Nothing Special   »   [go: up one dir, main page]

WO2023203875A1 - 電気化学セル - Google Patents

電気化学セル Download PDF

Info

Publication number
WO2023203875A1
WO2023203875A1 PCT/JP2023/006879 JP2023006879W WO2023203875A1 WO 2023203875 A1 WO2023203875 A1 WO 2023203875A1 JP 2023006879 W JP2023006879 W JP 2023006879W WO 2023203875 A1 WO2023203875 A1 WO 2023203875A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
hydrogen electrode
concentration
electrode
mol
Prior art date
Application number
PCT/JP2023/006879
Other languages
English (en)
French (fr)
Inventor
隆平 小原
陽平 岡田
真司 藤崎
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2024516111A priority Critical patent/JPWO2023203875A1/ja
Publication of WO2023203875A1 publication Critical patent/WO2023203875A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrochemical cell.
  • a fuel cell is known as an example of an electrochemical cell (see, for example, Patent Document 1).
  • a fuel cell includes a hydrogen electrode, an oxygen electrode, and an electrolyte disposed between the hydrogen electrode and the oxygen electrode.
  • the hydrogen electrode is composed of nickel (Ni), which primarily functions as an electron conductor, and ceria-based oxide added with a rare earth element, which primarily functions as an oxygen ion conductor.
  • An object of the present invention is to provide an electrochemical cell that can improve the electronic conductivity of a hydrogen electrode.
  • the electrochemical cell according to the present invention includes a hydrogen electrode, an oxygen electrode, and an electrolyte disposed between the hydrogen electrode and the oxygen electrode.
  • the hydrogen electrode has a first portion that is within 10 ⁇ m from the electrolyte side surface and a second portion that is more than 10 ⁇ m from the electrolyte side surface.
  • the first portion includes a solid solution of ceria-based oxide and zirconia to which a rare earth element is added, and nickel.
  • the second portion includes a ceria-based oxide to which a rare earth element is added and nickel.
  • FIG. 1 is a perspective view of a fuel cell.
  • FIG. 2 is a cross-sectional view of the fuel cell.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 1 is a perspective view of a fuel cell 10.
  • FIG. 2 is a cross-sectional view of the fuel cell 10 taken along a gas flow path 21, which will be described later.
  • the fuel cell 10 includes a support substrate 20 and a plurality of power generation element sections 30.
  • the support substrate 20 is formed into a flat plate shape.
  • the dimension in the length direction (x-axis direction) is longer than the dimension in the width direction (y-axis direction), but the dimension in the width direction may be longer than the length direction. .
  • the support substrate 20 has a first main surface S1 and a second main surface T1.
  • the first main surface S1 and the second main surface T1 face oppositely to each other in the thickness direction (z-axis direction) of the support substrate 20.
  • the first main surface S1 and the second main surface T1 support each power generation element section 30.
  • the support substrate 20 is made of a porous material that does not have electronic conductivity.
  • the support substrate 20 is made of, for example, CSZ (calcia stabilized zirconia).
  • the support substrate 20 may be composed of NiO (nickel oxide) and YSZ (yttria stabilized zirconia), or may be composed of NiO (nickel oxide) and Y 2 O 3 (yttria).
  • the porosity of the support substrate 20 can be, for example, 20% or more and 60% or less. In this specification, porosity is the ratio of the area of the gas phase to the total area of the solid phase and gas phase in cross-sectional observation using a SEM (scanning electron microscope).
  • a plurality of gas channels 21 are formed inside the support substrate 20.
  • Each gas flow path 21 is supplied with fuel gas such as hydrogen gas.
  • each gas flow path 21 extends in the length direction (x-axis direction) within the support substrate 20.
  • Each gas flow path 21 penetrates the support substrate 20. It is preferable that each gas flow path 21 is arranged at substantially equal intervals.
  • the support substrate 20 is covered with a dense layer 22.
  • the dense layer 22 covers a region of the surface of the support substrate 20 that is not covered by each power generation element section 30 .
  • the dense layer 22 suppresses the gas diffused within the support substrate 20 from being discharged to the outside.
  • the dense layer 22 is made of, for example, CSZ (calcia-stabilized zirconia), YSZ (8YSZ) (yttria-stabilized zirconia), LSGM (lanthanum gallate), MgO (magnesium oxide) and MgAlO 4 (magnesia alumina spinel), GDC (gadolinium-doped Ceria) or LaCrO 3 (lanthanum chromite).
  • the dense layer 22 is denser than the support substrate 20.
  • the porosity of the dense layer 22 can be, for example, 0% or more and 7% or less.
  • each power generation element section 30 is supported by the first main surface S1 or the second main surface T1 of the support substrate 20.
  • the number of power generation element sections 30 arranged on the first main surface S1 and the number of power generation element sections 30 arranged on the second main surface T1 may be the same or different.
  • the sizes of the power generating element sections 30 may be the same or different.
  • the power generation element sections 30 are arranged at intervals along the length direction (x-axis direction) in which the gas flow path 21 extends.
  • the power generation element sections 30 are electrically connected in series to each other by an electrical connection section 9, which will be described later.
  • the power generation element section 30 includes a first current collecting section 1 , a hydrogen electrode 2 , an electrolyte 3 , a reaction prevention layer 4 , an oxygen electrode 5 , a second current collecting section 6 , and an interconnector 7 .
  • the first current collector 1 is arranged within the recess 23 of the support substrate 20.
  • the first current collector 1 has a first recess 11 and a second recess 12 .
  • the hydrogen electrode 2 is placed inside the first recess 11 .
  • the interconnector 7 is arranged within the second recess 12 .
  • the first current collector 1 is made of a porous material having electron conductivity.
  • the first current collector 1 can be made of, for example, NiO (nickel oxide) and Y 2 O 3 (yttria).
  • the first current collector 1 may be composed of NiO (nickel oxide) and 8YSZ (yttria stabilized zirconia), or may be composed of NiO (nickel oxide) and CSZ (calcia stabilized zirconia). Good too.
  • the porosity of the first current collector 1 can be, for example, 10% or more and 50% or less.
  • the thickness of the first current collector 1 can be, for example, 50 ⁇ m or more and 500 ⁇ m or less.
  • the hydrogen electrode 2 is placed in the first recess 11 of the first current collector 1. Fuel gas is supplied to the hydrogen electrode 2 from the gas flow path 21 via the support substrate 20 and the first current collector 1 . At the hydrogen electrode 2, an electrode reaction expressed by the following formula (1) occurs.
  • the hydrogen electrode 2 is made of a porous material that has electronic conductivity and ionic conductivity.
  • the porosity of the hydrogen electrode 2 can be, for example, 10% or more and 50% or less.
  • the thickness of the hydrogen electrode 2 can be, for example, more than 10 ⁇ m and less than 100 ⁇ m. The configuration of the hydrogen electrode 2 will be described later.
  • the electrolyte 3 is arranged to cover the hydrogen electrode 2. Both ends of the electrolyte 3 in the length direction (x-axis direction) are connected to an interconnector 7 .
  • the electrolyte 3 is made of a dense material that has ionic conductivity and no electronic conductivity.
  • the porosity of the electrolyte 3 can be, for example, 0% or more and 7% or less.
  • the thickness of the electrolyte 3 can be, for example, 3 ⁇ m or more and 50 ⁇ m or less. The structure of the electrolyte 3 will be described later.
  • Reaction prevention layer 4 is arranged between electrolyte 3 and oxygen electrode 5.
  • the reaction prevention layer 4 is in contact with the electrolyte 3 and the oxygen electrode 5, respectively.
  • the reaction prevention layer 4 is arranged at a position corresponding to the hydrogen electrode 2 with the electrolyte 3 interposed therebetween.
  • the reaction prevention layer 4 is provided to prevent the constituent materials of the electrolyte 3 and the constituent materials of the oxygen electrode 5 from reacting to form a reaction layer with high electrical resistance.
  • the reaction prevention layer 4 can be made of an ion conductive material.
  • the porosity of the reaction prevention layer 4 can be, for example, 0.1% or more and 50% or less.
  • the thickness of the reaction prevention layer 4 can be, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the oxygen electrode 5 is placed on the reaction prevention layer 4.
  • Oxygen-containing gas for example, air
  • Oxygen-containing gas for example, air
  • an electrode reaction expressed by the following equation (2) occurs.
  • the oxygen electrode 5 is made of a porous material having electronic conductivity.
  • the porosity of the oxygen electrode 5 can be, for example, 10% or more and 50% or less.
  • the thickness of the oxygen electrode 5 can be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the second current collector 6 is connected to the oxygen electrode 5 and the interconnector 7.
  • the second current collector 6 is made of a porous material having electron conductivity.
  • the second current collector 6 may or may not have oxygen ion conductivity.
  • the second current collector 6 can be made of, for example, LSCF, LSC, Ag (silver), Ag-Pd (silver-palladium alloy), or the like.
  • the porosity of the second current collector 6 can be, for example, 25% or more and 50% or less.
  • the thickness of the second current collector 6 can be, for example, 50 ⁇ m or more and 500 ⁇ m or less.
  • the interconnector 7 is arranged within the second recess 12 of the first current collector 1 . Both ends of the interconnector 7 in the length direction (x-axis direction) are connected to the electrolyte 3 .
  • the interconnector 7 is made of a dense material that has electronic conductivity.
  • the interconnector 7 can be made of, for example, LaCrO 3 (lanthanum chromite), (Sr,La)TiO 3 (strontium titanate), or the like.
  • the porosity of the interconnector 7 can be, for example, 0% or more and 7% or less.
  • the thickness of the interconnector 7 can be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • the hydrogen electrode 2 has a first portion 101 and a second portion 102.
  • the first portion 101 is a region of the hydrogen electrode 2 on the electrolyte 3 side. Specifically, the first portion 101 is a region within 10 ⁇ m from the electrolyte side surface S2 of the hydrogen electrode 2. Therefore, the thickness of the first portion 101 is 10 ⁇ m.
  • the first part 101 is connected to the electrolyte 3.
  • the electrolyte side surface S2 of the hydrogen electrode 2 is in direct contact with the hydrogen electrode side surface S3 of the electrolyte 3.
  • the interface between the hydrogen electrode 2 and the electrolyte 3 (that is, the electrolyte side surface S2 of the hydrogen electrode 2 and the hydrogen electrode side surface S3 of the electrolyte 3) is defined as follows.
  • the interface between the reaction prevention layer 4 and the oxygen electrode 5 is identified by classifying the brightness of a cross-sectional SEM image parallel to the thickness direction (z-axis direction in FIG. 3) into 256 gradations.
  • a line having the same shape as the interface between the reaction prevention layer 4 and the oxygen electrode 5 (hereinafter referred to as the "reference line") is translated in parallel toward the hydrogen electrode 2 side.
  • the reference line is stopped at a position where it comes into contact with nickel (Ni) contained in the hydrogen electrode 2 for the first time.
  • the reference line at this time is the interface between the hydrogen electrode 2 and the electrolyte 3.
  • the first portion 101 includes a solid solution of ceria-based oxide and ZrO 2 (zirconia) to which a rare earth element is added, and Ni.
  • a solid solution of ceria-based oxide and zirconia to which a rare earth element is added has both ionic conductivity derived from the ceria-based oxide and electronic conductivity derived from ZrO 2 .
  • the three-phase interface (reaction field) can be increased. Reaction resistance can be reduced.
  • a solid solution is one in which a ceria-based oxide to which a rare earth element is added and ZrO 2 are dissolved together to form a uniform solid phase.
  • ceria-based oxides doped with rare earth elements include, but are not limited to, gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), and yttrium-doped ceria (YDC).
  • the Ce (cerium) concentration in the first portion 101 can be 8.0 mol% or more and 30 mol% or less.
  • the rare earth element concentration in the first portion 101 can be 0.5 mol% or more and 10 mol% or less.
  • the Zr (zirconium) concentration in the first portion 101 can be 1.0 mol% or more and 20 mol% or less.
  • the Zr concentration in the first portion 101 is particularly preferably 5.0 mol% or more and 15 mol% or less. In the first portion 101, the Zr concentration may be lower than the Ce concentration.
  • the Ni concentration in the first portion 101 can be 12 mol% or more and 50 mol% or less.
  • the second portion 102 is a region of the hydrogen electrode 2 on the side opposite to the electrolyte 3. Specifically, the second portion 102 is a region of the hydrogen electrode 2 that is more than 10 ⁇ m from the electrolyte side surface S2. That is, the second portion 102 is a region of the hydrogen electrode 2 excluding the first portion 101. The second portion 102 is integrally formed with the first portion 101. The second portion 102 is connected to the first current collector 1 .
  • the second portion 102 includes a ceria-based oxide added with a rare earth element and Ni.
  • ceria-based oxides doped with rare earth elements include, but are not limited to, GDC, SDC, and YDC.
  • the rare earth element-added ceria-based oxide contained in the second portion 102 is preferably the same as the rare-earth element-added ceria-based oxide contained in the second portion 102, but may be different.
  • the Ce concentration in the second portion 102 can be 10 mol% or more and 35 mol% or less.
  • the rare earth element concentration in the second portion 102 can be 1.0 mol% or more and 15 mol% or less.
  • the Ni concentration in the second portion 102 can be 12 mol% or more and 50 mol% or less.
  • the second portion 102 preferably includes ZrO 2 forming a solid solution with a ceria-based oxide to which a rare earth element is added.
  • the Zr concentration in the second portion 102 can be 0.0 mol% or more and 15 mol% or less.
  • the Zr concentration in the first portion 101 is preferably higher than the Zr concentration in the second portion 102 .
  • the three-phase interface in the first portion 101 can be further increased, so that the reaction resistance of the hydrogen electrode 2 can be further reduced.
  • the Ce concentration, rare earth element concentration, Zr concentration, and Ni concentration in the first portion 101 and the second portion 102 are obtained by line analysis using an atomic concentration profile, that is, elemental mapping using an EPMA (Electron Probe Micro Analyzer). Specifically, concentration distribution data of each element is obtained by performing line analysis in the z-axis direction using EPMA in a cross section along the thickness direction (z-axis direction in FIG. 3). Note that EPMA is a concept that includes EDS (Energy Dispersive x-ray Spectroscopy).
  • the electrolyte 3 As shown in FIG. 3, the electrolyte 3 has a third portion 103 and a fourth portion 104.
  • the third portion 103 is a region of the electrolyte 3 on the hydrogen electrode 2 side. Specifically, the third portion 103 is a region within 3 ⁇ m from the hydrogen electrode side surface S3 of the electrolyte 3. Therefore, the thickness of the third portion 103 is 3 ⁇ m.
  • the third portion 103 is connected to the hydrogen electrode 2 .
  • the hydrogen electrode side surface S3 of the electrolyte 3 is in direct contact with the electrolyte side surface S2 of the hydrogen electrode 2.
  • the fourth portion 104 is a region of the electrolyte 3 on the side opposite to the hydrogen electrode 2. Specifically, the fourth portion 104 is a region of the electrolyte 3 that is more than 3 ⁇ m from the hydrogen electrode side surface S3. That is, the fourth portion 104 is a region of the electrolyte 3 excluding the third portion 103. The fourth portion 104 is integrally formed with the third portion 103. In this embodiment, the fourth portion 104 is connected to the reaction prevention layer 4 .
  • the third portion 103 and the fourth portion 104 each contain YSZ (yttria stabilized zirconia).
  • the Y (yttrium) concentration in the third portion 103 is preferably higher than the yttrium concentration in the fourth portion 104. This makes it possible to improve the ionic conductivity of the region of the electrolyte 3 that is connected to the hydrogen electrode 2, thereby reducing the resistance overvoltage associated with ionic conduction. Furthermore, by improving the ionic conductivity of the three-phase interface in the vicinity of the electrolyte 3 in the hydrogen electrode 2, the reaction overvoltage of the hydrogen electrode 2 can be reduced.
  • each of the third portion 103 and the fourth portion 104 contain YSZ as a main component.
  • containing YSZ as a main component means that the content of YSZ is 70 mol% or more.
  • the Y concentration in the third portion 103 can be 3.0 mol% or more and 8.0 mol% or less.
  • the Y concentration in the third portion 103 is particularly preferably 4.5 mol% or more and 7.0 mol% or less.
  • the Y concentration in the fourth portion 104 can be 2.0 mol% or more and 7.0 mol% or less.
  • the Y concentration in each of the third portion 103 and the fourth portion 104 can be adjusted by using a YSZ raw material containing a desired Y concentration.
  • the Zr concentration and Y concentration in the third portion 103 and the fourth portion 104 are obtained by line analysis using the atomic concentration profile described above.
  • a so-called horizontal striped fuel cell was described as an example of a fuel cell, but the electrochemical cell is not limited to this.
  • the present invention is applicable to an electrochemical cell in which a hydrogen electrode and an oxygen electrode are arranged on both sides of an electrolyte layer.
  • An electrochemical cell consists of an element with a pair of electrodes arranged so that an electromotive force is generated from the overall redox reaction, and an element that converts chemical energy into electrical energy. It is a generic term.
  • electrochemical cells include vertical striped fuel cells, flat plate fuel cells, cylindrical fuel cells, and hydrogen generation cells that utilize the electrolysis reaction of water.
  • An example is an electrolytic cell that performs this.
  • O 2 - (oxygen ions) are used as carriers, but OH - (hydroxide ions) or protons may be used as carriers.
  • a fuel cell of a comparative example was produced in the following manner.
  • 10 power generation element parts were formed on each main surface of the support substrate.
  • a slurry for forming a support substrate was prepared by mixing MgO powder, Y 2 O 3 powder, binder, pore-forming material, and dispersion material in a ball mill.
  • a molded body of a support substrate was created by extrusion molding and cutting the slurry for forming a support substrate.
  • a slurry for the first current collector was prepared by mixing NiO powder, Y 2 O 3 powder, binder, pore-forming material, and dispersion material in a ball mill. This slurry for the first current collector was applied by screen printing into the first recess of the molded body of the support substrate to form the molded body of the first current collector.
  • a slurry for a hydrogen electrode was prepared by mixing NiO powder, YSZ powder, binder, pore-forming material, and dispersing material in a ball mill. This hydrogen electrode slurry was applied to the second recess of the first current collector by screen printing to form a hydrogen electrode molded body.
  • a slurry for an interconnector was prepared by adding LaCrO 3 powder and a binder and mixing in a ball mill. This interconnector slurry was applied to the third recess of the first current collector by screen printing to form a molded interconnector.
  • an electrolyte slurry was prepared by mixing the YSZ powder and the binder in a ball mill. This electrolyte slurry was applied to cover the supporting substrate by screen printing to form an electrolyte molded body.
  • reaction prevention layer slurry was prepared by mixing the GDC powder and the binder in a ball mill. This reaction prevention layer slurry was applied onto the electrolyte molded body by screen printing to form a reaction prevention film molded body.
  • the laminate of each molded body was co-fired (1300°C, 5 hours) to produce a co-fired body of the support substrate, first current collector, hydrogen electrode, interconnector, electrolyte, and reaction prevention layer. .
  • a slurry for an oxygen electrode was prepared by mixing the LSCF powder, binder, pore forming material, and dispersing material in a ball mill. This oxygen electrode slurry was applied onto the reaction prevention film by screen printing to form a molded oxygen electrode.
  • a slurry for the second current collector was prepared by mixing the LSCF powder, binder, pore-forming material, and dispersing material in a ball mill. This slurry for forming a second current collector was applied from the oxygen electrode to the interconnector by a screen printing method to form a molded body of the second current collector.
  • Example 1 to 4 Fuel cells of Examples 1 to 4 were produced in the same steps as in the comparative example except that the hydrogen electrode had a two-layer structure.
  • a slurry for the first portion was prepared by mixing NiO powder, YSZ powder, ZrO 2 powder, binder, pore-forming material, and dispersion material in a ball mill.
  • the Zr concentration in the first portion of the hydrogen electrode was adjusted as shown in Table 1 by changing the amount of ZrO 2 powder added for each example.
  • the slurry for the first portion was applied into the second recess of the first current collector by screen printing to form a molded body of the first portion of the hydrogen electrode.
  • a slurry for the second portion was prepared by mixing NiO powder, YSZ powder, binder, pore-forming material, and dispersing material in a ball mill. Then, the slurry for the second part was applied onto the molded body of the first part by a screen printing method to form a molded body of the second part of the hydrogen electrode.
  • Example 5 to 8 Fuel cells of Examples 5 to 8 were produced in the same steps as Examples 1 to 4 except that the electrolyte had a two-layer structure.
  • a slurry for the third portion was prepared by mixing YSZ powder and a binder in a ball mill.
  • the Y concentration in the third portion of the electrolyte was adjusted as shown in Table 1 by changing the Y concentration contained in the YSZ powder for each example.
  • the slurry for the third portion was applied by screen printing so as to cover the support substrate, thereby forming a molded body of the third portion of the electrolyte.
  • a slurry for the fourth portion was prepared by mixing the YSZ powder and the binder in a ball mill. At this time, by adjusting the Y concentration contained in the YSZ powder, as shown in Table 1, the Y concentration in the fourth part of Examples 5 to 8 was made the same as the Y concentration in the electrolyte of the comparative example. Then, the slurry for the fourth part was applied onto the molded body of the third part by a screen printing method to form a molded body of the fourth part of the electrolyte.
  • Example 9 Fuel cells of Examples 9 and 10 were produced in the same steps as Examples 5 to 8 except that ZrO 2 was also added to the second portion of the hydrogen electrode.
  • a slurry for the second portion was prepared by mixing NiO powder, YSZ powder, ZrO 2 powder, binder, pore-forming material, and dispersion material in a ball mill.
  • the Zr concentration in the second portion of the hydrogen electrode was adjusted as shown in Table 1 by changing the amount of ZrO 2 powder added for each example.
  • the slurry for the second part was applied onto the molded body of the first part of the hydrogen electrode by a screen printing method to form a molded body of the second part of the hydrogen electrode.
  • Example 11 A fuel cell of Example 11 was produced in the same process as Example 3 except that ZrO 2 was also added to the second portion of the hydrogen electrode.
  • a slurry for the second portion was prepared by mixing NiO powder, YSZ powder, ZrO 2 powder, binder, pore-forming material, and dispersion material in a ball mill. At this time, by adjusting the amount of ZrO 2 powder added, the Zr concentration in the second part of the hydrogen electrode was made the same as the Zr concentration in the first part, as shown in Table 1. Then, the slurry for the second part was applied onto the molded body of the first part of the hydrogen electrode by a screen printing method to form a molded body of the second part of the hydrogen electrode.
  • Reaction overvoltage suppression rate (%) of each example 100 ⁇ ((reaction overvoltage of comparative example) - (reaction overvoltage of each example)) / (reaction overvoltage of comparative example)... (3)
  • Table 1 shows the calculated reaction overvoltage suppression rate values and their evaluations. In Table 1, when the reaction overvoltage suppression rate is 25% or more, it is evaluated as "A”, when it is 20% or more and less than 25%, it is evaluated as "B", and when it is 10% or more and less than 20%, it is evaluated as "B”. The case where it was less than 10% was evaluated as "C”, and the case where it was less than 10% was evaluated as "D”.
  • Heat cycle test While maintaining a reducing atmosphere by supplying a mixed gas of Ar and hydrogen (hydrogen: 4% to Ar) to the hydrogen electrode, the temperature was raised from room temperature to 750°C in 2 hours, and then cooled down to room temperature in 4 hours. This step was repeated 10 times as one cycle.
  • the initial performance is improved compared to the comparative example. I was able to do it. This result was obtained because the three-phase interface (reaction field) could be increased in the first part.
  • the existence of the ceria - based oxide containing rare earth elements and a solid solution of ZrO 2 in the first part was confirmed by elemental mapping by area analysis using EDX (energy dispersive X-ray spectrometer). was confirmed by being observed at the same position.
  • Example 1 to 4 in Examples 2 and 3 in which the zirconium concentration in the first portion was 5.0 mol% or more and 15 mol% or less, the initial performance could be further improved.
  • the durability in the thermal cycle test is improved compared to the comparative example. I was able to do that. This result was obtained because the addition of ZrO 2 strengthened the ceria-based oxide skeleton in the second portion.
  • the existence of the rare earth element-doped ceria-based oxide and ZrO 2 solid solution in the second part is confirmed by the fact that Zr and CeO 2 are observed at the same position in elemental mapping by area analysis using EDX. confirmed.
  • Example 10 in which the zirconium concentration in the first part was higher than that in the second part among Examples 9 and 10, the initial performance was able to be further improved compared to Example 9. This result was obtained because the three-phase interface in the first portion could be further increased.
  • Example 5 to 10 in which the electrolyte has a two-layer structure and the Y concentration in the third part is higher than that in the fourth part, the initial performance is further improved compared to Examples 1 to 4, and 11. I was able to do that. These results were obtained by improving the ionic conductivity of the third part of the electrolyte connected to the hydrogen electrode, and by improving the ionic conductivity of the three-phase interface near the electrolyte in the hydrogen electrode. This is because it was done.
  • Fuel cell 20 Support substrate 30 Power generation element section 1 First current collector 2 Hydrogen electrode 101 First section 102 Second section 3 Electrolyte 103 Third section 104 Fourth section 4 Reaction prevention layer 5 Oxygen electrode 6 Second current collector Part 7 Interconnector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池セル(10)は、水素極(2)と、酸素極(5)と、電解質(3)とを備える。水素極(2)は、電解質側表面(S2)から10μm以内の第1部分(101)と、電解質側表面(S2)から10μm超の第2部分(102)とを有する。第1部分(101)は、希土類元素が添加されたセリア系酸化物及びジルコニアの固溶体と、ニッケルとを含む。第2部分(102)は、希土類元素が添加されたセリア系酸化物と、ニッケルとを含む。

Description

電気化学セル
 本発明は、電気化学セルに関するものである。
 電気化学セルの一例として燃料電池が知られている(例えば、特許文献1参照)。燃料電池は、水素極と、酸素極と、水素極及び酸素極の間に配置される電解質とを備える。水素極は、電子伝導体として主に機能するニッケル(Ni)と、酸素イオン伝導体として主に機能する希土類元素が添加されたセリア系酸化物とによって構成される。
特開2013-241644号公報
 燃料電池では、水素極の反応抵抗を低減させることが期待されている。また、水素極の反応抵抗を低減させることは、燃料電池に限らず電解セルなどの電気化学セル一般に有用である。
 本発明の課題は、水素極の電子伝導性を向上可能な電気化学セルを提供することである。
 本発明に係る電気化学セルは、水素極と、酸素極と、水素極及び酸素極の間に配置される電解質とを備える。水素極は、電解質側表面から10μm以内の第1部分と、電解質側表面から10μm超の第2部分とを有する。第1部分は、希土類元素が添加されたセリア系酸化物及びジルコニアの固溶体と、ニッケルとを含む。第2部分は、希土類元素が添加されたセリア系酸化物と、ニッケルとを含む。
 本発明によれば、水素極の電子伝導性を向上可能な電気化学セルを提供することができる。
図1は、燃料電池セルの斜視図である。 図2は、燃料電池セルの断面図である。 図3は、図2の部分拡大図である。
 (燃料電池セル10)
 電気化学セルの一例として燃料電池セル10について説明する。図1は、燃料電池セル10の斜視図である。図2は、後述するガス流路21に沿って切断した燃料電池セル10の断面図である。
 図1及び図2に示すように、燃料電池セル10は、支持基板20及び複数の発電素子部30を備える。
 [支持基板20]
 図1に示すように、支持基板20は、扁平な板状に形成される。本実施形態に係る支持基板20では、長さ方向(x軸方向)の寸法が、幅方向(y軸方向)の寸法より長いが、長さ方向より幅方向の寸法の方が長くてもよい。
 図2に示すように、支持基板20は、第1主面S1と、第2主面T1とを有する。第1主面S1と第2主面T1とは、支持基板20の厚さ方向(z軸方向)において互いに反対を向いている。第1主面S1及び第2主面T1は、各発電素子部30を支持する。
 支持基板20は、電子伝導性を有さない多孔質材料によって構成される。支持基板20は、例えば、CSZ(カルシア安定化ジルコニア)によって構成される。或いは、支持基板20は、NiO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)とによって構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とによって構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とによって構成されてもよい。支持基板20の気孔率は、例えば、20%以上60%以下とすることができる。本明細書において、気孔率とは、SEM(走査電子顕微鏡)を用いた断面観察における固相と気相の総面積に対する気相の面積の割合である。
 支持基板20の内部には、複数のガス流路21が形成されている。各ガス流路21には、水素ガスなどの燃料ガスが供給される。本実施形態において、各ガス流路21は、支持基板20内を長さ方向(x軸方向)に延びる。各ガス流路21は、支持基板20を貫通する。各ガス流路21は、実質的に等間隔に配置されることが好ましい。
 図1に示すように、支持基板20は、緻密層22によって覆われている。緻密層22は、支持基板20の表面のうち各発電素子部30によって覆われていない領域を覆う。緻密層22は、支持基板20内に拡散されたガスが外部に排出されることを抑制する。緻密層22は、例えば、CSZ(カルシア安定化ジルコニア)、YSZ(8YSZ)(イットリア安定化ジルコニア)、LSGM(ランタンガレート)、MgO(酸化マグネシウム)とMgAlO(マグネシアアルミナスピネル)、GDC(ガドリニウムドープセリア)又はLaCrO(ランタンクロマイト)などによって構成される。緻密層22は、支持基板20よりも緻密である。緻密層22の気孔率は、例えば、0%以上7%以下とすることができる。
 [発電素子部30]
 図1に示すように、各発電素子部30は、支持基板20の第1主面S1又は第2主面T1に支持されている。第1主面S1に配置される発電素子部30の数と第2主面T1に配置される発電素子部30の数とは、互いに同じであってもよいし異なっていてもよい。また、各発電素子部30の大きさは、互いに同じであってもよいし異なっていてもよい。
 各発電素子部30は、ガス流路21が延びる長さ方向(x軸方向)に沿って間隔をあけて配置される。各発電素子部30は、後述する電気的接続部9によって、互いに電気的に直列に接続される。
 発電素子部30は、第1集電部1、水素極2、電解質3、反応防止層4、酸素極5、第2集電部6、及びインターコネクタ7を備える。
 第1集電部1は、支持基板20の凹部23内に配置される。第1集電部1は、第1凹部11及び第2凹部12を有する。第1凹部11内には、水素極2が配置される。第2凹部12内には、インターコネクタ7が配置される。
 第1集電部1は、電子伝導性を有する多孔質材料によって構成される。第1集電部1は、例えば、NiO(酸化ニッケル)とY(イットリア)とによって構成することができる。或いは、第1集電部1は、NiO(酸化ニッケル)と8YSZ(イットリア安定化ジルコニア)とによって構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とによって構成されてもよい。
 第1集電部1の気孔率は、例えば、10%以上50%以下とすることができる。第1集電部1の厚さは、例えば、50μm以上500μm以下とすることができる。
 水素極2は、第1集電部1の第1凹部11内に配置される。水素極2には、支持基板20及び第1集電部1を介して、ガス流路21から燃料ガスが供給される。水素極2では、次の式(1)で表される電極反応が起こる。
 H+O2-→HO+2e     …(1)
 水素極2は、電子伝導性及びイオン伝導性を有する多孔質材料によって構成される。水素極2の気孔率は、例えば、10%以上50%以下とすることができる。水素極2の厚さは、例えば、10μm超100μm以下とすることができる。水素極2の構成については後述する。
 電解質3は、水素極2を覆うように配置される。長さ方向(x軸方向)における電解質3の両端部それぞれは、インターコネクタ7に接続される。電解質3は、イオン伝導性を有し且つ電子伝導性を有さない緻密質材料によって構成される。電解質3の気孔率は、例えば、0%以上7%以下とすることができる。電解質3の厚さは、例えば、3μm以上50μm以下とすることができる。電解質3の構成については後述する。
 反応防止層4は、電解質3及び酸素極5の間に配置される。反応防止層4は、電解質3及び酸素極5それぞれと接触する。反応防止層4は、電解質3を介して水素極2と対応する位置に配置される。反応防止層4は、電解質3の構成材料と酸素極5の構成材料とが反応して電気抵抗の大きい反応層が形成されることを抑制するために設けられている。反応防止層4は、イオン伝導性材料によって構成することができる。反応防止層4は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)によって構成することができる。反応防止層4の気孔率は、例えば、0.1%以上50%以下とすることができる。反応防止層4の厚さは、例えば、1μm以上50μm以下とすることができる。
 酸素極5は、反応防止層4上に配置される。酸素極5には、第2集電部6を介して、酸素を含むガス(例えば、空気)が供給される。酸素極5では、次の式(2)で表される電極反応が起こる。
 (1/2)・O+2e→O2-   …(2)
 酸素極5は、電子伝導性を有する多孔質材料によって構成される。酸素極5は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等によって構成することができる。酸素極5の気孔率は、例えば、10%以上50%以下とすることができる。酸素極5の厚さは、例えば、10μm以上100μm以下とすることができる。
 第2集電部6は、酸素極5及びインターコネクタ7に接続される。第2集電部6は、電子伝導性を有する多孔質材料によって構成される。第2集電部6は、酸素イオン伝導性を有していてもよいし、有していなくてもよい。第2集電部6は、例えば、LSCF、LSC、Ag(銀)、Ag-Pd(銀パラジウム合金)等によって構成することができる。第2集電部6の気孔率は、例えば、25%以上50%以下とすることができる。第2集電部6の厚さは、例えば、50μm以上500μm以下とすることができる。
 インターコネクタ7は、第1集電部1の第2凹部12内に配置される。長さ方向(x軸方向)におけるインターコネクタ7の両端部それぞれは、電解質3に接続される。インターコネクタ7は、電子伝導性を有する緻密質材料によって構成される。インターコネクタ7は、例えば、LaCrO(ランタンクロマイト)、(Sr,La)TiO(ストロンチウムチタネート)等によって構成することができる。インターコネクタ7の気孔率は、例えば、0%以上7%以下とすることができる。インターコネクタ7の厚さは、例えば、10μm以上100μm以下とすることができる。
 (水素極2及び電解質3の構成)
 次に、水素極2及び電解質3の構成について説明する。図3は、図2の部分拡大図である。
 [水素極2]
 図3に示すように、水素極2は、第1部分101と、第2部分102とを有する。
 第1部分101は、水素極2のうち電解質3側の領域である。具体的には、第1部分101は、水素極2のうち電解質側表面S2から10μm以内の領域である。従って、第1部分101の厚さは、10μmである。第1部分101は、電解質3に接続される。水素極2の電解質側表面S2は、電解質3の水素極側表面S3と直接的に接触する。
 なお、水素極2と電解質3との界面(すなわち、水素極2の電解質側表面S2及び電解質3の水素極側表面S3)は、次のように規定される。まず、厚み方向(図3のz軸方向)に平行な断面SEM画像の輝度を256階調に分類することによって、反応防止層4と酸素極5との界面を特定する。次に、断面SEM画像上において、反応防止層4と酸素極5との界面と同じ形状の線(以下、「基準線」という。)を水素極2側に向かって平行移動させる。次に、水素極2に含まれるニッケル(Ni)と初めて接する位置で基準線を停止させる。このときの基準線が、水素極2と電解質3との界面である。
 第1部分101は、希土類元素が添加されたセリア系酸化物及びZrO(ジルコニア)の固溶体と、Niとを含む。希土類元素が添加されたセリア系酸化物及びジルコニアの固溶体は、セリア系酸化物由来のイオン伝導性と、ZrO由来の電子伝導性との両方を有する。このように、水素極2のうち電極反応が活発な第1部分101にZrOを含有する固溶体を含ませることによって、三相界面(反応場)を増大させることができるため、水素極2の反応抵抗を低減させることができる。
 固溶体とは、希土類元素が添加されたセリア系酸化物とZrOとが互いに溶け合って、全体が均一の固相となっているものをいう。希土類元素が添加されたセリア系酸化物としては、例えば、ガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、イットリウムドープセリア(YDC)などが挙げられるが、これらには限られない。
 第1部分101におけるCe(セリウム)濃度は、8.0mol%以上30mol%以下とすることができる。第1部分101における希土類元素濃度は、0.5mol%以上10mol%以下とすることができる。第1部分101におけるZr(ジルコニウム)濃度は、1.0mol%以上20mol%以下とすることができる。第1部分101におけるZr濃度は、5.0mol%以上15mol%以下が特に好ましい。第1部分101において、Zr濃度はCe濃度より低くてよい。第1部分101におけるNi濃度は、12mol%以上50mol%以下とすることができる。
 第2部分102は、水素極2のうち電解質3と反対側の領域である。具体的には、第2部分102は、水素極2のうち電解質側表面S2から10μm超の領域である。すなわち、第2部分102は、水素極2のうち第1部分101を除いた領域である。第2部分102は、第1部分101と一体的に形成される。第2部分102は、第1集電部1に接続される。
 第2部分102は、希土類元素が添加されたセリア系酸化物とNiとを含む。希土類元素が添加されたセリア系酸化物としては、例えば、GDC、SDC、YDCなどが挙げられるが、これらには限られない。第2部分102が含む希土類元素が添加されたセリア系酸化物は、第2部分102が含む希土類元素が添加されたセリア系酸化物と同じであることが好ましいが異なっていてもよい。
 第2部分102におけるCe濃度は、10mol%以上35mol%以下とすることができる。第2部分102における希土類元素濃度は、1.0mol%以上15mol%以下とすることができる。第2部分102におけるNi濃度は、12mol%以上50mol%以下とすることができる。
 第2部分102は、希土類元素が添加されたセリア系酸化物との固溶体を構成するZrOを含むことが好ましい。これによって、水素と水蒸気が共存する雰囲気において不安定になりやすいセリア系酸化物の骨格を強化できるため、水素極2の耐久性を向上させることができる。第2部分102におけるZr濃度は、0.0mol%以上15mol%以下とすることができる。
 第2部分102がZrOを含有している場合、第1部分101におけるZr濃度は、第2部分102におけるZr濃度より高いことが好ましい。これによって、第1部分101における三相界面を更に増大させることができるため、水素極2の反応抵抗を更に低減させることができる。
 第1部分101及び第2部分102におけるCe濃度、希土類元素濃度、Zr濃度及びNi濃度は、原子濃度プロファイルによるライン分析、すなわちEPMA(Electron Probe Micro Analyzer)を用いた元素マッピングによって得られる。具体的には、厚み方向(図3のz軸方向)に沿った断面において、EPMAを用いてz軸方向にライン分析を行うことにより、各元素の濃度分布データが取得される。なお、EPMAは、EDS(Energy Dispersive x-ray Spectroscopy)を含む概念である。
 [電解質3]
 図3に示すように、電解質3は、第3部分103と、第4部分104とを有する。
 第3部分103は、電解質3のうち水素極2側の領域である。具体的には、第3部分103は、電解質3のうち水素極側表面S3から3μm以内の領域である。従って、第3部分103の厚さは、3μmである。第3部分103は、水素極2に接続される。電解質3の水素極側表面S3は、水素極2の電解質側表面S2と直接的に接触する。
 第4部分104は、電解質3のうち水素極2と反対側の領域である。具体的には、第4部分104は、電解質3のうち水素極側表面S3から3μm超の領域である。すなわち、第4部分104は、電解質3のうち第3部分103を除いた領域である。第4部分104は、第3部分103と一体的に形成される。本実施形態において、第4部分104は、反応防止層4に接続される。
 第3部分103及び第4部分104それぞれは、YSZ(イットリア安定化ジルコニア)を含む。第3部分103におけるY(イットリウム)濃度は、第4部分104におけるイットリウム濃度より高いことが好ましい。これによって、電解質3のうち水素極2に接続される領域のイオン伝導性を向上させることができるため、イオン伝導に伴う抵抗過電圧を低減させることができる。また、水素極2のうち電解質3近傍における三相界面のイオン伝導性が向上することで、水素極2の反応過電圧を低減させることができる。
 第3部分103及び第4部分104それぞれは、YSZを主成分として含んでいることが好ましい。本明細書において、YSZを主成分として含むとは、YSZの含有率が70mol%以上であることを意味する。
 第3部分103におけるY濃度は、3.0mol%以上8.0mol%以下とすることができる。第3部分103におけるY濃度は、4.5mol%以上7.0mol%以下が特に好ましい。第4部分104におけるY濃度は、2.0mol%以上7.0mol%以下とすることができる。第3部分103及び第4部分104それぞれにおけるY濃度は、所望のY濃度を含むYSZ原料を使用することによって調整できる。
 第3部分103及び第4部分104におけるZr濃度及びY濃度は、上述した原子濃度プロファイルによるライン分析によって得られる。
 (実施形態の変形例)
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
 上記実施形態では、燃料電池の一例として、いわゆる横縞型の燃料電池セルについて説明したが、電気化学セルはこれに限られない。本発明は、電解質層の両側に水素極と酸素極とが配置された電気化学セルに適用可能である。
 電気化学セルとは、電気エネルギーを化学エネルギーに変えるため、全体的な酸化還元反応から起電力が生じるように一対の電極が配置された素子と、化学エネルギーを電気エネルギーに変えるための素子との総称である。
 電気化学セルとしては、横縞型の燃料電池セルのほか、縦縞型の燃料電池セル、平板型の燃料電池セル、筒型の燃料電池セル、更に、水の電気分解反応を利用して水素の生成を行う電解セルなどが挙げられる。また、上記実施形態では、O2-(酸素イオン)をキャリアとしたが、OH(水酸化物イオン)やプロトンをキャリアとしてもよい。
 以下、本発明に係る電気化学セルの実施例について説明するが、本発明はこれらの実施例に限定されるものはない。
 (比較例)
 以下のようにして、比較例の燃料電池セルを作製した。なお、以下の燃料電池セルでは、支持基板の各主面上に、10個の発電素子部を形成した。
 まず、MgO粉末、Y粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより支持基板形成用スラリーを調製した。この支持基板形成用スラリーを押し出し成形および切削によって支持基板の成形体を作成した。
 次に、NiO粉末、Y粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより第1集電部用スラリーを調製した。この第1集電部用スラリーをスクリーン印刷法によって、支持基板の成形体の第1凹部内に塗布し、第1集電部の成形体を形成した。
 次に、NiO粉末、YSZ粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより水素極用スラリーを調製した。この水素極用スラリーをスクリーン印刷法によって第1集電部の第2凹部内に塗布して、水素極の成形体を形成した。
 次に、LaCrO粉末及びバインダーを添加し、ボールミルにて混合することにより、インターコネクタ用スラリーを調製した。このインターコネクタ用スラリーをスクリーン印刷法によって、第1集電部の第3凹部内に塗布し、インターコネクタの成形体を形成した。
 次に、YSZ粉末及びバインダーをボールミルにて混合することにより電解質用スラリーを調製した。この電解質用スラリーをスクリーン印刷法によって、支持基板を覆うように塗布し、電解質の成形体を形成した。
 次に、GDC粉末及びバインダーをボールミルにて混合することにより反応防止層用スラリーを調製した。この反応防止層用スラリーをスクリーン印刷法によって電解質の成形体上に塗布し、反応防止膜の成形体を形成した。
 次に、各成形体の積層体を共焼成(1300℃、5時間)して、支持基板、第1集電部、水素極、インターコネクタ、電解質、及び反応防止層の共焼成体を作製した。
 次に、LSCF粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより酸素極用スラリーを調製した。この酸素極用スラリーをスクリーン印刷法によって反応防止膜上に塗布し、酸素極の成形体を形成した。
 次に、LSCF粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより第2集電部用スラリーを調製した。この第2集電部形成用スラリーをスクリーン印刷法によって酸素極からインターコネクタまで塗布し、第2集電部の成形体を形成した。
 次に、酸素極及び第2集電部の各成形体を焼成(1050℃、3時間)した。
 (実施例1~4)
 水素極を2層構造にしたこと以外は比較例と同様の工程にて実施例1~4の燃料電池セルを作製した。
 具体的には、NiO粉末、YSZ粉末、ZrO粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより第1部分用スラリーを調製した。この際、ZrO粉末の添加量を実施例ごとに変更することによって、表1に示すように水素極の第1部分におけるZr濃度を調整した。そして、第1部分用スラリーをスクリーン印刷法によって第1集電部の第2凹部内に塗布して、水素極のうち第1部分の成形体を形成した。
 次に、NiO粉末、YSZ粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより第2部分用スラリーを調製した。そして、第2部分用スラリーをスクリーン印刷法によって第1部分の成形体上に塗布して、水素極のうち第2部分の成形体を形成した。
 (実施例5~8)
 電解質を2層構造にしたこと以外は実施例1~4と同様の工程にて実施例5~8の燃料電池セルを作製した。
 具体的には、YSZ粉末及びバインダーをボールミルにて混合することにより第3部分用スラリーを調製した。この際、YSZ粉末に含まれるY濃度を実施例ごとに変更することによって、表1に示すように電解質の第3部分におけるY濃度を調整した。そして、第3部分用スラリーをスクリーン印刷法によって、支持基板を覆うように塗布し、電解質のうち第3部分の成形体を形成した。
 次に、YSZ粉末及びバインダーをボールミルにて混合することにより第4部分用スラリーを調製した。この際、YSZ粉末に含まれるY濃度を調整することによって、表1に示すように、実施例5~8の第4部分におけるY濃度を比較例の電解質におけるY濃度と同じとした。そして、第4部分用スラリーをスクリーン印刷法によって、第3部分の成形体上に塗布し、電解質のうち第4部分の成形体を形成した。
 (実施例9,10)
 水素極の第2部分にもZrOを添加したこと以外は実施例5~8と同様の工程にて実施例9,10の燃料電池セルを作製した。
 具体的には、NiO粉末、YSZ粉末、ZrO粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより第2部分用スラリーを調製した。この際、ZrO粉末の添加量を実施例ごとに変更することによって、表1に示すように水素極の第2部分におけるZr濃度を調整した。そして、第2部分用スラリーをスクリーン印刷法によって水素極の第1部分の成形体上に塗布して、水素極のうち第2部分の成形体を形成した。
 (実施例11)
 水素極の第2部分にもZrOを添加したこと以外は実施例3と同様の工程にて実施例11の燃料電池セルを作製した。
 具体的には、NiO粉末、YSZ粉末、ZrO粉末、バインダー、造孔材、及び分散材をボールミルにて混合することにより第2部分用スラリーを調製した。この際、ZrO粉末の添加量を調整することによって、表1に示すように水素極の第2部分におけるZr濃度を第1部分におけるZr濃度と同じとした。そして、第2部分用スラリーをスクリーン印刷法によって水素極の第1部分の成形体上に塗布して、水素極のうち第2部分の成形体を形成した。
 (初期性能評価)
 比較例及び実施例1~10の燃料電池セルを750℃まで昇温させた状態で、水素極に水蒸気及び水素の混合ガス(混合比50:50)を供給するとともに酸素極に空気を供給した。続いて、0.5A/cmの電流値を掃引しながら、電流遮断法を用いて、全過電圧から抵抗過電圧を差し引いた反応過電圧を取得した。そして、比較例の反応過電圧を基準とし、下記(3)式を用いて、反応過電圧抑制率を算出した。
 各実施例の反応過電圧抑制率(%)=100×((比較例の反応過電圧)-(各実施例の反応過電圧))/(比較例の反応過電圧)・・・(3)
 算出した反応過電圧抑制率の値とその評価を表1に示した。表1では、反応過電圧抑制率が25%以上であった場合を「A」と評価し、20%以上25%未満であった場合を「B」と評価し、10%以上20%未満であった場合を「C」と評価し、10%未満であった場合を「D」と評価した。
 (熱サイクル試験)
 水素極にAr及び水素の混合ガス(水素はArに対して4%)を供給することで還元雰囲気に維持した状態で、常温から750℃まで2時間で昇温した後に4時間で常温まで降温させる工程を1サイクルとして10回繰り返した。
 その後、水素極の断面をFE-SEMで観察して、長さ3μm以上クラックが水素極に発生しているか否かを確認した。表1では、水素極にクラックが発生していないもの、及びクラックが発生していても3μm未満であったものを「〇」と評価し、水素極に3μm以上のクラックが発生したものを「△」と評価した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、水素極の第1部分が希土類元素の添加されたセリア系酸化物及びZrOの固溶体とNiとを含む実施例1~11では、比較例に比べて初期性能を向上させることができた。このような結果が得られたのは、第1部分において三相界面(反応場)を増大できたためである。なお、希土類元素の添加されたセリア系酸化物及びZrOの固溶体が第1部分に存在することは、EDX(エネルギー分散型X線分析装置)を用いた面分析による元素マッピングでZrとCeOが同じ位置で観察されることをもって確認した。
 また、実施例1~4のうち、第1部分におけるジルコニウム濃度を5.0mol%以上15mol%以下とした実施例2,3では、初期性能をより向上させることができた。
 また、水素極の第2部分が希土類元素の添加されたセリア系酸化物及びZrOの固溶体とNiとを含む実施例9~11では、比較例に比べて熱サイクル試験における耐久性を向上させることができた。このような結果が得られたのは、ZrOの添加によって第2部分におけるセリア系酸化物の骨格を強化できたためである。なお、希土類元素の添加されたセリア系酸化物及びZrOの固溶体が第2部分に存在することは、EDXを用いた面分析による元素マッピングでZrとCeOが同じ位置で観察されることをもって確認した。
 また、実施例9,10のうち第1部分におけるジルコニウム濃度を第2部分におけるジルコニウム濃度より高くした実施例10では、実施例9に比べて初期性能をより向上させることができた。このような結果が得られたのは、第1部分における三相界面をより増大できたためである。
 また、電解質を2層構造にし、かつ、第3部分におけるY濃度を第4部分におけるY濃度より高くした実施例5~10では、実施例1~4,11に比べて初期性能をより向上させることができた。このような結果が得られたのは、電解質のうち水素極に接続される第3部分のイオン伝導性を向上させ、かつ、水素極のうち電解質近傍における三相界面のイオン伝導性を向上させられたためである。
 また、第3部分におけるY濃度を4.5mol%以上7.0mol%以下とした実施例6,7では、実施例5,8に比べて初期性能を更に向上させることができた。
10  燃料電池セル
20  支持基板
30  発電素子部
1   第1集電部
2   水素極
101 第1部分
102 第2部分
3   電解質
103 第3部分
104 第4部分
4   反応防止層
5   酸素極
6   第2集電部
7   インターコネクタ

Claims (6)

  1.  水素極と、
     酸素極と、
     前記水素極及び前記酸素極の間に配置される電解質と、
     前記酸素極と前記電解質との間に配置される反応防止層と、
    を備え、
     前記水素極は、電解質側表面から10μm以内の第1部分と、前記電解質側表面から10μm超の第2部分とを有し、
     前記第1部分は、希土類元素が添加されたセリア系酸化物及びジルコニアの固溶体と、ニッケルとを含み、
     前記第2部分は、希土類元素が添加されたセリア系酸化物と、ニッケルとを含む、
    電気化学セル。
  2.  前記第1部分におけるジルコニウム濃度は、5.0mol%以上15mol%以下である、
    請求項1に記載の電気化学セル。
  3.  前記第2部分は、前記セリア系酸化物との固溶体を構成するジルコニアを含む、
    請求項1又は2に記載の電気化学セル。
  4.  前記第1部分におけるジルコニウム濃度は、前記第2部分におけるジルコニウム濃度より高い、
    請求項3に記載の電気化学セル。
  5.  前記電解質は、水素極側表面から3μm以内の第3部分と、前記水素極側表面から3μm超の第4部分とを有し、
     前記第3部分及び前記第4部分それぞれは、イットリア安定化ジルコニアを含み、
     前記第3部分におけるイットリウム濃度は、前記第4部分におけるイットリウム濃度より高い、
    請求項1に記載の電気化学セル。
  6.  前記第3部分におけるイットリウム濃度は、4.5mol%以上7.0mol%以下である、
    請求項5に記載の電気化学セル。
PCT/JP2023/006879 2022-04-18 2023-02-24 電気化学セル WO2023203875A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024516111A JPWO2023203875A1 (ja) 2022-04-18 2023-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022068539 2022-04-18
JP2022-068539 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023203875A1 true WO2023203875A1 (ja) 2023-10-26

Family

ID=88419650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006879 WO2023203875A1 (ja) 2022-04-18 2023-02-24 電気化学セル

Country Status (2)

Country Link
JP (1) JPWO2023203875A1 (ja)
WO (1) WO2023203875A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757746A (ja) * 1993-08-06 1995-03-03 Fujikura Ltd 固体電解質型燃料電池の電極構造
JPH08213029A (ja) * 1995-02-06 1996-08-20 Fujikura Ltd 固体電解質型燃料電池の燃料電極
JP2004362913A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 固体酸化物形燃料電池用電解質及びその製造方法
JP2010027457A (ja) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池の発電膜及びこれを備えた固体電解質型燃料電池、並びに固体電解質型燃料電池の発電膜の製造方法
JP2013101907A (ja) * 2011-10-14 2013-05-23 Ngk Insulators Ltd 燃料電池セル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757746A (ja) * 1993-08-06 1995-03-03 Fujikura Ltd 固体電解質型燃料電池の電極構造
JPH08213029A (ja) * 1995-02-06 1996-08-20 Fujikura Ltd 固体電解質型燃料電池の燃料電極
JP2004362913A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 固体酸化物形燃料電池用電解質及びその製造方法
JP2010027457A (ja) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池の発電膜及びこれを備えた固体電解質型燃料電池、並びに固体電解質型燃料電池の発電膜の製造方法
JP2013101907A (ja) * 2011-10-14 2013-05-23 Ngk Insulators Ltd 燃料電池セル

Also Published As

Publication number Publication date
JPWO2023203875A1 (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
US20150255820A1 (en) Half cell for solid oxide fuel cell, and solid oxide fuel cell
EP2410598A1 (en) Electrode Material and Solid Oxide Fuel Cell Containing the Electrode Material
JP4928642B1 (ja) 固体酸化物型燃料電池
KR20140057080A (ko) 고체산화물 연료전지용 양극, 이의 제조방법 및 이를 포함하는 고체산화물 연료전지
EP2882020A1 (en) Fuel cell
KR20140082400A (ko) 고체산화물 연료전지 및 이의 제조방법
EP2597715B1 (en) Solid oxide fuel cell comprising anode containing CaZrO3 with defined molar ratio Ca/Zr
KR102111859B1 (ko) 고체산화물 연료 전지 및 이를 포함하는 전지 모듈
WO2023203875A1 (ja) 電気化学セル
WO2023203870A1 (ja) 電気化学セル
JP7301768B2 (ja) 電気化学セル、電気化学セルスタックおよび電気化学セル用電解質
JP5270807B1 (ja) 固体酸化物型燃料電池
JP6071368B2 (ja) 固体酸化物形燃料電池セル用中間層、固体酸化物形燃料電池セル、固体酸化物形燃料電池セル用中間層の製造方法および固体酸化物形燃料電池セルの製造方法
WO2023195246A1 (ja) 電気化学セル
WO2023195245A1 (ja) 電気化学セル
JP7498645B2 (ja) 電極
EP4243128A1 (en) Optimized processing of electrodes for sofc and soec
JP7324168B2 (ja) 電極
JP7428686B2 (ja) 電気分解耐性の空気側電極を含む固体酸化物形電解槽セル
EP4181242A2 (en) Ni-fe based cathode functional layers for solid oxide fuel cells
US20230141938A1 (en) Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
JP6134086B1 (ja) 電気化学セル
KR20240085108A (ko) 금속-고체산화물 복합체, 이의 제조 방법, 및 이를 포함하는 고체산화물 셀
KR20240085806A (ko) 고체산화물 셀 및 이의 운전 방법
KR20240078578A (ko) 고체산화물 셀 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024516111

Country of ref document: JP

Kind code of ref document: A