Nothing Special   »   [go: up one dir, main page]

WO2023207985A1 - 测量和上报方法、装置、设备、系统及存储介质 - Google Patents

测量和上报方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2023207985A1
WO2023207985A1 PCT/CN2023/090606 CN2023090606W WO2023207985A1 WO 2023207985 A1 WO2023207985 A1 WO 2023207985A1 CN 2023090606 W CN2023090606 W CN 2023090606W WO 2023207985 A1 WO2023207985 A1 WO 2023207985A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
cell
configuration information
reporting
network side
Prior art date
Application number
PCT/CN2023/090606
Other languages
English (en)
French (fr)
Inventor
孙彦良
鲍炜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023207985A1 publication Critical patent/WO2023207985A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a measurement and reporting method, device, equipment, system and storage medium.
  • UE User Equipment
  • L1 Layer 1
  • L2 Layer 2
  • RRM Radio Resource Management
  • Embodiments of the present application provide a measurement and reporting method, device, equipment, system and storage medium, which can solve the problem that the existing L1 measurement and reporting mechanism cannot be performed, resulting in the inability to perform mobility management and link quality management in advance, resulting in The problem of reduced data transmission performance of UE.
  • a measurement and reporting method includes: the UE receives target configuration information sent by a network side device, where the target configuration information includes measurement configuration information and reporting configuration information; the UE performs operations according to the measurement configuration information. L1 measurement, obtain the L1 measurement results, and send the L1 measurement results to the network side device according to the reported configuration information; wherein the measurement configuration information is determined by the first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal; reporting The configuration information is determined by a second parameter set.
  • the second parameter set includes first indication information. The first indication information is used to instruct the UE to perform L1 measurement reporting corresponding to the target cell set.
  • a measuring and reporting device which is applied to a UE.
  • the measuring and reporting device includes: a receiving module, a measuring module and a sending module.
  • the receiving module is configured to receive target configuration information sent by the network side device, where the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement module is used to perform L1 measurement according to the measurement configuration information and obtain L1 measurement results.
  • the sending module is used to send L1 measurement results to the network side device according to the reported configuration information.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal; the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • a measurement and reporting method includes: the network side device sends target configuration information to the UE.
  • the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement configuration information is used for the UE.
  • the L1 measurement is performed to obtain the L1 measurement result, and the reported configuration information is used to send the L1 measurement result to the network side device; the network side device receives the L1 measurement result sent by the UE.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal;
  • the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • a measuring and reporting device which is applied to network side equipment.
  • the measuring and reporting device includes: a sending module and a receiving module.
  • a sending module configured to send target configuration information to the UE, where the target configuration information includes measurement configuration information. and reporting configuration information.
  • the measurement configuration information is used for the UE to perform L1 measurements to obtain L1 measurement results.
  • the reporting configuration information is used to send the L1 measurement results to the network side device.
  • the receiving module is used to receive the L1 measurement results sent by the UE.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal; the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • a UE in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions When the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a UE including a processor and a communication interface, wherein the communication interface is used to receive target configuration information sent by a network side device, where the target configuration information includes measurement configuration information and reporting configuration information.
  • the processor is used to perform L1 measurement according to the measurement configuration information to obtain L1 measurement results.
  • the communication interface is also used to send L1 measurement results to the network side device according to the reported configuration information.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal;
  • the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send target configuration information to the UE.
  • the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement configuration The information is used for the UE to perform L1 measurements to obtain L1 measurement results.
  • the reported configuration information is used to send the L1 measurement results to the network side device; and to receive the L1 measurement results sent by the UE.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal; the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • a ninth aspect provides a communication system, including: a UE and a network side device.
  • the UE can be used to perform the steps of the measurement and reporting method described in the first aspect.
  • the network side device can be used to perform the steps of the third aspect. Measurement and reporting method steps described in this aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the UE when the measured cell and the serving cell are in different DUs, the UE can perform L1 measurements based on the measurement configuration information configured on the network side. Specifically, the UE performs L1 measurements based on the bandwidth configuration of the L1 measurement reference signal. To implement L1 measurement; and, the UE can report the measurement results of L1 measurement according to the reporting configuration information configured on the network side. Specifically,
  • the UE reports based on the indicated target cell set to implement L1 measurement reporting; that is, this application clearly states that the UE performs L1 measurement based on the bandwidth configuration of the L1 measurement reference signal, and the UE performs L1 reporting based on the target cell set.
  • the reporting scheme enables the network measurement equipment to perform mobility management and link quality management in advance based on the bandwidth configuration of the UE based on the L1 measurement reference signal and the measurement results reported by the target cell set, so that the UE can perform high-quality data transmission, thus improving the data transmission performance of the UE.
  • Figure 1 is a schematic architectural diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is one of the schematic diagrams of a measurement and reporting method provided by an embodiment of the present application.
  • Figure 3 is a second schematic diagram of a measurement and reporting method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of two activation links provided by the embodiment of the present application.
  • Figure 5 is one of the structural schematic diagrams of a measurement and reporting device provided by an embodiment of the present application.
  • Figure 6 is the second structural schematic diagram of a measuring and reporting device provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the hardware structure of a UE provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the hardware structure of a network side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes UE11 and network side device 12.
  • UE11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer ( ultra-mobile personal computer (UMPC), mobile Internet device (MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices (Wearable Device), Vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (PC), teller machines or self-service machines and other terminal-side devices.
  • UMPC ultra-mobile personal computer
  • MID mobile Internet device
  • AR augmented reality
  • VR virtual reality
  • VUE Vehicle-mounted
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • SCell Secondary Cell
  • the network can configure some SCells and directly configure their bandwidth part (Band Width Part, BWP) into the dormant state; SCell and SpCell (i.e. Primary Cell (PCell) + primary and secondary cells) (Primary Secondary Cell, PSCell)) must be in the same DU.
  • BWP Band Width Part
  • SCell and SpCell i.e. Primary Cell (PCell) + primary and secondary cells
  • PCell Primary Cell
  • PSCell Primary Secondary Cell
  • the network can ensure that the dormant SCell and SpCell are frame synchronized. From the perspective of UE reception, it is just possible that SCell and SpCell are not co-located, and some synchronization errors are caused by path propagation delay, which usually does not exceed 33us (assuming that the base station coverage radius is 9km and the inter-station synchronization error is 3us).
  • the UE When the SCell is in sleep state, the UE still needs to perform periodic and semi-static channel state information (CSI) measurements, L1 (i.e. layer 1) measurement and L3 (i.e. layer 3) measurement in the dormant SCell; the measurement results are not in sleep mode. Reporting is done on the SCell, but it needs to be reported on the SpCell or the SCell that does not sleep and contains the Physical Uplink Control Channel (PUCCH).
  • CSI channel state information
  • No data will be sent or received in the dormant SCell, including physical downlink control channel (Physical Downlink Control Channel, PDCCH) blind detection, physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) reception, and physical random access channel (Physical Random Access) Channel, PRACH)/Physical Uplink Shared Channel (PUSCH)/PUCCH/Sounding Reference Signal (SRS) transmission; if a beam failure occurs during the SCell beam failure recovery (Beam Failure Recovery, BFR) process,
  • the UE sends PUCCH on the corresponding uplink grant (UL grant); if there is no UL grant, it can request UL grant by sending a scheduling request (Scheduling Request, SR) on SpCell or non-dormant PUCCH SCell.
  • PDCCH Physical Downlink Control Channel
  • SR scheduling request
  • the UL timing advance (Timing Advance, TA) of SCell and SpCell can be in the same timing advance group (Timing Advance Group, TAG) or in different TAGs, but the maximum within a cell group (Cell Group, CG) Contains only 2 TAGs.
  • a TAG is a cell set containing at least one serving cell.
  • the serving cell can be PCell, PSCell or SCell. Since SCell and SpCell in the same CG are in the same DU, the network can update the SCell correspondence through the Media Access Control-Control Element (MAC CE) on SpCell or the non-dormant SCell. TA on the TAG.
  • MAC CE Media Access Control-Control Element
  • the network can configure an inactive PSCell for the UE.
  • This PSCell and the activated serving cell, that is, the PCell, may not have a frame synchronization relationship.
  • Radio link monitoring RLM
  • BFD Beam Failure Detection
  • the network can be configured on a Synchronization Signal Block (SSB) from a neighboring cell.
  • SSB Synchronization Signal Block
  • the UE can perform Layer 1 measurements and Layer 1 reference signal received power (Layer 1) on the corresponding SSB. Reference Signal Received Power, L1-RSRP) reporting.
  • Layer 1 Layer 1 reference signal received power
  • L1-RSRP Reference Signal Received Power
  • the frequency point of the SSB of the neighboring cell and the frequency point of the serving cell must be consistent, and both must be within the bandwidth of activated BWP; for UEs with only Single FFT, the reception timing error of the SSB of the neighboring cell and the SSB of the serving cell needs to be guaranteed to be less than the cycle
  • the length of the prefix (Cyclic Prefix, CP).
  • the network configures handover conditions for the UE in advance; when the UE determines that the conditions are met, the UE initiates a handover from one cell to another; the network will perform data forward on the corresponding data bearer in advance.
  • L3 measurement is essentially a type of L1 measurement and is generally called mobility measurement. Compared with L1 measurement, the purpose of L3 measurement is different. L3 measurement is mainly used for neighbor cell discovery and L3 handover and a series of mobility networks. decision making.
  • the measurement frequency point is exactly the same as the serving cell, it can be regarded as same-frequency measurement, otherwise it can be regarded as inter-frequency measurement.
  • the UE For L3 measurement, the UE only needs to measure SSB, and the measurement results are only reported to the current serving cell; when the serving cell and neighboring cells are in different DUs or even different centralized units (Centralized Unit, CU), only L3 data can be interoperated, and L1/L2 data cannot Will communicate with each other.
  • centralized units Centralized Unit, CU
  • the UE In FR2 and L3 measurements, the UE will use a wide beam to ensure cell discovery (Cell identification). This beam is different from the beam used by the UE in L1 measurements.
  • the UE can determine the L1 cell quality through intra-frequency or inter-frequency L1 measurements and report it to the network, so that the network can initiate L1/L2-based connection state mobility management (RRM) events, such as cell handover, cell redirection, SCG/SCell loading, etc.
  • RRM connection state mobility management
  • L1 measurement can only be performed in activated SpCell or SCell.
  • the network needs to configure and activate SpCell or SCell before the UE can perform L1 measurements; although the activated SCell can be in a dormant state, and there is no need to send and receive data on the dormant SCell, it only needs to continue to perform DL measurements, but such a mechanism It can only be used when the current protocol version supports the situation where SCell and SpCell are under the same DU, that is, the network can perform TA management, beam management and power management through the DL and UL links of the activated cell. For the situation where the measured cell and the serving cell are in different DUs during L1 measurement, the existing L1 measurement and reporting mechanism cannot be performed.
  • L1 measurement requires the network to activate SCell before it can measure the corresponding cell. In this way, for frequency points or UE BWP configurations where SCell has not been activated, the current L1 measurement cannot be performed in advance.
  • L3 measurement is mainly used for cell discovery and search, and its performance requirements and implementation methods are completely different from L1 measurement used for beam management.
  • the Rx beam gain used in L1 measurement is generally higher than L3 measurement; therefore, L1
  • the results of measurement and L3 measurement are generally not directly comparable; therefore, it is not suitable to use the intermediate result of L3 measurement, that is, the L1 result to complete the L1 measurement result of the neighboring cell.
  • conditional handover the CU and DU of the network can be ready for handover, and the handover is directly completed based on the Random Access Channel (RACH) sent by the UE, but the UE can only initiate handover based on the L3 measurement results.
  • RACH Random Access Channel
  • the UE cannot perform L1 measurements on an unknown cell, and the corresponding L1 reporting must be performed only after the conditional handover is completed.
  • the UE when the measured cell and the serving cell are in different DUs, the UE can perform L1 measurements based on the measurement configuration information configured on the network side. Specifically, the UE performs L1 measurements based on the bandwidth configuration of the L1 measurement reference signal. L1 measurement to implement L1 measurement; and, the UE can report the measurement results of L1 measurement according to the reporting configuration information configured on the network side. Specifically, the UE reports based on the indicated target cell set to implement L1 measurement reporting; that is, this application It is clearly given that the UE performs L1 measurement based on the bandwidth configuration of the L1 measurement reference signal, and the UE performs L1 reporting based on the target cell set reporting.
  • the network measurement equipment can be based on the UE based on the L1 measurement reference signal.
  • Bandwidth configuration and measurement results reported by the target cell set are used to perform mobility management and link quality management in advance, allowing the UE to perform high-quality data transmission, thus improving the UE's data transmission performance.
  • FIG. 2 shows a flow chart of the measurement and reporting method provided by the embodiment of the present application.
  • the measurement and reporting method provided by the embodiment of the present application may include the following steps 201 to 204.
  • Step 201 The network side device sends target configuration information to the UE.
  • Step 202 The UE receives the target configuration information sent by the network side device.
  • the above target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement configuration information is used for the UE to perform L1 measurements to obtain L1 measurement results.
  • the reporting configuration information is used for sending L1 measurement results to the network side device.
  • the above-mentioned measurement configuration information is determined by a first parameter set, which includes the bandwidth configuration of the L1 measurement reference signal; the reporting configuration information is determined by a second parameter set, which includes the first indication.
  • the first indication information is used to instruct the UE to perform L1 measurement reporting corresponding target cell set.
  • the first indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set, which can be understood as: the first indication information is used to instruct the UE to perform L1 measurement reporting on the target cell set; or, the first indication information
  • the resource used to instruct the UE to perform L1 measurement reporting is in the target cell set; or the first indication information is used to instruct the UE to perform L1 measurement reporting and the measurement results are the measurement results of cells in the target cell set.
  • the bandwidth configuration of the above-mentioned L1 measurement reference signal may be a system bandwidth configuration or a BWP configuration.
  • the above target cell set and the serving cell of the network side device are under different DUs (that is, the gNB MAC is different).
  • the network side device can deliver target configuration information through RRC configuration to instruct the UE to perform L1 measurement on one or more L1 measurement configurations, and instruct the UE to perform L1 measurement on one or more L1 reporting configurations. Report L1 measurement results.
  • the above-mentioned measurement configuration information may be uniquely determined by a first parameter set, and the above-mentioned reporting configuration information may be uniquely determined by a second parameter set.
  • “uniquely determined” here means that if and only if at least one parameter in the first parameter set is inconsistent, the above-mentioned measurement configuration information/reporting configuration information is distinguished into two different configurations.
  • the above-mentioned first parameter set further includes at least one of the following:
  • the L1 measurement reference signal corresponds to the reporting configuration of the cell.
  • the resource configuration of the above-mentioned L1 measurement reference signal may include at least one of the following: frequency point, resource block (Resource Block, RB) allocation, period, etc.
  • the cell configuration corresponding to the L1 measurement reference signal may include the physical cell ID (PCID) of the cell; the reported configuration of the cell corresponding to the L1 measurement reference signal may include a cell set indication.
  • PCID physical cell ID
  • the above-mentioned second parameter set further includes at least one of the following:
  • An activation time window configured on the target cell set, which is used to monitor the PDCCH delivered in the target cell set;
  • At least one PUCCH resource configured on the target cell set is used to report beam measurement results and CSI information;
  • SRS resources configured on the target cell set, which are used to send SRS; to determine synchronization information.
  • the above-mentioned activation time window may include at least one of period, system frame number (System Frame Number, SFN) offset (offset), and time window length; the activation time window may be passed To configure the search space, the activation time window can be used to monitor the PDCCH delivered in the target cell set (the RNTI corresponding to this scheduling signaling is not C-RNTI).
  • the above-mentioned PDCCH is used for at least one of the following:
  • Send power adjustment information which is used to indicate that the power reported by L1 measurement of the cells in the target cell set has been adjusted
  • the UE By issuing the PDCCH command, the UE is triggered to perform the process of sending RACH (RACH of PDCCH order); in order to facilitate TA maintenance on the corresponding cell;
  • the above timing advance command may be MAC CE or downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • Step 203 The UE performs L1 measurement according to the measurement configuration information, obtains the L1 measurement result, and sends the L1 measurement result to the network side device according to the reported configuration information.
  • the UE performs L1 measurement according to the measurement configuration information and obtains the L1 measurement result in the above step 203 can be specifically implemented through the following step 203a.
  • Step 203a The UE performs L1 measurements on multiple cells on the L1 measurement frequency layer according to the measurement configuration information, and obtains the L1 measurement results. fruit.
  • the above-mentioned multiple cells belong to N synchronized cell groups, and the downlink reception timing synchronization errors between cells in each synchronized cell group meet preset conditions, and N is a positive integer.
  • the above preset condition may be that within each synchronized cell group, the downlink Rx timing synchronization error between each cell does not exceed the CP length.
  • the above bandwidth is configured as BWP.
  • the L1 measurement frequency layer is the inter-frequency L1 measurement frequency layer, and the L1 measurement corresponding to the inter-frequency L1 measurement frequency layer is the L1 measurement outside the measurement interval.
  • the L1 measurement frequency layer is the same-frequency L1 measurement frequency layer.
  • the first cell is the cell where the UE performs L1 measurement
  • the L1 measurement frequency layer is the frequency layer where the UE performs L1 measurement.
  • the BWP of the cell where L1 measurement is located when it does not overlap with the activated BWP of the serving cell, it can be regarded as an inter-frequency L1 measurement frequency layer; when the BWP of the cell where L1 measurement is located is within the activated BWP of the serving cell , can be regarded as a same-frequency measurement frequency layer.
  • the UE can perform L1 measurements outside the measurement interval (gap) or within the measurement interval.
  • the measurement and reporting method provided by the embodiment of the present application also includes the following step 301 .
  • Step 301 The UE performs uplink synchronization operation on the neighboring cell.
  • the above-mentioned uplink synchronization operation includes at least one of the following:
  • the UE When the UE detects that the downlink synchronization error is less than or equal to the preset threshold, it initiates Contention Free Random Access (CFRA) on the cell set corresponding to the neighboring cell and establishes uplink synchronization.
  • CFRA Contention Free Random Access
  • the TAG corresponding to the neighboring cell is in an activated state.
  • the UE needs to establish uplink synchronization on the neighboring cell, for example, by sending uplink signals and receiving feedback signaling from the network to determine the uplink TA.
  • Step 204 The network side device receives the L1 measurement result sent by the UE.
  • the embodiments of this application provide a measurement and reporting method.
  • the UE can perform L1 measurements based on the measurement configuration information configured on the network side. Specifically, the UE measures based on the bandwidth of the L1 reference signal. Configure L1 measurement to implement L1 measurement; and, the UE can report the measurement results of L1 measurement according to the reporting configuration information configured on the network side. Specifically, the UE reports based on the indicated target cell set to implement L1 measurement reporting; that is, This application clearly provides a solution that the UE performs L1 measurement based on the bandwidth configuration of the L1 measurement reference signal, and the UE performs L1 reporting based on the target cell set reporting.
  • the network measurement equipment can measure based on the UE based on the L1 measurement reference
  • the bandwidth configuration of the signal and the measurement results reported by the target cell set are used to perform mobility management and link quality management in advance, so that the UE can perform high-quality data transmission, thereby improving the data transmission performance of the UE.
  • the measurement and reporting method provided by the embodiment of the present application further includes the following steps 401 and 402.
  • Step 401 The UE sends capability information to the network side device.
  • Step 402 The network side device receives the capability information sent by the UE.
  • the above capability information includes at least one of the following:
  • CA Carrier Aggregation
  • the number of synchronized cell groups supported by the UE On each inter-frequency L1 measurement frequency layer, the number of synchronized cell groups supported by the UE;
  • the maximum number of activated TAGs that the UE can handle (including TAGs corresponding to the L1 inter-frequency frequency layer).
  • the above capability information is used by the network side device to configure measurement configuration information and/or report configuration information for the UE based on the capability information.
  • the measurement and reporting method provided by the embodiment of the present application further includes the following steps 501 and 502.
  • Step 501 The network side device sends target signaling to the UE according to the L1 measurement result.
  • the above target signaling is used to instruct the UE to perform mobility management related operations.
  • the mobility management related operations include at least one of the following: cell handover, cell redirection, SCG or secondary cell loading.
  • Step 502 The UE receives the target signaling sent by the network side device.
  • the above target signaling is obtained by the network side device based on the L1 measurement results.
  • the network side device can issue target signaling (such as L1 signaling or L2 signaling) based on the L1 measurement results reported by the UE, and perform mobility management on the UE.
  • target signaling such as L1 signaling or L2 signaling
  • the mobility management includes cell handover, cell redirection, At least one of the SCG/SCell loads.
  • the measurement and reporting method provided by the embodiment of the present application further includes the following steps 601 and 602.
  • Step 601 When the UE receives handover signaling in the target cell, the UE sends second indication information to the source cell.
  • the target cell is the cell to which the UE is to be switched
  • the handover signaling is used to instruct the UE to switch to the target cell
  • the second instruction information is used to instruct the source cell to stop sending data.
  • control plane bearer of the target cell is activated after the handover is completed; that is, for the handover scenario, the control plane bearer of the target cell is activated after the L1/L2 handover is completed.
  • Step 602 The UE receives the acknowledgment (ACK) information sent by the source cell, and sends a handover completion notification message to the target cell.
  • ACK acknowledgment
  • the UE can notify the source cell to stop sending data through L1/L2 signaling; and after receiving the ACK information sent by the source cell, the UE sends L1/L2 to the target cell. Signaling to notify that the handover is complete.
  • the CU can transmit the data streams corresponding to the data bearers of the UE to the RLC entities of the two DUs in real time through Radio Link Control (RLC) data packet copying, and the two The RLC entity encapsulates data packets according to the same logic.
  • RLC Radio Link Control
  • the corresponding target DU will discard part of the UE's timeout data.
  • the UE when the UE replies to the target DU and the L1/L2 handover is completed, it may carry the uplink and downlink RLC packet ACK number information.
  • the above-mentioned L1/L2 signaling can be understood as BWP switching signaling (similar to SCell exiting from dormancy (Dormancy) state).
  • the embodiments of this application are applied to inter-cell handover scenarios, cell redirection scenarios, SCG/secondary cell loading scenarios, etc.
  • the inter-cell handover scenario of different DUs under the same CU is taken as an example.
  • the specific process of measurement and reporting methods will be explained. As shown in Figure 3, the measurement and reporting method provided by the embodiment of the present application includes the following steps 21 to 28.
  • this application can complete the cell handover to the target cell through the following steps:
  • Step 21 The source cell configures the L3 measurement event for the UE through the RRC reconfiguration message.
  • the frequency point of the above-mentioned L3 measurement event includes the frequency point corresponding to the SSB of the target cell. Based on the network's L3 measurement event configuration, the UE performs cell discovery and L3 measurement on the corresponding SSB frequency point.
  • Step 22 After discovering the target cell and completing L3 measurement, the UE reports a measurement report.
  • the UE when the SSB of the target cell meets the conditions for the UE to be detectable, that is, when the UE discovers the target cell through the cell discovery process, the UE can perform L3 measurements and report the measurement results of the target cell to the source cell. It is forwarded to the CU through the source cell DU.
  • Step 23 The source cell DU configures the BWP of the target cell to be switched through the RRC reconfiguration message, so that the UE performs link maintenance in advance according to the configured BWP.
  • the CU configures the target cell corresponding to another DU as a "to-be-switched” cell, and configures a set of DL BWP and UL BWP in the "to-be-switched" state for the cell, also It can be called a "dormant" BWP, and some reference signal configurations and reporting configurations associated with the BWP to facilitate link maintenance by the UE.
  • the network side device can further configure a target cell set. All cells in the target cell set belong to the same DU, and the configurations of the BWP to be switched in these target cells are completely consistent. , that is, these target cells are called target cell sets.
  • the network side device can instruct the UE to report L1 measurements on the DU corresponding to the target cell set by reporting the instruction information in the configuration.
  • the configuration of the BWP to be switched may include at least one of the following: PDSCH configuration, PDCCH configuration, PUSCH configuration, PUCCH configuration, necessary reference signal configuration and QCL configuration, etc., UE Link maintenance can be performed based on these configurations.
  • the L1 measurement configuration (i.e., the above-mentioned measurement configuration information) may include at least one of the following:
  • Measurement reference signal configuration such as frequency, RB allocation, period, etc.
  • Cell configuration corresponding to the measurement reference signal such as cell PCID, etc.
  • the measurement reference signal corresponds to the reporting configuration of the cell, such as cell aggregation indication, etc.
  • both the L1 measurement configuration and the reporting configuration are associated with a certain BWP to be switched.
  • the BWP to be switched and its corresponding target cell set have the following differences compared with the source target cell set:
  • the monitoring of the PDCCH corresponding to the BWP to be switched is periodic, and there is a cycle and time offset configuration.
  • the scheduling signaling issued by these PDCCHs is used for at least one of the following:
  • Send TA Command for adjusting TA which can be MAC CE or DCI;
  • the cell or cell set corresponding to the "to be switched" BWP will maintain an independent TAG, which is different from the TAG of the activated cell; after receiving the configuration of the BWP to be switched, the UE will notify the network side device at the appropriate time.
  • the specific maintenance method includes at least one of the following:
  • the network determines the TA adjustment amount based on the transmission of PUCCH and/or SRS;
  • the TAG corresponding to the neighboring cell is activated.
  • the CSI calculation and reporting configured on the BWP to be switched, and the L1-RSRP calculation and reporting can be directly based on the Quasi-Co-Location (QCL) information corresponding to the BWP to be switched, through the UL channel (PUSCH or PUCCH ) is sent to the corresponding cell.
  • QCL Quasi-Co-Location
  • the to-be-switched BWP of the target cell does not overlap with the activated BWP of the serving cell, for example, when they are in different predefined frequency bands, it can be regarded as an inter-frequency frequency layer; when the BWP of the cell where L1 is measured is in the serving cell When the activated BWP of the cell is within, it can be regarded as a co-frequency measurement frequency layer.
  • the inter-frequency L1 measurement is performed outside the measurement interval; if the UE supports CA or DC on the L1 inter-frequency measurement frequency layer, the UE does not need a measurement interval to measure on the L1 inter-frequency measurement frequency layer; the UE of CA or DC
  • the capability is the capability of each frequency band combination (per-Band Combination, per-BC), that is, different frequency band combinations.
  • the UE can report a capability value for this frequency band combination.
  • the UE can perform L1 measurements on more than one cell, but multiple cells can only belong to N synchronized cell groups; within each synchronized cell group, the downlink Rx timing between multiple cells The synchronization error does not exceed the CP length.
  • the number of synchronized cell groups supported by the UE is also a UE capability; this is a per-band per-BC capability, that is, different frequency band combinations.
  • the UE can report a capability value for each frequency band in the frequency band combination.
  • L1 measurement and reporting must also be performed within the measurement interval in some cases.
  • the UE can measure L1 measurement and reporting are performed within the interval; the maximum number of activated TAGs that the UE can handle (including TAGs corresponding to the L1 inter-frequency measurement frequency layer) is also a UE capability, which can be a per-frequency range (per-FR) capability.
  • per-UE capability, per-FR capability means that the UE reports a capability value for each frequency range, per-UE capability means that the capability reported by the UE does not distinguish between frequency ranges, and the entire UE only reports one capability.
  • the number of L1 inter-frequency measurement frequency layers is the UE capability; per-UE/per-FR capability.
  • the number of neighboring cells measured by L1 is the UE capability; per-UE/per-FR capability.
  • Step 24 The UE sends RACH to establish a connection with the target cell and maintain the connection, including uplink TA maintenance, uplink power control, downlink CSI feedback, downlink beam measurement reporting, etc.
  • the UE can trigger CFRA on the corresponding cell set, establish synchronization, and start feeding back CSI and/or beam measurement results.
  • Step 25 The target cell DU simultaneously activates the target cell's non-"pre-handover" BWP and its corresponding transmission configuration indication (TCI) through MAC CE or DCI signaling.
  • TCI transmission configuration indication
  • the target cell DU simultaneously activates the target cell's non-"pre-handover" BWP and its corresponding TCI, which enables the UE to perform uplink and downlink transmissions on the BWP with better quality.
  • better quality here refers to: higher transmission rate (for example, higher than a certain threshold), or MCS (Modulation and coding scheme, modulation coding scheme number) and/or MIMO used for transmission
  • MCS Modulation and coding scheme, modulation coding scheme number
  • MIMO used for transmission
  • the number of transmission layers is high (for example, higher than a certain threshold), or the bit error rate and/or block error rate is low (for example, lower than a certain threshold).
  • the above-mentioned MAC CE or DCI signaling can be understood as BWP switching signaling (similar to SCell exiting from Dormancy state).
  • Step 26 The UE reports to the source base station through the MAC CE. Since it needs to switch to the target DU, it needs to stop uplink and downlink transmission.
  • Step 27 The source cell DU notifies the UE that uplink and downlink transmission has stopped through MAC CE.
  • Step 28 The UE sends MAC signaling to notify the target cell DU of the RLC data packet transmission status of the source cell DU, and completes the handover.
  • the CU transmits the data stream on the data bearer corresponding to the UE to the RLC entities of the two DUs in real time through RLC data packet replication, and the two RLC entities encapsulate the data packets according to the same logic;
  • the corresponding target DU will discard part of the UE's timeout data
  • the UE When the UE replies to the target DU and the L1/L2 handover is completed, it will carry the uplink and downlink RLC packet ACK number information;
  • control plane bearer of the target cell is activated after the L1/L2 handover is completed;
  • the UE completes the handover and starts data transmission on the target cell DU.
  • steps 25 to 28 are exemplary explanations of the process in which the network side device performs subsequent L1/L2 handover after receiving the L1 measurement results. This process is not limited in the embodiments of this application.
  • the network side device while configuring SSB measurement for the neighboring cell, the network side device provides a dormant (dormant) BWP configuration of the neighboring cell for measurement and reporting. After activating the dormant BWP, the UE needs to associate the measurement configuration and reporting configuration to the dormant BWP, use the downlink resources configured on the dormant BWP for measurement, and use the uplink resources configured on the dormant BWP for L1 measurement reporting.
  • the dormant BWP of this neighboring cell can have an independent TAG configuration; on the dormant BWP, the UE needs to perform L1 measurement and link maintenance, including RLM, BFD, TA maintenance, uplink power control, CSI feedback, etc.
  • the UE can receive PDCCH on the dormant BWP of the neighboring cell according to a certain "activation time window" configuration.
  • the DCI received in the PDCCH does not use C-RNTI scrambling and can be used for transmission TA adjustment (including PDCCH order) and L1 measurement.
  • Reported uplink power control and L1/L2 cell handover signaling (equivalent to BWP activation/deactivation signaling).
  • the target cell DU obtains the current data packet bearer transmission status from the CU or UE (for example, the UE reports DL/UL RLC data packet ACK serial number).
  • the measurement is recorded as a same-frequency L1 measurement; otherwise, it is recorded as an inter-frequency L1 measurement.
  • the measurement behavior of the UE on dormant BWP depends on the capabilities of the UE, that is, the above capability information.
  • the UE can complete the measurement of neighboring cells in advance before handover and complete the important neighboring cell link maintenance process. In this way, after handover, there is no need to obtain new information based on a series of lengthy processes. Important information such as the CSI of the serving cell can be directly transmitted with high quality data.
  • the execution subject may also be a measurement and reporting device, or a control module in the measurement and reporting device for executing the measurement and reporting method.
  • Figure 5 shows a possible structural diagram of the measurement and reporting device involved in the embodiment of the present application, applied to UE.
  • the measuring and reporting device 40 may include: a receiving module 41 , a measuring module 42 and a sending module 43 .
  • the receiving module 41 is used to receive target configuration information sent by the network side device, where the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement module 42 is configured to perform L1 measurement according to the measurement configuration information received by the receiving module 41 to obtain the L1 measurement result.
  • the sending module 43 is configured to send the L1 measurement result obtained by the measurement module 42 to the network side device according to the reported configuration information received by the receiving module 41 .
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal;
  • the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • the embodiment of the present application provides a measuring and reporting device.
  • the measuring and reporting device can perform L1 measurement according to the measurement configuration information configured on the network side.
  • the measuring and reporting device is based on The bandwidth of the L1 measurement reference signal is configured to perform L1 measurement to achieve L1 measurement; and the measurement and reporting device can report the measurement results of the L1 measurement according to the reporting configuration information configured on the network side.
  • the measurement and reporting device is based on the indicated target.
  • a collection of cells are reported to implement L1 measurement reporting; that is, this application clearly states that the measurement and reporting device performs L1 measurement based on the bandwidth configuration of the L1 measurement reference signal, and the measurement and reporting device performs L1 reporting based on the target cell.
  • the collective reporting scheme enables the network measurement equipment to perform mobility management and link quality management in advance based on the bandwidth configuration of the L1 measurement reference signal and the measurement results reported by the target cell set by the measurement and reporting device, so that measurement and The reporting device is capable of high-quality data transmission, thereby improving data transmission performance.
  • the above first parameter set further includes at least one of the following:
  • the L1 measurement reference signal corresponds to the reporting configuration of the cell.
  • the above second parameter set further includes at least one of the following:
  • An activation time window configured on the target cell set, which is used to monitor the PDCCH delivered in the target cell set;
  • At least one PUCCH resource configured on the target cell set is used to report beam measurement results and CSI information;
  • SRS resources configured on the target cell set which are used to send SRS.
  • the above PDCCH is used for at least one of the following:
  • Send power adjustment information which is used to indicate that the power reported by L1 measurement of the cells in the target cell set has been adjusted
  • the above-mentioned measurement module 42 is specifically used to perform L1 measurements on multiple cells on the L1 measurement frequency layer according to the measurement configuration information to obtain L1 measurement results.
  • the multiple cells belong to N synchronized cell groups. group, within each synchronized cell group The downlink reception timing synchronization error between each cell meets the preset conditions, and N is a positive integer.
  • the above-mentioned sending module 43 is also configured to send capability information to the network-side device before the receiving module 41 receives the target configuration information sent by the network-side device.
  • the capability information includes at least one of the following:
  • the number of synchronized cell groups supported by the UE On each inter-frequency L1 measurement frequency layer, the number of synchronized cell groups supported by the UE;
  • the maximum number of activated TAGs that the UE can handle is the maximum number of activated TAGs that the UE can handle.
  • the above bandwidth configuration is BWP.
  • the L1 measurement frequency layer is the inter-frequency L1 measurement frequency layer, and the L1 measurement corresponding to the inter-frequency L1 measurement frequency layer is the L1 measurement outside the measurement interval.
  • the L1 measurement frequency layer is the same-frequency L1 measurement frequency layer; where, the first cell is the cell where the UE performs L1 measurement, and the L1 measurement frequency layer is performed by the UE. Frequency layer for L1 measurement.
  • the above-mentioned receiving module 41 is also used to receive the target signaling sent by the network side device after the sending module 43 sends the L1 measurement result to the network side device according to the reported configuration information. Obtained by the network side device based on the L1 measurement results, the target signaling is used to instruct the UE to perform mobility management related operations; wherein the mobility management related operations include at least one of the following: cell handover, cell redirection, SCG or secondary cell loading .
  • the measurement and reporting device 40 provided by the embodiment of the present application further includes: an execution module.
  • the execution module is configured to perform an uplink synchronization operation on the neighboring cell before the sending module 43 sends the L1 measurement result to the network side device according to the reported configuration information.
  • the uplink synchronization operation includes at least one of the following:
  • the UE When the UE detects that the downlink synchronization error is less than or equal to the preset threshold, it initiates CFRA on the cell set corresponding to the neighboring cell and establishes uplink synchronization;
  • the TAG corresponding to the neighboring cell is in an activated state.
  • the above-mentioned sending module 43 is also configured to send the L1 measurement result to the network side device according to the reported configuration information, and then send the L1 measurement result to the source cell when the UE receives the handover signaling in the target cell.
  • the second indication information is that the target cell is the cell to which the UE is to be switched, the handover signaling is used to instruct the UE to switch to the target cell, and the second indication information is used to instruct the source cell to stop sending data.
  • the above-mentioned receiving module 41 is also used to receive ACK information sent by the source cell.
  • the above-mentioned sending module 43 is also used to send a handover completion notification message to the target cell.
  • control plane bearer of the target cell is activated after the handover is completed.
  • the measurement and reporting device in the embodiment of the present application may be a UE, such as a UE with an operating system, or may be a component in the UE, such as an integrated circuit or chip.
  • the UE may be a terminal or other equipment other than the terminal.
  • UEs may include but are not limited to the types of UE11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application.
  • the measurement and reporting device provided by the embodiments of this application can implement each process implemented by the UE in the above method embodiments, and achieve the same technical effect. To avoid duplication, details will not be described here.
  • Figure 6 shows another possible structural schematic diagram of the measurement and reporting device involved in the embodiment of the present application, which is applied to network-side equipment.
  • the measurement and reporting device 50 may include: a sending module 51 and a receiving module 52 .
  • the sending module 51 is used to send target configuration information to the UE.
  • the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement configuration information is used for the UE to perform L1 measurements to obtain L1 measurement results.
  • the reporting configuration information is used to send the L1 measurement results to the UE.
  • the network side device sends L1 measurement results.
  • the receiving module 52 is configured to receive the L1 measurement results sent by the UE.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal;
  • the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first
  • the indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • Embodiments of the present application provide a measurement and reporting device.
  • the measurement and reporting device can configure measurement configuration information to the UE for the UE to perform L1 measurements.
  • measurement and reporting The device indicates the bandwidth configuration of the L1 measurement reference signal to the UE, so that the UE performs L1 measurement based on the bandwidth configuration of the L1 measurement reference signal to implement L1 measurement; and, the measurement and reporting device can configure and report configuration information to the UE for reporting by the UE.
  • the measurement and reporting device instructs the UE to perform L1 measurement and report the corresponding target cell set, so that the UE reports based on the target cell set to achieve L1 measurement reporting; that is, this application clearly provides the UE
  • the L1 measurement is performed based on the bandwidth configuration of the L1 measurement reference signal, and the L1 reporting by the UE is based on the target cell set reporting scheme.
  • the network measurement equipment can be based on the bandwidth configuration of the UE based on the L1 measurement reference signal and the target cell.
  • the reported measurement results are aggregated to perform mobility management and link quality management in advance, allowing the UE to perform high-quality data transmission, thus improving the UE's data transmission performance.
  • the above-mentioned receiving module 52 is also configured to receive the capability information sent by the UE before the sending module 51 sends the target configuration information to the UE.
  • the capability information includes at least one of the following:
  • the number of synchronized cell groups supported by the UE On each inter-frequency L1 measurement frequency layer, the number of synchronized cell groups supported by the UE;
  • the maximum number of activated TAGs that the UE can handle is the maximum number of activated TAGs that the UE can handle.
  • the above-mentioned sending module 51 is also configured to send target signaling to the UE according to the L1 measurement result after the receiving module 52 receives the L1 measurement result sent by the UE.
  • the target signaling is used to instruct the UE.
  • the measurement and reporting device provided by the embodiments of this application can implement each process implemented by the network side device in the above method embodiment, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 5000, which includes a processor 5001 and a memory 5002.
  • the memory 5002 stores programs or instructions that can be run on the processor 5001, such as , when the communication device 5000 is a UE, when the program or instruction is executed by the processor 5001, each step of the above UE-side method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be described again here.
  • the communication device 5000 is a network-side device, when the program or instruction is executed by the processor 5001, each step of the above-mentioned network-side device method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • Embodiments of the present application also provide a UE, including a processor and a communication interface.
  • the communication interface is used to receive target configuration information sent by the network side device.
  • the target configuration information includes measurement configuration information and reporting configuration information;
  • the processor is used to configure according to the measurement Perform L1 measurement on the information to obtain L1 measurement results;
  • the communication interface is also used to send L1 measurement results to the network side device based on the reported configuration information.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal;
  • the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • FIG. 8 is a schematic diagram of the hardware structure of a UE that implements an embodiment of the present application.
  • the UE 700 includes but is not limited to: at least one of a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. Some parts.
  • the UE 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby achieving management of charging, discharging, and power consumption management through the power management system. and other functions.
  • the UE structure shown in FIG. 8 does not constitute a limitation on the UE.
  • the UE may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be The display panel 7061 is configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 . Touch panel 7071, also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the radio frequency unit 701 is used to receive target configuration information sent by the network side device, where the target configuration information includes measurement configuration information and reporting configuration information.
  • the processor 710 is configured to perform L1 measurement according to the measurement configuration information and obtain L1 measurement results.
  • the radio frequency unit 701 is also used to send L1 measurement results to the network side device according to the reported configuration information.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal; the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • Embodiments of this application provide a UE.
  • the UE can perform L1 measurements based on the measurement configuration information configured on the network side. Specifically, the UE performs L1 measurements based on the bandwidth configuration of the L1 measurement reference signal. Measurement to achieve L1 measurement; and, the UE can report the measurement results of L1 measurement according to the reporting configuration information configured on the network side. Specifically, the UE reports based on the indicated target cell set to implement L1 measurement reporting; that is, this application clearly A solution is provided in which the UE performs L1 measurement based on the bandwidth configuration of the L1 measurement reference signal, and the UE performs L1 reporting based on the target cell set report.
  • the network measurement equipment can measure the bandwidth of the UE based on the L1 measurement reference signal.
  • the measurement results reported by the configuration and target cell collection are used to perform mobility management and link quality management in advance, so that the UE can perform high-quality data transmission, thus improving the data transmission performance of the UE.
  • the UE provided by the embodiments of this application can implement each process implemented by the UE in the above method embodiments, and achieve the same technical effect. To avoid duplication, details will not be described here.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to send target configuration information to the UE.
  • the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement configuration information is used for the UE. Perform L1 measurement to obtain the L1 measurement result, and the reported configuration information is used to send the L1 measurement result to the network side device; and receive the L1 measurement result sent by the UE.
  • the measurement configuration information is determined by the first parameter set, which includes the bandwidth configuration of the L1 measurement reference signal; the reporting configuration
  • the setting information is determined by a second parameter set.
  • the second parameter set includes first indication information.
  • the first indication information is used to instruct the UE to perform L1 measurement reporting corresponding target cell set.
  • This network-side device embodiment corresponds to the above-mentioned network-side device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the
  • the embodiment of the present application also provides a network side device.
  • the network side device 600 includes: an antenna 61 , a radio frequency device 62 , a baseband device 63 , a processor 64 and a memory 65 .
  • the antenna 61 is connected to the radio frequency device 62 .
  • the radio frequency device 62 receives information through the antenna 61 and sends the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be sent and sends it to the radio frequency device 62.
  • the radio frequency device 62 processes the received information and then sends it out through the antenna 61.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 63, which includes a baseband processor.
  • the radio frequency device 62 is used to send target configuration information to the UE.
  • the target configuration information includes measurement configuration information and reporting configuration information.
  • the measurement configuration information is used by the UE to perform L1 measurements to obtain L1 measurement results.
  • the reporting configuration information is used to send the L1 measurement results to the UE.
  • the network side device sends L1 measurement results; and receives the L1 measurement results sent by the UE.
  • the measurement configuration information is determined by a first parameter set, the first parameter set includes the bandwidth configuration of the L1 measurement reference signal;
  • the reporting configuration information is determined by a second parameter set, the second parameter set includes the first indication information, the first The indication information is used to instruct the UE to perform L1 measurement reporting on the corresponding target cell set.
  • Embodiments of the present application provide a network side device.
  • the network side device can configure measurement configuration information to the UE for the UE to perform L1 measurements.
  • the network side device sends the measurement configuration information to the UE.
  • the network side device instructs the UE to perform L1 measurement reporting on the corresponding target cell set, so that the UE reports based on the target cell set to achieve L1 measurement reporting; that is, this application clearly states that the UE performs L1 measurement based on The measurement is performed based on the bandwidth configuration of the L1 measurement reference signal, and the L1 reporting by the UE is based on the solution reported by the target cell set.
  • the network measurement equipment can measure based on the bandwidth configuration of the L1 measurement reference signal by the UE and the measurement reported by the target cell set.
  • mobility management and link quality management are performed in advance, so that the UE can perform high-quality data transmission, thereby improving the data transmission performance of the UE.
  • the network side device provided by the embodiment of the present application can implement each process implemented by the network side device in the above method embodiment, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the baseband device 63 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 66, which is, for example, a common public radio interface (CPRI).
  • a network interface 66 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 600 in the embodiment of the present application also includes: instructions or programs stored in the memory 65 and executable on the processor 64.
  • the processor 64 calls the instructions or programs in the memory 65 to execute the various operations shown in Figure 6. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above method embodiments is implemented and the same technology can be achieved. The effect will not be described here to avoid repetition.
  • the processor is the processor in the communication device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement various processes of the above method embodiments. , and can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement each of the above method embodiments.
  • the process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a communication system, including: a UE and a network side device.
  • the UE can be used to perform the steps of the measurement and reporting method as described above.
  • the network side device can be used to perform the measurement as described above. and reporting steps.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种测量和上报方法、装置、设备、系统及存储介质,属于通信技术领域,本申请实施例的测量和上报方法包括:UE接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息;UE根据测量配置信息进行L1测量,得到L1测量结果,并根据上报配置信息,向网络侧设备发送L1测量结果;其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。

Description

测量和上报方法、装置、设备、系统及存储介质
相关申请的交叉引用
本申请主张在2022年04月29日在中国提交的中国专利申请号202210474826.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种测量和上报方法、装置、设备、系统及存储介质。
背景技术
用户设备(User Equipment,UE)可以通过同频或异频的层1(L1)测量,确定L1小区的质量并上报网络侧设备,以便于网络侧设备可以发起基于L1/层2(L2)的连接态移动性管理(Radio Resource Management,RRM)事件,例如小区切换、小区重定向等。然而,对于L1测量中,当被测小区与服务小区处于不同分布单元(Distributed Unit,DU)时,基于现有的L1测量和上报机制无法进行,从而导致无法提前进行移动性管理和链路质量管理,进而导致UE的数据传输性能降低。
发明内容
本申请实施例提供一种测量和上报方法、装置、设备、系统及存储介质,能够解决基于现有的L1测量和上报机制无法进行,导致无法提前进行移动性管理和链路质量管理,从而导致UE的数据传输性能降低的问题。
第一方面,提供了一种测量和上报方法,该测量和上报方法包括:UE接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息;UE根据测量配置信息进行L1测量,得到L1测量结果,并根据上报配置信息,向网络侧设备发送L1测量结果;其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
第二方面,提供了一种测量和上报装置,应用于UE,该测量和上报装置包括:接收模块、测量模块和发送模块。接收模块,用于接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息。测量模块,用于根据测量配置信息进行L1测量,得到L1测量结果。发送模块,用于根据上报配置信息,向网络侧设备发送L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
第三方面,提供了一种测量和上报方法,该测量和上报方法包括:网络侧设备向UE发送目标配置信息,该目标配置信息包括测量配置信息和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果;网络侧设备接收UE发送的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
第四方面,提供了一种测量和上报装置,应用于网络侧设备,该测量和上报装置包括:发送模块和接收模块。发送模块,用于向UE发送目标配置信息,该目标配置信息包括测量配置信息 和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果。接收模块,用于接收UE发送的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
第五方面,提供了一种UE,该UE包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种UE,包括处理器及通信接口,其中,所述通信接口用于接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息。所述处理器用于根据测量配置信息进行L1测量,得到L1测量结果。所述通信接口还用于根据上报配置信息,向网络侧设备发送L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向UE发送目标配置信息,该目标配置信息包括测量配置信息和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果;并接收UE发送的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
第九方面,提供了一种通信系统,包括:UE及网络侧设备,所述UE可用于执行如第一方面所述的测量和上报方法的步骤,所述网络侧设备可用于执行如第三方面所述的测量和上报方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的测量和上报方法的步骤,或者实现如第三方面所述的测量和上报方法的步骤。
在本申请实施例中,当被测小区与服务小区处于不同DU时,UE可以根据网络侧配置的测量配置信息,进行L1测量,具体地,UE基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,UE可以根据网络侧配置的上报配置信息,上报L1测量的测量结果,具体地,
UE基于指示的目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了UE进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且UE进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据UE基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得UE能够进行高质量的数据传输,从而提升了UE的数据传输性能。
附图说明
图1是本申请实施例提供的一种无线通信系统的架构示意图;
图2是本申请实施例提供的一种测量和上报方法的示意图之一;
图3是本申请实施例提供的一种测量和上报方法的示意图之二;
图4是本申请实施例提供的两个激活链路的示意图;
图5是本申请实施例提供的一种测量和上报装置的结构示意图之一;
图6是本申请实施例提供的一种测量和上报装置的结构示意图之二;
图7是本申请实施例提供的一种通信设备的硬件结构示意图;
图8是本申请实施例提供的一种UE的硬件结构示意图;
图9是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括UE11和网络侧设备12。其中,UE11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定UE11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面对本申请实施例提供的测量和上报方法、装置、设备、系统及存储介质中涉及的一些概念和/或术语做一下解释说明。
1、辅小区(Secondary Cell,SCell)的激活与休眠:
基于UE的异频L3测量上报,网络可以配置一些SCell,并直接将其带宽部分(Band Width Part,BWP)配置为休眠状态;SCell与SpCell(即主小区(Primary Cell,PCell)+主辅小区(Primary Secondary Cell,PSCell))必然在同一个DU里。
网络可以保证休眠SCell与SpCell是帧同步的。从UE接收来看,仅仅可能因为SCell与SpCell不共址,因路径传播时延带来一些同步误差,通常不超过33us(假设基站覆盖半径9km,站间同步误差3us)。
SCell休眠状态下,UE在休眠SCell里仍然需要进行周期和半静态的信道状态信息(Channel State Information,CSI)测量,L1(即层1)测量以及L3(即层3)测量;测量结果不在休眠SCell上进行上报,但需要在SpCell上,或未休眠的包含物理上行控制信道(Physical Uplink Control Channel,PUCCH)的SCell上,进行上报。
休眠SCell里不会进行任何数据收发,包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)盲检,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)接收,以及物理随机接入信道(Physical Random Access Channel,PRACH)/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/PUCCH/探测参考信号(Sounding Reference Signal,SRS)的发送;如果SCell波束故障恢复(Beam Failure Recovery,BFR)过程发生波束失败,UE在对应的上行授权(UL grant)上发送PUCCH;如果没有UL grant,可以通过在SpCell或未休眠的PUCCH SCell上发送调度请求(Scheduling Request,SR)来请求UL grant。
SCell和SpCell的UL定时提前量(Timing Advance,TA)可以在同一个定时提前组(Timing Advance Group,TAG)内,也可以在不同的TAG内,但一个小区组(Cell Group,CG)内最多只包含2个TAG。TAG是包含至少一个服务小区的小区集合,服务小区可以是PCell,PSCell或SCell。由于同一个CG内的SCell和SpCell在同一个DU内,因此网络可以通过SpCell或未休眠的SCell上的媒体接入控制层控制信元(Media Access Control-Control Element,MAC CE)来更新SCell对应的TAG上的TA。一般来说,如果存在和SpCell不共址的一个SCell,则出于维护TA的目的,网络一般不会将该SCell去激活。
2、PSCell的去激活,以及去激活态下的L1测量
网络可以给UE配置一个未激活的PSCell,这个PSCell和激活的服务小区,即PCell可以不具有帧同步关系。
在未激活的PSCell上不需要执行L1测量,但是需要执行无线链路监控(Radio link monitoring,RLM)/波束失败侦测(Beam Failure Dection,BFD)测量;在未激活的PSCell上,UE如果发现波束失败,需要在无线资源控制(Radio Resource Control,RRC)层按照辅小区组(Secondary Cell Group,SCG)失败进行上报。
3、同频邻小区L1测量;
网络可以配置在一个来自于邻小区的同步信号块(Synchronization Signal Block,SSB),作为当前服务小区的可用SSB,UE可以在对应的SSB上进行层1测量和层1参考信号接收功率(Layer 1 Reference Signal Received Power,L1-RSRP)的上报。
邻小区SSB的频点和服务小区的频点必须一致,且二者必须都在激活BWP的带宽内;对于只有Single FFT的UE,邻小区SSB和服务小区的SSB的接收定时误差需要保证小于循环前缀(Cyclic Prefix,CP)的长度。
4、条件切换
网络预先给UE配置切换条件;当UE判断条件满足时,UE发起切换,从一个小区切换到另一个小区;网络会提前对相应的数据承载进行数据转发(data forward)。
5、L3测量
L3测量本质上也是一种L1测量,一般也称为移动性测量;对比L1测量,L3测量的用途上有区别,L3测量主要用于邻小区发现,并进行L3切换等一系列移动性的网络决策。
对于L3测量,存在同频测量和异频测量。测量频点与服务小区完全相同时,可视为同频测量,否则视为异频测量。
对于L3测量,UE只需要测量SSB,且测量结果仅仅上报当前服务小区;服务小区与邻小区处于不同DU甚至不同集中单元(Centralized Unit,CU)时,只有L3数据可以互通,L1/L2数据不会互通。
在FR2,L3测量中UE会使用宽波束来保证小区发现(Cell identification),这一波束与L1测量中UE使用的波束是不同的。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的测量和上报方法进行详细地说明。
目前,UE可以通过同频或异频的L1测量,确定L1小区质量并上报网络,以便于网络可以发起基于L1/L2的连接态移动性管理(RRM)事件,例如小区切换,小区重定向,SCG/SCell加载等。
(1)L1测量仅仅只能在激活的SpCell或SCell中进行。网络需要先配置并激活SpCell或SCell后,UE才能进行L1测量;尽管激活的SCell可以处于休眠状态,且处于休眠状态的SCell上不需要进行数据收发,只需要持续进行DL测量,但这样的机制仅仅只能用于当前协议版本支持的,SCell和SpCell处于同一DU下的情形,也就是,网络可以通过已激活小区的DL和UL链路进行TA管理,波束管理和功率管理。对于L1测量中,被测小区与服务小区处于不同DU下的情形,基于现有的L1测量和上报机制无法进行。
(2)L1测量需要网络先激活SCell后,才可以对对应小区进行测量,这样,对于尚未激活SCell的频点或UE BWP配置内,当前L1测量无法提前进行。
(3)L3测量主要用于小区发现和搜索,其性能要求和实现方式,与用于波束管理的L1测量完全不同,例如,L1测量使用的Rx波束增益一般都会高于L3测量;因此,L1测量与L3测量,其结果一般不能直接比较;因此,不适合使用L3测量的中间结果,即L1结果来完成充当邻小区的L1测量结果。
(4)条件切换中,网络的CU和DU之间可以做好切换准备,基于UE发送的随机接入信道(Random Access Channel,RACH)直接完成切换,但UE只能基于L3测量结果发起切换,也就是说,UE无法在未知小区上进行L1测量,而相应的L1上报也必须在条件切换完成后才能进行。
针对上述问题,本申请实施例中,当被测小区与服务小区处于不同DU时,UE可以根据网络侧配置的测量配置信息,进行L1测量,具体地,UE基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,UE可以根据网络侧配置的上报配置信息,上报L1测量的测量结果,具体地,UE基于指示的目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了UE进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且UE进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据UE基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得UE能够进行高质量的数据传输,从而提升了UE的数据传输性能。
具体的,本申请实施例提供一种测量和上报方法,图2示出了本申请实施例提供的一种测量和上报方法的流程图。如图2所示,本申请实施例提供的测量和上报方法可以包括下述的步骤201至步骤204。
步骤201、网络侧设备向UE发送目标配置信息。
步骤202、UE接收网络侧设备发送的目标配置信息。
本申请实施例中,上述目标配置信息包括测量配置信息和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果。
本申请实施例中,上述测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
需要说明的是,第一指示信息用于指示UE进行L1测量上报对应的目标小区集合可以理解为:第一指示信息用于指示UE在目标小区集合上进行L1测量上报;或者,第一指示信息用于指示UE进行L1测量上报时的资源在目标小区集合上;或者,第一指示信息用于指示UE进行L1测量上报的测量结果是在目标小区集合中的小区的测量结果。
可选地,本申请实施例中,上述L1测量参考信号的带宽配置可以为系统带宽配置或BWP配置。
可选地,本申请实施例中,上述目标小区集合与网络侧设备的服务小区处于不同的DU下(即gNB MAC不同)。
可选地,本申请实施例中,网络侧设备可以通过RRC配置下发目标配置信息,以指示UE在一个或多个L1测量配置上进行L1测量,以及指示UE在一个或多个L1上报配置上进行L1测量结果的上报。
可选地,本申请实施例中,上述测量配置信息可以由第一参数集合唯一确定,上述上报配置信息可以由第二参数集合唯一确定。需要说明的是,这里的“唯一确定”意味着,当且仅当第一参数集合内的至少一项参数存在不一致时,上述测量配置信息/上报配置信息被区分成两个不同的配置。
可选地,本申请实施例中,上述第一参数集合还包括以下至少一项:
L1测量参考信号的资源配置;
L1测量参考信号对应的小区配置;
L1测量参考信号对应小区的上报配置。
可选地,本申请实施例中,上述L1测量参考信号的资源配置可以包括以下至少一项:频点、资源块(Resource Block,RB)分配、周期等。
可选地,本申请实施例中,上述L1测量参考信号对应的小区配置可以包括小区的物理小区标识(Physical Cell ID,PCID);上述L1测量参考信号对应小区的上报配置可以包括小区集合指示。
可选地,本申请实施例中,上述第二参数集合还包括以下至少一项:
上报配置信息对应的小区集合指示;
上报配置信息对应的小区集合的TAG指示;
目标小区集合上配置的一个激活时间窗,该激活时间窗用于监听目标小区集合内下发的PDCCH;
目标小区集合上配置的至少一个PUCCH资源,该至少一个PUCCH资源用于上报波束测量结果和CSI信息;
目标小区集合上配置的SRS资源,该SRS资源用于发送SRS;以确定同步信息。
可选地,本申请实施例中,上述激活时间窗可以包括周期、系统帧号(System Frame Number,SFN)偏移量(offset)、时间窗长度中的至少一项;该激活时间窗可以通过搜索空间(search space)来配置,该激活时间窗可以用于监听目标小区集合内下发的PDCCH(这一调度信令对应的RNTI不是C-RNTI)。
可选地,本申请实施例中,上述PDCCH用于以下至少一项:
发送功率调整信息,该功率调整信息用于指示目标小区集合中的小区的L1测量上报的功率已调整;
通过下发PDCCH命令,触发UE执行发送RACH的过程(PDCCH order的RACH);以便于对应小区上的TA维护;
发送用于调整TA的定时提前命令;
发送用于通知UE移动性状态发生变化的L1或L2信令。
可选地,本申请实施例中,上述定时提前命令(TA Command)可以为MAC CE或下行控制信息(Downlink Control Information,DCI)。
步骤203、UE根据测量配置信息进行L1测量,得到L1测量结果,并根据上报配置信息,向网络侧设备发送L1测量结果。
可选地,本申请实施例中,上述步骤203中的“UE根据测量配置信息进行L1测量,得到L1测量结果”具体可以通过下述的步骤203a实现。
步骤203a、UE根据测量配置信息,在L1测量频率层上对多个小区进行L1测量,得到L1测量结 果。
本申请实施例中,上述多个小区属于N个同步小区群组,每个同步小区群组内的各个小区间的下行接收定时同步误差满足预设条件,N为正整数。
可选地,本申请实施例中,上述预设条件可以为每个同步小区群组内,各个小区间的下行Rx定时同步误差不超过CP长度。
可选地,本申请实施例中,上述带宽配置为BWP。在第一小区的BWP与网络侧设备的服务小区的激活BWP不同的情况下,L1测量频率层为异频L1测量频率层,异频L1测量频率层对应的L1测量为测量间隔外的L1测量;在第一小区的BWP与服务小区的激活BWP相同的情况下,L1测量频率层为同频L1测量频率层。其中,第一小区为UE进行L1测量的小区,L1测量频率层为UE进行L1测量的频率层。
可以理解,当L1测量所处的小区BWP与服务小区的激活BWP没有交叠时,可视为一个异频L1测量频率层;;当L1测量所处小区的BWP在服务小区的激活BWP内时,可视为一个同频测量频率层。对于异频L1测量频率层,UE可以在L1测量在测量间隔(gap)外进行测量,也可以在测量间隔内进行测量。
可选地,本申请实施例中,在上述步骤203中的“根据上报配置信息,向网络侧设备发送L1测量结果”之前,本申请实施例提供的测量和上报方法还包括下述的步骤301。
步骤301、UE在邻小区上执行上行同步操作。
本申请实施例中,上述上行同步操作包括以下至少一项:
在邻小区上通过向网络侧设备发送上行信号,以确定上行TA;
在邻小区上通过向网络侧设备发送PUCCH和/或SRS,以确定TA的调整量;
在UE监测到下行同步误差小于或等于预设门限的情况下,在邻小区对应的小区集合上发起非竞争随机接入(Contention Free Random Access,CFRA),并建立上行同步。
其中,在建立上行同步后,邻小区对应的TAG处于激活状态。
可以理解,在UE将L1测量结果上报某一邻小区之前,UE需要在该邻小区上建立上行同步,例如通过发送上行信号并接收网络的反馈信令,以确定上行TA。
步骤204、网络侧设备接收UE发送的L1测量结果。
本申请实施例提供一种测量和上报方法,当被测小区与服务小区处于不同DU时,UE可以根据网络侧配置的测量配置信息,进行L1测量,具体地,UE基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,UE可以根据网络侧配置的上报配置信息,上报L1测量的测量结果,具体地,UE基于指示的目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了UE进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且UE进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据UE基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得UE能够进行高质量的数据传输,从而提升了UE的数据传输性能。
可选地,本申请实施例中,在上述步骤201之前,本申请实施例提供的测量和上报方法还包括下述的步骤401和步骤402。
步骤401、UE向网络侧设备发送能力信息。
步骤402、网络侧设备接收UE发送的能力信息。
本申请实施例中,上述能力信息包括以下至少一项:
异频L1测量频率层的数目;
异频L1测量小区的数目;
UE是否支持异频L1带宽配置对应的载波聚合(Carrier Aggregation,CA)组合;
在每个异频L1测量频率层上,UE支持的同步小区群组的数目;
UE能够处理的最大激活TAG数目(包含L1异频频率层对应的TAG)。
本申请实施例中,上述能力信息用于网络侧设备根据能力信息为UE配置测量配置信息和/或上报配置信息。
可选地,本申请实施例中,在上述步骤204之后,本申请实施例提供的测量和上报方法还包括下述的步骤501和步骤502。
步骤501、网络侧设备根据L1测量结果,向UE发送目标信令。
本申请实施例中,上述目标信令用于指示UE进行移动性管理相关操作。其中,移动性管理相关操作包括以下至少一项:小区切换、小区重定向、SCG或辅小区加载。
步骤502、UE接收网络侧设备发送的目标信令。
本申请实施例中,上述目标信令由网络侧设备根据L1测量结果得到。
可以理解,网络侧设备可以基于UE上报的L1测量结果,下发目标信令(例如L1信令或L2信令),对UE进行移动性管理,该移动性管理包括小区切换、小区重定向、SCG/SCell加载中的至少一项。
可选地,本申请实施例中,在上述步骤204之后,本申请实施例提供的测量和上报方法还包括下述的步骤601和步骤602。
步骤601、在UE在目标小区接收到切换信令的情况下,UE向源小区发送第二指示信息。
本申请实施例中,上述目标小区为UE待切换的小区,切换信令用于指示UE切换至目标小区,第二指示信息用于指示源小区停止数据发送。
可选地,本申请实施例中,上述目标小区的控制面承载在切换完成后激活;即针对切换场景,目标小区的控制面承载在L1/L2切换完成后激活。
步骤602、UE接收源小区发送的确认(Acknowledge,ACK)信息,并向目标小区发送切换完成的通知消息。
可以理解,UE在目标小区接收到L1切换信令后,UE可以通过L1/L2信令,通知源小区停止数据发送;并在接收到源小区发送的ACK信息后,向目标小区发送L1/L2信令以通知切换完成。
可选地,本申请实施例中,CU可以通过无线链路控制(Radio Link Control,RLC)数据包复制,向两个DU的RLC实体实时传输对应于UE的数据承载上的数据流,两个RLC实体根据相同的逻辑进行数据包的封包。
可选地,本申请实施例中,在L1/L2切换完成前,对应目标DU会抛弃UE的部分超时数据。
可选地,本申请实施例中,UE在回复目标DU,L1/L2切换完成时,可以携带上下行RLC数据包ACK编号信息。
可选地,本申请实施例中,上述L1/L2信令可以理解为BWP切换信令(类似SCell从休眠(Dormancy)状态退出)。
可选地,本申请实施例应用于小区间切换场景、小区重定向场景、SCG/辅小区加载场景等,这里以同一个CU下不同DU的小区间切换场景为例,对本申请实施例提供的测量和上报方法的具体过程进行说明。如图3所示,本申请实施例提供的测量和上报方法包括下述的步骤21至步骤28。
假设UE在源小区(即源小区DU)上正在进行数据传输,本申请可以通过如下步骤,以完成到目标小区的小区切换:
步骤21、源小区通过RRC重配消息,给UE配置L3测量事件。
本申请实施例中,上述L3测量事件的频点包含目标小区的SSB对应的频点。基于网络的L3测量事件配置,UE在对应的SSB频点上进行小区发现和L3测量。
步骤22、UE在发现目标小区并完成L3测量后,上报测量报告。
本申请实施例中,当目标小区的SSB满足UE可检测的条件时,也就是UE通过小区发现过程发现了目标小区时,UE可以进行L3测量,并将目标小区的测量结果上报给源小区,通过源小区DU转发给CU。
步骤23、源小区DU通过RRC重配消息,配置目标小区的待切换BWP,以使得UE根据配置的该BWP提前进行链路维护。
本申请实施例中,CU基于L3测量结果,将对应于另一个DU的目标小区配置为“待切换”小区,并为该小区配置一组处于“待切换”状态的DL BWP和UL BWP,也可以称为“休眠”BWP,以及关联到该BWP上的一些参考信号配置和上报配置,以方便UE进行链路维护。
需要说明的是,如果存在多于一个目标小区时,网络侧设备可以进一步配置一个目标小区集合,该目标小区集合内的所有小区属于同一DU,这些目标小区的待切换BWP的配置是完全一致的,即这些目标小区被称为目标小区集合。网络侧设备可以通过上报配置中的指示信息,指示UE在该目标小区集合对应的DU上进行L1测量上报。
示例性地,如图4所示,为本申请实施例提供的两个激活链路的示意图。针对目标小区的“休眠”BWP和源小区的激活BWP,待切换BWP的配置可以包括以下至少一项:PDSCH配置、PDCCH配置、PUSCH配置、PUCCH配置、必要的参考信号配置和QCL配置等,UE可以根据这些配置进行链路维护。
另外,L1测量配置(即上述测量配置信息)可以包括以下至少一项:
测量参考信号配置,例如频点、RB分配、周期等;
测量参考信号对应的小区配置,例如小区PCID等;
测量参考信号对应小区的上报配置,例如小区集合指示等。
需要说明的是,L1测量配置和上报配置都关联到某一待切换BWP,待切换BWP以及其对应的目标小区集合,相较于源目标小区集合,具有如下不同点:
(1)待切换BWP对应的PDCCH的监听是周期性的,存在一个周期和时间偏置的配置。这些PDCCH监听对应的搜索空间上,UE不需要基于C-RNTI来检测DCI;这些PDCCH下发的调度信令用于以下至少一项:
通知对应上报的功率调整信息;
触发PDCCH order的RACH,便于对应小区上的TA维护;
发送用于调整TA的TA Command,可以是MAC CE或DCI;
通知UE移动性状态变化的L1/L2信令。
(2)“待切换”BWP对应的小区或小区集合,会维护一个独立的TAG,即不同于激活小区的TAG;UE在接收到待切换BWP的配置之后,会在适当的时间向网络侧设备发送RACH,并在PDCCH激活时间内接受TA更新命令,包含PDCCH order,以维护TA,具体维护方方式包括以下至少一项:
通过发送上行信号,并接收网络的反馈信令,以确定上行TA;
网络基于PUCCH和/或SRS的发送,确定TA的调整量;
建立上行同步后,邻小区对应的TAG处于激活状态。
(3)待切换BWP上配置的CSI计算和上报,L1-RSRP计算和上报,可以直接按照待切换BWP对应的准共址(Quasi-Co-Location,QCL)信息,通过UL信道(PUSCH或PUCCH)发送到对应小区。
(4)如果目标小区的待切换BWP与服务小区的激活BWP没有交叠时,例如处于不同的预定义频段上时,可视为一个异频频率层;当L1测量所处小区的BWP在服务小区的激活BWP内时,可视为一个同频测量频率层。
其中,异频L1测量在测量间隔外进行;如果UE支持在L1异频测量频率层上进行CA或DC,则UE在该L1异频测量频率层上测量不需要测量间隔;CA或DC的UE能力是每个频带组合(per-Band Combination,per-BC)能力,即不同的频带组合,UE可以为该频带组合上报一个能力值。
每个L1测量频率层上,UE可以进行多于1个小区的L1测量,但多个小区只能属于N个同步小区群组;每个同步小区群组内,多个小区间的下行Rx定时同步误差不超过CP长度。UE支持的同步小区群组数目也是UE能力;这是一个per-band per-BC能力,即不同的频带组合,UE可以为该频带组合中的每一个频段上报一个能力值。
L1测量和上报,部分情况下也必须在测量间隔内进行,当网络配置的待切换BWP对应的同步小区群组大于UE能力时,或待切换BWP对应的TAG超出了UE可以支持的最大能力时,UE可以在测量 间隔内进行L1测量和上报;UE能够处理的最大激活TAG数目(含L1异频测量频率层对应的TAG)也是一个UE能力,可以是每个频率范围(per-Frequency range,per-FR)能力或per-UE能力,per-FR能力指的是UE为每个频率范围上报一个能力值,per-UE能力指的是UE上报的能力不区分频率范围,整个UE仅仅上报一个能力。
L1异频测量频率层数目是UE能力;per-UE/per-FR能力。
L1测量邻小区的数目是UE能力;per-UE/per-FR能力。
步骤24、UE发送RACH,建立与目标小区的连接并维护该连接,包括上行TA维护、上行功控、下行CSI反馈、下行波束测量上报等。
特别的,UE可以在监测到下行同步误差小于某一门限后,UE触发在对应的小区集合上发起CFRA,并建立起同步,开始反馈CSI和/或波束测量结果。
步骤25、目标小区DU通过MAC CE或DCI信令,同时激活目标小区的非“预切换”BWP以及其对应的传输配置指示(Transmission configuration Indication,TCI)。
本申请实施例中,目标小区DU同时激活目标小区的非“预切换”BWP以及其对应的TCI,能够使得UE可以在该BWP上以较好的质量进行上下行传输。
需要说明的是,这里较好的质量指的是:传输的速率较高(例如高于某一阈值),或者,用于传输的MCS(Modulation and coding scheme,调制编码方案序号)和/或MIMO传输层数等较高(例如高于某一阈值),或者,误码率和/或误块率较低(例如低于某一阈值)。
本申请实施例中,上述MAC CE或DCI信令,可以理解为BWP切换信令(类似SCell从Dormancy状态退出)。
步骤26、UE通过MAC CE上报源基站,因需要切换到目标DU,因此需要停止上下行发送。
步骤27、源小区DU通过MAC CE通知UE上下行发送已经停止。
步骤28、UE发送MAC信令,通知目标小区DU在源小区DU的RLC数据包发送情况,并完成切换。
其中,CU通过RLC数据包复制,向两个DU的RLC实体实时传输对应于UE的数据承载上的数据流,两个RLC实体根据相同的逻辑进行数据包的封包;
在L1/L2切换完成前,对应目标DU会抛弃UE的部分超时数据;
UE在回复目标DU,L1/L2切换完成时,会携带上下行RLC数据包ACK编号信息;
针对切换场景,目标小区的控制面承载,在L1/L2切换完成后激活;
至此,UE完成切换,开始在目标小区DU上进行数据传输。
需要说明的是,上述步骤25-步骤28是示例性的说明网络侧设备在接收到L1测量结果后,进行后续的L1/L2切换的过程,针对这个过程本申请实施例不做限制。
可以理解,对于异DU(Inter-DU)的邻小区,网络侧设备在为邻小区配置SSB测量的同时,给出了邻小区的一个类似休眠(dormant)的BWP配置,用于测量和上报。UE需要激活这个休眠BWP之后,将测量配置和上报配置关联到这个休眠BWP,并使用休眠BWP上配置的下行资源进行测量,使用休眠BWP上配置的上行资源进行L1测量上报。
这个邻小区的休眠BWP可以有独立的TAG配置;在休眠BWP上,UE需要进行L1测量和链路维护,包含RLM、BFD、TA维护、上行功率控制、CSI反馈等。UE可以按照一定的“激活时间窗”配置,在邻小区的休眠BWP上接收PDCCH,该PDCCH中接收的DCI不采用C-RNTI加扰,可以用于传输TA调整(含PDCCH order)、L1测量上报的上行功率控制、L1/L2小区切换信令(等同于BWP的激活/去激活信令)。
可以理解,休眠BWP上因为没有C-RNTI,所以不会传输实际的上下行数据承载对应的数据包;网络侧设备的CU可以传输数据包的两份复制到两个独立的DU,在完成目标小区的非休眠(non-dormant)BWP的激活后,才开始传输数据承载对应的数据包。激活目标小区的非休眠BWP前,目标小区DU从CU或UE处获得当前数据包承载传输情况(例如,UE上报DL/UL的RLC数据包ACK 序号)。
需要说明的是,如果休眠BWP的带宽完成处于当前激活BWP的带宽内,或二者完全相同,则记录该测量为同频L1测量;否则记为异频L1测量。UE在休眠BWP上的测量行为取决于UE的能力,即上述能力信息。
本申请实施例中,针对异频DU场景,UE可以在切换前提前完成邻小区的测量,并完成重要的邻小区链路维护过程,这样在切换后,无需基于一系列冗长的过程来获得新服务小区的CSI等重要信息,可以直接进行高质量的数据传输。
需要说明的是,本申请实施例提供的测量和上报方法,执行主体还可以为测量和上报装置,或者,该测量和上报装置中用于执行测量和上报方法的控制模块。
图5示出了本申请实施例中涉及的测量和上报装置的一种可能的结构示意图,应用于UE。如图5所示,测量和上报装置40可以包括:接收模块41、测量模块42和发送模块43。
其中,接收模块41,用于接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息。测量模块42,用于根据接收模块41接收的测量配置信息进行L1测量,得到L1测量结果。发送模块43,用于根据接收模块41接收的上报配置信息,向网络侧设备发送测量模块42得到的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
本申请实施例提供一种测量和上报装置,当被测小区与服务小区处于不同DU时,测量和上报装置可以根据网络侧配置的测量配置信息,进行L1测量,具体地,测量和上报装置基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,测量和上报装置可以根据网络侧配置的上报配置信息,上报L1测量的测量结果,具体地,测量和上报装置基于指示的目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了测量和上报装置进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且测量和上报装置进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据测量和上报装置基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得测量和上报装置能够进行高质量的数据传输,从而提升了数据传输性能。
在一种可能的实现方式中,上述第一参数集合还包括以下至少一项:
L1测量参考信号的资源配置;
L1测量参考信号对应的小区配置;
L1测量参考信号对应小区的上报配置。
在一种可能的实现方式中,上述第二参数集合还包括以下至少一项:
上报配置信息对应的小区集合指示;
上报配置信息对应的小区集合的TAG指示;
目标小区集合上配置的一个激活时间窗,该激活时间窗用于监听目标小区集合内下发的PDCCH;
目标小区集合上配置的至少一个PUCCH资源,该至少一个PUCCH资源用于上报波束测量结果和CSI信息;
目标小区集合上配置的SRS资源,该SRS资源用于发送SRS。
在一种可能的实现方式中,上述PDCCH用于以下至少一项:
发送功率调整信息,该功率调整信息用于指示目标小区集合中的小区的L1测量上报的功率已调整;
触发UE执行发送RACH的过程;
发送用于调整TA的定时提前命令;
发送用于通知UE移动性状态发生变化的L1或L2信令。
在一种可能的实现方式中,上述测量模块42,具体用于根据测量配置信息,在L1测量频率层上对多个小区进行L1测量,得到L1测量结果,多个小区属于N个同步小区群组,每个同步小区群组内的 各个小区间的下行接收定时同步误差满足预设条件,N为正整数。
在一种可能的实现方式中,上述发送模块43,还用于在接收模块41接收网络侧设备发送的目标配置信息之前,向网络侧设备发送能力信息,该能力信息包括以下至少一项:
异频L1测量频率层的数目;
异频L1测量小区的数目;
UE是否支持异频L1带宽配置对应的CA组合;
在每个异频L1测量频率层上,UE支持的同步小区群组的数目;
UE能够处理的最大激活TAG数目。
在一种可能的实现方式中,上述带宽配置为BWP。在第一小区的BWP与网络侧设备的服务小区的激活BWP不同的情况下,L1测量频率层为异频L1测量频率层,异频L1测量频率层对应的L1测量为测量间隔外的L1测量;在第一小区的BWP与服务小区的激活BWP相同的情况下,L1测量频率层为同频L1测量频率层;其中,第一小区为UE进行L1测量的小区,L1测量频率层为UE进行L1测量的频率层。
在一种可能的实现方式中,上述接收模块41,还用于在发送模块43根据上报配置信息,向网络侧设备发送L1测量结果之后,接收网络侧设备发送的目标信令,该目标信令由网络侧设备根据L1测量结果得到,该目标信令用于指示UE进行移动性管理相关操作;其中,移动性管理相关操作包括以下至少一项:小区切换、小区重定向、SCG或辅小区加载。
在一种可能的实现方式中,本申请实施例提供的测量和上报装置40还包括:执行模块。执行模块,用于在发送模块43根据上报配置信息,向网络侧设备发送L1测量结果之前,在邻小区上执行上行同步操作,该上行同步操作包括以下至少一项:
在邻小区上通过向网络侧设备发送上行信号,以确定上行TA;
在邻小区上通过向网络侧设备发送PUCCH和/或SRS,以确定TA的调整量;
在UE监测到下行同步误差小于或等于预设门限的情况下,在邻小区对应的小区集合上发起CFRA,并建立上行同步;
其中,在建立上行同步后,邻小区对应的TAG处于激活状态。
在一种可能的实现方式中,上述发送模块43,还用于根据上报配置信息,向网络侧设备发送L1测量结果之后,在UE在目标小区接收到切换信令的情况下,向源小区发送第二指示信息,该目标小区为UE待切换的小区,该切换信令用于指示UE切换至目标小区,该第二指示信息用于指示源小区停止数据发送。上述接收模块41,还用于接收源小区发送的ACK信息。上述发送模块43,还用于向目标小区发送切换完成的通知消息。
在一种可能的实现方式中,上述目标小区的控制面承载在切换完成后激活。
本申请实施例中的测量和上报装置可以是UE,例如具有操作系统的UE,也可以是UE中的部件,例如集成电路或芯片。该UE可以是终端,也可以为除终端之外的其他设备。示例性的,UE可以包括但不限于上述所列举的UE11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的测量和上报装置能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图6示出了本申请实施例中涉及的测量和上报装置的另一种可能的结构示意图,应用于网络侧设备。如图6所示,测量和上报装置50可以包括:发送模块51和接收模块52。
其中,发送模块51,用于向UE发送目标配置信息,该目标配置信息包括测量配置信息和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果。接收模块52,用于接收UE发送的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
本申请实施例提供一种测量和上报装置,当被测小区与服务小区处于不同DU时,测量和上报装置可以向UE配置测量配置信息,以用于UE进行L1测量,具体地,测量和上报装置向UE指示L1测量参考信号的带宽配置,使得UE基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,测量和上报装置可以向UE配置上报配置信息,以用于UE上报L1测量的测量结果,具体地,测量和上报装置向UE指示UE进行L1测量上报对应的目标小区集合,使得UE基于目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了UE进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且UE进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据UE基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得UE能够进行高质量的数据传输,从而提升了UE的数据传输性能。
在一种可能的实现方式中,上述接收模块52,还用于在发送模块51向UE发送目标配置信息之前,接收UE发送的能力信息,该能力信息包括以下至少一项:
异频L1测量频率层的数目;
异频L1测量小区的数目;
UE是否支持异频L1带宽配置对应的CA组合;
在每个异频L1测量频率层上,UE支持的同步小区群组的数目;
UE能够处理的最大激活TAG数目。
在一种可能的实现方式中,上述发送模块51,还用于在接收模块52接收UE发送的L1测量结果之后,根据L1测量结果,向UE发送目标信令,该目标信令用于指示UE进行移动性管理相关操作;其中,移动性管理相关操作包括以下至少一项:小区切换、小区重定向、SCG或辅小区加载。
本申请实施例提供的测量和上报装置能够实现上述方法实施例中网络侧设备实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种通信设备5000,包括处理器5001和存储器5002,存储器5002上存储有可在所述处理器5001上运行的程序或指令,例如,该通信设备5000为UE时,该程序或指令被处理器5001执行时实现上述UE侧方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。该通信设备5000为网络侧设备时,该程序或指令被处理器5001执行时实现上述网络侧设备方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种UE,包括处理器和通信接口,通信接口用于接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息;处理器用于根据测量配置信息进行L1测量,得到L1测量结果;通信接口还用于根据上报配置信息,向网络侧设备发送L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。该UE实施例与上述UE侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种UE的硬件结构示意图。
该UE700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,UE700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用 液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收网络侧设备发送的目标配置信息,该目标配置信息包括测量配置信息和上报配置信息。
处理器710,用于根据测量配置信息进行L1测量,得到L1测量结果。
射频单元701,还用于根据上报配置信息,向网络侧设备发送L1测量结果。
其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
本申请实施例提供一种UE,当被测小区与服务小区处于不同DU时,UE可以根据网络侧配置的测量配置信息,进行L1测量,具体地,UE基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,UE可以根据网络侧配置的上报配置信息,上报L1测量的测量结果,具体地,UE基于指示的目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了UE进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且UE进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据UE基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得UE能够进行高质量的数据传输,从而提升了UE的数据传输性能。
本申请实施例提供的UE能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向UE发送目标配置信息,该目标配置信息包括测量配置信息和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果;并接收UE发送的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配 置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。该网络侧设备实施例与上述网络侧设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备600包括:天线61、射频装置62、基带装置63、处理器64和存储器65。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置63中实现,该基带装置63包括基带处理器。
其中,射频装置62,用于向UE发送目标配置信息,该目标配置信息包括测量配置信息和上报配置信息,该测量配置信息用于UE进行L1测量得到L1测量结果,该上报配置信息用于向网络侧设备发送L1测量结果;并接收UE发送的L1测量结果。其中,测量配置信息由第一参数集合确定,该第一参数集合包括L1测量参考信号的带宽配置;上报配置信息由第二参数集合确定,该第二参数集合包括第一指示信息,该第一指示信息用于指示UE进行L1测量上报对应的目标小区集合。
本申请实施例提供一种网络侧设备,当被测小区与服务小区处于不同DU时,网络侧设备可以向UE配置测量配置信息,以用于UE进行L1测量,具体地,网络侧设备向UE指示L1测量参考信号的带宽配置,使得UE基于L1测量参考信号的带宽配置进行L1测量,以实现L1测量;并且,网络侧设备可以向UE配置上报配置信息,以用于UE上报L1测量的测量结果,具体地,网络侧设备向UE指示UE进行L1测量上报对应的目标小区集合,使得UE基于目标小区集合进行上报,以实现L1测量上报;即本申请明确给出了UE进行L1测量是基于L1测量参考信号的带宽配置进行测量的,并且UE进行L1上报是基于目标小区集合上报的方案,如此,使得网络测设备能够根据UE基于L1测量参考信号的带宽配置和目标小区集合所上报的测量结果,以提前进行移动性管理和链路质量管理,使得UE能够进行高质量的数据传输,从而提升了UE的数据传输性能。
本申请实施例提供的网络侧设备能够实现上述方法实施例中网络侧设备实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口66,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备600还包括:存储在存储器65上并可在处理器64上运行的指令或程序,处理器64调用存储器65中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:UE及网络侧设备,所述UE可用于执行如上所述的测量和上报方法的步骤,所述网络侧设备可用于执行如上所述的测量和上报方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种测量和上报方法,所述方法包括:
    用户设备UE接收网络侧设备发送的目标配置信息,所述目标配置信息包括测量配置信息和上报配置信息;
    所述UE根据所述测量配置信息进行L1测量,得到L1测量结果,并根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果;
    其中,所述测量配置信息由第一参数集合确定,所述第一参数集合包括L1测量参考信号的带宽配置;所述上报配置信息由第二参数集合确定,所述第二参数集合包括第一指示信息,所述第一指示信息用于指示所述UE进行L1测量上报对应的目标小区集合。
  2. 根据权利要求1所述的方法,其中,所述第一参数集合还包括以下至少一项:
    所述L1测量参考信号的资源配置;
    所述L1测量参考信号对应的小区配置;
    所述L1测量参考信号对应小区的上报配置。
  3. 根据权利要求1所述的方法,其中,所述第二参数集合还包括以下至少一项:
    所述上报配置信息对应的小区集合指示;
    所述上报配置信息对应的小区集合的定时提前组TAG指示;
    所述目标小区集合上配置的一个激活时间窗,所述激活时间窗用于监听所述目标小区集合内下发的物理下行控制信道PDCCH;
    所述目标小区集合上配置的至少一个物理上行控制信道PUCCH资源,所述至少一个PUCCH资源用于上报波束测量结果和信道状态信息CSI信息;
    所述目标小区集合上配置的探测参考信号SRS资源,所述SRS资源用于发送SRS。
  4. 根据权利要求3所述的方法,其中,所述PDCCH用于以下至少一项:
    发送功率调整信息,所述功率调整信息用于指示所述目标小区集合中的小区的L1测量上报的功率已调整;
    触发所述UE执行发送随机接入信道RACH的过程;
    发送用于调整定时提前TA的定时提前命令;
    发送用于通知所述UE移动性状态发生变化的L1或L2信令。
  5. 根据权利要求1所述的方法,其中,所述UE根据所述测量配置信息进行L1测量,得到L1测量结果,包括:
    所述UE根据所述测量配置信息,在L1测量频率层上对多个小区进行L1测量,得到L1测量结果,所述多个小区属于N个同步小区群组,每个同步小区群组内的各个小区间的下行接收定时同步误差满足预设条件,N为正整数。
  6. 根据权利要求1所述的方法,其中,所述UE接收网络侧设备发送的目标配置信息之前,所述方法还包括:
    所述UE向所述网络侧设备发送能力信息,所述能力信息包括以下至少一项:
    异频L1测量频率层的数目;
    异频L1测量小区的数目;
    所述UE是否支持异频L1带宽配置对应的载波聚合CA组合;
    在每个异频L1测量频率层上,所述UE支持的同步小区群组的数目;
    所述UE能够处理的最大激活TAG数目。
  7. 根据权利要求1、5或6所述的方法,其中,所述带宽配置为带宽部分BWP;
    在第一小区的BWP与所述网络侧设备的服务小区的激活BWP不同的情况下,L1测量频率层为异频L1测量频率层,所述异频L1测量频率层对应的L1测量为测量间隔外的L1测量;
    在第一小区的BWP与所述服务小区的激活BWP相同的情况下,L1测量频率层为同频L1测量频率层;
    其中,所述第一小区为所述UE进行L1测量的小区,所述L1测量频率层为所述UE进行L1测量的频率层。
  8. 根据权利要求1所述的方法,其中,所述根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果之后,所述方法还包括:
    所述UE接收所述网络侧设备发送的目标信令,所述目标信令由所述网络侧设备根据所述L1测量结果得到,所述目标信令用于指示所述UE进行移动性管理相关操作;
    其中,所述移动性管理相关操作包括以下至少一项:小区切换、小区重定向、辅小区组SCG或辅小区加载。
  9. 根据权利要求1或8所述的方法,其中,所述根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果之前,所述方法还包括:
    所述UE在邻小区上执行上行同步操作,所述上行同步操作包括以下至少一项:
    在所述邻小区上通过向所述网络侧设备发送上行信号,以确定上行TA;
    在所述邻小区上通过向所述网络侧设备发送PUCCH和/或SRS,以确定TA的调整量;
    在所述UE监测到下行同步误差小于或等于预设门限的情况下,在所述邻小区对应的小区集合上发起非竞争随机接入CFRA,并建立上行同步;
    其中,在建立上行同步后,所述邻小区对应的TAG处于激活状态。
  10. 根据权利要求1或8所述的方法,其中,所述根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果之后,所述方法还包括:
    在所述UE在目标小区接收到切换信令的情况下,所述UE向源小区发送第二指示信息,所述目标小区为所述UE待切换的小区,所述切换信令用于指示所述UE切换至所述目标小区,所述第二指示信息用于指示所述源小区停止数据发送;
    所述UE接收所述源小区发送的确认ACK信息,并向所述目标小区发送切换完成的通知消息。
  11. 根据权利要求10所述的方法,其中,所述目标小区的控制面承载在切换完成后激活。
  12. 一种测量和上报方法,所述方法包括:
    网络侧设备向用户设备UE发送目标配置信息,所述目标配置信息包括测量配置信息和上报配置信息,所述测量配置信息用于所述UE进行L1测量得到L1测量结果,所述上报配置信息用于向所述网络侧设备发送所述L1测量结果;
    所述网络侧设备接收所述UE发送的所述L1测量结果;
    其中,所述测量配置信息由第一参数集合确定,所述第一参数集合包括L1测量参考信号的带宽配置;所述上报配置信息由第二参数集合确定,所述第二参数集合包括第一指示信息,所述第一指示信息用于指示所述UE进行L1测量上报对应的目标小区集合。
  13. 根据权利要求12所述的方法,其中,所述网络侧设备向UE发送目标配置信息之前,所述方法还包括:
    所述网络侧设备接收所述UE发送的能力信息,所述能力信息包括以下至少一项:
    异频L1测量频率层的数目;
    异频L1测量小区的数目;
    所述UE是否支持异频L1带宽配置对应的载波聚合CA组合;
    在每个异频L1测量频率层上,所述UE支持的同步小区群组的数目;
    所述UE能够处理的最大激活定时提前组TAG数目。
  14. 根据权利要求12或13所述的方法,其中,所述网络侧设备接收所述UE发送的所述L1测量结果之后,所述方法还包括:
    所述网络侧设备根据所述L1测量结果,向所述UE发送目标信令,所述目标信令用于指示所 述UE进行移动性管理相关操作;
    其中,所述移动性管理相关操作包括以下至少一项:小区切换、小区重定向、辅小区组SCG或辅小区加载。
  15. 一种测量和上报装置,应用于用户设备UE,所述装置包括:接收模块、测量模块和发送模块;
    所述接收模块,用于接收网络侧设备发送的目标配置信息,所述目标配置信息包括测量配置信息和上报配置信息;
    所述测量模块,用于根据所述测量配置信息进行L1测量,得到L1测量结果;
    所述发送模块,用于根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果;
    其中,所述测量配置信息由第一参数集合确定,所述第一参数集合包括L1测量参考信号的带宽配置;所述上报配置信息由第二参数集合确定,所述第二参数集合包括第一指示信息,所述第一指示信息用于指示所述UE进行L1测量上报对应的目标小区集合。
  16. 根据权利要求15所述的装置,其中,所述测量模块,具体用于根据所述测量配置信息,在L1测量频率层上对多个小区进行L1测量,得到L1测量结果,所述多个小区属于N个同步小区群组,每个同步小区群组内的各个小区间的下行接收定时同步误差满足预设条件,N为正整数。
  17. 根据权利要求15所述的装置,其中,所述发送模块,还用于在所述接收模块接收网络侧设备发送的目标配置信息之前,向所述网络侧设备发送能力信息,所述能力信息包括以下至少一项:
    异频L1测量频率层的数目;
    异频L1测量小区的数目;
    所述UE是否支持异频L1带宽配置对应的载波聚合CA组合;
    在每个异频L1测量频率层上,所述UE支持的同步小区群组的数目;
    所述UE能够处理的最大激活定时提前组TAG数目。
  18. 根据权利要求15所述的装置,其中,所述接收模块,还用于在所述发送模块根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果之后,接收所述网络侧设备发送的目标信令,所述目标信令由所述网络侧设备根据所述L1测量结果得到,所述目标信令用于指示所述UE进行移动性管理相关操作;
    其中,所述移动性管理相关操作包括以下至少一项:小区切换、小区重定向、辅小区组SCG或辅小区加载。
  19. 根据权利要求15或18所述的装置,其中,所述装置还包括:执行模块;
    所述执行模块,用于在所述发送模块根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果之前,在邻小区上执行上行同步操作,所述上行同步操作包括以下至少一项:
    在所述邻小区上通过向所述网络侧设备发送上行信号,以确定上行TA;
    在所述邻小区上通过向所述网络侧设备发送PUCCH和/或SRS,以确定TA的调整量;
    在所述UE监测到下行同步误差小于或等于预设门限的情况下,在所述邻小区对应的小区集合上发起非竞争随机接入CFRA,并建立上行同步;
    其中,在建立上行同步后,所述邻小区对应的TAG处于激活状态。
  20. 根据权利要求15或18所述的装置,其中,所述发送模块,还用于在根据所述上报配置信息,向所述网络侧设备发送所述L1测量结果之后,在所述UE在目标小区接收到切换信令的情况下,向源小区发送第二指示信息,所述目标小区为所述UE待切换的小区,所述切换信令用于指示所述UE切换至所述目标小区,所述第二指示信息用于指示所述源小区停止数据发送;
    所述接收模块,还用于接收所述源小区发送的确认ACK信息;
    所述发送模块,还用于向所述目标小区发送切换完成的通知消息。
  21. 一种测量和上报装置,应用于网络侧设备,所述装置包括:发送模块和接收模块;
    所述发送模块,用于向用户设备UE发送目标配置信息,所述目标配置信息包括测量配置信息和上报配置信息,所述测量配置信息用于所述UE进行L1测量得到L1测量结果,所述上报配置信息用于向所述网络侧设备发送所述L1测量结果;
    所述接收模块,用于接收所述UE发送的所述L1测量结果;
    其中,所述测量配置信息由第一参数集合确定,所述第一参数集合包括L1测量参考信号的带宽配置;所述上报配置信息由第二参数集合确定,所述第二参数集合包括第一指示信息,所述第一指示信息用于指示所述UE进行L1测量上报对应的目标小区集合。
  22. 根据权利要求21所述的装置,其中,所述接收模块,还用于在所述发送模块向UE发送目标配置信息之前,接收所述UE发送的能力信息,所述能力信息包括以下至少一项:
    异频L1测量频率层的数目;
    异频L1测量小区的数目;
    所述UE是否支持异频L1带宽配置对应的载波聚合CA组合;
    在每个异频L1测量频率层上,所述UE支持的同步小区群组的数目;
    所述UE能够处理的最大激活定时提前组TAG数目。
  23. 根据权利要求21或22所述的装置,其中,所述发送模块,还用于在所述接收模块接收所述UE发送的所述L1测量结果之后,根据所述L1测量结果,向所述UE发送目标信令,所述目标信令用于指示所述UE进行移动性管理相关操作;
    其中,所述移动性管理相关操作包括以下至少一项:小区切换、小区重定向、辅小区组SCG或辅小区加载。
  24. 一种用户设备UE,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至11中任一项所述的测量和上报方法的步骤。
  25. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12至14中任一项所述的测量和上报方法的步骤。
  26. 一种通信系统,所述通信系统包括如权利要求15至20中任一项所述的测量和上报装置以及如权利要求21至23中任一项所述的测量和上报装置;或者,
    所述通信系统包括如权利要求24所述的用户设备UE和如权利要求25所述的网络侧设备。
  27. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至11中任一项所述的测量和上报方法的步骤,或者实现如权利要求12至14中任一项所述的测量和上报方法的步骤。
  28. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至11中任一项所述的测量和上报方法,或者实现如权利要求12至14中任一项所述的测量和上报方法。
  29. 一种计算机程序产品,所述程序产品被存储在存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至11中任一项所述的测量和上报方法,或者实现如权利要求12至14中任一项所述的测量和上报方法。
  30. 一种用户设备UE,包括所述UE被配置成用于执行如权利要求1至11中任一项所述的测量和上报方法。
  31. 一种网络侧设备,包括所述网络侧设备被配置成用于执行如权利要求12至14中任一项所述的测量和上报方法。
PCT/CN2023/090606 2022-04-29 2023-04-25 测量和上报方法、装置、设备、系统及存储介质 WO2023207985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210474826.6 2022-04-29
CN202210474826.6A CN117014930A (zh) 2022-04-29 2022-04-29 测量和上报方法、装置、设备、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2023207985A1 true WO2023207985A1 (zh) 2023-11-02

Family

ID=88517809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090606 WO2023207985A1 (zh) 2022-04-29 2023-04-25 测量和上报方法、装置、设备、系统及存储介质

Country Status (2)

Country Link
CN (1) CN117014930A (zh)
WO (1) WO2023207985A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729559A (zh) * 2017-10-31 2019-05-07 展讯通信(上海)有限公司 小区切换方法及装置、存储介质、用户设备、网络设备
CN109802779A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 一种参考信号的处理方法和网络设备以及终端设备
CN111436072A (zh) * 2019-02-01 2020-07-21 维沃移动通信有限公司 测量方法、终端、测量指示方法及网络侧设备
WO2022021445A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 测量的方法、终端设备及网络设备
CN114071611A (zh) * 2020-08-06 2022-02-18 维沃移动通信有限公司 测量上报方法、装置及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729559A (zh) * 2017-10-31 2019-05-07 展讯通信(上海)有限公司 小区切换方法及装置、存储介质、用户设备、网络设备
CN109802779A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 一种参考信号的处理方法和网络设备以及终端设备
CN111436072A (zh) * 2019-02-01 2020-07-21 维沃移动通信有限公司 测量方法、终端、测量指示方法及网络侧设备
WO2022021445A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 测量的方法、终端设备及网络设备
CN114071611A (zh) * 2020-08-06 2022-02-18 维沃移动通信有限公司 测量上报方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "CR on configuration inter-RAT measurement in NR(RIL Z402,403,406)", 3GPP TSG RAN WG2 NR AH1807 MEETING, R2-1810866, no. Montreal, Canada; 20180702 - 20180706, 8 July 2018 (2018-07-08), XP051526585 *

Also Published As

Publication number Publication date
CN117014930A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US10925107B2 (en) Fast activation of multi-connectivity utilizing uplink signals
WO2020215335A1 (zh) 天线面板的应用方法、装置及存储介质
US11601880B2 (en) Power management for a user equipment in a multi-radio connectivity mode or carrier aggregation mode
US20220225203A1 (en) Communication Method and Communications Apparatus
US20210337551A1 (en) System and Method for Power Savings in Discontinuous Transmission Operation
JP2017509227A (ja) デュアルコネクティビティのためのセルオンオフ手順
WO2018023494A1 (en) Method, device and computer program for primary cell change
WO2021027896A1 (zh) 通信方法和通信装置
US20230095844A1 (en) Beam failure recovery method and apparatus, and device
US20240235761A1 (en) Transmission processing method and apparatus, terminal, network-side device, and storage medium
CN116210340A (zh) 通信方法、终端设备、网络设备和计算机可读介质
EP4007366B1 (en) Link failure report transmission method and device
EP4007365A1 (en) Method and apparatus used for cell measurement
WO2018143353A1 (ja) ユーザ装置及び無線通信方法
US20230262509A1 (en) Resource measurement adjustment method and apparatus, terminal, and readable storage medium
WO2023207985A1 (zh) 测量和上报方法、装置、设备、系统及存储介质
EP4284063A1 (en) Path switching method, terminal and network side device
JPWO2020065802A1 (ja) ユーザ装置
WO2022208441A1 (en) Serving cell selection for uplink feedback transmission under clear channel assessment
WO2023246890A1 (zh) 切换处理方法、装置及通信设备
WO2023197991A1 (zh) 小区切换方法、小区切换配置方法、装置、终端及网络侧设备
US20240171996A1 (en) Method for determining beam information, and communication device and storage medium
US20240179781A1 (en) Method and Device for Transmitting Reference Signal
WO2023093709A1 (zh) 激活或去激活Gap的方法、终端及网络侧设备
WO2023217007A1 (zh) 切换方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795417

Country of ref document: EP

Kind code of ref document: A1