Nothing Special   »   [go: up one dir, main page]

WO2023231401A1 - 一种非隔离dcdc变换器、供电电源及通信设备 - Google Patents

一种非隔离dcdc变换器、供电电源及通信设备 Download PDF

Info

Publication number
WO2023231401A1
WO2023231401A1 PCT/CN2022/142280 CN2022142280W WO2023231401A1 WO 2023231401 A1 WO2023231401 A1 WO 2023231401A1 CN 2022142280 W CN2022142280 W CN 2022142280W WO 2023231401 A1 WO2023231401 A1 WO 2023231401A1
Authority
WO
WIPO (PCT)
Prior art keywords
dcdc converter
pcb
isolated dcdc
magnetic
capacitor
Prior art date
Application number
PCT/CN2022/142280
Other languages
English (en)
French (fr)
Inventor
谭威
杨和钱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231401A1 publication Critical patent/WO2023231401A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • This application relates to the field of power electronics technology, and in particular to a non-isolated DCDC converter, power supply and communication equipment.
  • power modules of communication equipment have increasingly higher requirements for power density. Improving power density can be achieved by increasing the switching frequency of switching tubes in switching power supplies. However, the higher the switching frequency, the greater the loss of the converter, making the power module less efficient.
  • General switching power supplies include isolated switching power supplies and non-isolated switching power supplies.
  • the last stage of the board-level power supply of communication equipment currently uses a non-isolated DCDC converter, in which the inductor acts as a non-isolated DCDC (Direct Current).
  • the main magnetic components of the converter and the inductor are mainly in the form of planar conductors, such as printed circuit board (PCB, Printed Circuit Board) copper foil or cast conductors.
  • this application provides a non-isolated DCDC converter, power supply and communication equipment, which can reduce the loss of the inductor and improve the efficiency of the non-isolated DCDC converter.
  • This application provides a non-isolated DCDC converter, including: magnetic material, switch tube and capacitor; the switch tube and capacitor form the charge and discharge circuit of the non-isolated DCDC converter; the magnetic material is located on the printed circuit board PCB of the non-isolated DCDC converter. Inside; the magnetic material is located in the charge and discharge circuit of the non-isolated DCDC converter; the magnetic core material provides a magnetic circuit for the charge and discharge circuit of the non-isolated DCDC converter.
  • the specific type of the non-isolated DCDC converter is not specifically limited, for example, it is a boost converter (Boost), a buck (Buck) converter or a buck-boost converter (BuckBoost).
  • the inductor In order to reduce the loss caused by the inductor, the inductor is no longer installed, but only the magnetic material is installed inside the PCB, so that the loop of the magnetic material and other devices forms a magnetic circuit, provides magnetic flux, forms a distributed inductor, and realizes the function of the inductor.
  • This non-isolated DCDC converter does not have independent windings. Instead, the windings are formed by device and device connections and vertically connected conductors. Magnetic materials are set inside the PCB to save the setting of the inductor. Since there is no discrete inductor, the cost is reduced. The power consumption caused by the inductance improves the efficiency of the entire non-isolated DCDC converter. In addition, when the power consumption of the inductor is large, it will cause the entire circuit board to heat up. Without an independent inductor, the power consumption is reduced and the heat dissipation problem is also solved.
  • the magnetic materials are embedded in the PCB as a whole, the magnetic materials are pressed with multi-layer magnetic PP, or the magnetic materials are made of magnetic films. Made by pressing. Among them, the manufacturing process of magnetic materials embedded in PCB as a whole is the simplest.
  • This application does not specifically limit the way in which the various components of the non-isolated DCDC converter are arranged on the PCB.
  • One possible implementation method is that the switch tube and the capacitor are located on the upper and lower sides of the PCB respectively; the switch tube and the capacitor are connected through vertical conductors to form a path. , and at least part of the magnetic material is surrounded by the path to form a loop, and at least part of the magnetic material provides a magnetic path when current flows through the loop.
  • the vertical conductor is a plated via hole; or, the vertical conductor is an embedded copper pillar.
  • the switch tube can be arranged on the surface of the PCB or embedded inside.
  • One possible implementation method is that the switch tube is surface-mounted on the surface of the PCB; or the switch tube is embedded inside the PCB.
  • the capacitor is attached to the surface of the PCB; or the capacitor is attached to the side wall of the PCB to connect the upper and lower surfaces of the PCB; or the capacitor is buried inside the PCB.
  • the switch tube and capacitor are embedded in the PCB substrate. Compared with the situation where the switch tube and capacitor are located on the surface of the PCB, the entire circuit board can be made thinner, and the heat dissipation path of the device is shorter, so it is more conducive to heat dissipation.
  • One possible implementation method is that the switch tube and the capacitor are located on the same surface of the PCB, or the switch tube and the capacitor are located on the upper surface and lower surface of the PCB respectively;
  • the switch tube and capacitor form a system-level package SIP module respectively, and the PCB and magnetic materials form an overall board.
  • the SIP module and the overall board are combined together, which has a higher degree of integration.
  • This application does not specifically limit the formation direction of the magnetic flux formed by the magnetic material and the plane where the PCB is located.
  • the magnetic flux in the magnetic circuit provided by the magnetic material circulates in a closed loop parallel to the horizontal plane where the PCB is located.
  • the magnetic flux in the magnetic circuit provided by the magnetic material circulates in a closed loop perpendicular to the horizontal plane where the PCB is located.
  • the switch tube includes: a first switch tube and a second switch tube; the capacitor includes an input capacitor and an output capacitor; the input capacitor, the first switch tube and the second switch tube are set On the first surface of the PCB; the output capacitor is set on another surface other than the first surface of the PCB.
  • the connections of the charge and discharge circuit of the Buck converter include horizontal connections of the input capacitor, the first switch tube, the second switch tube and the output capacitor, and vertical connections of the vertical conductors.
  • the non-isolated DCDC converter provided by this application does not limit the number of DCDC circuits included therein. It can be one or multiple. To meet the needs of the application, the non-isolated DCDC converter can include multiple DCDC circuits. Specifically, the non-isolated DCDC converter is a multi-phase coupled Buck converter.
  • a non-isolated DCDC converter can include multiple Buck circuits, and the magnetic materials of the multiple Buck circuits are coupled together.
  • the inductor windings in multiple Buck circuits can share a common magnet, that is, a common magnetic core.
  • the non-isolated DCDC converter provided by this application does not include an inductor winding. Therefore, the magnetic materials of multiple Buck circuits can be coupled together.
  • the implementation method is described in detail below. Due to the inductive coupling between multiple Buck circuits, the magnetic fluxes in multiple Buck circuits can cancel each other, which is equivalent to the total inductance becoming lower. Therefore, the ripple current can be further reduced, thereby further reducing losses. Since the non-isolated DCDC converter provided by this application does not have an independent inductor winding, the power density can be increased, and the path equivalent to the winding is greatly shortened, so the copper loss of the winding is also reduced.
  • This application provides a power supply, which includes the non-isolated DCDC converter introduced above, and also includes: a rectifier circuit; the first end of the rectifier circuit is used to connect to the AC power supply; the rectifier circuit is used to convert the AC power of the AC power supply into DC power; The second end of the rectifier circuit is used to connect to the first end of the non-isolated DCDC converter; the second end of the non-isolated DCDC converter is used to power the load; the non-isolated DCDC converter is used to convert DC power and provide it to the load .
  • This application also provides a communication device, including the power supply introduced above; the power supply is used to supply power to the load in the communication device.
  • the power supply can provide voltages of 12V, 5V, 3.3V, 1.0V, etc. for loads in communication equipment.
  • the embodiments of this application do not specifically limit the type of communication equipment, such as equipment in a data center, servers, base stations, etc.
  • the non-isolated DCDC converter includes: magnetic materials, switching tubes and capacitors; the switching tubes and capacitors form the charge and discharge circuit of the non-isolated DCDC converter; the magnetic material is located inside the printed circuit board PCB of the non-isolated DCDC converter; The magnetic material is located in the charge and discharge circuit of the non-isolated DCDC converter. It is located in both the charging circuit and the discharge circuit, effectively forming a distributed inductance; the magnetic core material provides a magnetic circuit for the charge and discharge circuit of the non-isolated DCDC converter. .
  • the non-isolated DCDC converter In order to reduce the loss caused by the inductance, the non-isolated DCDC converter provided by this application no longer has a discrete inductor, but only sets magnetic materials inside the PCB, so that the loop of magnetic materials and other devices forms a magnetic circuit and provides magnetic flux. Thus realizing the function of the inductor. This can save the setting of the inductor. Since there is no discrete inductor, the power consumption caused by the inductor can be reduced, thereby improving the efficiency of the entire non-isolated DCDC converter.
  • Figure 1 is a schematic diagram of a power supply provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the charging circuit of a Buck circuit provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the discharge circuit of a Buck circuit provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a non-isolated DCDC converter provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the charging circuit corresponding to Figure 4.
  • Figure 6 is a schematic diagram of the discharge circuit corresponding to Figure 4.
  • Figure 7 is a schematic diagram of a magnetic material in a PCB according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of another magnetic material in a PCB according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of another magnetic material in a PCB according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of the horizontal magnetic flux direction in a non-isolated DCDC converter provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the horizontal magnetic flux direction in another non-isolated DCDC converter provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram of the vertical magnetic flux direction in a non-isolated DCDC converter provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of the vertical magnetic flux direction in another non-isolated DCDC converter provided by the embodiment of the present application.
  • Figure 14 is a perspective view of the non-isolated DCDC converter provided by the embodiment of the present application.
  • Figure 15 is a schematic diagram of a multi-phase coupled Buck circuit provided by an embodiment of the present application.
  • Figure 16 is a PCB schematic diagram of a multi-phase Buck circuit provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a power supply provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the non-isolated DCDC converter Since the non-isolated DCDC converter has no transformer compared to the isolated DCDC converter, it is small in size and low in cost, and is suitable for powering the last stage of load, such as powering chips.
  • the chip is not limited to a specific scenario.
  • it can be a chip of a network device or a chip of an IT device. Specifically, for example, powering the chip of the server.
  • Figure 1 is a schematic diagram of a power supply provided by an embodiment of the present application.
  • the power supply provided by this embodiment includes a non-isolated DCDC converter 200 and also includes: a rectifier circuit 300;
  • the first end of the rectifier circuit 300 is used to connect the AC power supply AC, and the rectifier circuit 300 is used to convert the alternating current of the AC power supply AC into direct current;
  • the second terminal of the rectifier circuit 300 is used to connect to the first terminal of the non-isolated DCDC converter 200; the second terminal of the non-isolated DCDC converter 200 is used to power the load;
  • the non-isolated DCDC converter 200 is used to convert direct current and provide it to the load.
  • the load can be any electrical equipment.
  • the non-isolated DCDC converter 200 can output different voltages, for example, it can output 12V, 5V, 3.3V, 1.0V and other voltages.
  • the non-isolated DCDC converter includes a switching tube, which realizes the conversion of electric energy by controlling the switching action of the switching tube.
  • reducing the size of the power supply can be achieved by increasing the switching frequency.
  • the higher the switching frequency the corresponding loss will be larger and the efficiency will be lower.
  • the length of the inductor can be reduced.
  • the inductor is realized by a winding, that is, the length of the winding is reduced.
  • the shortest winding can only be set to one turn, no less.
  • the non-isolated DCDC converter in order to reduce the power consumption of the inductor, no discrete inductor is provided, and only magnetic material is provided in the PCB.
  • the loop formed by the current surrounds the magnetic material, a magnetic circuit is formed, and the magnetic flux passes through Through magnetic materials, the function of the inductor is realized, so that there is no need to set up a discrete inductor on the PCB, which can reduce the power consumption of the inductor and improve the power conversion efficiency of the non-isolated DCDC converter.
  • the non-isolated DCDC converter provided by the embodiments of the present application is hereinafter referred to as a converter for convenience of introduction.
  • the embodiments of the present application do not specifically limit the specific type of the converter.
  • it may be a boost converter (Boost) or a buck converter.
  • Buck boost converter
  • BuckBoost buck-boost converter
  • the following embodiments take a buck converter, that is, a Buck circuit, as an example for introduction.
  • a buck converter that is, a Buck circuit
  • the working principle of the Buck circuit is introduced with reference to the attached figure.
  • FIG. 2 is a schematic diagram of a charging circuit of a Buck circuit provided by an embodiment of the present application.
  • the Buck circuit includes an input capacitor C1, an output capacitor C2, a first switching tube Q1 and a second switching tube Q2.
  • both ends of the input capacitor C1 are connected to both ends of the input power supply
  • the first end of the first switch tube Q1 is connected to the first end of the input capacitor C1
  • the second end of the first switch tube Q1 is connected to the third end of the second switch tube Q2.
  • the second end of the second switching tube Q2 is connected to the second end of the input capacitor C1
  • the first end of the inductor L is connected to the second end of the first switching tube Q1
  • the second end of the inductor L is connected to the third end of the output capacitor C2.
  • the second end of the output capacitor C2 is connected to the second end of the input capacitor C1.
  • the first switching tube Q1 serves as the main power tube to perform switching operations. That is, when the first switching tube Q1 is turned on, the input voltage Vin charges the inductor L. Refer to the charging circuit shown by the dotted line in Figure 2.
  • the current path is: Q1- L-C2-C1.
  • the second switching tube Q2 acts as the freewheeling function of the diode.
  • FIG. 3 is a schematic diagram of a discharge circuit of a Buck circuit provided by an embodiment of the present application.
  • the discharge circuit is shown as the dotted line in Figure 3, and the current path is: L-C2-Q2-L.
  • the inductor L is generally set on the plane of the PCB.
  • the inductor is larger, resulting in a larger PCB, and the loss of the inductor is large, resulting in a loss of electrical energy of the entire Buck circuit. Conversion efficiency is low.
  • the non-isolated DCDC converter provided by the embodiment of the present application no longer has an inductor, but only has magnetic materials inside the PCB, so that the loop of the magnetic materials and other devices forms a magnetic circuit and provides magnetic flux. , forming a distributed inductor to realize the function of an inductor.
  • the non-isolated DCDC converter provided by the embodiments of the present application does not have independent windings. Instead, the windings are formed by devices and device connections and vertically connected conductors, and magnetic materials are provided inside the PCB, which can save the installation of inductors.
  • the power consumption caused by the inductor can be reduced, thereby improving the efficiency of the entire non-isolated DCDC converter.
  • the power consumption of the inductor is large, it will cause the entire circuit board to heat up.
  • the embodiment of the present application does not provide an independent inductor. Therefore, while the power consumption is reduced, the heat dissipation problem is also solved.
  • FIG 4 is a schematic diagram of a non-isolated DCDC converter provided by an embodiment of the present application.
  • the non-isolated DCDC converter provided by the embodiment of the present application includes: magnetic materials, switching tubes and capacitors;
  • the switching tube and capacitor form the charge and discharge circuit of the non-isolated DCDC converter
  • the magnetic material is located inside the printed circuit board PCB of the non-isolated DCDC converter
  • the magnetic material is located in the charge and discharge circuit of the non-isolated DCDC converter
  • the magnetic core material provides a magnetic circuit for the charge and discharge circuit of the non-isolated DCDC converter.
  • the specific type of the DCDC converter is not specifically limited.
  • the Buck circuit is still used as an example for introduction below.
  • the magnetic material 10 As shown in Figure 4, there is no inductor in the Buck circuit. Only the magnetic material 10 is provided. The magnetic material 10 is located in both the charging circuit of the Buck circuit and the discharge circuit of the Buck circuit. That is, the magnetic material 10 acts as an inductor. role. Due to the magnetic permeability properties of the magnetic material 10, when a current forms a closed loop around the magnetic material 10, magnetic flux passes through the magnetic material 10, thereby generating a magnetic field.
  • the magnetic core material 10 provided in this embodiment is located both in the charging circuit of the Buck circuit shown in Figure 5 and in the Buck circuit shown in Figure 6. in the discharge circuit.
  • the switch tube is attached to the surface of the PCB; or the switch tube is embedded inside the PCB.
  • the capacitor is attached to the surface of the PCB; or, the capacitor is attached to the side wall of the PCB to connect the upper and lower surfaces of the PCB.
  • the switch tube and the capacitor are located on the same surface of the PCB, such as the upper surface of the PCB, or the lower surface of the PCB, or the switch tube and the capacitor are located on different surfaces of the PCB, such as the switch tube and the capacitor are located on the lower surface of the PCB respectively.
  • the upper surface and lower surface; the switch tube and the capacitor form a system-in-a-package (SIP, System In a Package) module respectively, the PCB and the magnetic material form the overall board, and the SIP module is combined with the overall board.
  • SIP System In a Package
  • FIG. 7 is a schematic diagram of a magnetic material in a PCB according to an embodiment of the present application.
  • the magnetic material 10 is embedded in the PCB as a whole.
  • each device in the Buck circuit can be disposed on the upper surface and the lower surface of the PCB respectively.
  • C1, Q1 and Q2 in Figure 4 are disposed on the upper surface of the PCB
  • C2 in Figure 4 is disposed on the lower surface of the PCB.
  • the entire magnetic material 10 is embedded in the PCB.
  • the manufacturing process is simple, and the entire magnetic material 10 can be directly embedded.
  • FIG 8 is a schematic diagram of another magnetic material in a PCB according to an embodiment of the present application.
  • the magnetic material 10 in Figure 8 is made of multiple layers of magnetic PP pressed together.
  • Figure 8 is just an example of laminating three layers of magnetic PP in a PCB.
  • the magnetic material in the non-isolated DCDC converter provided by the embodiment of the present application can also be formed by laminating magnetic films.
  • the capacitor and switch tube are located on the surface of the PCB, and the capacitor and switch tube can also be located inside the PCB, that is, embedded in the PCB as Die.
  • this figure provides a schematic diagram of yet another magnetic material in a PCB according to an embodiment of the present application.
  • the switch tube and capacitor shown in Figure 9 are embedded in the PCB substrate. Compared with the situation where the switch tube and capacitor are located on the surface of the PCB, the embedded device shown in Figure 9 can make the entire circuit board thinner and improve the heat dissipation of the device. The path is shorter and, therefore, more conducive to heat dissipation.
  • the embodiment of the present application does not specifically limit the specific type of the switch transistor.
  • it can be any type of semiconductor switching device.
  • a metal-oxide semiconductor field-effect transistor (MOS, Metal-Oxide-Semiconductor Field-Effect Transistor) tube is introduced as an example.
  • the switch tube and capacitor are located on different surfaces of the PCB board, the switch tube and capacitor form a closed loop, and the switch tube and capacitor need to be electrically connected.
  • the specific connection method is introduced below.
  • the switch tube and the capacitor are located on the upper and lower sides of the PCB respectively; the switch tube and the capacitor are connected by vertical conductors to form a path, and at least part of the magnetic material is surrounded by the path to form a loop.
  • the switching tube and the capacitor can be electrically connected through vertical conductors.
  • Vertical conductors can be in the form of plated vias or, alternatively, embedded copper pillars. Or it can also be a vertically interconnected conductor formed by other processes, that is, to electrically connect the switch tube and the capacitor. For ease of understanding, the following embodiments are introduced by taking the vertical conductor as a via hole as an example.
  • FIG 10 is a schematic diagram of the horizontal magnetic flux direction in a non-isolated DCDC converter provided by an embodiment of the present application.
  • FIG 10 continues to take the Buck circuit as an example, in which the first switch transistor Q1, the second switch transistor Q2 and the input capacitor Cin are surface-mounted on the upper surface of the PCB, and the output capacitor Co is surface-mounted on the lower surface of the PCB.
  • the specific side of the PCB where the output capacitor is located is not specifically limited, as long as the output capacitor is not on the same surface as other devices.
  • the first switching transistor Q1, the second switching transistor Q2 and the input capacitor Cin are located on the first surface of the PCB, and the output capacitor Co is located on another surface other than the first surface of the PCB.
  • Figure 10 shows two vias K.
  • the vias K are conductive, and the PCB includes conductive layers. Therefore, the two vias K form a closed loop with the upper and lower conductive layers.
  • the magnetic material shown in Figure 10 is divided into multiple areas by closed loops in the horizontal direction of the PCB. Three areas are taken as an example in the figure.
  • the current direction of a closed loop is clockwise.
  • the magnetic flux of the magnetic material 12 located in the middle is inward, and X is used to represent the inward magnetic flux direction; the inward magnetic flux flows from the magnetic material 12 on both sides
  • the magnetic fluxes of the magnetic materials 11 and 13 come out, and O represents the outward magnetic flux direction, thereby forming a closed magnetic circuit.
  • the closed loop in Figure 10 forms a turn of inductance, because the magnetic material is placed inside the closed loop and can be equivalent to the function of an inductor.
  • Figure 11 shows a magnetic material made of multi-layer magnetic PP pressed together.
  • the magnetic flux in the magnetic circuit provided by the magnetic material circulates in a closed loop perpendicular to the horizontal plane where the PCB is located.
  • FIG. 12 is a schematic diagram of the vertical magnetic flux direction in a non-isolated DCDC converter provided by an embodiment of the present application.
  • Figure 12 continues to take the Buck circuit as an example.
  • the difference between Figure 12 and Figure 10 is that the devices in Figure 10 and Figure 11 are located on the upper and lower surfaces of the PCB, while the devices in Figure 12 are located inside the PCB, that is, buried inside the PCB.
  • the first switching transistor Q1, the second switching transistor Q2 and the input capacitor Cin are located on the upper side of the PCB, and the output capacitor Co is located on the lower side of the PCB.
  • Figure 12 shows two vias K.
  • the vias K are conductive, and the PCB includes conductive layers. Therefore, the two vias K form a closed loop with the upper and lower conductive layers.
  • the magnetic material 10 in Figure 12 is divided into multiple areas by closed loops in the vertical direction of the PCB. Three areas are taken as an example in Figure 12 .
  • the current direction of a closed loop is clockwise.
  • the magnetic flux of the magnetic material 12 located in the middle is inward, and X is used to represent the inward magnetic flux direction; the inward magnetic flux flows from the upper and lower magnetic flux.
  • the magnetic fluxes of materials 11 and 13 come out, and O represents the outward magnetic flux direction, thus forming a closed magnetic circuit.
  • Figure 13 shows The directions of the magnetic circuits in Figure 13 and Figure 12 are the same and will not be repeated here.
  • the only difference between Figure 13 and Figure 12 is the way in which the magnetic material is arranged in the PCB.
  • Figure 12 shows that the magnetic material is entirely embedded inside the PCB.
  • Figure 13 shows a magnetic material made of multi-layer magnetic PP pressed together.
  • the components of the Buck circuit in Figures 12 and 13 are introduced by taking them embedded inside the PCB as an example. It should be understood that for this closed loop where the direction of the magnetic flux is perpendicular to the horizontal plane of the PCB, the components of the Buck circuit can also be similar to Figure 10 The method shown is placed on the upper surface and lower surface of the PCB. The embodiment of the present application does not specifically limit the location of the components of the Buck circuit.
  • Vin input voltage of the converter
  • Vt voltage drop across the inductor
  • N Number of turns of inductor winding
  • Delta B Change value of magnetic flux density in the inductor magnetic circuit
  • Ae effective cross-sectional area of the inductor magnetic circuit.
  • connection method of the charging loop and the discharging loop in the non-isolated DCDC converter provided by the embodiment of the present application will be introduced below with reference to the accompanying drawings.
  • FIG 14 is a perspective view of a non-isolated DCDC converter provided by an embodiment of the present application.
  • the non-isolated DCDC converter including a Buck circuit is continued to be introduced as an example.
  • the first switching tube Q1, the second switching tube Q2 and the input capacitor Cin are all located on the upper surface of the PCB, and the output capacitor Co is located on the lower surface of the PCB.
  • an independent inductor is not provided.
  • the horizontal connection or partial horizontal connection of the charging loop and the discharging loop is realized through the above device body, leaving only vertical connections or very few.
  • the horizontal connection can be achieved through vertical conductor K.
  • the vertical conductors may be via holes, other conductors, such as pillars, or conductors implemented by electroplating or embedding processes for electrical connection.
  • the non-isolated DCDC converter provided by the embodiment of the present application does not include an inductor winding, the area of the PCB can be reduced, thereby reducing the volume of the entire non-isolated DCDC converter, thereby increasing the power density of the non-isolated DCDC converter. Since no independent inductor winding is provided, the power consumption caused by the inductor can be reduced and the power conversion efficiency of the non-isolated DCDC converter can be improved.
  • the non-isolated DCDC converter provided by the embodiments of the present application does not limit the number of DCDC circuits included therein. For example, it can be one or multiple.
  • the above embodiments take the example of the non-isolated DCDC converter including one DCDC circuit. , it should be understood that, to meet application requirements, the non-isolated DCDC converter may include multiple DCDC circuits.
  • FIG. 15 is a schematic diagram of a Buck circuit in which multiple phases are coupled together according to an embodiment of the present application.
  • a non-isolated DCDC converter can include multiple Buck circuits, and the magnetic materials of the multiple Buck circuits are coupled together.
  • the inductor windings in multiple Buck circuits can share a common magnet, that is, a common magnetic core.
  • the non-isolated DCDC converter provided by the embodiment of the present application does not include an inductor winding. Therefore, the magnetic materials of multiple Buck circuits can be coupled together. The implementation method is described in detail below.
  • FIG 15 only takes a two-phase Buck circuit as an example. From the circuit diagram, the two Buck circuits have independent input terminals and output terminals, and only magnetic materials can be coupled together.
  • the first Buck circuit includes an input capacitor Cin and an output capacitor Co, and also includes a first switching transistor Q1 and a second switching transistor Q2.
  • the second Buck circuit includes an input capacitor Cin and an output capacitor Co, and also includes a third switching transistor Q3 and a fourth switching transistor Q4.
  • the connection relationship of each device in the Buck circuit can be found in the corresponding description in Figure 2, and will not be described again here.
  • the magnetic materials of multiple Buck circuits can be embedded in the PCB as a whole, or they can be made of magnetic film or magnetic PP multi-layer lamination.
  • the magnetic flux in the magnetic circuit provided by the magnetic material of the multiple Buck circuits circulates in a closed loop parallel to the horizontal plane where the PCB is located.
  • the magnetic flux in the magnetic circuit provided by the magnetic materials of multiple Buck circuits circulates in a closed loop perpendicular to the horizontal plane where the PCB is located.
  • FIG 16 is a PCB schematic diagram of a multi-phase Buck circuit provided by an embodiment of the present application.
  • the input capacitor Cin, first switch transistor Q1 and second switch transistor Q2 of the first Buck circuit, and the input capacitor Cin, third switch transistor Q3 and fourth switch transistor Q4 of the second Buck circuit are all arranged on the upper surface of the PCB.
  • the output capacitor Co of the first Buck circuit and the output capacitor Co of the second Buck circuit are both arranged on the lower surface of the PCB, and the circuits on the upper surface of the PCB and the lower surface of the PCB are electrically connected through via holes.
  • the magnetic flux of the magnetic material circulates in a closed loop on the horizontal plane where the parallel PCB is located, forming a horizontal magnetic circuit.
  • the magnetic material is divided into multiple areas by via holes in the horizontal direction of the PCB, namely area 11, area 12, area 13 and area 14.
  • the first Buck circuit and the second Buck circuit share areas 12 and 13 of magnetic material.
  • the magnetic flux direction in area 12 is inward, and X is used to represent the inward magnetic flux direction;
  • the flux comes out from the magnetic flux in areas 11 and 13 located on both sides, and O represents the outward magnetic flux direction, thereby forming a closed magnetic circuit.
  • the magnetic flux direction in area 13 is inward, and X is used to represent the inward magnetic flux direction;
  • the magnetic flux inside goes out from the magnetic flux in areas 12 and 14 located on both sides, and O represents the outward magnetic flux direction, thereby forming a closed magnetic circuit.
  • the magnetic fluxes in multiple Buck circuits can cancel each other, which is equivalent to the total inductance becoming lower. Therefore, the ripple current can be further reduced, thereby further reducing losses.
  • the non-isolated DCDC converter provided by the embodiment of the present application does not provide an independent inductor winding, the power density can be increased, and the path equivalent to the winding is greatly shortened. Therefore, the copper loss of the winding is also reduced.
  • the coupling coefficient between the two Buck circuits can be adjusted by adjusting the mutual positions of the vertical connections in the two Buck circuits.
  • the non-isolated DCDC converter provided by the embodiment of the present application partially or completely replaces the inductor winding with switching circuit devices and magnetic materials, breaking the limitations of single-turn windings, further reducing winding losses, and at the same time achieving a minimum power loop and minimum parasitic inductance. , thereby reducing space electromagnetic radiation, improving signal quality and reducing switch tube peak voltage, thereby reducing filter capacitance and switching losses; in addition, not independently setting inductor windings on the PCB surface can reduce the number of PCB layers, thereby reducing height and cost. And the coupling inductor of the multi-phase Buck circuit can further reduce the loss of the inductor's AC impedance ACR.
  • Embodiments of the Application all take a non-isolated DCDC converter as an example to introduce the implementation of the inductor, which is replaced by magnetic materials.
  • the inductors in any other circuits, that is, magnetic devices can be replaced by the magnetic materials introduced in the above embodiments, which will not be described again here.
  • embodiments of the present application also provide a power supply, which will be described in detail below with reference to the accompanying drawings.
  • FIG 17 is a schematic diagram of a power supply provided by an embodiment of the present application.
  • the power supply provided by the embodiment of the present application includes the non-isolated DCDC converter introduced in the above embodiment, and also includes: a rectifier circuit 300;
  • the first end of the rectifier circuit 300 is used to connect to the AC power supply;
  • the rectifier circuit 300 is used to convert the alternating current of the alternating current power supply into direct current
  • the second terminal of the rectifier circuit 300 is used to connect the first terminal of the non-isolated DCDC converter
  • the embodiments of this application do not specifically limit the specific implementation form of the non-isolated DCDC converter.
  • it can be a Buck circuit, a Boost circuit, or a BuckBoost circuit.
  • Figure 17 only takes the non-isolated DCDC converter as a Buck circuit as an example.
  • a Buck circuit is used to reduce the input 12V to 3V and output it to the load.
  • a detailed description of the Buck circuit please refer to the introduction in Figure 4 and will not be repeated here.
  • the second terminal of the non-isolated DC/DC converter is used to power the load
  • Non-isolated DC/DC converter is used to convert DC power and provide it to the load.
  • the power supply provided by the embodiment of the present application may also include a one-stage DCDC converter, that is, a step-down DCDC converter is included between the rectifier circuit 300 in FIG. 17 and the non-isolated DCDC converter for converting the output of the rectifier circuit 300 The DC voltage is stepped down and output to the input end of the non-isolated DCDC converter.
  • a one-stage DCDC converter that is, a step-down DCDC converter is included between the rectifier circuit 300 in FIG. 17 and the non-isolated DCDC converter for converting the output of the rectifier circuit 300 The DC voltage is stepped down and output to the input end of the non-isolated DCDC converter.
  • the power supply provided by this application includes the non-isolated DCDC converter introduced in the above embodiment. Since the non-isolated DCDC converter includes magnetic materials, switching tubes and capacitors; the switching tube and the capacitor form the charge and discharge circuit of the non-isolated DCDC converter; magnetic The material is located inside the printed circuit board PCB of the non-isolated DCDC converter; the magnetic material is located in the charge and discharge circuit of the non-isolated DCDC converter, both in the charging circuit and in the discharge circuit, equivalently forming a distributed inductance; magnetic core material Provides a magnetic circuit for the charge and discharge circuit of the non-isolated DCDC converter.
  • the non-isolated DCDC converter In order to reduce the loss caused by the inductance, the non-isolated DCDC converter provided by this application no longer has an inductor, but only sets magnetic materials inside the PCB, so that the loop of magnetic materials and other devices forms a magnetic circuit and provides magnetic flux, thereby realize the function of inductor. This can save the setting of the inductor. Since there is no inductor, the power consumption caused by the inductor can be reduced, thereby improving the efficiency of the entire non-isolated DCDC converter and improving the efficiency of the power supply.
  • the embodiment of the present application also provides a communication device.
  • the power supply is used to power a load in the communication device.
  • the power supply can provide 12V or 5V to the load in the communication device. , 3.3V, 1.0V, etc. voltage.
  • the embodiments of this application do not specifically limit the type of communication equipment, such as equipment in a data center, servers, base stations, etc.
  • the power supply in the communication device provided by the embodiment of the present application can save the installation of the inductor, thereby saving the area and volume of the circuit board, it is conducive to the thinning of the entire communication device and the heat dissipation of the communication device.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种非隔离DCDC变换器、供电电源及通信设备,其中,非隔离DCDC变换器包括:磁性材料、开关管和电容;开关管和电容形成非隔离DCDC变换器的充放电回路;磁性材料位于非隔离DCDC变换器的印刷电路板PCB内部;磁性材料位于非隔离DCDC变换器的充放电回路中;磁芯材料为非隔离DCDC变换器的充放电回路中提供磁路。为了降低电感带来的损耗,本申请提供的非隔离DCDC变换器不再设置分立电感,而是仅在PCB内部设置磁性材料,使磁性材料和其他器件的环路形成磁路,提供磁通,从而实现电感的功能。节省电感的设置,由于没有分立电感,因此,降低因为电感引起的功耗,从而可以提高整个非隔离DCDC变换器的效率。

Description

一种非隔离DCDC变换器、供电电源及通信设备
本申请要求于2022年05月30日提交中国国家知识产权局、申请号为202210600686.2、发明名称为“一种非隔离DCDC变换器、供电电源及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种非隔离DCDC变换器、供电电源及通信设备。
背景技术
目前,通信设备的电源模块对于功率密度的要求越来越高,提升功率密度可以通过提升开关电源中开关管的开关频率来实现。但是,开关频率越高,则变换器的损耗越大,使得电源模块的效率较低。
一般开关电源包括隔离型开关电源和非隔离型开关电源,为了降低体积,目前通信设备的板级供电最后一级采用非隔离DCDC变换器,其中,电感作为非隔离直流直流(DCDC,Direct Current)变换器的主要磁元件,电感的呈现主要为平面型导体形式,例如印制电路板(PCB,Printed Circuit Board)铜箔或流延导体等。
但是,电感在工作过程中存在损耗,电感的长度越长则损耗越大,因此,为了降低损耗可以减少电感的匝数,但是最少也只能做到一匝,不能再减少。
发明内容
为了解决以上技术问题,本申请提供一种非隔离DCDC变换器、供电电源及通信设备,能够降低电感的损耗,提高非隔离DCDC变换器的效率。
本申请提供了一种非隔离DCDC变换器,包括:磁性材料、开关管和电容;开关管和电容形成非隔离DCDC变换器的充放电回路;磁性材料位于非隔离DCDC变换器的印刷电路板PCB内部;磁性材料位于非隔离DCDC变换器的充放电回路中;磁芯材料为非隔离DCDC变换器的充放电回路中提供磁路。不具体限定非隔离DCDC变换器的具体类型,例如为升压变换器(Boost)、降压(Buck)变换器或升降压变换器(BuckBoost)。
为了降低电感带来的损耗,不再设置电感,而是仅在PCB内部设置磁性材料,使磁性材料和其他器件的环路形成磁路,提供磁通,形成分布式电感,实现电感的功能。该非隔离DCDC变换器,没有独立的绕线绕组,而是通过器件和器件连线以及垂直连接的导体形成绕组,在PCB内部设置磁性材料,节省电感的设置,由于没有分立电感,因此,降低电感引起的功耗,提高整个非隔离DCDC变换器的效率。另外,当电感功耗较大时,会引起整个电路板发热,不设置独立电感,功耗得到降低的同时,散热问题也迎刃而解。
本申请不限定磁性材料在PCB中的设置形式,下面介绍几种可能的实现方式,磁性材料作为一个整体埋入PCB中、磁性材料以多层磁性PP压合而成、或磁性材料以磁性薄膜压合而成。其中,磁性材料作为一个整体埋入PCB中的制造工艺最简单。
本申请不具体限定非隔离DCDC变换器的各个器件在PCB的设置方式,一种可能的实现方式,开关管和电容分别位于PCB的上下两侧;开关管和电容之间通过垂直导体连接形成通路,且至少部分磁性材料被通路围绕形成环路,至少部分磁性材料为环路流过电流时提供磁路。其中,垂直导体为电镀过孔;或,垂直导体为嵌入的铜柱。
另外,开关管设置在PCB的表面或者嵌入内部均可,一种可能的实现方式,开关管表贴在PCB的表面;或,开关管埋入PCB内部。
一种可能的实现方式,电容表贴在PCB的表面;或,电容贴在PCB的侧壁连接PCB的上表面和下表面;或,电容埋入PCB内部。
其中,开关管和电容嵌入PCB基板中,相比于开关管和电容位于PCB表面的情况,可以使整个电路板做得更薄,而且器件的散热路径更短,因此,更利于散热。
一种可能的实现方式,开关管和电容位于PCB的同一表面,或开关管和电容分别位于PCB的上表面和下表面;
开关管和电容分别形成系统级封装SIP模组,PCB和磁性材料形成整体板材,SIP模组与整体板材组合在一起,这种集成度更高。
本申请具体不限定,磁性材料形成的磁通与PCB所在平面的形成方向。磁性材料提供的磁路中的磁通在平行于PCB所在的水平平面闭环流通。或,磁性材料提供的磁路中的磁通在垂直于PCB所在的水平平面闭环流通。
下面以非隔离DCDC变换器为Buck变换器为例介绍;开关管包括:第一开关管和第二开关管;电容包括输入电容和输出电容;输入电容、第一开关管和第二开关管设置在PCB的第一表面;输出电容设置在PCB的第一表面以外的其他表面。
一种可能的实现方式,Buck变换器的充放电回路的连接包括输入电容、第一开关管、第二开关管和输出电容的水平连接以及垂直导体的垂直连接。
本申请提供的非隔离DCDC变换器不限定其中包括的DCDC电路的数量,可以为一个,也可以为多个,为了应用的需要,非隔离DCDC变换器中可以包括多个DCDC电路。具体地,非隔离DCDC变换器为多相耦合的Buck变换器。
继续以Buck电路为例,一个非隔离DCDC变换器中可以包括多个Buck电路,并且多个Buck电路的磁性材料耦合在一起。当Buck电路中的电感存在时,多个Buck电路中的电感绕组可以共磁体,即共磁芯。本申请提供的非隔离DCDC变换器中不包括电感绕组,因此,可以多个Buck电路的磁性材料耦合在一起,下面具体介绍实现方式。由于多个Buck电路之间的电感耦合,多个Buck电路中的磁通可以相互抵消,相当于总的电感量变低,因此,可以进一步降低纹波电流,从而进一步降低损耗。本申请提供的非隔离DCDC变换器,由于不设置独立的电感绕组,因此,可以提高功率密度,同时相当于绕组的路径极大缩短,因此,绕组的铜损也降低。
本申请提供一种供电电源,包括以上介绍的非隔离DCDC变换器,还包括:整流电路;整流电路的第一端用于连接交流电源;整流电路,用于将交流电源的交流电转换为直流电;整流电路的第二端用于连接非隔离DCDC变换器的第一端;非隔离DCDC变换器的第二端用于为负载供电;非隔离DCDC变换器,用于将直流电进行转换后提 供给负载。
本申请还提供一种通信设备,包括以上介绍的供电电源;供电电源,用于为通信设备中的负载供电。该供电电源可以为通信设备中的负载提供12V、5V、3.3V、1.0V等的电压。本申请实施例不具体限定通信设备的类型,例如为数据中心中的设备,或者服务器,基站等。
本申请至少具有以下优点:
本申请提供的非隔离DCDC变换器,包括:磁性材料、开关管和电容;开关管和电容形成非隔离DCDC变换器的充放电回路;磁性材料位于非隔离DCDC变换器的印刷电路板PCB内部;磁性材料位于非隔离DCDC变换器的充放电回路中,既位于充电回路中,又位于放电回路中,等效形成分布式电感;磁芯材料为非隔离DCDC变换器的充放电回路中提供磁路。为了降低电感带来的损耗,本申请提供的非隔离DCDC变换器不再设置分立电感,而是仅在PCB内部设置磁性材料,使磁性材料和其他器件的环路形成磁路,提供磁通,从而实现电感的功能。这样可以节省电感的设置,由于没有分立电感,因此,可以降低因为电感引起的功耗,从而可以提高整个非隔离DCDC变换器的效率。
附图说明
图1为本申请实施例提供的一种供电电源示意图;
图2为本申请实施例提供的一种Buck电路的充电回路示意图;
图3为本申请实施例提供的一种Buck电路的放电回路示意图;
图4为本申请实施例提供的一种非隔离DCDC变换器的示意图;
图5为图4对应的充电回路示意图;
图6为图4对应的放电回路示意图;
图7为本申请实施例提供一种磁性材料在PCB中的示意图;
图8为本申请实施例提供另一种磁性材料在PCB中的示意图;
图9为本申请实施例提供又一种磁性材料在PCB中的示意图;
图10为本申请实施例提供的一种非隔离DCDC变换器中水平磁通方向示意图;
图11为本申请实施例提供的另一种非隔离DCDC变换器中水平磁通方向示意图;
图12为本申请实施例提供的一种非隔离DCDC变换器中垂直磁通方向示意图;
图13为本申请实施例提供的另一种非隔离DCDC变换器中垂直磁通方向示意图;
图14为本申请实施例提供的非隔离DCDC变换器的立体图;
图15为本申请实施例提供的多相耦合在一起的Buck电路的示意图;
图16为本申请实施例提供的一种多相Buck电路的PCB示意图;
图17为本申请实施例提供的一种供电电源的示意图;
图18为本申请实施例提供的一种通信设备的示意图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先介绍非隔离DCDC变换器的应用场景。
由于非隔离DCDC变换器相对于隔离DCDC变换器来说没有变压器,因此,体积 小,成本低,适用于为最后一级负载供电,例如为芯片供电。其中,芯片不限定具体的场景,例如可以为网络设备的芯片,也可以为IT设备的芯片。具体地,例如为服务器的芯片供电等。
下面结合附图介绍非隔离DCDC变换器的一种应用场景。
参见图1,该图为本申请实施例提供的一种供电电源示意图。
本实施例提供的供电电源包括非隔离DCDC变换器200,还包括:整流电路300;
整流电路300的第一端用于连接交流电源AC,整流电路300,用于将交流电源AC的交流电转换为直流电;
整流电路300的第二端用于连接非隔离DCDC变换器200的第一端;非隔离DCDC变换器200的第二端用于为负载供电;
非隔离DCDC变换器200,用于将直流电进行转换后提供给负载。
负载可以为任何用电设备,具体可以根据负载的不同,非隔离DCDC变换器200输出的电压不同,例如可以输出12V、5V、3.3V、1.0V等电压。
由于板级供电对于功率密度要求越来越高,因此,需要最后一级供电电源的体积小,功耗低,供电效率高。非隔离DCDC变换器包括开关管,通过控制开关管的开关动作来实现电能的变换。一般减小供电电源的体积可以通过提高开关频率来实现,但是开关频率越高,则对应的损耗较大,效率较低。为了降低非隔离DCDC变换器中电感带来的功耗,可以降低电感的长度,一般电感由绕组来实现,即减小绕组的长度。但是,绕组最短也只能设置一匝,不能再少。
变换器实施例
本申请实施例提供的非隔离DCDC变换器,为了降低电感的功耗,不设置分立电感,仅在PCB中设置磁性材料,当电流形成的环路包围磁性材料时,形成磁路,磁通穿过磁性材料,从而实现了电感的作用,这样PCB上不必设置分立电感,从而可以降低电感的功耗,提高非隔离DCDC变换器的电能转换效率。
为了使本领域技术人员更好地理解本申请实施例提供的非隔离DCDC变换器,下面结合附图进行详细介绍。
本申请实施例提供的非隔离DCDC变换器,为了方便介绍,以下简称变换器,本申请实施例不具体限定变换器的具体类型,例如可以为升压变换器(Boost),也可以为降压(Buck)变换器,也可以为升降压变换器(BuckBoost)等。
为了方便本领域技术人员理解本申请实施例提供的技术方案,以下实施例中以降压变换器,即Buck电路为例进行介绍。首先结合附图介绍Buck电路的工作原理。
参见图2,该图为本申请实施例提供的一种Buck电路的充电回路示意图。
Buck电路包括输入电容C1、输出电容C2、第一开关管Q1和第二开关管Q2。
其中,输入电容C1的两端连接输入电源的两端,第一开关管Q1的第一端连接输入电容C1的第一端,第一开关管Q1的第二端连接第二开关管Q2的第一端,第二开关管Q2的第二端连接输入电容C1的第二端,电感L的第一端连接第一开关管Q1的第二端,电感L的第二端连接输出电容C2的第一端,输出电容C2的第二端连接输入 电容C1的第二端。
其中,第一开关管Q1作为主功率管进行开关动作,即第一开关管Q1导通时,输入电压Vin为电感L充电,参见图2中虚线所示的充电回路,电流路径为:Q1-L-C2-C1。第二开关管Q2充当二极管的续流作用。
参见图3,该图为本申请实施例提供的一种Buck电路的放电回路示意图。
当第一开关管Q1断开时,电感L放电,放电回路如图3中的虚线所示,电流路径为:L-C2-Q2-L。
由于图2和图3对应的Buck电路中包括电感L,电感L一般设置在PCB的平面上,电感的体积较大,导致PCB的体积较大,而且电感的损耗大,导致整个Buck电路的电能转换效率较低。
为了降低电感带来的损耗,本申请实施例提供的非隔离DCDC变换器不再设置电感,而是仅在PCB内部设置磁性材料,使磁性材料和其他器件的环路形成磁路,提供磁通,形成分布式电感,实现电感的功能。而且本申请实施例提供的非隔离DCDC变换器,没有独立的绕线绕组,而是通过器件和器件连线以及垂直连接的导体形成绕组,并在PCB内部设置磁性材料,这样可以节省电感的设置,由于没有分立电感,因此,可以降低因为电感引起的功耗,从而可以提高整个非隔离DCDC变换器的效率。另外,当电感功耗较大时,会引起整个电路板发热,而本申请实施例不设置独立电感,因此,功耗得到降低的同时,散热问题也迎刃而解。
参见图4,该图为本申请实施例提供的一种非隔离DCDC变换器的示意图。
本申请实施例提供的非隔离DCDC变换器,包括:磁性材料、开关管和电容;
开关管和电容形成非隔离DCDC变换器的充放电回路;
磁性材料位于非隔离DCDC变换器的印刷电路板PCB内部;
磁性材料位于非隔离DCDC变换器的充放电回路中;
磁芯材料为非隔离DCDC变换器的充放电回路中提供磁路。
本实施例中不具体限定DCDC变换器的具体类型,为了更好地对比图2和图3,下面仍然以Buck电路为例进行介绍。
如图4所示,Buck电路中已没有电感,仅是设置磁性材料10,该磁性材料10既位于Buck电路的充电回路中,又位于Buck电路的放电回路中,即该磁性材料10充当了电感的作用。由于磁性材料10的导磁特性,有电流在磁性材料10的周围形成闭合环路时,磁性材料10中有磁通通过,进而产生磁场。
如图5所示的充电回路以及图6所示的放电回路,本实施例提供的磁芯材料10既位于图5所示的Buck电路的充电回路中,又位于图6所示的Buck电路的放电回路中。
本申请实施例不具体限定磁芯材料在PCB内部的具体形式,下面结合附图举例列举几种实现方式。
其中,开关管表贴于PCB的表面;或,开关管埋入PCB内部。
电容表贴在PCB的表面;或,电容贴在PCB的侧壁连接PCB的上表面和下表面。
另外,开关管和电容均位于PCB的同一表面,例如共同位于PCB的上表面,或共 同位于PCB的下表面,或者开关管和电容分别位于PCB的不同表面,例如开关管和电容分别位于PCB的上表面和下表面;开关管和电容分别形成系统级封装(SIP,System In a Package)模组,PCB和磁性材料形成整体板材,SIP模组与整体板材组合在一起。
参见图7,该图为本申请实施例提供一种磁性材料在PCB中的示意图。
磁性材料10作为一个整体埋入PCB中。
其中,Buck电路中的各个器件可以分别设置于PCB的上表面和下表面,例如,PCB的上表面设置图4中的C1、Q1和Q2,PCB的下表面设置图4中的C2。
图7所示的将磁性材料10整体埋入PCB中,制造工艺简单,直接埋入一个整体的磁性材料10即可。
参见图8,该图为本申请实施例提供另一种磁性材料在PCB中的示意图。
图8中的磁性材料10以多层磁性PP压合而成,图8中仅是示意在PCB中压合三层磁性PP为例。
另外,本申请实施例提供的非隔离DCDC变换器中的磁性材料还可以以磁性薄膜压合而成。
图7和图8中电容和开关管均是位于PCB的表面,而且电容和开关管还可以位于PCB的内部,即作为Die埋入PCB中,下面结合附图进行详细介绍。
参见图9,该图为本申请实施例提供又一种磁性材料在PCB中的示意图。
图9所示的开关管和电容嵌入PCB基板中,相比于开关管和电容位于PCB表面的情况,图9所示的嵌入式器件,可以使整个电路板做得更薄,而且器件的散热路径更短,因此,更利于散热。
本申请实施例不具体限定开关管的具体类型,例如可以为半导体开关器件的任何类型,本申请实施例的图中以金属-氧化物半导体场效应晶体管(MOS,Metal-Oxide-Semiconductor Field-Effect Transistor)管为例进行介绍。
由于开关管和电容分别位于PCB板的不同表面,因此,开关管和电容形成闭合回路,需要将开关管和电容进行电连接,下面介绍具体的连接方式。
开关管和所述电容分别位于PCB的上下两侧;开关管和电容之间通过垂直导体连接形成通路,且至少部分磁性材料被通路围绕形成环路,至少部分磁性材料为环路流过电流时提供磁路,达到电感的功能。例如,为了节省材质,方便加工,开关管和电容之间可以通过垂直导体进行电连接。
垂直导体的形式可以为电镀过孔,或,为嵌入的铜柱。或者也可以为其他工艺形成的垂直互连的导体,即将开关管和电容进行电连接。为了方便理解,以下实施例中以垂直导体为过孔为例进行介绍。
本申请实施例不具体限定磁性材料中磁通的方向,下面结合附图介绍两种不同的实现方式。
首先介绍第一种,本实施例提供的非隔离DCDC变换器,磁性材料提供的磁路中的磁通在平行于PCB所在的水平平面闭环流通。需要说明的是,从图10开始,输入电容用Cin表示,输出电容用Co表示。
参见图10,该图为本申请实施例提供的一种非隔离DCDC变换器中水平磁通方向示意图。
图10继续以Buck电路为例,其中第一开关管Q1、第二开关管Q2和输入电容Cin表贴于PCB的上表面,输出电容Co表贴于PCB的下表面。本申请实施例中不具体限定输出电容位于的PCB的具体侧面,只要输出电容与其他器件不在同一个表面即可。第一开关管Q1、第二开关管Q2和输入电容Cin位于PCB的第一表面,输出电容Co位于PCB的第一表面以外的其他表面。
PCB上表面的第一开关管Q1、第二开关管Q2和输入电容Cin与PCB下表面的输出电容Co电连接,可以通过过孔K实现。图10中示意了两个过孔K,过孔K导电,而且PCB中包括导电层,因此,两个过孔K与上下导电层形成闭合环路。图10所示的磁性材料在PCB的水平方向被闭合环路分为多个区域,图中以三个区域为例。
例如闭合环路的电流方向为顺时针方向,根据右手定则,则位于中间的磁性材料12的磁通向内,利用X表示向内的磁通方向;向内的磁通从位于两侧的磁性材料11和13的磁通向外出来,用O表示向外的磁通方向,从而形成闭合磁路。
显然,图10所示的磁性材料和导电过孔的布局,使得Buck电路的PCB中磁性材料的磁通方向平行于PCB所在的水平平面闭环流通。
为了方便理解,可以认为图10中的闭合环路形成一匝电感,因为磁性材料套在闭合环路内部,可以等效为电感的功能。
图11与图10的磁路方向相同,在此不再赘述,图11与图10不同的仅是磁性材料设置在PCB中的方式不同,其中,图10为磁性材料整体埋入PCB内部。图11为磁性材料以多层磁性PP压合而成。
下面介绍第二种,本实施例提供的非隔离DCDC变换器,磁性材料提供的磁路中的磁通在垂直于PCB所在的水平平面闭环流通。
参见图12,该图为本申请实施例提供的一种非隔离DCDC变换器中垂直磁通方向示意图。
图12继续以Buck电路为例,图12与图10的不同是,图10和图11中的器件位于PCB的上表面和下表面,图12中的器件位于PCB内部,即埋入PCB内部,但是,第一开关管Q1、第二开关管Q2和输入电容Cin位于PCB的上侧,输出电容Co位于PCB的下侧。
第一开关管Q1、第二开关管Q2和输入电容Cin与输出电容Co电连接,可以通过过孔K实现。图12中示意了两个过孔K,过孔K导电,而且PCB中包括导电层,因此,两个过孔K与上下导电层形成闭合环路。图12中的磁性材料10在PCB的垂直方向被闭合环路分为多个区域,图12中以三个区域为例。
例如闭合环路的电流方向为顺时针方向,根据右手定则,则位于中间的磁性材料12的磁通向内,利用X表示向内的磁通方向;向内的磁通从位于上下的磁性材料11和13的磁通向外出来,用O表示向外的磁通方向,从而形成闭合磁路。
显然,图12所示的磁性材料和导电过孔的布局,使得Buck电路的PCB中磁性材 料的磁通方向垂直于PCB所在的水平平面闭环流通。
图13与图12的磁路方向相同,在此不再赘述,图13与图12不同的仅是磁性材料设置在PCB中的方式不同,其中,图12为磁性材料整体埋入PCB内部。图13为磁性材料以多层磁性PP压合而成。
对于图12和图13中的Buck电路的器件以埋入PCB内部为例进行介绍,应该理解,对于这种磁通方向垂直于PCB所在水平平面的闭环,Buck电路的器件也可以类似于图10所示的方式,置于PCB的上表面和下表面,本申请实施例不对Buck电路的器件的位于做具体限定。
下面结合图10-图13介绍本申请实施例提供的Buck电路的各个参数如下表1所示。
参数 数值 单位
Vin 12 V
Vo 3 V
Vt 9(Ton) V
Don 0.25 \
Fs 20 MHz
N 1 \
Delta B 0.113 T
Ae 1 mm^2
Vin:变换器的输入电压;
Vo:变换器的输出电压;
Vt:电感上的电压降;
Don:电感电流上升占空比;
Fs:开关频率;
N:电感绕组匝数;
Delta B:电感磁路中磁通密度变化值;
Ae:电感磁路有效截面积。
下面结合附图介绍本申请实施例提供的非隔离DCDC变换器中充电回路和放电回路的连接方式。
参见图14,该图为本申请实施例提供的非隔离DCDC变换器的立体图。
本实施例中继续以非隔离DCDC变换器包括Buck电路为例进行介绍。其中,第一开关管Q1、第二开关管Q2和输入电容Cin均位于PCB的上表面,输出电容Co位于PCB的下表面。
本申请实施例中不设置独立的电感,对于Buck电路中的充电回路和放电回路的连接,通过以上器件本体实现充电回路和放电回路的水平连接或者部分水平连接,仅剩下垂直连接或者很少的水平连接可以通过垂直导体K来实现。其中,垂直导体可以为过孔,也可以为其他导体,例如立柱,或者为电镀或埋嵌等工艺实现的导体来进行电连接。
由于本申请实施例提供的非隔离DCDC变换器不包括电感绕组,因此,可以降低 PCB的面积,从而降低整个非隔离DCDC变换器的体积,从而提升非隔离DCDC变换器的功率密度。由于不设置独立的电感绕组,因此,可以降低电感引起的功耗,提高非隔离DCDC变换器的电能变换效率。
本申请实施例提供的非隔离DCDC变换器不限定其中包括的DCDC电路的数量,例如可以为一个,也可以为多个,以上实施例均是以非隔离DCDC变换器中包括一个DCDC电路为例,应该理解,为了应用的需要,非隔离DCDC变换器中可以包括多个DCDC电路。
参见图15,该图为本申请实施例提供的多相耦合在一起的Buck电路的示意图。
继续以Buck电路为例,一个非隔离DCDC变换器中可以包括多个Buck电路,并且多个Buck电路的磁性材料耦合在一起。当Buck电路中的电感存在时,多个Buck电路中的电感绕组可以共磁体,即共磁芯。本申请实施例提供的非隔离DCDC变换器中不包括电感绕组,因此,可以多个Buck电路的磁性材料耦合在一起,下面具体介绍实现方式。
图15仅以两相Buck电路为例进行介绍,从电路图上看,两个Buck电路具有独立的输入端和输出端,仅磁性材料可以耦合在一起。
其中,第一Buck电路包括输入电容Cin和输出电容Co,还包括第一开关管Q1和第二开关管Q2。第二Buck电路包括输入电容Cin和输出电容Co,还包括第三开关管Q3和第四开关管Q4。Buck电路中各个器件的连接关系可以参见图2对应的描述,在此不再赘述。
其中,多个Buck电路的磁性材料,可以是整体埋入PCB,也可以是磁膜或者磁性PP多层压合而成。
多个Buck电路的磁性材料提供的磁路中的磁通在平行于PCB所在的水平平面闭环流通。另外,多个Buck电路的磁性材料提供的磁路中的磁通在垂直于PCB所在的水平平面闭环流通。
下面结合附图介绍图15对应的PCB的布局方式。
参见图16,该图为本申请实施例提供的一种多相Buck电路的PCB示意图。
第一Buck电路的输入电容Cin、第一开关管Q1和第二开关管Q2,以及第二Buck电路的输入电容Cin、第三开关管Q3和第四开关管Q4均布局在PCB的上表面,便于集中散热处理,第一Buck电路的输出电容Co和第二Buck电路的输出电容Co均布局在PCB下表面,PCB上表面和PCB下表面的电路通过过孔进行电连接。
图16中以磁材材料的磁通在平行PCB所在的水平平面闭环流通,形成水平磁路。
图16中磁性材料在PCB的水平方向被过孔分为多个区域,即区域11、区域12、区域13和区域14。其中,第一Buck电路和第二Buck电路共用磁性材料的区域12和13。
对于第一Buck电路来说,区域12周围的闭合环路的电流顺时针方向,则利用右手定则,区域12的磁通方向向内,利用X表示向内的磁通方向;向内的磁通从位于两侧的区域11和区域13的磁通向外出来,用O表示向外的磁通方向,从而形成闭合磁 路。
同理,对于第二Buck电路来说,区域13周围的闭合环路的电流顺时针方向,则利用右手定则,区域13的磁通方向向内,利用X表示向内的磁通方向;向内的磁通从位于两侧的区域12和区域14的磁通向外出来,用O表示向外的磁通方向,从而形成闭合磁路。
图16中的区域12和区域13之所以用X表示,是因为区域12和区域13中的磁通包括向内方向的磁通和向外方向的磁通,只不过向内方向的磁通量大于向外方向的磁通量,因此,两者相抵消后,呈现的总磁通方向向内,因此,用X表示区域12和区域13中的磁通方向。
由于多个Buck电路之间的电感耦合,多个Buck电路中的磁通可以相互抵消,相当于总的电感量变低,因此,可以进一步降低纹波电流,从而进一步降低损耗。
另外,本申请实施例提供的变换器包括多个Buck电路时,具体设计参数可以参见以上表1的介绍。
本申请实施例提供的非隔离DCDC变换器,由于不设置独立的电感绕组,因此,可以提高功率密度,同时相当于绕组的路径极大缩短,因此,绕组的铜损也降低。
另外,本申请实施例中可以通过调整两个Buck电路中垂直连接的相互位置,调节两个Buck电路之间的耦合系数。
本申请实施例提供的非隔离DCDC变换器,通过开关回路的器件和磁性材料部分或全部替代电感绕组,打破单匝绕组的局限,进一步降低绕组损耗,同时可实现最小功率环路和最小寄生电感,从而降低空间电磁辐射,提高信号质量和减低开关管尖峰电压,从而减少滤波电容和开关损耗;另外,不独立在PCB表面设置电感绕组,可降低PCB层数,从而降低高度和成本。并且多相Buck电路的耦合电感,可以进一步降低电感的交流阻抗ACR的损耗。
本申请实施例以上实施例均是以非隔离DCDC变换器中为例介绍电感的实现方式,以磁性材料来替代。另外,除了在非隔离DCDC变换器中,任何其他电路中的电感,即磁性器件均可以用以上实施例介绍的磁性材料的方式来替代,在此不再赘述。
电源实施例
基于以上实施例提供的一种非隔离DCDC变换器,本申请实施例还提供一种供电电源,下面结合附图进行详细介绍。
参见图17,该图为本申请实施例提供的一种供电电源的示意图。
本申请实施例提供的供电电源,包括以上实施例介绍的非隔离DCDC变换器,还包括:整流电路300;
整流电路300的第一端用于连接交流电源;
整流电路300,用于将交流电源的交流电转换为直流电;
整流电路300的第二端用于连接非隔离DCDC变换器的第一端;
本申请实施例不具体限定非隔离DCDC变换器的具体实现形式,例如可以为Buck电路,也可以为Boost电路,也可以为BuckBoost电路,图17仅是以非隔离DCDC变 换器为Buck电路为例进行介绍。例如,Buck电路用于将输入的12V降低为3V输出给负载。对于Buck电路的具体描述可以参见图4的介绍,在此不再赘述。
非隔离DC/DC变换器的第二端用于为负载供电;
非隔离DC/DC变换器,用于将直流电进行转换后提供给负载。
另外,本申请实施例提供的供电电源还可以包括一级DCDC变换器,即在图17的整流电路300和非隔离DCDC变换器之间,包括降压DCDC变换器,用于将整流电路300输出的直流电压降压后输出给非隔离DCDC变换器的输入端。
本申请提供的供电电源包括以上实施例介绍的非隔离DCDC变换器,由于包括非隔离DCDC变换器:磁性材料、开关管和电容;开关管和电容形成非隔离DCDC变换器的充放电回路;磁性材料位于非隔离DCDC变换器的印刷电路板PCB内部;磁性材料位于非隔离DCDC变换器的充放电回路中,既位于充电回路中,又位于放电回路中,等效形成分布式电感;磁芯材料为非隔离DCDC变换器的充放电回路中提供磁路。为了降低电感带来的损耗,本申请提供的非隔离DCDC变换器不再设置电感,而是仅在PCB内部设置磁性材料,使磁性材料和其他器件的环路形成磁路,提供磁通,从而实现电感的功能。这样可以节省电感的设置,由于没有电感,因此,可以降低由于电感引起的功耗,从而可以提高整个非隔离DCDC变换器的效率,提高供电电源的效率。
基于以上实施例提供的一种供电电源,本申请实施例还提供一种通信设备,供电电源用于为通信设备中的负载供电,例如,该供电电源可以为通信设备中的负载提供12V、5V、3.3V、1.0V等的电压。本申请实施例不具体限定通信设备的类型,例如为数据中心中的设备,或者服务器,基站等。
由于本申请实施例提供的通信设备中的供电电源可以节省电感的设置,从而节省电路板的面积和体积,有利于整个通信设备的轻薄化,同时有利于通信设备的散热。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (16)

  1. 一种非隔离DCDC变换器,其特征在于,包括:磁性材料、开关管和电容;
    所述开关管和所述电容形成所述非隔离DCDC变换器的充放电回路;
    所述磁性材料位于所述非隔离DCDC变换器的印刷电路板PCB内部;
    所述磁性材料位于所述非隔离DCDC变换器的充放电回路中;
    所述磁芯材料为所述非隔离DCDC变换器的充放电回路中提供磁路。
  2. 根据权利要求1所述的非隔离DCDC变换器,其特征在于,所述磁性材料作为一个整体埋入所述PCB中。
  3. 根据权利要求1所述的非隔离DCDC变换器,其特征在于,所述磁性材料以多层磁性PP压合而成。
  4. 根据权利要求1所述的非隔离DCDC变换器,其特征在于,所述磁性材料以磁性薄膜压合而成。
  5. 根据权利要求1-4任一项所述的非隔离DCDC变换器,其特征在于,所述开关管和所述电容分别位于所述PCB的上下两侧;
    所述开关管和所述电容之间通过垂直导体连接形成通路,且至少部分所述磁性材料被所述通路围绕形成环路,所述至少部分磁性材料为所述环路流过电流时提供磁路。
  6. 根据权利要求5所述的非隔离DCDC变换器,其特征在于,所述垂直导体为电镀过孔;
    或,
    所述垂直导体为嵌入的铜柱。
  7. 根据权利要求5所述的非隔离DCDC变换器,其特征在于,所述开关管表贴在所述PCB的表面;
    或,
    所述开关管埋入所述PCB内部。
  8. 根据权利要求5所述的非隔离DCDC变换器,其特征在于,所述电容表贴在所述PCB的表面;
    或,
    所述电容贴在所述PCB的侧壁连接所述PCB的上表面和下表面;
    或,
    所述电容埋入所述PCB内部。
  9. 根据权利要求1-4任一项所述的非隔离DCDC变换器,其特征在于,所述开关管和所述电容位于所述PCB的同一表面,或所述开关管和所述电容分别位于所述PCB的上表面和下表面;
    所述开关管和所述电容分别形成系统级封装SIP模组,所述PCB和所述磁性材料形成整体板材,所述SIP模组与所述整体板材组合在一起。
  10. 根据权利要求1-9任一项所述的非隔离DCDC变换器,其特征在于,所述磁性材料提供的磁路中的磁通在平行于所述PCB所在的水平平面闭环流通。
  11. 根据权利要求1-9任一项所述的非隔离DCDC变换器,其特征在于,所述磁性材料提供的磁路中的磁通在垂直于所述PCB所在的水平平面闭环流通。
  12. 根据权利要求1-11任一项所述的非隔离DCDC变换器,其特征在于,所述非隔离DCDC变换器为Buck变换器;
    所述开关管包括:第一开关管和第二开关管;
    所述电容包括输入电容和输出电容;
    所述输入电容、所述第一开关管和所述第二开关管设置在所述PCB的第一表面;所述输出电容设置在所述PCB的所述第一表面以外的其他表面。
  13. 根据权利要求12所述的非隔离DCDC变换器,其特征在于,所述Buck变换器的充放电回路的连接包括所述输入电容、所述第一开关管、所述第二开关管和所述输出电容的水平连接以及垂直导体的垂直连接。
  14. 根据权利要求12或13所述的非隔离DCDC变换器,其特征在于,所述非隔离DCDC变换器为多相耦合的Buck变换器。
  15. 一种供电电源,其特征在于,包括权利要求1-14任一项所述的非隔离DCDC变换器,还包括:整流电路;
    所述整流电路的第一端用于连接交流电源;
    所述整流电路,用于将所述交流电源的交流电转换为直流电;
    所述整流电路的第二端用于连接所述非隔离DCDC变换器的第一端;
    所述非隔离DCDC变换器的第二端用于为负载供电;
    所述非隔离DCDC变换器,用于将所述直流电进行转换后提供给所述负载。
  16. 一种通信设备,其特征在于,包括权利要求15所述的供电电源;
    所述供电电源,用于为所述通信设备中的负载供电。
PCT/CN2022/142280 2022-05-30 2022-12-27 一种非隔离dcdc变换器、供电电源及通信设备 WO2023231401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210600686.2A CN117200575A (zh) 2022-05-30 2022-05-30 一种非隔离dcdc变换器、供电电源及通信设备
CN202210600686.2 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231401A1 true WO2023231401A1 (zh) 2023-12-07

Family

ID=88998428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142280 WO2023231401A1 (zh) 2022-05-30 2022-12-27 一种非隔离dcdc变换器、供电电源及通信设备

Country Status (2)

Country Link
CN (1) CN117200575A (zh)
WO (1) WO2023231401A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009153A (zh) * 2006-01-24 2007-08-01 华硕电脑股份有限公司 电感装置
US20150062989A1 (en) * 2013-08-30 2015-03-05 Virginia Tech Intellectual Properties, Inc. High Frequency Integrated Point-of-Load Power Converter with Embedded Inductor Substrate
CN206226277U (zh) * 2016-11-17 2017-06-06 西安交通大学 一种内嵌变换器的导线
CN106910602A (zh) * 2017-01-24 2017-06-30 华为机器有限公司 一种薄膜电感和电源转换电路
CN110707056A (zh) * 2019-09-27 2020-01-17 矽力杰半导体技术(杭州)有限公司 封装组件及其制造方法、以及降压型变换器的封装组件
CN113285588A (zh) * 2020-10-09 2021-08-20 成都正扬博创电子技术有限公司 一种抗电磁干扰的非隔离性dc-dc电路板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009153A (zh) * 2006-01-24 2007-08-01 华硕电脑股份有限公司 电感装置
US20150062989A1 (en) * 2013-08-30 2015-03-05 Virginia Tech Intellectual Properties, Inc. High Frequency Integrated Point-of-Load Power Converter with Embedded Inductor Substrate
CN206226277U (zh) * 2016-11-17 2017-06-06 西安交通大学 一种内嵌变换器的导线
CN106910602A (zh) * 2017-01-24 2017-06-30 华为机器有限公司 一种薄膜电感和电源转换电路
CN110707056A (zh) * 2019-09-27 2020-01-17 矽力杰半导体技术(杭州)有限公司 封装组件及其制造方法、以及降压型变换器的封装组件
CN113285588A (zh) * 2020-10-09 2021-08-20 成都正扬博创电子技术有限公司 一种抗电磁干扰的非隔离性dc-dc电路板

Also Published As

Publication number Publication date
CN117200575A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US11646672B2 (en) Power converting device
US7012414B1 (en) Vertically packaged switched-mode power converter
US9977476B2 (en) Power supply apparatus
US10396653B2 (en) DC-DC converter, switching IC, and inductor device
US11876520B1 (en) Method and apparatus for delivering power to semiconductors
US9559679B2 (en) Integrated circuits including magnetic devices
US9960683B2 (en) Electronic circuit device
US11862389B1 (en) Magnetic devices for power converters with light load enhancers
US7872560B2 (en) Independent planar transformer
US20220351898A1 (en) Fully Coupled Magnetic Device
Zhang et al. GaN VHF converters with integrated air-core transformers
Deleage et al. Design and realization of highly integrated isolated DC/DC microconverter
CN112104201A (zh) 磁性组件及其电源模块
CN114944760A (zh) 具有承载次级侧整流器组件的pcb的功率转换器变压器模块
CN112038052B (zh) 电压调节模块及其适用的电压调节装置
WO2023164566A1 (en) Methods, devices, and systems for power converters
WO2023231401A1 (zh) 一种非隔离dcdc变换器、供电电源及通信设备
CN118352148A (zh) 一种竖列式磁件模块、电源模组及其组装方法
Jang et al. Power Conversion Module using LTCC substrate Interconnected to Power Inductor with Low DCR
US11439016B2 (en) Power converter module
US11133750B2 (en) Power module
US20230396158A1 (en) Sandwich structure power supply module
CN118353265A (zh) 一种两级降压串联结构的电源架构及应用其的电源模组
Jung et al. High efficient 35 W, 12-to-5 V DC/DC converter using ceramic based multi-layer circuit technologies
CN118868641A (zh) 反激电源电路、以太网供电系统和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944702

Country of ref document: EP

Kind code of ref document: A1