase change immersion liquid cooling system shown in Figure 11. A schematic diagram of the device in use.
- the adjusting component 10a is disposed beside the liquid storage component 20a, and the inner cavities of the two are connected.
- the regulating component 10a can also store air entering from the server equipment chassis side to avoid affecting the heat exchange efficiency between the vapor working fluid and the condensation coil.
- Other structures and connection relationships are consistent with the previous embodiments and will not be described again.
- the management and control device adopts a method in which the adjusting component is configured with a liquid storage component corresponding to it.
- one adjusting component with capacity expansion capability can also be used to configure multiple liquid storage components. That is to say, the management control device can be provided with multiple liquid storage components, and each liquid storage component is connected with the inner cavity of the adjustment component. Based on specific application scenarios, the expansion capacity of components can be adjusted through reasonable configuration, and multiple liquid storage components can be adapted to meet different management and control needs in the same application scenario.
- the management control device provided by this embodiment can be adapted to multiple phase change immersed nodes of the server. Please refer to Figure 13, which shows an application state of the management and control device based on the phase change immersion liquid cooling system.
- the steam vent 22 of the liquid storage component 20 is connected with the steam vent 42 of each node equipment chassis 45a of the server, and the liquid port 21 of the liquid storage component 20 is connected with the first liquid port of each node device chassis 45a.
- 41 connectivity respectively constructing the steam path connection relationship and the liquid path connection relationship.
- the components in each node device chassis 45a may be the same or different, such as but not limited to the processor shown in the figure.
- each node equipment chassis 45a The devices in each node equipment chassis 45a generate heat and the heat is exchanged to the liquid working fluid, which vaporizes after exceeding the boiling point of the working fluid.
- the pressure difference formed between each node equipment chassis 45a and the inner cavity of the liquid storage component 20 is the same or different.
- the pressure difference in the equipment chassis 45a can be pushed through the main steam pipe 70a. The air is discharged into the liquid storage component 20; as the working heat continues to increase, the vaporized vapor working fluid will also enter the liquid storage component 20.
- the vapor working medium is cooled and liquefied on the surface of the condensation coil of the condensation component 30.
- the mechanism is the same as that in the application scenario shown in Figure 4, which will not be described again here.
- the liquid working medium accumulated in the liquid storage component 20 can be returned and injected into each node equipment chassis 45a, thereby establishing multiple sub-working cycles.
- a power component such as a drainage pump 28a
- a filter 80 can also be provided on the water main pipe 60a to prevent impurities from entering the node. It can be understood that the functional implementation manner of components such as the drain pump 28a and the filter 80 is not the core invention of the present application, and therefore will not be described in detail here.
- the drainage pump for pumping liquid working fluid can also be installed on the water distribution pipe of each node equipment chassis 45a (not shown in the figure), and the pumping can be performed according to the actual liquid volume of each node.
- the drain pump can also be configured inside the liquid storage component.
- the filter can be disposed at any position on the liquid supply path, such as, but not limited to, at the main On the water pipe.
- the heat generated by the internal operation of each node can be continuously taken out of the server.
- the coolant distribution of the corresponding sub-circulation loop can be controlled, and the gas supply of the equipment chassis 45a of different nodes can be synchronously adapted. (air and vaporized working fluid), and can be balanced among multiple server nodes.
- the management control device can preset a relatively small system redundancy, which can meet the cooling function needs of multiple server nodes, and the system construction cost can be further reduced. For example, during the first working period, when the vaporization amount of the working fluid caused by the heating of the device of the first computing node is greater than the vaporization amount of the working fluid caused by the heating of the device of the second computing node, the management control system allocates more refrigeration working fluid to the second computing node. A computing node, correspondingly, more liquid will be replenished to the first computing node; conversely, during the second working period, the amount of working fluid vaporization caused by the heating of the device of the first computing node is less than the heating of the device of the second computing node.
- Figure 14 is a phase-based method provided by an embodiment of the present invention. Another application status diagram of the management and control device of the variable immersion liquid cooling system.
- Figure 15 is a schematic diagram of the computing node shown in Figure 14 performing maintenance operations.
- the fluid path connection relationship here includes a first fluid path connection relationship and a second fluid path connection relationship, wherein the power component includes a fluid replacement pump 27 and a fluid drainage pump 28 , and the first fluid path connection relationship is based on the fluid drainage pump 28
- the liquid replenishing pump 27 is used to draw the liquid working medium back from the equipment chassis 45 of the corresponding server node 40 to the liquid storage component 20 through the second liquid path connection relationship, that is, the power component is used to quickly draw the liquid working medium back.
- the equipment chassis 45 includes a first liquid port 41 and a second liquid port 43 .
- the second liquid port 43 is used to communicate with the liquid injection port 25 of the liquid storage component 20 through the liquid return pipe 50, so as to pump the refrigerant in the corresponding equipment chassis 45 back to the liquid storage component 20 according to operation and maintenance needs;
- a liquid port 41 is used to connect with the water pipe 60, and then communicate with the liquid port 21 of the liquid storage component 20 through the water pipe 60, so as to realize the refrigerant pre-installation and liquid replenishment reflux of the equipment chassis.
- the liquid port 21 and the liquid injection port 25 for liquid supply and return can be realized by using one liquid port; accordingly, the first liquid port 41 and the second liquid port of the equipment chassis 45 43, also using a liquid port.
- a power component can be used to provide liquid return power and liquid supply power, and the corresponding working medium transportation can be completed through a liquid path connection relationship (not shown in the figure).
- the functions of the fluid replenishing pump 27 and the fluid discharging pump 28 are realized by one power component, such as but not limited to a pump that can perform forward and reverse rotation. When rotating forward, the liquid working fluid can be pumped back to the liquid storage component. When rotating reversely, the liquid working fluid can be pumped back to the liquid storage component. The liquid working fluid can be pumped to each node chassis.
- the server node 40 includes an air balance valve 410 to control the communication between the outside air and the inside of the server.
- the air balance valve 410 is disposed on the upper side wall of the equipment chassis 45 and is a normally closed one-way valve. valve, when the refrigerant in the equipment case 45 is pumped back to the liquid storage component 20, after the pressure inside the case is reduced, the air balance valve 410 opens based on the change in the internal and external pressure difference, and when it is opened, external air can enter the equipment case. 45. Internal pressure compensation is achieved to quickly and smoothly extract the internal working fluid; here, the internal vapor working fluid will not be discharged through the open air balance valve 410, and the valve will be closed in both directions to maintain the corresponding server during node maintenance. The internal and external pressure balance of the node.
- the first liquid return joint 51 is disposed at the extended end of the liquid return pipe 50 , that is, the connection end of the liquid return pipe 50 and the second liquid port 43
- the second liquid return joint 46 is disposed at the third end of the equipment chassis 45
- first liquid return joint 51 and the second liquid return joint 46 may be quick-connect joints with a disconnection and automatic closing function. It can be understood that the specific structural implementation of the disconnection and automatic shutdown function is not the core invention of this application, so it will not be described again here. Of course, at the points where the first liquid port 41 and the steam port 42 are connected to the corresponding pipelines, quick-connect joints with automatic disconnection and closing functions can also be used, which can control the loss of working fluid caused by the disassembly and assembly operations, and is convenient for on-site Operations management.
- fluid replacement pump 27 and the fluid discharge pump 28 shown in the figure are both arranged in the fluid storage component 20, which does not occupy its external space and has a higher overall integration level. It is understandable that the pump can also be installed at other positions than shown in the figure, which can also meet the functional requirement of providing output power along the corresponding working fluid transport direction.
- the server node 40 is configured with a solenoid valve 47 and a first liquid level sensor 48 .
- the solenoid valve 47 is provided at the first liquid port 41 of the equipment chassis 45 and can open or close the liquid supply channel of the node according to the control instruction.
- the solenoid valve can also be arranged at other positions on the liquid supply path that establishes the second liquid path connection relationship of the corresponding node, so as to connect or disconnect the corresponding supply according to the detection result of the first liquid level sensor. liquid path.
- the first liquid level sensor 48 can detect the liquid level of the liquid working medium in the equipment chassis 45 in real time, and output the liquid level signal to the BMC (Baseboard Management Controller, motherboard management controller) 49, which is controlled by the BMC 49 according to the current liquid level output. command to solenoid valve 47.
- BMC Baseboard Management Controller, motherboard management controller
- the BMC outputs an opening control command to the solenoid valve 47, and the solenoid valve 47 opens.
- the refrigerant in the liquid storage component 20 can pass through the water pipe. 60 to realize fluid replenishment and reflux;
- the BMC outputs a closing control command to the solenoid valve 47, and the solenoid valve 47 is closed, ending the reflux.
- the solenoid valve 47 can also be closed when the liquid level reaches the upper limit threshold.
- the pumping amount of the liquid working fluid from the liquid storage component 20 to the node equipment chassis can be specifically controlled according to the liquid level of the liquid working fluid in the corresponding equipment chassis, and is controlled by the control unit of the management control device.
- the solenoid valve 47 is controlled to open and close, so as to make full use of the liquid capacity of the liquid storage component and reasonably distribute it to the equipment chassis of each node, and further utilize the redundancy capability of the management control device to reduce the system Operating costs.
- drainage pumps can also be independently configured in the liquid storage component 20, so that the management and control device can be configured according to the first
- the liquid level signal collected by the liquid level sensor 48 controls the corresponding drainage pump of the server node.
- a second liquid level sensor 213 can also be provided in the liquid storage component 20 .
- the second liquid level sensor 213 is used to detect the liquid level of the liquid working medium in the liquid storage component 20 to ensure that the liquid storage amount meets the requirements of the server node 40 . Amount of liquid used.
- the first liquid return joint 51 can be connected to a working medium source such as an external working medium tank (not shown in the figure), and the liquid replenishing pump 27 is started to extract the liquid working medium from the working medium tank to the liquid storage component 20 , the second liquid level sensor 213 can detect the liquid level of the liquid working medium in the liquid storage component 20, and can output the liquid level signal to the control module 210.
- the control module 210 When the current liquid level reaches the upper limit threshold, the control module 210 outputs a shutdown control Command to rehydration pump 27.
- the management and control functions of the BMC 49 and the control module 210 of each server node 40 in this embodiment can also be implemented through a chip configured outside the system device.
- the BMC chip and the control module 210 are respectively integrated and configured in the system, which is easy to inspect and maintain.
- this embodiment is provided with a fluid replacement pump switch 211 on the outside of the fluid storage component 20 for the operator to manually control the start and stop of the fluid replacement pump 27 .
- the operator can manually start the fluid replenishing pump 27 according to the preparation status of the working fluid tank side to pump the liquid working fluid from the working fluid tank into the liquid storage component 20; at the same time, when performing node maintenance needs to be in accordance with the system
- the operator can also manually start the fluid replenishing pump 27 according to the actual conditions on site to extract the liquid working fluid from the equipment chassis 45 to the liquid storage component 20 .
- the fluid replacement pump 27 can also be used as an emergency stop operation switch to shut down the fluid replacement pump 27 according to the actual situation on site.
- the management control device provided by this embodiment can also be adapted to multiple phase change immersed nodes of the server. See Figure 16. As shown in the figure, the steam vent 22 of the liquid storage component 20 is connected with the steam vent 42 of each node equipment chassis 45a of the server, and the liquid vent 21 of the liquid storage component 20 is connected with the first liquid port 41 of each node equipment chassis 45a. Connectivity is constructed to form vapor path connection and liquid path connection relationships respectively.
- each node equipment chassis 45a The devices in each node equipment chassis 45a generate heat and the heat is exchanged to the liquid working fluid, which vaporizes after exceeding the boiling point of the working fluid.
- the pressure difference formed between each node equipment chassis 45a and the inner cavity of the liquid storage component 20 is the same or different.
- the pressure difference in the equipment chassis 45a can be pushed through the main steam pipe 70a. The air is discharged into the liquid storage component 20; the liquid working fluid accumulated in the liquid storage component 20 can be returned through the main water pipe 60a and injected into the equipment chassis 45a of each node.
- the phase change liquid cooling server (each server node 40) is connected to the liquid storage component 20 through the water pipe 60 (60a) and the steam pipe 70 (70a) (at this time, there is no liquid working medium in the liquid storage component 20).
- the first liquid return joint 51 is connected to the external working fluid tank (not shown in the figure)
- the fluid replenishing pump switch 211 is turned on, and the fluid replenishing pump 27 is started to transport the liquid two-phase refrigerant working fluid from the working fluid tank to the storage tank. in the liquid component 20; at the same time, the drain pump 28 can also be started, and the liquid working medium in the liquid storage component 20 is injected into the water pipe 60 (60a).
- the phase change liquid cooling server is powered on, and the BMC of the corresponding server node 40 detects the liquid level of the liquid working medium based on the first liquid level sensor 48 (at this time, there is no liquid working medium in each equipment chassis 45), and determines that the liquid level is low.
- the level of the liquid working fluid reaches the upper limit threshold, a control command is output to close the solenoid valve 47, and the server is filled with liquid.
- the liquid level in the liquid storage component 20 will continue to rise to make up for the loss of working fluid during the operation of the system.
- the control module 210 determines that the liquid level detected by the second liquid level sensor 213 reaches the upper limit threshold, it outputs a control instruction to close the fluid replenishing pump 27 .
- the phase change immersion liquid cooling server starts to work.
- the heat generated by the devices in each server node 40 is exchanged to the liquid working fluid.
- the temperature rises beyond the boiling point of the working fluid it vaporizes.
- the pressure inside the server node increases with the increase in the vaporization amount, and The vapor working fluid is pushed into the liquid storage component 20 .
- the high-temperature vapor working fluid that enters the liquid storage component 20 is cooled in the condensation coil and condenses into liquid again, and falls to the lower part of the liquid storage component 20 .
- the liquid working fluid can be returned to the server node 40 through the water pipe 60 (60a) to enter the next working cycle.
- the liquid working medium in the server node 40 evaporates and vaporizes, the liquid working medium gradually decreases.
- the BMC will The output opening control signal is sent to the control end of the corresponding solenoid valve 47, and liquid replenishment is performed until the liquid level reaches the upper limit threshold.
- the body of the adjusting component 10 in this embodiment can deform under the action of internal pressure and change the volume of the accommodation space of its inner cavity. I won’t go into details here.
- the first liquid return joint 51 is connected to the second liquid return joint 46 on the equipment chassis 45 of the server node.
- the liquid replenishment pump switch 211 of the management control device is turned on, and the liquid working medium in the corresponding server node 40 can be Pull it back into the liquid storage part 20.
- close the replenishing pump 27 and unplug the first liquid return connector 51, and the connector will automatically close after disconnection.
- the server node 40 can be completely decoupled from the system for specific maintenance, and can be reinstalled into the system after the maintenance is completed. At this point, repeat the system preparation process and the normal system working process.
- FIG. 17 is a schematic diagram of another application status of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- FIG. 17 is a schematic diagram of another application status of another management and control device based on a phase change immersion liquid cooling system provided by an embodiment of the present invention.
- the drain pump 28 is in a normal start-up operation state to control the liquid supply speed and flow rate according to the actual operating parameters of different server nodes during the refrigeration fluid heat exchange cycle.
- the output of the liquid pump 28 corresponds to a dynamic closed-loop adjustment process.
- the adjustment and control of the drainage pump 28 can be further optimized.
- a relief valve can be provided on its output path.
- Figure 18, is a schematic diagram of another application state of another management control device based on a phase change immersion liquid cooling system.
- a relief valve 212 is provided in the liquid storage component 20 , and the relief valve 212 is provided on the output path of the liquid discharge pump 28 .
- the drain pump 28 remains started.
- the solenoid valve 47 of the downstream server node 40 is not opened or partially opened, or other circumstances cause the pressure of the liquid supply path to be too high, the overflow valve 212 will The flow port is pushed open, and part of the liquid working medium is discharged from the overflow port back into the liquid storage component 20, which can avoid excessive pressure in the path of the water pipe and can provide safety protection.
- Other structures and connection relationships are consistent with the previous embodiments and will not be described again.
- Embodiments of the present application also provide a computing device, which includes an equipment chassis for device heat dissipation based on a phase change immersion liquid cooling system, and also includes a management control device as described in FIGS. 1 to 18 .
- the computing device can be a computer, server, or other product type, and is particularly suitable for high-power, highly integrated, and ultra-large-scale data center servers. Based on the operation mechanism of the phase change immersion liquid cooling system, it can meet the internal space expansion capacity under the corresponding refrigeration cycle. At the same time, it provides the working medium cycle condensation function and the refrigeration working medium supply function, making the phase change immersion liquid cooling reliable for corresponding devices.
- the heat dissipation treatment provides technical support.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种计算设备、节点及基于相变浸没液冷系统的管理控制装置。该管理控制装置的调节部件和储液部件的内腔连通,调节部件的本体可在其内腔侧的压力作用下产生形变,使其内腔容纳空间可相应改变;储液部件内设置有冷凝部件,并通过通汽口和通液口分别用于与浸没式液冷设备机箱连通,以建立汽路连通和液路连通关系。器件运行发热使得液态工质汽化后,通过该汽路连通关系,可将设备机箱液面上方的空气排至储液部件;内部压力将随着汽化量的增加而增大,空气得以在工作初始阶段被输送至调节部件内,可规避对汽化工质液化换热产生实质性干扰,该良好性能基于装置结构获得,无耗能部件参与。该管理控制装置可平衡应用在具有多个节点设备机箱的应用场景。
Description
本申请要求于2022年06月09日提交中国专利局的申请号为202210647366.2、发明名称为“计算设备及基于相变浸没式液冷系统的管理控制装置”的中国专利申请、2022年06月21日提交中国专利局的申请号为202210705986.7、发明名称为“计算设备及基于相变浸没式液冷系统的管理控制装置”的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及终端领域,尤其涉及一种计算设备及基于相变浸没液冷系统的管理控制装置。
随着计算设备朝着大功率、高集成度、超大规模化方向发展,高性能芯片和集成电路的使用越来越广泛,这些高热流元件工作时产生的热量是计算设备热负荷的最主要来源。以数据中心服务器为例,常规的空气冷却系统已经无法满足散热需求,为了保证数据中心服务器的稳定性和可靠性,液体冷却技术的研发设计已经成为数据中心系统设计的重点环节,尤其是浸没式液体冷却技术,以其优异的散热能力备受行业关注。
根据液冷工质是否发生相变,浸没式液体冷却可以分为单相浸没式液体冷却和相变浸没式液体冷却。其中,相变浸没式液体冷却利用冷却液沸腾气化带走设备产生的热量,通常采用密闭设计,在其中充入一定量的相变工质,并预留部分空间用于工质汽化,该部分空间存有常压空气,以保证密闭腔内外压力平衡。服务器工作后,设备产生的热量使冷却系统内的工质变为汽态与空气混合。
然而,空气的存在直接影响汽态工质与冷凝部件的换热能力。现有技术中一种典型的处理方案采用了空气/工质蒸汽分离的装置,具体通过压缩机将冷却系统内部空间汇集的空气和制冷剂蒸汽的混合气体抽送至气汽分离器进行分离,再将空气排出。该处理方案配备有两套冷凝系统,方案较为复杂,且压缩机运行耗能相对较高。
发明内容
本申请实施例提供了一种计算设备及基于相变浸没液冷系统的管理控制装置,在规避空气影响工质液化换热能力的基础上,可有效降低气汽分离耗能。
本申请实施例第一方面提供了一种基于相变浸没液冷系统的管理控制装置,其调节部件包括具有内腔的本体,该调节部件的本体可在其内腔侧的压力作用下形变,且使其内腔的容纳空间可产生相应改变;其储液部件与调节部件内腔连通,该储液部件包括通汽口和通液口,该通汽口和通液口分别用于与浸没式液冷系统的设备机箱连通,以建立储液部件与设备机箱之间汽路连通和液路连通关系;其冷凝部件设置在储液部件的内腔中。工作过程中,器件运行产生的热量交换至浸没相应器件的液态工质,超过沸点时液态工质汽化,通过该汽路连通关系,可将设备机箱内液面上方的空气排至
储液部件;压力将随着汽化量的增加而增大,基于调节部件可受压形变的特点,系统内的空气得以被输送至调节部件,持续汽化的汽态工质进入储液部件中并在冷凝部件的作下液化。
应用本方案,系统内的空气在工作初始阶段被排到调节部件中,可避免对汽化工质与冷凝部件间的换热产生实质干扰,由此,能够有效降低预留空气对汽态工质与冷凝部件间换热能力的影响,该良好性能基于上述装置获得,没有耗能部件参与。
同时,依据预设的发热器件浸没原则,液态工质经由储液部件可回流注入设备机箱。在该工作循环过程中,当实际冷凝速度低于汽体产生速度时,调节部件可进一步形变扩容,能够规避内部压力增大产生的不利影响,例如但不限于,压力过高使得液冷工质的沸点升高,可能会导致芯片超温造成损害;影响部分压力敏感元件的正常工作,以及其他安全隐患。这样,本申请实施例提供的管理控制装置可作为该相变浸没式液冷系统的工作节点装置,提供基础冷凝液化功能,并集成有集成了空气管理与压力控制功能;与此同时,基于调节部件容纳空间的可调节能力,空气管理与压力控制功能的实现无需动力驱动,系统功耗得以合理控制。
另外,本申请实施例提供的管理控制装置独立于设备机箱设置,当需要检修或更换设备内部器件时,解耦设备机箱与管理控制装置间的汽路和液路连通关系,即可打开设备机箱进行日常维护的需要,具有较好的可操作性。
此外,基于调节部件容纳空间的可调节能力,该管理控制装置可同步适配多个设备机箱,兼顾各设备机箱内的预留空气量,并且可在各设备机箱之间平衡相应储液冗余量和气体容纳空间的冗余量,能够有效降低系统配置和运行的总成本。
在具体应用中,通汽口和通液口可位于储液部件的同一端侧,以分别通过管路与浸没式液冷系统的设备机箱连通,方便实现管理控制装置与相应设备机箱之间的管路组装,并由此建立可靠的汽路连通和液路连通关系。
基于第一方面,本申请实施例还提供了第一方面的第一种实施方式:还包括内部填充物,该至少置于调节部件的未形变扩容的内腔中。这样,该调节部件常态下的内部容纳空间被内部填充物占据,减少了系统内预留空气量,进一步可减小空气对工质液化换热效率可能产生的影响。
在其他具体应用中,该内部填充物还置于冷凝部件上方的储液部件的内腔中,可进一步减小系统内预留空气量。示例性的,该内部填充物可相对固定在调节部件的下部位置,或者固定在储液部件与调节部件邻接位置处。
基于第一方面,或第一方面的第二种实施方式,本申请实施例还提供了第一方面的第三种实施方式:该调节部件的本体形变为单一维度形变,或者为多维度形变。示例性的,该调节部件的本体可以为层叠收展结构,在内部压力的作用下可形变并改变其内腔的容纳空间,也即单一维度形变的一种情形。在具体应用中,除通过其本体结构的角度实现外,也可以通过调节部件本体材料的选择达成上述功能,例如但不限于,采用成型后为柔性本体,且基于材料特性本体具有弹性,同样能够在内部压力作用下调节或改变内部容纳空间的大小,也即多维度形变一种情形。
在其他具体应用中,该调节部件还可以采用气缸形式,同样能够达成在内部压力的作用下容纳空气及汽态工质的功能。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,本申请实施例还提供了第一方面的第四种实施方式:冷凝部件的冷凝盘管位于储液部件的内腔上部区域。如此设置,可适应汽态工质的上行趋势,提高汽态工质的冷凝换热效率。
在具体应用中,储液部件还包括冷却水出口和冷却水入口,且分别与冷凝盘管的两侧管端连通,以快速建立冷凝水工作循环。
在其他具体应用中,该储液部件还包括注液口和压力安全阀,冷却水出口和冷却水入口位于储液部件一端侧,满足系统内部制冷循环的功能需要;相应地,注液口和压力安全阀位于储液部件另一端侧,当系统需要补注制冷工质时,无需移动该管理控制装置即可执行相应操作,能够合理控制运维成本。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,本申请实施例还提供了第一方面的第五种实施方式:调节部件设置在储液部件的上方,该调节部件的底部开口与储液部件的顶部开口密封固定,可避免制冷工质非常态逸出系统。在实际应用场景下,相变制冷工质循环中的汽化工质上行,且液态工质基于自重可下行,在该循环流动趋势的基础上,可结合服务器发热部件实际发热量,合理配置调节部件的扩容能力、冷凝部件的换热能力,以及储液部件的预装液态工质容量,则无需配置用于液态工质的排液泵等动力部件。这样,可进一步减少系统配置成本,并可降低运行噪声。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,本申请实施例还提供了第一方面的第六种实施方式:还包括动力部件,该动力部件配置为:可基于液路连通关系将设备机箱内的液态工质抽回至储液部件,动力部件还可基于液路连通关系将液态工质自储液部件泵送至设备机箱;这样,当需要进行节点检修维护时,启动动力部件,可将节点机箱内的制冷工质抽回储液部件内储存,再将其与系统解耦,与系统解耦的节点中无制冷工质留存,便于实现执行运维操作。
示例性的,还包括补液泵和排液泵,该补液泵与注液口连接,以提供将制冷工质预装或补注进入储液部件的动力;该排液泵与通液口连接,以提供将储存在储液部件底部的液态工质回流注入设备机箱的动力;这里,液路连通关系包括第一液路连通关系和第二液路连通关系,该排液泵用于通过第一液路连通关系将液态工质自储液部件泵送至各设备机箱,该补液泵用于通过第二液路连通关系将液态工质自设备机箱抽回至储液部件。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,本申请实施例还提供了第一方面的第七种实施方式:还包括设置在储液部件外侧的补液泵开关,补液泵开关用于手动操作控制
回液泵的启停。系统准备过程中,操作人员可根据工质罐侧的准备情况,手动启动回液泵,将液态工质从工质罐中抽取至管理控制系统中;同时,在进行节点维护需要与系统解耦时,操作人员也可根据现场实际情况,手动启动回液泵,将液态工质从节点机箱中抽取至管理控制系统中,具有较好的可操作性。
进一步地,在上述操作过程中,该回液泵还可作为急停操作开关,以根据现在实际情况关停回液泵。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,本申请实施例还提供了第一方面的第八种实施方式:将液态工质自储液部件泵送至设备机箱的实际泵送量,具体可根据相应设备机箱内的液态工质液位进行控制,以充分利用储液部件的容液量合理分配至各节点的设备机箱,进一步利用管理控制装置的冗余能力降低系统运行成本。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,本申请实施例还提供了第一方面的第九种实施方式:储液部件可以设置有多个,每个储液部件与调节部件的内腔分别连通。也就是说,合理配置调节部件扩容能力,基于具有较大体量的调节部件可适配多个储液部件,以根据实际应用场景的需要进行选择。
本申请实施例第二方面提供了一种基于相变浸没液冷进行散热的计算节点,该计算节点适配于与前述基于相变浸没液冷系统的管理控制装置,该计算节点的节点机箱包括通液口和通汽口,并可通过通液口和通汽口与储液部件连通,以建立计算节点与储液部件之间的汽路连通关系和液路连通关系;当需要进行节点检修维护时,启动动力部件,可将节点机箱内的制冷工质抽回储液部件内储存,再将其与系统解耦,便于执行运维操作。与此同时,该计算节点还包括空气平衡阀,用于控制外界空气与节点机箱内部的连通,该空气平衡阀可以配置在节点机箱的侧壁上部位置,也即内部液态工质液面上方。执行将制冷工质抽回的操作时,常态关闭的空气平衡阀单向导通,外部空气得以进入节点机箱进行压力补偿,可快速顺畅地抽取内部工质;在内部温度降至工质沸点时,能够进一步避免负压的产生。
基于第二方面,本申请实施例还提供了第二方面的第一种实施方式:节点机箱的通液口包括第一通液口和第二通液口;该第一通液口用于建立第一液路连通关系,将液态工质自储液部件送至该节点机箱;该第二通液口用于建立第二液路连通关系,以将液态工质自节点机箱抽回至储液部件。系统运行时,回液与供液可分别设置动力提供部件及输送路径,两者独立运行,具体向机箱内注入液态工质以及将液态工质抽回的操作可同时执行,且独立控制无相互干扰。
在具体应用中,该第二通液口设置有第二回液接头,且第二回液接头配置为可断开自动关闭。这样,节点机箱的回液接口位置保持密闭状态,系统处于正常运行状态;
需要检修维护计算节点时,完成机箱内工质抽回操作后,该第二回液接头自动恢复关闭,节点状态得以可靠切换。
在其他具体应用中,该计算节点还包括第一液位传感器,用于检测节点机箱内液态工质液位,第一通液口设置有可根据所述第一液位传感器的检测结果开启或关闭的电磁阀,节点机箱内的当前液位处于下限阈值时,打开电磁阀,储液部件内的制冷工质可通过水管实现补液回流;当前液位处于上限阈值时,关闭该电磁阀。由此,构成形成闭环控制,可进一步提高系统运行的可靠性。
本申请实施例第三方面提供了一种计算设备,包括基于相变浸没液冷系统进行器件散热的设备机箱,还包括如前所述的基于相变浸没液冷系统的管理控制装置,其中,所述储液部件的通汽口和通液口分别与所述设备机箱的通汽口和通液口连通。
基于第三方面,本申请实施例还提供了第三方面的第二种实施方式:基于相变浸没液冷系统的管理控制装置,设置在设备机箱的上方。这样,通过合理配置调节部件的扩容能力、冷凝部件的换热能力,以及储液部件的预装液态工质容量,无需配置用于液态工质的排液泵等动力部件,为减少系统配置成本且降低运行噪声提供了进一步的技术保障。
在具体应用中,该设备机箱可以包括多个浸没式液冷节点设备机箱,储液部件的通汽口和通液口分别与多个节点设备机箱的通汽口和通液口一一对应连通。如此设置,基该管理控制装置的调节能力,可同步兼顾各设备机箱内的预留空气量,并且可在各设备机箱之间平衡相应储液冗余量和气体容纳空间的冗余量,整体上,能够有效降低系统配置和运行的总成本。
在具体应用中,该计算设备可以为计算机、服务器等产品类型。示例性地,该计算设备可以为服务器,设备机箱为安装在服务器机柜中的浸没式液冷节点设备机箱。
图1为本发明实施例提供的基于相变浸没液冷系统的管理控制装置的结构示意图;
图2为图1中所示管理控制装置的组装关系示意图;
图3为图1中所示基于相变浸没液冷系统的管理控制装置的一种使用状态示意图;
图4为本发明实施例提供的基于相变浸没液冷系统的管理控制装置的一种应用状态示意图;
图5为图4中所示基于相变浸没液冷系统的管理控制装置的一种使用状态示意图;
图6为图1中所示基于相变浸没液冷系统的管理控制装置的F向视图;
图7为图1中所示基于相变浸没液冷系统的管理控制装置的R向视图;
图8为图1中所示储液部件的俯视图;
图9为本发明实施例提供的另一种基于相变浸没液冷系统的管理控制装置的结构示意图;
图10为图9所示基于相变浸没液冷系统的管理控制装置的一种使用状态示意图;
图11为本发明实施例提供的又一种基于相变浸没液冷系统的管理控制装置的结构示意图;
图12为图11所示基于相变浸没液冷系统的管理控制装置的一种使用状态示意图;
图13为本发明实施例提供的基于相变浸没液冷系统的管理控制装置的另一种应用状态示意图;
图14为本发明实施例提供的另一种基于相变浸没液冷系统的管理控制装置的一种应用状态示意图;
图15为图14中所示计算节点进行维护操作的示意图;
图16为本发明实施例提供的另一种基于相变浸没液冷系统的管理控制装置的另一种应用状态示意图;
图17为本发明实施例提供的另一种基于相变浸没液冷系统的管理控制装置的又一种应用状态示意图;
图18为本发明实施例提供的另一种基于相变浸没液冷系统的管理控制装置的另一种应用状态示意图。
本申请实施例提供了一种基于相变浸没液冷系统的管理控制装置,集成了空气管理与压力控制功能,且无需额外动力驱动要求。
众所周知,相变浸没式液体冷却技术是指,将发热设备完全浸没在非导电冷却液体(相变工质)中,利用非导电液体沸腾气化带走设备工作时产生的热量。主要优势包括:1)低噪无污染、无泄露风险;2)节能降耗,降低系统的运营成本;3)减小了冷却系统所占的空间,可整体提高计算设备紧凑性和集成度;4)降低设备的故障率。
同时,为了保持冷却系统的密闭腔内外的压力平衡,除充入一定量的相变工质外,密闭腔内需要预留部分空间用于工质汽化;进一步地,为避免空气的存在影响汽态工质与冷凝部件之间的换热能力。一种典型的处理方式是,通过压缩机将空间内汇集的空气和制冷剂蒸汽的混合气体抽送至空气/工质蒸汽的分离装置,再将分离的空气排出。整体上,该处理方案配备有两套冷凝系统,方案较为复杂;同时,压缩机相对耗能较高,系统PUE(Power Usage Efficiency,电源利用率)无法得以合理控制。
基于此,本申请实施例提供了一种基于相变浸没液冷系统的管理控制装置,包括调节部件和储液部件,且两者的内腔可连通。其中,调节部件的本体可在其内腔侧压力的作用下形变,以使其内腔的容纳空间随着压力的变化增大或者缩小。这里的“形变”,包括该调节部件本体可沿单一维度上形变的情形,还包括多维度形变的情形。其储液部件可容纳两相制冷工质,且其中内置有冷凝部件,实际应用时,该储液部件可适配于相变浸没式计算设备的机箱,具体可分别连通设备机箱的通汽口和通液口,建立汽路连通和液路连通关系。
工作过程中,设备机箱内的器件发热,且热量交换至设备机箱内的液态工质,超过该两相制冷工质的沸点时则汽化,通过该汽路连通关系,首先将设备机箱内液面上方的空气排至储液部件内;同时内部压力将随着汽化量的增加而增大,基于调节部件可受压形变的特点,系统内的空气得以被输送至调节部件。同时,持续汽化的汽态工质也进入储液部件中,并在冷凝部件的作下液化,依据预设的发热器件浸没原则,液
态工质经由储液部件回流注入设备机箱。在该工作循环过程中,空气被排到调节部件中,对汽化工质与冷凝部件间的换热并未构成实质干扰,由此,能够有效降低预留空气对汽态工质与冷凝部件间换热能力的影响,该良好性能的获得没有任何耗能部件的参与。
当实际冷凝速度低于汽体产生速度时,调节部件可进一步形变扩容,能够规避内部压力增大产生的不利影响,例如但不限于,压力过高使得液冷工质的沸点升高,可能会导致芯片超温造成损害;影响部分压力敏感元件的正常工作,以及其他安全隐患。这样,本申请实施例提供的管理控制装置可作为该相变浸没式液冷系统的工作节点装置,提供基础冷凝液化功能,并集成了空气管理与压力控制功能;与此同时,基于调节部件容纳空间的可调节能力,空气管理与压力控制功能的实现无需额外动力驱动,系统功耗得以合理控制。
另外,本申请实施例提供的管理控制装置独立于设备机箱设置,当需要检修或更换设备内部器件时,解耦设备机箱与管理控制装置之间的汽路和液路连接关系,即可打开设备机箱进行日常维护,可操作性较好。
此外,基于调节部件容纳空间的可调节能力,本申请实施例提供的管理控制装置可同时适配多个设备机箱,兼顾不同设备机箱内的预留空气量,提供储液冗余量和气体容纳空间的冗余量,降低系统配置成本和运行成本。
为了更好地理解本申请的技术方案和技术效果,不失一般性,以下将结合附图并以服务器作为散热处理对象,对具体的实施例进行详细的描述。
本申请实施例中,该基于相变浸没液冷系统的管理控制装置可以包括调节部件10和储液部件20,请参见图1和图2,其中,图1示出了本申请实施例提供的管理控制装置结构示意图,图2为图1中所示基于相变浸没液冷系统的管理控制装置的组装关系示意图。其中,调节部件10的下沿可安装在储液部件20的上沿上,调节部件10的底部开口与储液部件20的顶部开口密封固定,且两者的内腔连通。
对于调节部件10和储液部件20的组装固定,本实施方案通过螺纹紧固件实现,组装操作方便,且易于检修维护。在其他具体实现中,两者之间还可以采用机械卡合结构等实现方式。需要说明的是,在满足基本组装固定功能的基础上,两者接合的部位还应当具有良好的密封性能,以避免制冷工质逸出装置内腔。
其中,调节部件10的本体为层叠收展结构,可在内部压力的作用下形变并改变其内腔容纳空间的体积大小。请一并参见图3,该图示出了该调节部件的一种展开状态示意图。内部压力增大,该层叠收展结构本体可展开,调节部件的高度如尺寸L2所示,容纳空间相应增大;内部压力减小,该收展结构的本体可在内部压力降低时自动叠收,调节部件的高度如图1中尺寸L1所示,容纳空间相应减小。换言之,该调节部件10内腔的容纳空间,能够随着内部压力的变化增大或者缩小。
这里,基于调节部件10本体可在内部压力作用下形变,改变其内腔容纳空间的体积,除可通过其本体结构实现外,在其他具体实现中,也可以通过调节部件本体材料的选择达成上述功能,例如但不限于,采用成型后为柔性本体,且基于材料特性本体
具有弹性,同样能够在内部压力作用下调节或改变内部容纳空间的大小;可以理解的是,具有弹性的材料应当与制冷工质兼容,且能够避免汽态工质泄露逸出。
另外该调节部件还可以采用这样的设计,整体结构为气缸形式(图中未示出)。该气缸内腔可以由活塞分隔形成两个腔室,其中一侧腔室用于与储液部件的内腔连通,并可在压力作用下推动活塞位移,使该侧腔室的内部空间得以扩容。当然,采用气缸形式的调节部件不属于严格意义上的形变扩容,同样能够达成容纳空气及汽态工质的功能。
其中,储液部件20的内腔用于容纳两相制冷工质,其中还内置有冷凝部件30。该储液部件20包括通液口21和通汽口22,本实施方案提供的管理控制装置适配于相变浸没式服务器,请一并参见图4,该图示出了该基于相变浸没液冷系统的管理控制装置的一种应用状态。
如图4所示,储液部件20的通汽口22与服务器设备机箱45的通汽口42连通,构建形成汽路连通关系;服务器工作过程中,器件发热且热量交换至设备机箱内的液态工质,温度超过该两相制冷工质的沸点时则汽化,服务器节点40的设备机箱45与储液部件20的内腔之间形成压力差,通过该汽路连通关系,将设备机箱45内的空气排至储液部件内;随着工作发热量的持续增加,汽化的汽态工质也通过该汽路连通关系进入储液部件20中,基于调节部件10可受压形变的特点,被首先排出的空气进一步被推动输送至调节部件10内。
与此同时,储液部件20内的汽态工质,在冷凝部件30的冷凝盘管表面遇冷并液化,液态工质积存在储液部件20的底部。本方案中,在管理控制装置内部设置冷凝盘管,相应地,储液部件20上还包括冷却水出口23和冷却水入口24,分别与冷凝盘管两侧管端连通,以建立冷却水循环将系统发热量带走。结合图2所示,冷却水出口23和冷却水入口24位于储液部件20的同一端侧,方便具体操作及管路布置。应当理解,冷凝循环水路的具体实现非本申请的核心发明点所在,且本领域技术人员基于现有技术能够实现,故本文不再赘述。
再如图4和图5所示,储液部件20的通液口21与设备机箱45的第一通液口41连通,构建形成液路连通关系;储液部件20中的液态工质可回流注入设备机箱45,以此建立该两相制冷工质的工作循环。这里,储液部件20中液态工质的注入量,应当满足服务器发热器件44散热能力的浸没原则。在具体实现中,可以根据总体设计预先设定注入量,例如但不限于图中所示的完全浸没发热器件。当然,也可以部分浸没发热器件。
本实施方案中,该基于相变浸没液冷系统的管理控制装置还包括注液口25和压力安全阀26。请一并参见图6和图7,其中,图6为图1的F向视图,图7为图1的R向视图。
该注液口25用于与服务器外部的制冷工质供给管路连通,这样,可将液体工质预装于管理控制装置内,管理控制装置作为独立主体提供空气管理、压力控制以及制冷工质的循环补给功能。
通常,基于系统最大承压能力预设一阀值,当内部压力异常超过该阀值时,则压力安全阀26打开泄压,提供安全保护功能。压力安全阀26可以配置在储液部件20的顶部本体上,换言之,只要配置在储液部件20内工质液面上方的本体部位,均能够在系统内部压力过高时开启,将部分汽体释放避免高压风险。
进一步地,为了更好地适应服务器的安装位置,冷却水出口23和冷却水入口24可位于储液部件20的后侧,满足系统内部制冷循环的功能需要。相应地,注液口25和压力安全阀26可位于储液部件20的前侧,当系统需要补注制冷工质时,无需移动该管理控制装置即可执行相应操作,能够合理控制运维成本。
另外,本实施方案中的储液部件20内部可设置补液泵27和排液泵28。请参见图8,该图为图1中所示储液部件20的俯视图,为了清楚示意补液泵27和排液泵28的具体设置,图中未示出冷凝部件。
结合图4和图8所示,补液泵27与注液口25连接,以提供将制冷工质预装或补注进入储液部件20的动力。排液泵28与通液口21连接,以提供将储存在储液部件20底部的液态工质回流注入设备机箱45的动力。相应地,补液泵27和排液泵28分别通过线缆与控制器29相连,以实现供电及相应的控制处理。
下面简要说明本实施方案在图4所示应用场景下的工作原理。
首先,相变浸没液冷服务器工作后,发热器件44工作产生的热量换热至液态制冷工质,并温度升高超过工质沸点时液态汽化,系统内部压力随着汽体量的增加而增大。服务器设备机箱45的上部空腔和管理控制装置的上部空腔通过汽管70连通,随着服务器设备机箱45内部汽体压力的增加,服务器设备机箱45和管理控制装置的上部空腔两个内腔之间将产生压力差,进而使服务器设备机箱45内腔中的空气通过汽管70流入储液部件20的上部腔体,同时汽态工质也进入该管理控制装置。请一并参见图5,该图示出了图4由于空气(初始预留在设备机箱45的上部空腔和管理控制装置的上部空腔内)的进入,调节部件10展开容纳空间增加,以收纳从服务器设备机箱侧进入的空气,不会影响后续进入汽态工质与冷凝盘管之间的换热效率。
同时,调节部件10配置在储液部件20上方,且储液部件20上的通汽口22位于冷凝部件30的冷凝盘管下方。在此基础上,基于空气密度低于汽体工质密度的特性,管理控制装置内的空气可进一步与汽化工质有效分离,并位于顶部区域;进入储液部件20汽化工质在冷凝盘管表面遇冷换热,冷凝盘管内的水循环能够保障其表面温度满足液化工质的要求,液态工质下落并积存在储液部件20的底部,形成液体池,并可通过水管60返回到服务器设备机箱45,进入下一个循环。
服务器工作过程中,当服务器设备机箱45中液态工质的汽化蒸发速度与该管理控制装置中汽体的冷凝速度相当时,整个系统与外界大气压力平衡。
另外,当服务器功率在某时段超负荷运行,汽化速度大于冷凝速度时,则整个系统内部的压力将逐步增大,此时管理控制装置的调节部件10进一步伸展,内部腔体的容纳空间扩容,并可容纳未及时冷凝的汽化工质,以解决短时压力冲击。反之,当服务器负荷降低或停止运行时,服务器设备机箱45内腔压力相应变小,则空气将自动从管理控制装置返回到服务器上部的空腔中,达到系统的压力平衡。
需要说明的是,在该应用场景下,管理控制装置配置在服务器设备机箱45上方,调节部件10配置在储液部件20上方,其中,相变制冷工质循环中的汽化工质上行,且液态工质基于自重可下行,在该循环流动趋势的基础上,结合服务器发热部件实际发热量,通过合理配置调节部件10的扩容能力、冷凝部件30的换热能力,以及储液部件20的预装液态工质容量,则无需配置用于液态工质回流的排液泵28等动力部件。整体上,可进一步减少系统配置成本,并可降低运行噪声。
为了最大限度地降低系统内空气的影响,可以在调节部件10内设置内部填充物90。请一并参见图9和图10,其中,图9为另一种基于相变浸没液冷系统的管理控制装置的结构示意图,图10为图9所示基于相变浸没液冷系统的管理控制装置的一种使用状态示意图。
结合图9和图10所示,调节部件10内的内部填充物90,可占据初始状态下的调节部件10内腔空间,在一定程度上减小了预存空气量。这里,内部填充物90可以为实体结构,也可以采用空心结构,其材料选择同样需要与制冷工质兼容。
本实施方案中,该内部填充物90可相对固定在调节部件10的下部位置,调节部件10在内部压力的作用下展开时,内部填充物90不会随动,可规避展开阻力过大的影响,能够及时有效的扩容。在其他具体实现中,根据相应产品类型的总体设计要求,该内部填充物也可固定在调节部件的偏上部位置(图中未示出),并可随着调节部件形变同步展开。
图中所示,内部填充物90的旁侧与调节部件10内壁之间具有间隔,以清楚示意其装配位置关系。理论上来说,内部填充物90与调节部件10之间的间隔优选较小尺寸,只要调节部件10的本体内壁具有足够的承压表面即可。
在其他具体实现中,内部填充物90的底沿还可向下延伸至冷凝盘管的上方(图中未示出),可以理解的是,内部填充物90的实际空间占用,需要合理兼顾汽化工质与冷凝盘管间换热效率。
前述实施方案中,调节部件10均设置在储液部件20的上方。根据不同应用场景,调节部件也可设置在储液部件的旁侧。请一并参见图11和图12,其中,图11为又一种基于相变浸没液冷系统的管理控制装置的结构示意图,图12为图11所示基于相变浸没液冷系统的管理控制装置的一种使用状态示意图。
图中所示,调节部件10a设置在储液部件20a的旁侧,两者内腔连通。该调节部件10a同样能够储存从服务器设备机箱侧进入的空气,避免影响汽态工质与冷凝盘管之间的换热效率。其他构成与连接关系与前述实施例一致,在此不再赘述。
前述实施方案中,管理控制装置均采用调节部件对应配置一个储液部件的方式。在其他具体实现中,还可以采用一个具有扩容能力的调节部件对应配置多个储液部件。也就是说,该管理控制装置可以设置有多个储液部件,每个储液部件均与调节部件的内腔连通。基于具体应用场景,可通过合理配置调节部件扩容能力,适配多个储液部件,满足同一应用场景下的不同管理控制需求。
另外,本实施方案提供的管理控制装置可适配于服务器的多个相变浸没式节点。请参见图13,该图示出了该基于相变浸没液冷系统的管理控制装置的一种应用状态。
如图13所示,储液部件20的通汽口22与服务器各节点设备机箱45a的通汽口42连通,储液部件20的通液口21与各节点设备机箱45a的第一通液口41连通,分别构建形成汽路连通和液路连通关系。各节点设备机箱45a内的元器件可以相同,也可以不同,例如但不限于图中所示的处理器。
每个节点设备机箱45a内的器件发热且热量,交换至液态工质,超过工质沸点后汽化。同理,基于实际负荷功率,各节点设备机箱45a与储液部件20内腔之间形成压力差相同或不同,对于每个节点设备机箱45a来说,可经由总汽管70a推动设备机箱内的空气,排至储液部件20内;随着工作发热量的持续增加,汽化的汽态工质也将进入储液部件20中。
工作过程中,汽态工质在冷凝部件30的冷凝盘管表面遇冷并液化,与图4所示应用场景下的作用机理相同,这里不再赘述。同样地,积存在储液部件20中的液态工质,可回流注入各节点设备机箱45a,以此建立多个子工作循环。具体来说,可在总水管60a上设置动力部件,例如排液泵28a,以便装配运行前或者运行过程中将液态工质泵送至各节点设备机箱45a中,满足制冷工作循环的工质流量要求。同时,也可在总水管60a上设置过滤器80,防止杂质进入节点。可以理解的是,该排液泵28a和过滤器80等部件的功能实现方式,非本申请的核心发明点所在,故本文不再赘述。
在其他具体实现中,用于泵送液态工质的排液泵也可设置在各节点设备机箱45a的分水管上(图中未示出),具体可根据各自的实际用液量进行泵送。此外,也可如前述图8所示实施例,将该排液泵配置在储液部件内部,对于这种配置方式,过滤器可设置在供液路径上任意位置,例如但不限于设置在总水管上。
本实施方案中,基于该管理控制装置提供的工质循环冷凝功能及制冷工质供给功能,能够持续将各节点内部运行产生的热量带出服务器。同时,基于该管理控制装置可扩容内部空间的调节能力,在具体应用中,根据每个服务器节点的负载情况,控制相应子循环回路的冷却液配给,并可同步适应不同节点设备机箱45a的气体(空气及汽化工质)的送入量,并可在多个服务器节点之间进行平衡。
由此,该管理控制装置可预设一相对较小的系统冗余度,即可满足多个服务器节点的散热功能需要,系统建设成本得以进一步降低。例如,在第一工作时段内,第一计算节点的器件发热形成的工质汽化量大于第二计算节点的器件发热形成的工质汽化量时,管理控制系统分配更多的制冷工质给第一计算节点,相应地,将更多地供液补充至第一计算节点;反之,在第二工作时段内,第一计算节点的器件发热形成的工质汽化量小于第二计算节点的器件发热形成的工质汽化量时,则分配更多的制冷工质给第二计算节点,更多地供液补充至第二计算节点。这样,整体上能够合理提供储液冗余量和制冷能力的冗余量,自适应灵活满足器件散热需求,提高各计算节点内器件的工作性能,并可降低系统配置成本和运行成本。
基于补液泵27还可将设备机箱内的液态工质抽回至储液部件,当需要进行节点检修维护时,启动动力部件,可将设备机箱内的制冷工质抽回到储液部件内储存,再将其与系统解耦。请一并参见图14和图15,其中,图14为本发明实施例提供的基于相
变浸没液冷系统的管理控制装置的另一种应用状态示意图,图15为图14中所示计算节点进行维护操作的示意图。
如图14和图15所示,在基于排液泵28建立的液路连通关系的基础上,本实施方案增加了另一液路连通关系。也就是说,这里的液路连通关系包括第一液路连通关系和第二液路连通关系,其中,动力部件包括补液泵27和排液泵28,第一液路连通关系基于排液泵28建立,补液泵27用于通过第二液路连通关系将液态工质自相应服务器节点40的设备机箱45抽回至储液部件20内,也即采用动力部件快速将液态工质抽回。
图中所示,该设备机箱45包括第一通液口41和第二通液口43。其中,第二通液口43用于通过回液管50与储液部件20的注液口25连通,以根据运维需要将相应设备机箱45内的制冷工质抽回储液部件20;第一通液口41用于与水管60连接,进而通过水管60与储液部件20的通液口21连通,以实现设备机箱的制冷工质预装及补液回流。
在其他具体实现中,用于供、回液的通液口21和注液口25,可以采用一个通液口实现;相应地,设备机箱45的第一通液口41和第二通液口43,也采用一个通液口实现。当然,在液口功能集成的配置方式下,向设备机箱45内注入液态工质以及将液态工质抽回的相应操作,需要分别执行。在具体实现中,可采用一个动力部件提供回液动力和供液动力,并通过一个液路连通关系完成相应的工质输送(图中未示出)。换言之,由一个动力部件实现补液泵27和排液泵28的功能,例如但不限于可进行正、反转动作的泵,正转时可将液态工质抽回至储液部件,反转时可将液态工质泵送至各节点机箱。
本实施方案中,服务器节点40包括空气平衡阀410,控制外界空气与服务器内部的连通,具体地,该空气平衡阀410配置在设备机箱45的侧壁上部位置,属于一种常态关闭的单向阀,当执行将设备机箱45内的制冷工质抽回储液部件20时,机箱内部压力的减小后,空气平衡阀410基于内外压差的变化打开,且打开时外部空气得以进入设备机箱45,实现内部压力补偿,可快速顺畅地抽取内部工质;这里,内部汽态工质不会经由打开的空气平衡阀410排出,且阀关闭后双向均不通,以在节点维护时保持相应服务器节点的内外压力平衡。
为了提高回液管50与设备机箱45之间的拆装效率,两者上可分别设置相适配的快插回液接头。其中,第一回液接头51设置在回液管50外伸管端,也即回液管50的与第二通液口43的连接端,第二回液接头46设置在设备机箱45的第二通液口43处。检修维护时,可快速插装并连通以将相应设备机箱45内的制冷工质抽回,完成抽回操作后,同样可快速解除两者之间的连接。
具体地,第一回液接头51和第二回液接头46可采用具有断开自动关闭功能的快接接头。可以理解的是,该断开自动关闭功能的具体结构实现非本申请的核心发明点所在,故本文不再赘述。当然,在第一通液口41和通汽口42分别与相应管路连接处,也可采用具有断开自动关闭功能的快接接头,可控制拆装操作产生的工质损失,且便于现场操作管理。
另外,图中所示的补液泵27和排液泵28均设置在储液部件20中,不占用其外部空间,具有更高的整体集成度。可以理解的是,还可以将泵安装在非图示的其他位置,同样能够满足沿相应工质输送方向提供输出动力的功能需要。
此外,本实施方案中,服务器节点40配置有电磁阀47和第一液位传感器48。图中所示,该电磁阀47设置在设备机箱45的第一通液口41处,可根据控制指令打开或关闭该节点的供液通道。在其他具体应用,该电磁阀还可设置在建立相应节点第二液路连通关系的供液路径上的其他位置处,以根据第一液位传感器的检测结果,接通或断开相应的供液路径。该第一液位传感器48可实时检测设备机箱45内液态工质的液位,并将液位信号输出至BMC(Baseboard Management Controller,主板管理控制器)49,由BMC 49根据当前液位输出控制指令至电磁阀47。
具体来说,在系统工作循环中,设备机箱45内的当前液位处于下限阈值时,BMC输出打开控制指令至电磁阀47,电磁阀47打开,这样,储液部件20制冷工质可通过水管60实现补液回流;当前液位处于上限阈值时,BMC输出关闭控制指令至电磁阀47,电磁阀47关闭,结束回流。当然,在向设备机箱45内预装制冷工质时,同样可在液位到达上限阈值时关闭该电磁阀47。
在其他具体实现中,将液态工质自储液部件20泵送至节点设备机箱的泵送量,具体可根据相应设备机箱内的液态工质液位进行控制,并由管理控制装置的控制单元根据第一液位传感器48采集的液位信号,控制电磁阀47启闭,以充分利用储液部件的容液量合理分配至各节点的设备机箱,进一步利用管理控制装置的冗余能力降低系统运行成本。
当然,在另外的具体实现中,对于管理控制多个服务器节点的情形,也可在储液部件20内分别独立配置排液泵(图中未示出),这样,管理控制装置可根据第一液位传感器48采集的液位信号,控制服务器节点相应的排液泵。
同样地,储液部件20中也可以设置第二液位传感器213,该第二液位传感器213用于检测储液部件20内液态工质的液位,以确保储液量满足服务器节点40的用液量。在系统准备过程,第一回液接头51可与外部的工质罐(图中未示出)等工质源连接,启动补液泵27将液态工质从工质罐中抽取至储液部件20中,第二液位传感器213可检测储液部件20内液态工质的液位,并可将液位信号输出至控制模块210,当前液位处于到达上限阈值时,控制模块210输出关停控制指令至补液泵27。
在其他具体实现中,本实施方案中各服务器节点40的BMC 49和控制模块210的管理控制功能,也可通过配置在系统设备外部的芯片实现。相较来说,将BMC芯片和控制模块210分别集成配置在系统内,易于检修维护。
为了进一步提高可操作性,本实施方式在储液部件20的外侧设置有补液泵开关211,用于操作人员手动控制补液泵27的启停。在系统准备过程中,操作人员可根据工质罐侧的准备情况,手动启动补液泵27,将液态工质从工质罐中抽取至储液部件20中;同时,在进行节点维护需要与系统解耦时,操作人员也可根据现场实际情况,手动启动补液泵27,将液态工质从设备机箱45中抽取至储液部件20中。
另外,在上述操作过程中,该补液泵27还可作为急停操作开关,以根据现场实际情况关停补液泵27。
此外,本实施方案提供的管理控制装置也可适配于服务器的多个相变浸没式节点。请参见图16。图中所示,储液部件20的通汽口22与服务器各节点设备机箱45a的通汽口42连通,储液部件20的通液口21与各节点设备机箱45a的第一通液口41连通,分别构建形成汽路连通和液路连通关系。
每个节点设备机箱45a内的器件发热且热量,交换至液态工质,超过工质沸点后汽化。同理,基于实际负荷功率,各节点设备机箱45a与储液部件20内腔之间形成压力差相同或不同,对于每个节点设备机箱45a来说,可经由总汽管70a推动设备机箱内的空气,排至储液部件20内;积存在储液部件20中的液态工质,可通过总水管60a回流注入各节点设备机箱45a。
下面结合图14、图15和图16简要说明本实施方案的工作过程。
(一)系统准备过程。
首先,将相变液冷服务器(各服务器节点40)通过水管60(60a)、汽管70(70a)与储液部件20连接(此时储液部件20内无液态工质)。然后,将第一回液接头51与外部的工质罐(图中未示出)连接,打开补液泵开关211,启动补液泵27将液态的两相制冷工质从工质罐中输送到储液部件20中;同时排液泵28也可启动,储液部件20中的液态工质被注入水管60(60a)。然后,相变液冷服务器上电,相应服务器节点40的BMC根据第一液位传感器48检测其中液态工质的液位高度(此时各设备机箱45内无液态工质),判断液位低于下限阈值,则输出控制指令打开电磁阀47,液态工质流入相应的服务器节点40内,当液态工质的液位达到上限阈值时,则输出控制指令关闭电磁阀47,服务器充液完成。
接下来,待所有的服务器节点40充液完成后,储液部件20内的液位将持续上升,以补充系统运行过程中的工质损失。持续过程中,控制模块210判断第二液位传感器213检测的液位高度达到上限阈值后,输出控制指令关闭补液泵27。
(二)系统正常工作过程。
相变浸没液冷服务器开始工作,各服务器节点40中的器件发热量交换至液态工质,温度升高超过工质沸点时汽化,服务器节点内部的压力随着汽化量的增加而增大,并推动汽态工质汽进入储液部件20。进入储液部件20的高温的汽态工质在冷凝盘管遇冷并重新凝结成液体,落至储液部件20下部。
通过储液部件20下部的排液泵28,可将液态工质经由水管60(60a)回流至服务器节点40中,以进入下一个工作循环。在具体实现中,服务器节点40中随着液态工质的蒸发汽化,液态工质量逐渐减少,当第一液位传感器48检测到当前液位低至下限阈值时,根据该液位信号,BMC会将输出打开控制信号至相应的电磁阀47的控制端,进行回流补液,直到液位达到上限阈值。
同样地,本实施方案中调节部件10的本体,可在内部压力的作用下形变并改变其内腔的容纳空间的体积大小。在此不再赘述。
(三)服务器节点维护过程。
首先,将待维护的服务器节点40下电,并将设备机箱45的一部分自机柜拖出,并与汽管70(70a)、水管60(60a)同时断开,这里,在第一通液口41和通汽口42处所配置的接头,与相应管路断开后可自动关闭。
然后,将第一回液接头51与该服务器节点的设备机箱45上第二回液接头46连接,此时,打开管理控制装置的补液泵开关211,可将相应服务器节点40内的液态工质抽回至储液部件20中。工质抽取完成后关闭补液泵27,并拔下第一回液接头51,且断开后接头自动关闭。服务器节点40可与系统完全解耦进行具体维护,维护完成后将其重新装回系统中。至此,重复系统准备过程和系统正常工作过程。
前述实施方案提供的管理控制装置,均配置有调节部件10。需要说明的是,基于图14、图15和图16所描述的管理控制装置,对于设备内空气量较小或设备运行汽化量不高的应用场景下,也可不配置调节部件。请参见图17,该图为本发明实施例提供的另一种基于相变浸没液冷系统的管理控制装置的又一种应用状态示意图。为了清楚示意本实施方案与图16所示服务器系统的区别和联系,相同功能构成在图中以相同标记进行示明。
这里,图17所示管理控制装置的其他构成及结构的具体实现方式,与图14、图15和图16所描述的实施方案相同,在此不再赘述。
另外,前述实施方案中,服务器上电后,排液泵28处于常态启动运行状态下,以在制冷工质换热循环过程中,根据不同服务器节点的实际运行参数控制供液速度和流量,排液泵28的输出相当于动态闭环调整过程。根据不同应用场景,对于排液泵28的调节控制可进一步优化,具体可在其输出路径上设置溢流阀。请一并参见图18,该图为另一种基于相变浸没液冷系统的管理控制装置的另一种应用状态示意图。
如图18所示,在储液部件20内设置有溢流阀212,该溢流阀212设置在排液泵28的输出路径上。服务器上电后,排液泵28保持启动状态,当下游侧服务器节点40的电磁阀47均未打开或部分未打开,或者其他情形导致供液路径压力过高时,该溢流阀212的溢流口则被顶开,部分液态工质自溢流口排回储液部件20中,可避免水管所在路径压力过高,能够起到安全保护作用。其他构成与连接关系与前述实施例一致,在此不再赘述。
本申请实施例还提供了一种计算设备,该计算设备包括基于相变浸没液冷系统进行器件散热的设备机箱,还包括如前述图1至图18中所描述的管理控制装置。
该计算设备可以为计算机、服务器等产品类型,特别适用于大功率、高集成度、超大规模化的数据中心服务器。基于相变浸没液冷系统的运行机制,可满足相应制冷循环下的内部空间扩容能力,同时提供的工质循环冷凝功能及制冷工质供给功能,为相变浸没式液冷可靠应用于相应器件的散热处理提供了技术保障。
应当理解,相应计算设备的其他功能构成非本申请的核心发明点所在,故本文不再赘述。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (22)
- 一种基于相变浸没液冷系统的管理控制装置,其特征在于,包括:调节部件,包括具有内腔的本体,所述调节部件的本体可在其内腔侧的压力作用下产生形变,使其内腔的容纳空间相应改变;储液部件,所述储液部件的内腔与所述调节部件的内腔连通,所述储液部件包括通汽口和通液口,所述通汽口和所述通液口分别用于与浸没式液冷系统的设备机箱连通,以建立所述储液部件与所述设备机箱之间的汽路连通和液路连通关系;冷凝部件,设置在所述储液部件的内腔中。
- 根据权利要求1所述的基于相变浸没液冷系统的管理控制装置,其特征在于,还包括:内部填充物,至少置于所述调节部件的未形变扩容的内腔中。
- 根据权利要求2所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述内部填充物还置于所述冷凝部件上方的储液部件的内腔中。
- 根据权利要求1至3中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述通汽口和所述通液口位于所述储液部件一端侧,以分别通过管路与浸没式液冷系统的设备机箱连通。
- 根据权利要求1至4中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述调节部件的本体形变为单一维度形变,或者为多维度形变。
- 根据权利要求1至5中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述冷凝部件的冷凝盘管位于所述储液部件的内腔上部区域。
- 根据权利要求1至6任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述调节部件设置在所述储液部件的上方,所述调节部件的底部开口与所述储液部件的顶部开口密封固定。
- 根据权利要求1至6中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,还包括动力部件,所述动力部件配置为:可基于所述液路连通关系将设备机箱内的液态工质抽回至所述储液部件,且可基于所述液路连通关系将液态工质自所述储液部件泵送至设备机箱。
- 根据权利要求8所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述动力部件包括补液泵和排液泵,所述液路连通关系包括第一液路连通关系和第二液路连通关系,其中,所述排液泵用于通过所述第一液路连通关系将液态工质自所述储液部件泵送至各设备机箱,所述补液泵用于通过所述第二液路连通关系将液态工质自设备机箱抽回至所述储液部件。
- 根据权利要求9所述的基于相变浸没液冷系统的管理控制装置,其特征在于,还包括设置在所述储液部件外侧的补液泵开关,所述补液泵开关用于手动操作控制所述补液泵的启停。
- 根据权利要求8至10中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述将液态工质自所述储液部件泵送至设备机箱的泵送量,根据相应所述设备机箱内的液态工质液位进行控制。
- 根据权利要求1至6中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述储液部件还包括冷却水出口和冷却水入口,且分别与所述冷凝部件的冷凝盘管的两侧管端连通。
- 根据权利要求12所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述储液部件还包括压力安全阀,所述冷却水出口和所述冷却水入口位于所述储液部件的一端侧,所述压力安全阀和所述储液部件的注液口位于所述储液部件的另一端侧。
- 根据权利要求1至13中任一项所述的基于相变浸没液冷系统的管理控制装置,其特征在于,所述储液部件设置有多个,且多个所述储液部件的内腔与所述调节部件的内腔分别连通。
- 一种基于相变浸没液冷进行散热的计算节点,其特征在于,所述计算节点适配于与权利要求1至14中任一项所述的基于相变浸没液冷系统的管理控制装置,所述计算节点包括设备机箱,且所述设备机箱包括可与所述储液部件连通的通液口和通汽口,以建立所述计算节点与储液部件之间的汽路连通关系和液路连通关系;所述计算节点还包括空气平衡阀,所述空气平衡阀设置在所述设备机箱的工质液面之上。
- 根据权利要求15所述的基于相变浸没液冷进行散热的计算节点,其特征在于,所述设备机箱的通液口包括第一通液口和第二通液口;所述第一通液口用于建立第一液路连通关系,将液态工质自储液部件送至所述设备机箱;所述第二通液口用于建立第二液路连通关系,以将液态工质自所述设备机箱抽回至储液部件。
- 根据权利要求16所述的基于相变浸没液冷进行散热的计算节点,其特征在于,所述第二通液口设置有第二回液接头,所述第二回液接头配置为可断开自动关闭。
- 根据权利要求16或17所述的基于相变浸没液冷进行散热的计算节点,其特征在于,所述计算节点还包括第一液位传感器,用于检测所述设备机箱内液态工质液位;所述第一通液口设置有电磁阀,所述电磁阀配置为可根据所述第一液位传感器的检测结果开启或关闭。
- 一种计算设备,其特征在于,包括基于相变浸没液冷系统进行器件散热的设备机箱,还包括权利要求1至14中任一项所述的基于相变浸没液冷系统的管理控制装置,其中,所述储液部件的通汽口和通液口分别通过管路与所述设备机箱的通汽口和通液口连通。
- 根据权利要求19所述的计算设备,其特征在于,所述基于相变浸没液冷系统的管理控制装置,设置在所述设备机箱的上方。
- 根据权利要求19或20所述的计算设备,其特征在于,所述设备机箱包括多个节点设备机箱,所述储液部件的通汽口和通液口分别与所述多个节点设备机箱的通汽口和通液口一一对应连通。
- 根据权利要求19至21中任一项所述的计算设备,其特征在于,所述计算设备为服务器。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210647366 | 2022-06-09 | ||
CN202210647366.2 | 2022-06-09 | ||
CN202210705986.7A CN117251031A (zh) | 2022-06-09 | 2022-06-21 | 计算设备、节点及基于相变浸没液冷系统的管理控制装置 |
CN202210705986.7 | 2022-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023236596A1 true WO2023236596A1 (zh) | 2023-12-14 |
Family
ID=89117501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/078941 WO2023236596A1 (zh) | 2022-06-09 | 2023-03-01 | 计算设备、节点及基于相变浸没液冷系统的管理控制装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023236596A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117707308A (zh) * | 2024-02-05 | 2024-03-15 | 苏州元脑智能科技有限公司 | 一种服务器相变浸没式液冷动态调控系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204810780U (zh) * | 2015-02-15 | 2015-11-25 | 3M创新有限公司 | 采用两相式浸没冷却的机箱和服务器组件 |
CN207752437U (zh) * | 2018-01-26 | 2018-08-21 | 李鑫 | 一种台式计算机机箱用辅助降温装置 |
CN212257983U (zh) * | 2020-05-19 | 2020-12-29 | 曙光节能技术(北京)股份有限公司 | 一种激光器的浸没相变液冷系统 |
US10966349B1 (en) * | 2020-07-27 | 2021-03-30 | Bitfury Ip B.V. | Two-phase immersion cooling apparatus with active vapor management |
-
2023
- 2023-03-01 WO PCT/CN2023/078941 patent/WO2023236596A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204810780U (zh) * | 2015-02-15 | 2015-11-25 | 3M创新有限公司 | 采用两相式浸没冷却的机箱和服务器组件 |
CN207752437U (zh) * | 2018-01-26 | 2018-08-21 | 李鑫 | 一种台式计算机机箱用辅助降温装置 |
CN212257983U (zh) * | 2020-05-19 | 2020-12-29 | 曙光节能技术(北京)股份有限公司 | 一种激光器的浸没相变液冷系统 |
US10966349B1 (en) * | 2020-07-27 | 2021-03-30 | Bitfury Ip B.V. | Two-phase immersion cooling apparatus with active vapor management |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117707308A (zh) * | 2024-02-05 | 2024-03-15 | 苏州元脑智能科技有限公司 | 一种服务器相变浸没式液冷动态调控系统 |
CN117707308B (zh) * | 2024-02-05 | 2024-05-03 | 苏州元脑智能科技有限公司 | 一种服务器相变浸没式液冷动态调控系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10863650B2 (en) | Air-vapor separation method for immersed liquid cooling system and device thereof | |
WO2023236596A1 (zh) | 计算设备、节点及基于相变浸没液冷系统的管理控制装置 | |
WO2024148872A1 (zh) | 一种浸没式液冷服务器及其余热回收系统 | |
US20230217630A1 (en) | Apparatus and system for two-phase server cooling with serial condenser units | |
CN115568193A (zh) | 数据中心浸没式双循环多模式液冷散热调节系统及方法 | |
US11997827B2 (en) | Immersion cooling system that enables increased heat flux at heat-generating components of computing devices | |
JP5967315B2 (ja) | 蒸気生成装置及び蒸気生成ヒートポンプ | |
CN113206271A (zh) | 一种燃料电池浸没式冷却系统及方法 | |
CN112739182A (zh) | 液冷散热系统及数据中心 | |
CN210247359U (zh) | 一种服务器集装箱数据中心及其温控系统 | |
WO2024198238A1 (zh) | 两相液冷系统 | |
CN114518794A (zh) | 高可靠性的液冷系统及控制方法 | |
CN114828561B (zh) | 冷却循环系统 | |
US20230240051A1 (en) | Apparatus and system for hybrid multi-phase server cooling | |
CN112556285B (zh) | 一种冷却介质供应系统 | |
US11956922B2 (en) | Multiple chambers connection module for cooling streams | |
WO2021253969A1 (zh) | 发电系统和发电方法 | |
CN117251031A (zh) | 计算设备、节点及基于相变浸没液冷系统的管理控制装置 | |
CN116033727B (zh) | 一种相变冷却系统的相态分布结构 | |
CN115515373A (zh) | 无负载感知的多层冷却系统 | |
US11889663B1 (en) | Immersion dual-cycle multi-mode liquid cooling regulation system and method for data center | |
CN117154290B (zh) | 冷却液自动分配系统、电池组以及数据中心 | |
US20230209774A1 (en) | Apparatus and system for two-phase server cooling | |
US20240107716A1 (en) | Systems and methods for adjusting pressure in immersion-cooled datacenters | |
CN220629889U (zh) | 一种冷板式液冷系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23818764 Country of ref document: EP Kind code of ref document: A1 |