Nothing Special   »   [go: up one dir, main page]

WO2023286875A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents

非水系二次電池用セパレータ及び非水系二次電池 Download PDF

Info

Publication number
WO2023286875A1
WO2023286875A1 PCT/JP2022/027946 JP2022027946W WO2023286875A1 WO 2023286875 A1 WO2023286875 A1 WO 2023286875A1 JP 2022027946 W JP2022027946 W JP 2022027946W WO 2023286875 A1 WO2023286875 A1 WO 2023286875A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
porous layer
adhesive porous
less
structural units
Prior art date
Application number
PCT/JP2022/027946
Other languages
English (en)
French (fr)
Inventor
理佳 藏谷
麻衣 三浦
聡 西川
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR1020247001416A priority Critical patent/KR20240023424A/ko
Priority to CN202280049018.3A priority patent/CN117642921A/zh
Priority to JP2022575294A priority patent/JP7557552B2/ja
Priority to EP22842216.8A priority patent/EP4372895A1/en
Publication of WO2023286875A1 publication Critical patent/WO2023286875A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to non-aqueous secondary battery separators and non-aqueous secondary batteries.
  • WO 2013/058367, WO 2013/058368, WO 2013/058369 and WO 2013/058370 each disclose adhesiveness containing a porous substrate and a polyvinylidene fluoride resin and a porous layer, wherein the polyvinylidene fluoride resin contains at least two types of polyvinylidene fluoride resins.
  • Japanese Patent No. 6487130 includes a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride resin, wherein the polyvinylidene fluoride resin comprises vinylidene fluoride, hexafluoropropylene, and an acid group or an ester group.
  • a non-aqueous secondary battery separator comprising a copolymer with a monomer having
  • a battery using a separator having an adhesive porous layer containing a polyvinylidene fluoride resin is generally manufactured by manufacturing a laminate of an electrode and a separator, housing this laminate in an exterior material, and injecting an electrolytic solution. and heat press treatment (referred to as “wet heat press” in the present disclosure).
  • wet heat press since the polyvinylidene fluoride resin is heat-pressed in a state of being swollen in the electrolytic solution, the adhesion between the electrode and the separator is good, and it is easy to obtain good battery characteristics.
  • wet heat pressing is performed at a relatively high temperature, the electrolytic solution or electrolyte may decompose and gas may be generated in the battery, which causes, for example, deterioration of the cycle characteristics and dimensional stability of the battery.
  • dry heat press there is a technique of performing a heat press treatment (referred to as "dry heat press” in the present disclosure) without impregnating the electrode-separator laminate with an electrolytic solution to bond the electrode and the separator. If the electrodes and separators are sufficiently adhered by dry heat pressing, wet heat pressing is not required, and therefore the electrolytic solution and the electrolyte do not decompose. Also, when wet heat pressing is performed, the temperature of the wet heat pressing can be set to a relatively low temperature if the laminate is subjected to dry heat pressing prior to bonding the electrodes and separators, so that the electrolytic solution and the electrolyte can be kept at a relatively low temperature. Decomposition can be suppressed.
  • the separator is adhered to the electrodes by dry heat pressing before housing the laminate in the exterior material, deformation of the laminate that may occur during transportation for housing in the exterior material is suppressed. Therefore, if the separator can be well adhered to the electrode by dry heat pressing, it is expected that the performance of a battery with a larger area can be maintained.
  • the present disclosure has been made under the circumstances described above.
  • the present disclosure is excellent in adhesion to electrodes by dry heat pressing and adhesion to electrodes by wet heat pressing, the battery is less likely to short circuit at high temperatures, and the battery has a high capacity retention rate even after exposure to high temperatures.
  • An object of the present invention is to provide a separator for a non-aqueous secondary battery.
  • the endothermic peak is in the region of 125 ° C. or higher and lower than 140 ° C. and the region of 140 ° C. or higher and lower than 190 ° C.
  • Two or more endothermic peaks are observed when differential scanning calorimetry is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample, and the temperature difference between the adjacent endothermic peaks is 10°C or more.
  • the separator for non-aqueous secondary batteries according to ⁇ 1> or ⁇ 2> which is 60° C. or lower.
  • ⁇ 4> When the entire polyvinylidene fluoride resin contained in the adhesive porous layer is subjected to differential scanning calorimetry as a sample, the exothermic peak is in the region of 80 ° C. or higher and lower than 125 ° C. and the region of 125 ° C. or higher and lower than 190 ° C.
  • ⁇ 5> Two or more exothermic peaks are observed when differential scanning calorimetry is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample, and the temperature difference between the adjacent exothermic peaks is 10°C or more.
  • the polyvinylidene fluoride-based resin includes the following polyvinylidene fluoride-based resin X and polyvinylidene fluoride-based resin Y, Separator for non-aqueous secondary batteries.
  • Polyvinylidene fluoride-based resin X contains structural units derived from vinylidene fluoride and structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is more than 3.5 mol% and not more than 15 mol%. , a weight average molecular weight of 100,000 or more and less than 1,000,000, and a melting point of 125°C or more and less than 150°C.
  • Polyvinylidene fluoride resin Y contains structural units derived from vinylidene fluoride, may contain structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is 0 mol% or more3 .5 mol% or less, a weight average molecular weight of 1,000,000 or more and less than 3,000,000, and a melting point of 150°C or more and less than 180°C.
  • ⁇ 7> Two or more endothermic peaks and/or two or more exothermic peaks are observed when differential scanning calorimetry is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample
  • ⁇ 6> The separator for non-aqueous secondary batteries according to .
  • ⁇ 8> The non-aqueous secondary battery according to ⁇ 6> or ⁇ 7>, wherein the difference between the melting point of the polyvinylidene fluoride resin X and the melting point of the polyvinylidene fluoride resin Y is 25° C. or more and less than 55° C.
  • the non-aqueous secondary battery separator for ⁇ 9> ⁇ 6> to ⁇ 8>, wherein the mass ratio of the polyvinylidene fluoride resin X and the polyvinylidene fluoride resin Y contained in the adhesive porous layer is 20:80 to 80:20
  • the non-aqueous secondary battery separator according to any one of items 1 and 2.
  • the polyvinylidene fluoride-based resin X contains structural units derived from vinylidene fluoride and structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is more than 5.0 mol%.
  • the nonaqueous secondary battery according to any one of ⁇ 6> to ⁇ 9> which is 15 mol% or less, has a weight average molecular weight of 300,000 or more and less than 1,000,000, and has a melting point of 125°C or more and less than 140°C.
  • the polyvinylidene fluoride-based resin Y contains structural units derived from vinylidene fluoride, and may contain structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is 0 mol% or more and 2.0 mol% or less, has a weight average molecular weight of 1,500,000 or more and less than 2,000,000, and has a melting point of 150°C or more and less than 170°C, any one of ⁇ 6> to ⁇ 10> separator for non-aqueous secondary batteries.
  • ⁇ 12> Any one of ⁇ 1> to ⁇ 11>, wherein the adhesive porous layer contains a polyvinylidene fluoride-based resin having a structural unit derived from a monomer represented by the following formula (1): The separator for non-aqueous secondary batteries according to .
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carboxy group, or a derivative of a carboxy group, and X is a single bond.
  • ⁇ 13> The non-aqueous secondary according to any one of ⁇ 1> to ⁇ 12>, wherein the entire polyvinylidene fluoride resin contained in the adhesive porous layer has an acid value of less than 3.0 mgKOH/g. Battery separator.
  • ⁇ 14> The non-aqueous two-layer according to any one of ⁇ 1> to ⁇ 13>, wherein the weight average molecular weight of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is 300,000 or more and less than 3,000,000. Separator for secondary batteries.
  • the ratio of structural units derived from hexafluoropropylene to all structural units is more than 3.5 mol% and 7.0 mol% or less, ⁇ 1 > to ⁇ 14>, the non-aqueous secondary battery separator according to any one of items.
  • ⁇ 17> The non-aqueous system according to any one of ⁇ 1> to ⁇ 16>, wherein the filler contains at least one selected from the group consisting of metal hydroxide particles, metal sulfate particles and barium titanate particles. Separator for secondary battery.
  • ⁇ 18> The nonaqueous secondary battery according to any one of ⁇ 1> to ⁇ 17>, wherein the average primary particle size of the entire filler contained in the adhesive porous layer is 0.01 ⁇ m to 1.5 ⁇ m.
  • a separator for ⁇ 19> A positive electrode, a negative electrode, and the non-aqueous secondary battery separator according to any one of ⁇ 1> to ⁇ 18> disposed between the positive electrode and the negative electrode, and a lithium ion A non-aqueous secondary battery that obtains an electromotive force by doping and dedoping.
  • the adhesion to the electrode by dry heat pressing and the adhesion to the electrode by wet heat pressing are excellent, the short circuit of the battery is unlikely to occur at high temperatures, and the capacity retention rate of the battery even after exposure to high temperatures
  • a non-aqueous secondary battery separator having a high
  • a numerical range indicated using “to” indicates a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • process includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
  • the multiple types of substances present in the composition it means the total amount of substance.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • MD Machine Direction
  • TD transverse direction
  • width direction width direction
  • each layer constituting the separator when the lamination relationship of each layer constituting the separator is expressed as “upper” and “lower”, the layer closer to the porous substrate is referred to as “lower”. A distant layer is referred to as "top”.
  • drying heat press performing heat press treatment with the separator impregnated with the electrolyte
  • drying heat press performing heat press treatment without impregnating the separator with the electrolyte
  • substitutional unit of the copolymer or resin is synonymous with the monomer unit.
  • solid volume the volume of the adhesive porous layer excluding the pores.
  • the non-aqueous secondary battery separator of the present disclosure (also simply referred to as "separator” in the present disclosure) includes a porous substrate and an adhesive porous layer provided on one or both sides of the porous substrate. .
  • the adhesive porous layer of the separator of the present disclosure contains a polyvinylidene fluoride resin and a filler.
  • a description of an adhesive porous layer in this disclosure is a description of an adhesive porous layer on each side of a porous substrate.
  • the separator of the present disclosure may have the adhesive porous layer of the present disclosure on at least one side of the porous substrate.
  • Embodiment examples of the separator of the present disclosure include the following form examples (1) to (3).
  • the separator of the present disclosure has a Gurley value of 50 seconds/100 mL to 200 seconds/100 mL.
  • the battery may short circuit at high temperatures.
  • the Gurley value of the separator is 50 seconds/100 mL or more, preferably 60 seconds/100 mL or more, more preferably 70 seconds/100 mL or more, and further preferably 80 seconds/100 mL or more. preferable. If the Gurley value of the separator exceeds 200 seconds/100 mL, the ion permeability is low, and the porous structure may be clogged when exposed to high temperatures, resulting in a decrease in battery capacity.
  • the Gurley value of the separator is 200 seconds/100 mL or less, preferably 180 seconds/100 mL or less, and 150 seconds. /100 mL or less is more preferable, and 130 seconds/100 mL or less is even more preferable.
  • the Gurley value of the separator of the present disclosure is measured according to JIS P8117:2009.
  • the method for controlling the Gurley value of the separator of the present disclosure is not particularly limited, it is preferably controlled by the Gurley value of the porous substrate.
  • the Gurley value of the porous substrate can be controlled by the porosity of the porous substrate. It can be controlled by the actual draw ratio.
  • the separator of the present disclosure has two or more endothermic peaks and/or exothermic peaks when differential scanning calorimetry (DSC) is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample. Two or more are observed. Two or more endothermic peaks and two or more exothermic peaks may be observed, and two or more of both may be observed. When two or more endothermic peaks are observed, the number of endothermic peaks may be two or three or more. When two or more exothermic peaks are observed, the number of exothermic peaks may be two or three or more.
  • the DSC curve with the heat flow as the vertical axis and the time or temperature as the horizontal axis has two or more endothermic peaks or two exothermic peaks.
  • polyvinylidene fluoride resin in which polymer chains move when heated at relatively low temperatures in other words, polyvinylidene fluoride resins in which polymer chains move easily
  • polymer chains move when heated at relatively high temperatures in other words, polyvinylidene fluoride resins in which polymer chains move easily
  • the adhesive porous layer contains a moving polyvinylidene fluoride resin (in other words, a polyvinylidene fluoride resin in which polymer chains are difficult to move).
  • the hot press or the heat press at a relatively low temperature is performed in a state where the polyvinylidene fluoride resin does not swell in the electrolytic solution.
  • the adhesive porous layer exhibits adhesiveness. Then, since the adhesive porous layer contains polyvinylidene fluoride-based resin in which polymer chains are difficult to move, heat pressing is performed in a state in which the polyvinylidene fluoride-based resin is swollen in the electrolytic solution, or heat pressing is performed at a relatively high temperature.
  • the separator of the present disclosure has excellent adhesion to the electrode by both dry heat pressing and wet heat pressing while maintaining the performance of the separator, and the battery capacity retention rate is high even after exposure to high temperatures. It is speculated that
  • the separator of the present disclosure preferably exhibits at least one of the following (a) to (d) from the viewpoint of achieving both adhesion to the electrode by hot pressing and maintenance of separator performance after hot pressing.
  • Methods for controlling the endothermic peak and exothermic peak of DSC for the polyvinylidene fluoride resin contained in the adhesive porous layer include, for example, the following (I) and (II).
  • the degree of crystallinity of the polyvinylidene fluoride-based resin contained in the adhesive porous layer is controlled by the heat conditions, the type or amount of filler, or the addition of the crystal control agent when forming the adhesive porous layer. .
  • the adhesive porous layer is peeled off from the separator, and the peeled adhesive porous layer is immersed in dimethylacetamide and heated to about 50° C. to obtain a resin solution in which a polyvinylidene fluoride resin is dissolved.
  • the resin solution is centrifuged with a centrifuge to sediment insoluble matter.
  • the speed of rotation of the centrifuge is set to a speed effective for sedimentation of insoluble matter, depending on the radius of the rotor.
  • the supernatant of the resin solution in which the insoluble matter has been precipitated is taken out, and centrifugation is repeated to remove the insoluble matter.
  • the resin solution from which the insoluble matter has been removed is dropped into water to solidify the polyvinylidene fluoride resin.
  • the coagulum is removed from the water and dried, and the dried solid is used as a sample. If the separator has an adhesive porous layer (or similar layer) on both sides, the adhesive porous layer (or similar layer) is peeled off one side at a time and each side is used as a separate sample.
  • DSC Differential Scanning Calorimetry
  • a DSC curve is drawn with temperature (° C.) on the horizontal axis and heat flow (W/g) on the vertical axis.
  • an exothermic peak is defined as an upward convex portion in the temperature range from 180°C to 60°C.
  • the temperature at the maximum point of the exothermic peak that is, the temperature at which the slope of the tangent line changes from negative to positive in the DSC curve of step 2 from high temperature to low temperature is taken as the exothermic peak temperature.
  • the downward convex portion in the temperature range from 60°C to 180°C is taken as the endothermic peak.
  • the endothermic peak temperature is defined as the temperature at the minimum point of the endothermic peak, that is, the temperature at which the slope of the tangent line changes from negative to positive in the DSC curve of step 3 from low temperature to high temperature.
  • porous base material and the adhesive porous layer of the separator of the present disclosure will be described below.
  • a porous substrate means a substrate having pores or voids inside.
  • substrates include microporous membranes; porous sheets such as non-woven fabrics and paper made of fibrous materials; composite porous membranes obtained by laminating one or more other porous layers on these microporous membranes or porous sheets. quality sheet; and the like.
  • a microporous membrane is preferable from the viewpoint of thinning and strength of the separator.
  • a microporous membrane means a membrane having a large number of micropores inside and having a structure in which the micropores are connected to allow gas or liquid to pass from one surface to the other surface.
  • an electrically insulating material is preferable, and either an organic material or an inorganic material may be used.
  • the porous substrate preferably contains a thermoplastic resin in order to impart a shutdown function to the porous substrate.
  • the shutdown function is a function of preventing the thermal runaway of the battery by blocking the movement of ions by closing the pores of the porous base material by dissolving the constituent materials when the temperature of the battery rises.
  • a thermoplastic resin having a melting point of less than 200°C is preferable.
  • thermoplastic resins include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; among others, polyolefins are preferred.
  • a microporous membrane containing polyolefin As the porous substrate, a microporous membrane containing polyolefin (referred to as "polyolefin microporous membrane” in the present disclosure) is preferable.
  • the polyolefin microporous membrane include polyolefin microporous membranes that are applied to conventional battery separators, and it is preferable to select one having sufficient mechanical properties and ion permeability from among these.
  • the polyolefin microporous membrane is preferably a microporous membrane containing polyethylene from the viewpoint of exhibiting a shutdown function, and the content of polyethylene is preferably 95% by mass or more with respect to the total mass of the polyolefin microporous membrane.
  • the polyolefin microporous membrane is preferably a microporous membrane containing polypropylene from the viewpoint of having heat resistance that does not easily break when exposed to high temperatures.
  • the polyolefin microporous membrane is preferably a polyolefin microporous membrane containing polyethylene and polypropylene from the viewpoint of having a shutdown function and heat resistance that does not easily break when exposed to high temperatures.
  • Polyolefin microporous membranes containing polyethylene and polypropylene include microporous membranes in which polyethylene and polypropylene are mixed in one layer.
  • the microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both shutdown function and heat resistance. From the viewpoint of achieving both shutdown function and heat resistance, a microporous polyolefin membrane having a laminated structure of two or more layers, at least one layer containing polyethylene and at least one layer containing polypropylene, is also preferable.
  • the polyolefin contained in the polyolefin microporous membrane is preferably polyolefin with a weight average molecular weight (Mw) of 100,000 to 5,000,000.
  • Mw weight average molecular weight
  • the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane.
  • the Mw of the polyolefin is 5,000,000 or less, the shutdown property of the microporous membrane is good, and the microporous membrane can be easily formed.
  • a molten polyolefin resin is extruded through a T-die to form a sheet, which is then crystallized, stretched, and then heat treated to form a microporous membrane.
  • a method in which a polyolefin resin melted together with a plasticizer is extruded through a T-die, cooled to form a sheet, stretched, the plasticizer is extracted, and a heat treatment is performed to form a microporous membrane.
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; porous sheets such as non-woven fabrics and paper made of fibrous substances such as cellulose;
  • a heat-resistant resin refers to a resin with a melting point of 200°C or higher, or a resin that does not have a melting point and has a decomposition temperature of 200°C or higher.
  • the heat-resistant resin in the present disclosure is a resin that does not melt or decompose in a temperature range of less than 200°C.
  • composite porous sheets include sheets in which a functional layer is laminated on a porous sheet made of a microporous membrane or fibrous material. Such a composite porous sheet is preferable from the viewpoint that further functions can be added by the functional layer.
  • a porous layer made of a heat-resistant resin and a porous layer made of a heat-resistant resin and an inorganic filler can be used as the functional layer.
  • the heat-resistant resin includes one or more heat-resistant resins selected from wholly aromatic polyamides, polyamideimides, polyimides, polyethersulfones, polysulfones, polyetherketones and polyetherimides.
  • inorganic fillers include metal oxides such as alumina; metal hydroxides such as magnesium hydroxide; and the like.
  • Composite methods include a method of coating a functional layer on a microporous membrane or porous sheet, a method of bonding a microporous membrane or porous sheet and a functional layer with an adhesive, and a method of bonding a microporous membrane or porous sheet A method of thermocompression bonding with the functional layer and the like can be mentioned.
  • Various surface treatments are applied to the surface of the porous substrate within a range that does not impair the properties of the porous substrate for the purpose of improving wettability with the coating liquid for forming the adhesive porous layer.
  • may Examples of surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the thickness of the porous substrate is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less, from the viewpoint of increasing the energy density of the battery, and is 3 ⁇ m or more from the viewpoint of separator production yield and battery production yield. is preferred, 5 ⁇ m or more is more preferred, and 8 ⁇ m or more is even more preferred.
  • the Gurley value (JIS P8117:2009) of the porous substrate is preferably 20 seconds/100 mL or more, more preferably 25 seconds/100 mL or more, and even more preferably 60 seconds/100 mL or more, from the viewpoint of suppressing short circuit of the battery. 65 seconds/100 mL or more is even more preferable.
  • the Gurley value (JIS P8117: 2009) of the porous substrate is determined from the viewpoint of ion permeability and the clogging of the porous structure at the boundary between the porous substrate and the adhesive porous layer when exposed to high temperatures. is preferably 220 seconds/100 mL or less, more preferably 200 seconds/100 mL or less, even more preferably 190 seconds/100 mL or less, and even more preferably 150 seconds/100 mL or less.
  • the porosity of the porous substrate is preferably 20% to 60% from the viewpoint of obtaining appropriate membrane resistance and shutdown function.
  • Ws is the basis weight (g/m 2 ) of the porous substrate
  • ds is the true density (g/cm 3 ) of the porous substrate
  • t is the thickness ( ⁇ m) of the porous substrate.
  • the basis weight is mass per unit area.
  • the average pore size of the porous substrate is preferably 15 nm to 100 nm from the viewpoint of ion permeability or prevention of short circuits in the battery.
  • the average pore size of the porous substrate is measured according to ASTM E1294-89 using a perm porometer (CFP-1500-A manufactured by PMI).
  • the adhesive porous layer has a large number of micropores inside and has a structure in which the micropores are connected, and is a layer through which gas or liquid can pass from one surface to the other surface.
  • the adhesive porous layer may be on only one side of the porous substrate or may be on both sides of the porous substrate.
  • the separator is less likely to curl, resulting in excellent handleability during battery production.
  • the adhesive porous layer is present only on one side of the porous substrate, the ion permeability of the separator is more excellent. Also, the thickness of the entire separator can be suppressed, and a battery with higher energy density can be manufactured.
  • the adhesive porous layer contains at least a polyvinylidene fluoride resin and a filler.
  • the adhesive porous layer may contain other resins than the polyvinylidene fluoride resin.
  • the filler contained in the adhesive porous layer may be either an inorganic filler or an organic filler.
  • the content of the polyvinylidene fluoride-based resin contained in the adhesive porous layer is preferably 85% to 100% by mass, more preferably 90% to 100% by mass, based on the total amount of all resins contained in the adhesive porous layer. %, more preferably 95% by mass to 100% by mass.
  • the type or amount of the polyvinylidene fluoride resin contained in one adhesive porous layer and the polyvinylidene fluoride contained in the other adhesive porous layer may be the same or different.
  • Polyvinylidene fluoride resins include, for example, homopolymers of vinylidene fluoride (that is, polyvinylidene fluoride); vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, copolymers with halogen-containing monomers such as trichlorethylene; copolymers with vinylidene fluoride and other monomers other than halogen-containing monomers; copolymers with monomers other than halogen monomers; mixtures thereof; Polyvinylidene fluoride-based resins may be used alone or in combination of two or more.
  • the polyvinylidene fluoride resin is preferably a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (VDF-HFP copolymer) from the viewpoint of adhesion to the electrode.
  • VDF-HFP copolymer includes both a copolymer obtained by polymerizing only VDF and HFP and a copolymer obtained by polymerizing VDF, HFP and other monomers.
  • the VDF-HFP copolymer can control the crystallinity, heat resistance, resistance to dissolution in the electrolyte, etc. of the copolymer within an appropriate range.
  • the proportion of HFP-derived structural units in all structural units is preferably more than 3.5 mol % and 7.0 mol % or less.
  • the proportion of structural units derived from HFP in all structural units of the entire polyvinylidene fluoride resin is more than 3.5 mol%, the polymer chains of the polyvinylidene fluoride resin easily move, and the polyvinylidene fluoride resin is added to the electrolytic solution.
  • the adhesiveness to the electrode is excellent even when hot pressing is performed in a state in which the adhesive is not swollen or even when hot pressing is performed at a relatively low temperature.
  • the proportion of HFP-derived structural units is more preferably over 4.0 mol %, and even more preferably over 4.5 mol %.
  • the ratio of structural units derived from HFP to the total structural units of the entire polyvinylidene fluoride resin is 7.0 mol % or less, the dissolution resistance to the electrolytic solution is excellent.
  • the proportion of HFP-derived structural units is more preferably 6.8 mol % or less, and even more preferably 6.5 mol % or less.
  • the polyvinylidene fluoride-based resin includes a polyvinylidene fluoride-based resin having a structural unit derived from a monomer represented by the following formula (1) (referred to as "polyvinylidene fluoride-based resin (1)" in the present disclosure). is preferred.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carboxy group, or a derivative of a carboxy group, and X is a single bond.
  • the halogen atoms represented by R 1 , R 2 and R 3 may be any of fluorine, chlorine, bromine and iodine atoms, preferably fluorine.
  • examples of alkyl groups having 1 to 5 carbon atoms represented by R 1 , R 2 and R 3 include straight-chain alkyl groups such as methyl group, ethyl group, n-propyl group, n -butyl group, n-pentyl group; branched alkyl groups such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group and tert-pentyl group;
  • the alkyl group having 1 to 5 carbon atoms for R 1 , R 2 and R 3 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • the carboxy group derivative represented by R 1 , R 2 and R 3 includes, for example, —C( ⁇ O)—OR 4 (R 4 represents an alkyl group).
  • R 4 represents an alkyl group.
  • R 4 include linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group and n-pentyl group; branched alkyl groups such as isopropyl group and isobutyl group.
  • R 4 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkylene group having 1 to 5 carbon atoms represented by X includes, for example, linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group and n-pentylene. group; branched alkylene group such as isopropylene group, isobutylene group, sec-butylene group, tert-butylene group, isopentylene group, neopentylene group and tert-pentylene group;
  • the alkylene group having 1 to 5 carbon atoms for X is preferably an alkylene group having 1 to 4 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • examples of the substituent in the alkylene group having 1 to 5 carbon atoms having a substituent represented by X include a halogen atom, which may be any of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. .
  • the substituted alkylene group having 1 to 5 carbon atoms in X includes, for example, a linear alkylene group such as a methylene group, an ethylene group, an n-propylene group, an n-butylene group, and an n-pentylene group; isopropylene group, isobutylene group, sec-butylene group, tert-butylene group, isopentylene group, neopentylene group and tert-pentylene group;
  • the substituted alkylene group having 1 to 5 carbon atoms in X is preferably an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms represented by Y includes, for example, linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group and n-pentyl. groups; branched alkyl groups such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group and tert-pentyl group;
  • the alkyl group having 1 to 5 carbon atoms in Y is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • the substituted alkyl group of 1 to 5 carbon atoms in the alkyl group of 1 to 5 carbon atoms substituted by at least one hydroxy group represented by Y is, for example, a linear alkyl group, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group; branched alkyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group;
  • the substituted alkyl group having 1 to 5 carbon atoms in Y is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • the number of hydroxy groups substituted is preferably one or two, more preferably one.
  • examples of the alkyl group having 1 to 5 carbon atoms substituted with at least one hydroxy group represented by Y include 2-hydroxyethyl group, 2-hydroxypropyl group and 4-hydroxybutyl group. be done.
  • the substituted alkyl group having 1 to 5 carbon atoms in the alkyl group having 1 to 5 carbon atoms substituted with at least one carboxy group represented by Y is, for example, a linear alkyl group, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group; branched alkyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group;
  • the substituted alkyl group having 1 to 5 carbon atoms in Y is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • the number of carboxyl groups substituted is preferably one or two, more preferably one.
  • examples of the alkyl group having 1 to 5 carbon atoms substituted with at least one carboxy group represented by Y include 2-carboxyethyl group, 2-carboxypropyl group and 4-carboxybutyl group. be done.
  • R represents an alkylene group having 1 to 5 carbon atoms
  • n is Represents an integer greater than or equal to 0.
  • R include linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group and n-pentylene group; branched alkylene groups such as isopropylene group and isobutylene group.
  • R is preferably an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • Examples of the monomer represented by formula (1) include, for example, R 1 , R 2 and R 3 each independently being a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X being a single bond, Examples include monomers in which Y is an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 3 carbon atoms substituted with at least one hydroxy group.
  • Examples of the monomer represented by formula (1) include acrylic monomers, unsaturated dibasic acids, monoesters of unsaturated dibasic acids, and the like.
  • acrylic monomers examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (meth) acrylic isobutyl acid, tert-butyl (meth)acrylate, pentyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, ( 2-carboxyethyl meth)acrylate, 2-carboxypropyl (meth)acrylate, 4-carboxybutyl (meth)acrylate, butenoic acid, pentenoic acid, hexenoic acid, (meth)acryloyloxyethyl succinic acid and the like. .
  • the notation "(meth)acryl” means that either "acryl” or "methacryl” may be used.
  • unsaturated dibasic acids examples include unsaturated dicarboxylic acids, more specifically maleic acid, maleic anhydride, citraconic acid, and itaconic acid.
  • monoesters of unsaturated dibasic acids include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, itaconic acid monomethyl ester, and itaconic acid monoethyl ester.
  • maleic acid monomethyl ester and citraconic acid monomethyl ester are preferable.
  • the ratio of structural units derived from the monomer represented by formula (1) to all structural units is preferably 0.005 mol% or more from the viewpoint of adhesion to the electrode, 0.01 mol % or more is more preferable, and 0.02 mol % or more is still more preferable.
  • the proportion of structural units derived from the monomer represented by formula (1) to all structural units is 3, from the viewpoint of low influence on the active material contained in the electrode. 0 mol % or less is preferable, 2.0 mol % or less is more preferable, and 1.0 mol % or less is even more preferable.
  • the polyvinylidene fluoride resin (1) may contain structural units derived from monomers other than vinylidene fluoride (VDF) and the monomer represented by formula (1).
  • Other monomers include halogen-containing monomers such as hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride and trichloroethylene.
  • the polyvinylidene fluoride resin (1) preferably contains structural units derived from hexafluoropropylene (HFP).
  • Polyvinylidene fluoride resin (1) can control the crystallinity of the resin, adhesion to electrodes, resistance to dissolution in electrolytic solution, etc. within a suitable range by increasing or decreasing the proportion of HFP in the total polymerization components.
  • the polyvinylidene fluoride resin (1) is preferably a terpolymer composed of VDF, HFP, and the monomer represented by formula (1).
  • a VDF-HFP-acrylic acid terpolymer is preferable.
  • the ratio of the polyvinylidene fluoride resin (1) to the entire polyvinylidene fluoride resin contained in the adhesive porous layer is from 20% by mass to 20% by mass from the viewpoint of keeping the acid value of the entire polyvinylidene fluoride resin in an appropriate range. 80% by mass is preferable, 30% by mass to 70% by mass is more preferable, and 40% by mass to 60% by mass is even more preferable.
  • the acid value (mgKOH/g) of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is preferably less than 3.0 and 2.9 or less from the viewpoint of low influence on the active material contained in the electrode. is more preferable, and 2.8 or less is even more preferable.
  • the acid value (mgKOH/g) of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is preferably 0.5 or more, more preferably 0.8 or more, and 1.0 from the viewpoint of adhesion to the electrode. The above is more preferable.
  • the acid value (mgKOH/g) of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is obtained by extracting the polyvinylidene fluoride resin contained in the adhesive porous layer and measuring the acid value by potentiometric titration (JIS K1557-5: 2007).
  • the acid value (mgKOH/g) of the polyvinylidene fluoride resin used for forming the adhesive porous layer is obtained by measuring it by potentiometric titration (JIS K1557-5:2007).
  • the weight-average molecular weight (Mw) of the entire polyvinylidene fluoride-based resin contained in the adhesive porous layer is such that the pores of the adhesive porous layer are blocked when heat is applied to the adhesive porous layer during battery production. From the viewpoint of less occurrence, it is preferably 300,000 or more, more preferably 500,000 or more, even more preferably 650,000 or more, and even more preferably 850,000 or more.
  • the Mw of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is such that the polyvinylidene fluoride resin is moderately softened when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode are preferably less than 3,000,000, more preferably less than 2,500,000, still more preferably less than 2,300,000, and even more preferably less than 2,000,000 from the viewpoint of good adhesion between the electrode and the electrode.
  • the Mw of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is the polystyrene-equivalent molecular weight measured by Gel Permeation Chromatography (GPC).
  • GPC Gel Permeation Chromatography
  • the adhesive porous layer is made of the polyvinylidene fluoride resin described below.
  • X and polyvinylidene fluoride resin Y are included.
  • the total amount of polyvinylidene fluoride resin X and polyvinylidene fluoride resin Y contained in the adhesive porous layer is 85% by mass to 100% with respect to the entire polyvinylidene fluoride resin contained in the adhesive porous layer. % by mass is preferable, 90% by mass to 100% by mass is more preferable, and 95% by mass to 100% by mass is even more preferable.
  • Polyvinylidene fluoride resin X contains structural units derived from vinylidene fluoride (VDF) and structural units derived from hexafluoropropylene (HFP), and the ratio of structural units derived from HFP to all structural units is more than 3.5 mol%. It is 15 mol % or less, has a weight average molecular weight (Mw) of 100,000 or more and less than 1,000,000, and has a melting point of 125°C or more and less than 150°C.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • the proportion of structural units derived from HFP in all the structural units is more than 3.5 mol% from the viewpoint that the polymer chains of the resin easily move by heat pressing and are excellent in adhesion to the electrode. , preferably more than 4.0 mol %, more preferably more than 4.5 mol %, even more preferably more than 5.0 mol %.
  • the ratio of structural units derived from HFP to all structural units is 15 mol% or less, preferably 12 mol% or less, and more preferably 10 mol% or less, because it has excellent resistance to dissolution in an electrolytic solution. , 8.0 mol % or less is more preferable.
  • the Mw of the polyvinylidene fluoride resin X is 100,000 or more, and 150,000 or more, from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. More than 200,000 is preferable, 200,000 or more are more preferable, and 250,000 or more are still more preferable.
  • the Mw of the polyvinylidene fluoride resin X is 1,000,000 from the viewpoint that the resin softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. is less than, preferably less than 900,000, more preferably less than 600,000, and even more preferably less than 400,000.
  • the Mw of the polyvinylidene fluoride resin X is the polystyrene-equivalent molecular weight measured by GPC.
  • a polyvinylidene fluoride resin X used for forming an adhesive porous layer is used as a sample.
  • the melting point of the polyvinylidene fluoride resin X is 125° C. or higher, and 128° C., from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. above is preferable, and 130° C. or more is more preferable.
  • the melting point of the polyvinylidene fluoride-based resin X is 150° C. from the viewpoint that the resin softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. less than, preferably less than 145°C, more preferably less than 140°C.
  • the melting point of the polyvinylidene fluoride-based resin X is determined from a DSC curve obtained by performing Differential Scanning Calorimetry (DSC).
  • DSC Differential Scanning Calorimetry
  • a polyvinylidene fluoride resin X used for forming an adhesive porous layer is used as a sample.
  • a sample is placed in an aluminum sample pan, set in a measuring device, and subjected to thermal analysis by successively performing the following three steps in a nitrogen atmosphere.
  • Step 1 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
  • Step 2 Lower the temperature from 200°C to 30°C at a rate of 5°C/min.
  • Step 3 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
  • the temperature of the endothermic peak appearing on the DSC curve in step 3 be the melting point of the polyvinylidene fluoride resin X.
  • the temperature of the endothermic peak on the lowest temperature side is taken as the melting point.
  • polyvinylidene fluoride-based resin X As a preferred form of polyvinylidene fluoride-based resin X, the proportion of HFP-derived structural units in all structural units is more than 5.0 mol% and 15 mol% or less, Mw is 300,000 or more and less than 1,000,000, and the melting point is 125 ° C. A form in which the temperature is not less than 140°C is mentioned.
  • Polyvinylidene fluoride resin Y contains structural units derived from vinylidene fluoride (VDF), may contain structural units derived from hexafluoropropylene (HFP), and the ratio of structural units derived from HFP to all structural units is 0 mol% or more and 3.5 mol% or less, the weight average molecular weight (Mw) is 1 million or more and less than 3 million, and the melting point is 150°C or more and less than 180°C.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • Mw weight average molecular weight
  • the ratio of structural units derived from HFP to all structural units is 3.5 mol % or less, preferably 3.0 mol % or less, because of its excellent resistance to dissolution in the electrolytic solution. 5 mol % or less is more preferable, and 2.0 mol % or less is even more preferable.
  • the ratio of structural units derived from HFP to all structural units is preferably more than 0 mol%, from the viewpoint of excellent adhesion to electrodes due to easy movement of polymer chains of the resin by hot pressing. 0.2 mol % or more is more preferable, 0.5 mol % or more is still more preferable, and 0.7 mol % or more is still more preferable.
  • the Mw of the polyvinylidene fluoride resin Y is 1,000,000 or more, and 1,200,000, from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. 1,500,000 or more are more preferable, and 1,600,000 or more are still more preferable.
  • the Mw of the polyvinylidene fluoride resin Y is selected from the viewpoint that the resin moderately softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. It is less than 3 million, preferably less than 2.5 million, more preferably less than 2.3 million, and even more preferably less than 2 million.
  • the Mw of the polyvinylidene fluoride resin Y is the polystyrene-equivalent molecular weight measured by GPC.
  • a polyvinylidene fluoride resin Y used for forming an adhesive porous layer is used as a sample.
  • the melting point of the polyvinylidene fluoride-based resin Y is 150° C. or higher, preferably 155° C., from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. 160° C. or higher is more preferable.
  • the melting point of the polyvinylidene fluoride resin Y is determined from the viewpoint that the resin moderately softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. It is less than 180°C, preferably less than 175°C, more preferably less than 170°C.
  • the melting point of the polyvinylidene fluoride resin Y is obtained from a DSC curve obtained by performing differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • a polyvinylidene fluoride resin Y used for forming an adhesive porous layer is used as a sample.
  • a sample is placed in an aluminum sample pan, set in a measuring device, and subjected to thermal analysis by successively performing the following three steps in a nitrogen atmosphere.
  • Step 1 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
  • Step 2 Lower the temperature from 200°C to 30°C at a rate of 5°C/min.
  • Step 3 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
  • the temperature of the endothermic peak appearing on the DSC curve in step 3 be the melting point of the polyvinylidene fluoride resin Y.
  • the temperature of the endothermic peak on the lowest temperature side is taken as the melting point.
  • the ratio of structural units derived from HFP to all structural units is 0 mol% or more (preferably more than 0 mol%, more preferably 0.2 mol% or more) and 2.0 mol% or less. , Mw of 1,500,000 or more and less than 2,000,000, and a melting point of 150°C or more and less than 170°C.
  • the polyvinylidene fluoride-based resin Y is preferably a polyvinylidene fluoride-based resin having structural units derived from the monomer represented by the formula (1). That is, the polyvinylidene fluoride resin Y is preferably polyvinylidene fluoride resin (1). That is, the polyvinylidene fluoride resin Y is preferably a terpolymer composed of VDF, HFP, and the monomer represented by formula (1). As the terpolymer, a VDF-HFP-acrylic acid terpolymer is preferred.
  • the proportion of structural units derived from the monomer represented by formula (1) in all structural units is preferably 0.05 mol % or more, and 0.05 mol % or more, from the viewpoint of adhesion to electrodes. 08 mol % or more is more preferable, and 0.1 mol % or more is even more preferable.
  • the ratio of structural units derived from the monomer represented by formula (1) to all structural units is 5.0 mol from the viewpoint of low influence on the active material contained in the electrode. % or less, more preferably 4.0 mol % or less, and even more preferably 3.0 mol % or less.
  • the mass ratio of the polyvinylidene fluoride resin X and the polyvinylidene fluoride resin Y contained in the adhesive porous layer is determined by the endothermic peak temperature and heat generation in the DSC curve of the polyvinylidene fluoride resin contained in the adhesive porous layer. From the viewpoint of controlling the peak temperature within a desired range, the ratio of polyvinylidene fluoride resin X: polyvinylidene fluoride resin Y is preferably 20:80 to 80:20, preferably 30:70 to 70:30. It is more preferably 35:65 to 65:35, even more preferably 40:60 to 60:40.
  • the difference between the melting point of the polyvinylidene fluoride-based resin X and the melting point of the polyvinylidene fluoride-based resin Y contained in the adhesive porous layer is the adhesiveness with the electrode by dry heat press and wet heat press, and after exposure to high temperature.
  • the temperature is preferably 25 ° C. or higher, more preferably 27 ° C. or higher, further preferably 28 ° C. or higher, and 29 ° C. or higher. is even more preferred.
  • the difference between the melting point of the polyvinylidene fluoride resin X and the melting point of the polyvinylidene fluoride resin Y contained in the adhesive porous layer is 55 from the viewpoint of forming a highly uniform porous structure for the adhesive porous layer.
  • C. more preferably less than 50.degree. C., still more preferably less than 45.degree. C., even more preferably less than 40.degree.
  • the adhesive porous layer may contain resins other than the polyvinylidene fluoride resin.
  • resins include, for example, acrylic resins, fluororubbers, styrene-butadiene copolymers, homopolymers or copolymers of vinyl nitrile compounds (acrylonitrile, methacrylonitrile, etc.), carboxymethylcellulose, hydroxyalkylcellulose, Polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyether (polyethylene oxide, polypropylene oxide, etc.), polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polysulfone, polyketone, polyetherketone, polyethersulfone, polyetherimide, and these A mixture of
  • the content of other resins other than the polyvinylidene fluoride resin contained in the adhesive porous layer is preferably 0% by mass to 15% by mass with respect to the total amount of all resins contained in the adhesive porous layer. % to 10% by mass is more preferred, and 0% to 5% by mass is even more preferred.
  • inorganic filler examples include metal hydroxide particles, metal sulfate particles, metal oxide particles, metal carbonate particles, metal nitride particles, metal fluoride particles, and clay mineral particles.
  • An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
  • metal hydroxides that make up metal hydroxide particles include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, and nickel hydroxide.
  • metal sulfates that make up metal sulfate particles include barium sulfate, strontium sulfate, calcium sulfate, calcium sulfate dihydrate, alum, and jarosite.
  • Metal oxides constituting the metal oxide particles include, for example, barium titanate (BaTiO 3 ), magnesium oxide, alumina (Al 2 O 3 ), boehmite (alumina monohydrate), titania (TiO 2 ), and silica. (SiO 2 ), zirconia (ZrO 2 ), and zinc oxide.
  • metal carbonates that make up the metal carbonate particles include calcium carbonate and magnesium carbonate.
  • metal nitrides that make up the metal nitride particles include magnesium nitride, aluminum nitride, calcium nitride, and titanium nitride.
  • metal fluorides that make up the metal fluoride particles include magnesium fluoride and calcium fluoride.
  • clay minerals that make up clay mineral particles include calcium silicate, calcium phosphate, apatite, and talc.
  • the inorganic filler may be an inorganic filler surface-modified with a silane coupling agent or the like.
  • the inorganic filler at least one selected from the group consisting of metal hydroxide particles, metal sulfate particles, and barium titanate particles is used from the viewpoint of not easily decomposing the electrolytic solution or electrolyte and, therefore, not easily generating gas. preferable.
  • the total amount of metal hydroxide particles, metal sulfate particles, and barium titanate particles in the inorganic filler contained in the adhesive porous layer is preferably 80% by mass or more, and 85% by mass. % or more, more preferably 90 mass % or more, even more preferably 95 mass % or more, and most preferably 100 mass %.
  • the type of inorganic filler contained in one adhesive porous layer and the type of inorganic filler contained in the other adhesive porous layer are the same. But they may well be different.
  • the particle shape of the inorganic filler is not limited, and may be spherical, plate-like, acicular, or irregular.
  • the inorganic filler is preferably spherical or plate-like particles from the viewpoint of suppressing the short circuit of the battery or from the viewpoint of forming a highly uniform adhesive porous layer.
  • the average primary particle size of the entire inorganic filler contained in the adhesive porous layer is preferably 1.5 ⁇ m or less, more preferably 1.2 ⁇ m or less, and 1.0 ⁇ m or less from the viewpoint of increasing the heat resistance of the adhesive porous layer. is more preferred.
  • the average primary particle size of the entire inorganic filler contained in the adhesive porous layer is preferably 0.01 ⁇ m or more, and 0.01 ⁇ m or more, from the viewpoint of suppressing aggregation of the inorganic fillers and forming a highly uniform adhesive porous layer. 1 ⁇ m or more is more preferable, and 0.5 ⁇ m or more is even more preferable.
  • the average primary particle size of the entire inorganic filler contained in the adhesive porous layer is obtained by measuring the major diameters of 100 randomly selected inorganic fillers in observation with a scanning electron microscope (SEM), and averaging the major diameters of 100. Ask for it.
  • SEM scanning electron microscope
  • the sample subjected to SEM observation is the inorganic filler that is the material forming the adhesive porous layer, or the inorganic filler taken out from the adhesive porous layer of the separator. There are no restrictions on the method of removing the inorganic filler from the adhesive porous layer of the separator.
  • the method includes, for example, a method in which the adhesive porous layer peeled off from the separator is immersed in an organic solvent that dissolves the resin to dissolve the resin in the organic solvent to take out the inorganic filler; A method of heating to about 800° C. to disappear the resin and take out the inorganic filler;
  • the average primary particle size of the inorganic filler in one adhesive porous layer and the average primary particle size of the inorganic filler in the other adhesive porous layer? may be the same or different.
  • the ratio of the inorganic filler to the solid content volume of the adhesive porous layer is preferably 30% by volume or more, more preferably 35% by volume or more, still more preferably 40% by volume or more, from the viewpoint of heat resistance of the separator, and 45% by volume. % or more is even more preferable.
  • the ratio of the inorganic filler to the solid content volume of the adhesive porous layer is preferably 67 vol% or less, more preferably 66 vol% or less, from the viewpoint that the adhesive porous layer is difficult to peel off from the porous substrate, and 65 vol. % or less is more preferable, and 63 volume % or less is even more preferable.
  • the ratio V (% by volume) of the inorganic filler to the solid content volume of the adhesive porous layer is determined by the following formula.
  • V ⁇ (Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+...+Xn/Dn) ⁇ 100
  • the inorganic filler is a
  • the other constituent materials are b, c, . are Xa, Xb, Xc , . Xa etc. to be substituted in the above formula is the mass (g) of the constituent material used to form the adhesive porous layer with a predetermined area, or the mass (g) of the constituent material taken out from the adhesive porous layer with a predetermined area ).
  • Da etc. to be substituted in the above formula is the true density (g/cm 3 ) of the constituent material used to form the adhesive porous layer, or the true density (g/cm 3 ) of the constituent material taken out from the adhesive porous layer. cm 3 ).
  • the volume ratio of the inorganic filler to the solid content volume of one adhesive porous layer and the inorganic filler to the solid content volume of the other adhesive porous layer may be the same or different.
  • the ratio of the inorganic filler to the total amount of the filler contained in the adhesive porous layer is preferably 90% by mass or more, more preferably 95% by mass or more, from the viewpoint of the heat resistance of the separator. is more preferable, and 100% by mass is even more preferable.
  • organic fillers include crosslinked poly(meth)acrylic acid, crosslinked poly(meth)acrylate, crosslinked polysilicone, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, and melamine resin. , phenolic resin, benzoguanamine-formaldehyde condensate, and other crosslinked polymer particles; polysulfone, polyacrylonitrile, aramid, polyacetal, thermoplastic polyimide, and other heat-resistant polymer particles; The notation "(meth)acryl” means that either "acryl” or "methacryl” may be used.
  • the resin that constitutes the organic filler is a mixture, modified product, derivative, copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) or crosslinked product of the above exemplified materials.
  • the organic fillers may be used singly or in combination of two or more.
  • the ratio of the entire filler to the solid content volume of the adhesive porous layer is preferably 30% by volume or more, and 35% by volume or more. is more preferable, 40% by volume or more is even more preferable, and 45% by volume or more is even more preferable.
  • the ratio of the entire filler to the solid content volume of the adhesive porous layer is preferably 90% by volume or less, more preferably 85% by volume or less, more preferably 80% by volume, from the viewpoint that the adhesive porous layer is difficult to peel off from the porous substrate. % or less is more preferable, and 75 volume % or less is even more preferable.
  • the ratio V (% by volume) of the entire filler to the solid content volume of the adhesive porous layer is determined by the following formula.
  • V ⁇ (Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+...+Xn/Dn) ⁇ 100
  • the filler is a
  • the other constituent materials are b, c, . . . , n.
  • Xa, Xb, Xc, . . . , Xn (g) are the masses, and Da, Db, Dc, . Xa etc.
  • the mass (g) of the constituent material used to form the adhesive porous layer with a predetermined area is the mass (g) of the constituent material taken out from the adhesive porous layer with a predetermined area ).
  • Da etc. to be substituted in the above formula is the true density (g/cm 3 ) of the constituent material used to form the adhesive porous layer, or the true density (g/cm 3 ) of the constituent material taken out from the adhesive porous layer. cm 3 ).
  • the adhesive porous layer may contain additives such as a dispersant such as a surfactant, a wetting agent, an antifoaming agent, and a pH adjuster.
  • a dispersant is added to a coating liquid for forming an adhesive porous layer for the purpose of improving dispersibility, coatability or storage stability.
  • Wetting agents, antifoaming agents, and pH adjusters are added to the coating liquid for forming the adhesive porous layer, for example, for the purpose of improving compatibility with the porous substrate and preventing air entrainment into the coating liquid. It is added for the purpose of suppression or for the purpose of pH adjustment.
  • the thickness of the adhesive porous layer is preferably 0.5 ⁇ m or more on one side, more preferably 1.0 ⁇ m or more on one side, even more preferably 1.5 ⁇ m or more on one side, from the viewpoint of adhesion to electrodes or handling properties. And from the viewpoint of the energy density of the battery, it is preferably 10.0 ⁇ m or less on one side, more preferably 8.0 ⁇ m or less on one side, and even more preferably 6.0 ⁇ m or less on one side.
  • the thickness of the adhesive porous layer is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and 3.0 ⁇ m or more as the total thickness of both surfaces when the adhesive porous layer is on both sides of the porous substrate. is more preferably 20.0 ⁇ m or less, more preferably 16.0 ⁇ m or less, and even more preferably 12.0 ⁇ m or less.
  • the mass per unit area of the adhesive porous layer is the total of both sides from the viewpoint of adhesion to the electrode or handling.
  • 1.0 g/m 2 or more is preferable, 2.0 g/m 2 or more is more preferable, and 3.0 g/m 2 or more is even more preferable.
  • 0 g/m 2 or less is preferable, 20.0 g/m 2 or less is more preferable, and 10.0 g/m 2 or less is even more preferable.
  • the difference between the mass per unit area of one adhesive porous layer and the mass per unit area of the other adhesive porous layer is preferably as small as possible from the viewpoint of suppressing curling of the separator or improving the cycle characteristics of the battery, and is preferably 20% or less of the total amount (g/m 2 ) of both surfaces.
  • the porosity of the adhesive porous layer is preferably 30% or more, more preferably 35% or more, and even more preferably 40% or more. From the viewpoint of adhesiveness, it is preferably 70% or less, more preferably 65% or less, and even more preferably 60% or less.
  • the porosity ⁇ (%) of the adhesive porous layer is determined by the following formula.
  • the average pore size of the adhesive porous layer is preferably 10 nm to 200 nm.
  • the average pore size is 10 nm or more, when the adhesive porous layer is impregnated with an electrolytic solution, the pores are less likely to be clogged even if the resin contained in the adhesive porous layer swells.
  • the average pore size is 200 nm or less, the uniformity of ion migration in the adhesive porous layer is high, and the cycle characteristics and load characteristics of the battery are excellent.
  • d is the average pore size (diameter) of the adhesive porous layer
  • V is the pore volume per 1 m2 of the adhesive porous layer
  • S is the pore surface area per 1 m2 of the adhesive porous layer.
  • the pore volume V per 1 m 2 of the adhesive porous layer is calculated from the porosity of the adhesive porous layer.
  • the pore surface area S per 1 m 2 of the adhesive porous layer is obtained by the following method.
  • the specific surface area (m 2 /g) of the porous substrate and the specific surface area (m 2 /g) of the separator are calculated from the nitrogen gas adsorption amount by applying the BET formula to the nitrogen gas adsorption method. These specific surface areas (m 2 /g) are multiplied by each basis weight (g/m 2 ) to calculate the pore surface area per 1 m 2 of each. Then, the pore surface area per 1 m 2 of the porous substrate is subtracted from the pore surface area per 1 m 2 of the separator to calculate the pore surface area S per 1 m 2 of the adhesive porous layer.
  • the basis weight is mass per unit area.
  • the thickness of the separator is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 12 ⁇ m or more, from the viewpoint of the mechanical strength of the separator, and preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less from the viewpoint of the energy density of the battery. , 20 ⁇ m or less is more preferable.
  • the film resistance of the separator is preferably 1 ⁇ cm 2 to 10 ⁇ cm 2 from the viewpoint of battery load characteristics.
  • the membrane resistance of the separator is the resistance value when the separator is impregnated with an electrolytic solution. It is a value measured by the AC method at °C. The lower the membrane resistance value of the separator, the better the ion permeability of the separator.
  • the separator of the present disclosure can be produced, for example, by forming an adhesive porous layer on a porous substrate by a wet coating method or a dry coating method.
  • the wet coating method is a method of solidifying the coating layer in a coagulating liquid
  • the dry coating method is a method of drying and solidifying the coating layer. An embodiment of the wet coating method will be described below.
  • a coating solution containing a polyvinylidene fluoride resin and a filler is applied onto a porous substrate, immersed in a coagulating solution to solidify the coating layer, then lifted out of the coagulating solution, washed with water, and dried. is the way to do it.
  • the coating liquid for forming the adhesive porous layer is prepared by dissolving or dispersing the polyvinylidene fluoride resin and filler in a solvent. Components other than the polyvinylidene fluoride resin and the filler are dissolved or dispersed in the coating liquid, if necessary.
  • the solvent used to prepare the coating liquid includes a solvent that dissolves the polyvinylidene fluoride resin (hereinafter also referred to as "good solvent”).
  • Good solvents include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide and dimethylformamide.
  • the solvent used for preparing the coating liquid may contain a phase separation agent that induces phase separation from the viewpoint of forming a porous layer having a favorable porous structure. Therefore, the solvent used for preparing the coating liquid may be a mixed solvent of a good solvent and a phase separation agent.
  • the phase separation agent is preferably mixed with a good solvent in an amount within a range where a suitable viscosity for coating can be secured.
  • Phase separation agents include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol and the like.
  • the solvent used for preparing the coating liquid is a mixed solvent of a good solvent and a phase separation agent, from the viewpoint of forming a good porous structure, it contains 60% by mass or more of the good solvent and 5% by mass of the phase separation agent.
  • a mixed solvent containing up to 40% by mass is preferred.
  • the resin concentration of the coating liquid is preferably 1% by mass to 20% by mass.
  • the filler concentration of the coating liquid is preferably 0.5% by mass to 50% by mass from the viewpoint of forming a good porous structure.
  • the coating liquid may contain a dispersing agent such as a surfactant, a wetting agent, an antifoaming agent, a pH adjuster, and the like. These additives may remain in the adhesive porous layer as long as they are electrochemically stable within the range of use of the non-aqueous secondary battery and do not inhibit the reactions within the battery.
  • a dispersing agent such as a surfactant, a wetting agent, an antifoaming agent, a pH adjuster, and the like.
  • Meyer bars, die coaters, reverse roll coaters, roll coaters, gravure coaters, etc. can be used as means for applying the coating liquid to the porous substrate.
  • the adhesive porous layers are formed on both surfaces of the porous substrate, it is preferable from the viewpoint of productivity to apply the coating liquid to both surfaces of the porous substrate at the same time.
  • the coating layer is solidified by immersing the porous substrate on which the coating layer is formed in a coagulating liquid and solidifying the polyvinylidene fluoride resin while inducing phase separation in the coating layer. Thereby, a laminate comprising the porous substrate and the adhesive porous layer is obtained.
  • the coagulating liquid generally contains the good solvent and phase separation agent used to prepare the coating liquid, and water.
  • the mixing ratio of the good solvent and the phase separation agent is preferably adjusted to the mixing ratio of the mixed solvent used for preparing the coating liquid from the viewpoint of production.
  • the content of water in the coagulation liquid is preferably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
  • the temperature of the coagulating liquid is, for example, 20°C to 50°C.
  • the laminate After solidifying the coating layer in the coagulating liquid, the laminate is lifted out of the coagulating liquid and washed with water.
  • the coagulating liquid is removed from the laminate by washing with water. Furthermore, drying removes water from the laminate. Washing with water is performed, for example, by transporting the laminate in a water bath. Drying is carried out, for example, by conveying the laminate in a high-temperature environment, blowing the laminate with air, or contacting the laminate with heat rolls.
  • the drying temperature is preferably 40°C to 80°C.
  • the separator of the present disclosure can also be produced by a dry coating method.
  • the dry coating method is a method of forming an adhesive porous layer on a porous substrate by applying a coating liquid to the porous substrate and drying the coating layer to volatilize and remove the solvent. .
  • the separator of the present disclosure can also be produced by a method in which an adhesive porous layer is produced as an independent sheet, this adhesive porous layer is laminated on a porous base material, and combined by thermocompression bonding or an adhesive.
  • Examples of the method for producing the adhesive porous layer as an independent sheet include a method of forming the adhesive porous layer on a release sheet by applying the wet coating method or dry coating method described above.
  • the nonaqueous secondary battery of the present disclosure is a nonaqueous secondary battery that obtains an electromotive force by doping and dedoping lithium ions, and includes a positive electrode, a negative electrode, and the nonaqueous secondary battery separator of the present disclosure.
  • Doping means occluded, supported, adsorbed, or inserted, and means a phenomenon in which lithium ions enter an active material of an electrode such as a positive electrode.
  • the non-aqueous secondary battery of the present disclosure has, for example, a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is enclosed in an exterior material together with an electrolytic solution.
  • the nonaqueous secondary battery of the present disclosure is suitable for nonaqueous electrolyte secondary batteries, particularly lithium ion secondary batteries.
  • Examples of embodiments of the positive electrode include a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive aid.
  • Examples of the positive electrode active material include lithium - containing transition metal oxides . 3 O 2 , LiMn 2 O 4 , LiFePO 4 , LiCo 1/2 Ni 1/2 O 2 , LiAl 1/4 Ni 3/4 O 2 and the like.
  • Examples of binder resins include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • Examples of conductive aids include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • Examples of current collectors include aluminum foil, titanium foil, stainless steel foil, etc., having a thickness of 5 ⁇ m to 20 ⁇ m.
  • An embodiment of the negative electrode includes a structure in which an active material layer containing a negative electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive aid.
  • the negative electrode active material include materials capable of electrochemically absorbing lithium ions, and specific examples thereof include carbon materials; alloys of silicon, tin, aluminum, etc. with lithium; Wood alloys;
  • binder resins include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • Examples of conductive aids include carbon materials such as acetylene black, ketjen black, graphite powder, and ultrafine carbon fibers.
  • Examples of current collectors include copper foil, nickel foil, stainless steel foil, etc., having a thickness of 5 ⁇ m to 20 ⁇ m.
  • a metallic lithium foil may be used as the negative electrode.
  • the electrolytic solution is a solution of lithium salt dissolved in a non-aqueous solvent.
  • Lithium salts include, for example, LiPF 6 , LiBF 4 , LiClO 4 and the like.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and fluorine-substituted products thereof; Cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; and the like, and these may be used alone or in combination.
  • a cyclic carbonate and a chain carbonate are mixed at a mass ratio (cyclic carbonate: chain carbonate) of 20:80 to 40:60, and a lithium salt is added in a range of 0.5 mol / L to 1.5 mol / L. is preferred.
  • Exterior materials include metal cans and aluminum laminate film packs. Batteries may be rectangular, cylindrical, coin-shaped, or the like, and the separator of the present disclosure is suitable for any shape.
  • the laminate After the laminate is dry-heat-pressed to adhere the electrodes and the separator, it is housed in an exterior material (for example, an aluminum laminate film pack; the same shall apply hereinafter), the electrolytic solution is injected therein, and the interior of the exterior material is evacuated. After the state, the laminate is further wet-heat-pressed from above the exterior material to bond the electrodes and the separator and to seal the exterior material.
  • an exterior material for example, an aluminum laminate film pack; the same shall apply hereinafter
  • the laminated body is housed in an exterior material, an electrolytic solution is injected therein, and the interior of the exterior material is evacuated. Then, the laminate is wet-heat-pressed from above the exterior material to bond the electrode and the separator. , and sealing of the exterior material.
  • the laminate After the laminate is dry-heat-pressed to adhere the electrodes and the separator, it is housed in an exterior material, an electrolytic solution is injected therein, and the interior of the exterior material is evacuated, and then the exterior material is sealed. conduct.
  • the wet heat press conditions in the above manufacturing method are preferably a press temperature of 70°C to 110°C and a press pressure of 0.5 MPa to 2 MPa.
  • the pressing temperature is preferably 20° C. to 100° C.
  • the pressing pressure is preferably 0.5 MPa to 9 MPa.
  • the pressing time is preferably adjusted according to the pressing temperature and pressing pressure, and is adjusted, for example, within the range of 0.5 minutes to 60 minutes.
  • the method of placing the separator between the positive electrode and the negative electrode is a method of laminating at least one layer each of the positive electrode, the separator, and the negative electrode in this order (so-called stack method), or a method in which the positive electrode, the separator, the negative electrode, and the separator are stacked in this order and wound in the length direction.
  • the separator and the non-aqueous secondary battery of the present disclosure will be more specifically described below with reference to examples. Materials, usage amounts, proportions, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present disclosure. Therefore, the scope of the separator and the non-aqueous secondary battery of the present disclosure should not be construed to be limited by the specific examples shown below.
  • the thickness ( ⁇ m) of the polyethylene microporous membrane was obtained by measuring 20 points in a 10 cm square with a contact thickness gauge (MITUTOYO Co., Ltd., LITEMATIC VL-50S) and averaging the measured values. A cylindrical terminal with a diameter of 5 mm was used as a measuring terminal, and was adjusted so that a load of 7 g was applied during measurement.
  • a contact thickness gauge MITUTOYO Co., Ltd., LITEMATIC VL-50S
  • Ws is the basis weight (g/m 2 ) of the polyethylene microporous membrane
  • ds is the true density (g/cm 3 ) of the polyethylene microporous membrane
  • t is the thickness ( ⁇ m) of the polyethylene microporous membrane.
  • Gurley value of polyethylene microporous membrane and separator The Gurley value (sec/100 mL) of the polyethylene microporous membrane and the separator was measured using a Gurley densometer (Toyo Seiki Co., Ltd., G-B2C) according to JIS P8117:2009.
  • the polyvinylidene fluoride resin used for forming the adhesive porous layer was used as a sample, and the molecular weight was measured by GPC.
  • Molecular weight measurement by GPC uses a GPC device GPC-900 manufactured by JASCO Corporation, uses two TSKgel SUPER AWM-H manufactured by Tosoh Corporation as a column, uses N,N-dimethylformamide as a solvent, and performs the measurement at a temperature of 40°C. Measurement was performed at a flow rate of 0.6 mL/min to obtain a polystyrene equivalent molecular weight.
  • [Melting point of polyvinylidene fluoride resin] A polyvinylidene fluoride resin used for forming the adhesive porous layer was used as a sample, and differential scanning calorimetry was performed to determine the melting point. As a measuring device, trade name: DSC Q20 (TA Instruments) was used.
  • the acid value (mgKOH/g) was measured by potentiometric titration (JIS K1557-5:2007) using the polyvinylidene fluoride resin used for forming the adhesive porous layer as a sample.
  • An inorganic filler used for forming an adhesive porous layer was used as a sample and subjected to SEM observation to determine the average primary particle size.
  • the ratio V (% by volume) of the inorganic filler to the solid content volume of the adhesive porous layer was determined by the following formula.
  • V ⁇ (Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+...+Xn/Dn) ⁇ 100
  • the inorganic filler is a
  • the other constituent materials are b, c, . are Xa, Xb, Xc , .
  • Xa and the like to be substituted in the above formula are the mass (g) of the constituent material used to form the adhesive porous layer having a predetermined area.
  • Da and the like substituted into the above formulas are the true densities (g/cm 3 ) of the constituent materials used to form the adhesive porous layer.
  • the supernatant of the resin solution in which the insoluble matter had settled was taken out, and centrifugation was repeated to remove the insoluble matter.
  • the resin solution from which the insoluble matter was removed was dropped into water to solidify the polyvinylidene fluoride resin.
  • the coagulum was taken out from water and dried, and the dried solid was used as a sample.
  • a 5 mg sample was placed in an aluminum sample pan (manufactured by TA Instruments, part number 900786.901), covered with a lid (manufactured by TA Instruments, part number 900779.901), and set in the measuring device.
  • a measuring device trade name: DSC Q20 (TA Instruments) was used.
  • Thermal analysis was performed by changing the sample temperature in the above three steps while flowing nitrogen gas at a flow rate of 50 ml/min.
  • a rectangle of 15 mm ⁇ 70 mm was cut out from the above negative electrode.
  • a separator was cut into a rectangle of TD 20 mm ⁇ MD 75 mm.
  • a rectangular release paper of 15 mm ⁇ 70 mm was prepared.
  • a laminate obtained by stacking a negative electrode, a separator, and a release paper in this order is inserted into a pack made of an aluminum laminate film, and the entire pack is heat-pressed in the stacking direction of the laminate using a heat press (dry heat press). , thereby bonding the negative electrode and the separator.
  • the hot press conditions were a temperature of 90° C., a load of 30 kg per 1 cm 2 of the electrode, and a pressing time of 30 seconds. After that, the laminate was taken out from the pack, the release paper was peeled off, and this was used as a test piece.
  • the uncoated surface of the negative electrode of the test piece was fixed to a metal plate with double-sided tape, and the metal plate was fixed to the lower chuck of Tensilon (A&D, STB-1225S). At this time, the metal plate was fixed to the Tensilon so that the longitudinal direction of the test piece (that is, MD of the separator) was in the direction of gravity.
  • the separator was peeled off from the negative electrode by about 2 cm from the lower edge, the edge was fixed to the upper chuck, and a 180° peeling test was performed.
  • the tensile speed of the 180° peel test was 300 mm/min, and the load (N) from 10 mm to 40 mm after the start of measurement was sampled at intervals of 0.4 mm, and the average was calculated. Furthermore, the load of 10 test pieces was averaged.
  • the mixture was stirred and mixed with a double-arm mixer to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to both sides of an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to obtain a double-sided positive electrode having positive electrode active material layers on both sides.
  • Each of the above positive and negative electrodes was cut into a rectangle of 30 mm ⁇ 70 mm.
  • a separator was cut into a rectangle of 35 mm TD ⁇ 75 mm MD.
  • the positive electrodes and the negative electrodes were alternately stacked so that the separator was sandwiched between the positive electrodes and the negative electrodes to prepare a laminate consisting of 3 positive electrodes, 3 negative electrodes, and 5 separators.
  • the laminate was inserted into a pack made of an aluminum laminate film, and an electrolytic solution (1 mol/L LiPF 6 -ethylene carbonate:ethyl methyl carbonate [mass ratio: 3:7]) was injected into the pack to apply the electrolytic solution to the laminate. soaked in.
  • the pack was hot-pressed in the stacking direction of the laminate using a hot-press machine (wet heat press) to bond the electrodes and the separators.
  • the hot press conditions were a temperature of 90° C., a load of 10 kg per 1 cm 2 of the electrode, and a press time of 2 minutes.
  • a compression type bending test (three-point bending measurement) was performed on the above cell.
  • the measurement was carried out by attaching a compression type bending test jig to Tensilon (A&D Co., STB-1225S).
  • the distance between the supports was set to 4 cm, the cell was placed on the support so that the lateral direction of the cell was parallel to the longitudinal direction of the indenter, and the compression position during measurement was at the center of the electrodes in the cell in the longitudinal direction.
  • the displacement when the indenter was lowered until a load of 1 N was applied was set to 0, and the measurement was started.
  • the compression speed during measurement was 2 mm/min, and the measurement was performed up to a displacement of 2 mm.
  • the yield point load in the load-displacement curve obtained from this result was taken as the wet adhesive strength. When the yield point load could not be observed, the maximum load was taken as the wet bond strength.
  • [Battery short circuit] 89.5 parts by mass of lithium cobaltate powder as a positive electrode active material, 4.5 parts by mass of acetylene black as a conductive agent, 6 parts by mass of polyvinylidene fluoride as a binder resin, and an appropriate amount of N-methyl-2-pyrrolidone.
  • the mixture was stirred and mixed with a double-arm mixer to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to obtain a positive electrode having a positive electrode active material layer.
  • the positive electrode was cut into a 3 cm ⁇ 5 cm rectangle, and the negative electrode was cut into a 3.2 cm ⁇ 5.2 cm rectangle, and lead tabs were welded to each.
  • the separator was cut into 3.5 cm x 5.5 cm rectangles.
  • a positive electrode, a separator, and a negative electrode are laminated in this order, and this laminate is inserted into a pack made of an aluminum laminate film, and an electrolytic solution (1 mol/L LiPF 6 -ethylene carbonate:propylene carbonate [mass ratio 1:1]) is added to the pack. was injected to impregnate the laminate with the electrolytic solution. Then, the inside of the pack was evacuated and sealed using a vacuum sealer to obtain a battery for short-circuit test.
  • test batteries were charged with a constant current and constant voltage of 0.2C and 4.2V. All test cells were then placed in an oven at a temperature of 150° C. for 60 minutes. At this time, a weight of about 500 g was placed on each test battery. After heat treatment, the test cell was removed from the oven and the weight was removed. After cooling the test battery to room temperature of 25° C., the voltage was measured. Test batteries with a voltage of 3.5 V or less were judged to be short-circuited, and the number of short-circuited test batteries out of 100 was counted.
  • Discharge capacity retention rate Discharge capacity of heat-treated battery / Discharge capacity of standard battery x 100
  • Example 1 ⁇ Preparation of separator and battery>
  • Two types of polyvinylidene fluoride resin and magnesium hydroxide particles were prepared as materials for the adhesive porous layer. These physical properties are shown in Table 1. Two types of polyvinylidene fluoride resins are mixed at a mass ratio of 60:40, dissolved in dimethylacetamide (DMAc) so that the resin concentration is 5.0% by mass, and magnesium hydroxide particles are dispersed by stirring and coated. A working solution (1) was obtained.
  • DMAc dimethylacetamide
  • negative electrode- 300 parts by mass of artificial graphite as a negative electrode active material, 7.5 parts by mass of an aqueous dispersion containing 40% by mass of a modified styrene-butadiene copolymer as a binder resin, 3 parts by mass of carboxymethyl cellulose as a thickener , and an appropriate amount of water were stirred and mixed with a double-arm mixer to prepare a negative electrode slurry.
  • a negative electrode slurry was applied to one side of a copper foil having a thickness of 10 ⁇ m, dried and then pressed to obtain a negative electrode having a negative electrode active material layer.
  • the mixture was stirred and mixed with a double-arm mixer to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to obtain a positive electrode having a positive electrode active material layer.
  • the positive electrode was cut into a 3 cm ⁇ 5 cm rectangle, and the negative electrode was cut into a 3.2 cm ⁇ 5.2 cm rectangle, and lead tabs were welded to each.
  • the separator was cut into 3.4 cm x 5.4 cm rectangles.
  • a positive electrode, a separator, and a negative electrode were laminated in this order.
  • a hot press was used in the stacking direction of the laminate to perform hot pressing (dry heat pressing), and the electrode and the separator were temporarily adhered.
  • the hot press conditions were a temperature of 90° C., a load of 30 kg per 1 cm 2 of the electrode, and a pressing time of 30 seconds.
  • the temporarily adhered laminate was inserted into a pack made of an aluminum laminate film, and an electrolytic solution (1 mol/L LiPF 6 -ethylene carbonate:ethyl methyl carbonate [mass ratio 3:7]) was injected into the pack to attach the laminate. impregnated with electrolyte.
  • the pack was hot-pressed in the stacking direction of the laminate using a hot-press machine (wet heat press) to bond the electrodes and the separators.
  • the hot press conditions were a temperature of 90° C., a load of 10 kg per 1 cm 2 of the electrode, and a pressing time of 2 minutes.
  • the inside of the pack was evacuated using a vacuum sealer and sealed to obtain a test battery.
  • Examples 2 to 6, Comparative Examples 1 to 7 In the same manner as in Example 1, except that the types and amounts of the polyethylene microporous membrane and the polyvinylidene fluoride resin and filler, which are the materials of the adhesive porous layer, were changed to the specifications shown in Table 1, and each A separator was produced.
  • the thickness of the adhesive porous layer was approximately 3 ⁇ m per side.
  • the thickness of the adhesive porous layer was 0.3 ⁇ m per side in Comparative Example 6, and 2.0 ⁇ m per side in Comparative Example 7. Then, a test battery was produced in the same manner as in Example 1 using each separator.
  • PVDF-based resin X in Table 1 is a resin corresponding to polyvinylidene fluoride-based resin X or a polyvinylidene fluoride-based resin for comparison.
  • the PVDF-based resin X is a binary copolymer composed of VDF and HFP.
  • PVDF-based resin Y in Table 1 is a resin corresponding to polyvinylidene fluoride-based resin Y or a polyvinylidene fluoride-based resin for comparison.
  • the PVDF-based resin Y is a terpolymer composed of VDF, HFP, and the monomer represented by Formula (1).
  • the monomer represented by the formula (1) in the PVDF-based resin Y is acrylic acid in all examples.
  • Tables 1 and 2 show the composition, physical properties and evaluation results of the separators of Examples 1-6 and Comparative Examples 1-7.
  • the two types of polyvinylidene fluoride resins are the same type and the mixing ratio is also the same.
  • the sample subjected to DSC in Example 1 is a polyvinylidene fluoride resin extracted from the adhesive porous layer, it is a polyvinylidene fluoride resin that has undergone the step of forming the adhesive porous layer.
  • the mixture of two types of polyvinylidene fluoride-based resins has a temperature difference between the endothermic peak and the temperature difference between the exothermic peaks by going through the step of forming an adhesive porous layer. I know it will be smaller.
  • the endothermic peak and exothermic peak on the low temperature side shift to the high temperature side, and the endothermic peak and exothermic peak on the high temperature side shift to the low temperature side.
  • the two types of polyvinylidene fluoride resins are partially compatible, and the high melting point polyvinylidene fluoride resin is slightly mixed with the low melting point polyvinylidene fluoride resin. It is presumed that there are a dissolved region and a region in which the low-melting polyvinylidene fluoride-based resin is slightly dissolved in the high-melting-point polyvinylidene fluoride-based resin. As a result, it is presumed that the endothermic peak and exothermic peak on the low temperature side shift to the high temperature side, and the endothermic peak and exothermic peak on the high temperature side shift to the low temperature side.
  • the difference in melting point between the two polyvinylidene fluoride resins is 22° C., but the DSC curve of the polyvinylidene fluoride resin extracted from the adhesive porous layer has two endothermic peaks and two exothermic peaks. observed one by one instead of one by one.
  • the two types of polyvinylidene fluoride resins are at least partially compatible in the step of forming the adhesive porous layer.
  • the characteristics of the two types of polyvinylidene fluoride resins are similar, the two types of polyvinylidene fluoride resins are completely compatible. , there will be one endothermic peak and one exothermic peak observed in the DSC curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)

Abstract

非水系二次電池用セパレータは、多孔質基材と、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、ガーレ値が50秒/100mL~200秒/100mLであり、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される。

Description

非水系二次電池用セパレータ及び非水系二次電池
 本開示は、非水系二次電池用セパレータ及び非水系二次電池に関する。
 国際公開第2013/058367号、国際公開第2013/058368号、国際公開第2013/058369号及び国際公開第2013/058370号それぞれには、多孔質基材と、ポリフッ化ビニリデン系樹脂を含む接着性多孔質層とを備え、前記ポリフッ化ビニリデン系樹脂が少なくとも2種類のポリフッ化ビニリデン系樹脂を含む非水系二次電池用セパレータが開示されている。
 特許第6487130号公報には、多孔質基材と、ポリフッ化ビニリデン系樹脂を含む接着性多孔質層とを備え、前記ポリフッ化ビニリデン系樹脂がフッ化ビニリデンとヘキサフルオロプロピレンと酸性基又はエステル基を有する単量体との共重合体を含む非水系二次電池用セパレータが開示されている。
 ポリフッ化ビニリデン系樹脂を含む接着性多孔質層を有するセパレータを用いた電池は、一般的には、電極とセパレータの積層体を製造し、この積層体を外装材に収容して電解液を注入し、熱プレス処理(本開示において「ウェットヒートプレス」という。)を行って製造される。ウェットヒートプレスによれば、ポリフッ化ビニリデン系樹脂が電解液に膨潤した状態で熱プレスされるので電極とセパレータの接着がよく、良好な電池特性が得られやすい。ただし、比較的高温でウェットヒートプレスした場合は、電解液又は電解質が分解して電池内にガスが発生することがあり、例えば電池のサイクル特性及び寸法安定性の低下の原因となる。
 一方、電極とセパレータの積層体に、電解液を含浸させずに熱プレス処理(本開示において「ドライヒートプレス」という。)を行って、電極とセパレータとを接着させる技術がある。ドライヒートプレスによって電極とセパレータとが十分に接着すれば、ウェットヒートプレスを要せず、したがって電解液及び電解質の分解は発生しない。
 また、ウェットヒートプレスを行う場合も、それに先立って積層体にドライヒートプレスを行い電極とセパレータを接着しておけば、ウェットヒートプレスの温度を比較的低温に設定できるので、電解液及び電解質の分解が抑制できる。加えて、積層体を外装材に収容する前にドライヒートプレスによってセパレータを電極に接着しておけば、外装材に収容するための搬送時に起こり得る積層体の変形が抑制される。
 したがって、ドライヒートプレスによってセパレータを電極に良好に接着できれば、より大面積化した電池の性能を保てると期待される。
 ところで、非水系二次電池が高速で充放電するとき電池内部が高温になることがあり、高温にさらされた非水系二次電池は、セパレータの多孔質構造が変化し、電池性能(例えば容量維持率)が低下することが知られている。
 また、電池内部が高温になると、多孔質基材の空孔が比較的大きい場合には高温下でセパレータの強度が著しく弱くなり、電池の短絡が発生しやすい。
 本開示は、上記状況のもとになされた。
 本開示は、ドライヒートプレスによる電極との接着及びウェットヒートプレスによる電極との接着に優れ、高温下に電池の短絡が発生しにくく、且つ高温にさらされた後も電池の容量維持率が高い非水系二次電池用セパレータを提供することを課題とする。
 前記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> 多孔質基材と、
 前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
 ガーレ値が50秒/100mL~200秒/100mLであり、
 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、
 非水系二次電池用セパレータ。
<2> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが125℃以上140℃未満の領域と140℃以上190℃未満の領域とに少なくとも1つずつ観測される、<1>に記載の非水系二次電池用セパレータ。
<3> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上観測され、隣り合う前記吸熱ピークの温度差がそれぞれ10℃以上60℃以下である、<1>又は<2>に記載の非水系二次電池用セパレータ。
<4> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが80℃以上125℃未満の領域と125℃以上190℃未満の領域とに少なくとも1つずつ観測される、<1>~<3>のいずれか1項に記載の非水系二次電池用セパレータ。
<5> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが2つ以上観測され、隣り合う前記発熱ピークの温度差がそれぞれ10℃以上90℃以下である、<1>~<4>のいずれか1項に記載の非水系二次電池用セパレータ。
<6> 多孔質基材と、
 前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
 ガーレ値が50秒/100mL~200秒/100mLであり、
 前記ポリフッ化ビニリデン系樹脂が下記のポリフッ化ビニリデン系樹脂X及びポリフッ化ビニリデン系樹脂Yを含む、
 非水系二次電池用セパレータ。
 ポリフッ化ビニリデン系樹脂X:フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超15mol%以下であり、重量平均分子量が10万以上100万未満であり、融点が125℃以上150℃未満である。
 ポリフッ化ビニリデン系樹脂Y:フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上3.5mol%以下であり、重量平均分子量が100万以上300万未満であり、融点が150℃以上180℃未満である。
<7> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、<6>に記載の非水系二次電池用セパレータ。
<8> 前記ポリフッ化ビニリデン系樹脂Xの融点と前記ポリフッ化ビニリデン系樹脂Yの融点との差分が25℃以上55℃未満である、<6>又は<7>に記載の非水系二次電池用セパレータ。
<9> 前記接着性多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂Xと前記ポリフッ化ビニリデン系樹脂Yとの質量比が20:80~80:20である、<6>~<8>のいずれか1項に記載の非水系二次電池用セパレータ。
<10> 前記ポリフッ化ビニリデン系樹脂Xが、フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が5.0mol%超15mol%以下であり、重量平均分子量が30万以上100万未満であり、融点が125℃以上140℃未満である、<6>~<9>のいずれか1項に記載の非水系二次電池用セパレータ。
<11> 前記ポリフッ化ビニリデン系樹脂Yが、フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上2.0mol%以下であり、重量平均分子量が150万以上200万未満であり、融点が150℃以上170℃未満である、<6>~<10>のいずれか1項に記載の非水系二次電池用セパレータ。
<12> 前記接着性多孔質層が、下記の式(1)で表される単量体由来の構成単位を有するポリフッ化ビニリデン系樹脂を含む、<1>~<11>のいずれか1項に記載の非水系二次電池用セパレータ。
Figure JPOXMLDOC01-appb-C000002

 
 式(1)中、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
<13> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価が3.0mgKOH/g未満である、<1>~<12>のいずれか1項に記載の非水系二次電池用セパレータ。
<14> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の重量平均分子量が30万以上300万未満である、<1>~<13>のいずれか1項に記載の非水系二次電池用セパレータ。
<15> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体において、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超7.0mol%以下である、<1>~<14>のいずれか1項に記載の非水系二次電池用セパレータ。
<16> 前記接着性多孔質層の空孔を除いた体積に占める前記フィラーの体積割合が30体積%~90体積%である、<1>~<15>のいずれか1項に記載の非水系二次電池用セパレータ。
<17> 前記フィラーが金属水酸化物粒子、金属硫酸塩粒子及びチタン酸バリウム粒子からなる群から選ばれる少なくとも1種を含む、<1>~<16>のいずれか1項に記載の非水系二次電池用セパレータ。
<18> 前記接着性多孔質層に含まれるフィラー全体の平均一次粒径が0.01μm~1.5μmである、<1>~<17>のいずれか1項に記載の非水系二次電池用セパレータ。
<19> 正極と、負極と、前記正極及び前記負極の間に配置された<1>~<18>のいずれか1項に記載の非水系二次電池用セパレータと、を備え、リチウムイオンのドープ及び脱ドープにより起電力を得る非水系二次電池。
 本開示によれば、ドライヒートプレスによる電極との接着及びウェットヒートプレスによる電極との接着に優れ、高温下に電池の短絡が発生しにくく、且つ高温にさらされた後も電池の容量維持率が高い非水系二次電池用セパレータが提供される。
 以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において、MD(Machine Direction)とは、長尺状に製造される多孔質基材及びセパレータにおいて長尺方向を意味し、TD(transverse direction)とは、多孔質基材及びセパレータの面方向においてMDに直交する方向を意味する。本開示において、TDを「幅方向」ともいう。
 本開示において、セパレータを構成する各層の積層関係について「上」及び「下」で表現する場合、多孔質基材に対してより近い層について「下」といい、多孔質基材に対してより遠い層について「上」という。
 本開示において、セパレータに電解液を含浸させて熱プレス処理を行うことを「ウェットヒートプレス」といい、セパレータに電解液を含浸させずに熱プレス処理を行うことを「ドライヒートプレス」という。
 本開示において、共重合体又は樹脂の「構成単位」とは、単量体単位と同義である。
 本開示において、接着性多孔質層の空孔を除いた体積を「固形分体積」という。
<非水系二次電池用セパレータ>
 本開示の非水系二次電池用セパレータ(本開示において単に「セパレータ」ともいう。)は、多孔質基材と、多孔質基材の片面又は両面に設けられた接着性多孔質層とを備える。本開示のセパレータの接着性多孔質層は、ポリフッ化ビニリデン系樹脂及びフィラーを含む。
 本開示における接着性多孔質層についての説明は、多孔質基材の片面それぞれの接着性多孔質層についての説明である。本開示のセパレータは、多孔質基材の少なくとも片面に本開示の接着性多孔質層を有していればよい。本開示のセパレータの実施形態例として、下記の形態例(1)~(3)が挙げられる。
(1)多孔質基材の両面に本開示の接着性多孔質層を有するセパレータ。当該セパレータにおいて一方の面の接着性多孔質層と他方の面の接着性多孔質層とは、成分、組成、熱的性質などにおいて同じでもよく異なっていてもよい。
(2)多孔質基材の一方の面に本開示の接着性多孔質層を有し、多孔質基材の他方の面に別の層を有するセパレータ。
(3)多孔質基材の一方の面に本開示の接着性多孔質層を有し、多孔質基材の他方の面に層を有しない(つまり、多孔質基材の表面が露出している。)セパレータ。
 本開示のセパレータは、ガーレ値が50秒/100mL~200秒/100mLである。
 セパレータのガーレ値が50秒/100mL未満であると、高温下に電池の短絡が発生することがある。高温下に電池の短絡を抑制する観点から、セパレータのガーレ値は、50秒/100mL以上であり、60秒/100mL以上が好ましく、70秒/100mL以上がより好ましく、80秒/100mL以上が更に好ましい。
 セパレータのガーレ値が200秒/100mL超であると、イオン透過性が低く、また、高温にさらされたときに多孔質構造が閉塞して電池容量が低下することがある。イオン透過性を確保する観点と、高温にさらされても多孔質構造が保たれる観点とから、セパレータのガーレ値は、200秒/100mL以下であり、180秒/100mL以下が好ましく、150秒/100mL以下がより好ましく、130秒/100mL以下が更に好ましい。
 本開示のセパレータに係るガーレ値は、JIS P8117:2009の規格に従って測定する。
 本開示のセパレータに係るガーレ値の制御方法は、特に制限されないが、多孔質基材のガーレ値によって制御することが好ましい。多孔質基材のガーレ値は、多孔質基材の空孔率によって制御可能であり、多孔質基材の空孔率は、例えば、多孔質基材(特にはポリオレフィン微多孔膜)を製造する際の延伸倍率によって制御可能である。
 本開示のセパレータは、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定(Differential Scanning Calorimetry, DSC)をしたとき、吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される。
 吸熱ピークと発熱ピークは、少なくとも一方が2つ以上観測されればよく、両方が2つ以上観測されてもよい。吸熱ピークが2つ以上観測される場合、吸熱ピークは2つでもよく、3つ以上でもよい。発熱ピークが2つ以上観測される場合、発熱ピークは2つでもよく、3つ以上でもよい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料としてDSCをしたとき、熱流を縦軸とし時間又は温度を横軸としたDSC曲線において吸熱ピークが2つ以上又は発熱ピークが2つ以上観測されることは、比較的低温の加熱でポリマー鎖が運動するポリフッ化ビニリデン系樹脂(言い換えると、ポリマー鎖が運動しやすいポリフッ化ビニリデン系樹脂)と、比較的高温の加熱でポリマー鎖が運動するポリフッ化ビニリデン系樹脂(言い換えると、ポリマー鎖が運動しにくいポリフッ化ビニリデン系樹脂)とが接着性多孔質層に含まれていることを意味する。
 ポリマー鎖が運動しやすいポリフッ化ビニリデン系樹脂が接着性多孔質層に含まれていることによって、電解液にポリフッ化ビニリデン系樹脂が膨潤しない状態での熱プレス又は比較的低温の熱プレスであっても接着性多孔質層が接着性を発揮する。そして、ポリマー鎖が運動しにくいポリフッ化ビニリデン系樹脂が接着性多孔質層に含まれていることによって、電解液にポリフッ化ビニリデン系樹脂が膨潤した状態での熱プレス又は比較的高温の熱プレスであっても接着性多孔質層の閉塞が抑制され、セパレータの性能が維持されると推測される。
 また、ポリマー鎖が運動しにくいポリフッ化ビニリデン系樹脂が接着性多孔質層に含まれていることによって、電池内部が高温になっても接着性多孔質層の閉塞が抑制されと推測される。
 したがって、本開示のセパレータは、セパレータの性能を維持しつつ、ドライヒートプレス及びウェットヒートプレスのいずれによっても電極との接着に優れ、且つ、高温にさらされた後も電池の容量維持率が高いと推測される。
 本開示のセパレータは、熱プレスによる電極との接着と、熱プレス後のセパレータの性能維持とを両立する観点から、下記の(a)~(d)の少なくとも1つを示すことが好ましい。
(a)接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料としてDSCをしたとき、吸熱ピークが2つ以上観測され、125℃以上140℃未満の領域に少なくとも1つ且つ140℃以上190℃未満の領域に少なくとも1つ、吸熱ピークが観測される。
 この場合、上記の2領域以外の領域にさらに吸熱ピークが観測されてもよい。
(b)接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料としてDSCをしたとき、吸熱ピークが2つ以上観測され、隣り合う吸熱ピークの温度差がそれぞれ10℃以上60℃以下である。
 上記の温度差はそれぞれ、15℃以上が好ましく、20℃以上がより好ましい。上記の温度差はそれぞれ、50℃以下が好ましく、40℃以下がより好ましい。
(c)接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料としてDSCをしたとき、発熱ピークが2つ以上観測され、80℃以上125℃未満の領域に少なくとも1つ且つ125℃以上190℃未満の領域に少なくとも1つ、発熱ピークが観測される。
 この場合、上記の2領域以外の領域にさらに発熱ピークが観測されてもよい。
(d)接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料としてDSCをしたとき、発熱ピークが2つ以上観測され、隣り合う発熱ピークの温度差がそれぞれ10℃以上90℃以下である。
 上記の温度差はそれぞれ、15℃以上が好ましく、18℃以上がより好ましく、20℃以上が更に好ましい。上記の温度差はそれぞれ、80℃以下が好ましく、50℃以下がより好ましく、40℃以下が更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂に係るDSCの吸熱ピーク及び発熱ピークの制御方法としては、例えば、下記の(I)及び(II)が挙げられる。
(I)ポリフッ化ビニリデン系樹脂の形成に、重合成分の種類若しくは量、分子量、又は融点において相違する2種類以上のポリフッ化ビニリデン系樹脂を使用し、その混合比を調整する。
(II)接着性多孔質層を形成する際の熱条件、フィラーの種類若しくは量、又は結晶制御剤の配合によって、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の結晶化度を制御する。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として行うDSC及び吸熱ピーク及び発熱ピークの観測方法を説明する。
-試料-
 セパレータから接着性多孔質層を剥ぎ取り、剥ぎ取った接着性多孔質層をジメチルアセトアミドに浸漬し、50℃程度まで加熱し、ポリフッ化ビニリデン系樹脂が溶解した樹脂溶液を得る。樹脂溶液を遠心分離機で遠心し不溶物を沈降させる。遠心分離機の回転速度は、ローターの半径に応じて、不溶物を沈降させるために有効な速度に設定する。不溶物を沈降させた樹脂溶液の上澄みを取り出し、遠心分離を繰り返し、不溶物を除去する。不溶物が除去された樹脂溶液を水に滴下し、ポリフッ化ビニリデン系樹脂を凝固させる。凝固物を水から取り出し乾燥させ、乾燥後の固体を試料とする。
 セパレータが両面に接着性多孔質層(又はそれに類する層)を有する場合、片面ずつ接着性多孔質層(又はそれに類する層)を剥ぎ取り、片面それぞれを別の試料とする。
-示差走査熱量測定(Differential Scanning Calorimetry, DSC)-
 5.0mg±0.3mgの試料をアルミニウム製サンプルパンに入れ、測定装置にセットする。窒素雰囲気下、下記の3ステップを連続して行い、試料の熱分析を行う。
・ステップ1:30℃から200℃まで速度5℃/分で昇温する。
・ステップ2:200℃から30℃まで速度5℃/分で降温する。
・ステップ3:30℃から200℃まで速度5℃/分で昇温する。
-吸熱ピーク及び発熱ピークの観測-
 DSCの熱分析結果をもとに、横軸が温度(℃)かつ縦軸が熱流(W/g)であるDSC曲線を描く。
 ステップ2において、180℃から60℃までの温度領域で上に凸な部分を発熱ピークとする。発熱ピークの極大点の温度、すなわち、ステップ2のDSC曲線において、高温から低温に向かって、接線の傾きが負から正に変る温度を発熱ピーク温度とする。
 ステップ3において、60℃から180℃までの温度領域で下に凸な部分を吸熱ピークとする。吸熱ピークの極小点の温度、すなわち、ステップ3のDSC曲線において、低温から高温に向かって、接線の傾きが負から正に変る温度を吸熱ピーク温度とする。
 以下、本開示のセパレータが有する多孔質基材及び接着性多孔質層の詳細を説明する。
[多孔質基材]
 本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層した複合多孔質シート;などが挙げられる。本開示においては、セパレータの薄膜化及び強度の観点から、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、微細孔が連結した構造となっており、一方の面から他方の面へと気体又は液体が通過可能となった膜を意味する。
 多孔質基材の材料としては、電気絶縁性を有する材料が好ましく、有機材料又は無機材料のいずれでもよい。
 多孔質基材は、多孔質基材にシャットダウン機能を付与するため、熱可塑性樹脂を含むことが好ましい。シャットダウン機能とは、電池温度が高まった際に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;などが挙げられ、中でもポリオレフィンが好ましい。
 多孔質基材としては、ポリオレフィンを含む微多孔膜(本開示において「ポリオレフィン微多孔膜」という。)が好ましい。ポリオレフィン微多孔膜としては、例えば、従来の電池セパレータに適用されているポリオレフィン微多孔膜が挙げられ、この中から十分な力学特性及びイオン透過性を有するものを選択することが好ましい。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含む微多孔膜が好ましく、ポリエチレンの含有量としては、ポリオレフィン微多孔膜全体の質量に対して95質量%以上が好ましい。
 ポリオレフィン微多孔膜は、高温に曝されたときに容易に破膜しない耐熱性を備える観点から、ポリプロピレンを含む微多孔膜が好ましい。
 ポリオレフィン微多孔膜は、シャットダウン機能と、高温に曝されたときに容易に破膜しない耐熱性とを備える観点から、ポリエチレン及びポリプロピレンを含むポリオレフィン微多孔膜が好ましい。ポリエチレン及びポリプロピレンを含むポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。該微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点からは、2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、重量平均分子量(Mw)が10万~500万のポリオレフィンが好ましい。ポリオレフィンのMwが10万以上であると、微多孔膜に十分な力学特性を付与できる。一方、ポリオレフィンのMwが500万以下であると、微多孔膜のシャットダウン特性が良好であるし、微多孔膜の成形がしやすい。
 ポリオレフィン微多孔膜の製造方法としては、溶融したポリオレフィン樹脂をT-ダイから押し出してシート化し、これを結晶化処理した後延伸し、次いで熱処理をして微多孔膜とする方法:流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT-ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法;などが挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性樹脂;セルロース;などの繊維状物からなる、不織布、紙等の多孔性シートが挙げられる。
 本開示において耐熱性樹脂とは、融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂を指す。つまり、本開示における耐熱性樹脂とは、200℃未満の温度領域で溶融及び分解を起こさない樹脂である。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層したシートが挙げられる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる観点から好ましい。機能層としては、例えば耐熱性を付与するという観点からは、耐熱性樹脂からなる多孔性の層や、耐熱性樹脂及び無機フィラーからなる多孔性の層が挙げられる。耐熱性樹脂としては、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性樹脂が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物;水酸化マグネシウム等の金属水酸化物;などが挙げられる。複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 多孔質基材の表面には、接着性多孔質層を形成するための塗工液との濡れ性を向上させる目的で、多孔質基材の性質を損なわない範囲で、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。
[多孔質基材の特性]
 多孔質基材の厚さは、電池のエネルギー密度を高める観点から、25μm以下が好ましく、20μm以下がより好ましく、15μm以下が更に好ましく、セパレータの製造歩留り及び電池の製造歩留りの観点から、3μm以上が好ましく、5μm以上がより好ましく、8μm以上が更に好ましい。
 多孔質基材のガーレ値(JIS P8117:2009)は、電池の短絡を抑制する観点から、20秒/100mL以上が好ましく、25秒/100mL以上がより好ましく、60秒/100mL以上が更に好ましく、65秒/100mL以上がより更に好ましい。
 多孔質基材のガーレ値(JIS P8117:2009)は、イオン透過性の観点と、高温にさらされたときに多孔質基材と接着性多孔質層との境界において多孔質構造が閉塞することを抑制する観点とから、220秒/100mL以下が好ましく、200秒/100mL以下がより好ましく、190秒/100mL以下が更に好ましく、150秒/100mL以下がより更に好ましい。
 多孔質基材の空孔率は、適切な膜抵抗やシャットダウン機能を得る観点から、20%~60%が好ましい。多孔質基材の空孔率ε(%)は、下記の式により求める。
 ε={1-Ws/(ds・t)}×100
 ここに、Wsは多孔質基材の目付(g/m)、dsは多孔質基材の真密度(g/cm)、tは多孔質基材の厚さ(μm)である。目付とは、単位面積当たりの質量である。
 多孔質基材の平均孔径は、イオン透過性又は電池の短絡抑制の観点から、15nm~100nmが好ましい。多孔質基材の平均孔径は、パームポロメーター(PMI社製CFP-1500-A)を用いて、ASTM E1294-89に従って測定する。
[接着性多孔質層]
 接着性多孔質層は、内部に多数の微細孔を有し、微細孔が連結した構造となっており、一方の面から他方の面へと気体又は液体が通過可能な層である。
 接着性多孔質層は、多孔質基材の片面のみにあってもよく、多孔質基材の両面にあってもよい。接着性多孔質層が多孔質基材の両面にあると、セパレータにカールが発生しにくく、電池製造時のハンドリング性に優れる。接着性多孔質層が多孔質基材の片面のみにあると、セパレータのイオン透過性がより優れる。また、セパレータ全体の厚さを抑えることができ、エネルギー密度のより高い電池を製造し得る。
 接着性多孔質層は、少なくともポリフッ化ビニリデン系樹脂とフィラーとを含有する。接着性多孔質層は、ポリフッ化ビニリデン系樹脂以外のその他の樹脂を含有していてもよい。接着性多孔質層に含まれるフィラーは、無機フィラー、有機フィラーのいずれでもよい。
-ポリフッ化ビニリデン系樹脂-
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の含有量は、接着性多孔質層に含まれる全樹脂の全量に対して、85質量%~100質量%が好ましく、90質量%~100質量%がより好ましく、95質量%~100質量%が更に好ましい。
 接着性多孔質層が多孔質基材の両面にある場合、一方の接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の種類又は量と、他方の接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の種類又は量とは、同じでもよく異なっていてもよい。
 ポリフッ化ビニリデン系樹脂としては、例えば、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、トリクロロエチレン等の含ハロゲン単量体との共重合体;フッ化ビニリデンと、含ハロゲン単量体以外のその他の単量体との共重合体;フッ化ビニリデンと、含ハロゲン単量体と、含ハロゲン単量体以外のその他の単量体との共重合体;これらの混合物;が挙げられる。ポリフッ化ビニリデン系樹脂は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 ポリフッ化ビニリデン系樹脂としては、電極に対する接着性の観点から、フッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)との共重合体(VDF-HFP共重合体)が好ましい。本開示においてVDF-HFP共重合体には、VDFとHFPのみを重合した共重合体、及び、VDFとHFPと他の単量体を重合した共重合体のいずれも含まれる。VDF-HFP共重合体は、HFP単位の含有量を増減することによって、当該共重合体の結晶性、耐熱性、電解液に対する耐溶解性などを適度な範囲に制御できる。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体において、全構成単位に占めるHFP由来の構成単位の割合は、3.5mol%超7.0mol%以下であることが好ましい。
 ポリフッ化ビニリデン系樹脂全体の全構成単位に占めるHFP由来の構成単位の割合が3.5mol%超であると、ポリフッ化ビニリデン系樹脂のポリマー鎖が運動しやすく、電解液にポリフッ化ビニリデン系樹脂が膨潤しない状態での熱プレス又は比較的低温の熱プレスであっても電極に対する接着性に優れる。この観点から、HFP由来の構成単位の割合は、4.0mol%超がより好ましく、4.5mol%超が更に好ましい。
 ポリフッ化ビニリデン系樹脂全体の全構成単位に占めるHFP由来の構成単位の割合が7.0mol%以下であると、電解液に対する耐溶解性に優れる。この観点から、HFP由来の構成単位の割合は、6.8mol%以下がより好ましく、6.5mol%以下が更に好ましい。
 ポリフッ化ビニリデン系樹脂は、下記の式(1)で表される単量体由来の構成単位を有するポリフッ化ビニリデン系樹脂(本開示において「ポリフッ化ビニリデン系樹脂(1)」という。)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
 式(1)中、R、R及びRが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよく、フッ素原子が好ましい。
 式(1)中、R、R及びRが表す炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。R、R及びRにおける炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
 式(1)中、R、R及びRが表すカルボキシ基の誘導体としては、例えば、-C(=O)-OR(Rはアルキル基を表す。)が挙げられる。Rとしては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Rとしては、炭素数1~5のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、炭素数1~3のアルキル基が更に好ましい。
 式(1)中、Xが表す炭素数1~5のアルキレン基としては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Xにおける炭素数1~5のアルキレン基としては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 式(1)中、Xが表す置換基を有する炭素数1~5のアルキレン基における置換基としては、例えば、ハロゲン原子が挙げられ、フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよい。Xにおける置換されている炭素数1~5のアルキレン基としては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Xにおける置換されている炭素数1~5のアルキレン基としては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 式(1)中、Yが表す炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Yにおける炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
 式(1)中、Yが表す少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基における、置換されている炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Yにおける置換されている炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。ヒドロキシ基の置換数としては、1つ又は2つが好ましく、1つがより好ましい。
 式(1)中、Yが表す少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基としては、例えば、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、4-ヒドロキシブチル基が挙げられる。
 式(1)中、Yが表す少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基における、置換されている炭素数1~5のアルキル基としては、例えば、直鎖状のアルキル基である、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基;分岐状のアルキル基である、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基;が挙げられる。Yにおける置換されている炭素数1~5のアルキル基としては、炭素数1~4のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。カルボキシ基の置換数としては、1つ又は2つが好ましく、1つがより好ましい。
 式(1)中、Yが表す少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基としては、例えば、2-カルボキシエチル基、2-カルボキシプロピル基、4-カルボキシブチル基が挙げられる。
 式(1)中、Yが表す-R-O-C(=O)-(CH-C(=O)-OHにおいて、Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。
 Rとしては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Rとしては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 nとしては、0~5の整数が好ましく、1~4の整数がより好ましく、2又は3が更に好ましい。
 当該基の具体例としては、例えば、-(CH-O-C(=O)-(CH-C(=O)-OHが挙げられる。
 式(1)で表される単量体としては、例えば、R、R及びRがそれぞれ独立に、水素原子又は炭素数1~4のアルキル基であり、Xが単結合であり、Yが炭素数1~4のアルキル基又は少なくとも1つのヒドロキシ基で置換された炭素数1~3のアルキル基である単量体が挙げられる。
 式(1)で表される単量体としては、例えば、アクリル系単量体、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が挙げられる。
 アクリル系単量体の例としては、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-カルボキシエチル、(メタ)アクリル酸2-カルボキシプロピル、(メタ)アクリル酸4-カルボキシブチル、ブテン酸、ペンテン酸、ヘキセン酸、(メタ)アクリロイルオキシエチルコハク酸等が挙げられる。「(メタ)アクリル」との表記は「アクリル」及び「メタクリル」のいずれでもよいことを意味する。
 不飽和二塩基酸の例としては、不飽和ジカルボン酸が挙げられ、より具体的には、マレイン酸、無水マレイン酸、シトラコン酸、イタコン酸等が挙げられる。
 不飽和二塩基酸のモノエステルの例としては、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、イタコン酸モノメチルエステル、イタコン酸モノエチルエステル等が挙げられ、中でも、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステルが好ましい。
 ポリフッ化ビニリデン系樹脂(1)において、全構成単位に占める式(1)で表される単量体由来の構成単位の割合は、電極に対する接着性の観点から、0.005mol%以上が好ましく、0.01mol%以上がより好ましく、0.02mol%以上が更に好ましい。
 ポリフッ化ビニリデン系樹脂(1)において、全構成単位に占める式(1)で表される単量体由来の構成単位の割合は、電極に含まれる活物質に対する影響の低さの観点から、3.0mol%以下が好ましく、2.0mol%以下がより好ましく、1.0mol%以下が更に好ましい。
 ポリフッ化ビニリデン系樹脂(1)は、フッ化ビニリデン(VDF)及び式(1)で表される単量体以外のその他の単量体に由来する構成単位を含んでいてもよい。その他の単量体としては、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、トリクロロエチレン等の含ハロゲン単量体が挙げられる。
 ポリフッ化ビニリデン系樹脂(1)は、ヘキサフルオロプロピレン(HFP)に由来する構成単位を含むことが好ましい。ポリフッ化ビニリデン系樹脂(1)は、全重合成分に占めるHFPの割合を増減することによって、当該樹脂の結晶性、電極に対する接着性、電解液に対する耐溶解性などを適度な範囲に制御できる。
 ポリフッ化ビニリデン系樹脂(1)としては、VDFと、HFPと、式(1)で表される単量体とからなる三元共重合体が好ましい。当該三元共重合体としては、VDF-HFP-アクリル酸三元共重合体が好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体に占めるポリフッ化ビニリデン系樹脂(1)の割合は、ポリフッ化ビニリデン系樹脂全体の酸価を適切な範囲にする観点から、20質量%~80質量%が好ましく、30質量%~70質量%がより好ましく、40質量%~60質量%が更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価(mgKOH/g)は、電極に含まれる活物質に対する影響の低さの観点から、3.0未満が好ましく、2.9以下がより好ましく、2.8以下が更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価(mgKOH/g)は、電極に対する接着性の観点から、0.5以上が好ましく、0.8以上がより好ましく、1.0以上が更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価(mgKOH/g)は、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂を抽出し、その酸価を電位差滴定法(JIS K1557-5:2007)により測定して求める。または、接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂の酸価(mgKOH/g)を電位差滴定法(JIS K1557-5:2007)により測定して求める。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の重量平均分子量(Mw)は、電池の製造時に接着性多孔質層に熱を印加した際に接着性多孔質層の空孔の閉塞が起きにくい観点から、30万以上が好ましく、50万以上がより好ましく、65万以上が更に好ましく、85万以上がより更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体のMwは、電池の製造時に接着性多孔質層に熱を印加した際にポリフッ化ビニリデン系樹脂が適度に軟化し、接着性多孔質層と電極とが良好に接着する観点から、300万未満が好ましく、250万未満がより好ましく、230万未満が更に好ましく、200万未満がより更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体のMwは、ゲルパーミエーションクロマトグラフィー(Gel Permeation Chromatography, GPC)により測定した、ポリスチレン換算の分子量である。接着性多孔質層から抽出したポリフッ化ビニリデン系樹脂または接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にする。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂に係るDSC曲線における吸熱ピーク温度及び発熱ピーク温度を所望の範囲に制御する観点から、接着性多孔質層は以下に説明するポリフッ化ビニリデン系樹脂Xとポリフッ化ビニリデン系樹脂Yとを含むことが好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂Xとポリフッ化ビニリデン系樹脂Yとの合計量は、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体に対して、85質量%~100質量%が好ましく、90質量%~100質量%がより好ましく、95質量%~100質量%が更に好ましい。
-ポリフッ化ビニリデン系樹脂X-
 ポリフッ化ビニリデン系樹脂Xは、フッ化ビニリデン(VDF)由来の構成単位及びヘキサフルオロプロピレン(HFP)由来の構成単位を含み、全構成単位に占めるHFP由来の構成単位の割合が3.5mol%超15mol%以下であり、重量平均分子量(Mw)が10万以上100万未満であり、融点が125℃以上150℃未満である。
 ポリフッ化ビニリデン系樹脂Xにおいて、全構成単位に占めるHFP由来の構成単位の割合は、熱プレスによって当該樹脂のポリマー鎖が運動しやすく電極への接着に優れる観点から、3.5mol%超であり、4.0mol%超が好ましく、4.5mol%超がより好ましく、5.0mol%超が更に好ましい。
 ポリフッ化ビニリデン系樹脂Xにおいて、全構成単位に占めるHFP由来の構成単位の割合は、電解液に対する耐溶解性に優れるから、15mol%以下であり、12mol%以下が好ましく、10mol%以下がより好ましく、8.0mol%以下が更に好ましい。
 ポリフッ化ビニリデン系樹脂XのMwは、電池の製造時に接着性多孔質層に熱を印加した際に接着性多孔質層の空孔の閉塞が起きにくい観点から、10万以上であり、15万以上が好ましく、20万以上がより好ましく、25万以上が更に好ましい。
 ポリフッ化ビニリデン系樹脂XのMwは、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が軟化し、接着性多孔質層と電極とが良好に接着する観点から、100万未満であり、90万未満が好ましく、60万未満がより好ましく、40万未満が更に好ましい。
 ポリフッ化ビニリデン系樹脂XのMwは、GPCにより測定した、ポリスチレン換算の分子量である。接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂Xを試料にする。
 ポリフッ化ビニリデン系樹脂Xの融点は、電池の製造時に接着性多孔質層に熱を印加した際に接着性多孔質層の空孔の閉塞が起きにくい観点から、125℃以上であり、128℃以上が好ましく、130℃以上がより好ましい。
 ポリフッ化ビニリデン系樹脂Xの融点は、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が軟化し、接着性多孔質層と電極とが良好に接着する観点から、150℃未満であり、145℃未満が好ましく、140℃未満がより好ましい。
 ポリフッ化ビニリデン系樹脂Xの融点は、示差走査熱量測定(Differential Scanning Calorimetry, DSC)を行って得たDSC曲線から求める。接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂Xを試料にする。試料をアルミニウム製サンプルパンに入れ、測定装置にセットし、窒素雰囲気下、下記の3ステップを連続して行い、試料の熱分析を行う。
・ステップ1:30℃から200℃まで速度5℃/分で昇温する。
・ステップ2:200℃から30℃まで速度5℃/分で降温する。
・ステップ3:30℃から200℃まで速度5℃/分で昇温する。
 上記ステップ3においてDSC曲線に現れた吸熱ピークの温度をポリフッ化ビニリデン系樹脂Xの融点とする。吸熱ピークが複数ある場合は、最も低温側の吸熱ピークの温度を融点とする。
 ポリフッ化ビニリデン系樹脂Xの好ましい形態として、全構成単位に占めるHFP由来の構成単位の割合が5.0mol%超15mol%以下であり、Mwが30万以上100万未満であり、融点が125℃以上140℃未満である形態が挙げられる。
-ポリフッ化ビニリデン系樹脂Y-
 ポリフッ化ビニリデン系樹脂Yは、フッ化ビニリデン(VDF)由来の構成単位を含み、ヘキサフルオロプロピレン(HFP)由来の構成単位を含んでいてもよく、全構成単位に占めるHFP由来の構成単位の割合が0mol%以上3.5mol%以下であり、重量平均分子量(Mw)が100万以上300万未満であり、融点が150℃以上180℃未満である。
 ポリフッ化ビニリデン系樹脂Yにおいて、全構成単位に占めるHFP由来の構成単位の割合は、電解液に対する耐溶解性に優れるから、3.5mol%以下であり、3.0mol%以下が好ましく、2.5mol%以下がより好ましく、2.0mol%以下が更に好ましい。
 ポリフッ化ビニリデン系樹脂Yにおいて、全構成単位に占めるHFP由来の構成単位の割合は、熱プレスによって当該樹脂のポリマー鎖が運動しやすく電極への接着に優れる観点から、0mol%超が好ましく、0.2mol%以上がより好ましく、0.5mol%以上が更に好ましく、0.7mol%以上がより更に好ましい。
 ポリフッ化ビニリデン系樹脂YのMwは、電池の製造時に接着性多孔質層に熱を印加した際に接着性多孔質層の空孔の閉塞が起きにくい観点から、100万以上であり、120万以上が好ましく、150万以上がより好ましく、160万以上が更に好ましい。
 ポリフッ化ビニリデン系樹脂YのMwは、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が適度に軟化し、接着性多孔質層と電極とが良好に接着する観点から、300万未満であり、250万未満が好ましく、230万未満がより好ましく、200万未満が更に好ましい。
 ポリフッ化ビニリデン系樹脂YのMwは、GPCにより測定した、ポリスチレン換算の分子量である。接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂Yを試料にする。
 ポリフッ化ビニリデン系樹脂Yの融点は、電池の製造時に接着性多孔質層に熱を印加した際に接着性多孔質層の空孔の閉塞が起きにくい観点から、150℃以上であり、155℃以上が好ましく、160℃以上がより好ましい。
 ポリフッ化ビニリデン系樹脂Yの融点は、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が適度に軟化し、接着性多孔質層と電極とが良好に接着する観点から、180℃未満であり、175℃未満が好ましく、170℃未満がより好ましい。
ポリフッ化ビニリデン系樹脂Yの融点は、示差走査熱量測定(Differential Scanning Calorimetry, DSC)を行って得たDSC曲線から求める。接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂Yを試料にする。試料をアルミニウム製サンプルパンに入れ、測定装置にセットし、窒素雰囲気下、下記の3ステップを連続して行い、試料の熱分析を行う。
・ステップ1:30℃から200℃まで速度5℃/分で昇温する。
・ステップ2:200℃から30℃まで速度5℃/分で降温する。
・ステップ3:30℃から200℃まで速度5℃/分で昇温する。
 上記ステップ3においてDSC曲線に現れた吸熱ピークの温度をポリフッ化ビニリデン系樹脂Yの融点とする。吸熱ピークが複数ある場合は、最も低温側の吸熱ピークの温度を融点とする。
 ポリフッ化ビニリデン系樹脂Yの好ましい形態として、全構成単位に占めるHFP由来の構成単位の割合が0mol%以上(好ましくは0mol%超、より好ましくは0.2mol%以上)2.0mol%以下であり、Mwが150万以上200万未満であり、融点が150℃以上170℃未満である形態が挙げられる。
 ポリフッ化ビニリデン系樹脂Yは、前記式(1)で表される単量体由来の構成単位を有するポリフッ化ビニリデン系樹脂であることが好ましい。すなわち、ポリフッ化ビニリデン系樹脂Yは、ポリフッ化ビニリデン系樹脂(1)であることが好ましい。すなわち、ポリフッ化ビニリデン系樹脂Yは、VDFと、HFPと、式(1)で表される単量体とからなる三元共重合体が好ましい。当該三元共重合体としては、VDF-HFP-アクリル酸三元共重合体が好ましい。
 ポリフッ化ビニリデン系樹脂Yにおいて、全構成単位に占める式(1)で表される単量体由来の構成単位の割合は、電極に対する接着性の観点から、0.05mol%以上が好ましく、0.08mol%以上がより好ましく、0.1mol%以上が更に好ましい。
 ポリフッ化ビニリデン系樹脂Yにおいて、全構成単位に占める式(1)で表される単量体由来の構成単位の割合は、電極に含まれる活物質に対する影響の低さの観点から、5.0mol%以下が好ましく、4.0mol%以下がより好ましく、3.0mol%以下が更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂Xとポリフッ化ビニリデン系樹脂Yとの質量比は、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂に係るDSC曲線における吸熱ピーク温度及び発熱ピーク温度を所望の範囲に制御する観点から、ポリフッ化ビニリデン系樹脂X:ポリフッ化ビニリデン系樹脂Y=20:80~80:20であることが好ましく、30:70~70:30であることがより好ましく、35:65~65:35であることが更に好ましく、40:60~60:40であることがより更に好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂Xの融点とポリフッ化ビニリデン系樹脂Yの融点との差分は、ドライヒートプレス及びウェットヒートプレスによる電極との接着性と高温にさらされた後も電池の容量維持率が高いことを両立する観点から、25℃以上であることが好ましく、27℃以上であることがより好ましく、28℃以上であることが更に好ましく、29℃以上であることが更により好ましい。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂Xの融点とポリフッ化ビニリデン系樹脂Yの融点との差分は、接着性多孔質層について均一性の高い多孔質構造を形成する観点から、55℃未満であることが好ましく、50℃未満であることがより好ましく、45℃未満であることが更に好ましく、40℃未満であることが更により好ましい。
-その他の樹脂-
 接着性多孔質層は、ポリフッ化ビニリデン系樹脂以外のその他の樹脂を含んでいてもよい。その他の樹脂としては、例えば、アクリル系樹脂、フッ素系ゴム、スチレン-ブタジエン共重合体、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)、ポリアミド、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、及びこれらの混合物が挙げられる。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂以外のその他の樹脂の含有量は、接着性多孔質層に含まれる全樹脂の全量に対して、0質量%~15質量%が好ましく、0質量%~10質量%がより好ましく、0質量%~5質量%が更に好ましい。
-無機フィラー-
 無機フィラーとしては、例えば、金属水酸化物粒子、金属硫酸塩粒子、金属酸化物粒子、金属炭酸塩粒子、金属窒化物粒子、金属フッ化物粒子、粘土鉱物粒子が挙げられる。無機フィラーは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 金属水酸化物粒子を構成する金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化セリウム、水酸化ニッケルが挙げられる。
 金属硫酸塩粒子を構成する金属硫酸塩としては、例えば、硫酸バリウム、硫酸ストロンチウム、硫酸カルシウム、硫酸カルシウム二水和物、ミョウバン、ジャロサイトが挙げられる。
 金属酸化物粒子を構成する金属酸化物としては、例えば、チタン酸バリウム(BaTiO)、酸化マグネシウム、アルミナ(Al)、ベーマイト(アルミナ1水和物)、チタニア(TiO)、シリカ(SiO)、ジルコニア(ZrO)、酸化亜鉛が挙げられる。
 金属炭酸塩粒子を構成する金属炭酸塩としては、例えば、炭酸カルシウム、炭酸マグネシウムが挙げられる。
 金属窒化物粒子を構成する金属窒化物としては、例えば、窒化マグネシウム、窒化アルミニウム、窒化カルシウム、窒化チタンが挙げられる。
 金属フッ化物粒子を構成する金属フッ化物としては、例えば、フッ化マグネシウム、フッ化カルシウムが挙げられる。
 粘土鉱物粒子を構成する粘土鉱物としては、例えば、ケイ酸カルシウム、リン酸カルシウム、アパタイト、タルクが挙げられる。
 無機フィラーは、シランカップリング剤等により表面修飾された無機フィラーでもよい。
 無機フィラーとしては、電解液又は電解質を分解しにくく、したがって、ガス発生を起しにくい観点から、金属水酸化物粒子、金属硫酸塩粒子及びチタン酸バリウム粒子からなる群から選ばれる少なくとも1種が好ましい。
 接着性多孔質層に含まれる無機フィラー全体に占める金属水酸化物粒子、金属硫酸塩粒子及びチタン酸バリウム粒子の合計量は、ガス発生を抑制する観点から、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上がより更に好ましく、100質量%が最も好ましい。
 接着性多孔質層が多孔質基材の両面にある場合、一方の接着性多孔質層に含まれる無機フィラーの種類と、他方の接着性多孔質層に含まれる無機フィラーの種類とは、同じでもよく異なっていてもよい。
 無機フィラーの粒子形状に限定はなく、球状、板状、針状、不定形状のいずれでもよい。無機フィラーは、電池の短絡抑制の観点又は均一性の高い接着性多孔質層を形成する観点から、球状又は板状の粒子であることが好ましい。
 接着性多孔質層に含まれる無機フィラー全体の平均一次粒径は、接着性多孔質層の耐熱性を高める観点から、1.5μm以下が好ましく、1.2μm以下がより好ましく、1.0μm以下が更に好ましい。
 接着性多孔質層に含まれる無機フィラー全体の平均一次粒径は、無機フィラーどうしの凝集を抑制し均一性の高い接着性多孔質層を形成する観点から、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上が更に好ましい。
 接着性多孔質層に含まれる無機フィラー全体の平均一次粒径は、走査型電子顕微鏡(SEM)による観察において無作為に選んだ無機フィラー100個の長径を計測し、100個の長径を平均することで求める。SEM観察に供する試料は、接着性多孔質層を形成する材料である無機フィラー、又は、セパレータの接着性多孔質層から取り出した無機フィラーである。セパレータの接着性多孔質層から無機フィラーを取り出す方法に制限はない。当該方法は、例えば、セパレータから剥がした接着性多孔質層を、樹脂を溶解する有機溶剤に浸漬して有機溶剤で樹脂を溶解させ無機フィラーを取り出す方法;セパレータから剥がした接着性多孔質層を800℃程度に加熱して樹脂を消失させ無機フィラーを取り出す方法;などである。
 接着性多孔質層が多孔質基材の両面にある場合、一方の接着性多孔質層における無機フィラーの平均一次粒径と、他方の接着性多孔質層における無機フィラーの平均一次粒径とは、同じでもよく異なっていてもよい。
 接着性多孔質層の固形分体積に占める無機フィラーの割合は、セパレータの耐熱性の観点から、30体積%以上が好ましく、35体積%以上がより好ましく、40体積%以上が更に好ましく、45体積%以上がより更に好ましい。
 接着性多孔質層の固形分体積に占める無機フィラーの割合は、接着性多孔質層が多孔質基材から剥がれにくい観点から、67体積%以下が好ましく、66体積%以下がより好ましく、65体積%以下が更に好ましく、63体積%以下がより更に好ましい。
 接着性多孔質層の固形分体積に占める無機フィラーの割合V(体積%)は、下記の式により求める。
V={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
 ここに、接着性多孔質層の構成材料のうち、無機フィラーがaであり、その他の構成材料がb、c、…、nであり、所定面積の接着性多孔質層に含まれる各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm)である。
 上記の式に代入するXa等は、所定面積の接着性多孔質層の形成に使用する構成材料の質量(g)、又は、所定面積の接着性多孔質層から取り出した構成材料の質量(g)である。
 上記の式に代入するDa等は、接着性多孔質層の形成に使用する構成材料の真密度(g/cm)、又は、接着性多孔質層から取り出した構成材料の真密度(g/cm)である。
 接着性多孔質層が多孔質基材の両面にある場合、一方の接着性多孔質層の固形分体積に占める無機フィラーの体積割合と、他方の接着性多孔質層の固形分体積に占める無機フィラーの体積割合とは、同じでもよく異なっていてもよい。
 接着性多孔質層に含まれるフィラー全体量(すなわち、無機フィラーと有機フィラーの合計量)に占める無機フィラーの割合は、セパレータの耐熱性の観点から、90質量%以上が好ましく、95質量%以上がより好ましく、100質量%が更に好ましい。
-有機フィラー-
 有機フィラーとしては、例えば、架橋ポリ(メタ)アクリル酸、架橋ポリ(メタ)アクリル酸エステル、架橋ポリシリコーン、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の架橋高分子からなる粒子;ポリスルホン、ポリアクリロニトリル、アラミド、ポリアセタール、熱可塑性ポリイミド等の耐熱性高分子からなる粒子;などが挙げられる。「(メタ)アクリル」との表記は「アクリル」及び「メタクリル」のいずれでもよいことを意味する。
 有機フィラーを構成する樹脂は、上記の例示材料の、混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)又は架橋体であってもよい。
 有機フィラーは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 接着性多孔質層の固形分体積に占めるフィラー全体の割合(すなわち、無機フィラーと有機フィラーとを合わせた割合)は、セパレータの耐熱性の観点から、30体積%以上が好ましく、35体積%以上がより好ましく、40体積%以上が更に好ましく、45体積%以上がより更に好ましい。
 接着性多孔質層の固形分体積に占めるフィラー全体の割合は、接着性多孔質層が多孔質基材から剥がれにくい観点から、90体積%以下が好ましく、85体積%以下がより好ましく、80体積%以下が更に好ましく、75体積%以下がより更に好ましい。
 接着性多孔質層の固形分体積に占めるフィラー全体の割合V(体積%)は、下記の式により求める。
V={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
 ここに、接着性多孔質層の構成材料のうち、フィラーがaであり、その他の構成材料がb、c、…、nであり、所定面積の接着性多孔質層に含まれる各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm)である。
 上記の式に代入するXa等は、所定面積の接着性多孔質層の形成に使用する構成材料の質量(g)、又は、所定面積の接着性多孔質層から取り出した構成材料の質量(g)である。
 上記の式に代入するDa等は、接着性多孔質層の形成に使用する構成材料の真密度(g/cm)、又は、接着性多孔質層から取り出した構成材料の真密度(g/cm)である。
-その他の成分-
 接着性多孔質層は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤などの添加剤を含んでいてもよい。分散剤は、接着性多孔質層を形成するための塗工液に、分散性、塗工性又は保存安定性を向上させる目的で添加される。湿潤剤、消泡剤、pH調整剤は、接着性多孔質層を形成するための塗工液に、例えば、多孔質基材とのなじみをよくする目的、塗工液へのエア噛み込みを抑制する目的、又はpH調整の目的で添加される。
[接着性多孔質層の特性]
 接着性多孔質層の厚さは、電極に対する接着性又はハンドリング性の観点から、片面0.5μm以上が好ましく、片面1.0μm以上がより好ましく、片面1.5μm以上が更に好ましく、イオン透過性及び電池のエネルギー密度の観点から、片面10.0μm以下が好ましく、片面8.0μm以下がより好ましく、片面6.0μm以下が更に好ましい。
 接着性多孔質層の厚さは、接着性多孔質層が多孔質基材の両面にある場合、両面の合計として、1.0μm以上が好ましく、2.0μm以上がより好ましく、3.0μm以上が更に好ましく、20.0μm以下が好ましく、16.0μm以下がより好ましく、12.0μm以下が更に好ましい。
 接着性多孔質層が多孔質基材の両面にある場合、一方の接着性多孔質層の厚さと他方の接着性多孔質層の厚さとの差(μm)は、小さいほど好ましく、両面合計の厚さ(μm)の20%以下であることが好ましい。
 接着性多孔質層の単位面積当たりの質量は、接着性多孔質層が多孔質基材の片面にある場合も両面にある場合も、電極に対する接着性又はハンドリング性の観点から、両面の合計として1.0g/m以上が好ましく、2.0g/m以上がより好ましく、3.0g/m以上が更に好ましく、イオン透過性及び電池のエネルギー密度の観点から、両面の合計として30.0g/m以下が好ましく、20.0g/m以下がより好ましく、10.0g/m以下が更に好ましい。
 接着性多孔質層が多孔質基材の両面にある場合、一方の接着性多孔質層の単位面積当たりの質量と、他方の接着性多孔質層の単位面積当たりの質量との差(g/m)は、セパレータのカールを抑制する観点又は電池のサイクル特性を良好にする観点から、小さいほど好ましく、両面の合計量(g/m)の20%以下であることが好ましい。
 接着性多孔質層の空孔率は、イオン透過性の観点から、30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましく、接着性多孔質層の力学的強度及び電極に対する接着性の観点から、70%以下が好ましく、65%以下がより好ましく、60%以下が更に好ましい。接着性多孔質層の空孔率ε(%)は、下記の式により求める。
Figure JPOXMLDOC01-appb-M000004

 
 ここに、接着性多孔質層の構成材料1、構成材料2、構成材料3、…、構成材料nについて、各構成材料の単位面積当たりの質量がW、W2、、…、W(g/cm)であり、各構成材料の真密度がd、d、d、…、d(g/cm)であり、接着性多孔質層の厚さがt(cm)である。
 接着性多孔質層の平均孔径は、10nm~200nmが好ましい。平均孔径が10nm以上であると、接着性多孔質層に電解液を含浸させたとき、接着性多孔質層に含まれる樹脂が膨潤しても孔の閉塞が起きにくい。平均孔径が200nm以下であると、接着性多孔質層におけるイオン移動の均一性が高く、電池のサイクル特性及び負荷特性に優れる。
 接着性多孔質層の平均孔径(nm)は、すべての孔が円柱状であると仮定し、以下の式により算出する。
   d=4V/S
 式中、dは接着性多孔質層の平均孔径(直径)、Vは接着性多孔質層1m当たりの空孔体積、Sは接着性多孔質層1m当たりの空孔表面積を表す。
 接着性多孔質層1m当たりの空孔体積Vは、接着性多孔質層の空孔率から算出する。
 接着性多孔質層1m当たりの空孔表面積Sは、以下の方法で求める。
 まず、多孔質基材の比表面積(m/g)とセパレータの比表面積(m/g)とを、窒素ガス吸着法にBET式を適用することにより、窒素ガス吸着量から算出する。これらの比表面積(m/g)にそれぞれの目付(g/m)を乗算して、それぞれの1m当たりの空孔表面積を算出する。そして、多孔質基材1m当たりの空孔表面積をセパレータ1m当たりの空孔表面積から減算して、接着性多孔質層1m当たりの空孔表面積Sを算出する。目付とは、単位面積当たりの質量である。
[セパレータの特性]
 セパレータの厚さは、セパレータの機械的強度の観点から、8μm以上が好ましく、10μm以上がより好ましく、12μm以上が更に好ましく、電池のエネルギー密度の観点から、25μm以下が好ましく、22μm以下がより好ましく、20μm以下が更に好ましい。
 セパレータの膜抵抗は、電池の負荷特性の観点から、1Ω・cm~10Ω・cmが好ましい。セパレータの膜抵抗とは、セパレータに電解液を含浸させた状態での抵抗値であり、電解液として1mol/L LiBF-プロピレンカーボネート:エチレンカーボネート(質量比1:1)を用いて、温度20℃にて交流法にて測定される値である。セパレータの膜抵抗値が低いほど、セパレータのイオン透過性が優れる。
[セパレータの製造方法]
 本開示のセパレータは、例えば、多孔質基材上に接着性多孔質層を湿式塗工法又は乾式塗工法で形成することにより製造できる。本開示において、湿式塗工法とは、塗工層を凝固液中で固化させる方法であり、乾式塗工法とは、塗工層を乾燥させて固化させる方法である。以下に、湿式塗工法の実施形態例を説明する。
 湿式塗工法は、ポリフッ化ビニリデン系樹脂及びフィラーを含有する塗工液を多孔質基材上に塗工し、凝固液に浸漬して塗工層を固化させ、凝固液から引き揚げ水洗及び乾燥を行う方法である。
 接着性多孔質層形成用の塗工液は、ポリフッ化ビニリデン系樹脂及びフィラーを溶媒に溶解又は分散させて作製する。塗工液には、必要に応じて、ポリフッ化ビニリデン系樹脂及びフィラー以外のその他の成分を溶解又は分散させる。
 塗工液の調製に用いる溶媒は、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)を含む。良溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。
 塗工液の調製に用いる溶媒は、良好な多孔質構造を有する多孔質層を形成する観点から、相分離を誘発させる相分離剤を含んでいてもよい。したがって、塗工液の調製に用いる溶媒は、良溶媒と相分離剤との混合溶媒であってもよい。相分離剤は、塗工に適切な粘度が確保できる範囲の量で良溶媒と混合することが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。
 塗工液の調製に用いる溶媒が良溶媒と相分離剤との混合溶媒である場合、良好な多孔質構造を形成する観点から、良溶媒を60質量%以上含み、相分離剤を5質量%~40質量%含む混合溶媒が好ましい。
 塗工液の樹脂濃度は、良好な多孔質構造を形成する観点から、1質量%~20質量%であることが好ましい。塗工液のフィラー濃度は、良好な多孔質構造を形成する観点から、0.5質量%~50質量%であることが好ましい。
 塗工液は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤等を含有していてもよい。これらの添加剤は、非水系二次電池の使用範囲において電気化学的に安定で電池内反応を阻害しないものであれば、接着性多孔質層に残存するものであってもよい。
 多孔質基材への塗工液の塗工手段としては、マイヤーバー、ダイコーター、リバースロールコーター、ロールコーター、グラビアコーター等が挙げられる。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に多孔質基材へ塗工することが生産性の観点から好ましい。
 塗工層の固化は、塗工層を形成した多孔質基材を凝固液に浸漬し、塗工層において相分離を誘発しつつポリフッ化ビニリデン系樹脂を固化させることで行われる。これにより、多孔質基材と接着性多孔質層とからなる積層体を得る。
 凝固液は、塗工液の調製に用いた良溶媒及び相分離剤と、水とを含むことが一般的である。良溶媒と相分離剤の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液中の水の含有量は40質量%~90質量%であることが、多孔質構造の形成及び生産性の観点から好ましい。凝固液の温度は、例えば20℃~50℃である。
 凝固液中で塗工層を固化させた後、積層体を凝固液から引き揚げ、水洗する。水洗することによって、積層体から凝固液を除去する。さらに、乾燥することによって、積層体から水を除去する。水洗は、例えば、積層体を水浴中で搬送することによって行う。乾燥は、例えば、積層体を高温環境中で搬送すること、積層体に風をあてること、積層体をヒートロールに接触させることによって行う。乾燥温度は40℃~80℃が好ましい。
 本開示のセパレータは、乾式塗工法でも製造し得る。乾式塗工法は、塗工液を多孔質基材に塗工し、塗工層を乾燥させて溶媒を揮発除去することにより、接着性多孔質層を多孔質基材上に形成する方法である。
 本開示のセパレータは、接着性多孔質層を独立したシートとして作製し、この接着性多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって複合化する方法によっても製造し得る。接着性多孔質層を独立したシートとして作製する方法としては、上述した湿式塗工法又は乾式塗工法を適用して、剥離シート上に接着性多孔質層を形成する方法が挙げられる。
<非水系二次電池>
 本開示の非水系二次電池は、リチウムイオンのドープ及び脱ドープにより起電力を得る非水系二次電池であり、正極と、負極と、本開示の非水系二次電池用セパレータとを備える。ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 本開示の非水系二次電池は、例えば、負極と正極とがセパレータを介して対向した電池素子が電解液と共に外装材内に封入された構造を有する。本開示の非水系二次電池は、非水電解質二次電池、特にリチウムイオン二次電池に好適である。
 以下、本開示の非水系二次電池が備える正極、負極、電解液及び外装材の形態例を説明する。
 正極の実施形態例としては、正極活物質及びバインダ樹脂を含む活物質層が集電体上に成形された構造が挙げられる。活物質層は、さらに導電助剤を含んでもよい。正極活物質としては、例えば、リチウム含有遷移金属酸化物が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。バインダ樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体等が挙げられる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。集電体としては、例えば厚さ5μm~20μmの、アルミニウム箔、チタン箔、ステンレス箔等が挙げられる。
 負極の実施形態例としては、負極活物質及びバインダ樹脂を含む活物質層が集電体上に成形された構造が挙げられる。活物質層は、さらに導電助剤を含んでもよい。負極活物質としては、リチウムイオンを電気化学的に吸蔵し得る材料が挙げられ、具体的には例えば、炭素材料;ケイ素、スズ、アルミニウム等とリチウムとの合金;ウッド合金;などが挙げられる。バインダ樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体等が挙げられる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末、極細炭素繊維等の炭素材料が挙げられる。集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。リチウム塩としては、例えば、LiPF、LiBF、LiClO等が挙げられる。非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;などが挙げられ、これらは単独で用いても混合して用いてもよい。電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート:鎖状カーボネート)20:80~40:60で混合し、リチウム塩を0.5mol/L~1.5mol/Lの範囲にて溶解した溶液が好適である。
 外装材としては、金属缶、アルミニウムラミネートフィルム製パック等が挙げられる。電池の形状は角型、円筒型、コイン型等があるが、本開示のセパレータはいずれの形状にも好適である。
 本開示の非水系二次電池は、正極と負極との間に本開示のセパレータを配置した積層体を製造した後、この積層体を用いて、例えば下記の(1)~(3)のいずれかにより製造できる。
(1)積層体にドライヒートプレスして電極とセパレータとを接着した後、外装材(例えばアルミニウムラミネートフィルム製パック。以下同じ)に収容し、そこに電解液を注入し、外装材内を真空状態にした後、外装材の上からさらに積層体をウェットヒートプレスし、電極とセパレータとの接着と、外装材の封止とを行う。
(2)積層体を外装材に収容し、そこに電解液を注入し、外装材内を真空状態にした後、外装材の上から積層体をウェットヒートプレスし、電極とセパレータとの接着と、外装材の封止とを行う。
(3)積層体にドライヒートプレスして電極とセパレータとを接着した後、外装材に収容し、そこに電解液を注入し、外装材内を真空状態にした後、外装材の封止を行う。
 上記の製造方法におけるウェットヒートプレスの条件としては、プレス温度は70℃~110℃が好ましく、プレス圧は0.5MPa~2MPaが好ましい。上記の製造方法におけるドライヒートプレスの条件としては、プレス温度は20℃~100℃が好ましく、プレス圧は0.5MPa~9MPaが好ましい。プレス時間は、プレス温度及びプレス圧に応じて調節することが好ましく、例えば0.5分間~60分間の範囲で調節する。
 正極と負極との間にセパレータを配置した積層体を製造する際において、正極と負極との間にセパレータを配置する方式は、正極、セパレータ、負極をこの順に少なくとも1層ずつ積層する方式(所謂スタック方式)でもよく、正極、セパレータ、負極、セパレータをこの順に重ね、長さ方向に捲き回す方式でもよい。
 以下に実施例を挙げて、本開示のセパレータ及び非水系二次電池をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示のセパレータ及び非水系二次電池の範囲は、以下に示す具体例により限定的に解釈されるべきではない。
 以下の説明において、合成、処理、製造などは、特に断りのない限り、室温(25℃±3℃)で行った。
<測定方法、評価方法>
 実施例及び比較例に適用した測定方法及び評価方法は、以下のとおりである。
[ポリエチレン微多孔膜の厚さ]
 ポリエチレン微多孔膜の厚さ(μm)は、接触式の厚み計(株式会社ミツトヨ、LITEMATIC VL-50S)にて10cm四方内の20点を測定し、これを平均することで求めた。測定端子として直径5mmの円柱状の端子を用い、測定中に7gの荷重が印加されるように調整した。
[ポリエチレン微多孔膜の空孔率]
 ポリエチレン微多孔膜の空孔率ε(%)は、下記の式により求めた。
 ε={1-Ws/(ds・t)}×100
 ここに、Wsはポリエチレン微多孔膜の目付(g/m)、dsはポリエチレン微多孔膜の真密度(g/cm)、tはポリエチレン微多孔膜の厚さ(μm)である。
[ポリエチレン微多孔膜及びセパレータのガーレ値]
 ポリエチレン微多孔膜及びセパレータのガーレ値(秒/100mL)は、JIS P8117:2009の規格に従い、ガーレ式デンソメータ(東洋精機社、G-B2C)を用いて測定した。
[ポリフッ化ビニリデン系樹脂の構成単位の分析]
 接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にした。ポリフッ化ビニリデン系樹脂20mgを重ジメチルスルホキシド0.6mLに100℃にて溶解し、100℃で19F-NMRスペクトルを測定した。得られたNMRスペクトルから、HFP由来の構成単位の割合(mol%)及び式(1)で表される単量体由来の構成単位の割合(mol%)を求めた。
[ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)]
 接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にして、GPCにより分子量を測定した。GPCによる分子量測定は、日本分光社製のGPC装置GPC-900を用い、カラムに東ソー社製TSKgel SUPER AWM-Hを2本用い、溶媒にN,N-ジメチルホルムアミドを使用し、温度40℃、流量0.6mL/分の条件で測定し、ポリスチレン換算の分子量を得た。
[ポリフッ化ビニリデン系樹脂の融点]
 接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にし、示差走査熱量測定を行い、融点を求めた。測定装置として、商品名:DSC Q20(TA Instruments社)を使用した。
[ポリフッ化ビニリデン系樹脂の酸価]
 接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にして、電位差滴定法(JIS K1557-5:2007)により酸価(mgKOH/g)を測定した。
[無機フィラーの平均一次粒径]
 接着性多孔質層の形成に用いる無機フィラーを試料にしてSEM観察を行い、平均一次粒径を求めた。
[無機フィラーの体積割合]
 接着性多孔質層の固形分体積に占める無機フィラーの割合V(体積%)は、下記の式により求めた。
V={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
 ここに、接着性多孔質層の構成材料のうち、無機フィラーがaであり、その他の構成材料がb、c、…、nであり、所定面積の接着性多孔質層に含まれる各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm)である。上記の式に代入するXa等は、所定面積の接着性多孔質層の形成に使用する構成材料の質量(g)である。上記の式に代入するDa等は、接着性多孔質層の形成に使用する構成材料の真密度(g/cm)である。
[接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の示差走査熱量測定]
 実施例及び比較例はそれぞれ、多孔質基材の両面に同じ塗工液を等量塗工して接着性多孔質層を形成したので、両面の接着性多孔質層は同じ熱特性を有すると推認した。
 セパレータから一方の接着性多孔質層を剥ぎ取り、接着性多孔質層をジメチルアセトアミドに浸漬し、50℃程度まで加熱し、ポリフッ化ビニリデン系樹脂が溶解した樹脂溶液を得た。樹脂溶液を遠心分離機で遠心し不溶物を沈降させた。不溶物を沈降させた樹脂溶液の上澄みを取り出し、遠心分離を繰り返し、不溶物を除去した。不溶物が除去された樹脂溶液を水に滴下し、ポリフッ化ビニリデン系樹脂を凝固させた。凝固物を水から取り出し乾燥させ、乾燥後の固体を試料とした。
 試料5mgをアルミニウム製サンプルパン(TA Instruments社製、部品番号900786.901)に入れ、ふた(TA Instruments社製、部品番号900779.901)をし、測定装置にセットした。測定装置として、商品名:DSC Q20(TA Instruments社)を使用した。窒素ガスを流量50ml/分で流しながら、先述の3ステップで試料温度を変化させ熱分析を行った。
[ドライ接着性]
 負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
 上記の負極を15mm×70mmの長方形に切り出した。
 セパレータをTD20mm×MD75mmの長方形に切り出した。
 15mm×70mmの長方形の離型紙を用意した。
 負極とセパレータと離型紙とをこの順に重ねた積層体を、アルミニウムラミネートフィルム製のパック中に挿入し、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い(ドライヒートプレス)、これにより負極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm当たり30kgの荷重、プレス時間30秒間とした。その後、パックから積層体を取り出し、離型紙を剥離して、これを試験片とした。
 試験片の負極の無塗工面を金属板に両面テープで固定し、金属板をテンシロン(エー・アンド・デイ社、STB-1225S)の下部チャックに固定した。この際、試験片の長さ方向(即ちセパレータのMD)が重力方向になるように、金属板をテンシロンに固定した。セパレータを下部の端から2cm程度負極から剥がして、その端部を上部チャックに固定し、180°剥離試験を行った。180°剥離試験の引張速度は300mm/分とし、測定開始後10mmから40mmまでの荷重(N)を0.4mm間隔で採取し、その平均を算出した。さらに試験片10枚の荷重を平均した。
[ウェット接着性]
 正極活物質であるコバルト酸リチウム粉末89.5質量部、導電助剤であるアセチレンブラック4.5質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部、及び適量のN-メチル-2-ピロリドンを双腕式混合機にて攪拌して混合し、正極用スラリーを作製した。正極用スラリーを厚さ20μmのアルミニウム箔の両面に塗布し、乾燥後プレスして、正極活物質層を両面に有する両面正極を得た。
 負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の両面に塗布し、乾燥後プレスして、負極活物質層を両面に有する両面負極を得た。
 上記の正極及び負極をそれぞれ30mm×70mmの長方形に切り出した。
 セパレータをTD35mm×MD75mmの長方形に切り出した。
 これらを正極と負極が交互に且つ正極と負極の間にセパレータが挟まるように重ね、正極3枚、負極3枚、セパレータ5枚からなる積層体を作製した。積層体をアルミニウムラミネートフィルム製のパック中に挿入し、パック内に電解液(1mol/L LiPF-エチレンカーボネート:エチルメチルカーボネート[質量比3:7])を注入し、積層体に電解液をしみ込ませた。次いで、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い(ウェットヒートプレス)、電極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm当たり10kgの荷重、プレス時間2分間とし、これをウェット接着性測定用セルとした。
 上記セルについて圧縮型曲げ試験(3点曲げ測定)を行った。測定はテンシロン(エー・アンド・デイ社、STB-1225S)に圧縮型曲げ試験治具を取り付けて実施した。支持台間距離は4cmとし、セルの短手方向が圧子長手方向と平行になり且つ測定時の圧縮位置がセル内電極の長手方向の中央になるようにセルを支持台に設置し、0.1Nの荷重がかかるまで圧子を下げた時の変位を0とし測定を開始した。測定時の圧縮速度は2mm/minとし、変位2mmまで測定を行った。この結果から得られる荷重変位曲線における降伏点荷重をウェット接着強度とした。降伏点荷重が観測できなかった場合は最大荷重をウェット接着強度とした。
[電池の短絡]
 正極活物質であるコバルト酸リチウム粉末89.5質量部、導電助剤であるアセチレンブラック4.5質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部、及び適量のN-メチル-2-ピロリドンを双腕式混合機にて攪拌して混合し、正極用スラリーを作製した。正極用スラリーを厚さ20μmのアルミニウム箔の片面に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
 負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
 正極を3cm×5cmの長方形に切り出し、負極を3.2cm×5.2cmの長方形に切り出して、それぞれにリードタブを溶接した。セパレータを3.5cm×5.5cmの長方形に切り出した。
 正極、セパレータ、負極の順に積層し、この積層体をアルミニウムラミネートフィルム製のパック中に挿入し、パック内に電解液(1mol/L LiPF-エチレンカーボネート:プロピレンカーボネート[質量比1:1])を注入し、積層体に電解液をしみ込ませた。次いで、真空シーラーを用いてパック内を真空状態にして封止し、短絡試験用電池を得た。
 温度25℃下、試験用電池100個に0.2C且つ4.2Vの定電流定電圧充電を行った。次いで、すべての試験用電池を温度150℃のオーブン内に60分間置いた。このとき、試験用電池1個あたり約500g荷重の重りを乗せた。熱処理後、試験用電池をオーブンから取り出し重りを降ろした。試験用電池を室温25℃まで冷ました後、電圧を測定した。電圧が3.5V以下であった試験用電池を短絡したと判断し、100個のうち短絡した試験用電池の個数を数えた。
[放電容量維持率]
 試験用電池を20個用意した。そのうち10個は熱処理せず、これらを標準電池とした。残り10個は温度100℃下で30分間静置し、これらを熱処理電池とした。
 標準電池10個及び熱処理電池10個に次の充放電を行った。充電は0.2C且つ4.2Vの定電流定電圧充電を行い、放電は0.2C且つ2.5Vカットオフの定電流放電とした充放電を5サイクル行った。次いで、充電は0.2C且つ4.2Vの定電流定電圧充電を行い、放電は10C且つ2.5Vカットオフの定電流放電を行った。このときの放電容量を記録し、標準電池及び熱処理電池それぞれ10個の放電容量の平均値を算出した。標準電池の放電容量に対する熱処理電池の放電容量の比率を高温にさらされた電池の放電容量維持率(%)とし、下記の式から求めた。
 放電容量維持率=熱処理電池の放電容量÷標準電池の放電容量×100
<セパレータ及び電池の作製>
[実施例1]
-セパレータの作製-
 接着性多孔質層の材料として、2種類のポリフッ化ビニリデン系樹脂と水酸化マグネシウム粒子とを用意した。これらの物性は表1に記載のとおりである。
 2種類のポリフッ化ビニリデン系樹脂を質量比60:40で混合し、樹脂濃度が5.0質量%となるようにジメチルアセトアミド(DMAc)に溶解し、さらに水酸化マグネシウム粒子を攪拌分散し、塗工液(1)を得た。
 マイヤーバーに塗工液(1)を適量のせ、ポリエチレン微多孔膜(物性は表1に記載のとおりである。)の両面に塗工液(1)を塗工した。その際、ポリエチレン微多孔膜の表裏の塗工量が等量になるように塗工した。これを、凝固液(DMAc:水=50:50[質量比]、液温40℃)に浸漬し塗工層を固化させ、次いで、水温40℃の水洗槽で洗浄し、乾燥した。こうして、ポリエチレン微多孔膜の両面に接着性多孔質層が形成されたセパレータを得た。接着性多孔質層の厚さは片面あたり概ね3μmとした。
-負極の作製-
 負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
-正極の作製-
 正極活物質であるコバルト酸リチウム粉末89.5質量部、導電助剤であるアセチレンブラック4.5質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部、及び適量のN-メチル-2-ピロリドンを双腕式混合機にて攪拌して混合し、正極用スラリーを作製した。正極用スラリーを厚さ20μmのアルミニウム箔の片面に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
-電池の作製-
 正極を3cm×5cmの長方形に切り出し、負極を3.2cm×5.2cmの長方形に切り出して、それぞれにリードタブを溶接した。セパレータを3.4cm×5.4cmの長方形に切り出した。
 正極、セパレータ、負極の順に積層した。積層体の積層方向に熱プレス機を用いて熱プレスを行い(ドライヒートプレス)、電極とセパレータとの仮接着を行った。熱プレスの条件は、温度90℃、電極1cm当たり30kgの荷重、プレス時間30秒間とした。
 仮接着した積層体をアルミニウムラミネートフィルム製のパック中に挿入し、パック内に電解液(1mol/L LiPF-エチレンカーボネート:エチルメチルカーボネート[質量比3:7])を注入し、積層体に電解液をしみ込ませた。次いで、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い(ウェットヒートプレス)、電極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm当たり10kgの荷重、プレス時間2分間とした。
 次いで、真空シーラーを用いてパック内を真空状態にして封止し、試験用電池を得た。
[実施例2~6、比較例1~7]
 実施例1と同様にして、但し、ポリエチレン微多孔膜、並びに、接着性多孔質層の材料であるポリフッ化ビニリデン系樹脂及びフィラーの種類及び量を表1に記載の仕様に変更して、各セパレータを作製した。接着性多孔質層の厚さは片面あたり概ね3μmとした。尚、接着性多孔質層の厚さは比較例6では片面あたり0.3μmとし、比較例7では片面あたり2.0μmとした。
 そして、各セパレータを用いて実施例1と同様にして試験用電池を作製した。
 表1の「PVDF系樹脂X」は、ポリフッ化ビニリデン系樹脂Xに当たる樹脂又はその比較用ポリフッ化ビニリデン系樹脂である。PVDF系樹脂Xは、VDFとHFPとからなる二元共重合体である。尚、比較例6で使用した比較用ポリフッ化ビニリデン系樹脂は、VDFとHFPとアクリル酸(AA:式(1)で表される単量体)とからなる三元共重合体(VDF/HFP/AA=87.2/12.0/0.8[モル%])である。比較例7で使用した比較用ポリフッ化ビニリデン系樹脂は、VDFとHFPとアクリル酸(AA:式(1)で表される単量体)とからなる三元共重合体(VDF/HFP/AA=94.6/5.2/0.2[モル%])である。
 表1の「PVDF系樹脂Y」は、ポリフッ化ビニリデン系樹脂Yに当たる樹脂又はその比較用ポリフッ化ビニリデン系樹脂である。PVDF系樹脂Yは、VDFとHFPと式(1)で表される単量体とからなる三元共重合体である。PVDF系樹脂Yにおける式(1)で表される単量体は全例においてアクリル酸である。
 実施例1~6及び比較例1~7の各セパレータの組成、物性及び評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[参考例1]
 実施例1~4において使用した2種類のポリフッ化ビニリデン系樹脂を質量比50:50で混合した。この混合樹脂を試料にしてDSCを行い、熱特性を分析した。分析結果を表3に示す。
[参考例2]
 実施例5において使用した2種類のポリフッ化ビニリデン系樹脂を質量比50:50で混合した。この混合樹脂を試料にしてDSCを行い、熱特性を分析した。分析結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
 参考例1と参考例2とは、2種類のポリフッ化ビニリデン系樹脂の混合比が同じであるところ、2種類のうち低融点のポリフッ化ビニリデン系樹脂(ポリフッ化ビニリデン系樹脂Xに当たる。)が別種類であり高融点のポリフッ化ビニリデン系樹脂(ポリフッ化ビニリデン系樹脂Yに当たる。)が同種類である。
 参考例1と参考例2とを対比すると、低融点のポリフッ化ビニリデン系樹脂の種類を変えることで、低温側の吸熱ピーク温度及び発熱ピーク温度が変動することが分る。
 参考例1と実施例1とは、2種類のポリフッ化ビニリデン系樹脂が同種類でその混合比も同じである。ただし、実施例1においてDSCに供した試料は、接着性多孔質層から抽出したポリフッ化ビニリデン系樹脂であるので、接着性多孔質層を形成する工程を経たポリフッ化ビニリデン系樹脂である。
 参考例1と実施例1とを対比すると、2種類のポリフッ化ビニリデン系樹脂の混合物は、接着性多孔質層を形成する工程を経ることによって、吸熱ピークの温度差及び発熱ピークの温度差が小さくなることが分る。すなわち、接着性多孔質層を形成する工程を経ることによって、低温側の吸熱ピーク及び発熱ピークが高温側にシフトし、高温側の吸熱ピーク及び発熱ピークが低温側にシフトしている。
 このことから、接着性多孔質層を形成する工程において2種類のポリフッ化ビニリデン系樹脂が部分的に相溶し、低融点のポリフッ化ビニリデン系樹脂に高融点のポリフッ化ビニリデン系樹脂が僅かに溶け込んだ領域と高融点のポリフッ化ビニリデン系樹脂に低融点のポリフッ化ビニリデン系樹脂が僅かに溶け込んだ領域とが存在すると推測される。その結果、低温側の吸熱ピーク及び発熱ピークが高温側にシフトし、高温側の吸熱ピーク及び発熱ピークが低温側にシフトすると推測される。
 比較例1は、2種類のポリフッ化ビニリデン系樹脂の融点の差分が22℃であるが、接着性多孔質層から抽出したポリフッ化ビニリデン系樹脂のDSC曲線には吸熱ピーク及び発熱ピークが2つずつではなく1つずつ観測された。
 先述のとおり、接着性多孔質層を形成する工程において2種類のポリフッ化ビニリデン系樹脂が少なくとも部分的に相溶するものと推測される。このとき、2種類のポリフッ化ビニリデン系樹脂の特徴(当該特徴は、HFP割合、分子量及び融点によって特徴づけられる。)が近似していると2種類のポリフッ化ビニリデン系樹脂が完全に相溶し、DSC曲線に観察される吸熱ピーク及び発熱ピークが1つずつになると推測される。
 2021年7月16日に出願された日本国特許出願2021-118148の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (19)

  1.  多孔質基材と、
     前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
     ガーレ値が50秒/100mL~200秒/100mLであり、
     前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、
     非水系二次電池用セパレータ。
  2.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが125℃以上140℃未満の領域と140℃以上190℃未満の領域とに少なくとも1つずつ観測される、請求項1に記載の非水系二次電池用セパレータ。
  3.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上観測され、隣り合う前記吸熱ピークの温度差がそれぞれ10℃以上60℃以下である、請求項1に記載の非水系二次電池用セパレータ。
  4.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが80℃以上125℃未満の領域と125℃以上190℃未満の領域とに少なくとも1つずつ観測される、請求項1に記載の非水系二次電池用セパレータ。
  5.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが2つ以上観測され、隣り合う前記発熱ピークの温度差がそれぞれ10℃以上90℃以下である、請求項1に記載の非水系二次電池用セパレータ。
  6.  多孔質基材と、
     前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
     ガーレ値が50秒/100mL~200秒/100mLであり、
     前記ポリフッ化ビニリデン系樹脂が下記のポリフッ化ビニリデン系樹脂X及びポリフッ化ビニリデン系樹脂Yを含む、
     非水系二次電池用セパレータ。
     ポリフッ化ビニリデン系樹脂X:フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超15mol%以下であり、重量平均分子量が10万以上100万未満であり、融点が125℃以上150℃未満である。
     ポリフッ化ビニリデン系樹脂Y:フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上3.5mol%以下であり、重量平均分子量が100万以上300万未満であり、融点が150℃以上180℃未満である。
  7.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、請求項6に記載の非水系二次電池用セパレータ。
  8.  前記ポリフッ化ビニリデン系樹脂Xの融点と前記ポリフッ化ビニリデン系樹脂Yの融点との差分が25℃以上55℃未満である、請求項6に記載の非水系二次電池用セパレータ。
  9.  前記接着性多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂Xと前記ポリフッ化ビニリデン系樹脂Yとの質量比が20:80~80:20である、請求項6に記載の非水系二次電池用セパレータ。
  10.  前記ポリフッ化ビニリデン系樹脂Xが、フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が5.0mol%超15mol%以下であり、重量平均分子量が30万以上100万未満であり、融点が125℃以上140℃未満である、請求項6に記載の非水系二次電池用セパレータ。
  11.  前記ポリフッ化ビニリデン系樹脂Yが、フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上2.0mol%以下であり、重量平均分子量が150万以上200万未満であり、融点が150℃以上170℃未満である、請求項6に記載の非水系二次電池用セパレータ。
  12.  前記接着性多孔質層が、下記の式(1)で表される単量体由来の構成単位を有するポリフッ化ビニリデン系樹脂を含む、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
    Figure JPOXMLDOC01-appb-C000001

     
     式(1)中、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
  13.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価が3.0mgKOH/g未満である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
  14.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の重量平均分子量が30万以上300万未満である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
  15.  前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体において、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超7.0mol%以下である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
  16.  前記接着性多孔質層の空孔を除いた体積に占める前記フィラーの体積割合が30体積%~90体積%である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
  17.  前記フィラーが金属水酸化物粒子、金属硫酸塩粒子及びチタン酸バリウム粒子からなる群から選ばれる少なくとも1種を含む、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
  18.  前記接着性多孔質層に含まれるフィラー全体の平均一次粒径が0.01μm~1.5μmである、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
  19.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1又は請求項6に記載の非水系二次電池用セパレータと、を備え、リチウムイオンのドープ及び脱ドープにより起電力を得る非水系二次電池。
PCT/JP2022/027946 2021-07-16 2022-07-15 非水系二次電池用セパレータ及び非水系二次電池 WO2023286875A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247001416A KR20240023424A (ko) 2021-07-16 2022-07-15 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
CN202280049018.3A CN117642921A (zh) 2021-07-16 2022-07-15 非水系二次电池用隔膜及非水系二次电池
JP2022575294A JP7557552B2 (ja) 2021-07-16 2022-07-15 非水系二次電池用セパレータ及び非水系二次電池
EP22842216.8A EP4372895A1 (en) 2021-07-16 2022-07-15 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-118148 2021-07-16
JP2021118148 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286875A1 true WO2023286875A1 (ja) 2023-01-19

Family

ID=84920373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027946 WO2023286875A1 (ja) 2021-07-16 2022-07-15 非水系二次電池用セパレータ及び非水系二次電池

Country Status (5)

Country Link
EP (1) EP4372895A1 (ja)
JP (1) JP7557552B2 (ja)
KR (1) KR20240023424A (ja)
CN (1) CN117642921A (ja)
WO (1) WO2023286875A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058369A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2013058370A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2013058367A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2013058368A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2017208338A (ja) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用分離膜およびこれを含むリチウム二次電池
WO2018163969A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法
WO2018212252A1 (ja) * 2017-05-17 2018-11-22 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法
JP2021118148A (ja) 2020-01-29 2021-08-10 トヨタ自動車株式会社 電池システムおよびリチウムイオン電池の劣化評価方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058369A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2013058370A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2013058367A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2013058368A1 (ja) 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2017208338A (ja) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用分離膜およびこれを含むリチウム二次電池
WO2018163969A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法
WO2018212252A1 (ja) * 2017-05-17 2018-11-22 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法
JP6487130B1 (ja) 2017-05-17 2019-03-20 帝人株式会社 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法
JP2021118148A (ja) 2020-01-29 2021-08-10 トヨタ自動車株式会社 電池システムおよびリチウムイオン電池の劣化評価方法

Also Published As

Publication number Publication date
KR20240023424A (ko) 2024-02-21
CN117642921A (zh) 2024-03-01
JP7557552B2 (ja) 2024-09-27
JPWO2023286875A1 (ja) 2023-01-19
EP4372895A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
JP7324175B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2020189796A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2022025081A1 (ja) 非水系二次電池
CN113574732B (zh) 非水系二次电池用隔膜及非水系二次电池
US20230216143A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2023013751A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7324173B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7313581B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7313582B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7557552B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7557551B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2022024869A (ja) 非水系二次電池
JP7483154B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7411005B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2023210787A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2020189119A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022575294

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280049018.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247001416

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18578793

Country of ref document: US

Ref document number: 1020247001416

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022842216

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022842216

Country of ref document: EP

Effective date: 20240216