WO2023286428A1 - Force generation mechanism control device, and force generation mechanism control method - Google Patents
Force generation mechanism control device, and force generation mechanism control method Download PDFInfo
- Publication number
- WO2023286428A1 WO2023286428A1 PCT/JP2022/019770 JP2022019770W WO2023286428A1 WO 2023286428 A1 WO2023286428 A1 WO 2023286428A1 JP 2022019770 W JP2022019770 W JP 2022019770W WO 2023286428 A1 WO2023286428 A1 WO 2023286428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- force
- vehicle
- time
- thrust
- control device
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims description 20
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 230000008602 contraction Effects 0.000 claims description 22
- 238000013016 damping Methods 0.000 abstract description 12
- 230000001133 acceleration Effects 0.000 description 31
- 230000008859 change Effects 0.000 description 12
- 230000004044 response Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000000725 suspension Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0165—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
Definitions
- the present invention relates to a force generation mechanism control device and a force generation mechanism control method for controlling the ride comfort of a vehicle.
- vehicles such as automobiles control the force generation mechanism in order to achieve a comfortable ride.
- Patent Document 1 Japanese Patent Application Publication No. 2010-501387
- US Pat. No. 5,300,003 describes a wheel spring device installed between the vehicle body and the wheel carrier, the spring force characteristics of which are varied by controlling an actuator and reflecting the shape of the vertical cross-section of the path in front of the vehicle. and an actuator based on the sensed predictor variable such that the spring force characteristic of the wheel spring device is predictively adjusted to the shape of the vertical cross-section of the path ahead of the vehicle. is described (see the abstract of US Pat. No. 5,800,000).
- Patent Document 1 by controlling the actuator just before the vehicle reaches the bump, the wheels are lifted in the direction of the arrow, and the vehicle rides over the bump while reducing the transmission of the push-up impact. is described (see 0025 of Patent Document 1).
- Patent Document 1 describes that the wheels are lifted to climb over the bump by controlling the actuator.
- a vehicle uses a preview sensor installed in front of the vehicle to detect road surface unevenness information, and gives an appropriate thrust command to the force generation mechanism to ensure that the vehicle is comfortable. Make the ride comfortable.
- Patent Literature 1 does not describe a control device for a force generating mechanism that achieves both the damping properties of the vehicle body and the grounding properties of the wheels.
- the present invention provides a control device for a force generation mechanism and a control method for a force generation mechanism that achieve both the damping properties of the vehicle body and the grounding properties of the wheels and improve the ride comfort of the vehicle.
- control device for the force generation mechanism of the present invention is installed between the vehicle body and the wheels based on the detected value of the road surface shape detected by the external recognition means installed in the vehicle.
- a control device for a force generating mechanism for controlling a force generating mechanism wherein the detected value is a protrusion or depression in the road surface shape, and before the vehicle enters the protrusion or depression, the vertical direction of the vehicle is generated by the protrusion or depression.
- the force generating mechanism is characterized by generating a force in the same direction as the force.
- the control method of the force generation mechanism of the present invention provides a force generation mechanism installed between the vehicle body and the wheels based on the detected value of the road surface shape detected by the external world recognition means installed in the vehicle.
- a force generating mechanism control method for controlling a force generating mechanism wherein the external world recognizing means detects a detection value of a road surface shape that is a protrusion or a depression, and before the vehicle enters the protrusion or depression, the vehicle
- the force generation mechanism is characterized in that a force in the same direction as the force in the vertical direction generated by the projection or depression is generated in the force generation mechanism.
- a force generation mechanism control device and a force generation mechanism control method that achieve both the damping property of the vehicle body and the grounding property of the wheels and improve the ride comfort of the vehicle.
- FIG. 2 is an explanatory diagram illustrating a spring mass model of a vehicle including the force generating mechanism described in Example 1;
- FIG. 5 is an explanatory diagram for explaining a time history response when the force generating mechanism described in Example 1 is operated; 5 is a flowchart for explaining control when operating the force generating mechanism described in Embodiment 1.
- FIG. FIG. 11 is an explanatory diagram illustrating a time history response when the force generating mechanism described in Example 2 is operated;
- FIG. 1 is an explanatory diagram explaining a spring mass model of a vehicle including the force generating mechanism described in the first embodiment.
- FIG. 1 schematically describes the spring mass model of either the left or right front wheel for convenience of explanation.
- a vehicle model 1 includes a mass point 3 (hereinafter referred to as a sprung mass 3) composed of the body of a vehicle body, etc., and a mass point 5 composed of wheels (tires) (hereinafter referred to as an unsprung mass 5). ), a suspension spring 4 installed therebetween, and an actuator 9 which is a force generation mechanism (thrust force generation mechanism).
- the actuator 9 is composed of, for example, a linear motor or the like that generates a thrust force based on a thrust force command using an electromagnetic force.
- the suspension spring 4 and the actuator 9 apply force to the sprung portion 3 and the unsprung portion 5 .
- the unsprung portion 5 is grounded with the road surface 8 via the tire spring 6 in the wheel.
- the vehicle model 1 has a preview sensor (external world recognition means) 2 that detects unevenness information of the road surface 8 (information on protrusions (convex shape) or depressions (concave shape) in the road surface shape) in front of it.
- the preview sensor 2 is installed in front of the vehicle model 1 and detects unevenness information of the road surface 8 directly under it (detection value of the road surface shape detected by the external world recognition means).
- the preview sensor 2 is composed of a stereo camera, a sonar sensor, a laser sensor, or the like.
- the vehicle model 1 may detect the unevenness information of the road surface 8 in advance using cloud information or the like without installing the preview sensor 2 .
- the vehicle model 1 also has a vehicle speed sensor (not shown) for detecting the time (time) when the wheels reach the uneven shape of the road surface 8 . That is, it is possible to detect the time when the wheels reach the uneven shape of the road surface 8 from the vehicle speed detected by the vehicle speed sensor and the distance from the uneven shape of the road surface 8 to the wheels detected by the preview sensor 2 .
- the vehicle model 1 preferably has various sensors (acceleration sensor, vehicle height sensor, etc.) that detect the behavior of the sprung mass 3 and unsprung mass 5 .
- the vehicle model 1 also has a controller 7 (a control device for the force generation mechanism) that calculates the thrust to be generated by the actuator 9 .
- the controller 7 inputs the information acquired by these sensors, calculates the thrust to be generated by the actuator 9 , and outputs a thrust command to the actuator 9 .
- Z0 indicates the displacement of the road surface 8 (road surface displacement)
- Z1 indicates the displacement of the unsprung portion 5 (unsprung displacement)
- Z2 indicates the displacement of the sprung portion 3 (suprung displacement).
- FIG. 2 is an explanatory diagram explaining the time history response when the force generating mechanism described in Example 1 is operated.
- FIG. 2(a) shows the change (vertical axis) of the road surface shape 20 with respect to time (horizontal axis)
- FIG. 2(c) shows the change (vertical axis) of the sprung acceleration 22 with respect to time (horizontal axis)
- FIG. 2(d) shows the change (vertical axis) of the unsprung acceleration 23 with respect to time (horizontal axis).
- FIG. 2(e) shows the change (vertical axis) of the sprung speed 24 with respect to time (horizontal axis)
- FIG. 2(f) shows the change (vertical axis) of the unsprung speed 25 with respect to time (horizontal axis). each shown.
- FIG. 2(a) shows a road surface shape 20 (Z0).
- the road surface shape 20 is a sine wave-like projection (a convex shape) of one wavelength (the phase of the sine wave is shifted by 270 degrees and offset).
- shaped protrusion That is, when the vehicle passes through this protrusion (the time at which the vehicle starts passing is set to t2 (starting time of passing the protrusion: entering the protrusion), and the time at which the vehicle ends passing is set to t3 (finishing time of passing the protrusion: leaving the protrusion). ), projections on the road surface shape 20 as shown in FIG.
- t1 projection input time
- the time at which the preview sensor 2 detects the protrusion of the vehicle is before time t1, and in some cases may be at the same time as time t1.
- FIG. 2(b) shows a thrust command 21, where the positive side of the thrust command 21 indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 contracts (contraction direction thrust), and the negative side indicates the Conversely, it indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 extends (stretching direction thrust).
- the controller 7 generates the thrust force command 21 at time t1, and outputs the thrust force command 21 to the actuator 9 from time t1.
- the thrust force command 21 is applied to the actuator 9 so that the thrust in the section between the projection input time t1 and the projection passage start time t2 (projection pre-section) is generally in the direction of contraction, and the projection passage start time In the projection section between t2 and the projection passage end time t3, the thrust is output so as to be a constant extensional thrust.
- the thrust force command 21 is output so as to produce a thrust force in the general contraction direction.
- the thrust force command 21 having the first slope is set so that the thrust in the contraction direction increases, and then the command 21 is set to the first slope having a slope smaller than the first slope so that the thrust in the contraction direction gradually increases. 2, and then the thrust force command 21 having a third slope (equivalent in absolute value to the first slope) so that the thrust in the contraction direction decreases and the thrust in the extension direction increases.
- the thrust force command 21 becomes the thrust force command 21 having the fourth slope (equivalent to the first slope) so that the extension direction thrust is reduced in the interval after time t3.
- the sprung acceleration 22 is substantially constant in the section between time t1 and time t2, as shown in FIG. 2(c). It becomes negative acceleration (downward acceleration), and in the section between time t2 and time t3, it becomes constant positive acceleration (upward acceleration), and as shown in FIG. In the section between time t1 and time t2, it descends with a constant slope, and in the section between time t2 and time t3, it rises with a constant slope.
- the actuator 9 is configured such that the sprung mass 3 is accelerated downward in the interval between time t1 and time t2, and accelerated upward in the interval between time t2 and time t3. Operate. Then, the thrust force command 21 is set so that the total of the downward acceleration and the upward acceleration is offset. Specifically, if there is no disturbance other than the road surface shape 20, the thrust force command 21 is set so that the integral of the thrust in the extension direction and the integral of the thrust in the contraction direction match.
- the thrust force command 21 is calculated in advance based on the frequency (length) and amplitude (height) of the projections, and the magnitude and extension of the thrust force in the contraction direction are calculated according to the frequency (length) and amplitude (height) of the projections.
- the magnitude of the directional thrust is determined and output as a thrust command 21 .
- the thrust force command 21 in the section between time t1 and time t2 is set so that the speed of the sprung mass 3 becomes 0 (zero) at time t3.
- the integral (magnitude, energy) of the thrust in the extension direction in the section between time t2 and time t3 and the integral (magnitude, energy ) and are set to be equivalent.
- the acceleration 23 of the unsprung mass 5 is temporarily , rises upward (upward to the right), then descends downward (downward to the right) by the force of the tire spring 6, then descends significantly downward due to the thrust in the extension direction, and between time t2 and time t3
- the upward acceleration changes from small to large to small depending on the road surface shape 20 due to the protrusion, and becomes almost 0 (zero) after time t3.
- the sprung mass 3 generates speed in response to the thrust force command 21, operates at a downward speed in the negative area in the interval between time t1 and time t2, and operates at a downward speed in the interval between time t2 and time t3. In the section, it operates at an upward speed in the negative area, and at time t3, the speed becomes minimum.
- the unsprung mass 5 generates a speed according to the thrust force command 21, and in the interval between the time t1 and the time t2, in the positive area, the speed changes from the upward speed to the downward speed, and the projection It operates at a downward velocity in the negative area in front, and in the section between time t2 and time t3, it operates at a negative area, changing from a downward velocity to an upward velocity. It operates by changing from upward speed to downward speed in areas and from downward speed to upward speed in negative areas, and the speed becomes minimum at time t3. In this way, in the section between time t2 and time t3, the road surface speed due to the bump is canceled.
- the acceleration of the sprung mass 3, the acceleration of the unsprung mass 5, the speed of the sprung mass 3, and the speed of the unsprung mass 5 are all approximately It can be set to 0 (zero) and no residual vibration occurs in the vehicle.
- the vibration damping property of the vehicle body is improved, and by suppressing the vibration of the unsprung mass 5, the road contact property of the wheel is improved. , and the ride comfort of the vehicle can be improved.
- the force exerted by the actuator 9 to suppress the unsprung mass 5 is simultaneously transmitted to the sprung mass 3, so that force is input to the sprung mass 3.
- the force transmitted to the sprung mass 3 is controlled in advance in the section between the time t1 and the time t2 so that the sprung mass 3 can be damped at the time t3.
- the position of the sprung mass 3 is the integral of the speed 24 of the sprung mass 3, and is located below the position before passing through the protrusion when passing through the protrusion. Then, after passing through the projection, it is necessary to perform an operation to return it to its original position. By returning this slowly, the speed can be reduced, and the acceleration that affects the ride comfort can also be reduced.
- the actuator 9 since the actuator 9 is operated with the thrust force command 21 set in advance, the speed may not be completely 0 (zero) at time t3. Therefore, after time t3, it is preferable to use skyhook control and/or groundhook control, for example, to execute control to attenuate the position, velocity, and acceleration.
- the control device for the force generating mechanism described in the first embodiment can perform the following operations based on the road surface shape detection value (unevenness information of the road surface 8) detected by the external world recognition means (preview sensor 2) installed in the vehicle. , a controller 9 that controls a force generating mechanism (actuator 9) installed between the vehicle body (sprung 3) and the wheel (unsprung 5), the detected value being a protrusion (convex shape) on the road surface shape Before the vehicle enters the protrusion, the vehicle causes the force generating mechanism to generate a force in the same direction as the upward force generated by the protrusion (thrust in the contraction direction to the actuator 9).
- the vehicle causes the force generating mechanism to generate a force in the direction opposite to the upward force generated by the protrusion (an extensional thrust force on the actuator 9).
- Example 1 an actuator 9 (for example, a linear motor) installed between the sprung portion 3 and the unsprung portion 5 for suspension is used as the force generating mechanism.
- an actuator 9 for example, a linear motor
- the force generation mechanism is not limited to this.
- a brake braking device for braking the vehicle
- the space between the sprung mass 3 and the unsprung mass 5 of the front wheels shrinks.
- a braking force is generated in the section between time t1 and time t2 in FIG.
- an accelerator driving device for driving the vehicle
- driving force is generated in the section between time t2 and time t3 in FIG.
- Extensional thrust is generated.
- control of the actuator 9 and the control of the braking force and driving force may be used together.
- a plurality of force generating mechanisms can be selected as the control target, and versatility is also increased.
- the force generation mechanisms complement each other in the event of failure of the force generation mechanisms, for example, and the reliability of control is improved. Also, the thrust required for the actuator 9 can be reduced.
- FIG. 3 is a flow chart explaining control when operating the force generating mechanism described in the first embodiment.
- control method of the force generation mechanism has the following procedures.
- the size (frequency and amplitude) of the protrusion is detected (step 31). Based on the size of the protrusion detected before time t1, the size of the thrust in the contraction direction and the size of the thrust in the extension direction, which are calculated in advance according to the size of the protrusion, are calculated. That is, the thrust force command 21 is calculated based on the size of the protrusion that will pass from now on and the vehicle speed. The thrust force command 21 may be calculated by the vehicle based on the size of the protrusion and the vehicle speed after the size of the protrusion is detected.
- step 32 it is determined whether or not time t1 (predetermined time before the projection passes) or time t2 has been reached (step 32). If it is time t1 (yes), the process proceeds to step 33, and if it is time t2 (no), the process proceeds to step . Then, in the section between time t1 and time t2, the process proceeds to step 33, and in the section between time t2 and time t3, the process proceeds to step .
- a thrust command 21 (roughly contraction direction thrust) is output to the actuator 9 at time t1. Before the time t1, the output of the thrust force command 21 is waited. Further, in the section between time t1 and time t2, the thrust force command 21 of approximately the compression direction thrust is output.
- the actuator 9 generates a thrust in the direction of contraction based on the thrust in the direction of contraction (step 37).
- step 34 when time t2 has come, it is determined whether or not it is a section between time t2 and time t3 (step 34). If the interval is between time t2 and time t3 (yes), the process proceeds to step 35;
- a thrust command 21 (stretching direction thrust) is output to the actuator 9 at time t2. Further, the thrust force command 21 for the thrust in the extension direction is also output in the section between time t2 and time t3.
- the actuator 9 generates thrust in the direction of extension based on the thrust in the direction of extension (step 37).
- a thrust force command 21 for damping feedback is output. That is, the same thrust force command 21 as before time t1 is output.
- the actuator 9 operates based on the damping feedback thrust command 21 (step 37).
- Example 1 the period from time t2 to time t3 is approximately 20 to 50 ms, and the period from time t1 to time t2 is approximately 50 ms. In other words, Example 1 is particularly effective for protrusions with a frequency of about 20 to 50 ms.
- the control method of the force generating mechanism described in the first embodiment is based on the detected value of the road surface shape (unevenness information of the road surface 8) detected by the external recognition means (preview sensor 2) installed in the vehicle.
- the vehicle After the vehicle enters the projection, the vehicle generates a force in the direction opposite to the upward force generated by the projection (an extensional thrust force on the actuator 9) in the force generating mechanism.
- the acceleration of the sprung mass 3, the acceleration of the unsprung mass 5, the speed of the sprung mass 3, and the speed of the unsprung mass 5 are all substantially zero after (immediately after) passing through the projection. (zero), that is, it is possible to suppress the vibration to the vehicle body and wheels to a minimum, to almost eliminate the residual vibration to the vehicle, to achieve both damping performance and grounding performance, and to improve the performance of the vehicle. Ride comfort can be improved.
- the velocity and acceleration of the sprung mass 3 and the unsprung mass 5 are set to approximately 0 (zero) at time t3, but a time after time t3 (a time until the vibration converges) is allowed. It may be approximately 0 (zero).
- the thrust required for the actuator 9 can be suppressed, the acceleration of the sprung mass 3 and the unsprung mass 5 can be further reduced, and the ride comfort of the vehicle can be improved.
- the magnitude of the compression direction thrust can be reduced, and the acceleration of the sprung mass 3 and the unsprung mass 5 in front of the projection can be reduced to It can be further reduced, and the ride comfort of the vehicle can be improved.
- FIG. 4 is an explanatory diagram explaining the time history response when the force generating mechanism described in Example 2 is operated.
- the second embodiment differs from the first embodiment in road surface shape. That is, the first embodiment assumes that the road surface shape is a protrusion (convex shape), and the second embodiment assumes that the road surface shape is a depression (concave shape). Also, when describing the second embodiment, differences from the first embodiment will be described.
- FIG. 4(a) shows the change (vertical axis) of the road surface shape 120 with respect to time (horizontal axis), and FIG. 4(b) shows the change (vertical axis) of the thrust command 121 with respect to time (horizontal axis).
- 4(c) shows the change (vertical axis) in the sprung acceleration 122 with respect to time (horizontal axis), and FIG. 4(d) shows the change (vertical axis) in the unsprung acceleration 123 with respect to time (horizontal axis).
- 4(e) shows the change (vertical axis) of the sprung speed 124 with respect to time (horizontal axis)
- FIG. 4(f) shows the change (vertical axis) of the unsprung speed 125 with respect to time (horizontal axis). each shown.
- FIG. 4(a) shows a road surface shape 120 (Z0), where the road surface shape 120 is a depression (concave shape) of one sinusoidal wave (the phase of the sinusoidal wave is shifted by 270 degrees and offset). shape depression). That is, when the vehicle passes through the cave-in (the time at which the vehicle starts passing through the cave-in is set to t2 (cavity-passing start time: cave-in entry time), and the time at which the vehicle finishes passing is set to t3 (cavity-passing end time: cave-in exit time). ), the depression in the road surface shape 120 as shown in FIG.
- t2 cavity-passing start time: cave-in entry time
- t3 cavity-passing end time: cave-in exit time
- t1 (cavity input time) be the time at a predetermined interval before the vehicle is inputted with a cave-in.
- the time at which the preview sensor 2 detects the collapse of the vehicle is before the time t1, and in some cases may be at the same time as the time t1.
- FIG. 4(b) shows the thrust command 121, where the positive side of the thrust command 121 indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 contracts (contraction direction thrust), and the negative side indicates the Conversely, it indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 extends (stretching direction thrust).
- the controller 7 generates the thrust force command 121 at time t1, and outputs the thrust force command 121 to the actuator 9 from time t1.
- the thrust force command 121 is applied to the actuator 9 so that the thrust in the section between the collapse input time t1 and the collapse passage start time t2 (pre-collapse section) is generally in the extension direction, In the collapse section between t2 and the collapse passage end time t3, the thrust is output so as to be a constant contraction direction thrust.
- this thrust force command 121 is in the opposite direction (reverse direction) to the thrust force command 21 shown in FIG.
- the acceleration 123 of the unsprung mass 5 is temporarily , descends downward (downward to the right), then rises upward (upward to the right) by the force of the tire spring 6, and then rises significantly upward due to the thrust in the contraction direction, and between time t2 and time t3
- the downward acceleration changes from small to large to small according to the road surface shape 120, and becomes almost 0 (zero) after time t3.
- sprung acceleration 122, unsprung acceleration 123, sprung velocity 124, and unsprung velocity 125 are generated in directions opposite to those in the first embodiment.
- the control device for the force generating mechanism described in the second embodiment is based on the road surface shape detection value (unevenness information of the road surface 8) detected by the external recognition means (preview sensor 2) installed in the vehicle.
- a controller 9 that controls a force generating mechanism (actuator 9) installed between the vehicle body (sprung 3) and the wheel (unsprung 5), and the detected value is a depression (concave shape) in the road surface shape
- the force generating mechanism Before the vehicle enters the cave-in, the force generating mechanism generates a force in the same direction as the downward force generated by the cave-in (thrust in the extension direction to the actuator 9).
- the force generating mechanism is caused to generate a force in the direction opposite to the downward force generated by the car cave-in (thrust in the contraction direction to the actuator 9).
- step 33 becomes the thrust force command 121 in the extension direction
- step 35 becomes the thrust force command 121 in the contraction direction.
- the control method of the force generating mechanism described in the second embodiment is based on the road surface shape detection value (unevenness information of the road surface 8) detected by the external world recognition means (preview sensor 2) installed in the vehicle.
- the force generating mechanism generates a force in the direction opposite to the downward force generated by the car cave-in (thrust in the direction of contraction to the actuator 9).
- the acceleration of the sprung mass 3, the acceleration of the unsprung mass 5, the speed of the sprung mass 3, and the speed of the unsprung mass 5 are Both can be set to almost 0 (zero), that is, vibrations to the vehicle body and wheels can be suppressed to a minimum, residual vibrations to the vehicle can be almost eliminated, and both damping performance and grounding performance can be achieved. , the ride comfort of the vehicle can be improved.
- the present invention can combine Example 1 and Example 2.
- the external world recognizing means detects a protrusion or depression, before the vehicle enters the protrusion or depression, the force generated in the vertical direction applied to the force generating mechanism and the frequency of the protrusion or depression are detected.
- the force in the same direction when the frequency is relatively small, about 20 to 50 ms or in the opposite direction (when the frequency is relatively large, about 50 to 100 ms) is selected, and the selected force is applied to the force generation mechanism. can occur.
- part of the configuration of one embodiment can be replaced with part of the configuration of another embodiment.
- the configuration of another embodiment can be added to the configuration of one embodiment.
- a part of the configuration of each embodiment can be deleted, a part of another configuration can be added, and a part of another configuration can be substituted.
- Vehicle model 2 Preview sensor 3 Sprung 4 Suspension spring 5 Unsprung 6 Tire spring 7 Controller 8 Road surface 9 Actuator 20, 120 Road surface shape Time history 21, 121... Time history of thrust command 22, 122... Time history of sprung acceleration 23, 123... Time history of unsprung acceleration 24, 124... Time history of sprung velocity 25, 125... Time history of unsprung speed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Provided is a force generation mechanism control device with which both vibration damping performance of a vehicle body and grounding performance of a vehicle wheel can be achieved, and riding comfort of a vehicle can be improved. This force generation mechanism control device controls a force generation mechanism installed between a vehicle body and a vehicle wheel on the basis of a detection value of a road surface shape that is detected by an external recognition means installed in a vehicle. The force generation mechanism control device is characterized in that the detection value corresponds to a protrusion or depression of the road surface shape, and before the vehicle advances into such protrusion or depression, the force generation mechanism is made to generate a force in the same direction as a force in the up-down direction which is generated by the vehicle due to the protrusion or depression.
Description
本発明は、車両の乗り心地を制御する力発生機構の制御装置及び力発生機構の制御方法に関する。
The present invention relates to a force generation mechanism control device and a force generation mechanism control method for controlling the ride comfort of a vehicle.
一般的に、自動車などの車両は、快適な乗り心地を実現するため、力発生機構を制御する。
In general, vehicles such as automobiles control the force generation mechanism in order to achieve a comfortable ride.
こうした技術分野における背景技術として、例えば、特表2010-501387号公報(以下、特許文献1)がある。
As a background art in such a technical field, there is, for example, Japanese Patent Application Publication No. 2010-501387 (hereinafter referred to as Patent Document 1).
特許文献1には、作動装置を制御することによって、バネ力特性が変更される、車体と車輪キャリアとの間に設置されるホイールスプリング装置と、車両の前方の経路の垂直断面の形状を反映する予測変数を検出するセンサと、ホイールスプリング装置のバネ力特性が、車両の前方の経路の垂直断面の形状に対し、予測的に調節されるように検出される予測変数に基づいて、作動装置を制御する制御装置を有する装置が記載されている(特許文献1の要約参照)。
US Pat. No. 5,300,003 describes a wheel spring device installed between the vehicle body and the wheel carrier, the spring force characteristics of which are varied by controlling an actuator and reflecting the shape of the vertical cross-section of the path in front of the vehicle. and an actuator based on the sensed predictor variable such that the spring force characteristic of the wheel spring device is predictively adjusted to the shape of the vertical cross-section of the path ahead of the vehicle. is described (see the abstract of US Pat. No. 5,800,000).
また、特許文献1には、車両が隆起部に到達する直前に、作動装置を制御することによって、車輪を矢印の方向に上昇させ、突き上げ衝撃の伝達を低減した状態で、隆起部を乗り越えることが記載されている(特許文献1の0025参照)。
Further, in Patent Document 1, by controlling the actuator just before the vehicle reaches the bump, the wheels are lifted in the direction of the arrow, and the vehicle rides over the bump while reducing the transmission of the push-up impact. is described (see 0025 of Patent Document 1).
特許文献1には、作動装置を制御することによって、車輪を上昇させ、隆起部を乗り越えることが記載されている。
Patent Document 1 describes that the wheels are lifted to climb over the bump by controlling the actuator.
このように、一般的に、車両は、車両の前方に設置されるプレビューセンサを使用し、路面の凹凸情報を検出し、力発生機構に適切な推力指令を付与することによって、車両の快適な乗り心地を実現する。
In this way, in general, a vehicle uses a preview sensor installed in front of the vehicle to detect road surface unevenness information, and gives an appropriate thrust command to the force generation mechanism to ensure that the vehicle is comfortable. Make the ride comfortable.
一方、車両の快適な乗り心地を実現するためには、車体の制振性と車輪の接地性とを両立する必要がある。しかし、特許文献1には、こうした車体の制振性と車輪の接地性とを両立する力発生機構の制御装置は記載されていない。
On the other hand, in order to achieve a comfortable ride of the vehicle, it is necessary to achieve both the damping properties of the vehicle body and the grounding properties of the wheels. However, Patent Literature 1 does not describe a control device for a force generating mechanism that achieves both the damping properties of the vehicle body and the grounding properties of the wheels.
そこで、本発明は、車体の制振性と車輪の接地性とを両立し、車両の乗り心地を向上させる力発生機構の制御装置及び力発生機構の制御方法を提供する。
Therefore, the present invention provides a control device for a force generation mechanism and a control method for a force generation mechanism that achieve both the damping properties of the vehicle body and the grounding properties of the wheels and improve the ride comfort of the vehicle.
上記した課題を解決するため、本発明の力発生機構の制御装置は、車両に設置される外界認識手段によって検出される路面形状の検出値に基づいて、車体と車輪との間に設置される力発生機構を制御する力発生機構の制御装置であって、検出値が路面形状における突起又は陥没であり、車両が突起又は陥没に進入する前に、車両が突起又は陥没によって発生する上下方向の力と同方向の力を、力発生機構に発生させることを特徴とする。
In order to solve the above-described problems, the control device for the force generation mechanism of the present invention is installed between the vehicle body and the wheels based on the detected value of the road surface shape detected by the external recognition means installed in the vehicle. A control device for a force generating mechanism for controlling a force generating mechanism, wherein the detected value is a protrusion or depression in the road surface shape, and before the vehicle enters the protrusion or depression, the vertical direction of the vehicle is generated by the protrusion or depression. The force generating mechanism is characterized by generating a force in the same direction as the force.
また、上記した課題を解決するため、本発明の力発生機構の制御方法は、車両に設置される外界認識手段によって検出される路面形状の検出値に基づいて、車体と車輪との間に設置される力発生機構を制御する力発生機構の制御方法であって、外界認識手段が、突起又は陥没である路面形状の検出値を検出し、車両が突起又は陥没に進入する前に、車両が突起又は陥没によって発生する上下方向の力と同方向の力を、力発生機構に発生することを特徴とする。
Further, in order to solve the above-described problems, the control method of the force generation mechanism of the present invention provides a force generation mechanism installed between the vehicle body and the wheels based on the detected value of the road surface shape detected by the external world recognition means installed in the vehicle. A force generating mechanism control method for controlling a force generating mechanism, wherein the external world recognizing means detects a detection value of a road surface shape that is a protrusion or a depression, and before the vehicle enters the protrusion or depression, the vehicle The force generation mechanism is characterized in that a force in the same direction as the force in the vertical direction generated by the projection or depression is generated in the force generation mechanism.
本発明によれば、車体の制振性と車輪の接地性とを両立し、車両の乗り心地を向上させる力発生機構の制御装置及び力発生機構の制御方法を提供することができる。
According to the present invention, it is possible to provide a force generation mechanism control device and a force generation mechanism control method that achieve both the damping property of the vehicle body and the grounding property of the wheels and improve the ride comfort of the vehicle.
なお、上記した以外の課題、構成及び効果については、下記する実施例の説明によって、明らかにされる。
In addition, problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
以下、本発明の実施例を、図面を使用し、説明する。なお、実質的に同一又は類似の構成には、同一の符号を付し、説明が重複する場合には、重複する説明を省略する場合がある。
Hereinafter, embodiments of the present invention will be described using the drawings. It should be noted that substantially the same or similar configurations are denoted by the same reference numerals, and redundant description may be omitted if the description overlaps.
先ず、実施例1に記載する力発生機構を含む車両のばねマスモデルを説明する。
First, a spring mass model of a vehicle including the force generating mechanism described in Example 1 will be described.
図1は、実施例1に記載する力発生機構を含む車両のばねマスモデルを説明する説明図である。
FIG. 1 is an explanatory diagram explaining a spring mass model of a vehicle including the force generating mechanism described in the first embodiment.
一般的に、車両は、前輪の左右及び後輪の左右の4輪から構成される。そこで、図1は、説明の都合上、左右いずれかの前輪のばねマスモデルを概略的に記載する。
In general, a vehicle consists of four wheels, left and right front wheels and left and right rear wheels. Therefore, FIG. 1 schematically describes the spring mass model of either the left or right front wheel for convenience of explanation.
図1に示すように、車両モデル1は、車体のボディなどで構成される質点3(以下、ばね上3と称する)、車輪(タイヤ)などで構成される質点5(以下、ばね下5と称する)、その間に設置される懸架ばね4、力発生機構(推力発生機構)であるアクチュエータ9を有する。なお、アクチュエータ9は、例えば、電磁力によって、推力指令に基づいて推力を発生するリニアモータなどで構成される。
As shown in FIG. 1, a vehicle model 1 includes a mass point 3 (hereinafter referred to as a sprung mass 3) composed of the body of a vehicle body, etc., and a mass point 5 composed of wheels (tires) (hereinafter referred to as an unsprung mass 5). ), a suspension spring 4 installed therebetween, and an actuator 9 which is a force generation mechanism (thrust force generation mechanism). The actuator 9 is composed of, for example, a linear motor or the like that generates a thrust force based on a thrust force command using an electromagnetic force.
懸架ばね4及びアクチュエータ9は、ばね上3とばね下5とに対して、力を作用させる。ばね下5は、路面8との間に、車輪におけるタイヤばね6を介して、接地する。
The suspension spring 4 and the actuator 9 apply force to the sprung portion 3 and the unsprung portion 5 . The unsprung portion 5 is grounded with the road surface 8 via the tire spring 6 in the wheel.
また、車両モデル1は、その前方に路面8の凹凸情報(路面形状における突起(凸形状)又は陥没(凹形状)の情報)を検出するプレビューセンサ(外界認識手段)2を有する。そして、プレビューセンサ2は、車両モデル1の前方に設置され、その直下の路面8の凹凸情報(外界認識手段が検出する路面形状の検出値)を検出する。なお、プレビューセンサ2は、ステレオカメラ、ソナーセンサ、レーザセンサなどで構成される。
In addition, the vehicle model 1 has a preview sensor (external world recognition means) 2 that detects unevenness information of the road surface 8 (information on protrusions (convex shape) or depressions (concave shape) in the road surface shape) in front of it. The preview sensor 2 is installed in front of the vehicle model 1 and detects unevenness information of the road surface 8 directly under it (detection value of the road surface shape detected by the external world recognition means). Note that the preview sensor 2 is composed of a stereo camera, a sonar sensor, a laser sensor, or the like.
また、車両モデル1は、プレビューセンサ2を設置せず、クラウド情報などを使用し、事前に路面8の凹凸情報を検出してもよい。
Also, the vehicle model 1 may detect the unevenness information of the road surface 8 in advance using cloud information or the like without installing the preview sensor 2 .
また、車両モデル1は、車輪が路面8の凹凸形状に到達する時刻(時間)を検出するための車速センサ(図示せず)を有する。つまり、車速センサが検出する車速とプレビューセンサ2が検出する路面8の凹凸形状から車輪までの距離とによって、車輪が路面8の凹凸形状に到達する時刻を検出することができる。
The vehicle model 1 also has a vehicle speed sensor (not shown) for detecting the time (time) when the wheels reach the uneven shape of the road surface 8 . That is, it is possible to detect the time when the wheels reach the uneven shape of the road surface 8 from the vehicle speed detected by the vehicle speed sensor and the distance from the uneven shape of the road surface 8 to the wheels detected by the preview sensor 2 .
また、車両モデル1は、ばね上3やばね下5の挙動を検出する各種センサ(加速度センサ、車高センサなど)を有することが好ましい。
Also, the vehicle model 1 preferably has various sensors (acceleration sensor, vehicle height sensor, etc.) that detect the behavior of the sprung mass 3 and unsprung mass 5 .
また、車両モデル1は、アクチュエータ9で発生させるべき推力を演算する制御器7(力発生機構の制御装置)を有する。そして、制御器7は、これらセンサが取得した情報を入力し、アクチュエータ9で発生させるべき推力を演算して、アクチュエータ9に推力指令を出力する。
The vehicle model 1 also has a controller 7 (a control device for the force generation mechanism) that calculates the thrust to be generated by the actuator 9 . The controller 7 inputs the information acquired by these sensors, calculates the thrust to be generated by the actuator 9 , and outputs a thrust command to the actuator 9 .
なお、図1において、符号Z0は路面8の変位(路面変位)を、符号Z1はばね下5の変位(ばね下変位)を、符号Z2はばね上3の変位(ばね上変位)を、それぞれ示す。
In FIG. 1, Z0 indicates the displacement of the road surface 8 (road surface displacement), Z1 indicates the displacement of the unsprung portion 5 (unsprung displacement), and Z2 indicates the displacement of the sprung portion 3 (suprung displacement). show.
次に、実施例1に記載する力発生機構を動作させた際の時刻歴応答を説明する。
Next, the time history response when the force generating mechanism described in Example 1 is operated will be described.
図2は、実施例1に記載する力発生機構を動作させた際の時刻歴応答を説明する説明図である。
FIG. 2 is an explanatory diagram explaining the time history response when the force generating mechanism described in Example 1 is operated.
なお、図2(a)は、時刻(横軸)に対する路面形状20の変化(縦軸)を、図2(b)は、時刻(横軸)に対する推力指令21の変化(縦軸)を、図2(c)は、時刻(横軸)に対するばね上加速度22の変化(縦軸)を、図2(d)は、時刻(横軸)に対するばね下加速度23の変化(縦軸)を、図2(e)は、時刻(横軸)に対するばね上速度24の変化(縦軸)を、図2(f)は、時刻(横軸)に対するばね下速度25の変化(縦軸)を、それぞれ示す。
2(a) shows the change (vertical axis) of the road surface shape 20 with respect to time (horizontal axis), and FIG. 2(c) shows the change (vertical axis) of the sprung acceleration 22 with respect to time (horizontal axis), and FIG. 2(d) shows the change (vertical axis) of the unsprung acceleration 23 with respect to time (horizontal axis). FIG. 2(e) shows the change (vertical axis) of the sprung speed 24 with respect to time (horizontal axis), and FIG. 2(f) shows the change (vertical axis) of the unsprung speed 25 with respect to time (horizontal axis). each shown.
図2(a)には、路面形状20(Z0)が示され、ここで、路面形状20は、正弦波状の1波長(正弦波の位相を270度ずらし、オフセットさせた)の突起(凸の形状の突起)を有する。つまり、車両が、この突起を通過する際(通過開始時点の時刻をt2(突起通過開始時刻:突起進入時刻)とし、通過終了時点の時刻をt3(突起通過終了時刻:突起退去時刻)とする)には、図2(a)に示すような路面形状20における突起が、タイヤばね6を介して、車両に入力される。
FIG. 2(a) shows a road surface shape 20 (Z0). Here, the road surface shape 20 is a sine wave-like projection (a convex shape) of one wavelength (the phase of the sine wave is shifted by 270 degrees and offset). shaped protrusion). That is, when the vehicle passes through this protrusion (the time at which the vehicle starts passing is set to t2 (starting time of passing the protrusion: entering the protrusion), and the time at which the vehicle ends passing is set to t3 (finishing time of passing the protrusion: leaving the protrusion). ), projections on the road surface shape 20 as shown in FIG.
また、突起が車両に入力される以前の所定間隔の時刻をt1(突起入力時刻)とする。なお、車両が、プレビューセンサ2によって突起を検出する時刻は、時刻t1より以前であり、場合によっては、時刻t1と同時であってもよい。
Also, let t1 (projection input time) be the time at a predetermined interval before the projection is input to the vehicle. The time at which the preview sensor 2 detects the protrusion of the vehicle is before time t1, and in some cases may be at the same time as time t1.
図2(b)には、推力指令21が示され、ここで、推力指令21は、プラス側が、ばね上3とばね下5との間が縮む方向(縮み方向推力)を示し、マイナス側が、その逆で、ばね上3とばね下5との間が伸びる方向(伸び方向推力)を示す。
FIG. 2(b) shows a thrust command 21, where the positive side of the thrust command 21 indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 contracts (contraction direction thrust), and the negative side indicates the Conversely, it indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 extends (stretching direction thrust).
つまり、制御器7は、時刻t1で推力指令21を発生し、時刻t1からアクチュエータ9に推力指令21を出力する。
That is, the controller 7 generates the thrust force command 21 at time t1, and outputs the thrust force command 21 to the actuator 9 from time t1.
そして、推力指令21は、アクチュエータ9に対して、突起入力時刻t1と突起通過開始時刻t2との間の区間(突起前区間)では、概ね縮み方向推力となるように、また、突起通過開始時刻t2と突起通過終了時刻t3との間の突起区間では、一定の伸び方向推力となるように、出力される。
Then, the thrust force command 21 is applied to the actuator 9 so that the thrust in the section between the projection input time t1 and the projection passage start time t2 (projection pre-section) is generally in the direction of contraction, and the projection passage start time In the projection section between t2 and the projection passage end time t3, the thrust is output so as to be a constant extensional thrust.
なお、時刻t1と時刻t2との間の区間では、概ね縮み方向推力となるように、推力指令21が出力されるが、詳細には、推力指令21は、時刻t1と時刻t2との間の区間において、先ず、縮み方向推力が大きくなるように、第1の傾きを有する推力指令21となり、次に、縮み方向推力が徐々に大きくなるように、第1の傾きよりも小さい傾きである第2の傾きを有する推力指令21となり、次に、縮み方向推力が小さくなり、伸び方向推力が大きくなるように、第3の傾き(第1の傾きと絶対値が同等)を有する推力指令21となる。
In the section between time t1 and time t2, the thrust force command 21 is output so as to produce a thrust force in the general contraction direction. In the section, first, the thrust force command 21 having the first slope is set so that the thrust in the contraction direction increases, and then the command 21 is set to the first slope having a slope smaller than the first slope so that the thrust in the contraction direction gradually increases. 2, and then the thrust force command 21 having a third slope (equivalent in absolute value to the first slope) so that the thrust in the contraction direction decreases and the thrust in the extension direction increases. Become.
また、推力指令21は、時刻t3以後の区間において、伸び方向推力が小さくなるように、第4の傾き(第1の傾きと同等)を有する推力指令21となる。
Also, the thrust force command 21 becomes the thrust force command 21 having the fourth slope (equivalent to the first slope) so that the extension direction thrust is reduced in the interval after time t3.
このように、アクチュエータ9に対して、推力指令21を出力することによって、図2(c)に示すように、ばね上加速度22は、時刻t1と時刻t2との間の区間において、概ね一定のマイナス加速度(下方向の加速度)となり、時刻t2と時刻t3との間の区間において、一定のプラス加速度(上方向の加速度)となり、図2(e)に示すように、ばね上速度24は、時刻t1と時刻t2との間の区間において、一定の傾きで下降し、時刻t2と時刻t3との間の区間において、一定の傾きで上昇する。
By outputting the thrust force command 21 to the actuator 9 in this way, the sprung acceleration 22 is substantially constant in the section between time t1 and time t2, as shown in FIG. 2(c). It becomes negative acceleration (downward acceleration), and in the section between time t2 and time t3, it becomes constant positive acceleration (upward acceleration), and as shown in FIG. In the section between time t1 and time t2, it descends with a constant slope, and in the section between time t2 and time t3, it rises with a constant slope.
つまり、アクチュエータ9は、ばね上3が、時刻t1と時刻t2との間の区間では、下方向に加速され、時刻t2と時刻t3との間の区間では、上方向に加速されるように、動作する。そして、下方向の加速度と上方向の加速度とのトータルが、相殺されるような大きさとなるように、推力指令21を設定する。つまり、特に、路面形状20以外に外乱がなければ、伸び方向推力の積分と縮み方向推力の積分とが一致するように、推力指令21を設定する。
That is, the actuator 9 is configured such that the sprung mass 3 is accelerated downward in the interval between time t1 and time t2, and accelerated upward in the interval between time t2 and time t3. Operate. Then, the thrust force command 21 is set so that the total of the downward acceleration and the upward acceleration is offset. Specifically, if there is no disturbance other than the road surface shape 20, the thrust force command 21 is set so that the integral of the thrust in the extension direction and the integral of the thrust in the contraction direction match.
なお、この推力指令21は、事前に、突起の周波数(長さ)や突起の振幅(高さ)に基づいて演算され、突起の周波数や突起の振幅に応じて、縮み方向推力の大きさや伸び方向推力の大きさを決定し、それを推力指令21として、出力する。
The thrust force command 21 is calculated in advance based on the frequency (length) and amplitude (height) of the projections, and the magnitude and extension of the thrust force in the contraction direction are calculated according to the frequency (length) and amplitude (height) of the projections. The magnitude of the directional thrust is determined and output as a thrust command 21 .
つまり、時刻t1と時刻t2との間の区間における推力指令21は、ばね上3の速度が、時刻t3において、0(ゼロ)となるように設定する。
That is, the thrust force command 21 in the section between time t1 and time t2 is set so that the speed of the sprung mass 3 becomes 0 (zero) at time t3.
また、時刻t2と時刻t3との間の区間における伸び方向推力の積分(大きさ、エネルギ)と、車両が突起を通過する際に、ばね下5が突起によって受ける力の積分(大きさ、エネルギ)と、が同等になるように設定する。
Further, the integral (magnitude, energy) of the thrust in the extension direction in the section between time t2 and time t3 and the integral (magnitude, energy ) and are set to be equivalent.
このように推力指令21を設定することによって、図2(c)に示すように、ばね上3の加速度22は、時刻t1と時刻t2との間の区間では下方向に、時刻t2と時刻t3との間の区間では上方向に発生し、時刻t3以降(突起を通過した後)は、ほぼ0(ゼロ)となる。
By setting the thrust force command 21 in this way, as shown in FIG. , and after time t3 (after passing the protrusion), it becomes almost 0 (zero).
また、このように推力指令21を設定することによって、図2(d)に示すように、ばね下5の加速度23は、時刻t1と時刻t2との間の区間では、縮み方向推力によって、一時、上向き(右上がり)に上昇し、その後、タイヤばね6の力によって、下向き(右下がり)に下降し、その後、伸び方向推力によって、下向きに大きく下降し、時刻t2と時刻t3との間の区間では、突起によって、路面形状20に応じて、上向きの加速度が小→大→小と変化し、時刻t3以降は、ほぼ0(ゼロ)となる。
Further, by setting the thrust force command 21 in this way, as shown in FIG. 2(d), the acceleration 23 of the unsprung mass 5 is temporarily , rises upward (upward to the right), then descends downward (downward to the right) by the force of the tire spring 6, then descends significantly downward due to the thrust in the extension direction, and between time t2 and time t3 In the section, the upward acceleration changes from small to large to small depending on the road surface shape 20 due to the protrusion, and becomes almost 0 (zero) after time t3.
また、このように推力指令21を設定することによって、図2(e)に示すように、ばね上3の速度24は、時刻t1と時刻t2との間の区間では、下向きに下降し、時刻t2と時刻t3との間の区間では、上向きに上昇し、時刻t3以降は、ほぼ0(ゼロ)となる。
Further, by setting the thrust force command 21 in this way, as shown in FIG. In the section between t2 and time t3, it rises upward, and becomes almost 0 (zero) after time t3.
つまり、ばね上3は、推力指令21に応じて、速度を発生し、時刻t1と時刻t2との間の区間では、負のエリアで下向き速度で動作し、時刻t2と時刻t3との間の区間では、負のエリアで上向き速度で動作し、時刻t3では、速度が最小となる。
That is, the sprung mass 3 generates speed in response to the thrust force command 21, operates at a downward speed in the negative area in the interval between time t1 and time t2, and operates at a downward speed in the interval between time t2 and time t3. In the section, it operates at an upward speed in the negative area, and at time t3, the speed becomes minimum.
また、このように推力指令21を設定することによって、図2(f)に示すように、ばね下5の速度25は、時刻t1と時刻t2との間の区間では、前半、上向きに上昇し、後半、下向きに下降し、時刻t2と時刻t3との間の区間では、上向きに上昇、下向きに下降、上向きに上昇を繰り返し、時刻t3以降は、ほぼ0(ゼロ)となる。
Further, by setting the thrust force command 21 in this way, as shown in FIG. , descends downward in the second half, and in the section between time t2 and time t3, it repeats upward upward, downward downward, upward upward, and after time t3, it becomes almost 0 (zero).
つまり、ばね下5は、推力指令21に応じて、速度を発生し、時刻t1と時刻t2との間の区間では、正のエリアで、上向き速度から下向き速度に変化して動作し、突起の手前では負のエリアで下向き速度で動作し、時刻t2と時刻t3との間の区間では、負のエリアで、下向き速度から上向き速度に変化して動作し、突起の頂点付近以降から、正のエリアで、上向き速度から下向き速度に、負のエリアで、下向き速度から上向き速度に変化して動作し、時刻t3では、速度が最小となる。このように、時刻t2と時刻t3との間の区間では、突起による路面速度と相殺される。
That is, the unsprung mass 5 generates a speed according to the thrust force command 21, and in the interval between the time t1 and the time t2, in the positive area, the speed changes from the upward speed to the downward speed, and the projection It operates at a downward velocity in the negative area in front, and in the section between time t2 and time t3, it operates at a negative area, changing from a downward velocity to an upward velocity. It operates by changing from upward speed to downward speed in areas and from downward speed to upward speed in negative areas, and the speed becomes minimum at time t3. In this way, in the section between time t2 and time t3, the road surface speed due to the bump is canceled.
このように、アクチュエータ9を制御することによって、突起を通過した後(直後)には、ばね上3の加速度、ばね下5の加速度、ばね上3の速度、ばね下5の速度を、共にほぼ0(ゼロ)にすることができ、車両に残留振動が発生しない。これにより、ばね上3の振動を抑制することによって車体の制振性を向上させ、ばね下5の振動を抑制することによって車輪の接地性を向上させ、車体の制振性と車輪の接地性とを両立し、車両の乗り心地を向上させることができる。
In this way, by controlling the actuator 9, the acceleration of the sprung mass 3, the acceleration of the unsprung mass 5, the speed of the sprung mass 3, and the speed of the unsprung mass 5 are all approximately It can be set to 0 (zero) and no residual vibration occurs in the vehicle. As a result, by suppressing the vibration of the sprung mass 3, the vibration damping property of the vehicle body is improved, and by suppressing the vibration of the unsprung mass 5, the road contact property of the wheel is improved. , and the ride comfort of the vehicle can be improved.
つまり、これは、時刻t2と時刻t3との間の区間では、アクチュエータ9による、ばね下5を抑えようとする力は、同時に、ばね上3にも伝わるため、その力がばね上3に入力された場合に、ばね上3が、時刻t3において、制振することができる状態となるよう、事前に、時刻t1と時刻t2との間の区間で、ばね上3に伝わる力を制御する。
In other words, in the section between time t2 and time t3, the force exerted by the actuator 9 to suppress the unsprung mass 5 is simultaneously transmitted to the sprung mass 3, so that force is input to the sprung mass 3. In this case, the force transmitted to the sprung mass 3 is controlled in advance in the section between the time t1 and the time t2 so that the sprung mass 3 can be damped at the time t3.
なお、ばね上3の位置は、ばね上3の速度24の積分であり、突起通過時は、突起通過前よりも下側に位置する。そして、突起通過後に、元の位置に戻すような動作が必要である。これを、ゆっくりと復帰させることによって、速度が小さくなり、乗り心地に影響する加速度も小さくすることができる。
The position of the sprung mass 3 is the integral of the speed 24 of the sprung mass 3, and is located below the position before passing through the protrusion when passing through the protrusion. Then, after passing through the projection, it is necessary to perform an operation to return it to its original position. By returning this slowly, the speed can be reduced, and the acceleration that affects the ride comfort can also be reduced.
また、事前に設定した推力指令21でアクチュエータ9を動作させるため、時刻t3の時点で、速度が完全に0(ゼロ)にはならないことがある。このため、時刻t3以後は、例えば、スカイフック制御及び/又はグランドフック制御を使用し、位置、速度、加速度を減衰する制御を実行することが好ましい。
Also, since the actuator 9 is operated with the thrust force command 21 set in advance, the speed may not be completely 0 (zero) at time t3. Therefore, after time t3, it is preferable to use skyhook control and/or groundhook control, for example, to execute control to attenuate the position, velocity, and acceleration.
このように、実施例1に記載する力発生機構の制御装置は、車両に設置される外界認識手段(プレビューセンサ2)によって検出される路面形状の検出値(路面8の凹凸情報)に基づいて、車体(ばね上3)と車輪(ばね下5)との間に設置される力発生機構(アクチュエータ9)を制御する制御器9であって、検出値が路面形状における突起(凸形状)であり、車両が突起に進入する前に、車両が突起によって発生する上方向の力と同方向の力(アクチュエータ9に対する縮み方向推力)を、力発生機構に発生させる。
As described above, the control device for the force generating mechanism described in the first embodiment can perform the following operations based on the road surface shape detection value (unevenness information of the road surface 8) detected by the external world recognition means (preview sensor 2) installed in the vehicle. , a controller 9 that controls a force generating mechanism (actuator 9) installed between the vehicle body (sprung 3) and the wheel (unsprung 5), the detected value being a protrusion (convex shape) on the road surface shape Before the vehicle enters the protrusion, the vehicle causes the force generating mechanism to generate a force in the same direction as the upward force generated by the protrusion (thrust in the contraction direction to the actuator 9).
そして、車両が突起に進入した後には、車両が突起によって発生する上方向の力と反対方向の力(アクチュエータ9に対する伸び方向推力)を、力発生機構に発生させる。
Then, after the vehicle enters the protrusion, the vehicle causes the force generating mechanism to generate a force in the direction opposite to the upward force generated by the protrusion (an extensional thrust force on the actuator 9).
これにより、車体の制振性と車輪の接地性とを両立し、車両の乗り心地を向上させることができる。
As a result, it is possible to achieve both the damping properties of the vehicle body and the grounding properties of the wheels, improving the ride comfort of the vehicle.
なお、実施例1では、力発生機構として、サスペンション用のばね上3とばね下5との間に設置するアクチュエータ9(例えば、リニアモータ)を使用する。
In addition, in Example 1, an actuator 9 (for example, a linear motor) installed between the sprung portion 3 and the unsprung portion 5 for suspension is used as the force generating mechanism.
一方、力発生機構は、これに限定されるものではない。例えば、前輪を対象とし、前輪にブレーキ(車両を制動する制動装置)による制動力を発生させると、前輪のばね上3とばね下5との間は縮む。これにより、図2における時刻t1と時刻t2との間の区間で制動力が発生し、ばね上3とばね下5との間には縮み方向推力が発生する。その後、アクセル(車両を駆動する駆動装置)によって車両を加速させると、図2における時刻t2と時刻t3との間の区間では駆動力が発生し、ばね上3とばね下5との間には伸び方向推力が発生する。このように、ブレーキによる制動力やアクセルによる駆動力を制御することによって、実施例1と同様の効果を奏する制御を実現することができる。
On the other hand, the force generation mechanism is not limited to this. For example, targeting the front wheels, when a braking force is generated by a brake (braking device for braking the vehicle) on the front wheels, the space between the sprung mass 3 and the unsprung mass 5 of the front wheels shrinks. As a result, a braking force is generated in the section between time t1 and time t2 in FIG. After that, when the vehicle is accelerated by an accelerator (driving device for driving the vehicle), driving force is generated in the section between time t2 and time t3 in FIG. Extensional thrust is generated. By controlling the braking force of the brake and the driving force of the accelerator in this way, it is possible to achieve control that produces the same effect as in the first embodiment.
また、アクチュエータ9の制御とこれら制動力や駆動力の制御とを併用してもよい。
Also, the control of the actuator 9 and the control of the braking force and driving force may be used together.
このように、実施例1によれば、制御対象として、複数の力発生機構を選択することができ、汎用性も増加する。また、複数の力発生機構を制御対象とすることによって、例えば、力発生機構の故障時など、力発生機構が相互に補完し、制御の信頼性が向上する。また、アクチュエータ9に必要な推力を低減することができる。
As described above, according to the first embodiment, a plurality of force generating mechanisms can be selected as the control target, and versatility is also increased. In addition, by setting a plurality of force generation mechanisms as control targets, the force generation mechanisms complement each other in the event of failure of the force generation mechanisms, for example, and the reliability of control is improved. Also, the thrust required for the actuator 9 can be reduced.
次に、実施例1に記載する力発生機構を動作させる際の制御を説明する。
Next, the control when operating the force generating mechanism described in Embodiment 1 will be described.
図3は、実施例1に記載する力発生機構を動作させる際の制御を説明するフローチャートである。
FIG. 3 is a flow chart explaining control when operating the force generating mechanism described in the first embodiment.
図3に示すように、力発生機構の制御方法は、以下の手順を有する。
As shown in FIG. 3, the control method of the force generation mechanism has the following procedures.
(1)先ず、突起の大きさ(周波数及び振幅)を検出する(ステップ31)。時刻t1より以前に検出される突起の大きさに基づいて、突起の大きさに応じて事前に演算されている、縮み方向推力の大きさや伸び方向推力の大きさを、演算する。つまり、推力指令21は、今後通過する突起の大きさや車速に基づいて、演算される。なお、推力指令21は、突起の大きさが検出された後に、その突起の大きさ及び車速に基づいて、車両で演算してもよい。
(1) First, the size (frequency and amplitude) of the protrusion is detected (step 31). Based on the size of the protrusion detected before time t1, the size of the thrust in the contraction direction and the size of the thrust in the extension direction, which are calculated in advance according to the size of the protrusion, are calculated. That is, the thrust force command 21 is calculated based on the size of the protrusion that will pass from now on and the vehicle speed. The thrust force command 21 may be calculated by the vehicle based on the size of the protrusion and the vehicle speed after the size of the protrusion is detected.
(2)次に、時刻t1(突起通過所定時刻前)になったか否か、又は、時刻t2になったか否かを判定する(ステップ32)。時刻t1である場合(yes)は、ステップ33に進み、時刻t2である場合(no)は、ステップ34に進む。そして、時刻t1と時刻t2との間の区間では、ステップ33に進み、時刻t2と時刻t3との間の区間では、ステップ34に進む。
(2) Next, it is determined whether or not time t1 (predetermined time before the projection passes) or time t2 has been reached (step 32). If it is time t1 (yes), the process proceeds to step 33, and if it is time t2 (no), the process proceeds to step . Then, in the section between time t1 and time t2, the process proceeds to step 33, and in the section between time t2 and time t3, the process proceeds to step .
(3)次に、時刻t1になった場合には、アクチュエータ9に対して、時刻t1で、推力指令21(概ね縮み方向推力)を出力する。時刻t1以前の場合は、推力指令21の出力を待機する。また、時刻t1と時刻t2との間の区間でも、概ね縮み方向推力の推力指令21を出力する。
(3) Next, at time t1, a thrust command 21 (roughly contraction direction thrust) is output to the actuator 9 at time t1. Before the time t1, the output of the thrust force command 21 is waited. Further, in the section between time t1 and time t2, the thrust force command 21 of approximately the compression direction thrust is output.
(4)次に、アクチュエータ9は、概ね縮み方向推力に基づいて、縮み方向の推力を発生する(ステップ37)。
(4) Next, the actuator 9 generates a thrust in the direction of contraction based on the thrust in the direction of contraction (step 37).
(5)次に、時刻t2になった場合には、時刻t2と時刻t3との間の区間であるか否かを判定する(ステップ34)。時刻t2と時刻t3との間の区間である場合(yes)は、ステップ35に進み、時刻t3以後の場合(no)は、ステップ36に進む。
(5) Next, when time t2 has come, it is determined whether or not it is a section between time t2 and time t3 (step 34). If the interval is between time t2 and time t3 (yes), the process proceeds to step 35;
(6)次に、時刻t2になった場合には、アクチュエータ9に対して、時刻t2で、推力指令21(伸び方向推力)を出力する。また、時刻t2と時刻t3との間の区間でも、伸び方向推力の推力指令21を出力する。
(6) Next, at time t2, a thrust command 21 (stretching direction thrust) is output to the actuator 9 at time t2. Further, the thrust force command 21 for the thrust in the extension direction is also output in the section between time t2 and time t3.
(7)次に、アクチュエータ9は、伸び方向推力に基づいて、伸び方向の推力を発生する(ステップ37)。
(7) Next, the actuator 9 generates thrust in the direction of extension based on the thrust in the direction of extension (step 37).
(8)次に、時刻t3以後の場合は、減衰フィードバック(FB)の推力指令21を出力する。つまり、時刻t1以前の場合と同様な推力指令21を出力する。
(8) Next, after time t3, a thrust force command 21 for damping feedback (FB) is output. That is, the same thrust force command 21 as before time t1 is output.
(9)次に、アクチュエータ9は、減衰フィードバックの推力指令21に基づいて、動作する(ステップ37)。
(9) Next, the actuator 9 operates based on the damping feedback thrust command 21 (step 37).
なお、時刻t1と時刻t2との間の区間や時刻t2と時刻t3との間の区間は、車速に応じて変化する。
Note that the section between time t1 and time t2 and the section between time t2 and time t3 change according to the vehicle speed.
そして、実施例1では、時刻t2から時刻t3までは、20~50ms程度であり、時刻t1から時刻t2までは、50ms程度である。つまり、実施例1は、特に、周波数が20~50ms程度の突起に有効である。
In Example 1, the period from time t2 to time t3 is approximately 20 to 50 ms, and the period from time t1 to time t2 is approximately 50 ms. In other words, Example 1 is particularly effective for protrusions with a frequency of about 20 to 50 ms.
このように、実施例1に記載する力発生機構の制御方法は、車両に設置される外界認識手段(プレビューセンサ2)によって検出される路面形状の検出値(路面8の凹凸情報)に基づいて、車体(ばね上3)と車輪(ばね下5)との間に設置される力発生機構(アクチュエータ9)を制御する制御器9の制御方法であって、外界認識手段が、突起(凸形状)である路面形状の検出値を検出し、車両が突起に進入する前に、車両が突起によって発生する上方向の力と同方向の力(アクチュエータ9に対する縮み方向推力)を、力発生機構に発生する。
Thus, the control method of the force generating mechanism described in the first embodiment is based on the detected value of the road surface shape (unevenness information of the road surface 8) detected by the external recognition means (preview sensor 2) installed in the vehicle. , A control method for a controller 9 that controls a force generating mechanism (actuator 9) installed between a vehicle body (sprung 3) and a wheel (unsprung 5), wherein the external world recognition means is a projection (convex shape ) is detected, and before the vehicle enters the bump, the force in the same direction as the upward force generated by the bump (thrust in the direction of contraction to the actuator 9) is applied to the force generating mechanism. Occur.
そして、車両が突起に進入した後には、車両が突起によって発生する上方向の力と反対方向の力(アクチュエータ9に対する伸び方向推力)を、力発生機構に発生する。
Then, after the vehicle enters the projection, the vehicle generates a force in the direction opposite to the upward force generated by the projection (an extensional thrust force on the actuator 9) in the force generating mechanism.
このように、実施例1によれば、突起を通過した後(直後)には、ばね上3の加速度、ばね下5の加速度、ばね上3の速度、ばね下5の速度を、共にほぼ0(ゼロ)にする、つまり、車体及び車輪に対する振動を最小限に抑制することができ、車両に対する残留振動をほぼなくすことができ、制振性と接地性とを両立することができ、車両の乗り心地を向上させることができる。
Thus, according to the first embodiment, the acceleration of the sprung mass 3, the acceleration of the unsprung mass 5, the speed of the sprung mass 3, and the speed of the unsprung mass 5 are all substantially zero after (immediately after) passing through the projection. (zero), that is, it is possible to suppress the vibration to the vehicle body and wheels to a minimum, to almost eliminate the residual vibration to the vehicle, to achieve both damping performance and grounding performance, and to improve the performance of the vehicle. Ride comfort can be improved.
なお、実施例1では、時刻t3において、ばね上3及びばね下5の速度及び加速度をほぼ0(ゼロ)としたが、時刻t3後のしばらく後の時刻(振動が収束するまでの時刻を許容することができる所定間隔の時刻)で、ほぼ0(ゼロ)としてもよい。これにより、アクチュエータ9に対する必要な推力を抑制することができ、ばね上3及びばね下5の加速度を更に低減することができ、車両の乗り心地を向上させることができる。
In the first embodiment, the velocity and acceleration of the sprung mass 3 and the unsprung mass 5 are set to approximately 0 (zero) at time t3, but a time after time t3 (a time until the vibration converges) is allowed. It may be approximately 0 (zero). As a result, the thrust required for the actuator 9 can be suppressed, the acceleration of the sprung mass 3 and the unsprung mass 5 can be further reduced, and the ride comfort of the vehicle can be improved.
また、時刻t1と時刻t2との間の区間(事前動作時刻)を長くすることによって、縮み方向推力の大きさを小さくすることができ、突起の手前におけるばね上3及びばね下5の加速度を更に低減することができ、車両の乗り心地を向上させることができる。
Also, by lengthening the interval (pre-operation time) between time t1 and time t2, the magnitude of the compression direction thrust can be reduced, and the acceleration of the sprung mass 3 and the unsprung mass 5 in front of the projection can be reduced to It can be further reduced, and the ride comfort of the vehicle can be improved.
次に、実施例2に記載する力発生機構を動作させた際の時刻歴応答を説明する。
Next, the time history response when the force generating mechanism described in Example 2 is operated will be described.
図4は、実施例2に記載する力発生機構を動作させた際の時刻歴応答を説明する説明図である。
FIG. 4 is an explanatory diagram explaining the time history response when the force generating mechanism described in Example 2 is operated.
実施例2は、実施例1と比較して、路面形状が相違する。つまり、実施例1は、路面形状が突起(凸形状)を想定し、実施例2は、路面形状が陥没(凹形状)を想定する。また、実施例2を説明する際には、実施例1との相違点について、説明する。
The second embodiment differs from the first embodiment in road surface shape. That is, the first embodiment assumes that the road surface shape is a protrusion (convex shape), and the second embodiment assumes that the road surface shape is a depression (concave shape). Also, when describing the second embodiment, differences from the first embodiment will be described.
なお、図4(a)は、時刻(横軸)に対する路面形状120の変化(縦軸)を、図4(b)は、時刻(横軸)に対する推力指令121の変化(縦軸)を、図4(c)は、時刻(横軸)に対するばね上加速度122の変化(縦軸)を、図4(d)は、時刻(横軸)に対するばね下加速度123の変化(縦軸)を、図4(e)は、時刻(横軸)に対するばね上速度124の変化(縦軸)を、図4(f)は、時刻(横軸)に対するばね下速度125の変化(縦軸)を、それぞれ示す。
4(a) shows the change (vertical axis) of the road surface shape 120 with respect to time (horizontal axis), and FIG. 4(b) shows the change (vertical axis) of the thrust command 121 with respect to time (horizontal axis). 4(c) shows the change (vertical axis) in the sprung acceleration 122 with respect to time (horizontal axis), and FIG. 4(d) shows the change (vertical axis) in the unsprung acceleration 123 with respect to time (horizontal axis). 4(e) shows the change (vertical axis) of the sprung speed 124 with respect to time (horizontal axis), and FIG. 4(f) shows the change (vertical axis) of the unsprung speed 125 with respect to time (horizontal axis). each shown.
図4(a)には、路面形状120(Z0)が示され、ここで、路面形状120は、正弦波状の1波長(正弦波の位相を270度ずらし、オフセットさせた)の陥没(凹の形状の陥没)を有する。つまり、車両が、この陥没を通過する際(通過開始時点の時刻をt2(陥没通過開始時刻:陥没進入時刻)とし、通過終了時点の時刻をt3(陥没通過終了時刻:陥没退去時刻)とする)には、図4(a)に示すような路面形状120における陥没が、タイヤばね6を介して、車両に入力される。
FIG. 4(a) shows a road surface shape 120 (Z0), where the road surface shape 120 is a depression (concave shape) of one sinusoidal wave (the phase of the sinusoidal wave is shifted by 270 degrees and offset). shape depression). That is, when the vehicle passes through the cave-in (the time at which the vehicle starts passing through the cave-in is set to t2 (cavity-passing start time: cave-in entry time), and the time at which the vehicle finishes passing is set to t3 (cavity-passing end time: cave-in exit time). ), the depression in the road surface shape 120 as shown in FIG.
また、陥没が車両に入力される以前の所定間隔の時刻をt1(陥没入力時刻)とする。なお、車両が、プレビューセンサ2によって陥没を検出する時刻は、時刻t1より以前であり、場合によっては、時刻t1と同時であってもよい。
Also, let t1 (cavity input time) be the time at a predetermined interval before the vehicle is inputted with a cave-in. The time at which the preview sensor 2 detects the collapse of the vehicle is before the time t1, and in some cases may be at the same time as the time t1.
図4(b)には、推力指令121が示され、ここで、推力指令121は、プラス側が、ばね上3とばね下5との間が縮む方向(縮み方向推力)を示し、マイナス側が、その逆で、ばね上3とばね下5との間が伸びる方向(伸び方向推力)を示す。
FIG. 4(b) shows the thrust command 121, where the positive side of the thrust command 121 indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 contracts (contraction direction thrust), and the negative side indicates the Conversely, it indicates the direction in which the space between the sprung mass 3 and the unsprung mass 5 extends (stretching direction thrust).
つまり、制御器7は、時刻t1で推力指令121を発生し、時刻t1からアクチュエータ9に推力指令121を出力する。
That is, the controller 7 generates the thrust force command 121 at time t1, and outputs the thrust force command 121 to the actuator 9 from time t1.
そして、推力指令121は、アクチュエータ9に対して、陥没入力時刻t1と陥没通過開始時刻t2との間の区間(陥没前区間)では、概ね伸び方向推力となるように、また、陥没通過開始時刻t2と陥没通過終了時刻t3との間の陥没区間では、一定の縮み方向推力となるように、出力される。
Then, the thrust force command 121 is applied to the actuator 9 so that the thrust in the section between the collapse input time t1 and the collapse passage start time t2 (pre-collapse section) is generally in the extension direction, In the collapse section between t2 and the collapse passage end time t3, the thrust is output so as to be a constant contraction direction thrust.
そして、この推力指令121は、図2に示す推力指令21と、反対方向(逆方向)となる。
And this thrust force command 121 is in the opposite direction (reverse direction) to the thrust force command 21 shown in FIG.
このように推力指令121を設定することによって、図4(c)に示すように、ばね上3の加速度122は、時刻t1と時刻t2との間の区間では上方向に、時刻t2と時刻t3との間の区間では下方向に発生し、時刻t3以降(陥没を通過した後)は、ほぼ0(ゼロ)となる。
By setting the thrust force command 121 in this way, as shown in FIG. , and after time t3 (after passing through the depression), it becomes almost 0 (zero).
また、このように推力指令121を設定することによって、図4(d)に示すように、ばね下5の加速度123は、時刻t1と時刻t2との間の区間では、縮み方向推力によって、一時、下向き(右下がり)に下降し、その後、タイヤばね6の力によって、上向き(右上がり)に上昇し、その後、縮み方向推力によって、上向きに大きく上昇し、時刻t2と時刻t3との間の区間では、陥没によって、路面形状120に応じて、下向きの加速度が小→大→小と変化し、時刻t3以降は、ほぼ0(ゼロ)となる。
Further, by setting the thrust force command 121 in this way, as shown in FIG. 4(d), the acceleration 123 of the unsprung mass 5 is temporarily , descends downward (downward to the right), then rises upward (upward to the right) by the force of the tire spring 6, and then rises significantly upward due to the thrust in the contraction direction, and between time t2 and time t3 In the section, due to the depression, the downward acceleration changes from small to large to small according to the road surface shape 120, and becomes almost 0 (zero) after time t3.
また、このように推力指令121を設定することによって、図4(e)に示すように、ばね上3の速度124は、時刻t1と時刻t2との間の区間では、上向きに上昇し、時刻t2と時刻t3との間の区間では、下向きに下降し、時刻t3以降は、ほぼ0(ゼロ)となる。
Further, by setting the thrust force command 121 in this way, as shown in FIG. In the section between t2 and time t3, it decreases downward, and after time t3, it becomes almost 0 (zero).
また、このように推力指令121を設定することによって、図4(f)に示すように、ばね下5の速度125は、時刻t1と時刻t2との間の区間では、前半、下向きに下降し、後半、上向きに上昇し、時刻t2と時刻t3との間の区間では、下向きに下降、上向きに上昇、下向きに下降を繰り返し、時刻t3以降は、ほぼ0(ゼロ)となる。
Further, by setting the thrust force command 121 in this way, as shown in FIG. , rises upward in the second half, and in the section between time t2 and time t3, it repeats downward, upward, downward, and after time t3, it becomes almost 0 (zero).
このように、実施例2では、実施例1とは逆方向に、ばね上加速度122、ばね下加速度123、ばね上速度124、ばね下速度125が発生する。
Thus, in the second embodiment, sprung acceleration 122, unsprung acceleration 123, sprung velocity 124, and unsprung velocity 125 are generated in directions opposite to those in the first embodiment.
このように、実施例2に記載する力発生機構の制御装置は、車両に設置される外界認識手段(プレビューセンサ2)によって検出される路面形状の検出値(路面8の凹凸情報)に基づいて、車体(ばね上3)と車輪(ばね下5)との間に設置される力発生機構(アクチュエータ9)を制御する制御器9であって、検出値が路面形状における陥没(凹形状)であり、車両が陥没に進入する前に、車両が陥没によって発生する下方向の力と同方向の力(アクチュエータ9に対する伸び方向推力)を、力発生機構に発生させる。
As described above, the control device for the force generating mechanism described in the second embodiment is based on the road surface shape detection value (unevenness information of the road surface 8) detected by the external recognition means (preview sensor 2) installed in the vehicle. , a controller 9 that controls a force generating mechanism (actuator 9) installed between the vehicle body (sprung 3) and the wheel (unsprung 5), and the detected value is a depression (concave shape) in the road surface shape Before the vehicle enters the cave-in, the force generating mechanism generates a force in the same direction as the downward force generated by the cave-in (thrust in the extension direction to the actuator 9).
そして、車両が陥没に進入した後には、車両が陥没によって発生する下方向の力と反対方向の力(アクチュエータ9に対する縮み方向推力)を、力発生機構に発生させる。
Then, after the vehicle enters the cave-in, the force generating mechanism is caused to generate a force in the direction opposite to the downward force generated by the car cave-in (thrust in the contraction direction to the actuator 9).
また、力発生機構の制御方法は、図3に示す手順において、ステップ33が伸び方向の推力指令121となり、ステップ35が縮み方向の推力指令121となる。
In addition, in the procedure shown in FIG. 3, step 33 becomes the thrust force command 121 in the extension direction, and step 35 becomes the thrust force command 121 in the contraction direction.
このように、実施例2に記載する力発生機構の制御方法は、車両に設置される外界認識手段(プレビューセンサ2)によって検出される路面形状の検出値(路面8の凹凸情報)に基づいて、車体(ばね上3)と車輪(ばね下5)との間に設置される力発生機構(アクチュエータ9)を制御する制御器9の制御方法であって、外界認識手段が、陥没(凹形状)である路面形状の検出値を検出し、車両が陥没に進入する前に、車両が陥没によって発生する下方向の力と同方向の力(アクチュエータ9に対する伸び方向推力)を、力発生機構に発生する。
As described above, the control method of the force generating mechanism described in the second embodiment is based on the road surface shape detection value (unevenness information of the road surface 8) detected by the external world recognition means (preview sensor 2) installed in the vehicle. , A control method for a controller 9 that controls a force generating mechanism (actuator 9) installed between a vehicle body (sprung 3) and a wheel (unsprung 5), wherein the external world recognition means is depressed (concave shape ) is detected, and before the vehicle enters the cave-in, a force in the same direction as the downward force generated by the cave-in (extending thrust force on the actuator 9) is applied to the force generating mechanism. Occur.
そして、車両が陥没に進入した後には、車両が陥没によって発生する下方向の力と反対方向の力(アクチュエータ9に対する縮み方向推力)を、力発生機構に発生する。
Then, after the vehicle enters the cave-in, the force generating mechanism generates a force in the direction opposite to the downward force generated by the car cave-in (thrust in the direction of contraction to the actuator 9).
実施例2によれば、実施例1と同様に、陥没を通過した後(直後)には、ばね上3の加速度、ばね下5の加速度、ばね上3の速度、ばね下5の速度を、共にほぼ0(ゼロ)にする、つまり、車体及び車輪に対する振動を最小限に抑制することができ、車両に対する残留振動をほぼなくすことができ、制振性と接地性とを両立することができ、車両の乗り心地を向上させることができる。
According to the second embodiment, as in the first embodiment, after (immediately after) passing through the depression, the acceleration of the sprung mass 3, the acceleration of the unsprung mass 5, the speed of the sprung mass 3, and the speed of the unsprung mass 5 are Both can be set to almost 0 (zero), that is, vibrations to the vehicle body and wheels can be suppressed to a minimum, residual vibrations to the vehicle can be almost eliminated, and both damping performance and grounding performance can be achieved. , the ride comfort of the vehicle can be improved.
本発明は、実施例1及び実施例2を組み合わせることができる。
The present invention can combine Example 1 and Example 2.
また、これら実施例は、外界認識手段が突起又は陥没を検出した際に、車両が突起又は陥没に進入する前に、力発生機構に加わる上下方向に発生される力と、突起又は陥没の周波数に応じて、同方向(周波数が20~50ms程度と比較的小さい場合)又は逆方向(周波数が50~100ms程度と比較的大きい場合)の力を選択し、選択された力を力発生機構に発生することができる。
Further, in these embodiments, when the external world recognizing means detects a protrusion or depression, before the vehicle enters the protrusion or depression, the force generated in the vertical direction applied to the force generating mechanism and the frequency of the protrusion or depression are detected. Depending on, the force in the same direction (when the frequency is relatively small, about 20 to 50 ms) or in the opposite direction (when the frequency is relatively large, about 50 to 100 ms) is selected, and the selected force is applied to the force generation mechanism. can occur.
そして、周波数が20~50ms程度の突起又は陥没と周波数が50~100ms程度の突起又は陥没が連続する場合には、力発生機構に発生させる力の方向を切り替える。これにより、制振性と接地性とを両立することができ、車両の乗り心地を向上させることができる。
Then, when the projection or depression with a frequency of about 20-50 ms and the projection or depression with a frequency of about 50-100 ms are continuous, the direction of the force generated by the force generating mechanism is switched. As a result, it is possible to achieve both damping properties and grounding properties, thereby improving the ride comfort of the vehicle.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために、具体的に説明したものであり、必ずしも説明した全ての構成を有するものに限定されるものではない。
It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments are specifically described in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
また、ある実施例の構成の一部を、他の実施例の構成の一部に置換することもできる。また、ある実施例の構成に他の実施例の構成を追加することもできる。また、各実施例の構成の一部について、それを削除し、他の構成の一部を追加し、他の構成の一部と置換することもできる。
Also, part of the configuration of one embodiment can be replaced with part of the configuration of another embodiment. Also, the configuration of another embodiment can be added to the configuration of one embodiment. Also, a part of the configuration of each embodiment can be deleted, a part of another configuration can be added, and a part of another configuration can be substituted.
1…車両モデル、2…プレビューセンサ、3…ばね上、4…懸架ばね、5…ばね下、6…タイヤばね、7…制御器、8…路面、9…アクチュエータ、20、120…路面形状の時刻歴、21、121…推力指令の時刻歴、22、122…ばね上加速度の時刻歴、23、123…ばね下加速度の時刻歴、24、124…ばね上速度の時刻歴、25、125…ばね下速度の時刻歴。
1 Vehicle model 2 Preview sensor 3 Sprung 4 Suspension spring 5 Unsprung 6 Tire spring 7 Controller 8 Road surface 9 Actuator 20, 120 Road surface shape Time history 21, 121... Time history of thrust command 22, 122... Time history of sprung acceleration 23, 123... Time history of unsprung acceleration 24, 124... Time history of sprung velocity 25, 125... Time history of unsprung speed.
Claims (8)
- 車両に設置される外界認識手段によって検出される路面形状の検出値に基づいて、車体と車輪との間に設置される力発生機構を制御する力発生機構の制御装置であって、
前記検出値が路面形状における突起又は陥没であり、前記車両が前記突起又は陥没に進入する前に、前記車両が前記突起又は陥没によって発生する上下方向の力と同方向の力を、前記力発生機構に発生させることを特徴とする力発生機構の制御装置。 A force generation mechanism control device for controlling a force generation mechanism installed between a vehicle body and a wheel based on a road surface shape detection value detected by an external world recognition means installed in the vehicle,
The detected value is a protrusion or depression in the road surface shape, and before the vehicle enters the protrusion or depression, the vehicle generates a force in the same direction as the vertical force generated by the protrusion or depression. A control device for a force generating mechanism, wherein the force is generated by the mechanism. - 請求項1に記載する力発生機構の制御装置であって、
前記力発生機構が、前記車体と前記車輪との間に設置されるアクチュエータであることを特徴とする力発生機構の制御装置。 A control device for a force generating mechanism according to claim 1,
A control device for a force generating mechanism, wherein the force generating mechanism is an actuator installed between the vehicle body and the wheel. - 請求項1に記載する力発生機構の制御装置であって、
前記力発生機構が、前記車両を制動する制動装置及び前記車両を駆動する駆動装置であることを特徴とする力発生機構の制御装置。 A control device for a force generating mechanism according to claim 1,
A control device for a force generation mechanism, wherein the force generation mechanism is a braking device for braking the vehicle and a drive device for driving the vehicle. - 請求項2に記載する力発生機構の制御装置であって、
前記外界認識手段が、突起である路面形状の検出値を検出した際には、前記車両が前記突起に進入する前に、前記力発生機構に縮み方向推力を発生させることを特徴とする力発生機構の制御装置。 A control device for a force generating mechanism according to claim 2,
A force generation characterized in that, when the external world recognition means detects a road surface shape detection value that is a protrusion, the force generation mechanism is caused to generate a thrust in a contraction direction before the vehicle enters the protrusion. Mechanism control device. - 請求項4に記載する力発生機構の制御装置であって、
前記車両が突起に進入した後には、前記力発生機構に伸び方向推力を発生させることを特徴とする力発生機構の制御装置。 A control device for a force generating mechanism according to claim 4,
A control device for a force generation mechanism, wherein the force generation mechanism is caused to generate a thrust in an extension direction after the vehicle enters the projection. - 請求項2に記載する力発生機構の制御装置であって、
前記外界認識手段が、陥没である路面形状の検出値を検出した際には、前記車両が前記陥没に進入する前に、前記力発生機構に伸び方向推力を発生させることを特徴とする力発生機構の制御装置。 A control device for a force generating mechanism according to claim 2,
When the external world recognizing means detects a road surface shape detection value of a depression, the force generating mechanism causes the force generating mechanism to generate a thrust in the extension direction before the vehicle enters the depression. Mechanism control device. - 請求項6に記載する力発生機構の制御装置であって、
前記車両が陥没に進入した後には、前記力発生機構に縮み方向推力を発生させることを特徴とする力発生機構の制御装置。 A control device for a force generating mechanism according to claim 6,
A control device for a force generating mechanism, wherein the force generating mechanism is caused to generate a thrust force in a contraction direction after the vehicle enters a cave-in. - 車両に設置される外界認識手段によって検出される路面形状の検出値に基づいて、車体と車輪との間に設置される力発生機構を制御する力発生機構の制御方法であって、
前記外界認識手段が、突起又は陥没である路面形状の検出値を検出し、前記車両が前記突起又は陥没に進入する前に、前記車両が前記突起又は陥没によって発生する上下方向の力と同方向の力を、前記力発生機構に発生することを特徴とする力発生機構の制御方法。 A force generation mechanism control method for controlling a force generation mechanism installed between a vehicle body and a wheel based on a road surface shape detection value detected by an external world recognition means installed in the vehicle, comprising:
The external world recognizing means detects a detected value of a road surface shape that is a protrusion or depression, and before the vehicle enters the protrusion or depression, the vehicle detects a force in the same direction as the vertical force generated by the protrusion or depression. A method for controlling a force generating mechanism, characterized in that the force of (1) is generated in the force generating mechanism.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021115565A JP2023012108A (en) | 2021-07-13 | 2021-07-13 | Control device for force generation mechanism and control method for force generation mechanism |
JP2021-115565 | 2021-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023286428A1 true WO2023286428A1 (en) | 2023-01-19 |
Family
ID=84919307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/019770 WO2023286428A1 (en) | 2021-07-13 | 2022-05-10 | Force generation mechanism control device, and force generation mechanism control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023012108A (en) |
WO (1) | WO2023286428A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024274A1 (en) * | 1997-11-12 | 1999-05-20 | Case Corporation | Active suspension system for a work vehicle having adjustable performance parameters |
JP2004249976A (en) * | 2003-02-18 | 2004-09-09 | Bose Corp | Surface vehicle vertical trajectory planning |
JP2008001302A (en) * | 2006-06-26 | 2008-01-10 | Aisin Aw Co Ltd | Vehicle traveling control device and vehicle traveling control method |
JP2010501387A (en) * | 2006-08-22 | 2010-01-21 | ダイムラー・アクチェンゲゼルシャフト | Apparatus and method for controlling spring force characteristics of an active chassis of an automobile |
JP2014019335A (en) * | 2012-07-19 | 2014-02-03 | Nissan Motor Co Ltd | Vehicle body vibration control device |
JP2015058862A (en) * | 2013-09-20 | 2015-03-30 | トヨタ自動車株式会社 | Pedestrian protection device of vehicle |
-
2021
- 2021-07-13 JP JP2021115565A patent/JP2023012108A/en active Pending
-
2022
- 2022-05-10 WO PCT/JP2022/019770 patent/WO2023286428A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024274A1 (en) * | 1997-11-12 | 1999-05-20 | Case Corporation | Active suspension system for a work vehicle having adjustable performance parameters |
JP2004249976A (en) * | 2003-02-18 | 2004-09-09 | Bose Corp | Surface vehicle vertical trajectory planning |
JP2008001302A (en) * | 2006-06-26 | 2008-01-10 | Aisin Aw Co Ltd | Vehicle traveling control device and vehicle traveling control method |
JP2010501387A (en) * | 2006-08-22 | 2010-01-21 | ダイムラー・アクチェンゲゼルシャフト | Apparatus and method for controlling spring force characteristics of an active chassis of an automobile |
JP2014019335A (en) * | 2012-07-19 | 2014-02-03 | Nissan Motor Co Ltd | Vehicle body vibration control device |
JP2015058862A (en) * | 2013-09-20 | 2015-03-30 | トヨタ自動車株式会社 | Pedestrian protection device of vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2023012108A (en) | 2023-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109070873B (en) | Vehicle control device and method | |
JP6274139B2 (en) | Vehicle vibration suppression control device | |
KR101288749B1 (en) | Driving condition adapted to the steering engagement based on vehicle dynamic control | |
JP2005529788A (en) | Method and apparatus for cooperatively controlling at least two systems that affect the driving behavior of an automobile | |
JP7264275B2 (en) | Prediction module, associated apparatus and method for real-time route control | |
US10131331B2 (en) | Braking force control device | |
US20060015226A1 (en) | Method for determining a steering torque which acts when a steering wheel is activated in motor vehicles | |
WO2018155602A1 (en) | Vehicle control device | |
JP2003341501A (en) | Operation support controlling system | |
WO2023286428A1 (en) | Force generation mechanism control device, and force generation mechanism control method | |
JP2008105471A (en) | Vibration control device for vehicle | |
WO2022255006A1 (en) | Vehicle integrated control device and vehicle integrated control method | |
US12017497B2 (en) | Vehicle control device | |
JP6443395B2 (en) | Stabilizer control device | |
JP4161822B2 (en) | Follow-up control device | |
US20240075783A1 (en) | Suspension control device | |
JP2005348497A (en) | Driving force controller at braking for electric motor vehicle | |
JP6790971B2 (en) | Vehicle braking device | |
JP4596133B2 (en) | Vehicle integrated control device | |
JP2008105472A (en) | Vibration control device for vehicle | |
KR102518590B1 (en) | Vehicle braking system and control method thereof | |
JP2021054282A (en) | Posture control device for vehicle | |
KR102298886B1 (en) | Chassis Intergration Control Method using Roll Phase Priority Control and Vehicle thereof | |
JP6809344B2 (en) | Deflection control device | |
JP4899710B2 (en) | Vehicles that harmonize emergency avoidance drivability and vehicle body vibration suppression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22841775 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22841775 Country of ref document: EP Kind code of ref document: A1 |