Nothing Special   »   [go: up one dir, main page]

WO2023234074A1 - Nanoparticles, dispersion liquid, ink, thin film, organic light emitting diode, quantum dot display and method for producing nanoparticles - Google Patents

Nanoparticles, dispersion liquid, ink, thin film, organic light emitting diode, quantum dot display and method for producing nanoparticles Download PDF

Info

Publication number
WO2023234074A1
WO2023234074A1 PCT/JP2023/018779 JP2023018779W WO2023234074A1 WO 2023234074 A1 WO2023234074 A1 WO 2023234074A1 JP 2023018779 W JP2023018779 W JP 2023018779W WO 2023234074 A1 WO2023234074 A1 WO 2023234074A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
range
electrode
thin film
solution
Prior art date
Application number
PCT/JP2023/018779
Other languages
French (fr)
Japanese (ja)
Inventor
光 小林
暁 渡邉
晴彦 吉野
沙記 小澤
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023234074A1 publication Critical patent/WO2023234074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to nanoparticles, dispersions, inks, thin films, organic light emitting diodes and quantum dot displays comprising such thin films, and methods for producing nanoparticles.
  • OLEDs Organic light emitting diodes
  • QD quantum dot
  • a light-emitting layer is placed between two electrodes (anode and cathode).
  • a voltage is applied between both electrodes, holes and electrons are injected from each electrode into the light emitting layer.
  • holes and electrons are recombined within the luminescent layer, binding energy is generated, and the luminescent material in the luminescent layer is excited by this binding energy. Since light is emitted when the excited light-emitting material returns to its ground state, by utilizing this, light can be extracted to the outside.
  • a hole injection layer and/or hole transport layer is often installed between the anode and the emissive layer, and an electron injection layer and/or hole transport layer is installed between the emissive layer and the cathode. Or an electron transport layer is installed.
  • the hole injection layer and/or hole transport layer on the anode, as well as the light emitting layer placed on top of the layer are formed by a low-temperature process such as printing. It is proposed to do so.
  • the electron transport layer installed between the light emitting layer and the cathode is formed by a vapor deposition method. In order to further reduce manufacturing costs and simplify the process, it is considered effective to form the electron transport layer using a low-temperature process.
  • Patent Document 1 describes that an aggregate containing Zn-Si-O nanoparticles with a low work function can be produced by a thermal plasma treatment method, and that an ink containing such an aggregate of nanoparticles is applied. It is described that a thin film for an electron transport layer of an OLED can be formed by this method.
  • thermal plasma treatment methods tend to produce nanoparticles with relatively large particle diameters.
  • nanoparticles When such nanoparticles are applied to the electron transport layer of OLED and QD displays, there is a problem in that the surface of the electron transport layer becomes uneven. Irregularities on the surface of the electron transport layer can lead to scattering of light emitted from the light emitting layer. Further, at locations where the electron transport layer is thin, a problem may arise in that a current short circuit occurs between the light emitting layer and the cathode.
  • the present invention was made in view of this background, and provides nanoparticles that have a low work function, can be applied to low-temperature film formation processes, and have a significantly small particle size.
  • the purpose is to The present invention also aims to provide dispersions, inks, thin films containing such nanoparticles, organic light emitting diodes and quantum dot displays having such thin films, and methods for producing nanoparticles.
  • nanoparticles containing a metal oxide In the spectrum of the nanoparticles measured by infrared spectroscopy, the maximum intensity in the region of 400 cm -1 to 600 cm -1 derived from Zn-O-Zn bonds is defined as I 1 , and the maximum intensity derived from Zn-O-Si bonds is defined as I 1.
  • the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is 0.28 or more
  • the atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95
  • Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
  • nanoparticles containing a metal oxide The average coordination number of the O atom closest to the Zn atom, determined by X-ray absorption fine structure (XAFS) analysis, is in the range of 3.0 to 4.5, and the X-ray absorption fine structure (XAFS) )
  • the average coordination number of the Zn atom closest to the Zn atom determined by analysis is in the range of 1.5 to 10
  • the atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95
  • Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
  • the present invention provides a dispersion liquid containing nanoparticles having the above-mentioned characteristics, a solvent, and a dispersant.
  • the present invention provides an ink that includes nanoparticles having the above characteristics, a solvent, a dispersant, a thickener, and a surfactant.
  • the present invention also provides a thin film containing nanoparticles having the above-mentioned characteristics.
  • an organic light-emitting diode comprising a first electrode, an organic light emitting layer, and a second electrode.
  • An organic light-emitting diode having an additional layer between the first electrode or the second electrode and the organic light-emitting layer, comprising a thin film having the above-mentioned characteristics.
  • a quantum dot display comprising an additional layer between the first electrode or the second electrode and the quantum dot emissive layer, comprising a thin film having the characteristics described above.
  • the present invention provides a method for producing nanoparticles containing metal oxides, comprising: (1) mixing raw materials containing zinc and silicon with a first solvent to prepare a first solution; (2) preparing a second solution containing an alkali; (3) mixing the first solution and the second solution using a flow reactor method to generate a third solution containing nanoparticles; (4) adding an additive that suppresses the growth of the nanoparticles to the third solution;
  • a method is provided having the following.
  • the present invention has a low work function, can be applied to a low-temperature film formation process, and can provide nanoparticles having a significantly small particle size.
  • the present invention can also provide dispersions, inks, thin films containing such nanoparticles, organic light emitting diodes and quantum dot displays having such thin films, and methods for producing nanoparticles.
  • FIG. 2 is a diagram showing an example of an infrared spectrum of nanoparticles according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a Raman spectrum of nanoparticles according to an embodiment of the present invention.
  • 1 is a diagram schematically showing an example of a flow of a method for manufacturing nanoparticles according to an embodiment of the present invention.
  • 1 is a cross-sectional view schematically showing a configuration example of an OLED including nanoparticles according to an embodiment of the present invention.
  • 1 is a cross-sectional view schematically showing a configuration example of a QD display including nanoparticles according to an embodiment of the present invention.
  • nanoparticles comprising a metal oxide
  • I 1 the maximum intensity in the region of 400 cm -1 to 600 cm -1 derived from Zn-O-Zn bonds
  • I 1 the maximum intensity derived from Zn-O-Si bonds
  • the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is 0.28 or more
  • the atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95
  • Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
  • the particles provided are in the form of nanoparticles, so that the nanoparticles are dispersed to prepare a dispersion, such as an ink, to form a film in a low-temperature process such as a printing method. Can be formed into a film.
  • Patent Document 1 describes Zn--Si--O nanoparticles produced by a thermal plasma method. It is described that these nanoparticles have a low work function, and that an electron transport layer of an OLED can be formed by applying an ink in which such nanoparticles are dispersed and forming a thin film.
  • the nanoparticles described in Patent Document 1 are manufactured by a thermal plasma method.
  • the thermal plasma method has a problem in that the size of the nanoparticles produced, especially the upper limit of the particle diameter, is relatively large.
  • the surface roughness of the electron transport layer can have a significant impact on the properties of the device. Therefore, it is preferable that the particle diameter of the nanoparticles be as small as possible.
  • nanoparticles according to an embodiment of the present invention are produced by a method other than the thermal plasma method, for example, a liquid phase synthesis method.
  • the liquid phase synthesis method can provide nanoparticles whose Scherrer diameter is controlled within a microscopic range of 10 nm or less. Therefore, in one embodiment of the present invention, it is possible to form a thin film with significantly suppressed surface irregularities when applied as an electron transport layer of OLED and QD displays.
  • liquid phase synthesis methods have a problem in that it is difficult to control the morphology of nanoparticles, especially the composition distribution within the particles.
  • a general liquid phase synthesis method zinc oxide and silicon oxide separate, and the zinc oxide core Nanoparticles with silicon oxide surrounding them (core-shell structure) tend to be produced.
  • the peak intensity ratio I 2 / (I 1 +I 2 + I 3 ) is 0.28 or more.
  • the maximum intensity I 1 corresponds to the Zn-O-Zn bond
  • the maximum intensity I 2 corresponds to the Zn-O-Si bond
  • the maximum intensity I 3 corresponds to the Si-O-Si bond.
  • the Zn--O--Si bond corresponding to the double oxide of zinc and silicon is significantly increased. Therefore, in one embodiment of the present invention, the work function of nanoparticles can be significantly reduced.
  • one embodiment of the present invention has a low work function, can be applied to a low-temperature film formation process, and can provide nanoparticles having a significantly small particle size.
  • nanoparticles containing a metal oxide The average coordination number of the O atom closest to the Zn atom, determined by X-ray absorption fine structure (XAFS) analysis, is in the range of 3.0 to 4.5, and the X-ray absorption fine structure (XAFS) )
  • the average coordination number of the Zn atom closest to the Zn atom determined by analysis is in the range of 1.5 to 10
  • the atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95
  • Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
  • Si is introduced into the nanoparticles.
  • the average coordination number of the O atom closest to the Zn atom is set in the range of 3.0 to 4.5, and the average coordination number of the Zn atom closest to the Zn atom is set in the range of 1.5 to 10.
  • a suitable electron transport layer can be obtained by adjusting the amount within this range.
  • the average coordination number of the O atom closest to the Zn atom and the average coordination number of the Zn atom closest to the Zn atom can be evaluated as described below using the XAFS analysis method.
  • the average coordination number of the O atom that is closest to the Zn atom is preferably 3.2 or more, from the viewpoint of suppressing coloring due to the generation of oxygen vacancies. It is more preferably .4 or more, and even more preferably 3.6 or more. Further, for example, the average coordination number of the O atom closest to the Zn atom is 4.4 or less, preferably 4.3 or less, from the viewpoint of increasing the band gap and obtaining high transparency.
  • the average coordination number of the Zn atom closest to the Zn atom is preferably 2.0 or more, and 2.5 or more, from the viewpoint of obtaining sufficient electrical conductivity. More preferably, it is 3.0 or more.
  • the average coordination number of the Zn atom that is closest to the Zn atom is, for example, 9.0 from the viewpoint of reducing the spatial overlap between adjacent Zn4s orbitals and reducing the electron affinity and work function of the nanoparticle. It is preferably 8.0 or less, more preferably 7.0 or less, and even more preferably 6.0 or less.
  • the average coordination number of the O atom closest to the Zn atom is 4, and the average coordination number of the Zn atom closest to the Zn atom is 12.
  • Nanoparticles according to an embodiment of the present invention (hereinafter also simply referred to as "ZSO nanoparticles of the present invention”) have a Zn--Si--O based oxide as a metal oxide.
  • the ZSO nanoparticles of the present invention have an atomic ratio of Zn/(Zn+Si) in the range of 0.3 to 0.95.
  • Zn/(Zn+Si) becomes lower than 0.3, the conductivity of the nanoparticles decreases.
  • Zn/(Zn+Si) exceeds 0.95 the work function of the nanoparticles increases.
  • the lower limit of Zn/(Zn+Si) is preferably 0.6 or 0.7.
  • Zn/(Zn+Si) is preferably in the range of 0.80 to 0.92.
  • the Zn content in the ZSO nanoparticles of the present invention is 10% to 50% in terms of atomic concentration, preferably 31% to 47%, and more preferably 36% to 45%.
  • the Si content in the ZSO nanoparticles of the present invention is 1% to 30% in terms of atomic concentration, preferably 2% to 13%, and more preferably 3% to 9%.
  • the content of O in the ZSO nanoparticles of the present invention is 40% to 70% in terms of atomic concentration, preferably 50% to 62%, and more preferably 51% to 54%. If the contents of Zn, Si and O are within the above ranges, the nanoparticles will have high transparency and the display will have good light emitting characteristics.
  • the ZSO nanoparticles of the present invention may contain additives.
  • the additive at least one selected from the group consisting of Al, Ga, Mg, Li, Ti, In, and N is preferable. By including such additives, the conductivity of the nanoparticles can be adjusted.
  • the content of additives in the ZSO nanoparticles of the present invention is 1% to 20%, preferably 5% to 15%, and more preferably 8% to 10% in terms of atomic concentration. If the content of the additive is within the above range, the composition in the nanoparticles will be homogeneous and the dispersibility will be good when dispersed in a solvent.
  • the ZSO nanoparticles of the present invention have a Scherrer diameter in the range of 1 nm to 10 nm.
  • the Scherrer diameter is preferably in the range of 1 nm to 7 nm, more preferably in the range of 2 nm to 6 nm, even more preferably in the range of 3 nm to 5 nm.
  • the Scherrer diameter is 10 nm or less, deterioration in flatness when forming a film is suppressed. Moreover, if the Scherrer diameter is 1 nm or more, the stability of the work function and electrical properties of the film increases.
  • is the peak half width.
  • the ZSO nanoparticles of the present invention have a band gap in the range of 3.1 eV to 3.9 eV.
  • the band gap is in the range of 3.2 eV to 3.8 eV.
  • the electron transport layer will have high transparency. Moreover, if the band gap is 3.9 eV or less, the electrical conductivity of the ZSO nanoparticles will be sufficient.
  • the band gap of ZSO nanoparticles can be determined from the light transmission spectrum obtained using an ultraviolet-visible spectrophotometer.
  • the ZSO nanoparticles of the present invention have an ionization potential in the range of 6.0 eV to 8.0 eV.
  • the ionization potential is in the range of 6.5 eV to 7.5 eV.
  • the ZSO nanoparticles will have sufficient electrical conductivity. Moreover, if the ionization potential is 8.0 eV or less, electron injection into the light emitting layer will be good.
  • the ionization potential of ZSO nanoparticles can be determined by ultraviolet photoelectron spectroscopy (UPS).
  • the ZSO nanoparticles of the present invention have an electron affinity in the range of 2.5 eV to 4.0 eV.
  • the electron affinity is in the range of 3.0 eV to 3.8 eV.
  • the electron affinity is 2.5 eV or more, the ZSO nanoparticles will have sufficient electrical conductivity. Further, if the electron affinity is 4.0 eV or less, the electron injection property into the light emitting layer will be good.
  • the electron affinity of the ZSO nanoparticles can be determined by subtracting the band gap value from the ionization potential value.
  • FIG. 1 shows an example of an infrared spectrum of ZSO nanoparticles of the present invention.
  • the spectrum of the SiO 2 sample, the spectrum of the ZnO sample, and the spectrum of the ZnSi 2 O 4 sample are shown simultaneously. Note that in FIG. 1, the intensity on the vertical axis increases toward the bottom.
  • a large absorption peak (referred to as "Zn--O--Zn bond peak”) appears at a wave number of approximately 410 cm.sup. -1 .
  • a large absorption peak (referred to as "Zn--O--Si bond peak”) appears at a wave number of about 920 cm -1 .
  • Si-O-Si bond peak appears at a wave number of approximately 1070 cm -1 .
  • the infrared spectra occurring in the wavenumber range of 400 cm -1 to 600 cm -1 are Zn-O-Zn
  • the infrared spectra generated in the range of wave numbers 870 cm -1 to 970 cm -1 correspond to the Zn-O-Si bond peak and wave numbers 1050 cm -1 to 1150 cm - It can be said that the infrared spectra generated in the range Q1 (referred to as region Q3 ) corresponds to the Si-O-Si bond peak.
  • the infrared spectra of the ZSO nanoparticles of the present invention have the maximum intensity in region Q 1 as I 1 , the maximum intensity in region Q 2 as I 2 , and the maximum intensity in region Q 3 .
  • the intensity is I 3
  • the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is characterized by being 0.28 or more.
  • the ZSO nanoparticles of the present invention have a high proportion of Zn--O--Si bonds corresponding to the double oxide of zinc and silicon, and therefore the work function can be significantly reduced.
  • the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is preferably 0.29 or more, more preferably 0.30 or more, and even more preferably 0.31 or more.
  • the work function of the ZSO nanoparticles of the present invention can be further reduced.
  • the work function of the ZSO nanoparticles of the present invention is 3.9 eV or less.
  • the work function is preferably 3.8 eV or less.
  • FIG. 2 shows an example of the Raman spectrum of the ZSO nanoparticles of the present invention.
  • the spectrum of the SiO 2 sample, the spectrum of the ZnO sample, and the spectrum of the Zn 2 SiO 4 sample are shown simultaneously for comparison. Note that in FIG. 2, the intensity on the vertical axis increases toward the top.
  • the ZSO nanoparticles of the present invention exist in the state of a double oxide in which zinc oxide and silicon oxide are mixed at the atomic level.
  • Nanoparticles according to an embodiment of the present invention can be produced, for example, by a liquid phase synthesis method.
  • FIG. 3 schematically shows an example of a flow of a method for producing nanoparticles according to an embodiment of the present invention.
  • the method for producing nanoparticles according to one embodiment of the present invention is as follows: (1) mixing raw materials containing zinc and silicon with a first solvent to prepare a first solution (step S110); (2) preparing a second solution containing an alkali (step S120); (3) mixing the first solution and the second solution using a flow reactor method to generate a third solution containing nanoparticles (step S130); (4) adding a particle growth inhibitor to the third solution (step S140); has.
  • Step S110 First, raw materials containing a zinc source and a silicon source are prepared.
  • the raw materials may be prepared in liquid form.
  • the zinc source may be a zinc compound, such as, for example, zinc oxide, zinc acetate, zinc nitrate, zinc carbonate, zinc chloride, zinc sulfate, and zinc alkoxide.
  • a zinc compound such as, for example, zinc oxide, zinc acetate, zinc nitrate, zinc carbonate, zinc chloride, zinc sulfate, and zinc alkoxide.
  • the silicon source may also be silicon compounds such as H 2 SiO 3 (silicic acid) and silicates.
  • the silicon source may be, for example, a silicon oxide or hydroxide, other silicates, silicon compounds such as alkoxides, or hydrates thereof.
  • Alkoxysilane silicon sources include dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), tetramethoxysilane (TMOS), dimethyldiethoxysilane (DMDES), methyltriethoxysilane (MTES), and tetraethoxysilane. Examples include silane (TEOS). Also, oligomeric condensates of TEOS, such as ethyl silicate, may be used.
  • the raw material is mixed with a first solvent to prepare a first solution.
  • the first solvent is not particularly limited as long as it can sufficiently dissolve and mix the raw materials.
  • the first solvent may be, for example, a dimethyl sulfoxide (DMSO) solvent.
  • DMSO dimethyl sulfoxide
  • the first solution is prepared so that the atomic ratio of zinc and silicon contained is Zn/(Zn+Si) of 0.3 to 0.95.
  • Step S120 Next, a second solution is prepared.
  • the second solution is an alkaline solution, such as at least one selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, tetramethylammonium (TMAH), tetraethylammonium (TEAH), and ammonia ( NH3 ). It may have one. Alternatively, the second solution may be a metal alkoxide such as sodium ethoxide.
  • Step S130 Next, the first solution and the second solution are mixed. This causes a reaction in which zinc and silicon bond together in the liquid, forming a third solution containing nanoparticles.
  • a flow reactor method is used in order to form a double oxide in which zinc oxide and silicon oxide are sufficiently mixed with each other.
  • the flow reactor method two disks are stacked one above the other, and a minute reaction field (thickness on the order of ⁇ m) is provided between the two disks. Further, the first liquid and the second liquid are respectively supplied from different ports provided on the upper disk.
  • At least one of the two discs is rotating at high speed, and the supplied first liquid and second liquid are supplied to a reaction field rotating at high speed, where a reaction occurs.
  • reaction products are discharged from the system of the apparatus together with the residual liquid due to the centrifugal force of the rotation of the disk.
  • the first liquid and the second liquid can be sufficiently mixed within a narrow reaction field by increasing the rotational speed of the circular disk.
  • the plurality of generated phases becomes difficult to separate, and more homogeneous fine particles can be obtained.
  • the supply temperatures of the first liquid and the second liquid are not particularly limited.
  • the temperature of the first liquid and the second liquid is, for example, in the range of 20°C to 120°C, preferably in the range of 50°C to 90°C.
  • step S130 a third solution containing nanoparticles is generated.
  • the third solution may be filtered to recover the nanoparticles, if necessary.
  • Step S140 In the first method, desired nanoparticles can be manufactured in the process of steps S110 to S130 described above.
  • step S130 a particle growth inhibitor is added to the third solution.
  • the type of particle growth inhibitor is not particularly limited as long as it is a substance that can suppress the grain growth of nanoparticles.
  • Particle growth inhibitors include, for example, ethyl acetate, butyl acetate, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, diethyl ether, methyl tert-butyl ether (MTBE), It may be selected from diisopropyl ether, diphenyl ether, 1,4-dioxane, tetrahydrofuran (THF).
  • THF tetrahydrofuran
  • the nanoparticles may be classified if necessary.
  • the ZSO nanoparticles of the present invention can be manufactured.
  • Nanoparticles according to one embodiment of the invention can be provided, for example, in the form of a dispersion.
  • a dispersion can be prepared by dispersing nanoparticles in a solvent containing a dispersant.
  • polar solvent it makes it difficult to dissolve the organic light-emitting layer of the OLED and reduces damage to the interface.
  • polar solvents that can be used include water, alcohols, glycols, glycol ethers, glycerin, and/or ethers.
  • Alcohols, glycols, glycol ethers, or ethers include, for example, the following compounds: (i) Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethyl-1-butanol, isoamyl alcohol, 2-methyl-1 -butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 3-methoxybutanol, pentyl alcohol, 1-hexanol, 1-octanol, 1-pentanol, tert-pentyl alcohol and the like.
  • Glycols include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, triethylene glycol, dimethyldiethylene glycol, dipropylene glycol, and the like.
  • Glycol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monophenyl ether, ethylene glycol butyl ethyl ether, and ethylene glycol Butyl methyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol mono t-butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether
  • N-methylformamide N-methylpyrrolidone
  • dimethyl sulfoxide fluorinated alcohol-based solvents
  • glycol dialkyl ether-based solvents may be used.
  • solvents may be used alone or in combination.
  • a nonpolar solvent such as water, acetone, benzene, toluene, xylene, and/or hexane can also be used as the solvent.
  • the amount of nanoparticles contained in the dispersion may range, for example, from 0.01% to 50% by weight, and the amount of solvent may range from 50% to 99.9% by weight, for example. .
  • the dispersant is not particularly limited, but a polymeric dispersant, a surfactant type (low molecular type) dispersant, an inorganic type dispersant, etc. can be used.
  • polymer dispersants include polycarboxylic acid polymer dispersants, polyamine polymer dispersants, acrylic polymer dispersants, urethane polymer dispersants, acrylic block copolymer polymer dispersants, and polyether polymer dispersants.
  • Examples include a similar dispersant, a polyester polymer dispersant, polyethyleneimine, polyethyleneimine ethoxylate, and the like.
  • surfactant-type dispersants examples include anionic surfactants such as carboxylates, sulfonates, sulfuric acid ester salts, and phosphoric acid ester salts, cationic surfactants such as amine salts and quaternary ammonium, and fatty acid esters. Any of the nonionic surfactants can be used.
  • aminoethanols such as monoethanolamine, diethanolamine, triethanolamine, 2-amino 1,3-propanediol, thiols, organic sulfur compounds such as disulfides, methoxyacetic acid (MA), 2-methoxyethoxy Acetates such as acetic acid (MEA), 2-(2-methoxyethoxy)ethoxyacetic acid, (MEEA), and 2-ethoxyacetic acid can also be suitably used.
  • silane coupling agents, titanate coupling agents, aluminum coupling agents, etc. can also be used.
  • the amount of dispersant contained in the dispersion is, for example, in the range of 1.0% by mass to 4.0% by mass.
  • nanoparticles according to an embodiment of the invention may be prepared in the form of an ink.
  • the ink is prepared by dispersing nanoparticles in one or more solvents that include a dispersant, an image tackifier, and a surfactant.
  • One or more solvents may be selected from the candidates listed as solvents for the dispersion liquid described above.
  • the solvent is preferably one that is difficult to volatilize at the nozzle portion and has a boiling point of 180° C. or higher.
  • solvents include, for example, ethylene glycol, diethylene glycol (DEG), propylene glycol, and dipropylene glycol (DPG).
  • the above-mentioned dispersants can be used.
  • Thickeners may include propylene glycol, terpineol and ethylcellulose. Further, as another additive, a transparent conductor (indium tin oxide) for adjusting the conductivity of the ink, aluminum-doped zinc oxide (AZO), and/or carbon black may be used.
  • a transparent conductor indium tin oxide
  • AZO aluminum-doped zinc oxide
  • carbon black may be used as another additive.
  • the dispersant, image tackifier, and surfactant may be contained in the entire ink at a concentration of 10% by mass or less, for example.
  • the viscosity of the ink is preferably 1 to 50 mPa ⁇ s (CP).
  • the viscosity of the ink is preferably 5 to 20 mPa ⁇ s (CP).
  • the ink has a viscosity of 8 to 15 mPa ⁇ s (CP).
  • the ink preferably has a low water content, and therefore it is preferable to dehydrate the ink before use.
  • the dehydration method is not particularly limited, but molecular sieves, anhydrous sodium sulfate, and/or calcium hydroxide can be used.
  • the moisture content of the ink is preferably 0.1% by mass or less.
  • the ink may contain an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, or an alkaline earth metal salt.
  • an electron injection layer/electron transport layer containing an alkali metal or alkaline earth metal complex or salt can be formed by a printing process.
  • electron injection efficiency can be further improved.
  • alkali metal or alkaline earth metal complex or salt is soluble in the solvent of the ink.
  • Alkali metals include lithium, sodium, potassium, rubidium, and cesium.
  • Alkaline earth metals include magnesium, calcium, strontium, and barium.
  • Complexes include ⁇ -diketone complexes, and salts include alkoxides, phenoxides, carboxylates, carbonates, and hydroxides.
  • complexes or salts of alkali metals and alkaline earth metals include sodium acetylacetonate, cesium acetylacetonate, calcium bisacetylacetonate, barium bisacetylacetonate, sodium methoxide, sodium phenoxide, and sodium tert-butoxide. , sodium tert-pentoxide, sodium acetate, sodium citrate, cesium carbonate, cesium acetate, sodium hydroxide, and cesium hydroxide.
  • Nanoparticles according to an embodiment of the present invention can be used in thin films of various devices and the like.
  • nanoparticles according to an embodiment of the present invention can be applied to the electron injection layer/electron transport layer of an OLED.
  • FIG. 4 schematically shows a cross section of an OLED to which nanoparticles according to an embodiment of the present invention are applied.
  • the OLED 100 includes a substrate 110, a bottom electrode (anode) 120, a hole injection layer/hole transport layer 130, an organic light emitting layer 140, an additional layer 150, and a top electrode (cathode) 160. , and an insulating layer 170.
  • the OLED 100 when the substrate 110 and the bottom electrode 120 are made of a transparent material, the OLED 100 becomes a bottom emission type in which the substrate 110 side becomes the light extraction surface.
  • the OLED 100 when the upper electrode 160 is made of a transparent material or a semi-transparent material and the lower side of the bottom electrode 120 is made of a reflective layer, the top emission type in which the upper electrode 160 side becomes the light extraction surface. becomes.
  • the substrate 110 has the role of supporting each layer installed thereon.
  • the bottom electrode 120 is made of a conductive metal oxide such as indium tin oxide (ITO), for example.
  • the upper electrode 160 is made of metal or semiconductor, for example.
  • the hole injection layer/hole transport layer 130 is made of a hole transporting compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked with fluorene groups, and hydrazone compounds. compounds, silazane-based compounds, quinacridone-based compounds, and the like.
  • aromatic amine compounds are preferred, and aromatic tertiary amine compounds are particularly preferred, in terms of amorphousness and visible light transparency.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of aromatic tertiary amine compound is not particularly limited, but a polymeric compound with a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymeric compound with a series of repeating units) is preferred, since it is easy to obtain uniform light emission due to the surface smoothing effect. It is preferable to use
  • the organic light-emitting layer 140 is made of an organic substance that emits red, green, and/or blue light, for example.
  • the organic light emitting layer 140 is a functional layer that has the function of emitting light (including visible light).
  • the organic light emitting layer 140 is usually composed of an organic material that mainly emits at least one of fluorescence and phosphorescence, or this organic material and a dopant that assists the organic material.
  • a dopant is added, for example, to improve luminous efficiency or change the emission wavelength.
  • the organic substance may be a low molecular compound or a high molecular compound.
  • the thickness of the emissive layer may be, for example, about 2 nm to 200 nm.
  • the insulating layer 170 is made of, for example, a photosensitive resin such as a fluororesin or a polyimide resin.
  • the hole injection layer/hole transport layer 130 and/or the organic light emitting layer 140 can be formed, for example, by a printing process.
  • Additional layer 150 includes ZSO nanoparticles of the present invention.
  • additional layer 150 may include a thin film comprising ZSO nanoparticles of the present invention.
  • additional layer 150 has a relatively low work function and adequate electrical conductivity.
  • the work function of additional layer 150 is 3.9 eV or less.
  • the electrical conductivity of the additional layer 150 is, for example, 10 ⁇ 8 Scm ⁇ 1 or more, for example, 10 ⁇ 5 Scm ⁇ 1 or more.
  • the additional layer 150 can function as an electron injection layer and/or an electron transport layer.
  • the additional layer 150 can be formed using a low-temperature process such as a printing process. That is, the additional layer 150 can be formed on the organic light emitting layer 140 by preparing an ink as described above and performing a printing process using the ink.
  • the printing process for example, an inkjet printing method, a screen printing method, etc. can be used.
  • the thickness can be more easily controlled than when the additional layer 150 is formed by a conventional vapor deposition method.
  • the Scherrer diameter of the nanoparticles included in the additional layer 150 is in the range of 1 nm to 10 nm. When such fine nanoparticles are used, unevenness on the surface of the additional layer 150 can be significantly suppressed.
  • the surface roughness RMS (root mean square height) of the additional layer 150 is 5 nm or less.
  • the hole injection layer/hole transport layer 130 to the additional layer 150 can be formed by a printing process.
  • the conventional vapor deposition equipment for forming the electron injection layer/electron transport layer is not required, and the equipment cost can be reduced. Therefore, OLED 100 can be easily manufactured at relatively low cost.
  • additional layer 150 includes nanoparticles having characteristics as described above. Therefore, the upper electrode 160 disposed on the additional layer 150 can be formed using a heat generation process such as sputtering, for example.
  • the additional layer 150 may be composed of a multilayer of a thin film containing the ZSO nanoparticles of the present invention and other layers.
  • Nanoparticles according to an embodiment of the present invention can be applied to the electron injection layer/electron transport layer of a QD display.
  • FIG. 5 schematically shows a cross section of a QD display to which nanoparticles according to an embodiment of the present invention are applied.
  • the QD display 200 includes a substrate 210, a bottom electrode (anode) 220, a hole injection layer/hole transport layer 230, a quantum dot (QD) light emitting layer 240, an additional layer 250, and a top It has an electrode (cathode) 260.
  • the description in the above-mentioned OLED 100 can be referred to for the substrate 210, the bottom electrode (anode) 220, the hole injection layer/hole transport layer 230, and the upper electrode (cathode) 260. Therefore, detailed explanation will be omitted here.
  • the QD light emitting layer 240 is composed of nanoparticles such as CdSe, ZnSe, InP, PbS, perovskite (CsPbX3; X is Cl, Br, or I).
  • the additional layer 250 includes ZSO nanoparticles of the present invention.
  • additional layer 250 has a relatively low work function and adequate electrical conductivity.
  • the work function of additional layer 250 is 3.9 eV or less.
  • the electrical conductivity of the additional layer 250 is, for example, 10 ⁇ 8 Scm ⁇ 1 or more, for example, 10 ⁇ 5 Scm ⁇ 1 or more.
  • the additional layer 250 can function as an electron injection layer and/or an electron transport layer.
  • the additional layer 250 can be deposited using a low temperature process such as a printing process. That is, the additional layer 250 can be formed on the QD light emitting layer 240 by preparing an ink as described above and performing a printing process using the ink.
  • the printing process for example, an inkjet printing method, a screen printing method, etc. can be used.
  • the additional layer 250 is deposited by a printing process, the thickness can be more easily controlled than when deposited by a conventional vapor deposition method.
  • the Scherrer diameter of the nanoparticles included in the additional layer 250 is in the range of 1 nm to 10 nm. When such fine nanoparticles are used, unevenness on the surface of the additional layer 250 can be significantly suppressed.
  • the surface roughness RMS (root mean square height) of the additional layer 250 is 5 nm or less.
  • the hole injection layer/hole transport layer 230 to the additional layer 250 can be formed by a printing process.
  • the QD display 200 can be easily manufactured at relatively low cost.
  • the additional layer 250 includes nanoparticles having the characteristics described above. Therefore, the upper electrode 260 disposed on the additional layer 250 can be formed using a heat generation process such as a sputtering method.
  • Examples 1 to 3 are examples, and Examples 11 to 13 are comparative examples.
  • Nanoparticles were produced by the first method described above.
  • TEOS tetraethoxysilane
  • the concentration of zinc acetate in the first solution was 0.1 mol/L, and the concentration of TEOS was 0.038 mol/L. Therefore, the atomic ratio Zn/(Zn+Si) in the first solution is 0.725.
  • TEAH tetraethylammonium hydroxide
  • the temperature of the first solution supplied was set in the range of 60°C to 70°C.
  • the supply flow rate of the first solution was 43.6 mL/min, and the supply pressure was 0.1 to 0.2 MPaG.
  • the temperature of the second solution supplied was set in the range of 60°C to 70°C.
  • the supply flow rate of the second solution was 26.4 mL/min, and the supply pressure was 0.1 to 0.2 MPaG.
  • the rotation speed of the disk was 5000 rpm.
  • reaction solution discharged from the flow reactor device was immediately poured into a container filled with ethyl acetate as a growth inhibitor to stop the reaction.
  • nanoparticles 1 were collected by collecting and filtering the third solution discharged from the flow reactor device.
  • the filtration method used a centrifuge to discard the supernatant liquid of the third solution and collect the precipitate. Further, the operation of diluting the precipitate with ethanol and then recovering the precipitate using a centrifuge was repeated three times.
  • Example 2 Nanoparticles were produced by a method similar to Example 1. However, in this Example 2, the flow rates of the first and second solutions supplied to the flow reactor device were changed. The supply flow rate of the first solution was 18.68 mL/min. The supply flow rate of the second solution was 11.32 mL/min.
  • nanoparticles 2 As a result, nanoparticles (hereinafter referred to as “nanoparticles 2”) were recovered.
  • Nanoparticles were produced by a method similar to Example 1. However, in this Example 3, the flow rates of the first and second solutions supplied to the flow reactor device were changed. The supply flow rate of the first solution was 31.14 mL/min. The feed flow rate of the second solution was 18.86 mL/min. As a result, nanoparticles (hereinafter referred to as “nanoparticles 3") were recovered.
  • Nanoparticles were produced using a beaker instead of a flow reactor device.
  • first solution and second solution were added into a beaker and thoroughly stirred at room temperature.
  • the compositions of the first solution and the second solution are the same as in Example 1. After 5 minutes, stirring was stopped and ethyl acetate was added to the beaker.
  • nanoparticles 11 were recovered by filtering the solution in the beaker.
  • Example 12 Nanoparticles were produced by a method similar to Example 1. However, in this Example 12, only zinc acetate and no tetraethoxysilane (TEOS) were added to the first solution.
  • TEOS tetraethoxysilane
  • nanoparticles 12 were recovered.
  • Nanoparticles were manufactured using a thermal plasma method as follows.
  • the raw material slurry was prepared by dispersing in alcohol a mixed powder obtained by mixing zinc oxide particles and silicon dioxide particles at a molar ratio of 60:40.
  • Thermal plasma was generated within the reaction chamber.
  • the temperature of the thermal plasma was about 10,000K.
  • N 2 :O 2 75:25
  • nanoparticles 13 were produced.
  • Table 1 summarizes the manufacturing conditions for nanoparticles in each example.
  • composition analysis The composition of each nanoparticle was analyzed using SEM-EDX.
  • a scanning electron microscope S4300 manufactured by Hitachi, Ltd. was used for the measurement. Further, as an EDX detector, an energy dispersive X-ray analyzer X-act manufactured by Oxford was used. At this time, the relative sensitivity coefficients of the measurement elements were calibrated in advance using standard samples, and measurement conditions were used in which the counts of each of O, Si, and Zn were 10,000 or more.
  • Samples for measurement were prepared according to the following procedure. First, the nanoparticles were diluted with an ethanol solvent, and then a dispersion containing the nanoparticles was prepared. The concentration of nanoparticles was 3 wt%. Next, about 10 ⁇ L of the dispersion liquid was dropped onto an Al sample stand for SEM. Thereafter, by drying the ethanol at room temperature, the nanoparticles were supported on the sample stage to form a measurement sample.
  • the atomic ratio Zn/(Zn+Si) was all in the range of 0.3 to 0.95.
  • the atomic ratio Zn/(Zn+Si) was approximately 1.
  • the atomic ratio Zn/(Zn+Si) was 0.75.
  • Nanoparticles 1 to 3 all had Scherrer diameters in the range of 1 nm to 10 nm.
  • Infrared spectroscopy Infrared spectroscopic analysis was performed using each nanoparticle. For the measurement, Nic-plan/Nicolet 6700 manufactured by Thermo Fisher Scientific was used.
  • FIG. 1 shows an infrared spectrum of nanoparticles 2.
  • I 2 /(I 1 +I 2 +I 3 ) in nanoparticle 2 was calculated.
  • I 1 is the maximum intensity in region Q 1
  • I 2 is the maximum intensity in region Q 2
  • I 3 is the maximum intensity in region Q 3 .
  • I 2 /(I 1 +I 2 +I 3 ) 0.383.
  • FIG. 2 shows the Raman spectrum of the nanoparticles 2.
  • XAFS analysis Perform XAFS measurement using nanoparticles 1 to 3 to determine the average coordination number of the O atom closest to the Zn atom and the average coordination number of the Zn atom closest to the Zn atom. Ta.
  • Aichi Synchrotron Optical Center BL11S was used.
  • a transmission step scan or QUICK XAFS method was used.
  • Each nanoparticle was diluted with boron nitride powder so that ⁇ t of the Zn K end was 1, and a pellet was produced by pressure molding.
  • the prepared pellets were sealed in a plastic film and set in a measuring device.
  • the XAFS measurement was performed at room temperature, and the EXAFS vibration in k-space was extracted from the obtained XAFS spectrum, and the FT-EXAFS (radial distribution function) in R-space was obtained by Fourier transformation.
  • the structural parameters of ZSO nanoparticles were calculated by EXAFS fitting analysis for R-space FT-EXAFS. Wurtzite type ZnO was used as the reference structure.
  • nanoparticles 1 to 3 had smaller particle sizes and relatively higher I 2 /(I 1 +I 2 +I 3 ) compared to nanoparticles 11 to 13. .
  • the average coordination number of the O atom closest to the Zn atom was found to be in the range of 3.0 to 4.5. Furthermore, it was found that in nanoparticles 1 to 3, the average coordination number of the Zn atom closest to the Zn atom was in the range of 1.5 to 10.
  • Thin film 1 A thin film was formed on a substrate using a dispersion containing nanoparticles 1.
  • the dispersion liquid was prepared as follows.
  • Nanoparticles 1 and monoethanolamine (MEA) were added to a propylene glycol solvent at room temperature, mixed thoroughly, and then treated with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 150 W for 30 minutes.
  • the concentration of nanoparticles 1 was 3 wt%, and the concentration of MEA was 3 wt%.
  • the obtained dispersion liquid was filtered using a filter with a hole diameter of 0.22 ⁇ m (Durapore manufactured by Merck & Co., Ltd.). As a result, a dispersion liquid (hereinafter referred to as "dispersion liquid 1”) was prepared.
  • Dispersion 1 was applied onto the substrate by a spin coating method to form a coating film. Thereafter, the coating film was baked at 150°C to form a thin film (hereinafter referred to as "thin film 1"). The thickness of the thin film 1 was targeted to be 40 nm.
  • a silica glass substrate and an indium tin oxide (ITO) substrate were used as the substrates.
  • Thin film 1 on the silica glass substrate was used for the flatness evaluation shown below, and thin film 1 on the ITO substrate was used for the work function evaluation.
  • Thin film 2 A dispersion containing nanoparticles 2 (hereinafter referred to as "dispersion 2") was prepared by diluting nanoparticles 2 with an ethanol solvent. The concentration of nanoparticles 2 was 3 wt%. A thin film was formed on an ITO substrate using Dispersion 2. The baking treatment temperature after spin coating was 100°C. The obtained thin film is referred to as "thin film 2.”
  • Thin film 3 A dispersion containing nanoparticles 3 (hereinafter referred to as "dispersion 3") was prepared by diluting nanoparticles 3 with an ethanol solvent. The concentration of nanoparticles 3 was 3 wt%. A thin film was formed on an ITO substrate using dispersion liquid 3. The baking treatment temperature after spin coating was 100°C. The obtained thin film is referred to as "thin film 3.”
  • a dispersion containing nanoparticles 12 (hereinafter referred to as "dispersion 12") was prepared by diluting nanoparticles 12 with an ethanol solvent. The concentration of nanoparticles 12 was 3 wt%. A thin film was formed on an ITO substrate using dispersion liquid 12. The baking treatment temperature after spin coating was 100°C. The obtained thin film is referred to as "thin film 12.”
  • the dispersion liquid was prepared as follows.
  • Nanoparticles 13 were added to 1-propanol solvent at room temperature and mixed thoroughly. The concentration of nanoparticles 13 was 3 wt%. As a result, a dispersion liquid (hereinafter referred to as "dispersion liquid 13”) was prepared.
  • Dispersion 1 was applied to each of the two types of substrates by a spin coating method to form a coating film. Thereafter, the coating film was baked at 100°C to form a thin film (hereinafter referred to as "thin film 13"). The thickness of the thin film 13 was targeted to be 130 nm.
  • a silica glass substrate and an ITO substrate were used as the substrates.
  • the thin film 13 on the silica glass substrate was used for flatness evaluation shown below, and the thin film 13 on the ITO substrate was used for work function evaluation.
  • an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation, product number: V-750 was used, and the value was determined from the obtained light transmission spectrum.
  • Ionization potential and work function Ionization potential and work function
  • UV photoelectron spectroscopy was used to measure the work function.
  • the excitation light used for ultraviolet photoelectron spectroscopy was HeI (21.2 eV).
  • nanoparticles 1 to 3 were 3.7 eV, 3.2 eV, and 3.6 eV, respectively.
  • the work functions of nanoparticles 12 and 13 were found to be 4.0 eV and 3.3 eV, respectively.
  • the electron affinities of nanoparticles 1 to 3 were determined by subtracting the above band gap value from the above ionization potential value. As a result, it was found that the electron affinities of nanoparticles 1 to 3 were 3.6 eV, 2.7 eV, and 3.2 eV, respectively.
  • the surface roughness (RMS) of thin film 1 and thin film 13 was measured using AFM (Dimension Icon, manufactured by Bruker).
  • the surface roughness RMS of thin film 1 was 1.4 nm, and a flat surface was obtained.
  • the surface roughness RMS of thin film 13 was 8 nm, indicating that a flat surface was not obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention provides nanoparticles which are configured from a metal oxide. With respect to the spectrum of the nanoparticles as measured by infrared spectrometry, if I1 is the maximum intensity assigned to a Zn-O-Zn bond within the range of 400 cm-1 to 600 cm-1, I2 is the maximum intensity assigned to a Zn-O-Si bond within the range of 870 cm-1 to 970 cm-1, and I3 is the maximum intensity assigned to an Si-O-Si bond within the range of 1,050 cm-1 to 1,150 cm-1, the peak intensity ratio I2/(I1 + I2 + I3) is 0.28 or more. The atomic ratio Zn/(Zn + Si) in the nanoparticles is within the range of 0.3 to 0.95; and the Scherrer diameter of the nanoparticles is within the range of 1 nm to 10 nm.

Description

ナノ粒子、分散液、インク、薄膜、有機発光ダイオードおよび量子ドットディスプレイ、ならびにナノ粒子を製造する方法Nanoparticles, dispersions, inks, thin films, organic light emitting diodes and quantum dot displays, and methods of manufacturing nanoparticles
 本発明は、ナノ粒子、分散液、インク、薄膜、そのような薄膜を有する有機発光ダイオードおよび量子ドットディスプレイ、ならびにナノ粒子を製造する方法に関する。 The present invention relates to nanoparticles, dispersions, inks, thin films, organic light emitting diodes and quantum dot displays comprising such thin films, and methods for producing nanoparticles.
 有機発光ダイオード(Organic Light Emitting Diode:OLED)および量子ドット(Quantaum Dot:QD)ディスプレイは、新たな発光デバイスとして期待されており、一部実用化がなされている。 Organic light emitting diodes (OLEDs) and quantum dot (QD) displays are expected to be new light emitting devices, and some have been put into practical use.
 これらのデバイスでは、2つの電極(アノードおよびカソード)の間に発光層が配置される。両電極間に電圧を印加すると、それぞれの電極から、発光層にホールおよび電子が注入される。このホールと電子が発光層内で再結合された際に、結合エネルギーが生じ、この結合エネルギーによって発光層中の発光材料が励起される。励起した発光材料が基底状態に戻る際に発光が生じるため、これを利用することにより、光を外部に取り出すことができる。 In these devices, a light-emitting layer is placed between two electrodes (anode and cathode). When a voltage is applied between both electrodes, holes and electrons are injected from each electrode into the light emitting layer. When these holes and electrons are recombined within the luminescent layer, binding energy is generated, and the luminescent material in the luminescent layer is excited by this binding energy. Since light is emitted when the excited light-emitting material returns to its ground state, by utilizing this, light can be extracted to the outside.
 OLEDおよびQDディスプレイにおいて、発光効率を高めるため、しばしば、アノードと発光層との間に、ホール注入層および/またはホール輸送層が設置され、発光層とカソードとの間に、電子注入層および/または電子輸送層が設置される。 In OLED and QD displays, to increase the luminous efficiency, a hole injection layer and/or hole transport layer is often installed between the anode and the emissive layer, and an electron injection layer and/or hole transport layer is installed between the emissive layer and the cathode. Or an electron transport layer is installed.
国際公開第2020/218354号International Publication No. 2020/218354
 OLEDにおいては、製造コスト削減および製造プロセスの簡便化のため、アノード上のホール注入層および/またはホール輸送層、ならびにその上部に設置される発光層を、印刷法のような低温プロセスにより成膜することが提案されている。 In OLEDs, in order to reduce manufacturing costs and simplify the manufacturing process, the hole injection layer and/or hole transport layer on the anode, as well as the light emitting layer placed on top of the layer, are formed by a low-temperature process such as printing. It is proposed to do so.
 ただし、通常の場合、発光層とカソードとの間に設置される電子輸送層は、蒸着法で成膜されている。さらなる製造コスト削減およびプロセスの簡略化のためには、電子輸送層についても、低温プロセスで成膜することが有効と考えられる。 However, in normal cases, the electron transport layer installed between the light emitting layer and the cathode is formed by a vapor deposition method. In order to further reduce manufacturing costs and simplify the process, it is considered effective to form the electron transport layer using a low-temperature process.
 しかしながら、現状では、電子輸送層については、印刷法により成膜することは難しいという問題がある。これは、印刷法によって成膜可能であり、かつ電子輸送層に適用可能な、仕事関数が十分に低い材料が見出されていないためである。 However, at present, there is a problem that it is difficult to form an electron transport layer by a printing method. This is because a material with a sufficiently low work function that can be formed into a film by a printing method and that can be applied to an electron transport layer has not been found.
 同様に、QDディスプレイにおいても、電子輸送層に適用可能な仕事関数が十分に低い材料を、低温プロセスで成膜する技術が求められている。 Similarly, in QD displays, there is a need for a technology to form a film using a low-temperature process using a material with a sufficiently low work function that can be applied to the electron transport layer.
 なお、特許文献1には、熱プラズマ処理法により、仕事関数が低いZn-Si-O系のナノ粒子を含む集合体を製造できること、およびそのようなナノ粒子の集合体を含むインクを塗布することにより、OLEDの電子輸送層用の薄膜を形成できることが記載されている。 Note that Patent Document 1 describes that an aggregate containing Zn-Si-O nanoparticles with a low work function can be produced by a thermal plasma treatment method, and that an ink containing such an aggregate of nanoparticles is applied. It is described that a thin film for an electron transport layer of an OLED can be formed by this method.
 しかしながら、熱プラズマ処理法では、比較的大きな粒子直径を有するナノ粒子が製造される傾向にある。そのようなナノ粒子をOLEDおよびQDディスプレイの電子輸送層に適用した場合、電子輸送層の表面に凹凸が生じると言う問題がある。電子輸送層の表面の凹凸は、発光層から放射される光の散乱につながり得る。また、電子輸送層の厚さが薄い箇所では、発光層とカソードとの間で、電流短絡が生じるという問題が生じ得る。 However, thermal plasma treatment methods tend to produce nanoparticles with relatively large particle diameters. When such nanoparticles are applied to the electron transport layer of OLED and QD displays, there is a problem in that the surface of the electron transport layer becomes uneven. Irregularities on the surface of the electron transport layer can lead to scattering of light emitted from the light emitting layer. Further, at locations where the electron transport layer is thin, a problem may arise in that a current short circuit occurs between the light emitting layer and the cathode.
 従って、OLEDおよびQDディスプレイの電子輸送層に適用した際に、上記のような問題が生じ難い、より小さな粒子直径を有するナノ粒子が求められている。 Therefore, there is a need for nanoparticles with smaller particle diameters that are less likely to cause the above-mentioned problems when applied to electron transport layers of OLED and QD displays.
 本発明は、このような背景に鑑みなされたものであり、本発明では、仕事関数が低く、低温の成膜プロセスに適用することができる上、有意に小さな粒径を有するナノ粒子を提供することを目的とする。また、本発明では、そのようなナノ粒子を含む分散液、インク、薄膜、そのような薄膜を有する有機発光ダイオードおよび量子ドットディスプレイ、ならびにナノ粒子を製造する方法を提供することを目的とする。 The present invention was made in view of this background, and provides nanoparticles that have a low work function, can be applied to low-temperature film formation processes, and have a significantly small particle size. The purpose is to The present invention also aims to provide dispersions, inks, thin films containing such nanoparticles, organic light emitting diodes and quantum dot displays having such thin films, and methods for producing nanoparticles.
 本発明では、金属酸化物を含むナノ粒子であって、
 赤外分光法により測定された当該ナノ粒子のスペクトルにおいて、Zn-O-Zn結合に由来する400cm-1~600cm-1の領域における最大強度をIとし、Zn-O-Si結合に由来する870cm-1~970cm-1の領域における最大強度をIとし、Si-O-Si結合に由来する1050cm-1~1150cm-1の領域における最大強度をIとしたとき、ピーク強度比I/(I+I+I)は、0.28以上であり、
 当該ナノ粒子における原子数比Zn/(Zn+Si)は、0.3~0.95の範囲であり、
 当該ナノ粒子のシェラー径は、1nm~10nmの範囲である、ナノ粒子が提供される。
In the present invention, nanoparticles containing a metal oxide,
In the spectrum of the nanoparticles measured by infrared spectroscopy, the maximum intensity in the region of 400 cm -1 to 600 cm -1 derived from Zn-O-Zn bonds is defined as I 1 , and the maximum intensity derived from Zn-O-Si bonds is defined as I 1. When the maximum intensity in the region of 870 cm -1 to 970 cm -1 is I 2 and the maximum intensity in the region of 1050 cm -1 to 1150 cm -1 derived from Si-O-Si bonds is I 3 , the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is 0.28 or more,
The atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95,
Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
 また、本発明では、金属酸化物を含むナノ粒子であって、
 X線吸収微細構造(XAFS)解析により求められる、Zn原子に最近接であるO原子の平均配位数は、3.0~4.5の範囲であり、かつ
 前記X線吸収微細構造(XAFS)解析により求められる、Zn原子に最近接であるZn原子の平均配位数が1.5~10の範囲であり、
 当該ナノ粒子における原子数比Zn/(Zn+Si)は、0.3~0.95の範囲であり、
 当該ナノ粒子のシェラー径は、1nm~10nmの範囲である、ナノ粒子が提供される。
Further, in the present invention, nanoparticles containing a metal oxide,
The average coordination number of the O atom closest to the Zn atom, determined by X-ray absorption fine structure (XAFS) analysis, is in the range of 3.0 to 4.5, and the X-ray absorption fine structure (XAFS) ) The average coordination number of the Zn atom closest to the Zn atom determined by analysis is in the range of 1.5 to 10,
The atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95,
Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
 また、本発明では、前述の特徴を有するナノ粒子と、溶媒と、分散剤と、を有する、分散液が提供される。 Furthermore, the present invention provides a dispersion liquid containing nanoparticles having the above-mentioned characteristics, a solvent, and a dispersant.
 また、本発明では、前述の特徴を有するナノ粒子と、溶媒と、分散剤と、増粘剤と、界面活性剤と、を有する、インクが提供される。 Furthermore, the present invention provides an ink that includes nanoparticles having the above characteristics, a solvent, a dispersant, a thickener, and a surfactant.
 また、本発明では、前述の特徴を有するナノ粒子を含む、薄膜が提供される。 The present invention also provides a thin film containing nanoparticles having the above-mentioned characteristics.
 また、本発明では、
 第1の電極と、有機発光層と、第2の電極と、を有し、
 前記第1の電極または前記第2の電極と前記有機発光層との間に、前述の特徴を有する薄膜を含む追加層を有する、有機発光ダイオードが提供される。
Furthermore, in the present invention,
comprising a first electrode, an organic light emitting layer, and a second electrode,
An organic light-emitting diode is provided, having an additional layer between the first electrode or the second electrode and the organic light-emitting layer, comprising a thin film having the above-mentioned characteristics.
 また、本発明では、
 第1の電極と、量子ドット発光層と、第2の電極と、を有し、
 前記第1の電極または前記第2の電極と前記量子ドット発光層との間に、前述の特徴を有する薄膜を含む追加層を有する、量子ドットディスプレイが提供される。
Furthermore, in the present invention,
It has a first electrode, a quantum dot light emitting layer, and a second electrode,
A quantum dot display is provided, comprising an additional layer between the first electrode or the second electrode and the quantum dot emissive layer, comprising a thin film having the characteristics described above.
 さらに、本発明では、金属酸化物を含むナノ粒子を製造する方法であって、
(1)亜鉛およびケイ素を含む原料と第1の溶媒とを混合し、第1の溶液を調製するステップと、
(2)アルカリを含む第2の溶液を調製するステップと、
(3)フローリアクター法を用いて、前記第1の溶液と前記第2の溶液とを混合し、ナノ粒子を含む第3の溶液を生成するステップと、
(4)前記第3の溶液に、前記ナノ粒子の成長を抑制する添加剤を添加するステップと、
 を有する、方法が提供される。
Furthermore, the present invention provides a method for producing nanoparticles containing metal oxides, comprising:
(1) mixing raw materials containing zinc and silicon with a first solvent to prepare a first solution;
(2) preparing a second solution containing an alkali;
(3) mixing the first solution and the second solution using a flow reactor method to generate a third solution containing nanoparticles;
(4) adding an additive that suppresses the growth of the nanoparticles to the third solution;
A method is provided having the following.
 本発明では、仕事関数が低く、低温の成膜プロセスに適用することができる上、有意に小さな粒径を有するナノ粒子を提供することができる。また、本発明では、そのようなナノ粒子を含む分散液、インク、薄膜、そのような薄膜を有する有機発光ダイオードおよび量子ドットディスプレイ、ならびにナノ粒子を製造する方法を提供することができる。 The present invention has a low work function, can be applied to a low-temperature film formation process, and can provide nanoparticles having a significantly small particle size. The present invention can also provide dispersions, inks, thin films containing such nanoparticles, organic light emitting diodes and quantum dot displays having such thin films, and methods for producing nanoparticles.
本発明の一実施形態によるナノ粒子の赤外分光スペクトルの一例を示した図である。FIG. 2 is a diagram showing an example of an infrared spectrum of nanoparticles according to an embodiment of the present invention. 本発明の一実施形態によるナノ粒子のラマンスペクトルの一例を示した図である。FIG. 3 is a diagram showing an example of a Raman spectrum of nanoparticles according to an embodiment of the present invention. 本発明の一実施形態によるナノ粒子の製造方法のフローの一例を模式的に示した図である。1 is a diagram schematically showing an example of a flow of a method for manufacturing nanoparticles according to an embodiment of the present invention. 本発明の一実施形態によるナノ粒子を含むOLEDの一構成例を模式的に示した断面図である。1 is a cross-sectional view schematically showing a configuration example of an OLED including nanoparticles according to an embodiment of the present invention. 本発明の一実施形態によるナノ粒子を含むQDディスプレイの一構成例を模式的に示した断面図である。1 is a cross-sectional view schematically showing a configuration example of a QD display including nanoparticles according to an embodiment of the present invention.
 本発明の一実施形態では、金属酸化物を含むナノ粒子であって、
 赤外分光法により測定された当該ナノ粒子のスペクトルにおいて、Zn-O-Zn結合に由来する400cm-1~600cm-1の領域における最大強度をIとし、Zn-O-Si結合に由来する870cm-1~970cm-1の領域における最大強度をIとし、Si-O-Si結合に由来する1050cm-1~1150cm-1の領域における最大強度をIとしたとき、ピーク強度比I/(I+I+I)は、0.28以上であり、
 当該ナノ粒子における原子数比Zn/(Zn+Si)は、0.3~0.95の範囲であり、
 当該ナノ粒子のシェラー径は、1nm~10nmの範囲である、ナノ粒子が提供される。
In one embodiment of the invention, nanoparticles comprising a metal oxide,
In the spectrum of the nanoparticles measured by infrared spectroscopy, the maximum intensity in the region of 400 cm -1 to 600 cm -1 derived from Zn-O-Zn bonds is defined as I 1 , and the maximum intensity derived from Zn-O-Si bonds is defined as I 1. When the maximum intensity in the region of 870 cm -1 to 970 cm -1 is I 2 and the maximum intensity in the region of 1050 cm -1 to 1150 cm -1 derived from Si-O-Si bonds is I 3 , the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is 0.28 or more,
The atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95,
Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
 前述のように、OLEDおよびQDディスプレイにおいて、電子輸送層に適用可能な仕事関数が十分に低い材料を、低温プロセスで成膜する技術が求められている。 As mentioned above, in OLED and QD displays, there is a need for a technology for forming a film using a low-temperature process using a material with a sufficiently low work function that can be applied to the electron transport layer.
 本発明の一実施形態では、提供される粒子がナノ粒子の形態であるため、該ナノ粒子を分散させてインクのような分散液を調製することにより、印刷法のような低温プロセスで膜を成膜できる。 In one embodiment of the present invention, the particles provided are in the form of nanoparticles, so that the nanoparticles are dispersed to prepare a dispersion, such as an ink, to form a film in a low-temperature process such as a printing method. Can be formed into a film.
 なお、同様の技術に関し、特許文献1には、熱プラズマ法により製造されたZn-Si-O系のナノ粒子が記載されている。このナノ粒子は、仕事関数が低く、そのようなナノ粒子が分散されたインクを塗布して薄膜化することにより、OLEDの電子輸送層が形成できることが記載されている。 Regarding a similar technique, Patent Document 1 describes Zn--Si--O nanoparticles produced by a thermal plasma method. It is described that these nanoparticles have a low work function, and that an electron transport layer of an OLED can be formed by applying an ink in which such nanoparticles are dispersed and forming a thin film.
 しかしながら、特許文献1に記載のナノ粒子は、熱プラズマ法により製造される。熱プラズマ法では、製造されるナノ粒子のサイズ、特に粒子直径の上限が比較的大きくなるという問題がある。OLEDおよびQDディスプレイでは、電子輸送層の表面の凹凸が、デバイスの特性に大きな影響を及ぼし得る。従って、ナノ粒子の粒子直径は、できるだけ小さいことが好ましい。 However, the nanoparticles described in Patent Document 1 are manufactured by a thermal plasma method. The thermal plasma method has a problem in that the size of the nanoparticles produced, especially the upper limit of the particle diameter, is relatively large. In OLED and QD displays, the surface roughness of the electron transport layer can have a significant impact on the properties of the device. Therefore, it is preferable that the particle diameter of the nanoparticles be as small as possible.
 これに対して、本発明の一実施形態によるナノ粒子は、熱プラズマ法以外の方法、例えば、液相合成法で製造される。 In contrast, nanoparticles according to an embodiment of the present invention are produced by a method other than the thermal plasma method, for example, a liquid phase synthesis method.
 液相合成法では、シェラー径が10nm以下の微小範囲内に制御されたナノ粒子を提供できる。従って、本発明の一実施形態では、OLEDおよびQDディスプレイの電子輸送層として適用した際に、表面の凹凸が有意に抑制された薄膜を形成することが可能となる。 The liquid phase synthesis method can provide nanoparticles whose Scherrer diameter is controlled within a microscopic range of 10 nm or less. Therefore, in one embodiment of the present invention, it is possible to form a thin film with significantly suppressed surface irregularities when applied as an electron transport layer of OLED and QD displays.
 なお、一般に、液相合成法では、ナノ粒子の形態、特に粒内の組成分布を制御することは難しいという問題がある。例えば一般的な液相合成法で、亜鉛源とケイ素源を混合した溶液から、亜鉛およびケイ素を含む酸化物の合成を試みた場合、酸化亜鉛と酸化ケイ素とが分離し、酸化亜鉛のコアの周囲に酸化ケイ素が設置された形態(コア-シェル構造)のナノ粒子が生じる傾向にある。 In general, liquid phase synthesis methods have a problem in that it is difficult to control the morphology of nanoparticles, especially the composition distribution within the particles. For example, when attempting to synthesize an oxide containing zinc and silicon from a solution containing a zinc source and a silicon source using a general liquid phase synthesis method, zinc oxide and silicon oxide separate, and the zinc oxide core Nanoparticles with silicon oxide surrounding them (core-shell structure) tend to be produced.
 Zn-Si-O系酸化物粒子の場合、亜鉛とケイ素を複酸化物化させることにより、低い仕事関数が発現される。従って、前述のようなコア-シェル構造のナノ粒子では、低い仕事関数を得ることは難しい。 In the case of Zn--Si--O based oxide particles, a low work function is developed by converting zinc and silicon into a double oxide. Therefore, it is difficult to obtain a low work function with nanoparticles having a core-shell structure as described above.
 これに対して、本発明の一実施形態によるナノ粒子では、赤外分光スペクトルから前述のように定められる最大強度I~最大強度Iに関し、ピーク強度比I/(I+I+I)が0.28以上であるという特徴を有する。ここで、最大強度Iは、Zn-O-Zn結合に対応し、最大強度Iは、Zn-O-Si結合に対応し、最大強度Iは、Si-O-Si結合に対応する。 On the other hand, in nanoparticles according to an embodiment of the present invention, the peak intensity ratio I 2 / (I 1 +I 2 + I 3 ) is 0.28 or more. Here, the maximum intensity I 1 corresponds to the Zn-O-Zn bond, the maximum intensity I 2 corresponds to the Zn-O-Si bond, and the maximum intensity I 3 corresponds to the Si-O-Si bond. .
 すなわち、本発明の一実施形態によるナノ粒子では、亜鉛とケイ素の複酸化物に対応するZn-O-Si結合が有意に高められている。このため、本発明の一実施形態では、ナノ粒子の仕事関数を有意に低減することができる。 That is, in the nanoparticles according to one embodiment of the present invention, the Zn--O--Si bond corresponding to the double oxide of zinc and silicon is significantly increased. Therefore, in one embodiment of the present invention, the work function of nanoparticles can be significantly reduced.
 以上の効果により、本発明の一実施形態では、仕事関数が低く、低温の成膜プロセスに適用することができる上、有意に小さな粒径を有するナノ粒子を提供することができる。 As a result of the above effects, one embodiment of the present invention has a low work function, can be applied to a low-temperature film formation process, and can provide nanoparticles having a significantly small particle size.
 また、本発明の一実施形態では、金属酸化物を含むナノ粒子であって、
 X線吸収微細構造(XAFS)解析により求められる、Zn原子に最近接であるO原子の平均配位数は、3.0~4.5の範囲であり、かつ
 前記X線吸収微細構造(XAFS)解析により求められる、Zn原子に最近接であるZn原子の平均配位数が1.5~10の範囲であり、
 当該ナノ粒子における原子数比Zn/(Zn+Si)は、0.3~0.95の範囲であり、
 当該ナノ粒子のシェラー径は、1nm~10nmの範囲である、ナノ粒子が提供される。
Further, in one embodiment of the present invention, nanoparticles containing a metal oxide,
The average coordination number of the O atom closest to the Zn atom, determined by X-ray absorption fine structure (XAFS) analysis, is in the range of 3.0 to 4.5, and the X-ray absorption fine structure (XAFS) ) The average coordination number of the Zn atom closest to the Zn atom determined by analysis is in the range of 1.5 to 10,
The atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95,
Nanoparticles are provided in which the Scherrer diameter of the nanoparticles is in the range of 1 nm to 10 nm.
 本発明の一実施形態では、ナノ粒子にSiが導入される。 In one embodiment of the invention, Si is introduced into the nanoparticles.
 この際、Zn原子に最近接であるO原子の平均配位数を3.0~4.5の範囲とし、Zn原子に最近接であるZn原子の平均配位数を1.5~10の範囲とすることにより、好適な電子輸送層が得られる。 At this time, the average coordination number of the O atom closest to the Zn atom is set in the range of 3.0 to 4.5, and the average coordination number of the Zn atom closest to the Zn atom is set in the range of 1.5 to 10. A suitable electron transport layer can be obtained by adjusting the amount within this range.
 なお、Zn原子に最近接であるO原子の平均配位数およびZn原子に最近接であるZn原子の平均配位数は、XAFS解析法を用いて、後述のように評価することができる。 Note that the average coordination number of the O atom closest to the Zn atom and the average coordination number of the Zn atom closest to the Zn atom can be evaluated as described below using the XAFS analysis method.
 特に、本発明の一実施形態において、Zn原子に最近接であるO原子の平均配位数は、酸素欠陥の発生に伴う着色を抑制する観点から、3.2以上であることが好ましく、3.4以上であることがより好ましく、3.6以上であることがさらに好ましい。また、例えば、Zn原子に最近接であるO原子の平均配位数は、バンドギャップを増大させ高い透明性を得る観点から、4.4以下であり、4.3以下であることが好ましい。 In particular, in one embodiment of the present invention, the average coordination number of the O atom that is closest to the Zn atom is preferably 3.2 or more, from the viewpoint of suppressing coloring due to the generation of oxygen vacancies. It is more preferably .4 or more, and even more preferably 3.6 or more. Further, for example, the average coordination number of the O atom closest to the Zn atom is 4.4 or less, preferably 4.3 or less, from the viewpoint of increasing the band gap and obtaining high transparency.
 さらに、本発明の一実施形態において、Zn原子に最近接であるZn原子の平均配位数は、十分な導電性を得る観点から、2.0以上であることが好ましく、2.5以上であることがより好ましく、3.0以上であることがさらに好ましい。また、Zn原子に最近接であるZn原子の平均配位数は、隣接するZn4s軌道間の空間的重なりを低減し、ナノ粒子の電子親和力および仕事関数を低減させる観点から、例えば、9.0以下であり、8.0以下であることが好ましく、7.0以下であることがより好ましく、6.0以下であることがさらに好ましい。 Furthermore, in one embodiment of the present invention, the average coordination number of the Zn atom closest to the Zn atom is preferably 2.0 or more, and 2.5 or more, from the viewpoint of obtaining sufficient electrical conductivity. More preferably, it is 3.0 or more. In addition, the average coordination number of the Zn atom that is closest to the Zn atom is, for example, 9.0 from the viewpoint of reducing the spatial overlap between adjacent Zn4s orbitals and reducing the electron affinity and work function of the nanoparticle. It is preferably 8.0 or less, more preferably 7.0 or less, and even more preferably 6.0 or less.
 なお、ZnO単結晶の場合、Zn原子に最近接であるO原子の平均配位数は4であり、Zn原子に最近接であるZn原子の平均配位数は12である。 Note that in the case of a ZnO single crystal, the average coordination number of the O atom closest to the Zn atom is 4, and the average coordination number of the Zn atom closest to the Zn atom is 12.
 (本発明の一実施形態によるナノ粒子)
 以下、図面を参照して、本発明の一実施形態について説明する。
(Nanoparticles according to an embodiment of the present invention)
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
 本発明の一実施形態によるナノ粒子(以下、単に「本発明のZSOナノ粒子」とも称する)は、金属酸化物として、Zn-Si-O系酸化物を有する。 Nanoparticles according to an embodiment of the present invention (hereinafter also simply referred to as "ZSO nanoparticles of the present invention") have a Zn--Si--O based oxide as a metal oxide.
 本発明のZSOナノ粒子は、原子数比で、Zn/(Zn+Si)が0.3~0.95の範囲にある。Zn/(Zn+Si)が0.3より低くなると、ナノ粒子の導電性が低下する。また、Zn/(Zn+Si)が0.95を超えると、ナノ粒子の仕事関数が大きくなる。Zn/(Zn+Si)の下限値は、0.6または0.7であることが好ましい。特に、Zn/(Zn+Si)は、0.80~0.92の範囲であることが好ましい。 The ZSO nanoparticles of the present invention have an atomic ratio of Zn/(Zn+Si) in the range of 0.3 to 0.95. When Zn/(Zn+Si) becomes lower than 0.3, the conductivity of the nanoparticles decreases. Furthermore, when Zn/(Zn+Si) exceeds 0.95, the work function of the nanoparticles increases. The lower limit of Zn/(Zn+Si) is preferably 0.6 or 0.7. In particular, Zn/(Zn+Si) is preferably in the range of 0.80 to 0.92.
 また、本発明のZSOナノ粒子におけるZnの含有量は、原子数濃度で、10%~50%であり、31%~47%が好ましく、36%~45%がより好ましい。本発明のZSOナノ粒子におけるSiの含有量は、原子数濃度で、1%~30%であり、2%~13%が好ましく、3%~9%がより好ましい。本発明のZSOナノ粒子におけるOの含有量は、原子数濃度で、40%~70%であり、50%~62%が好ましく、51%~54%がより好ましい。Zn、SiおよびOの含有量が上記の範囲内であれば、ナノ粒子の透明性が高くなり、ディスプレイの発光特性が良好となる。 Further, the Zn content in the ZSO nanoparticles of the present invention is 10% to 50% in terms of atomic concentration, preferably 31% to 47%, and more preferably 36% to 45%. The Si content in the ZSO nanoparticles of the present invention is 1% to 30% in terms of atomic concentration, preferably 2% to 13%, and more preferably 3% to 9%. The content of O in the ZSO nanoparticles of the present invention is 40% to 70% in terms of atomic concentration, preferably 50% to 62%, and more preferably 51% to 54%. If the contents of Zn, Si and O are within the above ranges, the nanoparticles will have high transparency and the display will have good light emitting characteristics.
 更に、本発明のZSOナノ粒子は、添加物を含んでいてもよい。添加物としては、Al、Ga、Mg、Li、Ti、In、Nからなる群から選択される少なくとも1つが好ましい。このような添加物を含むことで、ナノ粒子の導電性を調整することができる。 Furthermore, the ZSO nanoparticles of the present invention may contain additives. As the additive, at least one selected from the group consisting of Al, Ga, Mg, Li, Ti, In, and N is preferable. By including such additives, the conductivity of the nanoparticles can be adjusted.
 本発明のZSOナノ粒子における添加物の含有量は、原子数濃度で、1%~20%であり、5%~15%が好ましく、8%~10%がより好ましい。添加剤の含有量が上記の範囲内であれば、ナノ粒子中の組成が均質となり、溶媒中に分散させたときの分散性が良好となる。 The content of additives in the ZSO nanoparticles of the present invention is 1% to 20%, preferably 5% to 15%, and more preferably 8% to 10% in terms of atomic concentration. If the content of the additive is within the above range, the composition in the nanoparticles will be homogeneous and the dispersibility will be good when dispersed in a solvent.
 また、本発明のZSOナノ粒子は、シェラー径が1nm~10nmの範囲にある。シェラー径は、1nm~7nmの範囲であることが好ましく、2nm~6nmの範囲であることがより好ましく、3nm~5nmの範囲であることがさらに好ましい。 Furthermore, the ZSO nanoparticles of the present invention have a Scherrer diameter in the range of 1 nm to 10 nm. The Scherrer diameter is preferably in the range of 1 nm to 7 nm, more preferably in the range of 2 nm to 6 nm, even more preferably in the range of 3 nm to 5 nm.
 シェラー径が10nm以下であれば、膜を形成した際の平坦性の低下が抑制される。また、シェラー径が1nm以上であれば、膜の仕事関数および電気特性の安定性が増大する。 If the Scherrer diameter is 10 nm or less, deterioration in flatness when forming a film is suppressed. Moreover, if the Scherrer diameter is 1 nm or more, the stability of the work function and electrical properties of the film increases.
 なお、本願において、シェラー径は、粒子の粉末X線回折結果における回折ピークから以下の(1)式のように定められる:
 
  L=Kλ/(βcosθ)    (1)式
 
ここで、Kは、シェラー定数(=0.9)、λは、X線波長(=0.154nm)、θは、ピーク位置(=50~60゜)、βは、ピーク半値幅である。
In addition, in this application, the Scherrer diameter is determined from the diffraction peak in the powder X-ray diffraction results of the particles as shown in the following formula (1):

L=Kλ/(βcosθ) (1) Formula
Here, K is the Scherrer constant (=0.9), λ is the X-ray wavelength (=0.154 nm), θ is the peak position (=50 to 60°), and β is the peak half width.
 本発明のZSOナノ粒子は、バンドギャップが3.1eV~3.9eVの範囲にある。バンドギャップは、3.2eV~3.8eVの範囲であることが好ましい。 The ZSO nanoparticles of the present invention have a band gap in the range of 3.1 eV to 3.9 eV. Preferably, the band gap is in the range of 3.2 eV to 3.8 eV.
 バンドギャップが3.1eV以上であれば、電子輸送層の透明性が高くなる。また、バンドギャップが3.9eV以下であれば、ZSOナノ粒子の導電性が十分となる。 If the band gap is 3.1 eV or more, the electron transport layer will have high transparency. Moreover, if the band gap is 3.9 eV or less, the electrical conductivity of the ZSO nanoparticles will be sufficient.
 なお、ZSOナノ粒子のバンドギャップは、紫外可視分光光度計を用いて得られる光透過スペクトルから求めることができる。 Note that the band gap of ZSO nanoparticles can be determined from the light transmission spectrum obtained using an ultraviolet-visible spectrophotometer.
 本発明のZSOナノ粒子は、イオン化ポテンシャルが6.0eV~8.0eVの範囲にある。イオン化ポテンシャルは、6.5eV~7.5eVの範囲であることが好ましい。 The ZSO nanoparticles of the present invention have an ionization potential in the range of 6.0 eV to 8.0 eV. Preferably, the ionization potential is in the range of 6.5 eV to 7.5 eV.
 イオン化ポテンシャルが6.0eV以上であれば、ZSOナノ粒子の導電性が十分となる。また、イオン化ポテンシャルが8.0eV以下であれば、発光層への電子注入性が良好となる。 If the ionization potential is 6.0 eV or more, the ZSO nanoparticles will have sufficient electrical conductivity. Moreover, if the ionization potential is 8.0 eV or less, electron injection into the light emitting layer will be good.
 なお、ZSOナノ粒子のイオン化ポテンシャルは、紫外光電子分光法(UPS)により求めることができる。 Note that the ionization potential of ZSO nanoparticles can be determined by ultraviolet photoelectron spectroscopy (UPS).
 本発明のZSOナノ粒子は、電子親和力が2.5eV~4.0eVの範囲にある。電子親和力は、3.0eV~3.8eVの範囲であることが好ましい。 The ZSO nanoparticles of the present invention have an electron affinity in the range of 2.5 eV to 4.0 eV. Preferably, the electron affinity is in the range of 3.0 eV to 3.8 eV.
 電子親和力が2.5eV以上であれば、ZSOナノ粒子の導電性が十分となる。また、電子親和力が4.0eV以下であれば、発光層への電子注入性が良好となる。 If the electron affinity is 2.5 eV or more, the ZSO nanoparticles will have sufficient electrical conductivity. Further, if the electron affinity is 4.0 eV or less, the electron injection property into the light emitting layer will be good.
 なお、ZSOナノ粒子の電子親和力は、上記イオン化ポテンシャルの値から、上記バンドギャップの値を減ずることで求めることができる。 Note that the electron affinity of the ZSO nanoparticles can be determined by subtracting the band gap value from the ionization potential value.
 図1には、本発明のZSOナノ粒子の赤外分光スペクトルの一例を示す。図1には、比較のため、SiOサンプルのスペクトル、ZnOサンプルのスペクトル、およびZnSiサンプルのスペクトルが同時に示されている。なお、図1において、縦軸の強度は、下側ほど大きくなっている。 FIG. 1 shows an example of an infrared spectrum of ZSO nanoparticles of the present invention. In FIG. 1, for comparison, the spectrum of the SiO 2 sample, the spectrum of the ZnO sample, and the spectrum of the ZnSi 2 O 4 sample are shown simultaneously. Note that in FIG. 1, the intensity on the vertical axis increases toward the bottom.
 ZnOサンプルのスペクトルでは、波数約410cm-1の位置に、大きな吸収ピーク(「Zn-O-Zn結合ピーク」と称する)が出現する。また、ZnSiサンプルのスペクトルでは、波数約920cm-1の位置に、大きな吸収ピーク(「Zn-O-Si結合ピーク」と称する)が出現する。また、SiOサンプルのスペクトルでは、波数約1070cm-1の位置に、大きな吸収ピーク(「Si-O-Si結合ピーク」と称する)が出現する。 In the spectrum of the ZnO sample, a large absorption peak (referred to as "Zn--O--Zn bond peak") appears at a wave number of approximately 410 cm.sup. -1 . Furthermore, in the spectrum of the ZnSi 2 O 4 sample, a large absorption peak (referred to as "Zn--O--Si bond peak") appears at a wave number of about 920 cm -1 . Furthermore, in the spectrum of the SiO 2 sample, a large absorption peak (referred to as "Si-O-Si bond peak") appears at a wave number of approximately 1070 cm -1 .
 従って、Zn-Si-O系酸化物の試料において得られたスペクトルにおいて、波数400cm-1~600cm-1の範囲(領域Qと称する)に生じた赤外分光スペクトルは、Zn-O-Zn結合ピークに対応し、波数870cm-1~970cm-1の範囲(領域Qと称する)に生じた赤外分光スペクトルは、Zn-O-Si結合ピークに対応し、波数1050cm-1~1150cm-1の範囲(領域Qと称する)に生じた赤外分光スペクトルは、Si-O-Si結合ピークに対応すると言える。 Therefore, in the spectrum obtained from the Zn-Si-O-based oxide sample, the infrared spectra occurring in the wavenumber range of 400 cm -1 to 600 cm -1 (referred to as region Q 1 ) are Zn-O-Zn The infrared spectra generated in the range of wave numbers 870 cm -1 to 970 cm -1 (referred to as region Q 2 ), which corresponds to the bond peak, correspond to the Zn-O-Si bond peak and wave numbers 1050 cm -1 to 1150 cm - It can be said that the infrared spectra generated in the range Q1 (referred to as region Q3 ) corresponds to the Si-O-Si bond peak.
 ここで、図1に示すように、本発明のZSOナノ粒子の赤外分光スペクトルは、領域Qにおける最大強度をIとし、領域Qにおける最大強度をIとし、領域Qにおける最大強度をIとしたとき、ピーク強度比I/(I+I+I)は、0.28以上であるという特徴を有する。 Here, as shown in FIG. 1, the infrared spectra of the ZSO nanoparticles of the present invention have the maximum intensity in region Q 1 as I 1 , the maximum intensity in region Q 2 as I 2 , and the maximum intensity in region Q 3 . When the intensity is I 3 , the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is characterized by being 0.28 or more.
 すなわち、本発明のZSOナノ粒子は、亜鉛とケイ素の複酸化物に対応するZn-O-Si結合の割合が高くなっており、そのため仕事関数を有意に小さくすることができる。 That is, the ZSO nanoparticles of the present invention have a high proportion of Zn--O--Si bonds corresponding to the double oxide of zinc and silicon, and therefore the work function can be significantly reduced.
 特に、ピーク強度比I/(I+I+I)は、0.29以上であることが好ましく、0.30以上であることがより好ましく、0.31以上であることがさらに好ましい。この場合、本発明のZSOナノ粒子の仕事関数をより低減させることができる。 In particular, the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is preferably 0.29 or more, more preferably 0.30 or more, and even more preferably 0.31 or more. In this case, the work function of the ZSO nanoparticles of the present invention can be further reduced.
 なお、本発明のZSOナノ粒子の仕事関数は、3.9eV以下である。仕事関数は、3.8eV以下であることが好ましい。 Note that the work function of the ZSO nanoparticles of the present invention is 3.9 eV or less. The work function is preferably 3.8 eV or less.
 図2には、本発明のZSOナノ粒子のラマンスペクトルの一例を示す。図2には、比較のため、SiOサンプルのスペクトル、ZnOサンプルのスペクトル、およびZnSiOサンプルのスペクトルが同時に示されている。なお、図2において、縦軸の強度は、上側ほど大きくなっている。 FIG. 2 shows an example of the Raman spectrum of the ZSO nanoparticles of the present invention. In FIG. 2, the spectrum of the SiO 2 sample, the spectrum of the ZnO sample, and the spectrum of the Zn 2 SiO 4 sample are shown simultaneously for comparison. Note that in FIG. 2, the intensity on the vertical axis increases toward the top.
 図2から、ZnOサンプルでは、波数約350cm-1~450cm-1の領域に、鋭い複数のピークが認められている。一方、本発明のZSOナノ粒子では、ZnOサンプルに比べて、同領域における強度ピークが単一化されるとともに、ピークの急峻さが弱められていることがわかる。 From FIG. 2, in the ZnO sample, multiple sharp peaks are observed in the wave number region of approximately 350 cm −1 to 450 cm −1 . On the other hand, it can be seen that in the ZSO nanoparticles of the present invention, the intensity peak in the same region is unified and the steepness of the peak is weakened compared to the ZnO sample.
 このことから、本発明のZSOナノ粒子は、酸化亜鉛と酸化ケイ素が原子レベルで混合された、複酸化物の状態で存在しているものと考えられる。 From this, it is considered that the ZSO nanoparticles of the present invention exist in the state of a double oxide in which zinc oxide and silicon oxide are mixed at the atomic level.
 (本発明の一実施形態によるナノ粒子の製造方法)
 本発明の一実施形態によるナノ粒子は、例えば、液相合成法により製造できる。
(Method for producing nanoparticles according to an embodiment of the present invention)
Nanoparticles according to an embodiment of the present invention can be produced, for example, by a liquid phase synthesis method.
 以下、図3を参照して、本発明の一実施形態によるナノ粒子の製造方法の一例について説明する。図3には、本発明の一実施形態によるナノ粒子の製造方法のフローの一例を模式的に示す。 Hereinafter, with reference to FIG. 3, an example of a method for manufacturing nanoparticles according to an embodiment of the present invention will be described. FIG. 3 schematically shows an example of a flow of a method for producing nanoparticles according to an embodiment of the present invention.
 図3に示すように、本発明の一実施形態によるナノ粒子の製造方法(以下、「第1の方法」と称する)は、
(1)亜鉛およびケイ素を含む原料と第1の溶媒とを混合し、第1の溶液を調製するステップ(ステップS110)と、
(2)アルカリを含む第2の溶液を調製するステップ(ステップS120)と、
(3)フローリアクター法を用いて、前記第1の溶液と前記第2の溶液とを混合し、ナノ粒子を含む第3の溶液を生成するステップ(ステップS130)と、
(4)前記第3の溶液に粒子成長抑制剤を添加するステップ(ステップS140)と、
 を有する。
As shown in FIG. 3, the method for producing nanoparticles according to one embodiment of the present invention (hereinafter referred to as the "first method") is as follows:
(1) mixing raw materials containing zinc and silicon with a first solvent to prepare a first solution (step S110);
(2) preparing a second solution containing an alkali (step S120);
(3) mixing the first solution and the second solution using a flow reactor method to generate a third solution containing nanoparticles (step S130);
(4) adding a particle growth inhibitor to the third solution (step S140);
has.
 以下、各工程について、より詳しく説明する。 Hereinafter, each step will be explained in more detail.
 (ステップS110)
 まず、亜鉛源およびケイ素源を含む原料が準備される。
(Step S110)
First, raw materials containing a zinc source and a silicon source are prepared.
 原料は、液体の形態で準備されてもよい。 The raw materials may be prepared in liquid form.
 亜鉛源は、例えば、酸化亜鉛、酢酸亜鉛、硝酸亜鉛、炭酸亜鉛、塩化亜鉛、硫酸亜鉛、および亜鉛アルコキシドのような、亜鉛化合物であってもよい。 The zinc source may be a zinc compound, such as, for example, zinc oxide, zinc acetate, zinc nitrate, zinc carbonate, zinc chloride, zinc sulfate, and zinc alkoxide.
 また、ケイ素源は、HSiO(ケイ酸)およびケイ酸塩のようなケイ素化合物であってもよい。ケイ素源は、例えば、ケイ素の酸化物もしくは水酸化物、その他のケイ酸塩、アルコキシド等のケイ素化合物、またはそれらの水和物であってもよい。アルコキシシラン系のケイ素源としては、ジメチルジメトキシシラン(DMDMS)、メチルトリメトキシシラン(MTMS)、テトラメトキシシラン(TMOS)、ジメチルジエトキシシラン(DMDES)、メチルトリエトキシシラン(MTES)、およびテトラエトキシシラン(TEOS)などが挙げられる。また、TEOSのオリゴマ縮合物、例えばエチルシリケートなどが使用されてもよい。 The silicon source may also be silicon compounds such as H 2 SiO 3 (silicic acid) and silicates. The silicon source may be, for example, a silicon oxide or hydroxide, other silicates, silicon compounds such as alkoxides, or hydrates thereof. Alkoxysilane silicon sources include dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), tetramethoxysilane (TMOS), dimethyldiethoxysilane (DMDES), methyltriethoxysilane (MTES), and tetraethoxysilane. Examples include silane (TEOS). Also, oligomeric condensates of TEOS, such as ethyl silicate, may be used.
 次に、原料が第1の溶媒と混合され、第1の溶液が調製される。 Next, the raw material is mixed with a first solvent to prepare a first solution.
 第1の溶媒は、原料を十分に溶解、混合できるものである限り、特に限られない。 The first solvent is not particularly limited as long as it can sufficiently dissolve and mix the raw materials.
 第1の溶媒は、例えば、ジメチルスルホキシド(DMSO)溶媒であってもよい。 The first solvent may be, for example, a dimethyl sulfoxide (DMSO) solvent.
 第1の溶液は、含まれる亜鉛およびケイ素が原子数比で、Zn/(Zn+Si)が0.3~0.95となるように調製される。 The first solution is prepared so that the atomic ratio of zinc and silicon contained is Zn/(Zn+Si) of 0.3 to 0.95.
 (ステップS120)
 次に、第2の溶液が調製される。
(Step S120)
Next, a second solution is prepared.
 第2の溶液は、アルカリ溶液であり、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウム(TMAH)、テトラエチルアンモニウム(TEAH)、およびアンモニア(NH)から選択された少なくとも1つを有してもよい。あるいは、第2の溶液は、ナトリウムエトキシドのような金属アルコキシド類であってもよい。 The second solution is an alkaline solution, such as at least one selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, tetramethylammonium (TMAH), tetraethylammonium (TEAH), and ammonia ( NH3 ). It may have one. Alternatively, the second solution may be a metal alkoxide such as sodium ethoxide.
 (ステップS130)
 次に、第1の溶液と第2の溶液とが混合される。これにより、液体中で亜鉛とケイ素が結合する反応が生じ、ナノ粒子を含む第3の溶液が形成される。
(Step S130)
Next, the first solution and the second solution are mixed. This causes a reaction in which zinc and silicon bond together in the liquid, forming a third solution containing nanoparticles.
 なお、ビーカのような容器を用いた一般的な2つの溶液の撹拌、混合方法では、本発明のZSOナノ粒子を製造することは難しい。液体中で反応した亜鉛の酸化物とケイ素の酸化物が相互に分離してしまうためである。この場合、酸化亜鉛コアの周囲に二酸化ケイ素が配置された、いわゆるコア-シェル構造の粒子が得られ易くなる。 Note that it is difficult to produce the ZSO nanoparticles of the present invention using a general method of stirring and mixing two solutions using a container such as a beaker. This is because the zinc oxide and silicon oxide that reacted in the liquid separate from each other. In this case, particles with a so-called core-shell structure in which silicon dioxide is arranged around a zinc oxide core are easily obtained.
 従って、第1の方法では、亜鉛の酸化物とケイ素の酸化物が相互に十分に混合した複酸化物を形成するため、フローリアクター法が使用される。 Therefore, in the first method, a flow reactor method is used in order to form a double oxide in which zinc oxide and silicon oxide are sufficiently mixed with each other.
 フローリアクター法では、上下に2枚の円盤ディスクが積層配置され、両円盤ディスクの間に、微小な反応場(μmオーダーの厚さ)が提供される。また、上側円盤ディスクに設けられた異なるポートから、それぞれ、第1液体および第2液体が供給される。 In the flow reactor method, two disks are stacked one above the other, and a minute reaction field (thickness on the order of μm) is provided between the two disks. Further, the first liquid and the second liquid are respectively supplied from different ports provided on the upper disk.
 2つの円盤ディスクの少なくとも一方は、高速回転しており、供給された第1液体および第2液体は、高速で回転する反応場に供給され、ここで反応が生じる。 At least one of the two discs is rotating at high speed, and the supplied first liquid and second liquid are supplied to a reaction field rotating at high speed, where a reaction occurs.
 その後、反応生成物(粒子状生成物)は、円盤ディスクの回転の遠心力により、残留液体とともに、装置の系外に排出される。 Thereafter, the reaction products (particulate products) are discharged from the system of the apparatus together with the residual liquid due to the centrifugal force of the rotation of the disk.
 フローリアクター法では、円盤ディスクの回転数の上昇により、狭小の反応場内で、第1液体と第2液体とを十分に混合することができる。その結果、複数の生成相が分離し難くなり、より均質な微細粒子を得ることができる。 In the flow reactor method, the first liquid and the second liquid can be sufficiently mixed within a narrow reaction field by increasing the rotational speed of the circular disk. As a result, the plurality of generated phases becomes difficult to separate, and more homogeneous fine particles can be obtained.
 従って、第1の方法では、コア-シェル構造の粒子ではなく、亜鉛の酸化物とケイ素の酸化物が相互に十分に混合された複酸化物を含むナノ粒子を生成することができる。 Therefore, in the first method, it is possible to produce nanoparticles containing a double oxide in which zinc oxide and silicon oxide are sufficiently mixed with each other, rather than particles with a core-shell structure.
 第1液体および第2液体の供給温度は、特に限られない。第1液体および第2液体は、例えば、20℃~120℃の範囲であり、50℃~90℃の範囲であることが好ましい。 The supply temperatures of the first liquid and the second liquid are not particularly limited. The temperature of the first liquid and the second liquid is, for example, in the range of 20°C to 120°C, preferably in the range of 50°C to 90°C.
 ステップS130の後に、ナノ粒子を含む第3の溶液が生成される。 After step S130, a third solution containing nanoparticles is generated.
 その後、必要に応じて、第3の溶液がろ過処理され、ナノ粒子が回収されてもよい。 Thereafter, the third solution may be filtered to recover the nanoparticles, if necessary.
 (ステップS140)
 第1の方法では、前述のステップS110~ステップS130の過程で、所望のナノ粒子を製造することができる。
(Step S140)
In the first method, desired nanoparticles can be manufactured in the process of steps S110 to S130 described above.
 ただし、第3の溶液をそのまま放置した場合、第3の溶液に含まれるナノ粒子が成長を続け、粒子が粗大化するおそれがある。 However, if the third solution is left as is, there is a risk that the nanoparticles contained in the third solution will continue to grow and become coarse.
 このため、ステップS130の後、第3の溶液に粒子成長抑制剤が添加される。 Therefore, after step S130, a particle growth inhibitor is added to the third solution.
 粒子成長抑制剤は、ナノ粒子の粒成長を抑制するできる物質である限り、その種類は特に限られない。 The type of particle growth inhibitor is not particularly limited as long as it is a substance that can suppress the grain growth of nanoparticles.
 粒子成長抑制剤は、例えば、酢酸エチル、酢酸ブチル、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、ジエチルエーテル、メチルtert-ブチルエーテル(MTBE)、ジイソプロピルエーテル、ジフェニルエーテル、1,4-ジオキサン、テトラヒドロフラン(THF)から選択されてもよい。 Particle growth inhibitors include, for example, ethyl acetate, butyl acetate, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, diethyl ether, methyl tert-butyl ether (MTBE), It may be selected from diisopropyl ether, diphenyl ether, 1,4-dioxane, tetrahydrofuran (THF).
 第3の溶液に粒子成長抑制剤を添加することにより、形成されたナノ粒子の成長が妨げられ、その結果、シェラー径が最大10nm以下のナノ粒子が得られる。 By adding a particle growth inhibitor to the third solution, the growth of the formed nanoparticles is inhibited, and as a result, nanoparticles with a maximum Scherrer diameter of 10 nm or less are obtained.
 その後、必要な場合、ナノ粒子は、分級されてもよい。 Thereafter, the nanoparticles may be classified if necessary.
 以上の工程により、本発明のZSOナノ粒子を製造できる。 Through the above steps, the ZSO nanoparticles of the present invention can be manufactured.
 (本発明の一実施形態によるナノ粒子の適用例)
 次に、前述のような特徴を有する本発明の一実施形態によるナノ粒子の適用例について説明する。
(Application example of nanoparticles according to an embodiment of the present invention)
Next, an application example of nanoparticles according to an embodiment of the present invention having the above-mentioned characteristics will be described.
 (分散液)
 本発明の一実施形態によるナノ粒子は、例えば分散液の形態で提供できる。
(Dispersion liquid)
Nanoparticles according to one embodiment of the invention can be provided, for example, in the form of a dispersion.
 分散液は、分散剤を含む溶媒中にナノ粒子を分散させることにより調製できる。 A dispersion can be prepared by dispersing nanoparticles in a solvent containing a dispersant.
 溶媒としては、極性溶媒を用いると、OLEDの有機発光層などを溶解しにくく、また、界面に与えるダメージが低減されるため好ましい。極性溶媒の例としては、水、アルコール類、グリコール類、グリコールエーテル類、グリセリン、および/またはエーテル等が使用できる。 It is preferable to use a polar solvent as the solvent because it makes it difficult to dissolve the organic light-emitting layer of the OLED and reduces damage to the interface. Examples of polar solvents that can be used include water, alcohols, glycols, glycol ethers, glycerin, and/or ethers.
 アルコール類、グリコール類、グリコールエーテル類、またはエーテルには、例えば、下記の化合物が挙げられる:
(i)アルコール類にはメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-エチル-1-ブタノール、イソアミルアルコール、2-メチル1-ブタノール、2-メチルー2-ブタノール、3-メチルー2-ブタノール、3-メトキシブタノール、ペンチルアルコール、1-ヘキサノール、1-オクタノール、1-ペンタノール、tert-ペンチルアルコール等が挙げられる。
(ii)グリコール類には、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、トリエチレングリコール、ジメチルジエチレングリコール、ジプロピレングリコール等が挙げられる。
(iii)グリコールエーテル類にはエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールブチルエチルエーテル、エチレングリコールブチルメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノt-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールヘキシルエーテル、ジエチレングリコールメチルt-ブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテル、ジプロピレングリコールモノn―ブチルエーテル、ジプロピレングリコールモノn―プロピルエーテル、ジプロピレングリコールモノメチルエーテルアセテート等が挙げられる。
Alcohols, glycols, glycol ethers, or ethers include, for example, the following compounds:
(i) Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethyl-1-butanol, isoamyl alcohol, 2-methyl-1 -butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 3-methoxybutanol, pentyl alcohol, 1-hexanol, 1-octanol, 1-pentanol, tert-pentyl alcohol and the like.
(ii) Glycols include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, triethylene glycol, dimethyldiethylene glycol, dipropylene glycol, and the like.
(iii) Glycol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monophenyl ether, ethylene glycol butyl ethyl ether, and ethylene glycol Butyl methyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol mono t-butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, Propylene glycol monopropyl ether, propylene glycol monoisopropyl ether, propylene glycol monoisobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol diethyl ether, diethylene glycol Monobutyl ether, diethylene glycol dibutyl ether, diethylene glycol hexyl ether, diethylene glycol methyl t-butyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol butyl ether acetate, dipropylene glycol methyl ether, dipropylene glycol mono-n-butyl ether, dipropylene glycol mono-n-propyl ether, Examples include dipropylene glycol monomethyl ether acetate.
 この他の溶媒として、N-メチルホルムアミド、N-メチルピロリドン、およびジメチルスルホキシド、フッ素化アルコール系のもの、またはグリコールジアルキルエーテル系のものを使用してもよい。 As other solvents, N-methylformamide, N-methylpyrrolidone, dimethyl sulfoxide, fluorinated alcohol-based solvents, or glycol dialkyl ether-based solvents may be used.
 これらの溶媒は、単独で使用しても、組み合わせて使用してもよい。 These solvents may be used alone or in combination.
 これらの溶媒は、OLEDにおける有機発光層に対して、非溶解性である。従って、これらの溶媒を含む分散液を使用して、OLEDの有機発光層の上に、ナノ粒子を含む電子注入層/電子輸送層を形成した場合、有機発光層に与えるダメージが軽減される。 These solvents are insoluble in the organic light emitting layer in the OLED. Therefore, when an electron injection layer/electron transport layer containing nanoparticles is formed on the organic light emitting layer of an OLED using a dispersion containing these solvents, damage to the organic light emitting layer is reduced.
 ただし、その他の用途にナノ粒子を含む分散液を使用する場合、溶媒として、例えば、水、アセトン、ベンゼン、トルエン、キシレン、および/またはヘキサンなどの非極性溶媒を使用することもできる。 However, when using a dispersion containing nanoparticles for other purposes, a nonpolar solvent such as water, acetone, benzene, toluene, xylene, and/or hexane can also be used as the solvent.
 分散液に含まれるナノ粒子の量は、例えば、0.01質量%~50質量%の範囲であり、溶媒の量は、例えば、50質量%~99.9質量%の範囲であってもよい。 The amount of nanoparticles contained in the dispersion may range, for example, from 0.01% to 50% by weight, and the amount of solvent may range from 50% to 99.9% by weight, for example. .
 分散剤としては、特に限定されないが、高分子系分散剤、界面活性剤型(低分子型)分散剤、無機型分散剤等を用いることができる。高分子系分散剤としては、ポリカルボン酸系高分子分散剤、ポリアミン系高分子分散剤、アクリル系高分子分散剤、ウレタン系高分子分散剤、アクリル・ブロックコポリマー系高分子分散剤、ポリエーテル類分散剤、ポリエステル系高分子分散剤、またはポリエチレンイミンやポリエチレンイミンエトキシレートなどが挙げられる。界面活性剤型分散剤としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等のアニオン系界面活性剤、アミン塩や四級アンモニウム等のカチオン系界面活性剤、脂肪酸エステル類等のノニオン系界面活性剤等のいずれも使用可能である。この他、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンアミン、2-アミノ1,3-プロパンジオール等のアミノエタノール類やチオール類、ジスルフィド類等の有機硫黄化合物、メトキシ酢酸(MA)、2-メトキシエトキシ酢酸 (MEA)、2-(2-メトキシエトキシ)エトキシ酢酸、(MEEA), 2-エトキシ酢酸等のアセテート類も好適に用いることができる。無機型分散剤等としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等も使用可能である。 The dispersant is not particularly limited, but a polymeric dispersant, a surfactant type (low molecular type) dispersant, an inorganic type dispersant, etc. can be used. Examples of polymer dispersants include polycarboxylic acid polymer dispersants, polyamine polymer dispersants, acrylic polymer dispersants, urethane polymer dispersants, acrylic block copolymer polymer dispersants, and polyether polymer dispersants. Examples include a similar dispersant, a polyester polymer dispersant, polyethyleneimine, polyethyleneimine ethoxylate, and the like. Examples of surfactant-type dispersants include anionic surfactants such as carboxylates, sulfonates, sulfuric acid ester salts, and phosphoric acid ester salts, cationic surfactants such as amine salts and quaternary ammonium, and fatty acid esters. Any of the nonionic surfactants can be used. In addition, aminoethanols such as monoethanolamine, diethanolamine, triethanolamine, 2-amino 1,3-propanediol, thiols, organic sulfur compounds such as disulfides, methoxyacetic acid (MA), 2-methoxyethoxy Acetates such as acetic acid (MEA), 2-(2-methoxyethoxy)ethoxyacetic acid, (MEEA), and 2-ethoxyacetic acid can also be suitably used. As the inorganic dispersant, silane coupling agents, titanate coupling agents, aluminum coupling agents, etc. can also be used.
 分散液に含まれる分散剤の量は、例えば、1.0質量%~4.0質量%の範囲である。 The amount of dispersant contained in the dispersion is, for example, in the range of 1.0% by mass to 4.0% by mass.
 (インク)
 前述の分散液の一形態であるが、本発明の一実施形態によるナノ粒子は、インクの形態に調製されてもよい。
(ink)
Although in the form of a dispersion as described above, nanoparticles according to an embodiment of the invention may be prepared in the form of an ink.
 インクは、分散剤、像粘剤、および界面活性剤を含む1種類以上の溶媒中に、ナノ粒子を分散させることにより調製される。 The ink is prepared by dispersing nanoparticles in one or more solvents that include a dispersant, an image tackifier, and a surfactant.
 溶媒には、前述の分散液の溶媒として記載されている候補から1つ以上が選定されてもよい。 One or more solvents may be selected from the candidates listed as solvents for the dispersion liquid described above.
 溶媒は、インクジェットヘッドのつまりを防止するため、ノズル部での揮散がし難い、沸点が180℃以上のものが好ましい。そのような溶媒には、例えば、エチレングリコール、ジエチレングリコール(DEG)、プロピレングリコール、および、ジプロピレングリコール(DPG)が含まれる。 In order to prevent clogging of the inkjet head, the solvent is preferably one that is difficult to volatilize at the nozzle portion and has a boiling point of 180° C. or higher. Such solvents include, for example, ethylene glycol, diethylene glycol (DEG), propylene glycol, and dipropylene glycol (DPG).
 これらの溶媒は、本発明のZSOナノ粒子の分散性が高いという特徴を有する。 These solvents are characterized by high dispersibility of the ZSO nanoparticles of the present invention.
 また、これらの溶媒を含むインクを使用して、OLEDの有機発光層またはQDディスプレイの量子ドット(QD)発光層上に電子注入層/電子輸送層を形成した場合、有機発光層またはQD発光層に与えるダメージが軽減される。 In addition, when an ink containing these solvents is used to form an electron injection layer/electron transport layer on an organic light-emitting layer of an OLED or a quantum dot (QD) light-emitting layer of a QD display, the organic light-emitting layer or QD light-emitting layer The damage dealt is reduced.
 分散剤としては、前述の分散剤を用いることができる。 As the dispersant, the above-mentioned dispersants can be used.
 増粘剤には、プロピレングリコール、テルピネオールおよびエチルセルロースが含まれ得る。また、別の添加物として、インクの導電性調整用の透明導電体(インジウムスズ酸化物)、アルミニウムがドープされた酸化亜鉛(AZO)、および/またはカーボンブラック等が使用されてもよい。 Thickeners may include propylene glycol, terpineol and ethylcellulose. Further, as another additive, a transparent conductor (indium tin oxide) for adjusting the conductivity of the ink, aluminum-doped zinc oxide (AZO), and/or carbon black may be used.
 分散剤、像粘剤、および界面活性剤は、例えば、インク全体中に10質量%以下の濃度で含まれていてもよい。 The dispersant, image tackifier, and surfactant may be contained in the entire ink at a concentration of 10% by mass or less, for example.
 インクの粘度は、1~50mPa・s(CP)であることが好ましい。特に、インクジェット印刷に用いる場合は、インクの粘度を、5~20mPa・s(CP)とすることが好ましい。さらに、特に、インクジェット印刷に用いる場合は、インクの粘度が8~15mPa・s(CP)であると、より好ましい。 The viscosity of the ink is preferably 1 to 50 mPa·s (CP). In particular, when used for inkjet printing, the viscosity of the ink is preferably 5 to 20 mPa·s (CP). Furthermore, particularly when used for inkjet printing, it is more preferable that the ink has a viscosity of 8 to 15 mPa·s (CP).
 また、インクは、水分の含有量が低いものが好ましく、このため、インクは、脱水してから用いることが好ましい。脱水の方法は、特に限定されないが、モレキュラーシーブ、無水硫酸ナトリウム、および/または水酸化カルシウムなどを用いることができる。インクの水分含有量は、0.1質量%以下が好ましい。 Furthermore, the ink preferably has a low water content, and therefore it is preferable to dehydrate the ink before use. The dehydration method is not particularly limited, but molecular sieves, anhydrous sodium sulfate, and/or calcium hydroxide can be used. The moisture content of the ink is preferably 0.1% by mass or less.
 さらに、インクは、アルカリ金属の錯体、アルカリ金属の塩、アルカリ土類金属の錯体、またはアルカリ土類金属の塩を含有してもよい。 Furthermore, the ink may contain an alkali metal complex, an alkali metal salt, an alkaline earth metal complex, or an alkaline earth metal salt.
 このようなインクを用いることにより、印刷プロセスにより、アルカリ金属、アルカリ土類金属の錯体または塩を含む電子注入層/電子輸送層を形成することができる。アルカリ金属、アルカリ土類金属の錯体または塩を含有することで、さらに電子注入効率を高めることができる。 By using such an ink, an electron injection layer/electron transport layer containing an alkali metal or alkaline earth metal complex or salt can be formed by a printing process. By containing an alkali metal or alkaline earth metal complex or salt, electron injection efficiency can be further improved.
 アルカリ金属、アルカリ土類金属の錯体または塩は、上記インクの溶媒に可溶であることが好ましい。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、およびセシウムが挙げられる。アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、およびバリウムが挙げられる。錯体としてはβ-ジケトン錯体が挙げられ、塩としてはアルコキシド、フェノキシド、カルボン酸塩、炭酸塩、および水酸化物が挙げられる。 It is preferable that the alkali metal or alkaline earth metal complex or salt is soluble in the solvent of the ink. Alkali metals include lithium, sodium, potassium, rubidium, and cesium. Alkaline earth metals include magnesium, calcium, strontium, and barium. Complexes include β-diketone complexes, and salts include alkoxides, phenoxides, carboxylates, carbonates, and hydroxides.
 アルカリ金属、アルカリ土類金属の錯体または塩の具体例としては、ナトリウムアセチルアセトナト、セシウムアセチルアセトナト、カルシウムビスアセチルアセトナト、バリウムビスアセチルアセトナト、ナトリウムメトキシド、ナトリウムフェノキシド、ナトリウムtert-ブトキシド、ナトリウムtert-五酸化物、酢酸ナトリウム、クエン酸ナトリウム、炭酸セシウム、酢酸セシウム、水酸化ナトリウム、および水酸化セシウム等が挙げられる。 Specific examples of complexes or salts of alkali metals and alkaline earth metals include sodium acetylacetonate, cesium acetylacetonate, calcium bisacetylacetonate, barium bisacetylacetonate, sodium methoxide, sodium phenoxide, and sodium tert-butoxide. , sodium tert-pentoxide, sodium acetate, sodium citrate, cesium carbonate, cesium acetate, sodium hydroxide, and cesium hydroxide.
 (OLED)
 本発明の一実施形態によるナノ粒子は、各種デバイス等の薄膜に利用できる。例えば、本発明の一実施形態によるナノ粒子は、OLEDの電子注入層/電子輸送層に適用できる。
(OLED)
Nanoparticles according to an embodiment of the present invention can be used in thin films of various devices and the like. For example, nanoparticles according to an embodiment of the present invention can be applied to the electron injection layer/electron transport layer of an OLED.
 図4には、本発明の一実施形態によるナノ粒子が適用されたOLEDの断面を模式的に示す。 FIG. 4 schematically shows a cross section of an OLED to which nanoparticles according to an embodiment of the present invention are applied.
 図4に示すように、OLED100は、基板110と、底部電極(アノード)120と、ホール注入層/ホール輸送層130と、有機発光層140と、追加層150と、上部電極(カソード)160と、絶縁層170とを有する。 As shown in FIG. 4, the OLED 100 includes a substrate 110, a bottom electrode (anode) 120, a hole injection layer/hole transport layer 130, an organic light emitting layer 140, an additional layer 150, and a top electrode (cathode) 160. , and an insulating layer 170.
 OLED100において、基板110および底部電極120を透明な材料で構成した場合、基板110の側が、光取出し面となるボトムエミッション型となる。一方、OLED100において、上部電極160を透明な材料、または、半透明な材料で構成し、底部電極120の下側を反射層で構成した場合、上部電極160の側が光取出し面となるトップエミッション型となる。 In the OLED 100, when the substrate 110 and the bottom electrode 120 are made of a transparent material, the OLED 100 becomes a bottom emission type in which the substrate 110 side becomes the light extraction surface. On the other hand, in the OLED 100, when the upper electrode 160 is made of a transparent material or a semi-transparent material and the lower side of the bottom electrode 120 is made of a reflective layer, the top emission type in which the upper electrode 160 side becomes the light extraction surface. becomes.
 基板110は、上部に設置される各層を支持する役割を有する。 The substrate 110 has the role of supporting each layer installed thereon.
 また、基板110の側を光取り出し面(ボトムエミッション型)とする場合、底部電極120は、例えば、インジウムスズ酸化物(ITO)のような導電性金属酸化物で構成される。一方、上部電極160は、例えば、金属または半導体で構成される。ホール注入層/ホール輸送層130は、ホール輸送性化合物で構成される。ホール輸送性化合物は、陽極から正孔注入層への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。 Further, when the substrate 110 side is used as a light extraction surface (bottom emission type), the bottom electrode 120 is made of a conductive metal oxide such as indium tin oxide (ITO), for example. On the other hand, the upper electrode 160 is made of metal or semiconductor, for example. The hole injection layer/hole transport layer 130 is made of a hole transporting compound. The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
 ホール輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物系化合物、キナクリドン系化合物等が挙げられる。 Examples of hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked with fluorene groups, and hydrazone compounds. compounds, silazane-based compounds, quinacridone-based compounds, and the like.
 上述の例示化合物のうち、非晶質性および可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。 Among the above-mentioned exemplary compounds, aromatic amine compounds are preferred, and aromatic tertiary amine compounds are particularly preferred, in terms of amorphousness and visible light transparency. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。 The type of aromatic tertiary amine compound is not particularly limited, but a polymeric compound with a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymeric compound with a series of repeating units) is preferred, since it is easy to obtain uniform light emission due to the surface smoothing effect. It is preferable to use
 有機発光層140は、例えば、赤、緑、および/または青などの光を発光する有機物で構成される。 The organic light-emitting layer 140 is made of an organic substance that emits red, green, and/or blue light, for example.
 有機発光層140は、光(可視光を含む)を発する機能を有する機能層である。有機発光層140は、通常、主として蛍光及びりん光の少なくとも一方を発光する有機物、又はこの有機物とこれを補助するドーパントとから構成される。ドーパントは、例えば発光効率の向上や、発光波長を変化させるために加えられる。上記有機物は、低分子化合物でも高分子化合物でもよい。発光層の厚さは、例えば約2nm~200nmであってもよい。 The organic light emitting layer 140 is a functional layer that has the function of emitting light (including visible light). The organic light emitting layer 140 is usually composed of an organic material that mainly emits at least one of fluorescence and phosphorescence, or this organic material and a dopant that assists the organic material. A dopant is added, for example, to improve luminous efficiency or change the emission wavelength. The organic substance may be a low molecular compound or a high molecular compound. The thickness of the emissive layer may be, for example, about 2 nm to 200 nm.
 絶縁層170は、例えば、フッ素系樹脂、ポリイミド樹脂などの感光性樹脂で構成される。 The insulating layer 170 is made of, for example, a photosensitive resin such as a fluororesin or a polyimide resin.
 ホール注入層/ホール輸送層130、および/または有機発光層140は、例えば、印刷プロセスで形成することができる。 The hole injection layer/hole transport layer 130 and/or the organic light emitting layer 140 can be formed, for example, by a printing process.
 追加層150は、本発明のZSOナノ粒子を含む。例えば、追加層150は、本発明のZSOナノ粒子を含む薄膜を有してもよい。 Additional layer 150 includes ZSO nanoparticles of the present invention. For example, additional layer 150 may include a thin film comprising ZSO nanoparticles of the present invention.
 従って、追加層150は、比較的低い仕事関数、および適正な電気伝導性を有する。例えば、追加層150の仕事関数は、3.9eV以下である。また、追加層150の導電率は、例えば10-8Scm-1以上であり、例えば10-5Scm-1以上である。 Therefore, additional layer 150 has a relatively low work function and adequate electrical conductivity. For example, the work function of additional layer 150 is 3.9 eV or less. Further, the electrical conductivity of the additional layer 150 is, for example, 10 −8 Scm −1 or more, for example, 10 −5 Scm −1 or more.
 従って、追加層150は、電子注入層および/または電子輸送層として機能することができる。 Therefore, the additional layer 150 can function as an electron injection layer and/or an electron transport layer.
 また、追加層150は、印刷プロセスのような低温プロセスを用いて成膜することができる。すなわち、前述のようなインクを調製し、該インクを用いて印刷プロセスを実施することにより、有機発光層140上に追加層150を形成することができる。 Further, the additional layer 150 can be formed using a low-temperature process such as a printing process. That is, the additional layer 150 can be formed on the organic light emitting layer 140 by preparing an ink as described above and performing a printing process using the ink.
 印刷プロセスとしては、例えば、インクジェット印刷法およびスクリーン印刷法等が利用できる。特に、追加層150を印刷プロセスで設置した場合、従来の蒸着法で成膜する場合に比べて、厚さの制御が容易となる。 As the printing process, for example, an inkjet printing method, a screen printing method, etc. can be used. In particular, when the additional layer 150 is installed by a printing process, the thickness can be more easily controlled than when the additional layer 150 is formed by a conventional vapor deposition method.
 なお、OLED100において、追加層150に含まれるナノ粒子のシェラー径は、1nm~10nmの範囲である。このような微細なナノ粒子を使用した場合、追加層150の表面の凹凸を有意に抑制できる。 Note that in the OLED 100, the Scherrer diameter of the nanoparticles included in the additional layer 150 is in the range of 1 nm to 10 nm. When such fine nanoparticles are used, unevenness on the surface of the additional layer 150 can be significantly suppressed.
 その結果、OLED100の有機発光層140から放射される光が追加層150で散乱されることが抑制される。また、追加層150の最小膜厚が維持され、有機発光層140と上部電極160との間で電流リークが生じるという問題が有意に抑制される。 As a result, light emitted from the organic light emitting layer 140 of the OLED 100 is suppressed from being scattered by the additional layer 150. Additionally, the minimum thickness of the additional layer 150 is maintained, and the problem of current leakage between the organic light emitting layer 140 and the upper electrode 160 is significantly suppressed.
 例えば、追加層150の表面粗さRMS(二乗平均平方根高さ)は、5nm以下である。 For example, the surface roughness RMS (root mean square height) of the additional layer 150 is 5 nm or less.
 OLED100では、ホール注入層/ホール輸送層130~追加層150までを、印刷プロセスにより形成することができる。 In the OLED 100, the hole injection layer/hole transport layer 130 to the additional layer 150 can be formed by a printing process.
 この場合、従来のような、電子注入層/電子輸送層を成膜するための蒸着設備が不要となり、設備コストを低減できる。従って、OLED100は、比較的低コストで簡便に製造することができる。 In this case, the conventional vapor deposition equipment for forming the electron injection layer/electron transport layer is not required, and the equipment cost can be reduced. Therefore, OLED 100 can be easily manufactured at relatively low cost.
 また、従来の構成では、有機系の電子注入層/電子輸送層の上に上部電極を設置する際に、電子注入層/電子輸送層が熱によるダメージを受けるおそれがある。このため、上部電極160をスパッタリング法のような熱発生プロセスで成膜することは難しいという問題があった。 Furthermore, in the conventional configuration, when an upper electrode is placed on the organic electron injection layer/electron transport layer, there is a risk that the electron injection layer/electron transport layer may be damaged by heat. Therefore, there is a problem in that it is difficult to form the upper electrode 160 using a heat generation process such as sputtering.
 しかしながら、OLED100では、追加層150は、前述のような特徴を有するナノ粒子を含む。このため、追加層150の上部に設置される上部電極160は、例えば、スパッタリング法のような熱発生プロセスで成膜できる。 However, in OLED 100, additional layer 150 includes nanoparticles having characteristics as described above. Therefore, the upper electrode 160 disposed on the additional layer 150 can be formed using a heat generation process such as sputtering, for example.
 なお、追加層150は、本発明のZSOナノ粒子を含む薄膜と、その他の層との複層で構成されてもよい。 Note that the additional layer 150 may be composed of a multilayer of a thin film containing the ZSO nanoparticles of the present invention and other layers.
 (QDディスプレイ)
 本発明の一実施形態によるナノ粒子は、QDディスプレイの電子注入層/電子輸送層に適用できる。
(QD display)
Nanoparticles according to an embodiment of the present invention can be applied to the electron injection layer/electron transport layer of a QD display.
 図5には、本発明の一実施形態によるナノ粒子が適用されたQDディスプレイの断面を模式的に示す。 FIG. 5 schematically shows a cross section of a QD display to which nanoparticles according to an embodiment of the present invention are applied.
 図5に示すように、QDディスプレイ200は、基板210と、底部電極(アノード)220と、ホール注入層/ホール輸送層230と、量子ドット(QD)発光層240と、追加層250と、上部電極(カソード)260とを有する。 As shown in FIG. 5, the QD display 200 includes a substrate 210, a bottom electrode (anode) 220, a hole injection layer/hole transport layer 230, a quantum dot (QD) light emitting layer 240, an additional layer 250, and a top It has an electrode (cathode) 260.
 このうち、基板210、底部電極(アノード)220、ホール注入層/ホール輸送層230、および上部電極(カソード)260には、前述のOLED100における記載が参照できる。従って、ここでは、詳細な説明は、省略する。 Among these, the description in the above-mentioned OLED 100 can be referred to for the substrate 210, the bottom electrode (anode) 220, the hole injection layer/hole transport layer 230, and the upper electrode (cathode) 260. Therefore, detailed explanation will be omitted here.
 QD発光層240は、CdSe、ZnSe、InP、PbS、ペロブスカイト(CsPbX3;XはCl、BrまたはI)などのナノ粒子で構成される。 The QD light emitting layer 240 is composed of nanoparticles such as CdSe, ZnSe, InP, PbS, perovskite (CsPbX3; X is Cl, Br, or I).
 ここで、追加層250は、本発明のZSOナノ粒子を含む。 Here, the additional layer 250 includes ZSO nanoparticles of the present invention.
 従って、追加層250は、比較的低い仕事関数、および適正な電気伝導性を有する。例えば、追加層250の仕事関数は、3.9eV以下である。また、追加層250の導電率は、例えば10-8Scm-1以上であり、例えば10-5Scm-1以上である。 Therefore, additional layer 250 has a relatively low work function and adequate electrical conductivity. For example, the work function of additional layer 250 is 3.9 eV or less. Further, the electrical conductivity of the additional layer 250 is, for example, 10 −8 Scm −1 or more, for example, 10 −5 Scm −1 or more.
 従って、追加層250は、電子注入層および/または電子輸送層として機能することができる。 Therefore, the additional layer 250 can function as an electron injection layer and/or an electron transport layer.
 追加層250は、印刷プロセスのような低温プロセスを用いて成膜することができる。すなわち、前述のようなインクを調製し、該インクを用いて印刷プロセスを実施することにより、QD発光層240上に追加層250を形成することができる。 The additional layer 250 can be deposited using a low temperature process such as a printing process. That is, the additional layer 250 can be formed on the QD light emitting layer 240 by preparing an ink as described above and performing a printing process using the ink.
 印刷プロセスとしては、例えば、インクジェット印刷法およびスクリーン印刷法等が利用できる。特に、追加層250を印刷プロセスで設置した場合、従来の蒸着法で成膜する場合に比べて、厚さの制御が容易となる。 As the printing process, for example, an inkjet printing method, a screen printing method, etc. can be used. In particular, when the additional layer 250 is deposited by a printing process, the thickness can be more easily controlled than when deposited by a conventional vapor deposition method.
 なお、QDディスプレイ200において、追加層250に含まれるナノ粒子のシェラー径は、1nm~10nmの範囲である。このような微細なナノ粒子を使用した場合、追加層250の表面の凹凸を有意に抑制できる。 Note that in the QD display 200, the Scherrer diameter of the nanoparticles included in the additional layer 250 is in the range of 1 nm to 10 nm. When such fine nanoparticles are used, unevenness on the surface of the additional layer 250 can be significantly suppressed.
 その結果、QDディスプレイ200のQD発光層240から放射される光が追加層250で散乱されることが抑制される。また、追加層250の最小膜厚が維持され、QD発光層240と上部電極260との間で電流リークが生じるという問題が有意に抑制される。 As a result, light emitted from the QD light emitting layer 240 of the QD display 200 is suppressed from being scattered by the additional layer 250. Additionally, the minimum thickness of the additional layer 250 is maintained, and the problem of current leakage between the QD light emitting layer 240 and the upper electrode 260 is significantly suppressed.
 例えば、追加層250の表面粗さRMS(二乗平均平方根高さ)は、5nm以下である。 For example, the surface roughness RMS (root mean square height) of the additional layer 250 is 5 nm or less.
 このように、QDディスプレイ200では、ホール注入層/ホール輸送層230~追加層250までを、印刷プロセスにより形成することができる。 In this way, in the QD display 200, the hole injection layer/hole transport layer 230 to the additional layer 250 can be formed by a printing process.
 従って、QDディスプレイ200は、比較的低コストで簡便に製造することができる。 Therefore, the QD display 200 can be easily manufactured at relatively low cost.
 また、QDディスプレイ200では、追加層250は、前述のような特徴を有するナノ粒子を含む。このため、追加層250の上部に設置される上部電極260は、例えば、スパッタリング法のような熱発生プロセスで成膜できる。 Additionally, in the QD display 200, the additional layer 250 includes nanoparticles having the characteristics described above. Therefore, the upper electrode 260 disposed on the additional layer 250 can be formed using a heat generation process such as a sputtering method.
 以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
 なお、以下の記載において、例1~例3は、実施例であり、例11~例13は、比較例である。 In the following description, Examples 1 to 3 are examples, and Examples 11 to 13 are comparative examples.
 (例1)
 前述の第1の方法により、ナノ粒子を製造した。
(Example 1)
Nanoparticles were produced by the first method described above.
 まず、亜鉛源としての酢酸亜鉛と、ケイ素源としてのテトラエトキシシラン(TEOS)とを室温のジメチルスルホキシド(DMSO)溶媒に添加し、第1の溶液を調製した。 First, zinc acetate as a zinc source and tetraethoxysilane (TEOS) as a silicon source were added to dimethyl sulfoxide (DMSO) solvent at room temperature to prepare a first solution.
 第1の溶液中の酢酸亜鉛の濃度は、0.1mol/Lであり、TEOSの濃度は、0.038mol/Lであった。従って、第1の溶液における原子数比Zn/(Zn+Si)は、0.725である。 The concentration of zinc acetate in the first solution was 0.1 mol/L, and the concentration of TEOS was 0.038 mol/L. Therefore, the atomic ratio Zn/(Zn+Si) in the first solution is 0.725.
 次に、DMSO溶媒中に水酸化テトラエチルアンモニウム(TEAH:20vol%)を添加し、第2の溶液を調製した。第2の溶液中のTEAHの濃度は、5質量%であった。 Next, tetraethylammonium hydroxide (TEAH: 20 vol%) was added to the DMSO solvent to prepare a second solution. The concentration of TEAH in the second solution was 5% by weight.
 その後、フローリアクター装置を用いて、第1の溶液と第2の溶液を混合した。 Thereafter, the first solution and the second solution were mixed using a flow reactor device.
 供給される第1の溶液の温度は、60℃~70℃の範囲に設定した。第1の溶液の供給流量は、43.6mL/minであり、供給圧力は、0.1~0.2MPaGであった。同様に、供給される第2の溶液の温度は、60℃~70℃の範囲に設定した。第2の溶液の供給流量は、26.4mL/minであり、供給圧力は、0.1~0.2MPaGであった。円盤の回転数は、5000rpmとした。 The temperature of the first solution supplied was set in the range of 60°C to 70°C. The supply flow rate of the first solution was 43.6 mL/min, and the supply pressure was 0.1 to 0.2 MPaG. Similarly, the temperature of the second solution supplied was set in the range of 60°C to 70°C. The supply flow rate of the second solution was 26.4 mL/min, and the supply pressure was 0.1 to 0.2 MPaG. The rotation speed of the disk was 5000 rpm.
 なお、第1の溶液は、調製してから4時間経過後にフローリアクター装置に供給した。 Note that the first solution was supplied to the flow reactor device 4 hours after it was prepared.
 第1の溶液および第2の溶液の供給後、フローリアクター装置から吐出された反応液を、成長抑制剤としての酢酸エチルが満たされた容器に、直ちに投入し、反応を停止させた。 After supplying the first solution and the second solution, the reaction solution discharged from the flow reactor device was immediately poured into a container filled with ethyl acetate as a growth inhibitor to stop the reaction.
 その後、フローリアクター装置から排出される第3の溶液を採取、ろ過することにより、ナノ粒子(以下、「ナノ粒子1」と称する)を回収した。濾過の方法は、遠心分離機を用いて、第3の溶液の上澄み液をすてて、沈殿物を回収した。また、沈殿物をエタノールで希釈したのち、再度、遠心分離機を用いて沈殿物を回収する操作を、3回繰り返した。 Thereafter, nanoparticles (hereinafter referred to as "nanoparticles 1") were collected by collecting and filtering the third solution discharged from the flow reactor device. The filtration method used a centrifuge to discard the supernatant liquid of the third solution and collect the precipitate. Further, the operation of diluting the precipitate with ethanol and then recovering the precipitate using a centrifuge was repeated three times.
 (例2)
 例1と同様の方法により、ナノ粒子を製造した。ただし、この例2では、フローリアクター装置に供給される第1および第2の溶液の流量を変更した。第1の溶液の供給流量は、18.68mL/minであった。第2の溶液の供給流量は、11.32mL/minであった。
(Example 2)
Nanoparticles were produced by a method similar to Example 1. However, in this Example 2, the flow rates of the first and second solutions supplied to the flow reactor device were changed. The supply flow rate of the first solution was 18.68 mL/min. The supply flow rate of the second solution was 11.32 mL/min.
 これにより、ナノ粒子(以下、「ナノ粒子2」と称する)が回収された。 As a result, nanoparticles (hereinafter referred to as "nanoparticles 2") were recovered.
 (例3)
 例1と同様の方法により、ナノ粒子を製造した。ただし、この例3では、フローリアクター装置に供給される第1および第2の溶液の流量を変更した。第1の溶液の供給流量は、31.14mL/minであった。第2の溶液の供給流量は、18.86mL/minであった。 これにより、ナノ粒子(以下、「ナノ粒子3」と称する)が回収された。
(Example 3)
Nanoparticles were produced by a method similar to Example 1. However, in this Example 3, the flow rates of the first and second solutions supplied to the flow reactor device were changed. The supply flow rate of the first solution was 31.14 mL/min. The feed flow rate of the second solution was 18.86 mL/min. As a result, nanoparticles (hereinafter referred to as "nanoparticles 3") were recovered.
 (例11)
 フローリアクター装置の代わりに、ビーカを用いてナノ粒子を製造した。
(Example 11)
Nanoparticles were produced using a beaker instead of a flow reactor device.
 ビーカ内に前述の第1の溶液および第2の溶液を添加し、室温で十分に撹拌した。第1の溶液および第2の溶液の組成は、例1の場合と同様である。
5分間経過後、撹拌を停止し、ビーカに酢酸エチルを添加した。
The above-described first solution and second solution were added into a beaker and thoroughly stirred at room temperature. The compositions of the first solution and the second solution are the same as in Example 1.
After 5 minutes, stirring was stopped and ethyl acetate was added to the beaker.
 その後、ビーカ内の溶液をろ過することにより、ナノ粒子(以下、「ナノ粒子11」と称する)が回収された。 Thereafter, the nanoparticles (hereinafter referred to as "nanoparticles 11") were recovered by filtering the solution in the beaker.
 (例12)
 例1と同様の方法により、ナノ粒子を製造した。ただし、この例12では、第1の溶液に、酢酸亜鉛のみを添加し、テトラエトキシシラン(TEOS)を添加しなかった。
(Example 12)
Nanoparticles were produced by a method similar to Example 1. However, in this Example 12, only zinc acetate and no tetraethoxysilane (TEOS) were added to the first solution.
 これにより、ナノ粒子(以下、「ナノ粒子12」と称する)が回収された。 As a result, nanoparticles (hereinafter referred to as "nanoparticles 12") were recovered.
 (例13)
 以下のように、熱プラズマ法を用いて、ナノ粒子を製造した。
(Example 13)
Nanoparticles were manufactured using a thermal plasma method as follows.
 まず、原料スラリーを調製した。原料スラリーは、酸化亜鉛粒子と二酸化ケイ素粒子とを、モル比で60:40となるように混合して得た混合粉末を、アルコール中に分散させて調製した。 First, a raw material slurry was prepared. The raw material slurry was prepared by dispersing in alcohol a mixed powder obtained by mixing zinc oxide particles and silicon dioxide particles at a molar ratio of 60:40.
 次に、反応チャンバ内に熱プラズマを発生させた。熱プラズマは、アルゴンと酸素の混合雰囲気(Ar:O=80:20)とした反応チャンバ内で、電極間に高周波電圧を印加することにより発生させた。熱プラズマの温度は、約10000Kであった。 Next, a thermal plasma was generated within the reaction chamber. Thermal plasma was generated by applying a high frequency voltage between electrodes in a reaction chamber with a mixed atmosphere of argon and oxygen (Ar:O 2 =80:20). The temperature of the thermal plasma was about 10,000K.
 次に、この熱プラズマ中に調製した原料スラリーを投入した。 Next, the prepared raw material slurry was introduced into this thermal plasma.
 原料スラリーは、熱プラズマによりプラズマ化され、気相となった。その後、この気相に、室温の窒素と酸素の混合ガス(N:O=75:25)を供給し、気相を急冷した。 The raw material slurry was turned into plasma by thermal plasma and turned into a gas phase. Thereafter, a mixed gas of nitrogen and oxygen (N 2 :O 2 =75:25) at room temperature was supplied to this gas phase to rapidly cool the gas phase.
 これにより、ナノ粒子(以下、「ナノ粒子13」と称する)が製造された。 As a result, nanoparticles (hereinafter referred to as "nanoparticles 13") were produced.
 以下の表1には、各例におけるナノ粒子の製造条件をまとめて示した。 Table 1 below summarizes the manufacturing conditions for nanoparticles in each example.
Figure JPOXMLDOC01-appb-T000001
 (評価)
 製造された各ナノ粒子を用いて、以下の評価を実施した。
Figure JPOXMLDOC01-appb-T000001
(evaluation)
The following evaluations were performed using each of the manufactured nanoparticles.
 (組成分析)
 SEM-EDXを用いて、各ナノ粒子の組成分析を行った。
(composition analysis)
The composition of each nanoparticle was analyzed using SEM-EDX.
 測定には、日立製作所製の走査型電子顕微鏡S4300を用いた。また、EDX検出器として、Oxford社製のエネルギー分散型X線分析装置X-actを用いた。このとき、標準試料で測定元素の相対感度係数を予め較正し、O、Si、Znそれぞれのカウントが10000以上となる測定条件を用いた。測定用サンプルは以下の通りの手順で準備した。はじめに、ナノ粒子をエタノール溶媒で希釈したのち、ナノ粒子を含む分散液を作製した。ナノ粒子の濃度は、3wt%とした。次に、Al製のSEM用試料台の上に、分散液を約10μL滴下した。その後、室温でエタノールを乾燥させることにより、試料台上にナノ粒子を担持させて、測定サンプルとした。 A scanning electron microscope S4300 manufactured by Hitachi, Ltd. was used for the measurement. Further, as an EDX detector, an energy dispersive X-ray analyzer X-act manufactured by Oxford was used. At this time, the relative sensitivity coefficients of the measurement elements were calibrated in advance using standard samples, and measurement conditions were used in which the counts of each of O, Si, and Zn were 10,000 or more. Samples for measurement were prepared according to the following procedure. First, the nanoparticles were diluted with an ethanol solvent, and then a dispersion containing the nanoparticles was prepared. The concentration of nanoparticles was 3 wt%. Next, about 10 μL of the dispersion liquid was dropped onto an Al sample stand for SEM. Thereafter, by drying the ethanol at room temperature, the nanoparticles were supported on the sample stage to form a measurement sample.
 その結果、ナノ粒子1~ナノ粒子3では、原子数比Zn/(Zn+Si)は、いずれも0.3~0.95の範囲であることがわかった。一方、ナノ粒子11~ナノ粒子12では、原子数比Zn/(Zn+Si)は、ほぼ1であった。また、ナノ粒子13では、原子数比Zn/(Zn+Si)は、0.75であった。 As a result, it was found that for nanoparticles 1 to 3, the atomic ratio Zn/(Zn+Si) was all in the range of 0.3 to 0.95. On the other hand, in nanoparticles 11 to 12, the atomic ratio Zn/(Zn+Si) was approximately 1. Further, in nanoparticle 13, the atomic ratio Zn/(Zn+Si) was 0.75.
 (シェラー径の評価)
 X線回折装置(装置名D2 Phaser:Bruker社製)を使用して、各ナノ粒子のX線回折分析を実施した。得られた回折ピークから、前述の(1)式に従って、シェラー径を算出した。
(Evaluation of Scherrer diameter)
An X-ray diffraction analysis of each nanoparticle was performed using an X-ray diffraction device (device name: D2 Phaser, manufactured by Bruker). From the obtained diffraction peak, the Scherrer diameter was calculated according to the above-mentioned formula (1).
 その結果、ナノ粒子1~ナノ粒子3では、いずれもシェラー径が1nm~10nmの範囲にあることがわかった。 As a result, it was found that Nanoparticles 1 to 3 all had Scherrer diameters in the range of 1 nm to 10 nm.
 (赤外分光分析)
 各ナノ粒子を用いて、赤外分光分析を実施した。測定には、Thermo Fisher Scientific社製;Nic-plan/Nicolet6700を用いた。
(Infrared spectroscopy)
Infrared spectroscopic analysis was performed using each nanoparticle. For the measurement, Nic-plan/Nicolet 6700 manufactured by Thermo Fisher Scientific was used.
 一例として、前述の図1には、ナノ粒子2の赤外分光ペクトルを示す。 As an example, the above-mentioned FIG. 1 shows an infrared spectrum of nanoparticles 2.
 図1から、ナノ粒子2におけるI/(I+I+I)を算定した。前述のように、Iは、領域Qにおける最大強度であり、Iは、領域Qにおける最大強度であり、Iは、領域Qにおける最大強度である。その結果、I/(I+I+I)=0.383であった。 From FIG. 1, I 2 /(I 1 +I 2 +I 3 ) in nanoparticle 2 was calculated. As mentioned above, I 1 is the maximum intensity in region Q 1 , I 2 is the maximum intensity in region Q 2 , and I 3 is the maximum intensity in region Q 3 . As a result, I 2 /(I 1 +I 2 +I 3 )=0.383.
 なお、ナノ粒子1およびナノ粒子3においても、同様の赤外分光ペクトルが得られた。 Note that similar infrared spectra were obtained for nanoparticles 1 and 3 as well.
 (ラマン分光分析)
 各ナノ粒子を用いて、顕微ラマン分光分析を実施した。測定には、堀場製作所社製;LabRAM HR Evolutionを用いた。
(Raman spectroscopy)
Microscopic Raman spectroscopy was performed using each nanoparticle. For the measurement, LabRAM HR Evolution manufactured by Horiba, Ltd. was used.
 一例として、前述の図2には、ナノ粒子2のラマンスペクトルを示す。 As an example, the above-mentioned FIG. 2 shows the Raman spectrum of the nanoparticles 2.
 図2から、ナノ粒子2では、ZnOサンプルにおいて波数300cm-1~500cm-1の領域に認められる急峻な複数のピークが消滅し、代わりに、半値幅が比較的広い単一のピークが生じていることがわかる。 From Figure 2, in nanoparticle 2, the multiple steep peaks observed in the wavenumber region of 300 cm -1 to 500 cm -1 in the ZnO sample disappear, and instead a single peak with a relatively wide half-width appears. I know that there is.
 なお、ナノ粒子1およびナノ粒子3においても、同様のラマンスペクトルが得られた。 Note that similar Raman spectra were obtained for nanoparticles 1 and 3 as well.
 (XAFS解析)
 ナノ粒子1~ナノ粒子3を用いて、XAFS測定を実施し、Zn原子に最近接のO原子の平均配位数、およびZn原子に最近接のZn原子の平均配位数配位数を求めた。測定には、あいちシンクロトロン光センタBL11Sを使用した。
(XAFS analysis)
Perform XAFS measurement using nanoparticles 1 to 3 to determine the average coordination number of the O atom closest to the Zn atom and the average coordination number of the Zn atom closest to the Zn atom. Ta. For the measurement, Aichi Synchrotron Optical Center BL11S was used.
 XAFS測定には、透過型step scanまたはQUICK XAFS法を使用した。 For the XAFS measurement, a transmission step scan or QUICK XAFS method was used.
 各ナノ粒子をZn K端のΔμt=1となるよう窒化ホウ素の粉末で希釈し、加圧成形したペレットを作製した。作成したペレットをプラスチックフィルムに密封し、測定装置にセットした。 Each nanoparticle was diluted with boron nitride powder so that Δμt of the Zn K end was 1, and a pellet was produced by pressure molding. The prepared pellets were sealed in a plastic film and set in a measuring device.
 XAFS測定は、室温で行い、得られたXAFSスペクトルからk空間のEXAFS振動を抽出し、フーリエ変換してR空間のFT-EXAFS(動径分布関数)を得た。R空間のFT-EXAFSに対するEXAFSフィッティング解析により、ZSOナノ粒子の構造パラメータを算出した。参照構造には、ウルツァイト型ZnOを使用した。 The XAFS measurement was performed at room temperature, and the EXAFS vibration in k-space was extracted from the obtained XAFS spectrum, and the FT-EXAFS (radial distribution function) in R-space was obtained by Fourier transformation. The structural parameters of ZSO nanoparticles were calculated by EXAFS fitting analysis for R-space FT-EXAFS. Wurtzite type ZnO was used as the reference structure.
 以下の表2には、各ナノ粒子において得られた評価結果をまとめて示す。 Table 2 below summarizes the evaluation results obtained for each nanoparticle.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ナノ粒子1~ナノ粒子3では、ナノ粒子11~ナノ粒子13と比べて粒径が小さく、I/(I+I+I)が比較的高いことがわかった。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, it was found that nanoparticles 1 to 3 had smaller particle sizes and relatively higher I 2 /(I 1 +I 2 +I 3 ) compared to nanoparticles 11 to 13. .
 また、ナノ粒子1~ナノ粒子3では、Zn原子に最近接のO原子の平均配位数は、3.0~4.5の範囲であることがわかった。さらに、ナノ粒子1~ナノ粒子3では、Zn原子に最近接のZn原子の平均配位数は、1.5~10の範囲であることがわかった。 Furthermore, in nanoparticles 1 to 3, the average coordination number of the O atom closest to the Zn atom was found to be in the range of 3.0 to 4.5. Furthermore, it was found that in nanoparticles 1 to 3, the average coordination number of the Zn atom closest to the Zn atom was in the range of 1.5 to 10.
 (薄膜の形成)
 (薄膜1)
 ナノ粒子1を含む分散液を用いて基板上に薄膜を形成した。
(Formation of thin film)
(Thin film 1)
A thin film was formed on a substrate using a dispersion containing nanoparticles 1.
 分散液は、以下のように調製した。 The dispersion liquid was prepared as follows.
 室温のプロピレングリコール溶媒中にナノ粒子1、およびモノエタノールアミン(MEA)を添加し、十分に混合した後、超音波ホモジナイザー(日本精機製作所社製)により、150Wの出力で30分間処理した。ナノ粒子1の濃度は、3wt%とし、MEAの濃度は、3wt%とした。さらに、得られた分散液を穴径0.22μmのフィルター(メルク社製Durapore)を用いてろ過した。これにより、分散液(以下、「分散液1」と称する)が調製された。 Nanoparticles 1 and monoethanolamine (MEA) were added to a propylene glycol solvent at room temperature, mixed thoroughly, and then treated with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 150 W for 30 minutes. The concentration of nanoparticles 1 was 3 wt%, and the concentration of MEA was 3 wt%. Furthermore, the obtained dispersion liquid was filtered using a filter with a hole diameter of 0.22 μm (Durapore manufactured by Merck & Co., Ltd.). As a result, a dispersion liquid (hereinafter referred to as "dispersion liquid 1") was prepared.
 次に、スピンコート法により、分散液1を基板上に塗布し、塗膜を形成した。その後、塗膜を150℃でベーキング処理し、薄膜(以下、「薄膜1」と称する)を形成した。薄膜1の厚さは、40nmを目標とした。 Next, Dispersion 1 was applied onto the substrate by a spin coating method to form a coating film. Thereafter, the coating film was baked at 150°C to form a thin film (hereinafter referred to as "thin film 1"). The thickness of the thin film 1 was targeted to be 40 nm.
 なお、基板には、シリカガラス基板およびインジウムスズ酸化物(ITO)基板を使用した。シリカガラス基板上の薄膜1は、以下に示す平坦性の評価に使用し、ITO基板上の薄膜1は、仕事関数の評価に使用した。 Note that a silica glass substrate and an indium tin oxide (ITO) substrate were used as the substrates. Thin film 1 on the silica glass substrate was used for the flatness evaluation shown below, and thin film 1 on the ITO substrate was used for the work function evaluation.
 (薄膜2)
 ナノ粒子2をエタノール溶媒で希釈することにより、ナノ粒子2を含む分散液(以下、「分散液2」と称する)を作製した。ナノ粒子2の濃度は、3wt%とした。分散液2を用いて、ITO基板上に薄膜を形成した。スピンコート後のベーキング処理温度は、100℃とした。得られた薄膜を「薄膜2」と称する。
(Thin film 2)
A dispersion containing nanoparticles 2 (hereinafter referred to as "dispersion 2") was prepared by diluting nanoparticles 2 with an ethanol solvent. The concentration of nanoparticles 2 was 3 wt%. A thin film was formed on an ITO substrate using Dispersion 2. The baking treatment temperature after spin coating was 100°C. The obtained thin film is referred to as "thin film 2."
 (薄膜3)
 ナノ粒子3をエタノール溶媒で希釈することにより、ナノ粒子3を含む分散液(以下、「分散液3」と称する)を作製した。ナノ粒子3の濃度は、3wt%とした。分散液3を用いてITO基板上に薄膜を形成した。スピンコート後のベーキング処理温度は、100℃とした。得られた薄膜を「薄膜3」と称する。
(Thin film 3)
A dispersion containing nanoparticles 3 (hereinafter referred to as "dispersion 3") was prepared by diluting nanoparticles 3 with an ethanol solvent. The concentration of nanoparticles 3 was 3 wt%. A thin film was formed on an ITO substrate using dispersion liquid 3. The baking treatment temperature after spin coating was 100°C. The obtained thin film is referred to as "thin film 3."
 (薄膜12)
 ナノ粒子12をエタノール溶媒で希釈することにより、ナノ粒子12を含む分散液(以下、「分散液12」と称する)を作製した。ナノ粒子12の濃度は、3wt%とした。分散液12を用いてITO基板上に薄膜を形成した。スピンコート後のベーキング処理温度は、100℃とした。得られた薄膜を「薄膜12」と称する。
(Thin film 12)
A dispersion containing nanoparticles 12 (hereinafter referred to as "dispersion 12") was prepared by diluting nanoparticles 12 with an ethanol solvent. The concentration of nanoparticles 12 was 3 wt%. A thin film was formed on an ITO substrate using dispersion liquid 12. The baking treatment temperature after spin coating was 100°C. The obtained thin film is referred to as "thin film 12."
 (薄膜13)
 ナノ粒子13を含む分散液を用いて基板上に薄膜を形成した。
(Thin film 13)
A thin film was formed on a substrate using a dispersion containing nanoparticles 13.
 分散液は、以下のように調製した。 The dispersion liquid was prepared as follows.
 室温の1-プロパノール溶媒中にナノ粒子13を添加し、十分に混合した。ナノ粒子13の濃度は、3wt%とした。これにより、分散液(以下、「分散液13」と称する)が調製された。 Nanoparticles 13 were added to 1-propanol solvent at room temperature and mixed thoroughly. The concentration of nanoparticles 13 was 3 wt%. As a result, a dispersion liquid (hereinafter referred to as "dispersion liquid 13") was prepared.
 次に、スピンコート法により、分散液1を2種類の基板のそれぞれに塗布し、塗膜を形成した。その後、塗膜を100℃でベーキング処理し、薄膜(以下、「薄膜13」と称する)を形成した。薄膜13の厚さは、130nmを目標とした。 Next, Dispersion 1 was applied to each of the two types of substrates by a spin coating method to form a coating film. Thereafter, the coating film was baked at 100°C to form a thin film (hereinafter referred to as "thin film 13"). The thickness of the thin film 13 was targeted to be 130 nm.
 基板には、シリカガラス基板およびITO基板を使用した。シリカガラス基板上の薄膜13は、以下に示す平坦性の評価に使用し、ITO基板上の薄膜13は、仕事関数の評価に使用した。 A silica glass substrate and an ITO substrate were used as the substrates. The thin film 13 on the silica glass substrate was used for flatness evaluation shown below, and the thin film 13 on the ITO substrate was used for work function evaluation.
 以下の表3には、各薄膜の成膜条件をまとめて示した。 Table 3 below summarizes the deposition conditions for each thin film.
Figure JPOXMLDOC01-appb-T000003
 得られた各分散液および各薄膜を用いて、以下の評価を実施した。
Figure JPOXMLDOC01-appb-T000003
The following evaluations were performed using each of the obtained dispersions and thin films.
 (バンドギャップ)
 分散液1~分散液3に対し、バンドギャップを測定した。
(band gap)
Band gaps were measured for Dispersions 1 to 3.
 バンドギャップの測定には、紫外可視分光光度計(日本分光社製、品番:V-750)を用い、得られた光透過スペクトルからその値を求めた。 To measure the band gap, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product number: V-750) was used, and the value was determined from the obtained light transmission spectrum.
 測定の結果より、ナノ粒子1~ナノ粒子3のバンドギャップは、それぞれ、3.42eV、3.58eV、および3.51eVであることがわかった。 The measurement results revealed that the band gaps of nanoparticles 1 to 3 were 3.42 eV, 3.58 eV, and 3.51 eV, respectively.
 (イオン化ポテンシャルおよび仕事関数)
 各薄膜を用いて、イオン化ポテンシャルおよび仕事関数を測定した。
(Ionization potential and work function)
Ionization potential and work function were measured using each thin film.
 仕事関数の測定には、紫外光電子分光法を使用した。紫外光電子分光法に使用される励起光は、HeI(21.2eV)とした。 Ultraviolet photoelectron spectroscopy was used to measure the work function. The excitation light used for ultraviolet photoelectron spectroscopy was HeI (21.2 eV).
 測定の結果より、ナノ粒子1~ナノ粒子3子のイオン化ポテンシャルは、それぞれ、7.0eV、6.8eV、および6.7eVであることがわかった。 The measurement results revealed that the ionization potentials of nanoparticles 1 to 3 were 7.0 eV, 6.8 eV, and 6.7 eV, respectively.
 また、ナノ粒子1~ナノ粒子3の仕事関数は、それぞれ、3.7eV、3.2eV、および3.6eVであることがわかった。一方、ナノ粒子12およびナノ粒子13の仕事関数は、それぞれ、4.0eVおよび3.3eVであることがわかった。 It was also found that the work functions of nanoparticles 1 to 3 were 3.7 eV, 3.2 eV, and 3.6 eV, respectively. On the other hand, the work functions of nanoparticles 12 and 13 were found to be 4.0 eV and 3.3 eV, respectively.
 (電子親和力)
 上記のイオン化ポテンシャルの値から、上記のバンドギャップの値を減ずることにより、ナノ粒子1~ナノ粒子3の電子親和力を求めた。その結果、ナノ粒子1~ナノ粒子3の電子親和力は、それぞれ、3.6eV、2.7eV、および3.2eVであることがわかった。
(electron affinity)
The electron affinities of nanoparticles 1 to 3 were determined by subtracting the above band gap value from the above ionization potential value. As a result, it was found that the electron affinities of nanoparticles 1 to 3 were 3.6 eV, 2.7 eV, and 3.2 eV, respectively.
 (表面粗さRMS)
 AFM(Bruker社製:Dimension Icon)を用いて、薄膜1および薄膜13の表面粗さ(RMS)を測定した。
(Surface roughness RMS)
The surface roughness (RMS) of thin film 1 and thin film 13 was measured using AFM (Dimension Icon, manufactured by Bruker).
 測定の結果、薄膜1は、表面粗さRMSが1.4nmであり、平坦な表面が得られていることがわかった。一方、薄膜13では、表面粗さRMSが8nmであり、平坦な表面が得られていないことがわかった。 As a result of the measurement, it was found that the surface roughness RMS of thin film 1 was 1.4 nm, and a flat surface was obtained. On the other hand, the surface roughness RMS of thin film 13 was 8 nm, indicating that a flat surface was not obtained.
 以下の表4には、各薄膜において得られた結果をまとめて示した。 Table 4 below summarizes the results obtained for each thin film.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 このように、ナノ粒子1~ナノ粒子3を含む分散液を使用した場合、仕事関数が小さな薄膜が形成されるとともに、得られる薄膜の表面粗さRMSが有意に抑制されることが確認された。 In this way, it was confirmed that when a dispersion containing nanoparticles 1 to 3 was used, a thin film with a small work function was formed, and the surface roughness RMS of the obtained thin film was significantly suppressed. .
 本願は、2022年6月2日に出願した日本国特許出願第2022-090500号、および2022年12月9日に出願した日本国特許出願第2022-197063号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2022-090500 filed on June 2, 2022 and Japanese Patent Application No. 2022-197063 filed on December 9, 2022. The entire content of the same Japanese application is incorporated by reference into this application.
 100   OLED
 110   基板
 120   底部電極
 130   ホール注入層/ホール輸送層
 140   有機発光層
 150   追加層
 160   上部電極
 170   絶縁層
 200   QDディスプレイ
 210   基板
 220   底部電極
 230   ホール注入層/ホール輸送層
 240   QD発光層
 250   追加層
 260   上部電極
100 OLED
110 Substrate 120 Bottom electrode 130 Hole injection layer/Hole transport layer 140 Organic light emitting layer 150 Additional layer 160 Top electrode 170 Insulating layer 200 QD display 210 Substrate 220 Bottom electrode 230 Hole injection layer/Hole transport layer 240 QD light emitting layer 250 Additional layer 260 upper electrode

Claims (12)

  1.  金属酸化物を含むナノ粒子であって、
     赤外分光法により測定された当該ナノ粒子のスペクトルにおいて、Zn-O-Zn結合に由来する400cm-1~600cm-1の領域における最大強度をIとし、Zn-O-Si結合に由来する870cm-1~970cm-1の領域における最大強度をIとし、Si-O-Si結合に由来する1050cm-1~1150cm-1の領域における最大強度をIとしたとき、ピーク強度比I/(I+I+I)は、0.28以上であり、
     当該ナノ粒子における原子数比Zn/(Zn+Si)は、0.3~0.95の範囲であり、
     当該ナノ粒子のシェラー径は、1nm~10nmの範囲である、ナノ粒子。
    Nanoparticles containing a metal oxide,
    In the spectrum of the nanoparticles measured by infrared spectroscopy, the maximum intensity in the region of 400 cm -1 to 600 cm -1 derived from Zn-O-Zn bonds is defined as I 1 , and the maximum intensity derived from Zn-O-Si bonds is defined as I 1. When the maximum intensity in the region of 870 cm -1 to 970 cm -1 is I 2 and the maximum intensity in the region of 1050 cm -1 to 1150 cm -1 derived from Si-O-Si bonds is I 3 , the peak intensity ratio I 2 /(I 1 +I 2 +I 3 ) is 0.28 or more,
    The atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95,
    The nanoparticles have a Scherrer diameter in the range of 1 nm to 10 nm.
  2.  金属酸化物を含むナノ粒子であって、
     X線吸収微細構造(XAFS)解析により求められる、Zn原子に最近接であるO原子の平均配位数は、3.0~4.5の範囲であり、かつ
     前記X線吸収微細構造(XAFS)解析により求められる、Zn原子に最近接であるZn原子の平均配位数が1.5~10の範囲であり、
     当該ナノ粒子における原子数比Zn/(Zn+Si)は、0.3~0.95の範囲であり、
     当該ナノ粒子のシェラー径は、1nm~10nmの範囲である、ナノ粒子。
    Nanoparticles containing a metal oxide,
    The average coordination number of the O atom closest to the Zn atom, determined by X-ray absorption fine structure (XAFS) analysis, is in the range of 3.0 to 4.5, and the X-ray absorption fine structure (XAFS) ) The average coordination number of the Zn atom closest to the Zn atom determined by analysis is in the range of 1.5 to 10,
    The atomic ratio Zn/(Zn+Si) in the nanoparticles is in the range of 0.3 to 0.95,
    The nanoparticles have a Scherrer diameter in the range of 1 nm to 10 nm.
  3.  当該ナノ粒子は、仕事関数が3.9eV以下である、請求項1または2に記載のナノ粒子。 The nanoparticle according to claim 1 or 2, wherein the nanoparticle has a work function of 3.9 eV or less.
  4.  請求項1または2に記載のナノ粒子と、溶媒と、分散剤と、を有する、分散液。 A dispersion liquid comprising the nanoparticles according to claim 1 or 2, a solvent, and a dispersant.
  5.  請求項1または2に記載のナノ粒子と、溶媒と、分散剤と、増粘剤と、界面活性剤と、を有する、インク。 An ink comprising the nanoparticles according to claim 1 or 2, a solvent, a dispersant, a thickener, and a surfactant.
  6.  請求項1または2に記載のナノ粒子を含む、薄膜。 A thin film comprising the nanoparticles according to claim 1 or 2.
  7.  第1の電極と、有機発光層と、第2の電極と、を有し、
     前記第1の電極または前記第2の電極と前記有機発光層との間に、請求項6に記載の薄膜を含む追加層を有する、有機発光ダイオード。
    comprising a first electrode, an organic light emitting layer, and a second electrode,
    An organic light-emitting diode, comprising an additional layer between the first electrode or the second electrode and the organic light-emitting layer, comprising a thin film according to claim 6.
  8.  前記追加層の表面粗さRMS(二乗平均平方根高さ)が5nm以下である、請求項7に記載の有機発光ダイオード。 The organic light emitting diode according to claim 7, wherein the additional layer has a surface roughness RMS (root mean square height) of 5 nm or less.
  9.  第1の電極と、量子ドット発光層と、第2の電極と、を有し、
     前記第1の電極または前記第2の電極と前記量子ドット発光層との間に、請求項6に記載の薄膜を含む追加層を有する、量子ドットディスプレイ。
    It has a first electrode, a quantum dot light emitting layer, and a second electrode,
    A quantum dot display comprising an additional layer comprising the thin film of claim 6 between the first electrode or the second electrode and the quantum dot light emitting layer.
  10.  前記追加層の表面粗さRMS(二乗平均平方根高さ)が5nm以下である、請求項9に記載の量子ドットディスプレイ。 The quantum dot display according to claim 9, wherein the surface roughness RMS (root mean square height) of the additional layer is 5 nm or less.
  11.  金属酸化物を含むナノ粒子を製造する方法であって、
    (1)亜鉛およびケイ素を含む原料と第1の溶媒とを混合し、第1の溶液を調製するステップと、
    (2)アルカリを含む第2の溶液を調製するステップと、
    (3)フローリアクター法を用いて、前記第1の溶液と前記第2の溶液とを混合し、ナノ粒子を含む第3の溶液を生成するステップと、
    (4)前記第3の溶液に、前記ナノ粒子の成長を抑制する添加剤を添加するステップと、
     を有する、方法。
    A method for producing nanoparticles containing metal oxides, the method comprising:
    (1) mixing raw materials containing zinc and silicon with a first solvent to prepare a first solution;
    (2) preparing a second solution containing an alkali;
    (3) mixing the first solution and the second solution using a flow reactor method to generate a third solution containing nanoparticles;
    (4) adding an additive that suppresses the growth of the nanoparticles to the third solution;
    A method having.
  12.  前記ナノ粒子の成長を抑制する添加剤は、酢酸エチルである、請求項11に記載の方法。 12. The method of claim 11, wherein the additive that inhibits nanoparticle growth is ethyl acetate.
PCT/JP2023/018779 2022-06-02 2023-05-19 Nanoparticles, dispersion liquid, ink, thin film, organic light emitting diode, quantum dot display and method for producing nanoparticles WO2023234074A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-090500 2022-06-02
JP2022090500 2022-06-02
JP2022197063 2022-12-09
JP2022-197063 2022-12-09

Publications (1)

Publication Number Publication Date
WO2023234074A1 true WO2023234074A1 (en) 2023-12-07

Family

ID=89026539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018779 WO2023234074A1 (en) 2022-06-02 2023-05-19 Nanoparticles, dispersion liquid, ink, thin film, organic light emitting diode, quantum dot display and method for producing nanoparticles

Country Status (1)

Country Link
WO (1) WO2023234074A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008393A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for producing nanoparticles by forced ultra-thin film rotary processing
US20140255293A1 (en) * 2013-03-11 2014-09-11 Oregon State University Controlled synthesis of nanoparticles using ultrasound in continuous flow
WO2016043231A1 (en) * 2014-09-18 2016-03-24 国立大学法人東京工業大学 Light-emitting element, display device, and lighting device
WO2016043084A1 (en) * 2014-09-18 2016-03-24 旭硝子株式会社 Light emitting element and power generation element
JP2017222574A (en) * 2016-06-02 2017-12-21 エム・テクニック株式会社 Oxide particle of which color characteristics are controlled, and composition for application or having film shape containing oxide particle
JP2019505403A (en) * 2015-12-31 2019-02-28 ダウ グローバル テクノロジーズ エルエルシー Continuous flow synthesis of nanostructured materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008393A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for producing nanoparticles by forced ultra-thin film rotary processing
US20140255293A1 (en) * 2013-03-11 2014-09-11 Oregon State University Controlled synthesis of nanoparticles using ultrasound in continuous flow
WO2016043231A1 (en) * 2014-09-18 2016-03-24 国立大学法人東京工業大学 Light-emitting element, display device, and lighting device
WO2016043084A1 (en) * 2014-09-18 2016-03-24 旭硝子株式会社 Light emitting element and power generation element
JP2019505403A (en) * 2015-12-31 2019-02-28 ダウ グローバル テクノロジーズ エルエルシー Continuous flow synthesis of nanostructured materials
JP2017222574A (en) * 2016-06-02 2017-12-21 エム・テクニック株式会社 Oxide particle of which color characteristics are controlled, and composition for application or having film shape containing oxide particle

Similar Documents

Publication Publication Date Title
Yao et al. High‐brightness blue and white leds based on inorganic perovskite nanocrystals and their composites
Wei et al. A universal ternary‐solvent‐ink strategy toward efficient inkjet‐printed perovskite quantum dot light‐emitting diodes
Zhang et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light‐emitting diodes
Jia et al. High performance inkjet‐printed quantum‐dot light‐emitting diodes with high operational stability
JP5716805B2 (en) Coating composition, porous film, light scattering film, and organic electroluminescent device
Li et al. Inkjet printing matrix perovskite quantum dot light‐emitting devices
Ye et al. Ligand‐Exchange of Low‐Temperature Synthesized CsPbBr3 Perovskite toward High‐Efficiency Light‐Emitting Diodes
Cho et al. Highly Efficient Deep Blue Cd‐Free Quantum Dot Light‐Emitting Diodes by ap‐Type Doped Emissive Layer
Baek et al. Highly Stable All‐Inorganic Perovskite Quantum Dots Using a ZnX2‐Trioctylphosphine‐Oxide: Application for High‐Performance Full‐Color Light‐Emitting Diode
JP2013069726A (en) Wavelength conversion member and solar power generation module using the same
Nie et al. The chloride anion doped hybrid perovskite quantum dots exchanged by short surfactant ligand enable color-tunable blue fluorescent emitting for QLEDs application
Li et al. High luminance of CuInS 2-based yellow quantum dot light emitting diodes fabricated by all-solution processing
JP6902539B2 (en) Compounds, dispersion compositions and resin compositions
WO2023234074A1 (en) Nanoparticles, dispersion liquid, ink, thin film, organic light emitting diode, quantum dot display and method for producing nanoparticles
Kim et al. Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement
Wang et al. Efficient emission of quasi-two-dimensional perovskite films cast by inkjet printing for pixel-defined matrix light-emitting diodes
Lee et al. Investigation of highly luminescent inorganic perovskite nanocrystals synthesized using optimized ultrasonication method
Ahn et al. InP/ZnSeS/ZnS quantum dot-embedded alumina microbeads for color-by-blue displays
Son et al. Highly efficient and eco-friendly InP-based quantum dot light-emitting diodes with a synergetic combination of a liquid metal cathode and size-controlled ZnO nanoparticles
de Morais et al. Investigation of nitrogen-doped carbon dot/ZnO nanocomposites and their application as interlayer in solution-processed organic light emitting diodes
Shin et al. Environmentally stable luminescent perovskite nanocrystals passivated and encapsulated by siloxane hybrids enabling reliable color-converted organic light-emitting diodes
Ning et al. Passivating defects in ZnO electron transport layer for enhancing performance of red InP-based quantum dot light-emitting diodes
Liu et al. An effective strategy to boost 3D perovskite light-emitting diode performance via solvent mixing strategy
Cai et al. Pure red CsPbBr 0.96 I 2.04/SiO 2 core/shell nanocrystals with simultaneous high efficiency and stability for Mini-LEDs
Tao et al. Scalable Synthesis of High‐Quality Core/Shell Quantum Dots With Suppressed Blinking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815833

Country of ref document: EP

Kind code of ref document: A1