WO2023286875A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents
非水系二次電池用セパレータ及び非水系二次電池 Download PDFInfo
- Publication number
- WO2023286875A1 WO2023286875A1 PCT/JP2022/027946 JP2022027946W WO2023286875A1 WO 2023286875 A1 WO2023286875 A1 WO 2023286875A1 JP 2022027946 W JP2022027946 W JP 2022027946W WO 2023286875 A1 WO2023286875 A1 WO 2023286875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyvinylidene fluoride
- porous layer
- adhesive porous
- less
- structural units
- Prior art date
Links
- 229920005989 resin Polymers 0.000 claims abstract description 268
- 239000011347 resin Substances 0.000 claims abstract description 268
- 239000000853 adhesive Substances 0.000 claims abstract description 239
- 230000001070 adhesive effect Effects 0.000 claims abstract description 239
- 239000002033 PVDF binder Substances 0.000 claims abstract description 226
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 226
- 238000000113 differential scanning calorimetry Methods 0.000 claims abstract description 33
- 239000000945 filler Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims description 73
- 125000004432 carbon atom Chemical group C* 0.000 claims description 59
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 52
- 125000000217 alkyl group Chemical group 0.000 claims description 45
- 238000002844 melting Methods 0.000 claims description 44
- 230000008018 melting Effects 0.000 claims description 41
- 239000002245 particle Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 33
- 239000000178 monomer Substances 0.000 claims description 30
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 28
- 239000011148 porous material Substances 0.000 claims description 28
- 125000002947 alkylene group Chemical group 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 16
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 13
- 239000011164 primary particle Substances 0.000 claims description 9
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 8
- 150000004692 metal hydroxides Chemical class 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 229910001416 lithium ion Inorganic materials 0.000 claims description 6
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 5
- 229910002113 barium titanate Inorganic materials 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 52
- 239000010410 layer Substances 0.000 description 248
- -1 polyethylene terephthalate Polymers 0.000 description 47
- 239000011256 inorganic filler Substances 0.000 description 39
- 229910003475 inorganic filler Inorganic materials 0.000 description 39
- 239000012982 microporous membrane Substances 0.000 description 37
- 238000000576 coating method Methods 0.000 description 36
- 239000007788 liquid Substances 0.000 description 32
- 239000008151 electrolyte solution Substances 0.000 description 28
- 238000003825 pressing Methods 0.000 description 27
- 239000011248 coating agent Substances 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 25
- 239000004698 Polyethylene Substances 0.000 description 22
- 229920000573 polyethylene Polymers 0.000 description 22
- 239000000470 constituent Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 229920000098 polyolefin Polymers 0.000 description 20
- 238000012360 testing method Methods 0.000 description 19
- 239000002904 solvent Substances 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 239000011267 electrode slurry Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 12
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 230000001112 coagulating effect Effects 0.000 description 10
- 239000007773 negative electrode material Substances 0.000 description 10
- 238000005191 phase separation Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000011247 coating layer Substances 0.000 description 9
- 229920001897 terpolymer Polymers 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- 239000011149 active material Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 8
- 230000010220 ion permeability Effects 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 239000007774 positive electrode material Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 7
- 229920003048 styrene butadiene rubber Polymers 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 229920006015 heat resistant resin Polymers 0.000 description 6
- 238000007731 hot pressing Methods 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 239000005001 laminate film Substances 0.000 description 6
- 239000002346 layers by function Substances 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 239000012766 organic filler Substances 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 5
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 238000002076 thermal analysis method Methods 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000000547 substituted alkyl group Chemical group 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 229910001512 metal fluoride Inorganic materials 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 238000003918 potentiometric titration Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- BGMFJTUTJOZHHZ-ARJAWSKDSA-N (z)-4-methoxy-3-methyl-4-oxobut-2-enoic acid Chemical compound COC(=O)C(\C)=C/C(O)=O BGMFJTUTJOZHHZ-ARJAWSKDSA-N 0.000 description 2
- 125000000143 2-carboxyethyl group Chemical group [H]OC(=O)C([H])([H])C([H])([H])* 0.000 description 2
- MNMALOLJJPKWGW-UHFFFAOYSA-N 2-chloro-1,3,4,4,5,6,6,7,7,8,8,9,10,10,10-pentadecafluoro-9-(trifluoromethyl)dec-1-ene Chemical compound FC(C(C(F)(F)F)(C(C(C(C(C(C(C(=CF)Cl)F)(F)F)F)(F)F)(F)F)(F)F)F)(F)F MNMALOLJJPKWGW-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 125000005641 methacryl group Chemical group 0.000 description 2
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 125000005156 substituted alkylene group Chemical group 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- NIONDZDPPYHYKY-SNAWJCMRSA-N (2E)-hexenoic acid Chemical compound CCC\C=C\C(O)=O NIONDZDPPYHYKY-SNAWJCMRSA-N 0.000 description 1
- HWQBUJSWKVPMFY-PLNGDYQASA-N (z)-4-ethoxy-3-methyl-4-oxobut-2-enoic acid Chemical compound CCOC(=O)C(\C)=C/C(O)=O HWQBUJSWKVPMFY-PLNGDYQASA-N 0.000 description 1
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- IZUVGRMMRWJVKU-UHFFFAOYSA-N 3-ethoxycarbonylbut-3-enoic acid Chemical compound CCOC(=O)C(=C)CC(O)=O IZUVGRMMRWJVKU-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- OIYTYGOUZOARSH-UHFFFAOYSA-N 4-methoxy-2-methylidene-4-oxobutanoic acid Chemical compound COC(=O)CC(=C)C(O)=O OIYTYGOUZOARSH-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- 229910010212 LiAl1/4Ni3/4O2 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- YIYBQIKDCADOSF-UHFFFAOYSA-N alpha-Butylen-alpha-carbonsaeure Natural products CCC=CC(O)=O YIYBQIKDCADOSF-UHFFFAOYSA-N 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000806 fluorine-19 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052935 jarosite Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920000779 poly(divinylbenzene) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- YIYBQIKDCADOSF-ONEGZZNKSA-N trans-pent-2-enoic acid Chemical compound CC\C=C\C(O)=O YIYBQIKDCADOSF-ONEGZZNKSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/16—Homopolymers or copolymers of vinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/32—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
- C08F14/22—Vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/16—Homopolymers or copolymers or vinylidene fluoride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
- C08F214/225—Vinylidene fluoride with non-fluorinated comonomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to non-aqueous secondary battery separators and non-aqueous secondary batteries.
- WO 2013/058367, WO 2013/058368, WO 2013/058369 and WO 2013/058370 each disclose adhesiveness containing a porous substrate and a polyvinylidene fluoride resin and a porous layer, wherein the polyvinylidene fluoride resin contains at least two types of polyvinylidene fluoride resins.
- Japanese Patent No. 6487130 includes a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride resin, wherein the polyvinylidene fluoride resin comprises vinylidene fluoride, hexafluoropropylene, and an acid group or an ester group.
- a non-aqueous secondary battery separator comprising a copolymer with a monomer having
- a battery using a separator having an adhesive porous layer containing a polyvinylidene fluoride resin is generally manufactured by manufacturing a laminate of an electrode and a separator, housing this laminate in an exterior material, and injecting an electrolytic solution. and heat press treatment (referred to as “wet heat press” in the present disclosure).
- wet heat press since the polyvinylidene fluoride resin is heat-pressed in a state of being swollen in the electrolytic solution, the adhesion between the electrode and the separator is good, and it is easy to obtain good battery characteristics.
- wet heat pressing is performed at a relatively high temperature, the electrolytic solution or electrolyte may decompose and gas may be generated in the battery, which causes, for example, deterioration of the cycle characteristics and dimensional stability of the battery.
- dry heat press there is a technique of performing a heat press treatment (referred to as "dry heat press” in the present disclosure) without impregnating the electrode-separator laminate with an electrolytic solution to bond the electrode and the separator. If the electrodes and separators are sufficiently adhered by dry heat pressing, wet heat pressing is not required, and therefore the electrolytic solution and the electrolyte do not decompose. Also, when wet heat pressing is performed, the temperature of the wet heat pressing can be set to a relatively low temperature if the laminate is subjected to dry heat pressing prior to bonding the electrodes and separators, so that the electrolytic solution and the electrolyte can be kept at a relatively low temperature. Decomposition can be suppressed.
- the separator is adhered to the electrodes by dry heat pressing before housing the laminate in the exterior material, deformation of the laminate that may occur during transportation for housing in the exterior material is suppressed. Therefore, if the separator can be well adhered to the electrode by dry heat pressing, it is expected that the performance of a battery with a larger area can be maintained.
- the present disclosure has been made under the circumstances described above.
- the present disclosure is excellent in adhesion to electrodes by dry heat pressing and adhesion to electrodes by wet heat pressing, the battery is less likely to short circuit at high temperatures, and the battery has a high capacity retention rate even after exposure to high temperatures.
- An object of the present invention is to provide a separator for a non-aqueous secondary battery.
- the endothermic peak is in the region of 125 ° C. or higher and lower than 140 ° C. and the region of 140 ° C. or higher and lower than 190 ° C.
- Two or more endothermic peaks are observed when differential scanning calorimetry is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample, and the temperature difference between the adjacent endothermic peaks is 10°C or more.
- the separator for non-aqueous secondary batteries according to ⁇ 1> or ⁇ 2> which is 60° C. or lower.
- ⁇ 4> When the entire polyvinylidene fluoride resin contained in the adhesive porous layer is subjected to differential scanning calorimetry as a sample, the exothermic peak is in the region of 80 ° C. or higher and lower than 125 ° C. and the region of 125 ° C. or higher and lower than 190 ° C.
- ⁇ 5> Two or more exothermic peaks are observed when differential scanning calorimetry is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample, and the temperature difference between the adjacent exothermic peaks is 10°C or more.
- the polyvinylidene fluoride-based resin includes the following polyvinylidene fluoride-based resin X and polyvinylidene fluoride-based resin Y, Separator for non-aqueous secondary batteries.
- Polyvinylidene fluoride-based resin X contains structural units derived from vinylidene fluoride and structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is more than 3.5 mol% and not more than 15 mol%. , a weight average molecular weight of 100,000 or more and less than 1,000,000, and a melting point of 125°C or more and less than 150°C.
- Polyvinylidene fluoride resin Y contains structural units derived from vinylidene fluoride, may contain structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is 0 mol% or more3 .5 mol% or less, a weight average molecular weight of 1,000,000 or more and less than 3,000,000, and a melting point of 150°C or more and less than 180°C.
- ⁇ 7> Two or more endothermic peaks and/or two or more exothermic peaks are observed when differential scanning calorimetry is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample
- ⁇ 6> The separator for non-aqueous secondary batteries according to .
- ⁇ 8> The non-aqueous secondary battery according to ⁇ 6> or ⁇ 7>, wherein the difference between the melting point of the polyvinylidene fluoride resin X and the melting point of the polyvinylidene fluoride resin Y is 25° C. or more and less than 55° C.
- the non-aqueous secondary battery separator for ⁇ 9> ⁇ 6> to ⁇ 8>, wherein the mass ratio of the polyvinylidene fluoride resin X and the polyvinylidene fluoride resin Y contained in the adhesive porous layer is 20:80 to 80:20
- the non-aqueous secondary battery separator according to any one of items 1 and 2.
- the polyvinylidene fluoride-based resin X contains structural units derived from vinylidene fluoride and structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is more than 5.0 mol%.
- the nonaqueous secondary battery according to any one of ⁇ 6> to ⁇ 9> which is 15 mol% or less, has a weight average molecular weight of 300,000 or more and less than 1,000,000, and has a melting point of 125°C or more and less than 140°C.
- the polyvinylidene fluoride-based resin Y contains structural units derived from vinylidene fluoride, and may contain structural units derived from hexafluoropropylene, and the ratio of structural units derived from hexafluoropropylene to all structural units is 0 mol% or more and 2.0 mol% or less, has a weight average molecular weight of 1,500,000 or more and less than 2,000,000, and has a melting point of 150°C or more and less than 170°C, any one of ⁇ 6> to ⁇ 10> separator for non-aqueous secondary batteries.
- ⁇ 12> Any one of ⁇ 1> to ⁇ 11>, wherein the adhesive porous layer contains a polyvinylidene fluoride-based resin having a structural unit derived from a monomer represented by the following formula (1): The separator for non-aqueous secondary batteries according to .
- R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carboxy group, or a derivative of a carboxy group, and X is a single bond.
- ⁇ 13> The non-aqueous secondary according to any one of ⁇ 1> to ⁇ 12>, wherein the entire polyvinylidene fluoride resin contained in the adhesive porous layer has an acid value of less than 3.0 mgKOH/g. Battery separator.
- ⁇ 14> The non-aqueous two-layer according to any one of ⁇ 1> to ⁇ 13>, wherein the weight average molecular weight of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is 300,000 or more and less than 3,000,000. Separator for secondary batteries.
- the ratio of structural units derived from hexafluoropropylene to all structural units is more than 3.5 mol% and 7.0 mol% or less, ⁇ 1 > to ⁇ 14>, the non-aqueous secondary battery separator according to any one of items.
- ⁇ 17> The non-aqueous system according to any one of ⁇ 1> to ⁇ 16>, wherein the filler contains at least one selected from the group consisting of metal hydroxide particles, metal sulfate particles and barium titanate particles. Separator for secondary battery.
- ⁇ 18> The nonaqueous secondary battery according to any one of ⁇ 1> to ⁇ 17>, wherein the average primary particle size of the entire filler contained in the adhesive porous layer is 0.01 ⁇ m to 1.5 ⁇ m.
- a separator for ⁇ 19> A positive electrode, a negative electrode, and the non-aqueous secondary battery separator according to any one of ⁇ 1> to ⁇ 18> disposed between the positive electrode and the negative electrode, and a lithium ion A non-aqueous secondary battery that obtains an electromotive force by doping and dedoping.
- the adhesion to the electrode by dry heat pressing and the adhesion to the electrode by wet heat pressing are excellent, the short circuit of the battery is unlikely to occur at high temperatures, and the capacity retention rate of the battery even after exposure to high temperatures
- a non-aqueous secondary battery separator having a high
- a numerical range indicated using “to” indicates a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
- the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
- the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
- process includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
- the multiple types of substances present in the composition it means the total amount of substance.
- Particles corresponding to each component in the present disclosure may include a plurality of types.
- the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
- MD Machine Direction
- TD transverse direction
- width direction width direction
- each layer constituting the separator when the lamination relationship of each layer constituting the separator is expressed as “upper” and “lower”, the layer closer to the porous substrate is referred to as “lower”. A distant layer is referred to as "top”.
- drying heat press performing heat press treatment with the separator impregnated with the electrolyte
- drying heat press performing heat press treatment without impregnating the separator with the electrolyte
- substitutional unit of the copolymer or resin is synonymous with the monomer unit.
- solid volume the volume of the adhesive porous layer excluding the pores.
- the non-aqueous secondary battery separator of the present disclosure (also simply referred to as "separator” in the present disclosure) includes a porous substrate and an adhesive porous layer provided on one or both sides of the porous substrate. .
- the adhesive porous layer of the separator of the present disclosure contains a polyvinylidene fluoride resin and a filler.
- a description of an adhesive porous layer in this disclosure is a description of an adhesive porous layer on each side of a porous substrate.
- the separator of the present disclosure may have the adhesive porous layer of the present disclosure on at least one side of the porous substrate.
- Embodiment examples of the separator of the present disclosure include the following form examples (1) to (3).
- the separator of the present disclosure has a Gurley value of 50 seconds/100 mL to 200 seconds/100 mL.
- the battery may short circuit at high temperatures.
- the Gurley value of the separator is 50 seconds/100 mL or more, preferably 60 seconds/100 mL or more, more preferably 70 seconds/100 mL or more, and further preferably 80 seconds/100 mL or more. preferable. If the Gurley value of the separator exceeds 200 seconds/100 mL, the ion permeability is low, and the porous structure may be clogged when exposed to high temperatures, resulting in a decrease in battery capacity.
- the Gurley value of the separator is 200 seconds/100 mL or less, preferably 180 seconds/100 mL or less, and 150 seconds. /100 mL or less is more preferable, and 130 seconds/100 mL or less is even more preferable.
- the Gurley value of the separator of the present disclosure is measured according to JIS P8117:2009.
- the method for controlling the Gurley value of the separator of the present disclosure is not particularly limited, it is preferably controlled by the Gurley value of the porous substrate.
- the Gurley value of the porous substrate can be controlled by the porosity of the porous substrate. It can be controlled by the actual draw ratio.
- the separator of the present disclosure has two or more endothermic peaks and/or exothermic peaks when differential scanning calorimetry (DSC) is performed on the entire polyvinylidene fluoride resin contained in the adhesive porous layer as a sample. Two or more are observed. Two or more endothermic peaks and two or more exothermic peaks may be observed, and two or more of both may be observed. When two or more endothermic peaks are observed, the number of endothermic peaks may be two or three or more. When two or more exothermic peaks are observed, the number of exothermic peaks may be two or three or more.
- the DSC curve with the heat flow as the vertical axis and the time or temperature as the horizontal axis has two or more endothermic peaks or two exothermic peaks.
- polyvinylidene fluoride resin in which polymer chains move when heated at relatively low temperatures in other words, polyvinylidene fluoride resins in which polymer chains move easily
- polymer chains move when heated at relatively high temperatures in other words, polyvinylidene fluoride resins in which polymer chains move easily
- the adhesive porous layer contains a moving polyvinylidene fluoride resin (in other words, a polyvinylidene fluoride resin in which polymer chains are difficult to move).
- the hot press or the heat press at a relatively low temperature is performed in a state where the polyvinylidene fluoride resin does not swell in the electrolytic solution.
- the adhesive porous layer exhibits adhesiveness. Then, since the adhesive porous layer contains polyvinylidene fluoride-based resin in which polymer chains are difficult to move, heat pressing is performed in a state in which the polyvinylidene fluoride-based resin is swollen in the electrolytic solution, or heat pressing is performed at a relatively high temperature.
- the separator of the present disclosure has excellent adhesion to the electrode by both dry heat pressing and wet heat pressing while maintaining the performance of the separator, and the battery capacity retention rate is high even after exposure to high temperatures. It is speculated that
- the separator of the present disclosure preferably exhibits at least one of the following (a) to (d) from the viewpoint of achieving both adhesion to the electrode by hot pressing and maintenance of separator performance after hot pressing.
- Methods for controlling the endothermic peak and exothermic peak of DSC for the polyvinylidene fluoride resin contained in the adhesive porous layer include, for example, the following (I) and (II).
- the degree of crystallinity of the polyvinylidene fluoride-based resin contained in the adhesive porous layer is controlled by the heat conditions, the type or amount of filler, or the addition of the crystal control agent when forming the adhesive porous layer. .
- the adhesive porous layer is peeled off from the separator, and the peeled adhesive porous layer is immersed in dimethylacetamide and heated to about 50° C. to obtain a resin solution in which a polyvinylidene fluoride resin is dissolved.
- the resin solution is centrifuged with a centrifuge to sediment insoluble matter.
- the speed of rotation of the centrifuge is set to a speed effective for sedimentation of insoluble matter, depending on the radius of the rotor.
- the supernatant of the resin solution in which the insoluble matter has been precipitated is taken out, and centrifugation is repeated to remove the insoluble matter.
- the resin solution from which the insoluble matter has been removed is dropped into water to solidify the polyvinylidene fluoride resin.
- the coagulum is removed from the water and dried, and the dried solid is used as a sample. If the separator has an adhesive porous layer (or similar layer) on both sides, the adhesive porous layer (or similar layer) is peeled off one side at a time and each side is used as a separate sample.
- DSC Differential Scanning Calorimetry
- a DSC curve is drawn with temperature (° C.) on the horizontal axis and heat flow (W/g) on the vertical axis.
- an exothermic peak is defined as an upward convex portion in the temperature range from 180°C to 60°C.
- the temperature at the maximum point of the exothermic peak that is, the temperature at which the slope of the tangent line changes from negative to positive in the DSC curve of step 2 from high temperature to low temperature is taken as the exothermic peak temperature.
- the downward convex portion in the temperature range from 60°C to 180°C is taken as the endothermic peak.
- the endothermic peak temperature is defined as the temperature at the minimum point of the endothermic peak, that is, the temperature at which the slope of the tangent line changes from negative to positive in the DSC curve of step 3 from low temperature to high temperature.
- porous base material and the adhesive porous layer of the separator of the present disclosure will be described below.
- a porous substrate means a substrate having pores or voids inside.
- substrates include microporous membranes; porous sheets such as non-woven fabrics and paper made of fibrous materials; composite porous membranes obtained by laminating one or more other porous layers on these microporous membranes or porous sheets. quality sheet; and the like.
- a microporous membrane is preferable from the viewpoint of thinning and strength of the separator.
- a microporous membrane means a membrane having a large number of micropores inside and having a structure in which the micropores are connected to allow gas or liquid to pass from one surface to the other surface.
- an electrically insulating material is preferable, and either an organic material or an inorganic material may be used.
- the porous substrate preferably contains a thermoplastic resin in order to impart a shutdown function to the porous substrate.
- the shutdown function is a function of preventing the thermal runaway of the battery by blocking the movement of ions by closing the pores of the porous base material by dissolving the constituent materials when the temperature of the battery rises.
- a thermoplastic resin having a melting point of less than 200°C is preferable.
- thermoplastic resins include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; among others, polyolefins are preferred.
- a microporous membrane containing polyolefin As the porous substrate, a microporous membrane containing polyolefin (referred to as "polyolefin microporous membrane” in the present disclosure) is preferable.
- the polyolefin microporous membrane include polyolefin microporous membranes that are applied to conventional battery separators, and it is preferable to select one having sufficient mechanical properties and ion permeability from among these.
- the polyolefin microporous membrane is preferably a microporous membrane containing polyethylene from the viewpoint of exhibiting a shutdown function, and the content of polyethylene is preferably 95% by mass or more with respect to the total mass of the polyolefin microporous membrane.
- the polyolefin microporous membrane is preferably a microporous membrane containing polypropylene from the viewpoint of having heat resistance that does not easily break when exposed to high temperatures.
- the polyolefin microporous membrane is preferably a polyolefin microporous membrane containing polyethylene and polypropylene from the viewpoint of having a shutdown function and heat resistance that does not easily break when exposed to high temperatures.
- Polyolefin microporous membranes containing polyethylene and polypropylene include microporous membranes in which polyethylene and polypropylene are mixed in one layer.
- the microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both shutdown function and heat resistance. From the viewpoint of achieving both shutdown function and heat resistance, a microporous polyolefin membrane having a laminated structure of two or more layers, at least one layer containing polyethylene and at least one layer containing polypropylene, is also preferable.
- the polyolefin contained in the polyolefin microporous membrane is preferably polyolefin with a weight average molecular weight (Mw) of 100,000 to 5,000,000.
- Mw weight average molecular weight
- the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane.
- the Mw of the polyolefin is 5,000,000 or less, the shutdown property of the microporous membrane is good, and the microporous membrane can be easily formed.
- a molten polyolefin resin is extruded through a T-die to form a sheet, which is then crystallized, stretched, and then heat treated to form a microporous membrane.
- a method in which a polyolefin resin melted together with a plasticizer is extruded through a T-die, cooled to form a sheet, stretched, the plasticizer is extracted, and a heat treatment is performed to form a microporous membrane.
- porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; porous sheets such as non-woven fabrics and paper made of fibrous substances such as cellulose;
- a heat-resistant resin refers to a resin with a melting point of 200°C or higher, or a resin that does not have a melting point and has a decomposition temperature of 200°C or higher.
- the heat-resistant resin in the present disclosure is a resin that does not melt or decompose in a temperature range of less than 200°C.
- composite porous sheets include sheets in which a functional layer is laminated on a porous sheet made of a microporous membrane or fibrous material. Such a composite porous sheet is preferable from the viewpoint that further functions can be added by the functional layer.
- a porous layer made of a heat-resistant resin and a porous layer made of a heat-resistant resin and an inorganic filler can be used as the functional layer.
- the heat-resistant resin includes one or more heat-resistant resins selected from wholly aromatic polyamides, polyamideimides, polyimides, polyethersulfones, polysulfones, polyetherketones and polyetherimides.
- inorganic fillers include metal oxides such as alumina; metal hydroxides such as magnesium hydroxide; and the like.
- Composite methods include a method of coating a functional layer on a microporous membrane or porous sheet, a method of bonding a microporous membrane or porous sheet and a functional layer with an adhesive, and a method of bonding a microporous membrane or porous sheet A method of thermocompression bonding with the functional layer and the like can be mentioned.
- Various surface treatments are applied to the surface of the porous substrate within a range that does not impair the properties of the porous substrate for the purpose of improving wettability with the coating liquid for forming the adhesive porous layer.
- may Examples of surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
- the thickness of the porous substrate is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less, from the viewpoint of increasing the energy density of the battery, and is 3 ⁇ m or more from the viewpoint of separator production yield and battery production yield. is preferred, 5 ⁇ m or more is more preferred, and 8 ⁇ m or more is even more preferred.
- the Gurley value (JIS P8117:2009) of the porous substrate is preferably 20 seconds/100 mL or more, more preferably 25 seconds/100 mL or more, and even more preferably 60 seconds/100 mL or more, from the viewpoint of suppressing short circuit of the battery. 65 seconds/100 mL or more is even more preferable.
- the Gurley value (JIS P8117: 2009) of the porous substrate is determined from the viewpoint of ion permeability and the clogging of the porous structure at the boundary between the porous substrate and the adhesive porous layer when exposed to high temperatures. is preferably 220 seconds/100 mL or less, more preferably 200 seconds/100 mL or less, even more preferably 190 seconds/100 mL or less, and even more preferably 150 seconds/100 mL or less.
- the porosity of the porous substrate is preferably 20% to 60% from the viewpoint of obtaining appropriate membrane resistance and shutdown function.
- Ws is the basis weight (g/m 2 ) of the porous substrate
- ds is the true density (g/cm 3 ) of the porous substrate
- t is the thickness ( ⁇ m) of the porous substrate.
- the basis weight is mass per unit area.
- the average pore size of the porous substrate is preferably 15 nm to 100 nm from the viewpoint of ion permeability or prevention of short circuits in the battery.
- the average pore size of the porous substrate is measured according to ASTM E1294-89 using a perm porometer (CFP-1500-A manufactured by PMI).
- the adhesive porous layer has a large number of micropores inside and has a structure in which the micropores are connected, and is a layer through which gas or liquid can pass from one surface to the other surface.
- the adhesive porous layer may be on only one side of the porous substrate or may be on both sides of the porous substrate.
- the separator is less likely to curl, resulting in excellent handleability during battery production.
- the adhesive porous layer is present only on one side of the porous substrate, the ion permeability of the separator is more excellent. Also, the thickness of the entire separator can be suppressed, and a battery with higher energy density can be manufactured.
- the adhesive porous layer contains at least a polyvinylidene fluoride resin and a filler.
- the adhesive porous layer may contain other resins than the polyvinylidene fluoride resin.
- the filler contained in the adhesive porous layer may be either an inorganic filler or an organic filler.
- the content of the polyvinylidene fluoride-based resin contained in the adhesive porous layer is preferably 85% to 100% by mass, more preferably 90% to 100% by mass, based on the total amount of all resins contained in the adhesive porous layer. %, more preferably 95% by mass to 100% by mass.
- the type or amount of the polyvinylidene fluoride resin contained in one adhesive porous layer and the polyvinylidene fluoride contained in the other adhesive porous layer may be the same or different.
- Polyvinylidene fluoride resins include, for example, homopolymers of vinylidene fluoride (that is, polyvinylidene fluoride); vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, copolymers with halogen-containing monomers such as trichlorethylene; copolymers with vinylidene fluoride and other monomers other than halogen-containing monomers; copolymers with monomers other than halogen monomers; mixtures thereof; Polyvinylidene fluoride-based resins may be used alone or in combination of two or more.
- the polyvinylidene fluoride resin is preferably a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (VDF-HFP copolymer) from the viewpoint of adhesion to the electrode.
- VDF-HFP copolymer includes both a copolymer obtained by polymerizing only VDF and HFP and a copolymer obtained by polymerizing VDF, HFP and other monomers.
- the VDF-HFP copolymer can control the crystallinity, heat resistance, resistance to dissolution in the electrolyte, etc. of the copolymer within an appropriate range.
- the proportion of HFP-derived structural units in all structural units is preferably more than 3.5 mol % and 7.0 mol % or less.
- the proportion of structural units derived from HFP in all structural units of the entire polyvinylidene fluoride resin is more than 3.5 mol%, the polymer chains of the polyvinylidene fluoride resin easily move, and the polyvinylidene fluoride resin is added to the electrolytic solution.
- the adhesiveness to the electrode is excellent even when hot pressing is performed in a state in which the adhesive is not swollen or even when hot pressing is performed at a relatively low temperature.
- the proportion of HFP-derived structural units is more preferably over 4.0 mol %, and even more preferably over 4.5 mol %.
- the ratio of structural units derived from HFP to the total structural units of the entire polyvinylidene fluoride resin is 7.0 mol % or less, the dissolution resistance to the electrolytic solution is excellent.
- the proportion of HFP-derived structural units is more preferably 6.8 mol % or less, and even more preferably 6.5 mol % or less.
- the polyvinylidene fluoride-based resin includes a polyvinylidene fluoride-based resin having a structural unit derived from a monomer represented by the following formula (1) (referred to as "polyvinylidene fluoride-based resin (1)" in the present disclosure). is preferred.
- R 1 , R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carboxy group, or a derivative of a carboxy group, and X is a single bond.
- the halogen atoms represented by R 1 , R 2 and R 3 may be any of fluorine, chlorine, bromine and iodine atoms, preferably fluorine.
- examples of alkyl groups having 1 to 5 carbon atoms represented by R 1 , R 2 and R 3 include straight-chain alkyl groups such as methyl group, ethyl group, n-propyl group, n -butyl group, n-pentyl group; branched alkyl groups such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group and tert-pentyl group;
- the alkyl group having 1 to 5 carbon atoms for R 1 , R 2 and R 3 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
- the carboxy group derivative represented by R 1 , R 2 and R 3 includes, for example, —C( ⁇ O)—OR 4 (R 4 represents an alkyl group).
- R 4 represents an alkyl group.
- R 4 include linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group and n-pentyl group; branched alkyl groups such as isopropyl group and isobutyl group.
- R 4 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably an alkyl group having 1 to 3 carbon atoms.
- the alkylene group having 1 to 5 carbon atoms represented by X includes, for example, linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group and n-pentylene. group; branched alkylene group such as isopropylene group, isobutylene group, sec-butylene group, tert-butylene group, isopentylene group, neopentylene group and tert-pentylene group;
- the alkylene group having 1 to 5 carbon atoms for X is preferably an alkylene group having 1 to 4 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
- examples of the substituent in the alkylene group having 1 to 5 carbon atoms having a substituent represented by X include a halogen atom, which may be any of a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. .
- the substituted alkylene group having 1 to 5 carbon atoms in X includes, for example, a linear alkylene group such as a methylene group, an ethylene group, an n-propylene group, an n-butylene group, and an n-pentylene group; isopropylene group, isobutylene group, sec-butylene group, tert-butylene group, isopentylene group, neopentylene group and tert-pentylene group;
- the substituted alkylene group having 1 to 5 carbon atoms in X is preferably an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
- the alkyl group having 1 to 5 carbon atoms represented by Y includes, for example, linear alkyl groups such as methyl group, ethyl group, n-propyl group, n-butyl group and n-pentyl. groups; branched alkyl groups such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group and tert-pentyl group;
- the alkyl group having 1 to 5 carbon atoms in Y is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
- the substituted alkyl group of 1 to 5 carbon atoms in the alkyl group of 1 to 5 carbon atoms substituted by at least one hydroxy group represented by Y is, for example, a linear alkyl group, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group; branched alkyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group;
- the substituted alkyl group having 1 to 5 carbon atoms in Y is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
- the number of hydroxy groups substituted is preferably one or two, more preferably one.
- examples of the alkyl group having 1 to 5 carbon atoms substituted with at least one hydroxy group represented by Y include 2-hydroxyethyl group, 2-hydroxypropyl group and 4-hydroxybutyl group. be done.
- the substituted alkyl group having 1 to 5 carbon atoms in the alkyl group having 1 to 5 carbon atoms substituted with at least one carboxy group represented by Y is, for example, a linear alkyl group, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group; branched alkyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group;
- the substituted alkyl group having 1 to 5 carbon atoms in Y is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
- the number of carboxyl groups substituted is preferably one or two, more preferably one.
- examples of the alkyl group having 1 to 5 carbon atoms substituted with at least one carboxy group represented by Y include 2-carboxyethyl group, 2-carboxypropyl group and 4-carboxybutyl group. be done.
- R represents an alkylene group having 1 to 5 carbon atoms
- n is Represents an integer greater than or equal to 0.
- R include linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group and n-pentylene group; branched alkylene groups such as isopropylene group and isobutylene group.
- R is preferably an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
- Examples of the monomer represented by formula (1) include, for example, R 1 , R 2 and R 3 each independently being a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X being a single bond, Examples include monomers in which Y is an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 3 carbon atoms substituted with at least one hydroxy group.
- Examples of the monomer represented by formula (1) include acrylic monomers, unsaturated dibasic acids, monoesters of unsaturated dibasic acids, and the like.
- acrylic monomers examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (meth) acrylic isobutyl acid, tert-butyl (meth)acrylate, pentyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, ( 2-carboxyethyl meth)acrylate, 2-carboxypropyl (meth)acrylate, 4-carboxybutyl (meth)acrylate, butenoic acid, pentenoic acid, hexenoic acid, (meth)acryloyloxyethyl succinic acid and the like. .
- the notation "(meth)acryl” means that either "acryl” or "methacryl” may be used.
- unsaturated dibasic acids examples include unsaturated dicarboxylic acids, more specifically maleic acid, maleic anhydride, citraconic acid, and itaconic acid.
- monoesters of unsaturated dibasic acids include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, itaconic acid monomethyl ester, and itaconic acid monoethyl ester.
- maleic acid monomethyl ester and citraconic acid monomethyl ester are preferable.
- the ratio of structural units derived from the monomer represented by formula (1) to all structural units is preferably 0.005 mol% or more from the viewpoint of adhesion to the electrode, 0.01 mol % or more is more preferable, and 0.02 mol % or more is still more preferable.
- the proportion of structural units derived from the monomer represented by formula (1) to all structural units is 3, from the viewpoint of low influence on the active material contained in the electrode. 0 mol % or less is preferable, 2.0 mol % or less is more preferable, and 1.0 mol % or less is even more preferable.
- the polyvinylidene fluoride resin (1) may contain structural units derived from monomers other than vinylidene fluoride (VDF) and the monomer represented by formula (1).
- Other monomers include halogen-containing monomers such as hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride and trichloroethylene.
- the polyvinylidene fluoride resin (1) preferably contains structural units derived from hexafluoropropylene (HFP).
- Polyvinylidene fluoride resin (1) can control the crystallinity of the resin, adhesion to electrodes, resistance to dissolution in electrolytic solution, etc. within a suitable range by increasing or decreasing the proportion of HFP in the total polymerization components.
- the polyvinylidene fluoride resin (1) is preferably a terpolymer composed of VDF, HFP, and the monomer represented by formula (1).
- a VDF-HFP-acrylic acid terpolymer is preferable.
- the ratio of the polyvinylidene fluoride resin (1) to the entire polyvinylidene fluoride resin contained in the adhesive porous layer is from 20% by mass to 20% by mass from the viewpoint of keeping the acid value of the entire polyvinylidene fluoride resin in an appropriate range. 80% by mass is preferable, 30% by mass to 70% by mass is more preferable, and 40% by mass to 60% by mass is even more preferable.
- the acid value (mgKOH/g) of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is preferably less than 3.0 and 2.9 or less from the viewpoint of low influence on the active material contained in the electrode. is more preferable, and 2.8 or less is even more preferable.
- the acid value (mgKOH/g) of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is preferably 0.5 or more, more preferably 0.8 or more, and 1.0 from the viewpoint of adhesion to the electrode. The above is more preferable.
- the acid value (mgKOH/g) of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is obtained by extracting the polyvinylidene fluoride resin contained in the adhesive porous layer and measuring the acid value by potentiometric titration (JIS K1557-5: 2007).
- the acid value (mgKOH/g) of the polyvinylidene fluoride resin used for forming the adhesive porous layer is obtained by measuring it by potentiometric titration (JIS K1557-5:2007).
- the weight-average molecular weight (Mw) of the entire polyvinylidene fluoride-based resin contained in the adhesive porous layer is such that the pores of the adhesive porous layer are blocked when heat is applied to the adhesive porous layer during battery production. From the viewpoint of less occurrence, it is preferably 300,000 or more, more preferably 500,000 or more, even more preferably 650,000 or more, and even more preferably 850,000 or more.
- the Mw of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is such that the polyvinylidene fluoride resin is moderately softened when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode are preferably less than 3,000,000, more preferably less than 2,500,000, still more preferably less than 2,300,000, and even more preferably less than 2,000,000 from the viewpoint of good adhesion between the electrode and the electrode.
- the Mw of the entire polyvinylidene fluoride resin contained in the adhesive porous layer is the polystyrene-equivalent molecular weight measured by Gel Permeation Chromatography (GPC).
- GPC Gel Permeation Chromatography
- the adhesive porous layer is made of the polyvinylidene fluoride resin described below.
- X and polyvinylidene fluoride resin Y are included.
- the total amount of polyvinylidene fluoride resin X and polyvinylidene fluoride resin Y contained in the adhesive porous layer is 85% by mass to 100% with respect to the entire polyvinylidene fluoride resin contained in the adhesive porous layer. % by mass is preferable, 90% by mass to 100% by mass is more preferable, and 95% by mass to 100% by mass is even more preferable.
- Polyvinylidene fluoride resin X contains structural units derived from vinylidene fluoride (VDF) and structural units derived from hexafluoropropylene (HFP), and the ratio of structural units derived from HFP to all structural units is more than 3.5 mol%. It is 15 mol % or less, has a weight average molecular weight (Mw) of 100,000 or more and less than 1,000,000, and has a melting point of 125°C or more and less than 150°C.
- VDF vinylidene fluoride
- HFP hexafluoropropylene
- the proportion of structural units derived from HFP in all the structural units is more than 3.5 mol% from the viewpoint that the polymer chains of the resin easily move by heat pressing and are excellent in adhesion to the electrode. , preferably more than 4.0 mol %, more preferably more than 4.5 mol %, even more preferably more than 5.0 mol %.
- the ratio of structural units derived from HFP to all structural units is 15 mol% or less, preferably 12 mol% or less, and more preferably 10 mol% or less, because it has excellent resistance to dissolution in an electrolytic solution. , 8.0 mol % or less is more preferable.
- the Mw of the polyvinylidene fluoride resin X is 100,000 or more, and 150,000 or more, from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. More than 200,000 is preferable, 200,000 or more are more preferable, and 250,000 or more are still more preferable.
- the Mw of the polyvinylidene fluoride resin X is 1,000,000 from the viewpoint that the resin softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. is less than, preferably less than 900,000, more preferably less than 600,000, and even more preferably less than 400,000.
- the Mw of the polyvinylidene fluoride resin X is the polystyrene-equivalent molecular weight measured by GPC.
- a polyvinylidene fluoride resin X used for forming an adhesive porous layer is used as a sample.
- the melting point of the polyvinylidene fluoride resin X is 125° C. or higher, and 128° C., from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. above is preferable, and 130° C. or more is more preferable.
- the melting point of the polyvinylidene fluoride-based resin X is 150° C. from the viewpoint that the resin softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. less than, preferably less than 145°C, more preferably less than 140°C.
- the melting point of the polyvinylidene fluoride-based resin X is determined from a DSC curve obtained by performing Differential Scanning Calorimetry (DSC).
- DSC Differential Scanning Calorimetry
- a polyvinylidene fluoride resin X used for forming an adhesive porous layer is used as a sample.
- a sample is placed in an aluminum sample pan, set in a measuring device, and subjected to thermal analysis by successively performing the following three steps in a nitrogen atmosphere.
- Step 1 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
- Step 2 Lower the temperature from 200°C to 30°C at a rate of 5°C/min.
- Step 3 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
- the temperature of the endothermic peak appearing on the DSC curve in step 3 be the melting point of the polyvinylidene fluoride resin X.
- the temperature of the endothermic peak on the lowest temperature side is taken as the melting point.
- polyvinylidene fluoride-based resin X As a preferred form of polyvinylidene fluoride-based resin X, the proportion of HFP-derived structural units in all structural units is more than 5.0 mol% and 15 mol% or less, Mw is 300,000 or more and less than 1,000,000, and the melting point is 125 ° C. A form in which the temperature is not less than 140°C is mentioned.
- Polyvinylidene fluoride resin Y contains structural units derived from vinylidene fluoride (VDF), may contain structural units derived from hexafluoropropylene (HFP), and the ratio of structural units derived from HFP to all structural units is 0 mol% or more and 3.5 mol% or less, the weight average molecular weight (Mw) is 1 million or more and less than 3 million, and the melting point is 150°C or more and less than 180°C.
- VDF vinylidene fluoride
- HFP hexafluoropropylene
- Mw weight average molecular weight
- the ratio of structural units derived from HFP to all structural units is 3.5 mol % or less, preferably 3.0 mol % or less, because of its excellent resistance to dissolution in the electrolytic solution. 5 mol % or less is more preferable, and 2.0 mol % or less is even more preferable.
- the ratio of structural units derived from HFP to all structural units is preferably more than 0 mol%, from the viewpoint of excellent adhesion to electrodes due to easy movement of polymer chains of the resin by hot pressing. 0.2 mol % or more is more preferable, 0.5 mol % or more is still more preferable, and 0.7 mol % or more is still more preferable.
- the Mw of the polyvinylidene fluoride resin Y is 1,000,000 or more, and 1,200,000, from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. 1,500,000 or more are more preferable, and 1,600,000 or more are still more preferable.
- the Mw of the polyvinylidene fluoride resin Y is selected from the viewpoint that the resin moderately softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. It is less than 3 million, preferably less than 2.5 million, more preferably less than 2.3 million, and even more preferably less than 2 million.
- the Mw of the polyvinylidene fluoride resin Y is the polystyrene-equivalent molecular weight measured by GPC.
- a polyvinylidene fluoride resin Y used for forming an adhesive porous layer is used as a sample.
- the melting point of the polyvinylidene fluoride-based resin Y is 150° C. or higher, preferably 155° C., from the viewpoint that the pores of the adhesive porous layer are less likely to be clogged when heat is applied to the adhesive porous layer during battery production. 160° C. or higher is more preferable.
- the melting point of the polyvinylidene fluoride resin Y is determined from the viewpoint that the resin moderately softens when heat is applied to the adhesive porous layer during battery production, and the adhesive porous layer and the electrode adhere well. It is less than 180°C, preferably less than 175°C, more preferably less than 170°C.
- the melting point of the polyvinylidene fluoride resin Y is obtained from a DSC curve obtained by performing differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- a polyvinylidene fluoride resin Y used for forming an adhesive porous layer is used as a sample.
- a sample is placed in an aluminum sample pan, set in a measuring device, and subjected to thermal analysis by successively performing the following three steps in a nitrogen atmosphere.
- Step 1 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
- Step 2 Lower the temperature from 200°C to 30°C at a rate of 5°C/min.
- Step 3 The temperature is raised from 30°C to 200°C at a rate of 5°C/min.
- the temperature of the endothermic peak appearing on the DSC curve in step 3 be the melting point of the polyvinylidene fluoride resin Y.
- the temperature of the endothermic peak on the lowest temperature side is taken as the melting point.
- the ratio of structural units derived from HFP to all structural units is 0 mol% or more (preferably more than 0 mol%, more preferably 0.2 mol% or more) and 2.0 mol% or less. , Mw of 1,500,000 or more and less than 2,000,000, and a melting point of 150°C or more and less than 170°C.
- the polyvinylidene fluoride-based resin Y is preferably a polyvinylidene fluoride-based resin having structural units derived from the monomer represented by the formula (1). That is, the polyvinylidene fluoride resin Y is preferably polyvinylidene fluoride resin (1). That is, the polyvinylidene fluoride resin Y is preferably a terpolymer composed of VDF, HFP, and the monomer represented by formula (1). As the terpolymer, a VDF-HFP-acrylic acid terpolymer is preferred.
- the proportion of structural units derived from the monomer represented by formula (1) in all structural units is preferably 0.05 mol % or more, and 0.05 mol % or more, from the viewpoint of adhesion to electrodes. 08 mol % or more is more preferable, and 0.1 mol % or more is even more preferable.
- the ratio of structural units derived from the monomer represented by formula (1) to all structural units is 5.0 mol from the viewpoint of low influence on the active material contained in the electrode. % or less, more preferably 4.0 mol % or less, and even more preferably 3.0 mol % or less.
- the mass ratio of the polyvinylidene fluoride resin X and the polyvinylidene fluoride resin Y contained in the adhesive porous layer is determined by the endothermic peak temperature and heat generation in the DSC curve of the polyvinylidene fluoride resin contained in the adhesive porous layer. From the viewpoint of controlling the peak temperature within a desired range, the ratio of polyvinylidene fluoride resin X: polyvinylidene fluoride resin Y is preferably 20:80 to 80:20, preferably 30:70 to 70:30. It is more preferably 35:65 to 65:35, even more preferably 40:60 to 60:40.
- the difference between the melting point of the polyvinylidene fluoride-based resin X and the melting point of the polyvinylidene fluoride-based resin Y contained in the adhesive porous layer is the adhesiveness with the electrode by dry heat press and wet heat press, and after exposure to high temperature.
- the temperature is preferably 25 ° C. or higher, more preferably 27 ° C. or higher, further preferably 28 ° C. or higher, and 29 ° C. or higher. is even more preferred.
- the difference between the melting point of the polyvinylidene fluoride resin X and the melting point of the polyvinylidene fluoride resin Y contained in the adhesive porous layer is 55 from the viewpoint of forming a highly uniform porous structure for the adhesive porous layer.
- C. more preferably less than 50.degree. C., still more preferably less than 45.degree. C., even more preferably less than 40.degree.
- the adhesive porous layer may contain resins other than the polyvinylidene fluoride resin.
- resins include, for example, acrylic resins, fluororubbers, styrene-butadiene copolymers, homopolymers or copolymers of vinyl nitrile compounds (acrylonitrile, methacrylonitrile, etc.), carboxymethylcellulose, hydroxyalkylcellulose, Polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyether (polyethylene oxide, polypropylene oxide, etc.), polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polysulfone, polyketone, polyetherketone, polyethersulfone, polyetherimide, and these A mixture of
- the content of other resins other than the polyvinylidene fluoride resin contained in the adhesive porous layer is preferably 0% by mass to 15% by mass with respect to the total amount of all resins contained in the adhesive porous layer. % to 10% by mass is more preferred, and 0% to 5% by mass is even more preferred.
- inorganic filler examples include metal hydroxide particles, metal sulfate particles, metal oxide particles, metal carbonate particles, metal nitride particles, metal fluoride particles, and clay mineral particles.
- An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
- metal hydroxides that make up metal hydroxide particles include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, and nickel hydroxide.
- metal sulfates that make up metal sulfate particles include barium sulfate, strontium sulfate, calcium sulfate, calcium sulfate dihydrate, alum, and jarosite.
- Metal oxides constituting the metal oxide particles include, for example, barium titanate (BaTiO 3 ), magnesium oxide, alumina (Al 2 O 3 ), boehmite (alumina monohydrate), titania (TiO 2 ), and silica. (SiO 2 ), zirconia (ZrO 2 ), and zinc oxide.
- metal carbonates that make up the metal carbonate particles include calcium carbonate and magnesium carbonate.
- metal nitrides that make up the metal nitride particles include magnesium nitride, aluminum nitride, calcium nitride, and titanium nitride.
- metal fluorides that make up the metal fluoride particles include magnesium fluoride and calcium fluoride.
- clay minerals that make up clay mineral particles include calcium silicate, calcium phosphate, apatite, and talc.
- the inorganic filler may be an inorganic filler surface-modified with a silane coupling agent or the like.
- the inorganic filler at least one selected from the group consisting of metal hydroxide particles, metal sulfate particles, and barium titanate particles is used from the viewpoint of not easily decomposing the electrolytic solution or electrolyte and, therefore, not easily generating gas. preferable.
- the total amount of metal hydroxide particles, metal sulfate particles, and barium titanate particles in the inorganic filler contained in the adhesive porous layer is preferably 80% by mass or more, and 85% by mass. % or more, more preferably 90 mass % or more, even more preferably 95 mass % or more, and most preferably 100 mass %.
- the type of inorganic filler contained in one adhesive porous layer and the type of inorganic filler contained in the other adhesive porous layer are the same. But they may well be different.
- the particle shape of the inorganic filler is not limited, and may be spherical, plate-like, acicular, or irregular.
- the inorganic filler is preferably spherical or plate-like particles from the viewpoint of suppressing the short circuit of the battery or from the viewpoint of forming a highly uniform adhesive porous layer.
- the average primary particle size of the entire inorganic filler contained in the adhesive porous layer is preferably 1.5 ⁇ m or less, more preferably 1.2 ⁇ m or less, and 1.0 ⁇ m or less from the viewpoint of increasing the heat resistance of the adhesive porous layer. is more preferred.
- the average primary particle size of the entire inorganic filler contained in the adhesive porous layer is preferably 0.01 ⁇ m or more, and 0.01 ⁇ m or more, from the viewpoint of suppressing aggregation of the inorganic fillers and forming a highly uniform adhesive porous layer. 1 ⁇ m or more is more preferable, and 0.5 ⁇ m or more is even more preferable.
- the average primary particle size of the entire inorganic filler contained in the adhesive porous layer is obtained by measuring the major diameters of 100 randomly selected inorganic fillers in observation with a scanning electron microscope (SEM), and averaging the major diameters of 100. Ask for it.
- SEM scanning electron microscope
- the sample subjected to SEM observation is the inorganic filler that is the material forming the adhesive porous layer, or the inorganic filler taken out from the adhesive porous layer of the separator. There are no restrictions on the method of removing the inorganic filler from the adhesive porous layer of the separator.
- the method includes, for example, a method in which the adhesive porous layer peeled off from the separator is immersed in an organic solvent that dissolves the resin to dissolve the resin in the organic solvent to take out the inorganic filler; A method of heating to about 800° C. to disappear the resin and take out the inorganic filler;
- the average primary particle size of the inorganic filler in one adhesive porous layer and the average primary particle size of the inorganic filler in the other adhesive porous layer? may be the same or different.
- the ratio of the inorganic filler to the solid content volume of the adhesive porous layer is preferably 30% by volume or more, more preferably 35% by volume or more, still more preferably 40% by volume or more, from the viewpoint of heat resistance of the separator, and 45% by volume. % or more is even more preferable.
- the ratio of the inorganic filler to the solid content volume of the adhesive porous layer is preferably 67 vol% or less, more preferably 66 vol% or less, from the viewpoint that the adhesive porous layer is difficult to peel off from the porous substrate, and 65 vol. % or less is more preferable, and 63 volume % or less is even more preferable.
- the ratio V (% by volume) of the inorganic filler to the solid content volume of the adhesive porous layer is determined by the following formula.
- V ⁇ (Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+...+Xn/Dn) ⁇ 100
- the inorganic filler is a
- the other constituent materials are b, c, . are Xa, Xb, Xc , . Xa etc. to be substituted in the above formula is the mass (g) of the constituent material used to form the adhesive porous layer with a predetermined area, or the mass (g) of the constituent material taken out from the adhesive porous layer with a predetermined area ).
- Da etc. to be substituted in the above formula is the true density (g/cm 3 ) of the constituent material used to form the adhesive porous layer, or the true density (g/cm 3 ) of the constituent material taken out from the adhesive porous layer. cm 3 ).
- the volume ratio of the inorganic filler to the solid content volume of one adhesive porous layer and the inorganic filler to the solid content volume of the other adhesive porous layer may be the same or different.
- the ratio of the inorganic filler to the total amount of the filler contained in the adhesive porous layer is preferably 90% by mass or more, more preferably 95% by mass or more, from the viewpoint of the heat resistance of the separator. is more preferable, and 100% by mass is even more preferable.
- organic fillers include crosslinked poly(meth)acrylic acid, crosslinked poly(meth)acrylate, crosslinked polysilicone, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, and melamine resin. , phenolic resin, benzoguanamine-formaldehyde condensate, and other crosslinked polymer particles; polysulfone, polyacrylonitrile, aramid, polyacetal, thermoplastic polyimide, and other heat-resistant polymer particles; The notation "(meth)acryl” means that either "acryl” or "methacryl” may be used.
- the resin that constitutes the organic filler is a mixture, modified product, derivative, copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) or crosslinked product of the above exemplified materials.
- the organic fillers may be used singly or in combination of two or more.
- the ratio of the entire filler to the solid content volume of the adhesive porous layer is preferably 30% by volume or more, and 35% by volume or more. is more preferable, 40% by volume or more is even more preferable, and 45% by volume or more is even more preferable.
- the ratio of the entire filler to the solid content volume of the adhesive porous layer is preferably 90% by volume or less, more preferably 85% by volume or less, more preferably 80% by volume, from the viewpoint that the adhesive porous layer is difficult to peel off from the porous substrate. % or less is more preferable, and 75 volume % or less is even more preferable.
- the ratio V (% by volume) of the entire filler to the solid content volume of the adhesive porous layer is determined by the following formula.
- V ⁇ (Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+...+Xn/Dn) ⁇ 100
- the filler is a
- the other constituent materials are b, c, . . . , n.
- Xa, Xb, Xc, . . . , Xn (g) are the masses, and Da, Db, Dc, . Xa etc.
- the mass (g) of the constituent material used to form the adhesive porous layer with a predetermined area is the mass (g) of the constituent material taken out from the adhesive porous layer with a predetermined area ).
- Da etc. to be substituted in the above formula is the true density (g/cm 3 ) of the constituent material used to form the adhesive porous layer, or the true density (g/cm 3 ) of the constituent material taken out from the adhesive porous layer. cm 3 ).
- the adhesive porous layer may contain additives such as a dispersant such as a surfactant, a wetting agent, an antifoaming agent, and a pH adjuster.
- a dispersant is added to a coating liquid for forming an adhesive porous layer for the purpose of improving dispersibility, coatability or storage stability.
- Wetting agents, antifoaming agents, and pH adjusters are added to the coating liquid for forming the adhesive porous layer, for example, for the purpose of improving compatibility with the porous substrate and preventing air entrainment into the coating liquid. It is added for the purpose of suppression or for the purpose of pH adjustment.
- the thickness of the adhesive porous layer is preferably 0.5 ⁇ m or more on one side, more preferably 1.0 ⁇ m or more on one side, even more preferably 1.5 ⁇ m or more on one side, from the viewpoint of adhesion to electrodes or handling properties. And from the viewpoint of the energy density of the battery, it is preferably 10.0 ⁇ m or less on one side, more preferably 8.0 ⁇ m or less on one side, and even more preferably 6.0 ⁇ m or less on one side.
- the thickness of the adhesive porous layer is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and 3.0 ⁇ m or more as the total thickness of both surfaces when the adhesive porous layer is on both sides of the porous substrate. is more preferably 20.0 ⁇ m or less, more preferably 16.0 ⁇ m or less, and even more preferably 12.0 ⁇ m or less.
- the mass per unit area of the adhesive porous layer is the total of both sides from the viewpoint of adhesion to the electrode or handling.
- 1.0 g/m 2 or more is preferable, 2.0 g/m 2 or more is more preferable, and 3.0 g/m 2 or more is even more preferable.
- 0 g/m 2 or less is preferable, 20.0 g/m 2 or less is more preferable, and 10.0 g/m 2 or less is even more preferable.
- the difference between the mass per unit area of one adhesive porous layer and the mass per unit area of the other adhesive porous layer is preferably as small as possible from the viewpoint of suppressing curling of the separator or improving the cycle characteristics of the battery, and is preferably 20% or less of the total amount (g/m 2 ) of both surfaces.
- the porosity of the adhesive porous layer is preferably 30% or more, more preferably 35% or more, and even more preferably 40% or more. From the viewpoint of adhesiveness, it is preferably 70% or less, more preferably 65% or less, and even more preferably 60% or less.
- the porosity ⁇ (%) of the adhesive porous layer is determined by the following formula.
- the average pore size of the adhesive porous layer is preferably 10 nm to 200 nm.
- the average pore size is 10 nm or more, when the adhesive porous layer is impregnated with an electrolytic solution, the pores are less likely to be clogged even if the resin contained in the adhesive porous layer swells.
- the average pore size is 200 nm or less, the uniformity of ion migration in the adhesive porous layer is high, and the cycle characteristics and load characteristics of the battery are excellent.
- d is the average pore size (diameter) of the adhesive porous layer
- V is the pore volume per 1 m2 of the adhesive porous layer
- S is the pore surface area per 1 m2 of the adhesive porous layer.
- the pore volume V per 1 m 2 of the adhesive porous layer is calculated from the porosity of the adhesive porous layer.
- the pore surface area S per 1 m 2 of the adhesive porous layer is obtained by the following method.
- the specific surface area (m 2 /g) of the porous substrate and the specific surface area (m 2 /g) of the separator are calculated from the nitrogen gas adsorption amount by applying the BET formula to the nitrogen gas adsorption method. These specific surface areas (m 2 /g) are multiplied by each basis weight (g/m 2 ) to calculate the pore surface area per 1 m 2 of each. Then, the pore surface area per 1 m 2 of the porous substrate is subtracted from the pore surface area per 1 m 2 of the separator to calculate the pore surface area S per 1 m 2 of the adhesive porous layer.
- the basis weight is mass per unit area.
- the thickness of the separator is preferably 8 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 12 ⁇ m or more, from the viewpoint of the mechanical strength of the separator, and preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less from the viewpoint of the energy density of the battery. , 20 ⁇ m or less is more preferable.
- the film resistance of the separator is preferably 1 ⁇ cm 2 to 10 ⁇ cm 2 from the viewpoint of battery load characteristics.
- the membrane resistance of the separator is the resistance value when the separator is impregnated with an electrolytic solution. It is a value measured by the AC method at °C. The lower the membrane resistance value of the separator, the better the ion permeability of the separator.
- the separator of the present disclosure can be produced, for example, by forming an adhesive porous layer on a porous substrate by a wet coating method or a dry coating method.
- the wet coating method is a method of solidifying the coating layer in a coagulating liquid
- the dry coating method is a method of drying and solidifying the coating layer. An embodiment of the wet coating method will be described below.
- a coating solution containing a polyvinylidene fluoride resin and a filler is applied onto a porous substrate, immersed in a coagulating solution to solidify the coating layer, then lifted out of the coagulating solution, washed with water, and dried. is the way to do it.
- the coating liquid for forming the adhesive porous layer is prepared by dissolving or dispersing the polyvinylidene fluoride resin and filler in a solvent. Components other than the polyvinylidene fluoride resin and the filler are dissolved or dispersed in the coating liquid, if necessary.
- the solvent used to prepare the coating liquid includes a solvent that dissolves the polyvinylidene fluoride resin (hereinafter also referred to as "good solvent”).
- Good solvents include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide and dimethylformamide.
- the solvent used for preparing the coating liquid may contain a phase separation agent that induces phase separation from the viewpoint of forming a porous layer having a favorable porous structure. Therefore, the solvent used for preparing the coating liquid may be a mixed solvent of a good solvent and a phase separation agent.
- the phase separation agent is preferably mixed with a good solvent in an amount within a range where a suitable viscosity for coating can be secured.
- Phase separation agents include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol and the like.
- the solvent used for preparing the coating liquid is a mixed solvent of a good solvent and a phase separation agent, from the viewpoint of forming a good porous structure, it contains 60% by mass or more of the good solvent and 5% by mass of the phase separation agent.
- a mixed solvent containing up to 40% by mass is preferred.
- the resin concentration of the coating liquid is preferably 1% by mass to 20% by mass.
- the filler concentration of the coating liquid is preferably 0.5% by mass to 50% by mass from the viewpoint of forming a good porous structure.
- the coating liquid may contain a dispersing agent such as a surfactant, a wetting agent, an antifoaming agent, a pH adjuster, and the like. These additives may remain in the adhesive porous layer as long as they are electrochemically stable within the range of use of the non-aqueous secondary battery and do not inhibit the reactions within the battery.
- a dispersing agent such as a surfactant, a wetting agent, an antifoaming agent, a pH adjuster, and the like.
- Meyer bars, die coaters, reverse roll coaters, roll coaters, gravure coaters, etc. can be used as means for applying the coating liquid to the porous substrate.
- the adhesive porous layers are formed on both surfaces of the porous substrate, it is preferable from the viewpoint of productivity to apply the coating liquid to both surfaces of the porous substrate at the same time.
- the coating layer is solidified by immersing the porous substrate on which the coating layer is formed in a coagulating liquid and solidifying the polyvinylidene fluoride resin while inducing phase separation in the coating layer. Thereby, a laminate comprising the porous substrate and the adhesive porous layer is obtained.
- the coagulating liquid generally contains the good solvent and phase separation agent used to prepare the coating liquid, and water.
- the mixing ratio of the good solvent and the phase separation agent is preferably adjusted to the mixing ratio of the mixed solvent used for preparing the coating liquid from the viewpoint of production.
- the content of water in the coagulation liquid is preferably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
- the temperature of the coagulating liquid is, for example, 20°C to 50°C.
- the laminate After solidifying the coating layer in the coagulating liquid, the laminate is lifted out of the coagulating liquid and washed with water.
- the coagulating liquid is removed from the laminate by washing with water. Furthermore, drying removes water from the laminate. Washing with water is performed, for example, by transporting the laminate in a water bath. Drying is carried out, for example, by conveying the laminate in a high-temperature environment, blowing the laminate with air, or contacting the laminate with heat rolls.
- the drying temperature is preferably 40°C to 80°C.
- the separator of the present disclosure can also be produced by a dry coating method.
- the dry coating method is a method of forming an adhesive porous layer on a porous substrate by applying a coating liquid to the porous substrate and drying the coating layer to volatilize and remove the solvent. .
- the separator of the present disclosure can also be produced by a method in which an adhesive porous layer is produced as an independent sheet, this adhesive porous layer is laminated on a porous base material, and combined by thermocompression bonding or an adhesive.
- Examples of the method for producing the adhesive porous layer as an independent sheet include a method of forming the adhesive porous layer on a release sheet by applying the wet coating method or dry coating method described above.
- the nonaqueous secondary battery of the present disclosure is a nonaqueous secondary battery that obtains an electromotive force by doping and dedoping lithium ions, and includes a positive electrode, a negative electrode, and the nonaqueous secondary battery separator of the present disclosure.
- Doping means occluded, supported, adsorbed, or inserted, and means a phenomenon in which lithium ions enter an active material of an electrode such as a positive electrode.
- the non-aqueous secondary battery of the present disclosure has, for example, a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is enclosed in an exterior material together with an electrolytic solution.
- the nonaqueous secondary battery of the present disclosure is suitable for nonaqueous electrolyte secondary batteries, particularly lithium ion secondary batteries.
- Examples of embodiments of the positive electrode include a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector.
- the active material layer may further contain a conductive aid.
- Examples of the positive electrode active material include lithium - containing transition metal oxides . 3 O 2 , LiMn 2 O 4 , LiFePO 4 , LiCo 1/2 Ni 1/2 O 2 , LiAl 1/4 Ni 3/4 O 2 and the like.
- Examples of binder resins include polyvinylidene fluoride resins and styrene-butadiene copolymers.
- Examples of conductive aids include carbon materials such as acetylene black, ketjen black, and graphite powder.
- Examples of current collectors include aluminum foil, titanium foil, stainless steel foil, etc., having a thickness of 5 ⁇ m to 20 ⁇ m.
- An embodiment of the negative electrode includes a structure in which an active material layer containing a negative electrode active material and a binder resin is formed on a current collector.
- the active material layer may further contain a conductive aid.
- the negative electrode active material include materials capable of electrochemically absorbing lithium ions, and specific examples thereof include carbon materials; alloys of silicon, tin, aluminum, etc. with lithium; Wood alloys;
- binder resins include polyvinylidene fluoride resins and styrene-butadiene copolymers.
- Examples of conductive aids include carbon materials such as acetylene black, ketjen black, graphite powder, and ultrafine carbon fibers.
- Examples of current collectors include copper foil, nickel foil, stainless steel foil, etc., having a thickness of 5 ⁇ m to 20 ⁇ m.
- a metallic lithium foil may be used as the negative electrode.
- the electrolytic solution is a solution of lithium salt dissolved in a non-aqueous solvent.
- Lithium salts include, for example, LiPF 6 , LiBF 4 , LiClO 4 and the like.
- Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and fluorine-substituted products thereof; Cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; and the like, and these may be used alone or in combination.
- a cyclic carbonate and a chain carbonate are mixed at a mass ratio (cyclic carbonate: chain carbonate) of 20:80 to 40:60, and a lithium salt is added in a range of 0.5 mol / L to 1.5 mol / L. is preferred.
- Exterior materials include metal cans and aluminum laminate film packs. Batteries may be rectangular, cylindrical, coin-shaped, or the like, and the separator of the present disclosure is suitable for any shape.
- the laminate After the laminate is dry-heat-pressed to adhere the electrodes and the separator, it is housed in an exterior material (for example, an aluminum laminate film pack; the same shall apply hereinafter), the electrolytic solution is injected therein, and the interior of the exterior material is evacuated. After the state, the laminate is further wet-heat-pressed from above the exterior material to bond the electrodes and the separator and to seal the exterior material.
- an exterior material for example, an aluminum laminate film pack; the same shall apply hereinafter
- the laminated body is housed in an exterior material, an electrolytic solution is injected therein, and the interior of the exterior material is evacuated. Then, the laminate is wet-heat-pressed from above the exterior material to bond the electrode and the separator. , and sealing of the exterior material.
- the laminate After the laminate is dry-heat-pressed to adhere the electrodes and the separator, it is housed in an exterior material, an electrolytic solution is injected therein, and the interior of the exterior material is evacuated, and then the exterior material is sealed. conduct.
- the wet heat press conditions in the above manufacturing method are preferably a press temperature of 70°C to 110°C and a press pressure of 0.5 MPa to 2 MPa.
- the pressing temperature is preferably 20° C. to 100° C.
- the pressing pressure is preferably 0.5 MPa to 9 MPa.
- the pressing time is preferably adjusted according to the pressing temperature and pressing pressure, and is adjusted, for example, within the range of 0.5 minutes to 60 minutes.
- the method of placing the separator between the positive electrode and the negative electrode is a method of laminating at least one layer each of the positive electrode, the separator, and the negative electrode in this order (so-called stack method), or a method in which the positive electrode, the separator, the negative electrode, and the separator are stacked in this order and wound in the length direction.
- the separator and the non-aqueous secondary battery of the present disclosure will be more specifically described below with reference to examples. Materials, usage amounts, proportions, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present disclosure. Therefore, the scope of the separator and the non-aqueous secondary battery of the present disclosure should not be construed to be limited by the specific examples shown below.
- the thickness ( ⁇ m) of the polyethylene microporous membrane was obtained by measuring 20 points in a 10 cm square with a contact thickness gauge (MITUTOYO Co., Ltd., LITEMATIC VL-50S) and averaging the measured values. A cylindrical terminal with a diameter of 5 mm was used as a measuring terminal, and was adjusted so that a load of 7 g was applied during measurement.
- a contact thickness gauge MITUTOYO Co., Ltd., LITEMATIC VL-50S
- Ws is the basis weight (g/m 2 ) of the polyethylene microporous membrane
- ds is the true density (g/cm 3 ) of the polyethylene microporous membrane
- t is the thickness ( ⁇ m) of the polyethylene microporous membrane.
- Gurley value of polyethylene microporous membrane and separator The Gurley value (sec/100 mL) of the polyethylene microporous membrane and the separator was measured using a Gurley densometer (Toyo Seiki Co., Ltd., G-B2C) according to JIS P8117:2009.
- the polyvinylidene fluoride resin used for forming the adhesive porous layer was used as a sample, and the molecular weight was measured by GPC.
- Molecular weight measurement by GPC uses a GPC device GPC-900 manufactured by JASCO Corporation, uses two TSKgel SUPER AWM-H manufactured by Tosoh Corporation as a column, uses N,N-dimethylformamide as a solvent, and performs the measurement at a temperature of 40°C. Measurement was performed at a flow rate of 0.6 mL/min to obtain a polystyrene equivalent molecular weight.
- [Melting point of polyvinylidene fluoride resin] A polyvinylidene fluoride resin used for forming the adhesive porous layer was used as a sample, and differential scanning calorimetry was performed to determine the melting point. As a measuring device, trade name: DSC Q20 (TA Instruments) was used.
- the acid value (mgKOH/g) was measured by potentiometric titration (JIS K1557-5:2007) using the polyvinylidene fluoride resin used for forming the adhesive porous layer as a sample.
- An inorganic filler used for forming an adhesive porous layer was used as a sample and subjected to SEM observation to determine the average primary particle size.
- the ratio V (% by volume) of the inorganic filler to the solid content volume of the adhesive porous layer was determined by the following formula.
- V ⁇ (Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+...+Xn/Dn) ⁇ 100
- the inorganic filler is a
- the other constituent materials are b, c, . are Xa, Xb, Xc , .
- Xa and the like to be substituted in the above formula are the mass (g) of the constituent material used to form the adhesive porous layer having a predetermined area.
- Da and the like substituted into the above formulas are the true densities (g/cm 3 ) of the constituent materials used to form the adhesive porous layer.
- the supernatant of the resin solution in which the insoluble matter had settled was taken out, and centrifugation was repeated to remove the insoluble matter.
- the resin solution from which the insoluble matter was removed was dropped into water to solidify the polyvinylidene fluoride resin.
- the coagulum was taken out from water and dried, and the dried solid was used as a sample.
- a 5 mg sample was placed in an aluminum sample pan (manufactured by TA Instruments, part number 900786.901), covered with a lid (manufactured by TA Instruments, part number 900779.901), and set in the measuring device.
- a measuring device trade name: DSC Q20 (TA Instruments) was used.
- Thermal analysis was performed by changing the sample temperature in the above three steps while flowing nitrogen gas at a flow rate of 50 ml/min.
- a rectangle of 15 mm ⁇ 70 mm was cut out from the above negative electrode.
- a separator was cut into a rectangle of TD 20 mm ⁇ MD 75 mm.
- a rectangular release paper of 15 mm ⁇ 70 mm was prepared.
- a laminate obtained by stacking a negative electrode, a separator, and a release paper in this order is inserted into a pack made of an aluminum laminate film, and the entire pack is heat-pressed in the stacking direction of the laminate using a heat press (dry heat press). , thereby bonding the negative electrode and the separator.
- the hot press conditions were a temperature of 90° C., a load of 30 kg per 1 cm 2 of the electrode, and a pressing time of 30 seconds. After that, the laminate was taken out from the pack, the release paper was peeled off, and this was used as a test piece.
- the uncoated surface of the negative electrode of the test piece was fixed to a metal plate with double-sided tape, and the metal plate was fixed to the lower chuck of Tensilon (A&D, STB-1225S). At this time, the metal plate was fixed to the Tensilon so that the longitudinal direction of the test piece (that is, MD of the separator) was in the direction of gravity.
- the separator was peeled off from the negative electrode by about 2 cm from the lower edge, the edge was fixed to the upper chuck, and a 180° peeling test was performed.
- the tensile speed of the 180° peel test was 300 mm/min, and the load (N) from 10 mm to 40 mm after the start of measurement was sampled at intervals of 0.4 mm, and the average was calculated. Furthermore, the load of 10 test pieces was averaged.
- the mixture was stirred and mixed with a double-arm mixer to prepare a positive electrode slurry.
- the positive electrode slurry was applied to both sides of an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to obtain a double-sided positive electrode having positive electrode active material layers on both sides.
- Each of the above positive and negative electrodes was cut into a rectangle of 30 mm ⁇ 70 mm.
- a separator was cut into a rectangle of 35 mm TD ⁇ 75 mm MD.
- the positive electrodes and the negative electrodes were alternately stacked so that the separator was sandwiched between the positive electrodes and the negative electrodes to prepare a laminate consisting of 3 positive electrodes, 3 negative electrodes, and 5 separators.
- the laminate was inserted into a pack made of an aluminum laminate film, and an electrolytic solution (1 mol/L LiPF 6 -ethylene carbonate:ethyl methyl carbonate [mass ratio: 3:7]) was injected into the pack to apply the electrolytic solution to the laminate. soaked in.
- the pack was hot-pressed in the stacking direction of the laminate using a hot-press machine (wet heat press) to bond the electrodes and the separators.
- the hot press conditions were a temperature of 90° C., a load of 10 kg per 1 cm 2 of the electrode, and a press time of 2 minutes.
- a compression type bending test (three-point bending measurement) was performed on the above cell.
- the measurement was carried out by attaching a compression type bending test jig to Tensilon (A&D Co., STB-1225S).
- the distance between the supports was set to 4 cm, the cell was placed on the support so that the lateral direction of the cell was parallel to the longitudinal direction of the indenter, and the compression position during measurement was at the center of the electrodes in the cell in the longitudinal direction.
- the displacement when the indenter was lowered until a load of 1 N was applied was set to 0, and the measurement was started.
- the compression speed during measurement was 2 mm/min, and the measurement was performed up to a displacement of 2 mm.
- the yield point load in the load-displacement curve obtained from this result was taken as the wet adhesive strength. When the yield point load could not be observed, the maximum load was taken as the wet bond strength.
- [Battery short circuit] 89.5 parts by mass of lithium cobaltate powder as a positive electrode active material, 4.5 parts by mass of acetylene black as a conductive agent, 6 parts by mass of polyvinylidene fluoride as a binder resin, and an appropriate amount of N-methyl-2-pyrrolidone.
- the mixture was stirred and mixed with a double-arm mixer to prepare a positive electrode slurry.
- the positive electrode slurry was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to obtain a positive electrode having a positive electrode active material layer.
- the positive electrode was cut into a 3 cm ⁇ 5 cm rectangle, and the negative electrode was cut into a 3.2 cm ⁇ 5.2 cm rectangle, and lead tabs were welded to each.
- the separator was cut into 3.5 cm x 5.5 cm rectangles.
- a positive electrode, a separator, and a negative electrode are laminated in this order, and this laminate is inserted into a pack made of an aluminum laminate film, and an electrolytic solution (1 mol/L LiPF 6 -ethylene carbonate:propylene carbonate [mass ratio 1:1]) is added to the pack. was injected to impregnate the laminate with the electrolytic solution. Then, the inside of the pack was evacuated and sealed using a vacuum sealer to obtain a battery for short-circuit test.
- test batteries were charged with a constant current and constant voltage of 0.2C and 4.2V. All test cells were then placed in an oven at a temperature of 150° C. for 60 minutes. At this time, a weight of about 500 g was placed on each test battery. After heat treatment, the test cell was removed from the oven and the weight was removed. After cooling the test battery to room temperature of 25° C., the voltage was measured. Test batteries with a voltage of 3.5 V or less were judged to be short-circuited, and the number of short-circuited test batteries out of 100 was counted.
- Discharge capacity retention rate Discharge capacity of heat-treated battery / Discharge capacity of standard battery x 100
- Example 1 ⁇ Preparation of separator and battery>
- Two types of polyvinylidene fluoride resin and magnesium hydroxide particles were prepared as materials for the adhesive porous layer. These physical properties are shown in Table 1. Two types of polyvinylidene fluoride resins are mixed at a mass ratio of 60:40, dissolved in dimethylacetamide (DMAc) so that the resin concentration is 5.0% by mass, and magnesium hydroxide particles are dispersed by stirring and coated. A working solution (1) was obtained.
- DMAc dimethylacetamide
- negative electrode- 300 parts by mass of artificial graphite as a negative electrode active material, 7.5 parts by mass of an aqueous dispersion containing 40% by mass of a modified styrene-butadiene copolymer as a binder resin, 3 parts by mass of carboxymethyl cellulose as a thickener , and an appropriate amount of water were stirred and mixed with a double-arm mixer to prepare a negative electrode slurry.
- a negative electrode slurry was applied to one side of a copper foil having a thickness of 10 ⁇ m, dried and then pressed to obtain a negative electrode having a negative electrode active material layer.
- the mixture was stirred and mixed with a double-arm mixer to prepare a positive electrode slurry.
- the positive electrode slurry was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, dried and then pressed to obtain a positive electrode having a positive electrode active material layer.
- the positive electrode was cut into a 3 cm ⁇ 5 cm rectangle, and the negative electrode was cut into a 3.2 cm ⁇ 5.2 cm rectangle, and lead tabs were welded to each.
- the separator was cut into 3.4 cm x 5.4 cm rectangles.
- a positive electrode, a separator, and a negative electrode were laminated in this order.
- a hot press was used in the stacking direction of the laminate to perform hot pressing (dry heat pressing), and the electrode and the separator were temporarily adhered.
- the hot press conditions were a temperature of 90° C., a load of 30 kg per 1 cm 2 of the electrode, and a pressing time of 30 seconds.
- the temporarily adhered laminate was inserted into a pack made of an aluminum laminate film, and an electrolytic solution (1 mol/L LiPF 6 -ethylene carbonate:ethyl methyl carbonate [mass ratio 3:7]) was injected into the pack to attach the laminate. impregnated with electrolyte.
- the pack was hot-pressed in the stacking direction of the laminate using a hot-press machine (wet heat press) to bond the electrodes and the separators.
- the hot press conditions were a temperature of 90° C., a load of 10 kg per 1 cm 2 of the electrode, and a pressing time of 2 minutes.
- the inside of the pack was evacuated using a vacuum sealer and sealed to obtain a test battery.
- Examples 2 to 6, Comparative Examples 1 to 7 In the same manner as in Example 1, except that the types and amounts of the polyethylene microporous membrane and the polyvinylidene fluoride resin and filler, which are the materials of the adhesive porous layer, were changed to the specifications shown in Table 1, and each A separator was produced.
- the thickness of the adhesive porous layer was approximately 3 ⁇ m per side.
- the thickness of the adhesive porous layer was 0.3 ⁇ m per side in Comparative Example 6, and 2.0 ⁇ m per side in Comparative Example 7. Then, a test battery was produced in the same manner as in Example 1 using each separator.
- PVDF-based resin X in Table 1 is a resin corresponding to polyvinylidene fluoride-based resin X or a polyvinylidene fluoride-based resin for comparison.
- the PVDF-based resin X is a binary copolymer composed of VDF and HFP.
- PVDF-based resin Y in Table 1 is a resin corresponding to polyvinylidene fluoride-based resin Y or a polyvinylidene fluoride-based resin for comparison.
- the PVDF-based resin Y is a terpolymer composed of VDF, HFP, and the monomer represented by Formula (1).
- the monomer represented by the formula (1) in the PVDF-based resin Y is acrylic acid in all examples.
- Tables 1 and 2 show the composition, physical properties and evaluation results of the separators of Examples 1-6 and Comparative Examples 1-7.
- the two types of polyvinylidene fluoride resins are the same type and the mixing ratio is also the same.
- the sample subjected to DSC in Example 1 is a polyvinylidene fluoride resin extracted from the adhesive porous layer, it is a polyvinylidene fluoride resin that has undergone the step of forming the adhesive porous layer.
- the mixture of two types of polyvinylidene fluoride-based resins has a temperature difference between the endothermic peak and the temperature difference between the exothermic peaks by going through the step of forming an adhesive porous layer. I know it will be smaller.
- the endothermic peak and exothermic peak on the low temperature side shift to the high temperature side, and the endothermic peak and exothermic peak on the high temperature side shift to the low temperature side.
- the two types of polyvinylidene fluoride resins are partially compatible, and the high melting point polyvinylidene fluoride resin is slightly mixed with the low melting point polyvinylidene fluoride resin. It is presumed that there are a dissolved region and a region in which the low-melting polyvinylidene fluoride-based resin is slightly dissolved in the high-melting-point polyvinylidene fluoride-based resin. As a result, it is presumed that the endothermic peak and exothermic peak on the low temperature side shift to the high temperature side, and the endothermic peak and exothermic peak on the high temperature side shift to the low temperature side.
- the difference in melting point between the two polyvinylidene fluoride resins is 22° C., but the DSC curve of the polyvinylidene fluoride resin extracted from the adhesive porous layer has two endothermic peaks and two exothermic peaks. observed one by one instead of one by one.
- the two types of polyvinylidene fluoride resins are at least partially compatible in the step of forming the adhesive porous layer.
- the characteristics of the two types of polyvinylidene fluoride resins are similar, the two types of polyvinylidene fluoride resins are completely compatible. , there will be one endothermic peak and one exothermic peak observed in the DSC curve.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Cell Separators (AREA)
Abstract
Description
特許第6487130号公報には、多孔質基材と、ポリフッ化ビニリデン系樹脂を含む接着性多孔質層とを備え、前記ポリフッ化ビニリデン系樹脂がフッ化ビニリデンとヘキサフルオロプロピレンと酸性基又はエステル基を有する単量体との共重合体を含む非水系二次電池用セパレータが開示されている。
また、ウェットヒートプレスを行う場合も、それに先立って積層体にドライヒートプレスを行い電極とセパレータを接着しておけば、ウェットヒートプレスの温度を比較的低温に設定できるので、電解液及び電解質の分解が抑制できる。加えて、積層体を外装材に収容する前にドライヒートプレスによってセパレータを電極に接着しておけば、外装材に収容するための搬送時に起こり得る積層体の変形が抑制される。
したがって、ドライヒートプレスによってセパレータを電極に良好に接着できれば、より大面積化した電池の性能を保てると期待される。
また、電池内部が高温になると、多孔質基材の空孔が比較的大きい場合には高温下でセパレータの強度が著しく弱くなり、電池の短絡が発生しやすい。
本開示は、ドライヒートプレスによる電極との接着及びウェットヒートプレスによる電極との接着に優れ、高温下に電池の短絡が発生しにくく、且つ高温にさらされた後も電池の容量維持率が高い非水系二次電池用セパレータを提供することを課題とする。
<1> 多孔質基材と、
前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
ガーレ値が50秒/100mL~200秒/100mLであり、
前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、
非水系二次電池用セパレータ。
<2> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが125℃以上140℃未満の領域と140℃以上190℃未満の領域とに少なくとも1つずつ観測される、<1>に記載の非水系二次電池用セパレータ。
<3> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上観測され、隣り合う前記吸熱ピークの温度差がそれぞれ10℃以上60℃以下である、<1>又は<2>に記載の非水系二次電池用セパレータ。
<4> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが80℃以上125℃未満の領域と125℃以上190℃未満の領域とに少なくとも1つずつ観測される、<1>~<3>のいずれか1項に記載の非水系二次電池用セパレータ。
<5> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが2つ以上観測され、隣り合う前記発熱ピークの温度差がそれぞれ10℃以上90℃以下である、<1>~<4>のいずれか1項に記載の非水系二次電池用セパレータ。
<6> 多孔質基材と、
前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
ガーレ値が50秒/100mL~200秒/100mLであり、
前記ポリフッ化ビニリデン系樹脂が下記のポリフッ化ビニリデン系樹脂X及びポリフッ化ビニリデン系樹脂Yを含む、
非水系二次電池用セパレータ。
ポリフッ化ビニリデン系樹脂X:フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超15mol%以下であり、重量平均分子量が10万以上100万未満であり、融点が125℃以上150℃未満である。
ポリフッ化ビニリデン系樹脂Y:フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上3.5mol%以下であり、重量平均分子量が100万以上300万未満であり、融点が150℃以上180℃未満である。
<7> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、<6>に記載の非水系二次電池用セパレータ。
<8> 前記ポリフッ化ビニリデン系樹脂Xの融点と前記ポリフッ化ビニリデン系樹脂Yの融点との差分が25℃以上55℃未満である、<6>又は<7>に記載の非水系二次電池用セパレータ。
<9> 前記接着性多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂Xと前記ポリフッ化ビニリデン系樹脂Yとの質量比が20:80~80:20である、<6>~<8>のいずれか1項に記載の非水系二次電池用セパレータ。
<10> 前記ポリフッ化ビニリデン系樹脂Xが、フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が5.0mol%超15mol%以下であり、重量平均分子量が30万以上100万未満であり、融点が125℃以上140℃未満である、<6>~<9>のいずれか1項に記載の非水系二次電池用セパレータ。
<11> 前記ポリフッ化ビニリデン系樹脂Yが、フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上2.0mol%以下であり、重量平均分子量が150万以上200万未満であり、融点が150℃以上170℃未満である、<6>~<10>のいずれか1項に記載の非水系二次電池用セパレータ。
<12> 前記接着性多孔質層が、下記の式(1)で表される単量体由来の構成単位を有するポリフッ化ビニリデン系樹脂を含む、<1>~<11>のいずれか1項に記載の非水系二次電池用セパレータ。
式(1)中、R1、R2及びR3はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH2)n-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。
<14> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の重量平均分子量が30万以上300万未満である、<1>~<13>のいずれか1項に記載の非水系二次電池用セパレータ。
<15> 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体において、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超7.0mol%以下である、<1>~<14>のいずれか1項に記載の非水系二次電池用セパレータ。
<16> 前記接着性多孔質層の空孔を除いた体積に占める前記フィラーの体積割合が30体積%~90体積%である、<1>~<15>のいずれか1項に記載の非水系二次電池用セパレータ。
<17> 前記フィラーが金属水酸化物粒子、金属硫酸塩粒子及びチタン酸バリウム粒子からなる群から選ばれる少なくとも1種を含む、<1>~<16>のいずれか1項に記載の非水系二次電池用セパレータ。
<18> 前記接着性多孔質層に含まれるフィラー全体の平均一次粒径が0.01μm~1.5μmである、<1>~<17>のいずれか1項に記載の非水系二次電池用セパレータ。
<19> 正極と、負極と、前記正極及び前記負極の間に配置された<1>~<18>のいずれか1項に記載の非水系二次電池用セパレータと、を備え、リチウムイオンのドープ及び脱ドープにより起電力を得る非水系二次電池。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示の非水系二次電池用セパレータ(本開示において単に「セパレータ」ともいう。)は、多孔質基材と、多孔質基材の片面又は両面に設けられた接着性多孔質層とを備える。本開示のセパレータの接着性多孔質層は、ポリフッ化ビニリデン系樹脂及びフィラーを含む。
(1)多孔質基材の両面に本開示の接着性多孔質層を有するセパレータ。当該セパレータにおいて一方の面の接着性多孔質層と他方の面の接着性多孔質層とは、成分、組成、熱的性質などにおいて同じでもよく異なっていてもよい。
(2)多孔質基材の一方の面に本開示の接着性多孔質層を有し、多孔質基材の他方の面に別の層を有するセパレータ。
(3)多孔質基材の一方の面に本開示の接着性多孔質層を有し、多孔質基材の他方の面に層を有しない(つまり、多孔質基材の表面が露出している。)セパレータ。
セパレータのガーレ値が200秒/100mL超であると、イオン透過性が低く、また、高温にさらされたときに多孔質構造が閉塞して電池容量が低下することがある。イオン透過性を確保する観点と、高温にさらされても多孔質構造が保たれる観点とから、セパレータのガーレ値は、200秒/100mL以下であり、180秒/100mL以下が好ましく、150秒/100mL以下がより好ましく、130秒/100mL以下が更に好ましい。
吸熱ピークと発熱ピークは、少なくとも一方が2つ以上観測されればよく、両方が2つ以上観測されてもよい。吸熱ピークが2つ以上観測される場合、吸熱ピークは2つでもよく、3つ以上でもよい。発熱ピークが2つ以上観測される場合、発熱ピークは2つでもよく、3つ以上でもよい。
ポリマー鎖が運動しやすいポリフッ化ビニリデン系樹脂が接着性多孔質層に含まれていることによって、電解液にポリフッ化ビニリデン系樹脂が膨潤しない状態での熱プレス又は比較的低温の熱プレスであっても接着性多孔質層が接着性を発揮する。そして、ポリマー鎖が運動しにくいポリフッ化ビニリデン系樹脂が接着性多孔質層に含まれていることによって、電解液にポリフッ化ビニリデン系樹脂が膨潤した状態での熱プレス又は比較的高温の熱プレスであっても接着性多孔質層の閉塞が抑制され、セパレータの性能が維持されると推測される。
また、ポリマー鎖が運動しにくいポリフッ化ビニリデン系樹脂が接着性多孔質層に含まれていることによって、電池内部が高温になっても接着性多孔質層の閉塞が抑制されと推測される。
したがって、本開示のセパレータは、セパレータの性能を維持しつつ、ドライヒートプレス及びウェットヒートプレスのいずれによっても電極との接着に優れ、且つ、高温にさらされた後も電池の容量維持率が高いと推測される。
この場合、上記の2領域以外の領域にさらに吸熱ピークが観測されてもよい。
上記の温度差はそれぞれ、15℃以上が好ましく、20℃以上がより好ましい。上記の温度差はそれぞれ、50℃以下が好ましく、40℃以下がより好ましい。
この場合、上記の2領域以外の領域にさらに発熱ピークが観測されてもよい。
上記の温度差はそれぞれ、15℃以上が好ましく、18℃以上がより好ましく、20℃以上が更に好ましい。上記の温度差はそれぞれ、80℃以下が好ましく、50℃以下がより好ましく、40℃以下が更に好ましい。
(I)ポリフッ化ビニリデン系樹脂の形成に、重合成分の種類若しくは量、分子量、又は融点において相違する2種類以上のポリフッ化ビニリデン系樹脂を使用し、その混合比を調整する。
(II)接着性多孔質層を形成する際の熱条件、フィラーの種類若しくは量、又は結晶制御剤の配合によって、接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の結晶化度を制御する。
セパレータから接着性多孔質層を剥ぎ取り、剥ぎ取った接着性多孔質層をジメチルアセトアミドに浸漬し、50℃程度まで加熱し、ポリフッ化ビニリデン系樹脂が溶解した樹脂溶液を得る。樹脂溶液を遠心分離機で遠心し不溶物を沈降させる。遠心分離機の回転速度は、ローターの半径に応じて、不溶物を沈降させるために有効な速度に設定する。不溶物を沈降させた樹脂溶液の上澄みを取り出し、遠心分離を繰り返し、不溶物を除去する。不溶物が除去された樹脂溶液を水に滴下し、ポリフッ化ビニリデン系樹脂を凝固させる。凝固物を水から取り出し乾燥させ、乾燥後の固体を試料とする。
セパレータが両面に接着性多孔質層(又はそれに類する層)を有する場合、片面ずつ接着性多孔質層(又はそれに類する層)を剥ぎ取り、片面それぞれを別の試料とする。
5.0mg±0.3mgの試料をアルミニウム製サンプルパンに入れ、測定装置にセットする。窒素雰囲気下、下記の3ステップを連続して行い、試料の熱分析を行う。
・ステップ1:30℃から200℃まで速度5℃/分で昇温する。
・ステップ2:200℃から30℃まで速度5℃/分で降温する。
・ステップ3:30℃から200℃まで速度5℃/分で昇温する。
DSCの熱分析結果をもとに、横軸が温度(℃)かつ縦軸が熱流(W/g)であるDSC曲線を描く。
ステップ2において、180℃から60℃までの温度領域で上に凸な部分を発熱ピークとする。発熱ピークの極大点の温度、すなわち、ステップ2のDSC曲線において、高温から低温に向かって、接線の傾きが負から正に変る温度を発熱ピーク温度とする。
ステップ3において、60℃から180℃までの温度領域で下に凸な部分を吸熱ピークとする。吸熱ピークの極小点の温度、すなわち、ステップ3のDSC曲線において、低温から高温に向かって、接線の傾きが負から正に変る温度を吸熱ピーク温度とする。
本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層した複合多孔質シート;などが挙げられる。本開示においては、セパレータの薄膜化及び強度の観点から、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、微細孔が連結した構造となっており、一方の面から他方の面へと気体又は液体が通過可能となった膜を意味する。
多孔質基材の厚さは、電池のエネルギー密度を高める観点から、25μm以下が好ましく、20μm以下がより好ましく、15μm以下が更に好ましく、セパレータの製造歩留り及び電池の製造歩留りの観点から、3μm以上が好ましく、5μm以上がより好ましく、8μm以上が更に好ましい。
多孔質基材のガーレ値(JIS P8117:2009)は、イオン透過性の観点と、高温にさらされたときに多孔質基材と接着性多孔質層との境界において多孔質構造が閉塞することを抑制する観点とから、220秒/100mL以下が好ましく、200秒/100mL以下がより好ましく、190秒/100mL以下が更に好ましく、150秒/100mL以下がより更に好ましい。
ε={1-Ws/(ds・t)}×100
ここに、Wsは多孔質基材の目付(g/m2)、dsは多孔質基材の真密度(g/cm3)、tは多孔質基材の厚さ(μm)である。目付とは、単位面積当たりの質量である。
接着性多孔質層は、内部に多数の微細孔を有し、微細孔が連結した構造となっており、一方の面から他方の面へと気体又は液体が通過可能な層である。
接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂の含有量は、接着性多孔質層に含まれる全樹脂の全量に対して、85質量%~100質量%が好ましく、90質量%~100質量%がより好ましく、95質量%~100質量%が更に好ましい。
ポリフッ化ビニリデン系樹脂全体の全構成単位に占めるHFP由来の構成単位の割合が3.5mol%超であると、ポリフッ化ビニリデン系樹脂のポリマー鎖が運動しやすく、電解液にポリフッ化ビニリデン系樹脂が膨潤しない状態での熱プレス又は比較的低温の熱プレスであっても電極に対する接着性に優れる。この観点から、HFP由来の構成単位の割合は、4.0mol%超がより好ましく、4.5mol%超が更に好ましい。
ポリフッ化ビニリデン系樹脂全体の全構成単位に占めるHFP由来の構成単位の割合が7.0mol%以下であると、電解液に対する耐溶解性に優れる。この観点から、HFP由来の構成単位の割合は、6.8mol%以下がより好ましく、6.5mol%以下が更に好ましい。
Rとしては、例えば、直鎖状のアルキレン基である、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基;分岐状のアルキレン基である、イソプロピレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基;が挙げられる。Rとしては、炭素数1~4のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
nとしては、0~5の整数が好ましく、1~4の整数がより好ましく、2又は3が更に好ましい。
当該基の具体例としては、例えば、-(CH2)2-O-C(=O)-(CH2)2-C(=O)-OHが挙げられる。
ポリフッ化ビニリデン系樹脂(1)において、全構成単位に占める式(1)で表される単量体由来の構成単位の割合は、電極に含まれる活物質に対する影響の低さの観点から、3.0mol%以下が好ましく、2.0mol%以下がより好ましく、1.0mol%以下が更に好ましい。
接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価(mgKOH/g)は、電極に対する接着性の観点から、0.5以上が好ましく、0.8以上がより好ましく、1.0以上が更に好ましい。
接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体のMwは、電池の製造時に接着性多孔質層に熱を印加した際にポリフッ化ビニリデン系樹脂が適度に軟化し、接着性多孔質層と電極とが良好に接着する観点から、300万未満が好ましく、250万未満がより好ましく、230万未満が更に好ましく、200万未満がより更に好ましい。
ポリフッ化ビニリデン系樹脂Xは、フッ化ビニリデン(VDF)由来の構成単位及びヘキサフルオロプロピレン(HFP)由来の構成単位を含み、全構成単位に占めるHFP由来の構成単位の割合が3.5mol%超15mol%以下であり、重量平均分子量(Mw)が10万以上100万未満であり、融点が125℃以上150℃未満である。
ポリフッ化ビニリデン系樹脂Xにおいて、全構成単位に占めるHFP由来の構成単位の割合は、電解液に対する耐溶解性に優れるから、15mol%以下であり、12mol%以下が好ましく、10mol%以下がより好ましく、8.0mol%以下が更に好ましい。
ポリフッ化ビニリデン系樹脂XのMwは、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が軟化し、接着性多孔質層と電極とが良好に接着する観点から、100万未満であり、90万未満が好ましく、60万未満がより好ましく、40万未満が更に好ましい。
ポリフッ化ビニリデン系樹脂Xの融点は、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が軟化し、接着性多孔質層と電極とが良好に接着する観点から、150℃未満であり、145℃未満が好ましく、140℃未満がより好ましい。
・ステップ1:30℃から200℃まで速度5℃/分で昇温する。
・ステップ2:200℃から30℃まで速度5℃/分で降温する。
・ステップ3:30℃から200℃まで速度5℃/分で昇温する。
上記ステップ3においてDSC曲線に現れた吸熱ピークの温度をポリフッ化ビニリデン系樹脂Xの融点とする。吸熱ピークが複数ある場合は、最も低温側の吸熱ピークの温度を融点とする。
ポリフッ化ビニリデン系樹脂Yは、フッ化ビニリデン(VDF)由来の構成単位を含み、ヘキサフルオロプロピレン(HFP)由来の構成単位を含んでいてもよく、全構成単位に占めるHFP由来の構成単位の割合が0mol%以上3.5mol%以下であり、重量平均分子量(Mw)が100万以上300万未満であり、融点が150℃以上180℃未満である。
ポリフッ化ビニリデン系樹脂Yにおいて、全構成単位に占めるHFP由来の構成単位の割合は、熱プレスによって当該樹脂のポリマー鎖が運動しやすく電極への接着に優れる観点から、0mol%超が好ましく、0.2mol%以上がより好ましく、0.5mol%以上が更に好ましく、0.7mol%以上がより更に好ましい。
ポリフッ化ビニリデン系樹脂YのMwは、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が適度に軟化し、接着性多孔質層と電極とが良好に接着する観点から、300万未満であり、250万未満が好ましく、230万未満がより好ましく、200万未満が更に好ましい。
ポリフッ化ビニリデン系樹脂Yの融点は、電池の製造時に接着性多孔質層に熱を印加した際に当該樹脂が適度に軟化し、接着性多孔質層と電極とが良好に接着する観点から、180℃未満であり、175℃未満が好ましく、170℃未満がより好ましい。
・ステップ1:30℃から200℃まで速度5℃/分で昇温する。
・ステップ2:200℃から30℃まで速度5℃/分で降温する。
・ステップ3:30℃から200℃まで速度5℃/分で昇温する。
上記ステップ3においてDSC曲線に現れた吸熱ピークの温度をポリフッ化ビニリデン系樹脂Yの融点とする。吸熱ピークが複数ある場合は、最も低温側の吸熱ピークの温度を融点とする。
ポリフッ化ビニリデン系樹脂Yにおいて、全構成単位に占める式(1)で表される単量体由来の構成単位の割合は、電極に含まれる活物質に対する影響の低さの観点から、5.0mol%以下が好ましく、4.0mol%以下がより好ましく、3.0mol%以下が更に好ましい。
接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂Xの融点とポリフッ化ビニリデン系樹脂Yの融点との差分は、接着性多孔質層について均一性の高い多孔質構造を形成する観点から、55℃未満であることが好ましく、50℃未満であることがより好ましく、45℃未満であることが更に好ましく、40℃未満であることが更により好ましい。
接着性多孔質層は、ポリフッ化ビニリデン系樹脂以外のその他の樹脂を含んでいてもよい。その他の樹脂としては、例えば、アクリル系樹脂、フッ素系ゴム、スチレン-ブタジエン共重合体、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)、ポリアミド、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、及びこれらの混合物が挙げられる。
無機フィラーとしては、例えば、金属水酸化物粒子、金属硫酸塩粒子、金属酸化物粒子、金属炭酸塩粒子、金属窒化物粒子、金属フッ化物粒子、粘土鉱物粒子が挙げられる。無機フィラーは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
接着性多孔質層に含まれる無機フィラー全体の平均一次粒径は、無機フィラーどうしの凝集を抑制し均一性の高い接着性多孔質層を形成する観点から、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上が更に好ましい。
接着性多孔質層の固形分体積に占める無機フィラーの割合は、接着性多孔質層が多孔質基材から剥がれにくい観点から、67体積%以下が好ましく、66体積%以下がより好ましく、65体積%以下が更に好ましく、63体積%以下がより更に好ましい。
V={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
ここに、接着性多孔質層の構成材料のうち、無機フィラーがaであり、その他の構成材料がb、c、…、nであり、所定面積の接着性多孔質層に含まれる各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm3)である。
上記の式に代入するXa等は、所定面積の接着性多孔質層の形成に使用する構成材料の質量(g)、又は、所定面積の接着性多孔質層から取り出した構成材料の質量(g)である。
上記の式に代入するDa等は、接着性多孔質層の形成に使用する構成材料の真密度(g/cm3)、又は、接着性多孔質層から取り出した構成材料の真密度(g/cm3)である。
有機フィラーとしては、例えば、架橋ポリ(メタ)アクリル酸、架橋ポリ(メタ)アクリル酸エステル、架橋ポリシリコーン、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物等の架橋高分子からなる粒子;ポリスルホン、ポリアクリロニトリル、アラミド、ポリアセタール、熱可塑性ポリイミド等の耐熱性高分子からなる粒子;などが挙げられる。「(メタ)アクリル」との表記は「アクリル」及び「メタクリル」のいずれでもよいことを意味する。
有機フィラーを構成する樹脂は、上記の例示材料の、混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)又は架橋体であってもよい。
接着性多孔質層の固形分体積に占めるフィラー全体の割合は、接着性多孔質層が多孔質基材から剥がれにくい観点から、90体積%以下が好ましく、85体積%以下がより好ましく、80体積%以下が更に好ましく、75体積%以下がより更に好ましい。
V={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
ここに、接着性多孔質層の構成材料のうち、フィラーがaであり、その他の構成材料がb、c、…、nであり、所定面積の接着性多孔質層に含まれる各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm3)である。
上記の式に代入するXa等は、所定面積の接着性多孔質層の形成に使用する構成材料の質量(g)、又は、所定面積の接着性多孔質層から取り出した構成材料の質量(g)である。
上記の式に代入するDa等は、接着性多孔質層の形成に使用する構成材料の真密度(g/cm3)、又は、接着性多孔質層から取り出した構成材料の真密度(g/cm3)である。
接着性多孔質層は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤などの添加剤を含んでいてもよい。分散剤は、接着性多孔質層を形成するための塗工液に、分散性、塗工性又は保存安定性を向上させる目的で添加される。湿潤剤、消泡剤、pH調整剤は、接着性多孔質層を形成するための塗工液に、例えば、多孔質基材とのなじみをよくする目的、塗工液へのエア噛み込みを抑制する目的、又はpH調整の目的で添加される。
接着性多孔質層の厚さは、電極に対する接着性又はハンドリング性の観点から、片面0.5μm以上が好ましく、片面1.0μm以上がより好ましく、片面1.5μm以上が更に好ましく、イオン透過性及び電池のエネルギー密度の観点から、片面10.0μm以下が好ましく、片面8.0μm以下がより好ましく、片面6.0μm以下が更に好ましい。
ここに、接着性多孔質層の構成材料1、構成材料2、構成材料3、…、構成材料nについて、各構成材料の単位面積当たりの質量がW1、W2、W3、…、Wn(g/cm2)であり、各構成材料の真密度がd1、d2、d3、…、dn(g/cm3)であり、接着性多孔質層の厚さがt(cm)である。
d=4V/S
式中、dは接着性多孔質層の平均孔径(直径)、Vは接着性多孔質層1m2当たりの空孔体積、Sは接着性多孔質層1m2当たりの空孔表面積を表す。
接着性多孔質層1m2当たりの空孔体積Vは、接着性多孔質層の空孔率から算出する。
接着性多孔質層1m2当たりの空孔表面積Sは、以下の方法で求める。
まず、多孔質基材の比表面積(m2/g)とセパレータの比表面積(m2/g)とを、窒素ガス吸着法にBET式を適用することにより、窒素ガス吸着量から算出する。これらの比表面積(m2/g)にそれぞれの目付(g/m2)を乗算して、それぞれの1m2当たりの空孔表面積を算出する。そして、多孔質基材1m2当たりの空孔表面積をセパレータ1m2当たりの空孔表面積から減算して、接着性多孔質層1m2当たりの空孔表面積Sを算出する。目付とは、単位面積当たりの質量である。
セパレータの厚さは、セパレータの機械的強度の観点から、8μm以上が好ましく、10μm以上がより好ましく、12μm以上が更に好ましく、電池のエネルギー密度の観点から、25μm以下が好ましく、22μm以下がより好ましく、20μm以下が更に好ましい。
本開示のセパレータは、例えば、多孔質基材上に接着性多孔質層を湿式塗工法又は乾式塗工法で形成することにより製造できる。本開示において、湿式塗工法とは、塗工層を凝固液中で固化させる方法であり、乾式塗工法とは、塗工層を乾燥させて固化させる方法である。以下に、湿式塗工法の実施形態例を説明する。
本開示の非水系二次電池は、リチウムイオンのドープ及び脱ドープにより起電力を得る非水系二次電池であり、正極と、負極と、本開示の非水系二次電池用セパレータとを備える。ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
実施例及び比較例に適用した測定方法及び評価方法は、以下のとおりである。
ポリエチレン微多孔膜の厚さ(μm)は、接触式の厚み計(株式会社ミツトヨ、LITEMATIC VL-50S)にて10cm四方内の20点を測定し、これを平均することで求めた。測定端子として直径5mmの円柱状の端子を用い、測定中に7gの荷重が印加されるように調整した。
ポリエチレン微多孔膜の空孔率ε(%)は、下記の式により求めた。
ε={1-Ws/(ds・t)}×100
ここに、Wsはポリエチレン微多孔膜の目付(g/m2)、dsはポリエチレン微多孔膜の真密度(g/cm3)、tはポリエチレン微多孔膜の厚さ(μm)である。
ポリエチレン微多孔膜及びセパレータのガーレ値(秒/100mL)は、JIS P8117:2009の規格に従い、ガーレ式デンソメータ(東洋精機社、G-B2C)を用いて測定した。
接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にした。ポリフッ化ビニリデン系樹脂20mgを重ジメチルスルホキシド0.6mLに100℃にて溶解し、100℃で19F-NMRスペクトルを測定した。得られたNMRスペクトルから、HFP由来の構成単位の割合(mol%)及び式(1)で表される単量体由来の構成単位の割合(mol%)を求めた。
接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にして、GPCにより分子量を測定した。GPCによる分子量測定は、日本分光社製のGPC装置GPC-900を用い、カラムに東ソー社製TSKgel SUPER AWM-Hを2本用い、溶媒にN,N-ジメチルホルムアミドを使用し、温度40℃、流量0.6mL/分の条件で測定し、ポリスチレン換算の分子量を得た。
接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にし、示差走査熱量測定を行い、融点を求めた。測定装置として、商品名:DSC Q20(TA Instruments社)を使用した。
接着性多孔質層の形成に用いるポリフッ化ビニリデン系樹脂を試料にして、電位差滴定法(JIS K1557-5:2007)により酸価(mgKOH/g)を測定した。
接着性多孔質層の形成に用いる無機フィラーを試料にしてSEM観察を行い、平均一次粒径を求めた。
接着性多孔質層の固形分体積に占める無機フィラーの割合V(体積%)は、下記の式により求めた。
V={(Xa/Da)/(Xa/Da+Xb/Db+Xc/Dc+…+Xn/Dn)}×100
ここに、接着性多孔質層の構成材料のうち、無機フィラーがaであり、その他の構成材料がb、c、…、nであり、所定面積の接着性多孔質層に含まれる各構成材料の質量がXa、Xb、Xc、…、Xn(g)であり、各構成材料の真密度がDa、Db、Dc、…、Dn(g/cm3)である。上記の式に代入するXa等は、所定面積の接着性多孔質層の形成に使用する構成材料の質量(g)である。上記の式に代入するDa等は、接着性多孔質層の形成に使用する構成材料の真密度(g/cm3)である。
実施例及び比較例はそれぞれ、多孔質基材の両面に同じ塗工液を等量塗工して接着性多孔質層を形成したので、両面の接着性多孔質層は同じ熱特性を有すると推認した。
セパレータから一方の接着性多孔質層を剥ぎ取り、接着性多孔質層をジメチルアセトアミドに浸漬し、50℃程度まで加熱し、ポリフッ化ビニリデン系樹脂が溶解した樹脂溶液を得た。樹脂溶液を遠心分離機で遠心し不溶物を沈降させた。不溶物を沈降させた樹脂溶液の上澄みを取り出し、遠心分離を繰り返し、不溶物を除去した。不溶物が除去された樹脂溶液を水に滴下し、ポリフッ化ビニリデン系樹脂を凝固させた。凝固物を水から取り出し乾燥させ、乾燥後の固体を試料とした。
試料5mgをアルミニウム製サンプルパン(TA Instruments社製、部品番号900786.901)に入れ、ふた(TA Instruments社製、部品番号900779.901)をし、測定装置にセットした。測定装置として、商品名:DSC Q20(TA Instruments社)を使用した。窒素ガスを流量50ml/分で流しながら、先述の3ステップで試料温度を変化させ熱分析を行った。
負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
セパレータをTD20mm×MD75mmの長方形に切り出した。
15mm×70mmの長方形の離型紙を用意した。
負極とセパレータと離型紙とをこの順に重ねた積層体を、アルミニウムラミネートフィルム製のパック中に挿入し、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い(ドライヒートプレス)、これにより負極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm2当たり30kgの荷重、プレス時間30秒間とした。その後、パックから積層体を取り出し、離型紙を剥離して、これを試験片とした。
正極活物質であるコバルト酸リチウム粉末89.5質量部、導電助剤であるアセチレンブラック4.5質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部、及び適量のN-メチル-2-ピロリドンを双腕式混合機にて攪拌して混合し、正極用スラリーを作製した。正極用スラリーを厚さ20μmのアルミニウム箔の両面に塗布し、乾燥後プレスして、正極活物質層を両面に有する両面正極を得た。
負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の両面に塗布し、乾燥後プレスして、負極活物質層を両面に有する両面負極を得た。
セパレータをTD35mm×MD75mmの長方形に切り出した。
これらを正極と負極が交互に且つ正極と負極の間にセパレータが挟まるように重ね、正極3枚、負極3枚、セパレータ5枚からなる積層体を作製した。積層体をアルミニウムラミネートフィルム製のパック中に挿入し、パック内に電解液(1mol/L LiPF6-エチレンカーボネート:エチルメチルカーボネート[質量比3:7])を注入し、積層体に電解液をしみ込ませた。次いで、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い(ウェットヒートプレス)、電極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm2当たり10kgの荷重、プレス時間2分間とし、これをウェット接着性測定用セルとした。
正極活物質であるコバルト酸リチウム粉末89.5質量部、導電助剤であるアセチレンブラック4.5質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部、及び適量のN-メチル-2-ピロリドンを双腕式混合機にて攪拌して混合し、正極用スラリーを作製した。正極用スラリーを厚さ20μmのアルミニウム箔の片面に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
正極、セパレータ、負極の順に積層し、この積層体をアルミニウムラミネートフィルム製のパック中に挿入し、パック内に電解液(1mol/L LiPF6-エチレンカーボネート:プロピレンカーボネート[質量比1:1])を注入し、積層体に電解液をしみ込ませた。次いで、真空シーラーを用いてパック内を真空状態にして封止し、短絡試験用電池を得た。
試験用電池を20個用意した。そのうち10個は熱処理せず、これらを標準電池とした。残り10個は温度100℃下で30分間静置し、これらを熱処理電池とした。
標準電池10個及び熱処理電池10個に次の充放電を行った。充電は0.2C且つ4.2Vの定電流定電圧充電を行い、放電は0.2C且つ2.5Vカットオフの定電流放電とした充放電を5サイクル行った。次いで、充電は0.2C且つ4.2Vの定電流定電圧充電を行い、放電は10C且つ2.5Vカットオフの定電流放電を行った。このときの放電容量を記録し、標準電池及び熱処理電池それぞれ10個の放電容量の平均値を算出した。標準電池の放電容量に対する熱処理電池の放電容量の比率を高温にさらされた電池の放電容量維持率(%)とし、下記の式から求めた。
放電容量維持率=熱処理電池の放電容量÷標準電池の放電容量×100
[実施例1]
-セパレータの作製-
接着性多孔質層の材料として、2種類のポリフッ化ビニリデン系樹脂と水酸化マグネシウム粒子とを用意した。これらの物性は表1に記載のとおりである。
2種類のポリフッ化ビニリデン系樹脂を質量比60:40で混合し、樹脂濃度が5.0質量%となるようにジメチルアセトアミド(DMAc)に溶解し、さらに水酸化マグネシウム粒子を攪拌分散し、塗工液(1)を得た。
負極活物質である人造黒鉛300質量部、バインダ樹脂であるスチレン-ブタジエン共重合体の変性体を40質量%含有する水溶性分散液7.5質量部、増粘剤であるカルボキシメチルセルロース3質量部、及び適量の水を双腕式混合機にて攪拌して混合し、負極用スラリーを作製した。負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
正極活物質であるコバルト酸リチウム粉末89.5質量部、導電助剤であるアセチレンブラック4.5質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部、及び適量のN-メチル-2-ピロリドンを双腕式混合機にて攪拌して混合し、正極用スラリーを作製した。正極用スラリーを厚さ20μmのアルミニウム箔の片面に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
正極を3cm×5cmの長方形に切り出し、負極を3.2cm×5.2cmの長方形に切り出して、それぞれにリードタブを溶接した。セパレータを3.4cm×5.4cmの長方形に切り出した。
正極、セパレータ、負極の順に積層した。積層体の積層方向に熱プレス機を用いて熱プレスを行い(ドライヒートプレス)、電極とセパレータとの仮接着を行った。熱プレスの条件は、温度90℃、電極1cm2当たり30kgの荷重、プレス時間30秒間とした。
仮接着した積層体をアルミニウムラミネートフィルム製のパック中に挿入し、パック内に電解液(1mol/L LiPF6-エチレンカーボネート:エチルメチルカーボネート[質量比3:7])を注入し、積層体に電解液をしみ込ませた。次いで、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い(ウェットヒートプレス)、電極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm2当たり10kgの荷重、プレス時間2分間とした。
次いで、真空シーラーを用いてパック内を真空状態にして封止し、試験用電池を得た。
実施例1と同様にして、但し、ポリエチレン微多孔膜、並びに、接着性多孔質層の材料であるポリフッ化ビニリデン系樹脂及びフィラーの種類及び量を表1に記載の仕様に変更して、各セパレータを作製した。接着性多孔質層の厚さは片面あたり概ね3μmとした。尚、接着性多孔質層の厚さは比較例6では片面あたり0.3μmとし、比較例7では片面あたり2.0μmとした。
そして、各セパレータを用いて実施例1と同様にして試験用電池を作製した。
表1の「PVDF系樹脂Y」は、ポリフッ化ビニリデン系樹脂Yに当たる樹脂又はその比較用ポリフッ化ビニリデン系樹脂である。PVDF系樹脂Yは、VDFとHFPと式(1)で表される単量体とからなる三元共重合体である。PVDF系樹脂Yにおける式(1)で表される単量体は全例においてアクリル酸である。
実施例1~4において使用した2種類のポリフッ化ビニリデン系樹脂を質量比50:50で混合した。この混合樹脂を試料にしてDSCを行い、熱特性を分析した。分析結果を表3に示す。
実施例5において使用した2種類のポリフッ化ビニリデン系樹脂を質量比50:50で混合した。この混合樹脂を試料にしてDSCを行い、熱特性を分析した。分析結果を表3に示す。
参考例1と参考例2とを対比すると、低融点のポリフッ化ビニリデン系樹脂の種類を変えることで、低温側の吸熱ピーク温度及び発熱ピーク温度が変動することが分る。
参考例1と実施例1とを対比すると、2種類のポリフッ化ビニリデン系樹脂の混合物は、接着性多孔質層を形成する工程を経ることによって、吸熱ピークの温度差及び発熱ピークの温度差が小さくなることが分る。すなわち、接着性多孔質層を形成する工程を経ることによって、低温側の吸熱ピーク及び発熱ピークが高温側にシフトし、高温側の吸熱ピーク及び発熱ピークが低温側にシフトしている。
このことから、接着性多孔質層を形成する工程において2種類のポリフッ化ビニリデン系樹脂が部分的に相溶し、低融点のポリフッ化ビニリデン系樹脂に高融点のポリフッ化ビニリデン系樹脂が僅かに溶け込んだ領域と高融点のポリフッ化ビニリデン系樹脂に低融点のポリフッ化ビニリデン系樹脂が僅かに溶け込んだ領域とが存在すると推測される。その結果、低温側の吸熱ピーク及び発熱ピークが高温側にシフトし、高温側の吸熱ピーク及び発熱ピークが低温側にシフトすると推測される。
先述のとおり、接着性多孔質層を形成する工程において2種類のポリフッ化ビニリデン系樹脂が少なくとも部分的に相溶するものと推測される。このとき、2種類のポリフッ化ビニリデン系樹脂の特徴(当該特徴は、HFP割合、分子量及び融点によって特徴づけられる。)が近似していると2種類のポリフッ化ビニリデン系樹脂が完全に相溶し、DSC曲線に観察される吸熱ピーク及び発熱ピークが1つずつになると推測される。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (19)
- 多孔質基材と、
前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
ガーレ値が50秒/100mL~200秒/100mLであり、
前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、
非水系二次電池用セパレータ。 - 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが125℃以上140℃未満の領域と140℃以上190℃未満の領域とに少なくとも1つずつ観測される、請求項1に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上観測され、隣り合う前記吸熱ピークの温度差がそれぞれ10℃以上60℃以下である、請求項1に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが80℃以上125℃未満の領域と125℃以上190℃未満の領域とに少なくとも1つずつ観測される、請求項1に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき発熱ピークが2つ以上観測され、隣り合う前記発熱ピークの温度差がそれぞれ10℃以上90℃以下である、請求項1に記載の非水系二次電池用セパレータ。
- 多孔質基材と、
前記多孔質基材の片面又は両面に設けられ、ポリフッ化ビニリデン系樹脂及びフィラーを含む接着性多孔質層と、を備え、
ガーレ値が50秒/100mL~200秒/100mLであり、
前記ポリフッ化ビニリデン系樹脂が下記のポリフッ化ビニリデン系樹脂X及びポリフッ化ビニリデン系樹脂Yを含む、
非水系二次電池用セパレータ。
ポリフッ化ビニリデン系樹脂X:フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超15mol%以下であり、重量平均分子量が10万以上100万未満であり、融点が125℃以上150℃未満である。
ポリフッ化ビニリデン系樹脂Y:フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上3.5mol%以下であり、重量平均分子量が100万以上300万未満であり、融点が150℃以上180℃未満である。 - 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体を試料として示差走査熱量測定をしたとき吸熱ピークが2つ以上及び/又は発熱ピークが2つ以上観測される、請求項6に記載の非水系二次電池用セパレータ。
- 前記ポリフッ化ビニリデン系樹脂Xの融点と前記ポリフッ化ビニリデン系樹脂Yの融点との差分が25℃以上55℃未満である、請求項6に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれる前記ポリフッ化ビニリデン系樹脂Xと前記ポリフッ化ビニリデン系樹脂Yとの質量比が20:80~80:20である、請求項6に記載の非水系二次電池用セパレータ。
- 前記ポリフッ化ビニリデン系樹脂Xが、フッ化ビニリデン由来の構成単位及びヘキサフルオロプロピレン由来の構成単位を含み、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が5.0mol%超15mol%以下であり、重量平均分子量が30万以上100万未満であり、融点が125℃以上140℃未満である、請求項6に記載の非水系二次電池用セパレータ。
- 前記ポリフッ化ビニリデン系樹脂Yが、フッ化ビニリデン由来の構成単位を含み、ヘキサフルオロプロピレン由来の構成単位を含んでいてもよく、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が0mol%以上2.0mol%以下であり、重量平均分子量が150万以上200万未満であり、融点が150℃以上170℃未満である、請求項6に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層が、下記の式(1)で表される単量体由来の構成単位を有するポリフッ化ビニリデン系樹脂を含む、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
式(1)中、R1、R2及びR3はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~5のアルキル基、カルボキシ基、又はカルボキシ基の誘導体を表し、Xは、単結合、炭素数1~5のアルキレン基、又は置換基を有する炭素数1~5のアルキレン基を表し、Yは、水素原子、炭素数1~5のアルキル基、少なくとも1つのヒドロキシ基で置換された炭素数1~5のアルキル基、少なくとも1つのカルボキシ基で置換された炭素数1~5のアルキル基、又は-R-O-C(=O)-(CH2)n-C(=O)-OH(Rは炭素数1~5のアルキレン基を表し、nは0以上の整数を表す。)を表す。 - 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の酸価が3.0mgKOH/g未満である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体の重量平均分子量が30万以上300万未満である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂全体において、全構成単位に占めるヘキサフルオロプロピレン由来の構成単位の割合が3.5mol%超7.0mol%以下である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層の空孔を除いた体積に占める前記フィラーの体積割合が30体積%~90体積%である、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
- 前記フィラーが金属水酸化物粒子、金属硫酸塩粒子及びチタン酸バリウム粒子からなる群から選ばれる少なくとも1種を含む、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層に含まれるフィラー全体の平均一次粒径が0.01μm~1.5μmである、請求項1又は請求項6に記載の非水系二次電池用セパレータ。
- 正極と、負極と、前記正極及び前記負極の間に配置された請求項1又は請求項6に記載の非水系二次電池用セパレータと、を備え、リチウムイオンのドープ及び脱ドープにより起電力を得る非水系二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247001416A KR20240023424A (ko) | 2021-07-16 | 2022-07-15 | 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지 |
CN202280049018.3A CN117642921A (zh) | 2021-07-16 | 2022-07-15 | 非水系二次电池用隔膜及非水系二次电池 |
JP2022575294A JP7557552B2 (ja) | 2021-07-16 | 2022-07-15 | 非水系二次電池用セパレータ及び非水系二次電池 |
EP22842216.8A EP4372895A1 (en) | 2021-07-16 | 2022-07-15 | Separator for nonaqueous secondary batteries, and nonaqueous secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-118148 | 2021-07-16 | ||
JP2021118148 | 2021-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023286875A1 true WO2023286875A1 (ja) | 2023-01-19 |
Family
ID=84920373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027946 WO2023286875A1 (ja) | 2021-07-16 | 2022-07-15 | 非水系二次電池用セパレータ及び非水系二次電池 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4372895A1 (ja) |
JP (1) | JP7557552B2 (ja) |
KR (1) | KR20240023424A (ja) |
CN (1) | CN117642921A (ja) |
WO (1) | WO2023286875A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058369A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058370A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058367A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058368A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2017208338A (ja) * | 2016-05-17 | 2017-11-24 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 二次電池用分離膜およびこれを含むリチウム二次電池 |
WO2018163969A1 (ja) * | 2017-03-08 | 2018-09-13 | 日本ゼオン株式会社 | 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法 |
WO2018212252A1 (ja) * | 2017-05-17 | 2018-11-22 | 帝人株式会社 | 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法 |
JP2021118148A (ja) | 2020-01-29 | 2021-08-10 | トヨタ自動車株式会社 | 電池システムおよびリチウムイオン電池の劣化評価方法 |
-
2022
- 2022-07-15 CN CN202280049018.3A patent/CN117642921A/zh active Pending
- 2022-07-15 JP JP2022575294A patent/JP7557552B2/ja active Active
- 2022-07-15 EP EP22842216.8A patent/EP4372895A1/en active Pending
- 2022-07-15 KR KR1020247001416A patent/KR20240023424A/ko unknown
- 2022-07-15 WO PCT/JP2022/027946 patent/WO2023286875A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058369A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058370A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058367A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058368A1 (ja) | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2017208338A (ja) * | 2016-05-17 | 2017-11-24 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 二次電池用分離膜およびこれを含むリチウム二次電池 |
WO2018163969A1 (ja) * | 2017-03-08 | 2018-09-13 | 日本ゼオン株式会社 | 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法 |
WO2018212252A1 (ja) * | 2017-05-17 | 2018-11-22 | 帝人株式会社 | 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法 |
JP6487130B1 (ja) | 2017-05-17 | 2019-03-20 | 帝人株式会社 | 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法 |
JP2021118148A (ja) | 2020-01-29 | 2021-08-10 | トヨタ自動車株式会社 | 電池システムおよびリチウムイオン電池の劣化評価方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240023424A (ko) | 2024-02-21 |
CN117642921A (zh) | 2024-03-01 |
JP7557552B2 (ja) | 2024-09-27 |
JPWO2023286875A1 (ja) | 2023-01-19 |
EP4372895A1 (en) | 2024-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7324175B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
WO2020189796A1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
WO2022025081A1 (ja) | 非水系二次電池 | |
CN113574732B (zh) | 非水系二次电池用隔膜及非水系二次电池 | |
US20230216143A1 (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
JP2023013751A (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP7324173B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP7313581B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP7313582B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP7557552B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP7557551B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP2022024869A (ja) | 非水系二次電池 | |
JP7483154B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP7411005B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
WO2023210787A1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
WO2020189119A1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022575294 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22842216 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280049018.3 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247001416 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18578793 Country of ref document: US Ref document number: 1020247001416 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022842216 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022842216 Country of ref document: EP Effective date: 20240216 |