Nothing Special   »   [go: up one dir, main page]

WO2023228335A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2023228335A1
WO2023228335A1 PCT/JP2022/021453 JP2022021453W WO2023228335A1 WO 2023228335 A1 WO2023228335 A1 WO 2023228335A1 JP 2022021453 W JP2022021453 W JP 2022021453W WO 2023228335 A1 WO2023228335 A1 WO 2023228335A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
inverter
housing
drive device
side flow
Prior art date
Application number
PCT/JP2022/021453
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 平山
日出樹 下澤
敦士 鈴木
尚輝 工藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/021453 priority Critical patent/WO2023228335A1/en
Publication of WO2023228335A1 publication Critical patent/WO2023228335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a drive device.
  • a refrigerant flow path through which a refrigerant for cooling flows is provided in a casing of a drive device that includes a rotating electrical machine and an inverter device that supplies power to the rotating electrical machine.
  • JP6589095B discloses an on-off valve that is configured to communicate with a first refrigerant flow path provided in a box-shaped housing and a second refrigerant flow path provided in a rotating electric machine, and that opens and closes the first refrigerant flow path.
  • a configuration comprising the following is disclosed.
  • JP6589095B prevents the refrigerant from flowing out of the inverter device by closing the middle of the first refrigerant flow path with an on-off valve when the inverter device housed in a box-shaped housing is removed from the rotating electric machine. It is configured to do this. In such a configuration, there is a possibility that the refrigerant remaining in the first refrigerant flow path below the opening/closing valve drips. Therefore, since it is not possible to reliably prevent the refrigerant from flowing out from the drive device, when the inverter device is removed from the rotating electrical machine, there is a possibility that problems with insulation may occur due to the refrigerant flowing out.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a drive device that can suppress deterioration of insulation properties when removing an inverter device.
  • One embodiment of the present invention is applied to a drive device that includes a rotating electrical machine and an inverter device that is disposed above the rotating electrical machine and transfers power to and from the rotating electrical machine.
  • the rotating electrical machine has a rotating electrical machine housing
  • the rotating electrical machine housing is formed with a flow path on the rotating electrical machine side through which a refrigerant flows
  • the inverter device has a lid-shaped inverter housing, and an inner surface of the inverter housing.
  • Electrical components are arranged toward the rotating electrical machine side, and the inverter housing is fixed to the rotating electrical machine housing to form a storage chamber in which the electrical components are housed between the inverter housing and the rotating electrical machine housing.
  • an inverter-side flow path through which the refrigerant flows is formed.
  • the rotating electric machine side flow path and the inverter side flow path are connected through the contact surface where the rotating electric machine housing and the inverter housing touch, and the inverter side flow path is straight in the direction away from the connecting part with the rotating electric machine side flow path.
  • the inverter includes a first flow path that extends in a shape, and a second flow path that branches off from the first flow path and circulates within the inverter housing.
  • the end of the first flow path is formed as an opening penetrating the upper surface of the inverter housing, and the end is provided with a removable closing member that closes the opening.
  • the first inverter side flow path is the rotating electrical machine side flow path.
  • the first flow path is connected to the first flow path and extends in a straight line.
  • a removable closing member is provided at the end of the first flow path.
  • FIG. 1 is a sectional view of a drive device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of the main parts of the drive device.
  • FIG. 3 is an explanatory diagram when attaching a sealing jig.
  • FIG. 4 is an explanatory diagram after the sealing jig is inserted.
  • FIG. 5 is an explanatory diagram when removing the inverter device.
  • FIG. 6 is an explanatory diagram of the sealing jig.
  • FIG. 7 is a sectional view of the periphery of the drive device.
  • FIG. 1 is a configuration diagram of a drive device 1 according to an embodiment of the present invention.
  • the drive device 1 includes a power conversion (inverter) device 10, a generator (first rotating electrical machine) 21, and a motor (second rotating electrical machine) 22.
  • the drive device 1 is mounted on a hybrid vehicle, and receives power from a battery (not shown) to drive a motor 22, thereby causing the hybrid vehicle to travel.
  • the generator 21 is driven by an engine (not shown) to generate electricity.
  • the motor 22 rotates drive wheels via an axle 24 to drive the hybrid vehicle.
  • the motor 22 also functions as a generator that generates regenerative power when the hybrid vehicle is decelerated.
  • the rotating electric machine housing 31 is formed with a cylindrical first housing chamber 311 and a second housing chamber 312 in which the generator 21 and the motor 22 are housed, respectively.
  • a rotating electrical machine side flow path 41 through which cooling water circulates is formed in the rotating electrical machine housing 31 .
  • the generator 21 is configured such that a stator 211 and a rotor 212 are housed in an inner housing 32. By housing this inner housing 32 in the first housing chamber 311, the generator 21 is housed in the rotating electric machine housing 31. A gap is formed between the inner housing 32 and the first housing chamber 311 of the rotating electric machine housing 31. This gap functions as a generator-side cooling water flow path 42 for cooling the generator 21, and constitutes a part of the rotating electrical machine side flow path 41.
  • the motor 22 is configured such that a stator 221 and a rotor 222 are housed in an inner housing 33.
  • the motor 22 is housed in the rotating electric machine housing 31.
  • a gap is formed between the inner housing 33 and the second housing chamber 312 of the rotating electrical machine housing 31. This gap functions as a motor-side cooling water flow path 43 for cooling the motor 22, and constitutes a part of the rotating electric machine side flow path 41.
  • a communication path is provided between the generator-side cooling water flow path 42 and the motor-side cooling water flow path 43 to communicate them.
  • the rotating electrical machine housing 31 includes a cooling water inlet passage 44 through which cooling water flows from the inverter housing 11 and a cooling water outlet 40 through which cooling water flows out to the outside of the rotating electrical machine housing 31.
  • the cooling water inlet passage 44 communicates with the motor side cooling water flow path 43.
  • the generator-side cooling water flow path 42 communicates with the cooling water outlet 40 .
  • the cooling water inlet passage 44 opens to the contact surface 100 of the inverter housing 11 and communicates with the inverter side flow passage 61.
  • the rotating electric machine housing 31 has a cooling water inlet passage 44, a motor side cooling water passage 43, a generator side cooling water passage 42, and a cooling water outlet 40, which supply cooling water into the rotating electric machine housing 31. It is configured as a rotating electric machine side flow path 41 for circulation.
  • the inverter device 10 includes an inverter housing 11 and electrical components 12 including a power module, a capacitor, and the like.
  • the inverter housing 11 has a box shape with its outer edge extending toward the rotating electric machine housing 31 and opening downward.
  • the inverter housing 11 includes an upper surface portion 11b and a peripheral portion 11a (side wall) extending downward from the outer edge of the upper surface portion 11b.
  • the inverter housing 11 covers the rotating electrical machine housing 31 like a lid and is fixed to the rotating electrical machine housing 31 by bolting or the like.
  • a space formed by the inner surface of the inverter housing 11 and the upper recess 31a of the rotating electric machine housing 31 is configured as a housing chamber 101 that accommodates the electrical components 12. Ru.
  • the inverter housing 11 is formed with an inverter-side flow path 61 through which cooling water flows.
  • the electrical component 12 is a component that controls the operation of the inverter device 10, and is composed of a power module, a capacitor module, and the like.
  • the electrical component 12 is arranged on the inner surface of the inverter housing 11 so as to face the recess 31a of the rotating electric machine housing 31, and is housed in the housing chamber 101.
  • the end of the peripheral portion 11a of the inverter housing 11 is configured as a contact surface 100, and is in contact with the end of the rotating electric machine housing 31.
  • An end of a first flow path 161 of the inverter side flow path 61 opens at the contact surface 100 .
  • the rotary electric machine housing 31 in contact with the contact surface 100 has an open end of the cooling water inlet passage 44 of the rotary electric machine side flow passage 41, and the first flow passage 161 of the inverter side flow passage 61 and the cooling water inlet passage 44 and are connected.
  • An O-ring 44b (see FIG. 2) is arranged around the cooling water inlet passage 44 of the rotating electric machine housing 31. With such a configuration, a connecting portion where the rotating electric machine side flow path 41 and the inverter side flow path 61 are connected is formed on the contact surface 100 of the inverter housing 11.
  • FIG. 2 is a cross-sectional view illustrating the inverter-side flow path 61 at the contact surface 100.
  • the inverter side flow path 61 is composed of a first flow path 161 and a second flow path 261.
  • the first flow path 161 extends linearly in a direction away from the connecting portion with the rotating electrical machine side flow path 41 .
  • the second flow path 261 is arranged within the inverter housing 11 so that the cooling water flowing in from the cooling water inlet 262 (see FIG. 1) circulates, and is bent and communicated with the first flow path 161.
  • the end of the first flow path 161 on the side away from the contact surface 100 is formed as an opening 162 that penetrates the upper surface 11b of the inverter housing 11.
  • a closing member 163 is fixed to the opening 162 .
  • the closing member 163 has a flange portion 163a formed at the end on the upper surface portion 11b side, a threaded portion 163b formed with a male thread, and an O-ring 164 attached between the flange portion 163a and the threaded portion 163b.
  • the hexagonal hole 163d is formed on the upper surface side of the flange portion 163a.
  • a female thread is formed on the inner periphery of the opening 162.
  • the opening 162 is closed by screwing the closing member 163 to the opening 162 of the first flow path 161.
  • the closing member 163 is attached to and removed from the opening 162 by inserting a tool into the hexagonal hole 163d and rotating it. In this way, the closing member 163 is removably attached to the opening 162.
  • the second flow path 261 branches from a midway position of the first flow path 161.
  • the second flow path 261 is formed to penetrate from the side surface of the inverter housing 11 in a direction perpendicular to the first flow path 161 .
  • the opening of the second flow path 261 on the side surface of the inverter housing 11 is closed by attaching the plug 265.
  • the second flow path 261 is formed to circulate within the inverter housing 11, and its end communicates with a cooling water inlet 262 (see FIG. 1) provided in the inverter housing 11.
  • the cooling water flows into the rotating electrical machine side channel 41 provided in the rotating electrical machine housing 31 via the cooling water inlet passage 44 extending linearly from the first channel 161 .
  • the cooling water circulates through the rotating electric machine side flow path 41 to cool the motor 22 and the generator 21 .
  • the cooling water then flows out of the rotating electrical machine housing 31 from a cooling water outlet 40 (see FIG. 1) provided in the rotating electrical machine housing 31.
  • the inverter device 10 When performing maintenance on the inverter device 10, the inverter device 10 may be removed from the drive device 1.
  • the first flow path 161 of the inverter side flow path 61 is separated from the cooling water inlet passage 44 of the rotating electric machine side flow path 41.
  • the cooling water remaining in 61 may drip downward.
  • Electrical components 12 of the inverter device 10 are arranged on the inner surface of the inverter housing 11 and exposed to the rotating electric machine housing 31 side. Therefore, there is a possibility that the cooling water dripping from the inverter-side flow path 61 may adhere to the electrical component 12 . This may cause problems with the insulation of the electrical component 12.
  • the inverter housing in a box shape that covers the entire electrical components so that cooling water does not adhere to the electrical components when the inverter device is removed.
  • a new problem arises in that the size and weight of the inverter device increase.
  • the inverter device 10 is configured to be able to suppress deterioration in insulation properties caused by cooling water during maintenance of the inverter device while suppressing an increase in the size and weight of the inverter device 10.
  • the linear first flow path 161 of the inverter side flow path 61 is provided with an opening 162 that penetrates the upper surface portion 11b of the inverter housing 11.
  • a closing member 163 is removably attached to the opening 162.
  • the closing member 163 is removed, a sealing jig 200 as shown in FIG. 6 is attached to the opening 162, and the first The flow path 161 and the cooling water inlet passage 44 of the rotating electrical machine side flow path 41 are each closed.
  • the closing member 163 is first removed from the opening 162.
  • a rod-shaped sealing jig 200 is inserted into the opening 162 instead of the closing member 163.
  • the opening 162 becomes the sealing jig. 200 is closed.
  • the first seal member 201 and the second seal member 202 provided at the tip of the sealing jig 200 are connected to the cooling water inlet passage 44 of the rotating electric machine side flow path 41.
  • the first flow path 161 of the inverter side flow path 61, and the openings at the connecting portions of these flow paths are closed.
  • the inverter device 10 is removed as shown in FIG.
  • the first seal member 201 of the sealing jig 200 is separated from the second seal member 202.
  • the separated first seal member 201 remains in a state where the cooling water inlet passage 44 of the rotating electric machine side flow passage 41 is closed.
  • FIG. 6 is an explanatory diagram of the sealing jig 200.
  • the sealing jig 200 is composed of a plug 210, a first seal member 201, and a second seal member 202.
  • the plug 210 is a rod-shaped member, and has a flange portion 210a, a groove portion 210b, a thread forming portion 210c, and an extension portion 210d formed from the root portion.
  • the flange portion 210a is formed to be larger than the opening diameter of the opening 162, and performs positioning when the sealing jig 200 is screwed into the opening 162.
  • An O-ring 220 is fitted into the groove 210b to seal the opening 162 when the sealing jig 200 is attached to the opening 162. Threaded portion 210c is screwed onto the internal thread of opening 162.
  • the extension part 210d is formed to have a smaller diameter than the thread forming part 210c, and the second seal member 202 is fixed to the tip 210e of the extension part 210d.
  • the first seal member 201 is fixed to the distal end side of the second seal member 202 .
  • the second seal member 202 and the first seal member 201 are made of an elastic member such as rubber, and have an outer diameter slightly larger than the inner diameter of the first flow path 161 and the cooling water inlet passage 44. Ru. This prevents the cooling water from leaking when inserted into the first flow path 161 and the cooling water inlet passage 44.
  • the first seal member 201 is separably fixed to the distal end side of the second seal member 202 with glue, adhesive, or the like.
  • the first seal member 201 and the second seal member 202 are configured to be easily separated when the inverter device 10 is removed from the drive device 1.
  • the first seal member 201 has a tip portion configured as a small diameter portion 201a having a smaller diameter than the outer diameter of the base portion (the side in contact with the second seal member 202).
  • the cooling water inlet passage 44 of the rotating electrical machine side passage 41 is formed to have the same inner diameter as the first passage 161 of the inverter side passage 61 at the connecting portion. It has a stepped portion 44a formed so that the inner diameter is reduced at a position spaced apart from the connecting portion.
  • the first seal member 201 is positioned in the insertion direction with respect to the cooling water inlet passage 44. Furthermore, even when separated from the second seal member 202, the first seal member 201 can remain in the cooling water inlet passage 44 of the rotating electric machine side flow path 41.
  • the present invention is not limited to this, and the cooling water inlet passage 44 may be formed in a tapered shape so that the diameter gradually decreases from the opening portion of the cooling water inlet passage 44. You can.
  • the first seal member 201 is preferably formed into a tapered shape to match the shape of the cooling water inlet passage 44.
  • FIG. 7 is a sectional view including the area around the drive device 1 in the motor room of the hybrid vehicle of this embodiment.
  • the opening 162 of the first flow path 161 is open in the upper surface portion 11b of the inverter housing 11, and the opening 162 is closed by the closing member 163. There is no need to remove the closing member 163 except when performing maintenance on the inverter device 10, and if the closing member 163 is carelessly removed, problems such as cooling water leakage may occur.
  • the closing member 163 cannot be removed unless another component in the motor room is placed near the location where the closing member 163 is placed on the upper surface portion 11b of the inverter device 10, and the component is removed according to the procedure. It was configured as follows.
  • Air cleaner 500 connected to the intake passage of the engine is arranged above the inverter device 10. Air cleaner 500 is fixed to drive device 1 via bracket 510.
  • a fixing hole 111 to which a bracket 510 can be attached is formed in the upper surface portion 11b of the inverter housing 11.
  • a bolt 511 for fixing the bracket 510 is fastened to the fixing hole 111.
  • Bracket 510 is placed above closure member 163. Bracket 510 is placed in a position where a tool for removing closure member 163 cannot be inserted.
  • the closing member 163 can be removed by removing the air cleaner 500 according to the procedure and further removing the bracket 510 from the inverter housing 11. Therefore, the closing member 163 is prevented from being removed inadvertently. Ru.
  • the drive device 1 of the present embodiment includes a rotating electrical machine (generator 21, motor 22), an inverter device 10 that is disposed above the rotating electrical machine and transmits and receives electric power to and from the rotating electrical machine. Equipped with.
  • the rotating electrical machine has a rotating electrical machine housing 31, and a rotating electrical machine side flow path 41 through which a refrigerant flows is formed in the rotating electrical machine housing 31.
  • the inverter device 10 has a lid-shaped inverter housing 11. Electrical components 12 are arranged on the inner surface of the inverter housing 11 toward the rotating electric machine side, and the inverter housing 11 is fixed to the rotating electric machine housing 31.
  • a housing chamber 101 in which the electrical component 12 is housed is formed between the rotary electric machine housing 31 and the rotary electric machine housing 31 .
  • the inverter housing 11 is formed with an inverter-side flow path 61 through which a refrigerant flows.
  • the rotating electric machine side flow path 41 and the inverter side flow path 61 are connected through the contact surface 100 where the rotating electric machine housing 31 and the inverter housing 11 are in contact, and the inverter side flow path 61 is connected to the rotating electric machine side flow path 41.
  • the first flow path 161 extends linearly in a direction away from the portion, and the second flow path 261 branches from the first flow path 161 and circulates within the inverter housing 11.
  • the end of the first flow path 161 is formed as an opening 162 penetrating the upper surface of the inverter housing 11, and the end is provided with a removable closing member 163 that closes the opening 162.
  • the electrical component 12 is disposed at the lower part of the lid-shaped inverter housing 11, and the storage chamber 101 is formed between the inverter housing 11 and the rotating electrical machine housing 31. 41 and extends linearly, and a closing member 163 that is detachably attached to the opening 162 is provided on the upper surface side of the first flow path 161.
  • a closing member 163 that is detachably attached to the opening 162 is provided on the upper surface side of the first flow path 161.
  • the rotating electric machine side flow path 41 is formed to extend linearly in a direction away from the connection portion, and its inner diameter decreases as it moves away from the connection portion.
  • the rotating electric machine side flow path 41 can be reliably closed by the first seal member 201.
  • the rotating electric machine side flow path 41 has an inner diameter that is approximately the same as the inner diameter of the inverter side flow path 61 at the connecting portion, and the inner diameter of the rotating electric machine side flow path 41 at a position spaced apart from the connecting portion. It has a stepped portion 44a formed to reduce the size.
  • the first seal member 201 at the tip of the sealing jig 200 engages with the stepped portion 44a, so that the first seal member 201 can be positioned in the insertion direction, and the rotating electric machine side flow path 41 can be blocked more reliably.
  • a component (air cleaner 500) of the hybrid vehicle is arranged above the inverter device 10 in the direction in which the blocking member 163 is removed, and by removing the air cleaner 500, the blocking member 163 can be removed. become.
  • the cooling water of the first flow path 161 is dripped from the connecting portion when the inverter device 10 is removed from the drive device 1.
  • a sealing jig 200 having seal members 201 and 202 that prevents this can be attached from the end.
  • the closing member 163 is removed and the sealing jig 200 is attached, so that the sealing member of the sealing jig 200 is connected to the inverter side flow path 61 and the rotating electric machine side flow path 4. Since the connecting portion between the cooling water and the cooling water is blocked and the cooling water is prevented from dripping, deterioration of insulation properties caused by the cooling water can be suppressed when the inverter device 10 is removed.
  • the seal members include a first seal member 201 that closes the cooling water inlet passage 44 of the rotating electric machine side flow passage 41 and a second seal member 201 that closes the first flow passage 161 of the inverter side flow passage 61. It consists of a seal member 202.
  • the first sealing member 201 and the second sealing member 202 close the cooling water inlet passage 44 of the rotating electric machine side passage 41 and the first passage 161 of the inverter side passage 61, respectively.
  • cooling water can be prevented from dripping from both the inverter housing 11 and the rotating electric machine housing 31.
  • the sealing jig 200 includes a rod-shaped plug 210 and seal members 201 and 202, and the plug 210 has a flange portion 210a, a groove portion 210b, a thread forming portion 210c, and an extension portion 210d.
  • the seal members 201 and 202 are fixed to the tip 210e of the extension portion 210d.
  • the sealing jig 200 is inserted into the first flow path 161 of the inverter side flow path 61 instead of the closing member 163.
  • the sealing member at the tip can reliably close the cooling water inlet passage 44 of the rotating electric machine side passage 41 and the first passage 161 of the inverter side passage 61.
  • the air cleaner 500 is exemplified as another component in the motor room disposed above the inverter device 10, but is not limited thereto. Any component may be placed in the motor room as long as it is not a component that is mechanically connected to the drive device 1, such as a fuse box or a 12V battery.
  • an electric vehicle that runs using the driving force of the motor 20 has been described, but the invention is not limited to this, and a drive system for a hybrid vehicle equipped with an engine and that runs using the driving force of the engine and the driving force of the motor can also be used. Similarly applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

In this drive device, a rotating electric machine-side flow path and an inverter-side flow path are connected via a contact surface where a rotating electric machine housing and an inverter housing are in contact with each other. The inverter-side flow path comprises: a first flow path that is linearly provided in an extended manner in a direction separated from a portion connected to the rotating electric machine-side flow path; and a second flow path that branches from the first flow path and circulates within the inverter housing. An end portion of the first flow path is formed as a penetration opening portion on the upper surface of the inverter housing, and an attachable closing member for closing the opening portion is provided at the end portion.

Description

駆動装置drive device
 本発明は、駆動装置に関する。 The present invention relates to a drive device.
 回転電機と、回転電機に電力を供給するインバータ装置とを有する駆動装置の筐体には、冷却のための冷媒が流通する冷媒流路が設けられる。JP6589095Bには、箱型の筐体に設けられる第一冷媒流路と、回転電機に設けられる第二冷媒流路とが連通するように構成されると共に、第一冷媒流路を開閉する開閉バルブを備える構成が開示されている。 A refrigerant flow path through which a refrigerant for cooling flows is provided in a casing of a drive device that includes a rotating electrical machine and an inverter device that supplies power to the rotating electrical machine. JP6589095B discloses an on-off valve that is configured to communicate with a first refrigerant flow path provided in a box-shaped housing and a second refrigerant flow path provided in a rotating electric machine, and that opens and closes the first refrigerant flow path. A configuration comprising the following is disclosed.
 JP6589095Bに記載の技術は、箱型の筐体に収容されるインバータ装置を回転電機から取り外す際に、開閉バルブにより第一冷媒流路の途中を閉じることでインバータ装置から冷媒が流出することを防止する構成である。このような構成では、開閉バルブよりも下方の第一冷媒流路に残留した冷媒が滴下する可能性がある。このため、駆動装置から冷媒が流出すること確実に防ぐものではないので、インバータ装置を回転電機から取り外す際に、冷媒の流出に起因すて絶縁性に問題が発生する可能性がある。 The technology described in JP6589095B prevents the refrigerant from flowing out of the inverter device by closing the middle of the first refrigerant flow path with an on-off valve when the inverter device housed in a box-shaped housing is removed from the rotating electric machine. It is configured to do this. In such a configuration, there is a possibility that the refrigerant remaining in the first refrigerant flow path below the opening/closing valve drips. Therefore, since it is not possible to reliably prevent the refrigerant from flowing out from the drive device, when the inverter device is removed from the rotating electrical machine, there is a possibility that problems with insulation may occur due to the refrigerant flowing out.
 本発明はこのような問題に鑑みてなされたものであり、インバータ装置を取り外す際における絶縁性の悪化を抑制できる駆動装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a drive device that can suppress deterioration of insulation properties when removing an inverter device.
 本発明の一実施態様は、回転電機と、回転電機の上部に配置され、回転電機との間で電力を授受するインバータ装置と、を備える駆動装置に適用される。この駆動装置は、回転電機は回転電機ハウジングを有し、回転電機ハウジングには、冷媒が流通する回転電機側流路が形成され、インバータ装置は蓋状のインバータハウジングを有し、インバータハウジングの内面に回転電機側に向かって電気部品が配置され、インバータハウジングが回転電機ハウジングに固定されることでインバータハウジングと回転電機ハウジングとの間で電気部品が収容される収容室が形成され、インバータハウジングには、冷媒が流通するインバータ側流路が形成される。回転電機ハウジングとインバータハウジングとが接する接触面を介して回転電機側流路とインバータ側流路とが接続され、インバータ側流路は、回転電機側流路との接続部分から離間する方向に直線状に延設する第1の流路と、第1の流路から分岐してインバータハウジング内を循環する第2の流路と、を備える。第1の流路の端部は、インバータハウジングの上面に貫通する開口部として形成され、端部には、開口部を閉塞する着脱自在の閉塞部材を備える。 One embodiment of the present invention is applied to a drive device that includes a rotating electrical machine and an inverter device that is disposed above the rotating electrical machine and transfers power to and from the rotating electrical machine. In this drive device, the rotating electrical machine has a rotating electrical machine housing, the rotating electrical machine housing is formed with a flow path on the rotating electrical machine side through which a refrigerant flows, and the inverter device has a lid-shaped inverter housing, and an inner surface of the inverter housing. Electrical components are arranged toward the rotating electrical machine side, and the inverter housing is fixed to the rotating electrical machine housing to form a storage chamber in which the electrical components are housed between the inverter housing and the rotating electrical machine housing. In this case, an inverter-side flow path through which the refrigerant flows is formed. The rotating electric machine side flow path and the inverter side flow path are connected through the contact surface where the rotating electric machine housing and the inverter housing touch, and the inverter side flow path is straight in the direction away from the connecting part with the rotating electric machine side flow path. The inverter includes a first flow path that extends in a shape, and a second flow path that branches off from the first flow path and circulates within the inverter housing. The end of the first flow path is formed as an opening penetrating the upper surface of the inverter housing, and the end is provided with a removable closing member that closes the opening.
 本発明によれば、蓋状のインバータハウジングの下部に電気部品が配置され、回転電機ハウジングとの間で収容室が形成される構成において、第1のインバータ側流路は、回転電機側流路に接続すると共に、直線状に延設する第1の流路を備える。この第1の流路の端部には着脱自在の閉塞部材が設けられる。このような構成により、インバータ装置を取り外す際に、閉塞部材に代えて棒状の封止治具を第1の流路を塞ぐように取り付けることが可能となり、冷却水の流出を防ぐようにインバータ側冷媒流路を塞ぐことができる。これにより、インバータ装置を取り外す際に、インバータ側流路等から冷却水が滴下することをより確実に防止する構成を実現でき、冷却水に起因する絶縁性の悪化を抑制することが可能となる。 According to the present invention, in a configuration in which electrical components are arranged at the lower part of the lid-shaped inverter housing and a storage chamber is formed between the lid-shaped inverter housing and the rotating electrical machine housing, the first inverter side flow path is the rotating electrical machine side flow path. The first flow path is connected to the first flow path and extends in a straight line. A removable closing member is provided at the end of the first flow path. With this configuration, when removing the inverter device, it is possible to attach a rod-shaped sealing jig to block the first flow path instead of the blocking member, and to prevent cooling water from flowing out, it is possible to attach a rod-shaped sealing jig to the first flow path. The refrigerant flow path can be blocked. This makes it possible to realize a configuration that more reliably prevents cooling water from dripping from the inverter side flow path when the inverter device is removed, making it possible to suppress deterioration of insulation properties caused by cooling water. .
図1は、本発明の実施形態の駆動装置の断面図である。FIG. 1 is a sectional view of a drive device according to an embodiment of the present invention. 図2は、駆動装置の要部の断面図である。FIG. 2 is a sectional view of the main parts of the drive device. 図3は、封止治具を取り付ける場合の説明図である。FIG. 3 is an explanatory diagram when attaching a sealing jig. 図4は、封止治具の挿入後の説明図である。FIG. 4 is an explanatory diagram after the sealing jig is inserted. 図5は、インバータ装置を取り外すときの説明図である。FIG. 5 is an explanatory diagram when removing the inverter device. 図6は、封止治具の説明図である。FIG. 6 is an explanatory diagram of the sealing jig. 図7は、駆動装置の周囲の断面図である。FIG. 7 is a sectional view of the periphery of the drive device.
 以下、図面等を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like.
 図1は、本発明の実施形態に係る駆動装置1の構成図である。 FIG. 1 is a configuration diagram of a drive device 1 according to an embodiment of the present invention.
 駆動装置1は、電力変換(インバータ)装置10、発電機(第1の回転電機)21、モータ(第2の回転電機)22、を備える。駆動装置1は、ハイブリッド車両に搭載され、図示しないバッテリから電力の供給を受けてモータ22を駆動することで、ハイブリッド車両を走行させる。 The drive device 1 includes a power conversion (inverter) device 10, a generator (first rotating electrical machine) 21, and a motor (second rotating electrical machine) 22. The drive device 1 is mounted on a hybrid vehicle, and receives power from a battery (not shown) to drive a motor 22, thereby causing the hybrid vehicle to travel.
 発電機21は、図示しないエンジンにより駆動されて発電する。モータ22は、車軸24を介して駆動輪を回転させてハイブリッド車両を駆動する。モータ22は、ハイブリッド車両の減速時に回生電力を発電する発電機としても機能する。 The generator 21 is driven by an engine (not shown) to generate electricity. The motor 22 rotates drive wheels via an axle 24 to drive the hybrid vehicle. The motor 22 also functions as a generator that generates regenerative power when the hybrid vehicle is decelerated.
 これら発電機21及びモータ22は、回転電機ハウジング31内に備えられる。回転電機ハウジング31には、発電機21及びモータ22がそれぞれ収容される円筒形状の第1の収容室311及び第2の収容室312が形成される。回転電機ハウジング31には、冷却水が循環する回転電機側流路41が形成されている。 These generator 21 and motor 22 are provided within a rotating electric machine housing 31. The rotating electric machine housing 31 is formed with a cylindrical first housing chamber 311 and a second housing chamber 312 in which the generator 21 and the motor 22 are housed, respectively. A rotating electrical machine side flow path 41 through which cooling water circulates is formed in the rotating electrical machine housing 31 .
 発電機21は、インナーハウジング32にステータ211及びロータ212が収容されて構成される。このインナーハウジング32が第1の収容室311に収容されることで、発電機21が回転電機ハウジング31内に収容される。インナーハウジング32と回転電機ハウジング31の第1の収容室311との間には隙間が形成される。この隙間が発電機21を冷却するための発電機側冷却水流路42として機能し、回転電機側流路41の一部を構成する。 The generator 21 is configured such that a stator 211 and a rotor 212 are housed in an inner housing 32. By housing this inner housing 32 in the first housing chamber 311, the generator 21 is housed in the rotating electric machine housing 31. A gap is formed between the inner housing 32 and the first housing chamber 311 of the rotating electric machine housing 31. This gap functions as a generator-side cooling water flow path 42 for cooling the generator 21, and constitutes a part of the rotating electrical machine side flow path 41.
 同様に、モータ22は、インナーハウジング33にステータ221及びロータ222が収容されて構成される。このインナーハウジング33が第2の収容室312に収容されることで、モータ22が回転電機ハウジング31内に収容される。インナーハウジング33と回転電機ハウジング31の第2の収容室312との間には隙間が形成される。この隙間が、モータ22を冷却するためのモータ側冷却水流路43として機能し、回転電機側流路41の一部を構成する。発電機側冷却水流路42とモータ側冷却水流路43との間には、これらを連通する連通路が備えられる。 Similarly, the motor 22 is configured such that a stator 221 and a rotor 222 are housed in an inner housing 33. By housing this inner housing 33 in the second housing chamber 312, the motor 22 is housed in the rotating electric machine housing 31. A gap is formed between the inner housing 33 and the second housing chamber 312 of the rotating electrical machine housing 31. This gap functions as a motor-side cooling water flow path 43 for cooling the motor 22, and constitutes a part of the rotating electric machine side flow path 41. A communication path is provided between the generator-side cooling water flow path 42 and the motor-side cooling water flow path 43 to communicate them.
 回転電機ハウジング31には、インバータハウジング11から冷却水が流入する冷却水入口通路44と、回転電機ハウジング31の外部へと冷却水が流出する冷却水出口40とを備える。冷却水入口通路44は、モータ側冷却水流路43に連通する。発電機側冷却水流路42は、冷却水出口40に連通する。冷却水入口通路44は、後述するように、インバータハウジング11の接触面100に対して開口し、インバータ側流路61に連通する。 The rotating electrical machine housing 31 includes a cooling water inlet passage 44 through which cooling water flows from the inverter housing 11 and a cooling water outlet 40 through which cooling water flows out to the outside of the rotating electrical machine housing 31. The cooling water inlet passage 44 communicates with the motor side cooling water flow path 43. The generator-side cooling water flow path 42 communicates with the cooling water outlet 40 . As will be described later, the cooling water inlet passage 44 opens to the contact surface 100 of the inverter housing 11 and communicates with the inverter side flow passage 61.
 このように、回転電機ハウジング31は、冷却水入口通路44、モータ側冷却水流路43、発電機側冷却水流路42及び冷却水出口40を有し、これらが回転電機ハウジング31内に冷却水を循環させる回転電機側流路41として構成される。 As described above, the rotating electric machine housing 31 has a cooling water inlet passage 44, a motor side cooling water passage 43, a generator side cooling water passage 42, and a cooling water outlet 40, which supply cooling water into the rotating electric machine housing 31. It is configured as a rotating electric machine side flow path 41 for circulation.
 インバータ装置10は、インバータハウジング11とパワーモジュールやコンデンサ等からなる電気部品12とを備える。 The inverter device 10 includes an inverter housing 11 and electrical components 12 including a power module, a capacitor, and the like.
 インバータハウジング11は、その外縁部が回転電機ハウジング31に向かって延設され、下方に向かって開口する箱型形状となっている。インバータハウジング11は、上面部11bと、上面部11bの外縁から下側に延設される周囲部11a(側壁)とを備える。インバータハウジング11は、回転電機ハウジング31に対して蓋状に覆い被さり、ボルト留め等により回転電機ハウジング31に固定される。インバータハウジング11が回転電機ハウジング31に固定された状態で、インバータハウジング11の内面と回転電機ハウジング31の上側の凹部31aとで構成される空間が、電気部品12を収容する収容室101として構成される。インバータハウジング11には、冷却水が流通するインバータ側流路61が形成されている。 The inverter housing 11 has a box shape with its outer edge extending toward the rotating electric machine housing 31 and opening downward. The inverter housing 11 includes an upper surface portion 11b and a peripheral portion 11a (side wall) extending downward from the outer edge of the upper surface portion 11b. The inverter housing 11 covers the rotating electrical machine housing 31 like a lid and is fixed to the rotating electrical machine housing 31 by bolting or the like. When the inverter housing 11 is fixed to the rotating electric machine housing 31, a space formed by the inner surface of the inverter housing 11 and the upper recess 31a of the rotating electric machine housing 31 is configured as a housing chamber 101 that accommodates the electrical components 12. Ru. The inverter housing 11 is formed with an inverter-side flow path 61 through which cooling water flows.
 電気部品12は、インバータ装置10の動作を司る構成部品であり、パワーモジュール、コンデンサモジュール等から構成される。電気部品12は、インバータハウジング11の内面に回転電機ハウジング31の凹部31aに向かうように配置され、収容室101に収容される。 The electrical component 12 is a component that controls the operation of the inverter device 10, and is composed of a power module, a capacitor module, and the like. The electrical component 12 is arranged on the inner surface of the inverter housing 11 so as to face the recess 31a of the rotating electric machine housing 31, and is housed in the housing chamber 101.
 インバータハウジング11の周囲部11aの端部は接触面100として構成され、回転電機ハウジング31の端部に接する。接触面100には、インバータ側流路61の第1の流路161の端部が開口する。接触面100に接する回転電機ハウジング31には回転電機側流路41の冷却水入口通路44の端部が開口しており、インバータ側流路61の第1の流路161と冷却水入口通路44とが接続する。回転電機ハウジング31の冷却水入口通路44の周囲にはOリング44b(図2参照)が配置される。このような構成により、インバータハウジング11の接触面100において、回転電機側流路41とインバータ側流路61とが接続される接続部分が構成される。 The end of the peripheral portion 11a of the inverter housing 11 is configured as a contact surface 100, and is in contact with the end of the rotating electric machine housing 31. An end of a first flow path 161 of the inverter side flow path 61 opens at the contact surface 100 . The rotary electric machine housing 31 in contact with the contact surface 100 has an open end of the cooling water inlet passage 44 of the rotary electric machine side flow passage 41, and the first flow passage 161 of the inverter side flow passage 61 and the cooling water inlet passage 44 and are connected. An O-ring 44b (see FIG. 2) is arranged around the cooling water inlet passage 44 of the rotating electric machine housing 31. With such a configuration, a connecting portion where the rotating electric machine side flow path 41 and the inverter side flow path 61 are connected is formed on the contact surface 100 of the inverter housing 11.
 次に、インバータ側流路61の構成をより詳しく説明する。 Next, the configuration of the inverter side flow path 61 will be explained in more detail.
 図2は、接触面100でのインバータ側流路61を説明する断面図である。 FIG. 2 is a cross-sectional view illustrating the inverter-side flow path 61 at the contact surface 100.
 インバータ側流路61は、第1の流路161と第2の流路261とから構成される。第1の流路161は、回転電機側流路41との接続部分から離間する方向に直線状に延設する。第2の流路261は、冷却水入口262(図1参照)から流入した冷却水が循環するようにインバータハウジング11内に配置され、第1の流路161へと屈曲して連通する。 The inverter side flow path 61 is composed of a first flow path 161 and a second flow path 261. The first flow path 161 extends linearly in a direction away from the connecting portion with the rotating electrical machine side flow path 41 . The second flow path 261 is arranged within the inverter housing 11 so that the cooling water flowing in from the cooling water inlet 262 (see FIG. 1) circulates, and is bent and communicated with the first flow path 161.
 第1の流路161の接触面100から離間する側の端部は、インバータハウジング11の上面部11bに貫通する開口部162として形成されている。開口部162には、閉塞部材163が固定される。 The end of the first flow path 161 on the side away from the contact surface 100 is formed as an opening 162 that penetrates the upper surface 11b of the inverter housing 11. A closing member 163 is fixed to the opening 162 .
 閉塞部材163は、上面部11b側の端部に形成されるフランジ部163aと、雄ねじが形成されるねじ形成部163bと、フランジ部163aとねじ形成部163bとの間で、Oリング164が取り付けられるための溝部163cと、フランジ部163aの上面側に形成される六角穴163dと、から構成される。また、開口部162の内周には雌ねじが形成されている。 The closing member 163 has a flange portion 163a formed at the end on the upper surface portion 11b side, a threaded portion 163b formed with a male thread, and an O-ring 164 attached between the flange portion 163a and the threaded portion 163b. The hexagonal hole 163d is formed on the upper surface side of the flange portion 163a. Furthermore, a female thread is formed on the inner periphery of the opening 162.
 第1の流路161の開口部162に閉塞部材163をねじ留めすることで、開口部162が閉塞される。閉塞部材163は、六角穴163dに工具を差し入れて回転させることで、開口部162に着脱される。このように、閉塞部材163は、開口部162に対して着脱自在となっている。 The opening 162 is closed by screwing the closing member 163 to the opening 162 of the first flow path 161. The closing member 163 is attached to and removed from the opening 162 by inserting a tool into the hexagonal hole 163d and rotating it. In this way, the closing member 163 is removably attached to the opening 162.
 第2の流路261は、第1の流路161の中途位置から分岐する。第2の流路261は、インバータハウジング11の側面から第1の流路161に直交する方向に貫通形成される。インバータハウジング11の側面の第2の流路261の開口部分は、プラグ265が取り付けられることで閉塞される。第2の流路261は、インバータハウジング11内を循環するように形成され、その端部は、インバータハウジング11に設けられた冷却水入口262(図1参照)に連通する。 The second flow path 261 branches from a midway position of the first flow path 161. The second flow path 261 is formed to penetrate from the side surface of the inverter housing 11 in a direction perpendicular to the first flow path 161 . The opening of the second flow path 261 on the side surface of the inverter housing 11 is closed by attaching the plug 265. The second flow path 261 is formed to circulate within the inverter housing 11, and its end communicates with a cooling water inlet 262 (see FIG. 1) provided in the inverter housing 11.
 このような構成により、駆動装置1は、インバータハウジング11に設けられた冷却水入口262(図1参照)から流入した冷却水が第2の流路261に流入して、インバータハウジング11内を循環する。第2の流路261に流入した冷却水は、第2の流路261から屈曲して延設される第1の流路161へと流入する。冷却水は、第1の流路161から直線状に延設される冷却水入口通路44を介して、回転電機ハウジング31に設けられた回転電機側流路41に流入する。冷却水は、回転電機側流路41を循環して、モータ22及び発電機21を冷却する。冷却水は、その後、回転電機ハウジング31に設けられた冷却水出口40(図1参照)から回転電機ハウジング31の外部に流出する。 With such a configuration, in the drive device 1, the cooling water that flows in from the cooling water inlet 262 (see FIG. 1) provided in the inverter housing 11 flows into the second flow path 261 and circulates inside the inverter housing 11. do. The cooling water that has flowed into the second flow path 261 flows into the first flow path 161 that is bent and extended from the second flow path 261 . The cooling water flows into the rotating electrical machine side channel 41 provided in the rotating electrical machine housing 31 via the cooling water inlet passage 44 extending linearly from the first channel 161 . The cooling water circulates through the rotating electric machine side flow path 41 to cool the motor 22 and the generator 21 . The cooling water then flows out of the rotating electrical machine housing 31 from a cooling water outlet 40 (see FIG. 1) provided in the rotating electrical machine housing 31.
 次に、駆動装置1における、インバータ装置10のメンテナンスについて説明する。 Next, maintenance of the inverter device 10 in the drive device 1 will be explained.
 インバータ装置10のメンテナンスを行う際に、インバータ装置10を駆動装置1から取り外す場合がある。インバータハウジング11を回転電機ハウジング31から取り外したときに、インバータ側流路61の第1の流路161が、回転電機側流路41の冷却水入口通路44から分離することにより、インバータ側流路61に残る冷却水が下方に滴下する場合がある。インバータ装置10の電気部品12は、インバータハウジング11の内面に配置され、回転電機ハウジング31側に露出している。このため、インバータ側流路61から滴下した冷却水が電気部品12に付着する可能性がある。これにより電気部品12の絶縁性に問題が発生する可能性がある。 When performing maintenance on the inverter device 10, the inverter device 10 may be removed from the drive device 1. When the inverter housing 11 is removed from the rotating electric machine housing 31, the first flow path 161 of the inverter side flow path 61 is separated from the cooling water inlet passage 44 of the rotating electric machine side flow path 41. The cooling water remaining in 61 may drip downward. Electrical components 12 of the inverter device 10 are arranged on the inner surface of the inverter housing 11 and exposed to the rotating electric machine housing 31 side. Therefore, there is a possibility that the cooling water dripping from the inverter-side flow path 61 may adhere to the electrical component 12 . This may cause problems with the insulation of the electrical component 12.
 このことを防ぐために、インバータハウジングの電気部品全体を覆うような箱型に構成し、インバータ装置を取り外した場合に電気部品に冷却水が付着しないように構成することが考えられる。しかしながら、そのような構成では、インバータ装置のサイズや重量が増加するという新たな問題が発生する。 In order to prevent this, it is conceivable to construct the inverter housing in a box shape that covers the entire electrical components so that cooling water does not adhere to the electrical components when the inverter device is removed. However, in such a configuration, a new problem arises in that the size and weight of the inverter device increase.
 本実施形態では、次に説明するように、インバータ装置10のサイズや重量の増加を抑制しながら、インバータ装置のメンテナンス時に、冷却水に起因する絶縁性の悪化を抑制できるように構成した。 In this embodiment, as described below, the inverter device 10 is configured to be able to suppress deterioration in insulation properties caused by cooling water during maintenance of the inverter device while suppressing an increase in the size and weight of the inverter device 10.
 前述のように、インバータ側流路61の直線状の第1の流路161には、インバータハウジング11の上面部11bに貫通する開口部162が設けられる。開口部162には、閉塞部材163が着脱自在となっている。 As described above, the linear first flow path 161 of the inverter side flow path 61 is provided with an opening 162 that penetrates the upper surface portion 11b of the inverter housing 11. A closing member 163 is removably attached to the opening 162.
 このことを利用して、インバータ装置10のメンテナンスに先立って、閉塞部材163を取り外し、開口部162に、図6に示すような封止治具200を取り付けて、インバータ側流路61の第1の流路161と回転電機側流路41の冷却水入口通路44とを、それぞれ塞ぐように構成した。 Taking advantage of this, prior to maintenance of the inverter device 10, the closing member 163 is removed, a sealing jig 200 as shown in FIG. 6 is attached to the opening 162, and the first The flow path 161 and the cooling water inlet passage 44 of the rotating electrical machine side flow path 41 are each closed.
 図3、図4及び図5は、本実施形態の封止治具200を開口部162に取り付ける場合の説明図である。 3, 4, and 5 are explanatory diagrams when the sealing jig 200 of this embodiment is attached to the opening 162.
 前述したように、インバータ装置10を取り外すのに先立って、まず、開口部162から閉塞部材163を取り外す。次に、図3に示すように、開口部162に、閉塞部材163に代えて、棒状の封止治具200を挿入する。 As described above, before removing the inverter device 10, the closing member 163 is first removed from the opening 162. Next, as shown in FIG. 3, a rod-shaped sealing jig 200 is inserted into the opening 162 instead of the closing member 163.
 封止治具200の根元部の周囲には閉塞部材163と同様に雄ねじが形成されているので、封止治具200を開口部162にねじ留めすることで、開口部162が封止治具200により閉鎖される。この状態では、図4に示すように、封止治具200の先端部に設けられる第1のシール部材201及び第2のシール部材202が、回転電機側流路41の冷却水入口通路44と、インバータ側流路61の第1の流路161とにそれぞれ嵌装され、これら流路の接続部分の開口が塞がれる。 Since a male thread is formed around the base of the sealing jig 200 like the closing member 163, by screwing the sealing jig 200 into the opening 162, the opening 162 becomes the sealing jig. 200 is closed. In this state, as shown in FIG. 4, the first seal member 201 and the second seal member 202 provided at the tip of the sealing jig 200 are connected to the cooling water inlet passage 44 of the rotating electric machine side flow path 41. , and the first flow path 161 of the inverter side flow path 61, and the openings at the connecting portions of these flow paths are closed.
 このようにして回転電機側流路41とインバータ側流路61との接続部分をそれぞれ塞いだ状態で、図5に示すように、インバータ装置10を取り外す。インバータ装置10を取り外すと、封止治具200の第1のシール部材201が第2のシール部材202から分離する。分離した第1のシール部材201は、回転電機側流路41の冷却水入口通路44を塞いだ状態で留まる。 With the connection portions between the rotating electric machine side flow path 41 and the inverter side flow path 61 closed in this manner, the inverter device 10 is removed as shown in FIG. When the inverter device 10 is removed, the first seal member 201 of the sealing jig 200 is separated from the second seal member 202. The separated first seal member 201 remains in a state where the cooling water inlet passage 44 of the rotating electric machine side flow passage 41 is closed.
 図6は、封止治具200の説明図である。 FIG. 6 is an explanatory diagram of the sealing jig 200.
 封止治具200は、プラグ210、第1のシール部材201及び第2のシール部材202から構成される。プラグ210は棒状の部材であり、根元部から、フランジ部210a、溝部210b、ねじ形成部210c及び延長部210dが形成されている。フランジ部210aは、開口部162の開口径よりも大きく形成され、封止治具200を開口部162にねじ込んだ際の位置決めを行う。溝部210bにはOリング220が嵌装され、封止治具200を開口部162に取り付けたときに、開口部162をシールする。ねじ形成部210cは、開口部162の雌ねじにねじ留めされる。 The sealing jig 200 is composed of a plug 210, a first seal member 201, and a second seal member 202. The plug 210 is a rod-shaped member, and has a flange portion 210a, a groove portion 210b, a thread forming portion 210c, and an extension portion 210d formed from the root portion. The flange portion 210a is formed to be larger than the opening diameter of the opening 162, and performs positioning when the sealing jig 200 is screwed into the opening 162. An O-ring 220 is fitted into the groove 210b to seal the opening 162 when the sealing jig 200 is attached to the opening 162. Threaded portion 210c is screwed onto the internal thread of opening 162.
 延長部210dはねじ形成部210cよりも小径に形成され、延長部210dの先端210eには、第2のシール部材202が固定される。第2のシール部材202よりも先端側には、第1のシール部材201が固定される。これら第2のシール部材202及び第1のシール部材201は、ゴム等の弾性部材で構成され、その外径が第1の流路161及び冷却水入口通路44の内径よりも僅かに大きく形成される。これにより、第1の流路161及び冷却水入口通路44に挿入されたときに、冷却水が漏れないように構成される。 The extension part 210d is formed to have a smaller diameter than the thread forming part 210c, and the second seal member 202 is fixed to the tip 210e of the extension part 210d. The first seal member 201 is fixed to the distal end side of the second seal member 202 . The second seal member 202 and the first seal member 201 are made of an elastic member such as rubber, and have an outer diameter slightly larger than the inner diameter of the first flow path 161 and the cooling water inlet passage 44. Ru. This prevents the cooling water from leaking when inserted into the first flow path 161 and the cooling water inlet passage 44.
 第1のシール部材201は、第2のシール部材202の先端側に糊や接着材等により互いに分離可能に固定される。第1のシール部材201と第2のシール部材202とは、インバータ装置10を駆動装置1から取り外す際に、容易に分離するように構成される。 The first seal member 201 is separably fixed to the distal end side of the second seal member 202 with glue, adhesive, or the like. The first seal member 201 and the second seal member 202 are configured to be easily separated when the inverter device 10 is removed from the drive device 1.
 第1のシール部材201は、その先端部が、基部(第2のシール部材202に接する側)の外径よりも小径の小径部201aとして構成されている。 The first seal member 201 has a tip portion configured as a small diameter portion 201a having a smaller diameter than the outer diameter of the base portion (the side in contact with the second seal member 202).
 より具体的には、図2に示すように、回転電機側流路41の冷却水入口通路44は、接続部分においてインバータ側流路61の第1の流路161の内径と同一の内径に形成され、接続部分から離間した位置で、内径が縮小されるように形成された段差部44aを有する。この段差部44aに小径部201aが係合することで、第1のシール部材201が冷却水入口通路44に対して挿入方向に位置決めされる。さらに、第2のシール部材202から分離した場合にも、第1のシール部材201が回転電機側流路41の冷却水入口通路44に留まらせることができる。 More specifically, as shown in FIG. 2, the cooling water inlet passage 44 of the rotating electrical machine side passage 41 is formed to have the same inner diameter as the first passage 161 of the inverter side passage 61 at the connecting portion. It has a stepped portion 44a formed so that the inner diameter is reduced at a position spaced apart from the connecting portion. By engaging the small diameter portion 201a with this stepped portion 44a, the first seal member 201 is positioned in the insertion direction with respect to the cooling water inlet passage 44. Furthermore, even when separated from the second seal member 202, the first seal member 201 can remain in the cooling water inlet passage 44 of the rotating electric machine side flow path 41.
 このような構成により、インバータ装置10を駆動装置1から取り外す際に、インバータ側流路61の第1の流路161と回転電機側流路41の冷却水入口通路44とを、それぞれ塞ぐことができるで、冷却水がインバータ装置10の電気部品12に付着することがなく、冷却水に起因する電気部品12の絶縁性の悪化を抑制できる。 With this configuration, when the inverter device 10 is removed from the drive device 1, the first flow path 161 of the inverter side flow path 61 and the cooling water inlet passage 44 of the rotating electric machine side flow path 41 can be blocked. As a result, the cooling water does not adhere to the electrical components 12 of the inverter device 10, and deterioration of the insulation properties of the electrical components 12 due to the cooling water can be suppressed.
 なお、冷却水入口通路44は、段差部44aにおいて縮径されるように構成したが、これに限られず、冷却水入口通路44の開口部分から次第に径が縮小するようにテーパ状に形成されていてもよい。その場合は、第1のシール部材201は、冷却水入口通路44の形状に合わせて、テーパ状に形成されることが好ましい。 Although the cooling water inlet passage 44 is configured to have a diameter reduced at the stepped portion 44a, the present invention is not limited to this, and the cooling water inlet passage 44 may be formed in a tapered shape so that the diameter gradually decreases from the opening portion of the cooling water inlet passage 44. You can. In that case, the first seal member 201 is preferably formed into a tapered shape to match the shape of the cooling water inlet passage 44.
 次に、駆動装置1が搭載されるハイブリッド車両のモータルームについて説明する。 Next, a motor room of a hybrid vehicle in which the drive device 1 is mounted will be explained.
 図7は、本実施形態のハイブリッド車両のモータルームにおける、駆動装置1の周囲を含んだ断面図である。 FIG. 7 is a sectional view including the area around the drive device 1 in the motor room of the hybrid vehicle of this embodiment.
 前述したように、インバータハウジング11の上面部11bには、第1の流路161の開口部162が開口しており、開口部162は閉塞部材163によって閉塞されている。閉塞部材163は、インバータ装置10のメンテナンスを行うとき以外は取り外す必要はなく、不用意に閉塞部材163が取り外された場合には、冷却水が漏れるなどの問題が発生する。 As described above, the opening 162 of the first flow path 161 is open in the upper surface portion 11b of the inverter housing 11, and the opening 162 is closed by the closing member 163. There is no need to remove the closing member 163 except when performing maintenance on the inverter device 10, and if the closing member 163 is carelessly removed, problems such as cooling water leakage may occur.
 そこで、インバータ装置10の上面部11bの閉塞部材163が配置されている箇所付近に、モータルームにおける別の構成部品を配置し、構成部品を手順通り取り外さなければ、閉塞部材163を取り外すことができないように構成した。 Therefore, the closing member 163 cannot be removed unless another component in the motor room is placed near the location where the closing member 163 is placed on the upper surface portion 11b of the inverter device 10, and the component is removed according to the procedure. It was configured as follows.
 図7に示すように、インバータ装置10の上方には、エンジンの吸気路に接続されるエアクリーナ500が配置される。エアクリーナ500は、ブラケット510を介して駆動装置1に固定される。 As shown in FIG. 7, an air cleaner 500 connected to the intake passage of the engine is arranged above the inverter device 10. Air cleaner 500 is fixed to drive device 1 via bracket 510.
 インバータハウジング11の上面部11bには、ブラケット510が取り付け可能な固定穴111が形成される。固定穴111にはブラケット510を固定するためのボルト511が締結される。ブラケット510は、閉塞部材163の上方に配置される。ブラケット510は、閉塞部材163を取り外すための工具が差し入れることができない位置に配置される。 A fixing hole 111 to which a bracket 510 can be attached is formed in the upper surface portion 11b of the inverter housing 11. A bolt 511 for fixing the bracket 510 is fastened to the fixing hole 111. Bracket 510 is placed above closure member 163. Bracket 510 is placed in a position where a tool for removing closure member 163 cannot be inserted.
 このように構成することにより、エアクリーナ500を手順通り取り外し、さらにブラケット510をインバータハウジング11から取り外すことによって、閉塞部材163が取り外し可能となるので、閉塞部材163が不用意に取り外されることが防止される。 With this configuration, the closing member 163 can be removed by removing the air cleaner 500 according to the procedure and further removing the bracket 510 from the inverter housing 11. Therefore, the closing member 163 is prevented from being removed inadvertently. Ru.
 以上説明したように、本実施形態の駆動装置1は、回転電機(発電機21、モータ22)と、回転電機の上部に配置され、回転電機との間で電力を授受するインバータ装置10と、を備える。回転電機は回転電機ハウジング31を有し、回転電機ハウジング31には、冷媒が流通する回転電機側流路41が形成される。インバータ装置10は蓋状のインバータハウジング11を有し、インバータハウジング11の内面に回転電機側に向かって電気部品12が配置され、インバータハウジング11が回転電機ハウジング31に固定されることでインバータハウジング11と回転電機ハウジング31との間で電気部品12が収容される収容室101が形成される。インバータハウジング11には、冷媒が流通するインバータ側流路61が形成される。回転電機ハウジング31とインバータハウジング11とが接する接触面100を介して回転電機側流路41とインバータ側流路61とが接続され、インバータ側流路61は、回転電機側流路41との接続部分から離間する方向に直線状に延設する第1の流路161と、第1の流路161から分岐してインバータハウジング11内を循環する第2の流路261と、を備える。第1の流路161の端部は、インバータハウジング11の上面に貫通する開口部162として形成され、端部には、開口部162を閉塞する着脱自在の閉塞部材163を備える。 As described above, the drive device 1 of the present embodiment includes a rotating electrical machine (generator 21, motor 22), an inverter device 10 that is disposed above the rotating electrical machine and transmits and receives electric power to and from the rotating electrical machine. Equipped with. The rotating electrical machine has a rotating electrical machine housing 31, and a rotating electrical machine side flow path 41 through which a refrigerant flows is formed in the rotating electrical machine housing 31. The inverter device 10 has a lid-shaped inverter housing 11. Electrical components 12 are arranged on the inner surface of the inverter housing 11 toward the rotating electric machine side, and the inverter housing 11 is fixed to the rotating electric machine housing 31. A housing chamber 101 in which the electrical component 12 is housed is formed between the rotary electric machine housing 31 and the rotary electric machine housing 31 . The inverter housing 11 is formed with an inverter-side flow path 61 through which a refrigerant flows. The rotating electric machine side flow path 41 and the inverter side flow path 61 are connected through the contact surface 100 where the rotating electric machine housing 31 and the inverter housing 11 are in contact, and the inverter side flow path 61 is connected to the rotating electric machine side flow path 41. The first flow path 161 extends linearly in a direction away from the portion, and the second flow path 261 branches from the first flow path 161 and circulates within the inverter housing 11. The end of the first flow path 161 is formed as an opening 162 penetrating the upper surface of the inverter housing 11, and the end is provided with a removable closing member 163 that closes the opening 162.
 この構成では、蓋状のインバータハウジング11の下部に電気部品12が配置され、回転電機ハウジング31との間で収容室101が形成される構成において、インバータ側流路61は、回転電機側流路41に接続すると共に、直線状に延設する第1の流路161を備え、第1の流路161の上面側には、開口部162に着脱自在の閉塞部材163が設けられる。このような構成により、インバータ装置10を取り外す際に、閉塞部材163に代えて棒状の封止治具200を第1の流路161を塞ぐように取り付けることが可能になる。このように封止治具200を用いることで、冷却水の流出を防ぐようにインバータ側流路61の第1の流路161を塞ぐことができる。これにより、インバータ装置10を取り外す際に、インバータ側流路61等から冷却水が滴下することをより確実に防止する構成を実現でき、冷却水に起因する絶縁性の悪化を抑制することが可能となる。 In this configuration, the electrical component 12 is disposed at the lower part of the lid-shaped inverter housing 11, and the storage chamber 101 is formed between the inverter housing 11 and the rotating electrical machine housing 31. 41 and extends linearly, and a closing member 163 that is detachably attached to the opening 162 is provided on the upper surface side of the first flow path 161. With such a configuration, when removing the inverter device 10, it becomes possible to attach the rod-shaped sealing jig 200 in place of the closing member 163 so as to close the first flow path 161. By using the sealing jig 200 in this manner, it is possible to close the first flow path 161 of the inverter side flow path 61 so as to prevent the cooling water from flowing out. This makes it possible to realize a configuration that more reliably prevents cooling water from dripping from the inverter side flow path 61 etc. when the inverter device 10 is removed, and it is possible to suppress deterioration of insulation properties caused by the cooling water. becomes.
 また、本実施形態では、回転電機側流路41は、接続部分から離間する方向に直線状に延設し、接続部分から離間するに従ってその内径が縮小されるように形成される。 Furthermore, in the present embodiment, the rotating electric machine side flow path 41 is formed to extend linearly in a direction away from the connection portion, and its inner diameter decreases as it moves away from the connection portion.
 この構成では、封止治具200の先端の第1のシール部材201を縮径部分に挿入することで、第1のシール部材201により回転電機側流路41を確実に塞ぐことができる。 In this configuration, by inserting the first seal member 201 at the tip of the sealing jig 200 into the reduced diameter portion, the rotating electric machine side flow path 41 can be reliably closed by the first seal member 201.
 また、本実施形態では、回転電機側流路41は、接続部分においてインバータ側流路61の内径と略同一の内径を有し、接続部分から離間した位置で、回転電機側流路41の内径が縮小されるように形成された段差部44aを有する。 Furthermore, in this embodiment, the rotating electric machine side flow path 41 has an inner diameter that is approximately the same as the inner diameter of the inverter side flow path 61 at the connecting portion, and the inner diameter of the rotating electric machine side flow path 41 at a position spaced apart from the connecting portion. It has a stepped portion 44a formed to reduce the size.
 この構成では、封止治具200の先端の第1のシール部材201が段差部44aに係合することで、第1のシール部材201を挿入方向に位置決めすることができ、回転電機側流路41をより確実に塞ぐことができる。 In this configuration, the first seal member 201 at the tip of the sealing jig 200 engages with the stepped portion 44a, so that the first seal member 201 can be positioned in the insertion direction, and the rotating electric machine side flow path 41 can be blocked more reliably.
 また、本実施形態では、インバータ装置10の上方には、閉塞部材163が取り外される方向にハイブリッド車両の構成部品(エアクリーナ500)が配置され、エアクリーナ500が取り外されることで、閉塞部材163が取り外し可能になる。 Further, in this embodiment, a component (air cleaner 500) of the hybrid vehicle is arranged above the inverter device 10 in the direction in which the blocking member 163 is removed, and by removing the air cleaner 500, the blocking member 163 can be removed. become.
 この構成では、構成部品を手順通り取り外さなければ閉塞部材163を取り外すことができないので、閉塞部材163が不用意に取り外されることが防止される。 With this configuration, the closing member 163 cannot be removed unless the component parts are removed according to the procedure, so the closing member 163 is prevented from being removed carelessly.
 また、本実施形態では、第1の流路161には、閉塞部材163に代えて、インバータ装置10を駆動装置1から取り外すときに第1の流路161の冷却水が接続部分から滴下することを防止するシール部材201、202を有する封止治具200が、端部から取り付け可能である。 Furthermore, in the present embodiment, instead of the closing member 163, the cooling water of the first flow path 161 is dripped from the connecting portion when the inverter device 10 is removed from the drive device 1. A sealing jig 200 having seal members 201 and 202 that prevents this can be attached from the end.
 この構成では、インバータ装置10を取り外す際に、閉塞部材163を取り外し、封止治具200を取り付けることで、封止治具200のシール部材が、インバータ側流路61と回転電機側流路41との間の接続部を塞ぎ、冷却水が滴下することを防止するので、インバータ装置10を取り外す際に、冷却水に起因する絶縁性の悪化を抑制することができる。 In this configuration, when removing the inverter device 10, the closing member 163 is removed and the sealing jig 200 is attached, so that the sealing member of the sealing jig 200 is connected to the inverter side flow path 61 and the rotating electric machine side flow path 4. Since the connecting portion between the cooling water and the cooling water is blocked and the cooling water is prevented from dripping, deterioration of insulation properties caused by the cooling water can be suppressed when the inverter device 10 is removed.
 また、本実施形態では、シール部材は、回転電機側流路41の冷却水入口通路44を塞ぐ第1のシール部材201と、インバータ側流路61の第1の流路161を塞ぐ第2のシール部材202と、からなる。 Further, in this embodiment, the seal members include a first seal member 201 that closes the cooling water inlet passage 44 of the rotating electric machine side flow passage 41 and a second seal member 201 that closes the first flow passage 161 of the inverter side flow passage 61. It consists of a seal member 202.
 この構成では、第1のシール部材201及び第2のシール部材202が、回転電機側流路41の冷却水入口通路44とインバータ側流路61の第1の流路161とをそれぞれ塞ぐので、インバータ装置10を取り外した場合に、インバータハウジング11と、回転電機ハウジング31との双方から冷却水が滴下することを防止できる。 In this configuration, the first sealing member 201 and the second sealing member 202 close the cooling water inlet passage 44 of the rotating electric machine side passage 41 and the first passage 161 of the inverter side passage 61, respectively. When the inverter device 10 is removed, cooling water can be prevented from dripping from both the inverter housing 11 and the rotating electric machine housing 31.
 また、本実施形態では、封止治具200は、棒状のプラグ210と、シール部材201、202とから構成され、プラグ210は、フランジ部210a、溝部210b、ねじ形成部210c及び延長部210dを有し、延長部210dの先端210eに、シール部材201、202が固定される。 Furthermore, in this embodiment, the sealing jig 200 includes a rod-shaped plug 210 and seal members 201 and 202, and the plug 210 has a flange portion 210a, a groove portion 210b, a thread forming portion 210c, and an extension portion 210d. The seal members 201 and 202 are fixed to the tip 210e of the extension portion 210d.
 この構成では、棒状のプラグ210の先端にシール部材201、202が固定されているので、インバータ側流路61の第1の流路161に、閉塞部材163に代えて封止治具200を挿入することで、その先端のシール部材が、回転電機側流路41の冷却水入口通路44とインバータ側流路61の第1の流路161とを、確実に塞ぐことができる。 In this configuration, since the sealing members 201 and 202 are fixed to the tip of the rod-shaped plug 210, the sealing jig 200 is inserted into the first flow path 161 of the inverter side flow path 61 instead of the closing member 163. By doing so, the sealing member at the tip can reliably close the cooling water inlet passage 44 of the rotating electric machine side passage 41 and the first passage 161 of the inverter side passage 61.
 以上、本発明の実施形態、及びその変形例について説明したが、上記実施形態及び変形例は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiments of the present invention and modifications thereof have been described above, but the above embodiments and modifications merely show a part of the application examples of the present invention, and the technical scope of the present invention is not limited to the above embodiments. It is not intended to be limited to specific configurations.
 前述したように、インバータ装置10の上方に配置されるモータルームにおける別の構成部品は、エアクリーナ500を例示したがこれに限られない。モータルームに配置される構成部品として、ヒューズボックスや12Vバッテリなど、駆動装置1に機械的に接続されるような構成部品でなければ、どのようなものであってもよい。 As mentioned above, the air cleaner 500 is exemplified as another component in the motor room disposed above the inverter device 10, but is not limited thereto. Any component may be placed in the motor room as long as it is not a component that is mechanically connected to the drive device 1, such as a fuse box or a 12V battery.
 本実施形態では、モータ20の駆動力により走行する電動車両について説明したが、これに限られず、エンジンを搭載し、エンジンの駆動力及びモータの駆動力で走行するハイブリッド車両の駆動装置においても、同様に適用可能である。 In the present embodiment, an electric vehicle that runs using the driving force of the motor 20 has been described, but the invention is not limited to this, and a drive system for a hybrid vehicle equipped with an engine and that runs using the driving force of the engine and the driving force of the motor can also be used. Similarly applicable.

Claims (7)

  1.  回転電機と、前記回転電機の上部に配置され、前記回転電機との間で電力を授受するインバータ装置と、を備える駆動装置であって、
     前記回転電機は回転電機ハウジングを有し、前記回転電機ハウジングには、冷媒が流通する回転電機側流路が形成され、
     前記インバータ装置は蓋状のインバータハウジングを有し、前記インバータハウジングの内面に前記回転電機側に向かって電気部品が配置され、前記インバータハウジングが前記回転電機ハウジングに固定されることで前記インバータハウジングと前記回転電機ハウジングとの間で前記電気部品が収容される収容室が形成され、
     前記インバータハウジングには、冷媒が流通するインバータ側流路が形成され、
     前記回転電機ハウジングと前記インバータハウジングとが接する接触面を介して前記回転電機側流路と前記インバータ側流路とが接続され、
     前記インバータ側流路は、前記回転電機側流路との接続部分から離間する方向に直線状に延設する第1の流路と、前記第1の流路から分岐して前記インバータハウジング内を循環する第2の流路と、を備え、
     前記第1の流路の端部は、前記インバータハウジングの上面に貫通する開口部として形成され、前記端部には、前記開口部を閉塞する着脱自在の閉塞部材が設けられる、
     駆動装置。
    A drive device comprising a rotating electrical machine and an inverter device disposed above the rotating electrical machine and transmitting and receiving electric power to and from the rotating electrical machine,
    The rotating electrical machine has a rotating electrical machine housing, and the rotating electrical machine housing is formed with a rotating electrical machine side flow path through which a refrigerant flows;
    The inverter device has a lid-shaped inverter housing, and electrical components are disposed on the inner surface of the inverter housing toward the rotating electrical machine, and the inverter housing is fixed to the rotating electrical machine housing so that the inverter housing is connected to the inverter housing. A housing chamber in which the electrical component is housed is formed between the rotary electric machine housing, and
    The inverter housing is formed with an inverter-side flow path through which a refrigerant flows;
    The rotating electrical machine side flow path and the inverter side flow path are connected via a contact surface where the rotating electrical machine housing and the inverter housing are in contact,
    The inverter-side flow path includes a first flow path that extends linearly in a direction away from a connecting portion with the rotating electric machine side flow path, and a flow path that branches from the first flow path and runs inside the inverter housing. A circulating second flow path,
    The end of the first flow path is formed as an opening penetrating the upper surface of the inverter housing, and the end is provided with a removable closing member that closes the opening.
    Drive device.
  2.  請求項1に記載の駆動装置であって、
     前記回転電機側流路は、前記接続部分から離間する方向に直線状に延設し、前記接続部分から離間するに従ってその内径が縮小されるように形成される、
     駆動装置。
    The drive device according to claim 1,
    The rotating electrical machine side flow path is formed to extend linearly in a direction away from the connection portion, and has an inner diameter that decreases as it moves away from the connection portion.
    Drive device.
  3.  請求項1に記載の駆動装置であって、
     前記回転電機側流路は、前記接続部分において前記インバータ側流路の内径と略同一の内径を有し、前記接続部分から離間した位置で、前記回転電機側流路の内径が縮小されるように形成された段差部を有する、
     駆動装置。
    The drive device according to claim 1,
    The rotating electric machine side flow path has an inner diameter that is substantially the same as the inner diameter of the inverter side flow path at the connecting portion, and the inner diameter of the rotating electric machine side flow path is reduced at a position spaced apart from the connecting portion. having a stepped portion formed in
    Drive device.
  4.  請求項1に記載の駆動装置であって、
     車両のモータルーム内に配置され、
     前記インバータ装置の上方には、前記閉塞部材が取り外される方向に前記車両の構成部品が配置され、
     前記構成部品が取り外されることで、前記閉塞部材が取り外し可能になる、
     駆動装置。
    The drive device according to claim 1,
    Located inside the vehicle's motor room,
    Components of the vehicle are arranged above the inverter device in a direction in which the closing member is removed;
    When the component is removed, the closure member becomes removable;
    Drive device.
  5.  請求項1に記載の駆動装置であって、
     前記第1の流路には、前記閉塞部材に代えて、前記インバータハウジングを前記回転電機ハウジングから取り外すときに前記第1の流路の冷却水が前記接続部分から滴下することを防止するシール部材を有する棒状の封止治具が、前記端部から取り付け可能である、
     駆動装置。
    The drive device according to claim 1,
    In place of the closing member, the first flow path includes a sealing member that prevents cooling water in the first flow path from dripping from the connecting portion when the inverter housing is removed from the rotating electric machine housing. A rod-shaped sealing jig having: can be attached from the end;
    Drive device.
  6.  請求項5に記載の駆動装置であって、
     前記シール部材は、前記回転電機側流路の前記接続部分側を閉鎖する第1のシール部材と、前記インバータ側流路の前記接続部分側を閉鎖する第2のシール部材と、からなる、
     駆動装置。
    The drive device according to claim 5,
    The seal member includes a first seal member that closes the connecting portion side of the rotating electric machine side flow path, and a second seal member that closes the connecting portion side of the inverter side flow path.
    Drive device.
  7.  請求項5に記載の駆動装置であって、
     前記封止治具は、棒状のプラグと、前記シール部材とから構成され
     前記プラグは、フランジ部、溝部、ねじ形成部及び延長部を有し、
     前記延長部の先端に、前記シール部材が固定される、
     駆動装置。
    The drive device according to claim 5,
    The sealing jig includes a rod-shaped plug and the sealing member, the plug having a flange portion, a groove portion, a thread forming portion, and an extension portion,
    the sealing member is fixed to the tip of the extension;
    Drive device.
PCT/JP2022/021453 2022-05-25 2022-05-25 Drive device WO2023228335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021453 WO2023228335A1 (en) 2022-05-25 2022-05-25 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021453 WO2023228335A1 (en) 2022-05-25 2022-05-25 Drive device

Publications (1)

Publication Number Publication Date
WO2023228335A1 true WO2023228335A1 (en) 2023-11-30

Family

ID=88918732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021453 WO2023228335A1 (en) 2022-05-25 2022-05-25 Drive device

Country Status (1)

Country Link
WO (1) WO2023228335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188030A (en) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp Liquid-cooled rotary electrical machine
JP2016220391A (en) * 2015-05-20 2016-12-22 日産自動車株式会社 Mechatronic rotary electric machine
JP2017011912A (en) * 2015-06-24 2017-01-12 株式会社明電舎 Mechatronic rotary machine
WO2017072874A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Cooling structure for rotary electric machine and method for controlling same
JP2019142361A (en) * 2018-02-21 2019-08-29 本田技研工業株式会社 Cooling structure of drive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188030A (en) * 2012-03-08 2013-09-19 Mitsubishi Electric Corp Liquid-cooled rotary electrical machine
JP2016220391A (en) * 2015-05-20 2016-12-22 日産自動車株式会社 Mechatronic rotary electric machine
JP2017011912A (en) * 2015-06-24 2017-01-12 株式会社明電舎 Mechatronic rotary machine
WO2017072874A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Cooling structure for rotary electric machine and method for controlling same
JP2019142361A (en) * 2018-02-21 2019-08-29 本田技研工業株式会社 Cooling structure of drive device

Similar Documents

Publication Publication Date Title
CN103081046B (en) Electrical storage device and possess its engineering machinery
CN105280981B (en) Battery pack ventilation system for electrified vehicles
US9452682B2 (en) Transmission for a vehicle
US20160248302A1 (en) Drive unit, method for removing inverter, and method for installing inverter
KR102171845B1 (en) Driving Motor with Inverter Housing for Electric Vehicle
KR20110058589A (en) Electric water pump
WO2019131421A1 (en) Motor unit
CN111654138B (en) Motor unit
WO2023228335A1 (en) Drive device
KR102532045B1 (en) Intercooler for generators with improved efficiency of biogas generators
CN107725395A (en) Electronic water pump
CN220544094U (en) Battery pack and electric equipment
CN114204176A (en) Battery pack for horizontal connection with electric automobile and electric automobile
CN102865210B (en) It is fastenedly connected terminal for closed compressor
CN115173268B (en) High-voltage power engineering power box convenient to overhaul
CN105745106A (en) Power electronics module and hybrid module having an electrical signal and/or a coupling end of a clutch actuator
CN109450165A (en) A kind of automobile electrically-controlled actuator
US9541087B2 (en) Sealing grommet for connection between terminal housing and interior of sealed compressor
WO2019131420A1 (en) Motor unit and motor unit manufacturing method
CN116566108A (en) Oil cooling system of high-speed motor
CN214501466U (en) Air treatment device and air conditioner
CN114744815A (en) Heat dissipation variable frequency speed control motor
CN114825774A (en) Motor stator cooling structure and motor
CN218006009U (en) Integrated end cover, generator, driving device of generator, range-extending power assembly and vehicle
CN220248191U (en) Expansion kettle and automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943737

Country of ref document: EP

Kind code of ref document: A1