Nothing Special   »   [go: up one dir, main page]

WO2023276366A1 - Electric valve - Google Patents

Electric valve Download PDF

Info

Publication number
WO2023276366A1
WO2023276366A1 PCT/JP2022/014734 JP2022014734W WO2023276366A1 WO 2023276366 A1 WO2023276366 A1 WO 2023276366A1 JP 2022014734 W JP2022014734 W JP 2022014734W WO 2023276366 A1 WO2023276366 A1 WO 2023276366A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
magnet rotor
permanent magnet
magnetic
angle sensor
Prior art date
Application number
PCT/JP2022/014734
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 吉田
悠太 松原
裕介 荒井
Original Assignee
株式会社不二工機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二工機 filed Critical 株式会社不二工機
Priority to JP2022532631A priority Critical patent/JP7114145B1/en
Priority to CN202280023022.2A priority patent/CN117460907A/en
Priority to DE112022003294.4T priority patent/DE112022003294T5/en
Priority to KR1020237031936A priority patent/KR20230145600A/en
Publication of WO2023276366A1 publication Critical patent/WO2023276366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to electric valves.
  • Patent Document 1 discloses an example of a conventional electric valve.
  • the electric valve of Patent Document 1 has a case, a magnet rotor, a permanent magnet, a stator, and a substrate.
  • the case has a cylindrical shape with a closed upper end.
  • the magnet rotor is placed inside the case.
  • a permanent magnet is arranged above the magnet rotor inside the case.
  • a permanent magnet is rotated with the magnet rotor.
  • the stator is arranged outside the case.
  • An angle sensor for detecting the rotation angle of the permanent magnet (specifically, the rotation angle of the magnetic field generated by the permanent magnet) is mounted on the substrate.
  • the angle sensor is arranged above the upper end of the case. Therefore, the height dimension of the electric valve is large. Therefore, by arranging the angle sensor on the side of the case, the height dimension of the electric valve can be reduced.
  • the magnetic poles are formed so that the lines of magnetic force of the permanent magnets go upward from the upper surface and enter the upper surface. Therefore, the strength of the magnetic field generated by the permanent magnet is relatively weak in the space on the side of the case, and if the angle sensor is arranged on the side of the case, the rotation angle of the permanent magnet may not be detected accurately.
  • an object of the present invention is to provide an electric valve that has a small height dimension and that can accurately detect the rotation angle of the magnet rotor.
  • an electrically operated valve includes a cylindrical case, a magnet rotor arranged inside the case, and a magnet rotor arranged inside the case and rotating together with the magnet rotor. and a stator unit having a stator disposed outside the case, the permanent magnet having at least one north pole and at least one south pole, The magnetization direction of the permanent magnet is a direction perpendicular to the rotation axis of the magnet rotor, the stator unit has an angle sensor that detects the rotation angle of the permanent magnet, and the angle sensor detects the rotation axis. is aligned with the case in a direction perpendicular to the .
  • the motor-operated valve has a permanent magnet arranged inside the case.
  • a permanent magnet is rotated with the magnet rotor.
  • a permanent magnet has at least one north pole and at least one south pole.
  • the magnetization direction of the permanent magnet is the direction orthogonal to the rotation axis of the magnet rotor.
  • An angle sensor for detecting the rotation angle of the permanent magnet is aligned with the case in a direction perpendicular to the rotation axis. As a result, the lines of magnetic force of the permanent magnets exit and enter the permanent magnets along the direction perpendicular to the rotation axis.
  • the strength of the magnetic field in the space on the side of the case (that is, the space in the direction perpendicular to the rotation axis with respect to the case) is strong, and the angle sensor placed on the side of the case can accurately The rotation angle of the magnet rotor (permanent magnet) can be detected. Also, by arranging the angle sensor on the side of the case, the height dimension of the electric valve can be reduced.
  • an electrically operated valve has a cylindrical case, a magnet rotor arranged inside the case, and a stator arranged outside the case. and a stator unit, wherein the magnet rotor has a first magnetic pole portion, a magnetic buffer portion, and a second magnetic pole portion, which are connected in order in the rotation axis direction of the magnet rotor.
  • a plurality of N poles and a plurality of S poles arranged alternately in the circumferential direction are arranged on the outer peripheral surface of the first magnetic pole portion;
  • An N pole and at least one S pole are arranged, the magnetization direction of the second magnetic pole portion is perpendicular to the rotation axis, and the stator unit detects the rotation angle of the second magnetic pole portion.
  • An angle sensor is provided, and the angle sensor is aligned with the case in a direction perpendicular to the rotation axis.
  • the magnet rotor of the motor-operated valve has a first magnetic pole portion, a magnetic buffer portion, and a second magnetic pole portion, which are connected in order in the rotation axis direction of the magnet rotor.
  • a plurality of N poles and a plurality of S poles are arranged alternately in the circumferential direction on the outer peripheral surface of the first magnetic pole portion.
  • At least one N pole and at least one S pole are arranged alternately in the circumferential direction on the outer peripheral surface of the second magnetic pole portion.
  • the magnetization direction of the second magnetic pole portion is the direction orthogonal to the rotation axis.
  • An angle sensor for detecting the rotation angle of the second magnetic pole portion is aligned with the case in a direction orthogonal to the rotation axis.
  • the magnetic line of force of the second magnetic pole portion emerges from the outer peripheral surface of the second magnetic pole portion and enters the outer peripheral surface of the second magnetic pole portion along the direction perpendicular to the rotation axis.
  • there is a magnetic damping portion between the first magnetic pole portion and the second magnetic pole portion and the magnetic damping portion suppresses mutual influence between the magnetic field generated by the first magnetic pole portion and the magnetic field generated by the second magnetic pole portion.
  • the strength of the magnetic field in the space on the side of the case (that is, the space in the direction perpendicular to the rotation axis with respect to the case) is strong, and the angle sensor placed on the side of the case can accurately The rotation angle of the magnet rotor (second magnetic pole portion) can be detected. Also, by arranging the angle sensor on the side of the case, the height dimension of the electric valve can be reduced.
  • the permanent magnet moves in the rotation axis direction along with the rotation, and the angle sensor is always aligned with the permanent magnet in the direction orthogonal to the rotation axis.
  • the rotation angle of the magnet rotor can be detected more accurately than when the permanent magnet moves away from the angle sensor in the rotation axis direction.
  • the magnet rotor moves in the rotation axis direction as it rotates, and the angle sensor is always aligned with the second magnetic pole portion in a direction orthogonal to the rotation axis.
  • the rotation angle of the magnet rotor (second magnetic pole portion) can be detected more accurately than when the second magnetic pole portion separates from the angle sensor in the rotation axis direction when the magnet rotor moves. can be done.
  • the magnetic buffer portion is a non-magnetized portion
  • the length of the magnetic buffer portion in the rotation axis direction is such that the magnetic field generated by the first magnetic pole portion is the magnetic field generated by the second magnetic pole portion. It is preferable that the length be such that it does not affect the By doing so, the magnetic field generated by the first magnetic pole portion can be prevented from distorting the magnetic field generated by the second magnetic pole portion, and the rotation angle of the magnet rotor (second magnetic pole portion) can be detected more accurately.
  • the angle sensor has a direction and magnitude of a magnetic field component in a first direction orthogonal to the rotation axis, and a direction and magnitude of a magnetic field component in a second direction orthogonal to the rotation axis and orthogonal to the first direction. It is preferred to detect the magnitude and. By doing so, the rotation angle of the magnet rotor can be detected more accurately using the magnetic field component in the first direction and the magnetic field component in the second direction.
  • the height dimension of the electric valve can be reduced, and the rotation angle of the magnet rotor can be accurately detected.
  • FIG. 1 is a longitudinal sectional view of an electrically operated valve according to a first embodiment of the invention
  • FIG. FIG. 2 is a diagram schematically showing the arrangement of permanent magnets and angle sensors that the motor-operated valve of FIG. 1 has
  • FIG. 4 is a diagram schematically showing the relationship between an angle sensor and magnetic lines of force of a permanent magnet at a first rotation angle
  • FIG. 10 is a diagram schematically showing the relationship between the angle sensor and the magnetic lines of force of the permanent magnet at the second rotation angle
  • 4 is a graph showing the relationship between the rotation angle of a permanent magnet and an electrical signal output by an angle sensor
  • FIG. 2 is a vertical cross-sectional view of a motor-operated valve according to a modification of the motor-operated valve of FIG.
  • FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is the minimum in the motor-operated valve according to the second embodiment of the present invention;
  • FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is maximum in the motor-operated valve of FIG. 9 ;
  • FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is maximum in the motor-operated valve of FIG. 9 ;
  • FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is the smallest in the motor-operated valve according to the modification of the motor-operated valve of FIG. 9 ;
  • FIG. 12 is a vertical cross-sectional view showing a state in which the opening area of the valve port is maximum in the motor-operated valve of FIG. 11;
  • FIG. 1 A motor operated valve according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
  • FIG. The motor-operated valve 1 according to this embodiment is used, for example, to adjust the refrigerant flow rate in a refrigeration cycle or the like.
  • FIG. 1 is a longitudinal sectional view of an electrically operated valve according to the first embodiment of the invention.
  • FIG. 2 is a diagram schematically showing the arrangement of permanent magnets and angle sensors that the motor-operated valve of FIG. 1 has.
  • FIG. 3 is a diagram schematically showing the relationship between the angle sensor and the magnetic lines of force of the permanent magnet at the first rotation angle.
  • FIG. 3 shows that the magnetic lines of force passing through the angle sensor are mainly directed in the X direction.
  • FIG. 4 is a diagram schematically showing the relationship between the angle sensor and the magnetic lines of force of the permanent magnet at the second rotation angle.
  • FIG. 4 shows that the lines of magnetic force passing through the angle sensor are mainly directed in the Y direction.
  • FIG. 5 is a graph showing the relationship between the rotation angle of the permanent magnet and the electrical signal output by the angle sensor.
  • the X direction indicated by arrow X, the Y direction indicated by arrow Y, and the Z direction indicated by arrow Z are orthogonal to each other.
  • the motor operated valve 1 includes a valve body 10, a holder 20, a valve body support member 25, a can 30 as a case, a drive mechanism 40, a valve body 70, and a stator unit 80 .
  • the valve body 10 has a cuboid shape.
  • the valve body 10 has a valve chamber 13 and a valve port 14 connected to the valve chamber 13 .
  • the valve body 10 has a first passageway 17 and a second passageway 18 .
  • One end of the first passage 17 is connected to the valve chamber 13 , and the other end of the first passage 17 opens to the left side surface 10 a of the valve body 10 .
  • One end of the second passage 18 is connected to the valve chamber 13 via the valve port 14 , and the other end of the second passage 18 opens to the right side surface 10 b of the valve body 10 .
  • the valve body 10 has a mounting hole 19 .
  • the mounting hole 19 opens to the upper surface 10 c of the valve body 10 .
  • a female thread is formed on the inner peripheral surface of the mounting hole 19 .
  • the valve chamber 13 opens to the bottom surface 19 a of the mounting hole 19 .
  • the holder 20 has a cylindrical shape.
  • a male thread is formed on the lower portion of the outer peripheral surface of the holder 20 .
  • the male thread of the holder 20 is screwed into the female thread of the mounting hole 19 of the valve body 10 .
  • the holder 20 is attached to the valve body 10 with a screw structure.
  • the valve body support member 25 has a cylindrical shape.
  • the valve body support member 25 is arranged between the valve body 10 and the holder 20 inside the mounting hole 19 .
  • a lower portion of the valve support member 25 is press-fitted into the valve chamber 13 through the mounting hole 19 .
  • An annular flat surface 25a facing downward is formed on the outer peripheral surface of the valve body support member 25 .
  • the annular flat surface 25 a abuts on the bottom surface 19 a of the mounting hole 19 .
  • the valve body support member 25 supports the valve body 70 so as to be movable in the vertical direction (Z direction).
  • the can 30 has a cylindrical shape.
  • the can 30 is closed at its upper end and open at its lower end.
  • a lower end portion of the can 30 is joined to an outer peripheral edge of an annular plate-shaped joining member 35 .
  • An upper portion of the holder 20 is arranged inside the joint member 35 .
  • the inner peripheral edge of the joining member 35 is joined to the holder 20 .
  • the can 30 is fixed to the valve body 10 via the joint member 35 and the holder 20 .
  • the drive mechanism 40 moves the valve body 70 vertically.
  • the drive mechanism 40 has a magnet rotor 41 , a permanent magnet 45 , a planetary gear mechanism 50 , a guide member 60 , a drive shaft 65 and balls 68 .
  • the magnet rotor 41 has a cylindrical shape.
  • the outer diameter of the magnet rotor 41 is smaller than the inner diameter of the can 30 .
  • the magnet rotor 41 is rotatably arranged inside the can 30 .
  • a disk-shaped connecting member 42 is joined to the upper end of the magnet rotor 41 .
  • the connecting member 42 closes the upper end of the magnet rotor 41 .
  • a rotor shaft 43 passes through the center of the connecting member 42 .
  • the magnet rotor 41 is connected to a rotor shaft 43 via a connecting member 42 .
  • the rotor shaft 43 rotates together with the magnet rotor 41 .
  • the magnet rotor 41 has a plurality of N poles and a plurality of S poles.
  • the plurality of N poles and the plurality of S poles extend in the axis L direction.
  • a plurality of N poles and a plurality of S poles are arranged alternately in the circumferential direction on the outer peripheral surface of the magnet rotor 41 .
  • the axis L is parallel to the Z direction.
  • the permanent magnet 45 is arranged above the magnet rotor 41 inside the can 30 .
  • the permanent magnet 45 has a disk shape.
  • the permanent magnet 45 has a circular outer shape when viewed from the axis L direction. It should be noted that the permanent magnet 45 may have a rod shape extending linearly.
  • a permanent magnet 45 is fixed to the upper end of the rotor shaft 43 .
  • the permanent magnet 45 is arranged coaxially with the magnet rotor 41 and rotates together with the magnet rotor 41 .
  • the permanent magnet 45 is rotated around the rotation axis of the magnet rotor 41 .
  • the rotation axis of the magnet rotor 41 coincides with the axis L. As shown in FIG.
  • the direction of the axis L is the direction of the rotation axis.
  • a disc-shaped magnetic shielding member 46 is arranged between the magnet rotor 41 and the permanent magnets 45 .
  • the magnetic shielding member 46 is a soft magnetic material having relatively high magnetic permeability, such as silicon iron.
  • a magnetic shielding member 46 is fixed to the rotor shaft 43 .
  • the magnetic shielding member 46 absorbs magnetic flux generated by the magnet rotor 41 .
  • the magnetic shielding member 46 suppresses distortion of the magnetic field generated by the permanent magnet 45 due to the magnetic field generated by the magnet rotor 41 .
  • the magnet rotor 41 and the permanent magnets 45 do not move in the axis L direction.
  • the permanent magnet 45 has one N pole and one S pole.
  • One N pole is arranged in one portion (first portion 45n) partitioned by diameter K in permanent magnet 45, and one S pole is arranged in the other portion (second portion 45s).
  • One N pole and one S pole face each other in a direction orthogonal to the axis L and orthogonal to the diameter K (the X direction in FIG. 3 and the Y direction in FIG. 4).
  • the permanent magnet 45 is magnetized in a direction perpendicular to the axis L and a direction perpendicular to the diameter K. Therefore, as shown in FIGS.
  • the magnetic lines of force F of the permanent magnet 45 extend from the outer peripheral surface of the first portion 45n along the direction perpendicular to the axis L (the direction parallel to the XY plane) to the second magnetic field. It enters the outer peripheral surface of the portion 45s.
  • Permanent magnet 45 may have at least one N pole and at least one S pole.
  • the permanent magnet 45 may have, for example, two N poles and two S poles alternately arranged in the circumferential direction.
  • the planetary gear mechanism 50 is arranged inside the magnet rotor 41 .
  • the planetary gear mechanism 50 has a gear case 51 , a fixed ring gear 52 , a sun gear 53 , a plurality of planetary gears 54 , a carrier 55 , an output gear 56 and an output shaft 57 .
  • the gear case 51 has a cylindrical shape.
  • the gear case 51 is coaxially joined to the upper end of the holder 20 .
  • Fixed ring gear 52 is an internal gear.
  • a fixed ring gear 52 is fixed to the upper end of the gear case 51 .
  • the sun gear 53 is arranged coaxially with the connecting member 42 .
  • the sun gear 53 is integrated with the connecting member 42 .
  • a rotor shaft 43 passes through the sun gear 53 .
  • the sun gear 53 rotates together with the magnet rotor 41 and the connecting member 42 .
  • a plurality of planetary gears 54 are arranged between the fixed ring gear 52 and the sun gear 53 .
  • the carrier 55 has a disk shape.
  • a rotor shaft 43 passes through the center of the carrier 55 .
  • Carrier 55 is rotatable around rotor axis 43 .
  • Carrier 55 rotatably supports a plurality of planetary gears 54 .
  • the output gear 56 has a bottomed cylindrical shape.
  • Output gear 56 is an internal gear.
  • a plurality of planetary gears 54 are arranged between the output gear 56 and the sun gear 53 .
  • the output shaft 57 has a cylindrical shape.
  • the upper portion of the output shaft 57 is arranged in a hole formed in the bottom portion of the output gear 56 .
  • the output shaft 57 is fixed to the output gear 56 .
  • a vertically extending slit 57 a is formed in the lower portion of the output shaft 57 . Rotation of the sun gear 53 is reduced by the fixed ring gear 52 , the plurality of planetary gears 54 , the carrier 55 and the output gear 56 and transmitted to the output shaft 57 .
  • the guide member 60 has a cylindrical shape.
  • the guide member 60 is arranged inside the upper portion of the holder 20 .
  • a female thread is formed in the lower portion of the inner peripheral surface of the guide member 60 .
  • An output shaft 57 is arranged inside the guide member 60 .
  • the guide member 60 rotatably supports the output shaft 57 .
  • the drive shaft 65 has a columnar portion 66 and a flat plate portion 67 .
  • the flat plate portion 67 is connected to the upper end portion of the cylindrical portion 66 .
  • the cylindrical portion 66 and the flat plate portion 67 are integrally formed.
  • a male thread is formed on the outer peripheral surface of the cylindrical portion 66 .
  • the male thread of the cylindrical portion 66 is screwed with the female thread of the guide member 60 .
  • the flat plate portion 67 is arranged in the slit 57a of the output shaft 57 so as to be vertically movable.
  • the drive shaft 65 is rotated by the output shaft 57 and moved vertically by a screw feeding action.
  • the valve body 70 has a stem 71 , a valve portion 72 , a spring receiving portion 73 and a ball receiving portion 74 .
  • the stem 71 has a cylindrical shape.
  • the stem 71 is arranged inside the valve body support member 25 .
  • the stem 71 is supported by the valve support member 25 so as to be vertically movable.
  • the valve portion 72 is arranged at the lower end of the stem 71 .
  • the valve portion 72 has an annular shape.
  • the valve portion 72 protrudes radially outward from the outer peripheral surface of the stem 71 .
  • the valve portion 72 vertically faces the valve port 14 .
  • the spring receiving portion 73 has a cylindrical shape.
  • the spring receiving portion 73 is joined to the upper end portion of the stem 71 .
  • the spring receiving portion 73 has a flange portion 73a protruding radially outward.
  • the ball receiving portion 74 has a circular flat plate portion and a convex portion connected to the lower surface of the flat plate portion.
  • the ball receiving portion 74 has a flat plate portion in contact with the ball 68 and a convex portion fitted in a hole formed in the spring receiving portion 73 .
  • a ball 68 is arranged between the ball receiving portion 74 and the drive shaft 65 .
  • a valve opening spring 75 is arranged between the flange portion 73 a of the spring receiving portion 73 and the valve body support member 25 .
  • the valve opening spring 75 is a compression coil spring. The valve opening spring 75 pushes the valve body 70 (flange portion 73a) upward.
  • the valve body 70 changes the opening area of the valve port 14 steplessly (including substantially steplessly) by moving the valve portion 72 forward and backward with respect to the valve port 14 .
  • the minimum area of the valve orifice 14 may be greater than 0 (ie, the valve orifice 14 is slightly open). Alternatively, the minimum area of the valve port 14 may be 0 (that is, the valve port 14 is fully closed).
  • the stator unit 80 has a stator 81 , a cover 90 and a substrate 95 .
  • Stator 81 has a cylindrical shape.
  • a can 30 is arranged inside the stator 81 .
  • the stator 81 is aligned with the magnet rotor 41 in a direction perpendicular to the axis L with the can 30 interposed therebetween.
  • the stator 81 constitutes a stepping motor together with the magnet rotor 41 .
  • the cover 90 is made of resin. Cover 90 accommodates stator 81 and substrate 95 .
  • the cover 90 has a cover body 91 , a lid body 92 and a connector 93 .
  • the cover main body 91 is integrally molded with the stator 81 .
  • the cover main body 91 has a first peripheral wall portion 91a, an upper wall portion 91b, a second peripheral wall portion 91c, and a cylindrical portion 91d.
  • a stator 81 is embedded in the inner peripheral surface of the first peripheral wall portion 91a.
  • the upper wall portion 91b is connected to the upper end portion of the first peripheral wall portion 91a.
  • the upper wall portion 91b has a dome shape.
  • the upper end portion of the can 30 is arranged inside the upper wall portion 91b.
  • the second peripheral wall portion 91c is connected to the first peripheral wall portion 91a.
  • the second peripheral wall portion 91c extends upward from the first peripheral wall portion 91a.
  • the cylindrical portion 91d extends downward from the lower end portion of the first peripheral wall portion 91a.
  • a lower end portion of the cylindrical portion 91 d is in contact with the upper surface 10 c of the valve body 10 .
  • a holder 20 is arranged inside the cylindrical portion 91d.
  • the lid body 92 has a flat plate shape.
  • the lid body 92 is joined to the upper end portion of the second peripheral wall portion 91 c of the cover main body 91 .
  • the connector 93 has a tubular shape extending in the horizontal direction in FIG.
  • the connector 93 is integrated with the lid body 92 .
  • the cover main body 91 and the lid body 92 define a board accommodation space 94 .
  • Electronic components including an angle sensor 96 are mounted on the board 95 .
  • the substrate 95 is arranged in the substrate accommodation space 94 and is fixed to the boss 91e of the cover body 91 with screws. Terminals 84 connected to the coils of the stator 81 are connected to the board 95 .
  • the substrate 95 has a through hole 95a in which the upper wall portion 91b of the cover body 91 is arranged.
  • the angle sensor 96 is a magnetic angle sensor.
  • the angle sensor 96 is mounted on the bottom surface of the substrate 95 .
  • the angle sensor 96 is arranged near the outer peripheral surface of the can 30 .
  • the angle sensor 96 and the can 30 are arranged in a direction perpendicular to the axis L (the X direction in FIG. 1) with the cover body 91 interposed therebetween.
  • the angle sensor 96 and the permanent magnet 45 are arranged in a direction perpendicular to the axis L with the can 30 and the cover main body 91 interposed therebetween. That is, the permanent magnet 45, the can 30, the cover main body 91, and the angle sensor 96 are arranged in the direction perpendicular to the axis L in this order.
  • the angle sensor 96 detects the directions and magnitudes of magnetic field components (magnetic flux density components) in two mutually orthogonal directions included in the magnetic field passing through the angle sensor 96 .
  • the angle sensor 96 outputs an electric signal corresponding to the direction and magnitude of the magnetic field component in the X direction and an electric signal corresponding to the direction and magnitude of the magnetic field component in the Y direction. Based on the electrical signal output by the angle sensor 96, the rotation angle of the permanent magnet 45 can be obtained.
  • the angle sensor 96 outputs an electrical signal corresponding to the rotation angle of the permanent magnet 45.
  • FIG. 5 shows an example of the electrical signal output by the angle sensor 96.
  • the solid line is the graph of the output corresponding to the magnetic field component in the X direction
  • the dashed line is the graph of the output corresponding to the magnetic field component in the Y direction.
  • the magnetic field component in the X direction becomes 0 and the magnetic field component in the Y direction becomes the maximum value (positive value).
  • the rotation angle of the permanent magnet 45 is 360 ⁇ n+180 [degrees]
  • the magnetic field component in the X direction becomes the minimum value (negative value) and the magnetic field component in the Y direction becomes 0.
  • the rotation angle of the permanent magnet 45 is 360 ⁇ n+270 [degrees]
  • the magnetic field component in the X direction becomes 0 and the magnetic field component in the Y direction becomes the minimum value (negative value).
  • the sign (positive or negative) of the value of the magnetic field component indicates the direction of the magnetic field component, and the absolute value of the value of the magnetic field component indicates the magnitude of the magnetic field component.
  • valve port 14 the holder 20, the valve body support member 25, the can 30, the magnet rotor 41, the connecting member 42, the rotor shaft 43, the permanent magnet 45, the output shaft 57, the guide member 60, the drive shaft 65, the valve
  • the central axes of the body 70 and the stator 81 are aligned with the axis L. As shown in FIG.
  • the motor-operated valve 1 includes a cylindrical can 30, a magnet rotor 41 arranged inside the can 30, a permanent magnet 45 arranged coaxially with the magnet rotor 41 inside the can 30, and arranged outside the can 30. and a stator unit 80 having a stator 81 mounted thereon.
  • the permanent magnet 45 has a circular outer shape and is rotated together with the magnet rotor 41 .
  • One N pole is arranged in the first portion 45n of the permanent magnet 45 divided by the diameter K, and one S pole is arranged in the second portion 45s.
  • the magnetization direction of the permanent magnet 45 is a direction perpendicular to the axis L.
  • the stator unit 80 has an angle sensor 96 that detects the rotation angle of the permanent magnets 45 .
  • An angle sensor 96 is aligned with the can 30 in a direction perpendicular to the axis L.
  • the magnetic lines of force F of the permanent magnet 45 emerge from the outer peripheral surface of the first portion 45n and enter the outer peripheral surface of the second portion 45s along the direction perpendicular to the axis L (rotational axis). Therefore, in the electric valve, the strength of the magnetic field in the space on the side of the can 30 (that is, the space in the direction perpendicular to the axis L with respect to the can 30) is strong, and the angle sensor arranged on the side of the can 30 96 can accurately detect the rotation angle of the magnet rotor 41 (permanent magnet 45). Further, by arranging the angle sensor 96 on the side of the can 30, the height dimension of the electric valve 1 can be reduced.
  • the angle sensor 96 detects the direction and magnitude of the magnetic field component in the X direction, which is the first direction, and the direction and magnitude of the magnetic field component in the Y direction, which is the second direction. By doing so, the rotation angle of the magnet rotor 41 can be detected more accurately using the magnetic field component in the X direction and the magnetic field component in the Y direction.
  • FIG. 1A a motor-operated valve 1A according to a modified example of the motor-operated valve 1 will be described with reference to FIGS. 6 to 8.
  • FIG. 6A a motor-operated valve 1A according to a modified example of the motor-operated valve 1 will be described with reference to FIGS. 6 to 8.
  • FIG. 6A a motor-operated valve 1A according to a modified example of the motor-operated valve 1 will be described with reference to FIGS. 6 to 8.
  • FIG. 6 is a vertical cross-sectional view of a motor-operated valve according to a modification of the motor-operated valve of FIG. 7A is a perspective view of a magnet rotor included in the motor-operated valve of FIG. 6.
  • FIG. 7B is a front view of a magnet rotor included in the motor-operated valve of FIG. 6.
  • FIG. 8A is a plan view of a magnet rotor included in the motor-operated valve of FIG. 6.
  • FIG. 8B is a bottom view of a magnet rotor included in the motor-operated valve of FIG. 6.
  • the motor-operated valve 1A is the same (including substantially the same) as the above-described motor-operated valve 1 except for the following (1) and (2).
  • the electric valve 1A does not have the permanent magnet 45 and the magnetic shielding member 46.
  • the electric valve 1A has a magnet rotor 41A instead of the magnet rotor 41. Therefore, in the description of the motor-operated valve 1A, the same components as those of the motor-operated valve 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the magnet rotor 41A has a cylindrical shape.
  • the outer diameter of the magnet rotor 41A is smaller than the inner diameter of the can 30.
  • the magnet rotor 41A is rotatably arranged inside the can 30 .
  • a disc-shaped connecting member 42 is joined to the upper end of the magnet rotor 41A.
  • the connecting member 42 closes the upper end of the magnet rotor 41A.
  • a rotor shaft 43 passes through the center of the connecting member 42 .
  • An upper end portion of the rotor shaft 43 is rotatably supported by a bearing member 44 .
  • the magnet rotor 41A is connected to the rotor shaft 43 via the connecting member 42. As shown in FIG.
  • the rotor shaft 43 rotates together with the magnet rotor 41A.
  • the rotation axis of the magnet rotor 41A coincides with the axis L.
  • the magnet rotor 41A has a first magnetic pole portion 41a, a magnetic buffer portion 41b, and a second magnetic pole portion 41c, which are connected in order in the direction of the axis L.
  • the first magnetic pole portion 41a has a plurality of N poles and a plurality of S poles.
  • the plurality of N poles and the plurality of S poles extend in the axis L direction.
  • a plurality of N poles and a plurality of S poles are alternately arranged in the circumferential direction on the outer peripheral surface of the first magnetic pole portion 41a.
  • the first magnetic pole portion 41a is aligned with the stator 81 in a direction perpendicular to the axis L with the can 30 interposed therebetween.
  • the magnetic buffer portion 41b is arranged between the first magnetic pole portion 41a and the second magnetic pole portion 41c.
  • the magnetic buffer portion 41b is not magnetized.
  • the length of the magnetic buffer portion 41b in the direction of the axis L is set so that the magnetic field generated by the first magnetic pole portion 41a does not affect the magnetic field generated by the second magnetic pole portion 41c. This length is set based on the measured value of the strength of the magnetic field generated by the first magnetic pole portion 41a and the second magnetic pole portion 41c, simulation results, or the like.
  • the magnetic buffer portion 41b suppresses mutual influence between the magnetic field generated by the first magnetic pole portion 41a and the magnetic field generated by the second magnetic pole portion 41c.
  • the second magnetic pole portion 41c is arranged at the upper end of the magnet rotor 41A.
  • the second magnetic pole portion 41c has a circular outer shape when viewed from the axis L direction.
  • the second magnetic pole portion 41c has one N pole and one S pole.
  • One N pole is arranged in one portion (first portion 41n) partitioned by diameter K in the second magnetic pole portion 41c, and one S pole is arranged in the other portion (second portion 41s).
  • One N pole and one S pole face each other in a direction orthogonal to the axis L and orthogonal to the diameter K (the X direction in FIG. 8A).
  • the second magnetic pole portion 41c is magnetized in a direction perpendicular to the axis L and a direction perpendicular to the diameter K.
  • the magnetic lines of force of the second magnetic pole portion 41c extend along the direction orthogonal to the axis L (the direction parallel to the XY plane), similarly to the permanent magnet 45 shown in FIGS. , and enters the outer peripheral surface of the second portion 41s.
  • At least one N pole and at least one S pole may be arranged alternately in the circumferential direction on the outer peripheral surface of the second magnetic pole portion 41c.
  • the second magnetic pole portion 41c may have, for example, two N poles and two S poles alternately arranged in the circumferential direction.
  • the second magnetic pole portion 41c and the angle sensor 96 are arranged in a direction orthogonal to the axis L with the can 30 and the cover main body 91 interposed therebetween.
  • the boundary between the first magnetic pole portion 41a and the magnetic buffer portion 41b and the boundary between the magnetic buffer portion 41b and the second magnetic pole portion 41c in the magnet rotor 41A are indicated by dashed lines.
  • the magnetic lines of force of the second magnetic pole portion 41c of the magnet rotor 41A go out along the direction perpendicular to the axis L from the outer peripheral surface of the first portion 41n and enter the outer peripheral surface of the second portion 41s.
  • the magnetic buffer portion 41b suppresses mutual influence between the magnetic field generated by the first magnetic pole portion 41a and the magnetic field generated by the second magnetic pole portion 41c.
  • the strength of the magnetic field in the space on the side of the can 30 (that is, the space in the direction perpendicular to the axis L with respect to the can 30) is strong, and the angle placed on the side of the can 30
  • the sensor 96 can accurately detect the rotation angle of the magnet rotor 41A (second magnetic pole portion 41c). Further, by arranging the angle sensor 96 on the side of the can 30, the height dimension of the motor operated valve 1A can be reduced.
  • FIG. 9 and 10 are longitudinal sectional views of an electrically operated valve according to the second embodiment of the present invention.
  • FIG. 9 shows the motor-operated valve with the minimum opening area of the valve port.
  • FIG. 10 shows the motor-operated valve with the maximum opening area of the valve port.
  • the motor operated valve 2 includes a valve body 110, a holder 120, a guide bush 125, a can 130 as a case, a drive mechanism 140, and a valve body 170. , and a stator unit 180 .
  • the valve body 110 has a cuboid shape.
  • the valve body 110 has a valve chamber 113 and a valve port 114 connected to the valve chamber 113 .
  • the valve body 110 has a first passageway 117 and a second passageway 118 .
  • One end of the first passage 117 is connected to the valve chamber 113 , and the other end of the first passage 117 opens to the left side surface 110 a of the valve body 110 .
  • One end of the second passage 118 is connected to the valve chamber 113 via the valve port 114 , and the other end of the second passage 118 opens to the right side surface 110 b of the valve body 110 .
  • the valve body 110 has a mounting hole 119 .
  • the mounting hole 119 opens to the upper surface 110 c of the valve body 110 .
  • a female thread is formed on the inner peripheral surface of the attachment hole 119 .
  • the valve chamber 113 is open to the bottom surface 119 a of the mounting hole 119 .
  • the holder 120 has a cylindrical shape.
  • a male thread is formed on the lower portion of the outer peripheral surface of the holder 120 .
  • the male thread of the holder 120 is screwed into the female thread of the mounting hole 119 of the valve body 110 .
  • the holder 120 is attached to the valve body 110 with a screw structure.
  • the guide bush 125 has a first cylindrical portion 126 and a second cylindrical portion 127 .
  • the outer diameter of the second cylindrical portion 127 is smaller than the outer diameter of the first cylindrical portion 126 .
  • the second cylindrical portion 127 is coaxially connected to the upper end portion of the first cylindrical portion 126 .
  • a male thread 127 a is formed on the outer peripheral surface of the second cylindrical portion 127 .
  • the first cylindrical portion 126 is press-fitted into the fitting hole 120 a of the holder 120 .
  • the can 130 has a cylindrical shape.
  • the can 130 is closed at its upper end and open at its lower end.
  • a lower end portion of the can 130 is joined to an outer peripheral edge of an annular plate-shaped joining member 135 .
  • An upper portion of the holder 120 is arranged inside the joint member 135 .
  • the inner peripheral edge of the joining member 135 is joined to the holder 120 .
  • the can 130 is fixed to the valve body 110 via the joint member 135 and the holder 120 .
  • the drive mechanism 140 moves the valve body 170 in the vertical direction (Z direction).
  • the drive mechanism 140 has a magnet rotor 141 , a valve shaft holder 142 , a valve shaft 143 and permanent magnets 145 .
  • the magnet rotor 141 has a cylindrical shape.
  • the outer diameter of the magnet rotor 141 is smaller than the inner diameter of the can 130 .
  • the magnet rotor 141 is rotatably arranged inside the can 130 .
  • the magnet rotor 141 has a plurality of N poles and a plurality of S poles.
  • the plurality of N poles and the plurality of S poles extend in the axis L direction.
  • a plurality of N poles and a plurality of S poles are alternately arranged in the circumferential direction on the outer peripheral surface of the magnet rotor 141 .
  • the axis L is parallel to the Z direction.
  • the valve shaft holder 142 has a cylindrical shape with a closed upper end.
  • a support ring 144 is fixed to the upper end of the valve stem holder 142 .
  • a support ring 144 connects the magnet rotor 141 and the valve shaft holder 142 .
  • a female thread 142 a is formed on the inner peripheral surface of the valve shaft holder 142 .
  • Female thread 142 a is screwed with male thread 127 a of guide bush 125 .
  • the valve stem 143 has a cylindrical shape. An upper end portion 143 a of the valve shaft 143 passes through the valve shaft holder 142 . A push nut 147 is attached to the upper end portion 143a of the valve shaft 143 to prevent it from coming off.
  • the valve stem 143 is arranged inside the guide bush 125 and inside the holder 120 .
  • a lower end portion of the valve shaft 143 is arranged in the valve chamber 113 .
  • a valve closing spring 148 is arranged between the valve shaft holder 142 and the stepped portion 143 b of the valve shaft 143 .
  • the valve closing spring 148 is a compression coil spring. The valve closing spring 148 pushes the valve shaft 143 downward.
  • the permanent magnet 145 is arranged above the magnet rotor 141 inside the can 130 .
  • the permanent magnet 145 has an annular plate shape.
  • the permanent magnet 145 has a circular outer shape when viewed from the axis L direction.
  • Permanent magnets 145 are secured to support ring 144 via fasteners 146 .
  • the permanent magnet 145 is arranged coaxially with the magnet rotor 141 and rotates together with the magnet rotor 141 .
  • the permanent magnet 145 is rotated around the rotation axis of the magnet rotor 141 .
  • the rotation axis of the magnet rotor 141 coincides with the axis L.
  • the direction of the axis L is the direction of the rotation axis.
  • the magnet rotor 141 and the permanent magnets 145 move in the direction of the axis L as they rotate.
  • the permanent magnet 145 has the same (including substantially the same) configuration as the permanent magnet 45 of the electric valve 1 .
  • Permanent magnet 145 has one north pole and one south pole.
  • One N pole is arranged in one portion (first portion) of the permanent magnet 145 divided by the diameter, and one S pole is arranged in the other portion (second portion).
  • One north pole and one south pole face each other in a direction perpendicular to the axis L and a direction perpendicular to the diameter.
  • the permanent magnet 145 is magnetized in a direction perpendicular to the axis L and a direction perpendicular to the diameter. Therefore, the magnetic lines of force of the permanent magnet 145 exit from the outer peripheral surface of the first portion and enter the outer peripheral surface of the second portion along the direction perpendicular to the axis L (the direction parallel to the XY plane).
  • the valve body 170 has a substantially conical shape with the tip facing downward.
  • the valve body 170 is integrally connected to the lower end of the valve shaft 143 .
  • the valve body 170 is arranged to face the valve port 114 in the vertical direction.
  • the valve body 170 advances and retreats with respect to the valve port 114 to steplessly (including substantially steplessly) change the opening area of the valve port 114 .
  • the minimum area of the valve orifice 114 may be greater than 0 (ie, the valve orifice 114 is slightly open). Alternatively, the minimum area of the valve port 114 may be 0 (that is, the valve port 114 is fully closed).
  • the stator unit 180 has a stator 81 , a cover 90 and a substrate 95 .
  • the stator 81, the cover 90, and the substrate 95 are the same (including substantially the same) as those of the motor-operated valve 1, so they are denoted by the same reference numerals and detailed description thereof is omitted.
  • the stator 81 is aligned with the magnet rotor 141 in a direction perpendicular to the axis L via the can 130 .
  • the stator 81 constitutes a stepping motor together with the magnet rotor 141 .
  • FIG. 9 shows the motor-operated valve 2 with the minimum opening area of the valve port 114 .
  • FIG. 10 shows the motor operated valve 2 in a state where the opening area of the valve port 114 is maximized.
  • the permanent magnet 145 rotates together with the magnet rotor 141 and moves along the axis L direction together with the magnet rotor 141 .
  • Permanent magnet 145 moves from the position shown in FIG. 9 to the position shown in FIG.
  • the angle sensor 96 and the permanent magnet 145 are always aligned in a direction orthogonal to the axis L with the can 130 and the cover body 91 interposed therebetween. In other words, the position of the angle sensor 96 in the direction of the axis L and the position of the permanent magnet 145 in the direction of the axis L always overlap.
  • the motor-operated valve 2 has the same (including substantially the same) effects as the motor-operated valve 1.
  • the permanent magnet 145 moves in the direction of the axis L as it rotates.
  • the angle sensor 96 is always aligned with the permanent magnet 145 in the direction perpendicular to the axis L. By doing so, the rotation of the magnet rotor 141 (permanent magnet 145) can be performed more accurately than when the permanent magnet 145 moves in the direction of the axis L and is separated from the angle sensor 96 in the direction of the axis L. Angle can be detected.
  • FIG. 11 a motor-operated valve 2A according to a modified example of the motor-operated valve 2 will be described with reference to FIGS. 11 and 12.
  • FIG. 11 a motor-operated valve 2A according to a modified example of the motor-operated valve 2 will be described with reference to FIGS. 11 and 12.
  • FIG. 11 and 12 are vertical cross-sectional views of motor-operated valves according to modifications of the motor-operated valve of FIG.
  • FIG. 11 shows the motor-operated valve with the minimum opening area of the valve port.
  • FIG. 12 shows the motor-operated valve with the maximum opening area of the valve port.
  • the motor-operated valve 2A is the same (including substantially the same) as the above-described motor-operated valve 2 except for the following (1) and (2).
  • Electric valve 2A does not have permanent magnet 145 and fixture 146 .
  • the electric valve 2A has a magnet rotor 141A instead of the magnet rotor 141. Therefore, in the description of the motor-operated valve 2A, the same components as those of the motor-operated valve 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the magnet rotor 141A has the same (including substantially the same) configuration as the magnet rotor 41A of the motor-operated valve 1A.
  • the magnet rotor 141A has a cylindrical shape.
  • the magnet rotor 141 A has an outer diameter smaller than the inner diameter of the can 130 .
  • the magnet rotor 141A is rotatably arranged inside the can 130 .
  • the magnet rotor 141A and the valve shaft holder 142 are connected by a support ring 144. As shown in FIG.
  • the magnet rotor 141A rotates together with the valve stem holder 142. As shown in FIG.
  • the magnet rotor 141A has a first magnetic pole portion 41a, a magnetic buffer portion 41b, and a second magnetic pole portion 41c, which are connected in order in the direction of the axis L.
  • the first magnetic pole portion 41a, the magnetic buffer portion 41b, and the second magnetic pole portion 41c are the same (including substantially the same) as those of the motor operated valve 1A, so they are denoted by the same reference numerals and detailed description thereof is omitted. . 11 and 12, the boundary between the first magnetic pole portion 41a and the magnetic buffer portion 41b and the boundary between the magnetic buffer portion 41b and the second magnetic pole portion 41c in the magnet rotor 141A are indicated by dashed lines.
  • the magnet rotor 141A moves in the direction of the axis L as it rotates.
  • the second magnetic pole portion 41c of the magnet rotor 141A moves from the position shown in FIG. 11 to the position shown in FIG.
  • the angle sensor 96 and the second magnetic pole portion 41c are always aligned in a direction perpendicular to the axis L with the can 130 and the cover body 91 interposed therebetween. In other words, the position of the angle sensor 96 in the direction of the axis L and the position of the second magnetic pole portion 41c in the direction of the axis L always overlap.
  • the motor-operated valve 2A has the same (including substantially the same) effects as the motor-operated valve 1A.
  • the magnet rotor 141A moves in the direction of the axis L as it rotates.
  • the angle sensor 96 is always aligned with the second magnetic pole portion 41c in the direction orthogonal to the axis L. By doing so, compared to the case where the second magnetic pole portion 41c separates from the angle sensor 96 in the direction of the axis L when the magnet rotor 141A moves in the direction of the axis L, the magnet rotor 141A (the second magnetic pole portion) can be detected more accurately. 41c) can be detected.
  • each term indicating a shape such as “cylinder” or “cylinder” is also used for a member or a portion of a member that substantially has the shape of the term.
  • a “cylindrical member” includes a cylindrical member and a substantially cylindrical member.
  • Second passage 119 mounting hole 119a Bottom surface 120 Holder 120a Fitting hole 125 Guide bush 126 First cylindrical portion 127 Second cylindrical portion 127a Male screw 130 Can 135 Joining member 140 Drive mechanism 141 Magnet rotor 141A Magnet rotor 142 Valve shaft holder 142a Female screw 143 Valve shaft 143a Upper end 143b Stepped portion 144 Support ring 145 Permanent magnet 146 -- Fixture, 147 -- Push nut, 148 -- Valve closing spring, 170 -- Valve element, 180 -- Stator unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

[Problem] To provide an electric valve that has a small vertical dimension and is capable of accurately detecting the rotation angle of a magnet rotor. [Solution] The electric valve (1) has a permanent magnet (45) that is disposed coaxially with a magnet rotor (41) inside of a can (30). The permanent magnet (45) has a circular outer shape, and rotates with the magnet rotor (41). One N pole is disposed in a first section (45n) and one S pole is disposed in a second section (45s), said sections being demarcated by the diameter of the permanent magnet (45). The magnetization direction of the permanent magnet (45) is orthogonal to the axis (L). An angle sensor (96) that detects the rotation angle of the permanent magnet (45) is aligned with the can (30) in a direction orthogonal to the axis (L).

Description

電動弁electric valve
 本発明は、電動弁に関する。 The present invention relates to electric valves.
 特許文献1は、従来の電動弁の一例を開示している。特許文献1の電動弁は、ケースと、マグネットローターと、永久磁石と、ステーターと、基板と、を有している。ケースは、上端部が塞がれた円筒形状を有している。マグネットローターは、ケースの内側に配置されている。永久磁石は、ケースの内側においてマグネットローターの上方に配置されている。永久磁石は、マグネットローターとともに回転される。ステーターは、ケースの外側に配置されている。基板には、永久磁石の回転角度(具体的には、永久磁石が生じる磁界の回転角度)を検出する角度センサーが実装されている。 Patent Document 1 discloses an example of a conventional electric valve. The electric valve of Patent Document 1 has a case, a magnet rotor, a permanent magnet, a stator, and a substrate. The case has a cylindrical shape with a closed upper end. The magnet rotor is placed inside the case. A permanent magnet is arranged above the magnet rotor inside the case. A permanent magnet is rotated with the magnet rotor. The stator is arranged outside the case. An angle sensor for detecting the rotation angle of the permanent magnet (specifically, the rotation angle of the magnetic field generated by the permanent magnet) is mounted on the substrate.
特開2018-135908号公報Japanese Patent Application Laid-Open No. 2018-135908
 上述した電動弁では、角度センサーがケースの上端部の上方に配置されている。そのため、電動弁の高さ寸法が大きい。そこで、角度センサーをケースの側方に配置することで、電動弁の高さ寸法を小さくできる。しかしながら、特許文献1の電動弁では、永久磁石の磁力線が上面から上方に出て上面に入るように磁極が形成されている。そのため、永久磁石が生じる磁界の強さがケースの側方にある空間において比較的弱く、ケースの側方に角度センサーを配置すると、永久磁石の回転角度を正確に検出できないおそれがある。 In the electric valve described above, the angle sensor is arranged above the upper end of the case. Therefore, the height dimension of the electric valve is large. Therefore, by arranging the angle sensor on the side of the case, the height dimension of the electric valve can be reduced. However, in the electric valve of Patent Document 1, the magnetic poles are formed so that the lines of magnetic force of the permanent magnets go upward from the upper surface and enter the upper surface. Therefore, the strength of the magnetic field generated by the permanent magnet is relatively weak in the space on the side of the case, and if the angle sensor is arranged on the side of the case, the rotation angle of the permanent magnet may not be detected accurately.
 そこで、本発明は、高さ寸法が小さく、マグネットローターの回転角度を正確に検出できる電動弁を提供することを目的とする。 Therefore, an object of the present invention is to provide an electric valve that has a small height dimension and that can accurately detect the rotation angle of the magnet rotor.
 上記目的を達成するために、本発明の一態様に係る電動弁は、円筒形状のケースと、前記ケースの内側に配置されたマグネットローターと、前記ケースの内側に配置され、前記マグネットローターとともに回転される永久磁石と、前記ケースの外側に配置されたステーターを有するステーターユニットと、を有する電動弁であって、前記永久磁石が、少なくとも1つのN極と少なくとも1つのS極とを有し、前記永久磁石の着磁方向が、前記マグネットローターの回転軸と直交する方向であり、前記ステーターユニットが、前記永久磁石の回転角度を検出する角度センサーを有し、前記角度センサーが、前記回転軸と直交する方向に前記ケースと並んでいることを特徴とする。 To achieve the above object, an electrically operated valve according to one aspect of the present invention includes a cylindrical case, a magnet rotor arranged inside the case, and a magnet rotor arranged inside the case and rotating together with the magnet rotor. and a stator unit having a stator disposed outside the case, the permanent magnet having at least one north pole and at least one south pole, The magnetization direction of the permanent magnet is a direction perpendicular to the rotation axis of the magnet rotor, the stator unit has an angle sensor that detects the rotation angle of the permanent magnet, and the angle sensor detects the rotation axis. is aligned with the case in a direction perpendicular to the .
 本発明によれば、電動弁が、ケースの内側に配置された永久磁石を有している。永久磁石は、マグネットローターとともに回転される。永久磁石が少なくとも1つのN極と少なくとも1つのS極とを有している。永久磁石の着磁方向が、マグネットローターの回転軸と直交する方向である。そして、永久磁石の回転角度を検出する角度センサーが、回転軸と直交する方向にケースと並んでいる。このようにしたことから、永久磁石の磁力線が、回転軸と直交する方向に沿って永久磁石から出て永久磁石に入る。そのため、電動弁において、ケースの側方にある空間(すなわち、ケースに対して回転軸と直交する方向にある空間)における磁界の強さが強く、ケースの側方に配置した角度センサーによって正確にマグネットローター(永久磁石)の回転角度を検出することができる。また、ケースの側方に角度センサーを配置することで、電動弁の高さ寸法を小さくすることができる。 According to the present invention, the motor-operated valve has a permanent magnet arranged inside the case. A permanent magnet is rotated with the magnet rotor. A permanent magnet has at least one north pole and at least one south pole. The magnetization direction of the permanent magnet is the direction orthogonal to the rotation axis of the magnet rotor. An angle sensor for detecting the rotation angle of the permanent magnet is aligned with the case in a direction perpendicular to the rotation axis. As a result, the lines of magnetic force of the permanent magnets exit and enter the permanent magnets along the direction perpendicular to the rotation axis. Therefore, in the electric valve, the strength of the magnetic field in the space on the side of the case (that is, the space in the direction perpendicular to the rotation axis with respect to the case) is strong, and the angle sensor placed on the side of the case can accurately The rotation angle of the magnet rotor (permanent magnet) can be detected. Also, by arranging the angle sensor on the side of the case, the height dimension of the electric valve can be reduced.
 上記目的を達成するために、本発明の他の一態様に係る電動弁は、円筒形状のケースと、前記ケースの内側に配置されたマグネットローターと、前記ケースの外側に配置されたステーターを有するステーターユニットと、を有する電動弁であって、前記マグネットローターが、当該マグネットローターの回転軸方向に順に接続された、第1磁極部分と、磁気緩衝部分と、第2磁極部分と、を有し、前記第1磁極部分の外周面に、周方向に交互に並ぶ複数のN極と複数のS極とが配置され、前記第2磁極部分の外周面に、周方向に交互に並ぶ少なくとも1つのN極と少なくとも1つのS極とが配置され、前記第2磁極部分の着磁方向が、前記回転軸と直交する方向であり、前記ステーターユニットが、前記第2磁極部分の回転角度を検出する角度センサーを有し、前記角度センサーが、前記回転軸と直交する方向に前記ケースと並んでいることを特徴とする。 To achieve the above object, an electrically operated valve according to another aspect of the present invention has a cylindrical case, a magnet rotor arranged inside the case, and a stator arranged outside the case. and a stator unit, wherein the magnet rotor has a first magnetic pole portion, a magnetic buffer portion, and a second magnetic pole portion, which are connected in order in the rotation axis direction of the magnet rotor. a plurality of N poles and a plurality of S poles arranged alternately in the circumferential direction are arranged on the outer peripheral surface of the first magnetic pole portion; An N pole and at least one S pole are arranged, the magnetization direction of the second magnetic pole portion is perpendicular to the rotation axis, and the stator unit detects the rotation angle of the second magnetic pole portion. An angle sensor is provided, and the angle sensor is aligned with the case in a direction perpendicular to the rotation axis.
 本発明によれば、電動弁のマグネットローターは、当該マグネットローターの回転軸方向に順に接続された、第1磁極部分と、磁気緩衝部分と、第2磁極部分と、を有している。第1磁極部分の外周面に、周方向に交互に並ぶ複数のN極と複数のS極とが配置されている。第2磁極部分の外周面に、周方向に交互に並ぶ少なくとも1つのN極と少なくとも1つのS極とが配置されている。第2磁極部分の着磁方向が、回転軸と直交する方向である。第2磁極部分の回転角度を検出する角度センサーが、回転軸と直交する方向にケースと並んでいる。このようにしたことから、第2磁極部分の磁力線が、回転軸と直交する方向に沿って第2磁極部分の外周面から出て第2磁極部分の外周面に入る。また、第1磁極部分と第2磁極部分との間に磁気緩衝部分があり、磁気緩衝部分が、第1磁極部分が生じる磁界と第2磁極部分が生じる磁界とが互いに影響することを抑制する。そのため、電動弁において、ケースの側方にある空間(すなわち、ケースに対して回転軸と直交する方向にある空間)における磁界の強さが強く、ケースの側方に配置した角度センサーによって正確にマグネットローター(第2磁極部分)の回転角度を検出することができる。また、ケースの側方に角度センサーを配置することで、電動弁の高さ寸法を小さくすることができる。 According to the present invention, the magnet rotor of the motor-operated valve has a first magnetic pole portion, a magnetic buffer portion, and a second magnetic pole portion, which are connected in order in the rotation axis direction of the magnet rotor. A plurality of N poles and a plurality of S poles are arranged alternately in the circumferential direction on the outer peripheral surface of the first magnetic pole portion. At least one N pole and at least one S pole are arranged alternately in the circumferential direction on the outer peripheral surface of the second magnetic pole portion. The magnetization direction of the second magnetic pole portion is the direction orthogonal to the rotation axis. An angle sensor for detecting the rotation angle of the second magnetic pole portion is aligned with the case in a direction orthogonal to the rotation axis. As a result, the magnetic line of force of the second magnetic pole portion emerges from the outer peripheral surface of the second magnetic pole portion and enters the outer peripheral surface of the second magnetic pole portion along the direction perpendicular to the rotation axis. In addition, there is a magnetic damping portion between the first magnetic pole portion and the second magnetic pole portion, and the magnetic damping portion suppresses mutual influence between the magnetic field generated by the first magnetic pole portion and the magnetic field generated by the second magnetic pole portion. . Therefore, in the electric valve, the strength of the magnetic field in the space on the side of the case (that is, the space in the direction perpendicular to the rotation axis with respect to the case) is strong, and the angle sensor placed on the side of the case can accurately The rotation angle of the magnet rotor (second magnetic pole portion) can be detected. Also, by arranging the angle sensor on the side of the case, the height dimension of the electric valve can be reduced.
 本発明において、前記永久磁石が、回転とともに前記回転軸方向に移動し、前記角度センサーが、前記回転軸と直交する方向に前記永久磁石と常に並ぶ、ことが好ましい。このようにすることで、永久磁石が移動した際に永久磁石が角度センサーと回転軸方向に離れる場合に比べて、より正確にマグネットローター(永久磁石)の回転角度を検出することができる。 In the present invention, it is preferable that the permanent magnet moves in the rotation axis direction along with the rotation, and the angle sensor is always aligned with the permanent magnet in the direction orthogonal to the rotation axis. By doing so, the rotation angle of the magnet rotor (permanent magnet) can be detected more accurately than when the permanent magnet moves away from the angle sensor in the rotation axis direction.
 本発明において、前記マグネットローターが、回転とともに前記回転軸方向に移動し、前記角度センサーが、前記回転軸と直交する方向に前記第2磁極部分と常に並ぶ、ことが好ましい。このようにすることで、マグネットローターが移動した際に第2磁極部分が角度センサーと回転軸方向に離れる場合に比べて、より正確にマグネットローター(第2磁極部分)の回転角度を検出することができる。 In the present invention, it is preferable that the magnet rotor moves in the rotation axis direction as it rotates, and the angle sensor is always aligned with the second magnetic pole portion in a direction orthogonal to the rotation axis. By doing so, the rotation angle of the magnet rotor (second magnetic pole portion) can be detected more accurately than when the second magnetic pole portion separates from the angle sensor in the rotation axis direction when the magnet rotor moves. can be done.
 本発明において、前記磁気緩衝部分が、着磁されていない部分であり、前記磁気緩衝部分の前記回転軸方向の長さが、前記第1磁極部分が生じる磁界が前記第2磁極部分が生じる磁界に影響しない長さである、ことが好ましい。このようにすることで、第1磁極部分が生じる磁界によって第2磁極部分が生じる磁界が歪むことを防ぎ、より正確にマグネットローター(第2磁極部分)の回転角度を検出することができる。 In the present invention, the magnetic buffer portion is a non-magnetized portion, and the length of the magnetic buffer portion in the rotation axis direction is such that the magnetic field generated by the first magnetic pole portion is the magnetic field generated by the second magnetic pole portion. It is preferable that the length be such that it does not affect the By doing so, the magnetic field generated by the first magnetic pole portion can be prevented from distorting the magnetic field generated by the second magnetic pole portion, and the rotation angle of the magnet rotor (second magnetic pole portion) can be detected more accurately.
 本発明において、前記角度センサーが、前記回転軸と直交する第1方向の磁界成分の向きおよび大きさと、前記回転軸と直交しかつ前記第1方向と直交する第2方向の磁界成分の向きおよび大きさと、を検出する、ことが好ましい。このようにすることで、第1方向の磁界成分および第2方向の磁界成分を用いて、より正確にマグネットローターの回転角度を検出することができる。 In the present invention, the angle sensor has a direction and magnitude of a magnetic field component in a first direction orthogonal to the rotation axis, and a direction and magnitude of a magnetic field component in a second direction orthogonal to the rotation axis and orthogonal to the first direction. It is preferred to detect the magnitude and. By doing so, the rotation angle of the magnet rotor can be detected more accurately using the magnetic field component in the first direction and the magnetic field component in the second direction.
 本発明によれば、電動弁の高さ寸法を小さくできるとともに、マグネットローターの回転角度を正確に検出できる。 According to the present invention, the height dimension of the electric valve can be reduced, and the rotation angle of the magnet rotor can be accurately detected.
本発明の第1実施例に係る電動弁の縦断面図である。1 is a longitudinal sectional view of an electrically operated valve according to a first embodiment of the invention; FIG. 図1の電動弁が有する永久磁石および角度センサーの配置を模式的に示す図である。FIG. 2 is a diagram schematically showing the arrangement of permanent magnets and angle sensors that the motor-operated valve of FIG. 1 has; 角度センサーと第1の回転角度にある永久磁石の磁力線との関係を模式的に示す図である。FIG. 4 is a diagram schematically showing the relationship between an angle sensor and magnetic lines of force of a permanent magnet at a first rotation angle; 角度センサーと第2の回転角度にある永久磁石の磁力線との関係を模式的に示す図である。FIG. 10 is a diagram schematically showing the relationship between the angle sensor and the magnetic lines of force of the permanent magnet at the second rotation angle; 永久磁石の回転角度と角度センサーが出力する電気信号との関係を示すグラフである。4 is a graph showing the relationship between the rotation angle of a permanent magnet and an electrical signal output by an angle sensor; 図1の電動弁の変形例に係る電動弁の縦断面図である。FIG. 2 is a vertical cross-sectional view of a motor-operated valve according to a modification of the motor-operated valve of FIG. 1; 図6の電動弁が有するマグネットローターの斜視図および正面図である。7A and 7B are a perspective view and a front view of a magnet rotor of the motor-operated valve of FIG. 6; 図6の電動弁が有するマグネットローターの平面図および底面図である。7A and 7B are a plan view and a bottom view of a magnet rotor of the motor-operated valve of FIG. 6; 本発明の第2実施例に係る電動弁において弁口の開口面積が最小の状態を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is the minimum in the motor-operated valve according to the second embodiment of the present invention; 図9の電動弁において弁口の開口面積が最大の状態を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is maximum in the motor-operated valve of FIG. 9 ; 図9の電動弁の変形例に係る電動弁において弁口の開口面積が最小の状態を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing a state in which the opening area of the valve port is the smallest in the motor-operated valve according to the modification of the motor-operated valve of FIG. 9 ; 図11の電動弁において弁口の開口面積が最大の状態を示す縦断面図である。FIG. 12 is a vertical cross-sectional view showing a state in which the opening area of the valve port is maximum in the motor-operated valve of FIG. 11;
(第1実施例)
 以下、本発明の第1実施例に係る電動弁について、図1~図5を参照して説明する。本実施例に係る電動弁1は、例えば、冷凍サイクル等において冷媒流量を調整するために使用される。
(First embodiment)
A motor operated valve according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG. The motor-operated valve 1 according to this embodiment is used, for example, to adjust the refrigerant flow rate in a refrigeration cycle or the like.
 図1は、本発明の第1実施例に係る電動弁の縦断面図である。図2は、図1の電動弁が有する永久磁石および角度センサーの配置を模式的に示す図である。図3は、角度センサーと第1の回転角度にある永久磁石の磁力線との関係を模式的に示す図である。図3は、角度センサーを通る磁力線が主にX方向を向いている様子を示している。図4は、角度センサーと第2の回転角度にある永久磁石の磁力線との関係を模式的に示す図である。図4は、角度センサーを通る磁力線が主にY方向を向いている様子を示している。図3に示す永久磁石と図4に示す永久磁石との回転角度の差は90度である。図5は、永久磁石の回転角度と角度センサーが出力する電気信号との関係を示すグラフである。各図において、矢印Xで示すX方向、矢印Yで示すY方向および矢印Zで示すZ方向は、互いに直交している。 FIG. 1 is a longitudinal sectional view of an electrically operated valve according to the first embodiment of the invention. FIG. 2 is a diagram schematically showing the arrangement of permanent magnets and angle sensors that the motor-operated valve of FIG. 1 has. FIG. 3 is a diagram schematically showing the relationship between the angle sensor and the magnetic lines of force of the permanent magnet at the first rotation angle. FIG. 3 shows that the magnetic lines of force passing through the angle sensor are mainly directed in the X direction. FIG. 4 is a diagram schematically showing the relationship between the angle sensor and the magnetic lines of force of the permanent magnet at the second rotation angle. FIG. 4 shows that the lines of magnetic force passing through the angle sensor are mainly directed in the Y direction. The difference in rotation angle between the permanent magnet shown in FIG. 3 and the permanent magnet shown in FIG. 4 is 90 degrees. FIG. 5 is a graph showing the relationship between the rotation angle of the permanent magnet and the electrical signal output by the angle sensor. In each figure, the X direction indicated by arrow X, the Y direction indicated by arrow Y, and the Z direction indicated by arrow Z are orthogonal to each other.
 図1に示すように、本実施例に係る電動弁1は、弁本体10と、ホルダー20と、弁体支持部材25と、ケースとしてのキャン30と、駆動機構40と、弁体70と、ステーターユニット80と、を有している。 As shown in FIG. 1, the motor operated valve 1 according to this embodiment includes a valve body 10, a holder 20, a valve body support member 25, a can 30 as a case, a drive mechanism 40, a valve body 70, and a stator unit 80 .
 弁本体10は、直方体形状を有している。弁本体10は、弁室13と、弁室13に接続された弁口14と、を有している。弁本体10は、第1通路17と、第2通路18と、を有している。第1通路17の一端部は弁室13と接続され、第1通路17の他端部は弁本体10の左側面10aに開口している。第2通路18の一端部は弁口14を介して弁室13と接続され、第2通路18の他端部は弁本体10の右側面10bに開口している。弁本体10は、取付孔19を有している。取付孔19は、弁本体10の上面10cに開口している。取付孔19の内周面には、雌ねじが形成されている。取付孔19の底面19aには、弁室13が開口している。 The valve body 10 has a cuboid shape. The valve body 10 has a valve chamber 13 and a valve port 14 connected to the valve chamber 13 . The valve body 10 has a first passageway 17 and a second passageway 18 . One end of the first passage 17 is connected to the valve chamber 13 , and the other end of the first passage 17 opens to the left side surface 10 a of the valve body 10 . One end of the second passage 18 is connected to the valve chamber 13 via the valve port 14 , and the other end of the second passage 18 opens to the right side surface 10 b of the valve body 10 . The valve body 10 has a mounting hole 19 . The mounting hole 19 opens to the upper surface 10 c of the valve body 10 . A female thread is formed on the inner peripheral surface of the mounting hole 19 . The valve chamber 13 opens to the bottom surface 19 a of the mounting hole 19 .
 ホルダー20は、円筒形状を有している。ホルダー20の外周面の下部には、雄ねじが形成されている。ホルダー20の雄ねじは、弁本体10の取付孔19の雌ねじに螺合される。ホルダー20は、弁本体10にねじ構造で取り付けられている。 The holder 20 has a cylindrical shape. A male thread is formed on the lower portion of the outer peripheral surface of the holder 20 . The male thread of the holder 20 is screwed into the female thread of the mounting hole 19 of the valve body 10 . The holder 20 is attached to the valve body 10 with a screw structure.
 弁体支持部材25は、円筒形状を有している。弁体支持部材25は、取付孔19の内側において、弁本体10とホルダー20との間に配置されている。弁体支持部材25の下部は、取付孔19から弁室13に圧入されている。弁体支持部材25の外周面には、下方を向く環状平面25aが形成されている。環状平面25aは、取付孔19の底面19aに当接されている。弁体支持部材25は、弁体70を上下方向(Z方向)に移動可能に支持する。 The valve body support member 25 has a cylindrical shape. The valve body support member 25 is arranged between the valve body 10 and the holder 20 inside the mounting hole 19 . A lower portion of the valve support member 25 is press-fitted into the valve chamber 13 through the mounting hole 19 . An annular flat surface 25a facing downward is formed on the outer peripheral surface of the valve body support member 25 . The annular flat surface 25 a abuts on the bottom surface 19 a of the mounting hole 19 . The valve body support member 25 supports the valve body 70 so as to be movable in the vertical direction (Z direction).
 キャン30は、円筒形状を有している。キャン30は、上端部が塞がれかつ下端部が開口している。キャン30の下端部は、円環板形状の接合部材35の外周縁に接合されている。接合部材35の内側にはホルダー20の上部が配置されている。接合部材35の内周縁は、ホルダー20に接合されている。キャン30は、接合部材35およびホルダー20を介して、弁本体10に固定されている。 The can 30 has a cylindrical shape. The can 30 is closed at its upper end and open at its lower end. A lower end portion of the can 30 is joined to an outer peripheral edge of an annular plate-shaped joining member 35 . An upper portion of the holder 20 is arranged inside the joint member 35 . The inner peripheral edge of the joining member 35 is joined to the holder 20 . The can 30 is fixed to the valve body 10 via the joint member 35 and the holder 20 .
 駆動機構40は、弁体70を上下方向に移動させる。駆動機構40は、マグネットローター41と、永久磁石45と、遊星歯車機構50と、案内部材60と、駆動軸65と、ボール68と、を有している。 The drive mechanism 40 moves the valve body 70 vertically. The drive mechanism 40 has a magnet rotor 41 , a permanent magnet 45 , a planetary gear mechanism 50 , a guide member 60 , a drive shaft 65 and balls 68 .
 マグネットローター41は、円筒形状を有している。マグネットローター41の外径は、キャン30の内径より小さい。マグネットローター41は、キャン30の内側に回転可能に配置されている。マグネットローター41の上端部には、円板形状の連結部材42が接合されている。連結部材42は、マグネットローター41の上端部を塞いでいる。連結部材42の中央をローター軸43が貫通している。マグネットローター41は、連結部材42を介してローター軸43に連結されている。ローター軸43は、マグネットローター41とともに回転する。 The magnet rotor 41 has a cylindrical shape. The outer diameter of the magnet rotor 41 is smaller than the inner diameter of the can 30 . The magnet rotor 41 is rotatably arranged inside the can 30 . A disk-shaped connecting member 42 is joined to the upper end of the magnet rotor 41 . The connecting member 42 closes the upper end of the magnet rotor 41 . A rotor shaft 43 passes through the center of the connecting member 42 . The magnet rotor 41 is connected to a rotor shaft 43 via a connecting member 42 . The rotor shaft 43 rotates together with the magnet rotor 41 .
 マグネットローター41は、複数のN極と複数のS極とを有している。複数のN極と複数のS極とは、軸線L方向に延在している。複数のN極と複数のS極とは、マグネットローター41の外周面に周方向に交互に配置されている。軸線Lは、Z方向と平行である。 The magnet rotor 41 has a plurality of N poles and a plurality of S poles. The plurality of N poles and the plurality of S poles extend in the axis L direction. A plurality of N poles and a plurality of S poles are arranged alternately in the circumferential direction on the outer peripheral surface of the magnet rotor 41 . The axis L is parallel to the Z direction.
 永久磁石45は、キャン30の内側においてマグネットローター41の上方に配置されている。永久磁石45は、円板形状を有している。永久磁石45は、軸線L方向から見たときに円形状の外形を有している。なお、永久磁石45は、直線状に延びる棒形状でもよい。永久磁石45は、ローター軸43の上端部に固定されている。永久磁石45は、マグネットローター41と同軸に配置されており、マグネットローター41とともに回転される。永久磁石45は、マグネットローター41の回転軸周りに回転される。マグネットローター41の回転軸は、軸線Lと一致する。軸線L方向は回転軸方向である。マグネットローター41と永久磁石45との間には、円板形状の磁気遮蔽部材46が配置されている。磁気遮蔽部材46は、ケイ素鉄などの透磁率が比較的高い軟磁性体である。磁気遮蔽部材46は、ローター軸43に固定されている。磁気遮蔽部材46は、マグネットローター41が生じる磁束を吸収する。磁気遮蔽部材46は、マグネットローター41が生じる磁界によって永久磁石45が生じる磁界が歪むことを抑制する。マグネットローター41および永久磁石45は、軸線L方向に移動しない。 The permanent magnet 45 is arranged above the magnet rotor 41 inside the can 30 . The permanent magnet 45 has a disk shape. The permanent magnet 45 has a circular outer shape when viewed from the axis L direction. It should be noted that the permanent magnet 45 may have a rod shape extending linearly. A permanent magnet 45 is fixed to the upper end of the rotor shaft 43 . The permanent magnet 45 is arranged coaxially with the magnet rotor 41 and rotates together with the magnet rotor 41 . The permanent magnet 45 is rotated around the rotation axis of the magnet rotor 41 . The rotation axis of the magnet rotor 41 coincides with the axis L. As shown in FIG. The direction of the axis L is the direction of the rotation axis. A disc-shaped magnetic shielding member 46 is arranged between the magnet rotor 41 and the permanent magnets 45 . The magnetic shielding member 46 is a soft magnetic material having relatively high magnetic permeability, such as silicon iron. A magnetic shielding member 46 is fixed to the rotor shaft 43 . The magnetic shielding member 46 absorbs magnetic flux generated by the magnet rotor 41 . The magnetic shielding member 46 suppresses distortion of the magnetic field generated by the permanent magnet 45 due to the magnetic field generated by the magnet rotor 41 . The magnet rotor 41 and the permanent magnets 45 do not move in the axis L direction.
 図2~図4に示すように、永久磁石45は、1つのN極と1つのS極とを有している。永久磁石45における直径Kで区画された一方の部分(第1部分45n)に1つのN極が配置され、他方の部分(第2部分45s)に1つのS極が配置されている。1つのN極と1つのS極とは、軸線Lと直交する方向でかつ直径Kと直交する方向(図3においてX方向、図4においてY方向)に対向している。永久磁石45は、軸線Lと直交する方向でかつ直径Kと直交する方向に着磁されている。そのため、図3、図4に示すように、永久磁石45の磁力線Fは、軸線Lと直交する方向(XY平面と平行な方向)に沿って、第1部分45nの外周面から出て第2部分45sの外周面に入る。なお、永久磁石45は、少なくとも1つのN極と少なくとも1つのS極とを有していればよい。永久磁石45は、例えば、周方向に交互に配置された2つのN極と2つのS極とを有してもよい。 As shown in FIGS. 2 to 4, the permanent magnet 45 has one N pole and one S pole. One N pole is arranged in one portion (first portion 45n) partitioned by diameter K in permanent magnet 45, and one S pole is arranged in the other portion (second portion 45s). One N pole and one S pole face each other in a direction orthogonal to the axis L and orthogonal to the diameter K (the X direction in FIG. 3 and the Y direction in FIG. 4). The permanent magnet 45 is magnetized in a direction perpendicular to the axis L and a direction perpendicular to the diameter K. Therefore, as shown in FIGS. 3 and 4, the magnetic lines of force F of the permanent magnet 45 extend from the outer peripheral surface of the first portion 45n along the direction perpendicular to the axis L (the direction parallel to the XY plane) to the second magnetic field. It enters the outer peripheral surface of the portion 45s. Permanent magnet 45 may have at least one N pole and at least one S pole. The permanent magnet 45 may have, for example, two N poles and two S poles alternately arranged in the circumferential direction.
 遊星歯車機構50は、マグネットローター41の内側に配置されている。遊星歯車機構50は、歯車ケース51と、固定リング歯車52と、太陽歯車53と、複数の遊星歯車54と、キャリア55と、出力歯車56と、出力軸57と、を有している。歯車ケース51は、円筒形状を有している。歯車ケース51は、ホルダー20の上端部に同軸に接合されている。固定リング歯車52は、内歯車である。固定リング歯車52は、歯車ケース51の上端部に固定されている。太陽歯車53は、連結部材42と同軸に配置されている。太陽歯車53は、連結部材42と一体化されている。太陽歯車53をローター軸43が貫通している。太陽歯車53は、マグネットローター41および連結部材42とともに回転される。複数の遊星歯車54は、固定リング歯車52と太陽歯車53との間に配置されている。キャリア55は、円板形状を有している。キャリア55の中央をローター軸43が貫通している。キャリア55は、ローター軸43周りに回転可能である。キャリア55は、複数の遊星歯車54を回転可能に支持する。出力歯車56は、有底円筒形状を有している。出力歯車56は内歯車である。出力歯車56と太陽歯車53との間に複数の遊星歯車54が配置されている。出力軸57は、円柱形状を有している。出力軸57の上部は、出力歯車56の底部に形成された孔に配置されている。出力軸57は、出力歯車56に固定されている。出力軸57の下部には、上下方向に延びるスリット57aが形成されている。太陽歯車53の回転は、固定リング歯車52、複数の遊星歯車54、キャリア55および出力歯車56によって減速されて、出力軸57に伝達される。 The planetary gear mechanism 50 is arranged inside the magnet rotor 41 . The planetary gear mechanism 50 has a gear case 51 , a fixed ring gear 52 , a sun gear 53 , a plurality of planetary gears 54 , a carrier 55 , an output gear 56 and an output shaft 57 . The gear case 51 has a cylindrical shape. The gear case 51 is coaxially joined to the upper end of the holder 20 . Fixed ring gear 52 is an internal gear. A fixed ring gear 52 is fixed to the upper end of the gear case 51 . The sun gear 53 is arranged coaxially with the connecting member 42 . The sun gear 53 is integrated with the connecting member 42 . A rotor shaft 43 passes through the sun gear 53 . The sun gear 53 rotates together with the magnet rotor 41 and the connecting member 42 . A plurality of planetary gears 54 are arranged between the fixed ring gear 52 and the sun gear 53 . The carrier 55 has a disk shape. A rotor shaft 43 passes through the center of the carrier 55 . Carrier 55 is rotatable around rotor axis 43 . Carrier 55 rotatably supports a plurality of planetary gears 54 . The output gear 56 has a bottomed cylindrical shape. Output gear 56 is an internal gear. A plurality of planetary gears 54 are arranged between the output gear 56 and the sun gear 53 . The output shaft 57 has a cylindrical shape. The upper portion of the output shaft 57 is arranged in a hole formed in the bottom portion of the output gear 56 . The output shaft 57 is fixed to the output gear 56 . A vertically extending slit 57 a is formed in the lower portion of the output shaft 57 . Rotation of the sun gear 53 is reduced by the fixed ring gear 52 , the plurality of planetary gears 54 , the carrier 55 and the output gear 56 and transmitted to the output shaft 57 .
 案内部材60は、円筒形状を有している。案内部材60は、ホルダー20の上部の内側に配置されている。案内部材60の内周面の下部には、雌ねじが形成されている。案内部材60の内側には、出力軸57が配置されている。案内部材60は、出力軸57を回転可能に支持している。 The guide member 60 has a cylindrical shape. The guide member 60 is arranged inside the upper portion of the holder 20 . A female thread is formed in the lower portion of the inner peripheral surface of the guide member 60 . An output shaft 57 is arranged inside the guide member 60 . The guide member 60 rotatably supports the output shaft 57 .
 駆動軸65は、円柱部66と、平板部67と、を有している。平板部67は、円柱部66の上端部に接続されている。円柱部66と平板部67とは、一体的に形成されている。円柱部66の外周面には、雄ねじが形成されている。円柱部66の雄ねじは、案内部材60の雌ねじと螺合される。平板部67は、出力軸57のスリット57aに上下方向に移動可能に配置されている。駆動軸65は、出力軸57によって回転され、ねじ送り作用によって上下方向に移動する。 The drive shaft 65 has a columnar portion 66 and a flat plate portion 67 . The flat plate portion 67 is connected to the upper end portion of the cylindrical portion 66 . The cylindrical portion 66 and the flat plate portion 67 are integrally formed. A male thread is formed on the outer peripheral surface of the cylindrical portion 66 . The male thread of the cylindrical portion 66 is screwed with the female thread of the guide member 60 . The flat plate portion 67 is arranged in the slit 57a of the output shaft 57 so as to be vertically movable. The drive shaft 65 is rotated by the output shaft 57 and moved vertically by a screw feeding action.
 弁体70は、ステム71と、弁部72と、ばね受け部73と、ボール受け部74と、を有している。ステム71は、円柱形状を有している。ステム71は、弁体支持部材25の内側に配置されている。ステム71は、弁体支持部材25によって上下方向に移動可能に支持されている。弁部72は、ステム71の下端部に配置されている。弁部72は、円環形状を有している。弁部72は、ステム71の外周面から径方向外方に突出している。弁部72は、弁口14と上下方向に対向している。ばね受け部73は、円柱形状を有している。ばね受け部73は、ステム71の上端部に接合されている。ばね受け部73は、径方向外方に突出するフランジ部73aを有している。ボール受け部74は、円形の平板部と、平板部の下面に接続された凸部と、を有している。ボール受け部74は、平板部がボール68に接し、凸部がばね受け部73に形成された孔に嵌合されている。ボール受け部74と駆動軸65との間には、ボール68が配置されている。ばね受け部73のフランジ部73aと弁体支持部材25との間には、開弁ばね75が配置されている。開弁ばね75は、圧縮コイルばねである。開弁ばね75は、弁体70(フランジ部73a)を上方に押している。弁体70は、弁部72が弁口14に対して進退することにより、弁口14の開口面積を無段階(実質的に無段階を含む)に変更する。弁口14の最小面積は0より大きくてもよい(すなわち、わずかに弁口14が開いた状態)。または、弁口14の最小面積は0でもよい(すなわち、弁口14が全閉状態)。 The valve body 70 has a stem 71 , a valve portion 72 , a spring receiving portion 73 and a ball receiving portion 74 . The stem 71 has a cylindrical shape. The stem 71 is arranged inside the valve body support member 25 . The stem 71 is supported by the valve support member 25 so as to be vertically movable. The valve portion 72 is arranged at the lower end of the stem 71 . The valve portion 72 has an annular shape. The valve portion 72 protrudes radially outward from the outer peripheral surface of the stem 71 . The valve portion 72 vertically faces the valve port 14 . The spring receiving portion 73 has a cylindrical shape. The spring receiving portion 73 is joined to the upper end portion of the stem 71 . The spring receiving portion 73 has a flange portion 73a protruding radially outward. The ball receiving portion 74 has a circular flat plate portion and a convex portion connected to the lower surface of the flat plate portion. The ball receiving portion 74 has a flat plate portion in contact with the ball 68 and a convex portion fitted in a hole formed in the spring receiving portion 73 . A ball 68 is arranged between the ball receiving portion 74 and the drive shaft 65 . A valve opening spring 75 is arranged between the flange portion 73 a of the spring receiving portion 73 and the valve body support member 25 . The valve opening spring 75 is a compression coil spring. The valve opening spring 75 pushes the valve body 70 (flange portion 73a) upward. The valve body 70 changes the opening area of the valve port 14 steplessly (including substantially steplessly) by moving the valve portion 72 forward and backward with respect to the valve port 14 . The minimum area of the valve orifice 14 may be greater than 0 (ie, the valve orifice 14 is slightly open). Alternatively, the minimum area of the valve port 14 may be 0 (that is, the valve port 14 is fully closed).
 ステーターユニット80は、ステーター81と、カバー90と、基板95と、を有している。ステーター81は、円筒形状を有している。ステーター81の内側にキャン30が配置される。ステーター81は、キャン30を介して、軸線Lと直交する方向にマグネットローター41と並んでいる。ステーター81は、マグネットローター41とともにステッピングモーターを構成する。 The stator unit 80 has a stator 81 , a cover 90 and a substrate 95 . Stator 81 has a cylindrical shape. A can 30 is arranged inside the stator 81 . The stator 81 is aligned with the magnet rotor 41 in a direction perpendicular to the axis L with the can 30 interposed therebetween. The stator 81 constitutes a stepping motor together with the magnet rotor 41 .
 カバー90は、樹脂製である。カバー90は、ステーター81および基板95を収容している。カバー90は、カバー本体91と、蓋体92と、コネクタ93と、を有している。カバー本体91は、ステーター81と一体成形されている。カバー本体91は、第1周壁部91aと、上壁部91bと、第2周壁部91cと、円筒部91dと、を有している。第1周壁部91aの内周面に、ステーター81が埋め込まれている。上壁部91bは、第1周壁部91aの上端部に接続されている。上壁部91bは、ドーム形状を有している。上壁部91bの内側には、キャン30の上端部が配置される。第2周壁部91cは、第1周壁部91aに接続されている。第2周壁部91cは、第1周壁部91aから上方に延びている。円筒部91dは、第1周壁部91aの下端部から下方に延びている。円筒部91dの下端部は、弁本体10の上面10cに接している。円筒部91dの内側には、ホルダー20が配置されている。蓋体92は、平板形状を有している。蓋体92は、カバー本体91の第2周壁部91cの上端部に接合されている。コネクタ93は、図1において左右方向に伸びる筒形状を有している。コネクタ93は、蓋体92と一体化されている。カバー本体91と蓋体92とは、基板収容空間94を画定している。 The cover 90 is made of resin. Cover 90 accommodates stator 81 and substrate 95 . The cover 90 has a cover body 91 , a lid body 92 and a connector 93 . The cover main body 91 is integrally molded with the stator 81 . The cover main body 91 has a first peripheral wall portion 91a, an upper wall portion 91b, a second peripheral wall portion 91c, and a cylindrical portion 91d. A stator 81 is embedded in the inner peripheral surface of the first peripheral wall portion 91a. The upper wall portion 91b is connected to the upper end portion of the first peripheral wall portion 91a. The upper wall portion 91b has a dome shape. The upper end portion of the can 30 is arranged inside the upper wall portion 91b. The second peripheral wall portion 91c is connected to the first peripheral wall portion 91a. The second peripheral wall portion 91c extends upward from the first peripheral wall portion 91a. The cylindrical portion 91d extends downward from the lower end portion of the first peripheral wall portion 91a. A lower end portion of the cylindrical portion 91 d is in contact with the upper surface 10 c of the valve body 10 . A holder 20 is arranged inside the cylindrical portion 91d. The lid body 92 has a flat plate shape. The lid body 92 is joined to the upper end portion of the second peripheral wall portion 91 c of the cover main body 91 . The connector 93 has a tubular shape extending in the horizontal direction in FIG. The connector 93 is integrated with the lid body 92 . The cover main body 91 and the lid body 92 define a board accommodation space 94 .
 基板95は、角度センサー96を含む電子部品が実装されている。基板95は、基板収容空間94に配置されており、カバー本体91が有するボス91eにねじで固定されている。基板95には、ステーター81のコイルに接続された端子84が接続されている。基板95は、カバー本体91の上壁部91bが配置される貫通孔95aを有している。 Electronic components including an angle sensor 96 are mounted on the board 95 . The substrate 95 is arranged in the substrate accommodation space 94 and is fixed to the boss 91e of the cover body 91 with screws. Terminals 84 connected to the coils of the stator 81 are connected to the board 95 . The substrate 95 has a through hole 95a in which the upper wall portion 91b of the cover body 91 is arranged.
 角度センサー96は、磁気式角度センサーである。角度センサー96は、基板95の下面に実装されている。角度センサー96は、キャン30の外周面近傍に配置されている。角度センサー96とキャン30とは、カバー本体91を介して、軸線Lと直交する方向(図1においてX方向)に並んでいる。また、角度センサー96と永久磁石45とは、キャン30およびカバー本体91を介して、軸線Lと直交する方向に並んでいる。すなわち、永久磁石45、キャン30、カバー本体91および角度センサー96が、この順番で軸線Lと直交する方向に並んでいる。角度センサー96は、角度センサー96を通る磁界に含まれる互いに直交する2方向の磁界成分(磁束密度成分)の向きおよび大きさを検出する。本実施例において、角度センサー96は、X方向の磁界成分の向き及び大きさに応じた電気信号と、Y方向の磁界成分の向きおよび大きさに応じた電気信号と、を出力する。角度センサー96が出力する電気信号に基づいて、永久磁石45の回転角度を取得することができる。 The angle sensor 96 is a magnetic angle sensor. The angle sensor 96 is mounted on the bottom surface of the substrate 95 . The angle sensor 96 is arranged near the outer peripheral surface of the can 30 . The angle sensor 96 and the can 30 are arranged in a direction perpendicular to the axis L (the X direction in FIG. 1) with the cover body 91 interposed therebetween. Also, the angle sensor 96 and the permanent magnet 45 are arranged in a direction perpendicular to the axis L with the can 30 and the cover main body 91 interposed therebetween. That is, the permanent magnet 45, the can 30, the cover main body 91, and the angle sensor 96 are arranged in the direction perpendicular to the axis L in this order. The angle sensor 96 detects the directions and magnitudes of magnetic field components (magnetic flux density components) in two mutually orthogonal directions included in the magnetic field passing through the angle sensor 96 . In this embodiment, the angle sensor 96 outputs an electric signal corresponding to the direction and magnitude of the magnetic field component in the X direction and an electric signal corresponding to the direction and magnitude of the magnetic field component in the Y direction. Based on the electrical signal output by the angle sensor 96, the rotation angle of the permanent magnet 45 can be obtained.
 角度センサー96は、永久磁石45の回転角度に応じた電気信号を出力する。図5に角度センサー96が出力する電気信号の例を示す。図5において、実線がX方向の磁界成分に対応する出力のグラフであり、破線がY方向の磁界成分に対応する出力のグラフである。例えば、永久磁石45の回転角度が360×n[度](ただしnは整数)であるとき(図3)、X方向の磁界成分が最大値(正値)になり、Y方向の磁界成分が0になる。永久磁石45の回転角度が360×n+90[度]であるとき(図4)、X方向の磁界成分が0になり、Y方向の磁界成分が最大値(正値)になる。永久磁石45の回転角度が360×n+180[度]であるとき、X方向の磁界成分が最小値(負値)になり、Y方向の磁界成分が0になる。永久磁石45の回転角度が360×n+270[度]であるとき、X方向の磁界成分が0になり、Y方向の磁界成分が最小値(負値)になる。磁界成分の値の符号(正負)が磁界成分の向きを示し、磁界成分の値の絶対値が磁界成分の大きさを示す。 The angle sensor 96 outputs an electrical signal corresponding to the rotation angle of the permanent magnet 45. FIG. 5 shows an example of the electrical signal output by the angle sensor 96. As shown in FIG. In FIG. 5, the solid line is the graph of the output corresponding to the magnetic field component in the X direction, and the dashed line is the graph of the output corresponding to the magnetic field component in the Y direction. For example, when the rotation angle of the permanent magnet 45 is 360×n [degrees] (where n is an integer) (FIG. 3), the magnetic field component in the X direction becomes the maximum value (positive value), and the magnetic field component in the Y direction becomes becomes 0. When the rotation angle of the permanent magnet 45 is 360×n+90 [degrees] (FIG. 4), the magnetic field component in the X direction becomes 0 and the magnetic field component in the Y direction becomes the maximum value (positive value). When the rotation angle of the permanent magnet 45 is 360×n+180 [degrees], the magnetic field component in the X direction becomes the minimum value (negative value) and the magnetic field component in the Y direction becomes 0. When the rotation angle of the permanent magnet 45 is 360×n+270 [degrees], the magnetic field component in the X direction becomes 0 and the magnetic field component in the Y direction becomes the minimum value (negative value). The sign (positive or negative) of the value of the magnetic field component indicates the direction of the magnetic field component, and the absolute value of the value of the magnetic field component indicates the magnitude of the magnetic field component.
 電動弁1において、弁口14、ホルダー20、弁体支持部材25、キャン30、マグネットローター41、連結部材42、ローター軸43、永久磁石45、出力軸57、案内部材60、駆動軸65、弁体70、ステーター81は、それぞれの中心軸が軸線Lと一致している。 In the electric valve 1, the valve port 14, the holder 20, the valve body support member 25, the can 30, the magnet rotor 41, the connecting member 42, the rotor shaft 43, the permanent magnet 45, the output shaft 57, the guide member 60, the drive shaft 65, the valve The central axes of the body 70 and the stator 81 are aligned with the axis L. As shown in FIG.
 次に、電動弁1の動作について説明する。 Next, the operation of the electric valve 1 will be explained.
 電動弁1において、ステーター81のコイルに電流を流して、マグネットローター41を一方向に回転させる。マグネットローター41の回転は、遊星歯車機構50を介して駆動軸65に伝達される。駆動軸65と案内部材60とのねじ送り作用により、駆動軸65が下方に移動する。駆動軸65によって弁体70が下方に押され、弁口14の開口面積が小さくなる。 In the electric valve 1, current is applied to the coil of the stator 81 to rotate the magnet rotor 41 in one direction. Rotation of the magnet rotor 41 is transmitted to the drive shaft 65 via the planetary gear mechanism 50 . The drive shaft 65 moves downward due to the screw feeding action between the drive shaft 65 and the guide member 60 . The valve body 70 is pushed downward by the drive shaft 65, and the opening area of the valve port 14 is reduced.
 電動弁1において、ステーター81のコイルに電流を流して、マグネットローター41を他方向に回転させる。マグネットローター41の回転は、遊星歯車機構50を介して駆動軸65に伝達される。駆動軸65と案内部材60とのねじ送り作用により、駆動軸65が上方に移動する。開弁ばね75によって弁体70が上方に押され、弁口14の開口面積が大きくなる。 In the electric valve 1, current is passed through the coil of the stator 81 to rotate the magnet rotor 41 in the other direction. Rotation of the magnet rotor 41 is transmitted to the drive shaft 65 via the planetary gear mechanism 50 . The drive shaft 65 moves upward due to the screw feeding action between the drive shaft 65 and the guide member 60 . The valve body 70 is pushed upward by the valve opening spring 75, and the opening area of the valve port 14 is increased.
 電動弁1は、円筒形状のキャン30と、キャン30の内側に配置されたマグネットローター41と、キャン30の内側にマグネットローター41と同軸に配置された永久磁石45と、キャン30の外側に配置されたステーター81を有するステーターユニット80と、を有している。永久磁石45は、円形状の外形を有しており、マグネットローター41とともに回転される。永久磁石45における直径Kで区画された第1部分45nに1つのN極が配置され、第2部分45sに1つのS極が配置されている。永久磁石45の着磁方向が、軸線Lと直交する方向である。ステーターユニット80が、永久磁石45の回転角度を検出する角度センサー96を有している。そして、角度センサー96が、軸線Lと直交する方向にキャン30と並んでいる。 The motor-operated valve 1 includes a cylindrical can 30, a magnet rotor 41 arranged inside the can 30, a permanent magnet 45 arranged coaxially with the magnet rotor 41 inside the can 30, and arranged outside the can 30. and a stator unit 80 having a stator 81 mounted thereon. The permanent magnet 45 has a circular outer shape and is rotated together with the magnet rotor 41 . One N pole is arranged in the first portion 45n of the permanent magnet 45 divided by the diameter K, and one S pole is arranged in the second portion 45s. The magnetization direction of the permanent magnet 45 is a direction perpendicular to the axis L. As shown in FIG. The stator unit 80 has an angle sensor 96 that detects the rotation angle of the permanent magnets 45 . An angle sensor 96 is aligned with the can 30 in a direction perpendicular to the axis L.
 このようにしたことから、永久磁石45の磁力線Fが、軸線L(回転軸)と直交する方向に沿って第1部分45nの外周面から出て第2部分45sの外周面に入る。そのため、電動弁において、キャン30の側方にある空間(すなわち、キャン30に対して軸線Lと直交する方向にある空間)における磁界の強さが強く、キャン30の側方に配置した角度センサー96によって正確にマグネットローター41(永久磁石45)の回転角度を検出することができる。また、キャン30の側方に角度センサー96を配置することで、電動弁1の高さ寸法を小さくすることができる。 As a result, the magnetic lines of force F of the permanent magnet 45 emerge from the outer peripheral surface of the first portion 45n and enter the outer peripheral surface of the second portion 45s along the direction perpendicular to the axis L (rotational axis). Therefore, in the electric valve, the strength of the magnetic field in the space on the side of the can 30 (that is, the space in the direction perpendicular to the axis L with respect to the can 30) is strong, and the angle sensor arranged on the side of the can 30 96 can accurately detect the rotation angle of the magnet rotor 41 (permanent magnet 45). Further, by arranging the angle sensor 96 on the side of the can 30, the height dimension of the electric valve 1 can be reduced.
 また、角度センサー96が、第1方向であるX方向の磁界成分の向きおよび大きさと、第2方向であるY方向の磁界成分の向きおよび大きさと、を検出する。このようにすることで、X方向の磁界成分およびY方向の磁界成分を用いて、より正確にマグネットローター41の回転角度を検出することができる。 Also, the angle sensor 96 detects the direction and magnitude of the magnetic field component in the X direction, which is the first direction, and the direction and magnitude of the magnetic field component in the Y direction, which is the second direction. By doing so, the rotation angle of the magnet rotor 41 can be detected more accurately using the magnetic field component in the X direction and the magnetic field component in the Y direction.
 次に、電動弁1の変形例に係る電動弁1Aについて、図6~図8を参照して説明する。 Next, a motor-operated valve 1A according to a modified example of the motor-operated valve 1 will be described with reference to FIGS. 6 to 8. FIG.
 図6は、図1の電動弁の変形例に係る電動弁の縦断面図である。図7Aは、図6の電動弁が有するマグネットローターの斜視図である。図7Bは、図6の電動弁が有するマグネットローターの正面図である。図8Aは、図6の電動弁が有するマグネットローターの平面図である。図8Bは、図6の電動弁が有するマグネットローターの底面図である。 FIG. 6 is a vertical cross-sectional view of a motor-operated valve according to a modification of the motor-operated valve of FIG. 7A is a perspective view of a magnet rotor included in the motor-operated valve of FIG. 6. FIG. 7B is a front view of a magnet rotor included in the motor-operated valve of FIG. 6. FIG. 8A is a plan view of a magnet rotor included in the motor-operated valve of FIG. 6. FIG. 8B is a bottom view of a magnet rotor included in the motor-operated valve of FIG. 6. FIG.
 電動弁1Aは、下記(1)、(2)以外は、上述した電動弁1と同一(実質的に同一を含む)である。
 (1)電動弁1Aは、永久磁石45および磁気遮蔽部材46を有していない。
 (2)電動弁1Aは、マグネットローター41に代えて、マグネットローター41Aを有している。
 そのため、電動弁1Aの説明において、電動弁1と同一の構成については同一の符号を付して詳細説明を省略する。
The motor-operated valve 1A is the same (including substantially the same) as the above-described motor-operated valve 1 except for the following (1) and (2).
(1) The electric valve 1A does not have the permanent magnet 45 and the magnetic shielding member 46.
(2) The electric valve 1A has a magnet rotor 41A instead of the magnet rotor 41.
Therefore, in the description of the motor-operated valve 1A, the same components as those of the motor-operated valve 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 マグネットローター41Aは、円筒形状を有している。マグネットローター41Aの外径は、キャン30の内径より小さい。マグネットローター41Aは、キャン30の内側に回転可能に配置されている。マグネットローター41Aの上端部には、円板形状の連結部材42が接合されている。連結部材42は、マグネットローター41Aの上端部を塞いでいる。連結部材42の中央をローター軸43が貫通している。ローター軸43の上端部は、軸受部材44によって回転可能に支持されている。マグネットローター41Aは、連結部材42を介してローター軸43に連結されている。ローター軸43は、マグネットローター41Aとともに回転する。マグネットローター41Aの回転軸は、軸線Lと一致する。 The magnet rotor 41A has a cylindrical shape. The outer diameter of the magnet rotor 41A is smaller than the inner diameter of the can 30. The magnet rotor 41A is rotatably arranged inside the can 30 . A disc-shaped connecting member 42 is joined to the upper end of the magnet rotor 41A. The connecting member 42 closes the upper end of the magnet rotor 41A. A rotor shaft 43 passes through the center of the connecting member 42 . An upper end portion of the rotor shaft 43 is rotatably supported by a bearing member 44 . The magnet rotor 41A is connected to the rotor shaft 43 via the connecting member 42. As shown in FIG. The rotor shaft 43 rotates together with the magnet rotor 41A. The rotation axis of the magnet rotor 41A coincides with the axis L.
 マグネットローター41Aは、軸線L方向に順に接続された、第1磁極部分41aと、磁気緩衝部分41bと、第2磁極部分41cと、を有している。 The magnet rotor 41A has a first magnetic pole portion 41a, a magnetic buffer portion 41b, and a second magnetic pole portion 41c, which are connected in order in the direction of the axis L.
 第1磁極部分41aは、複数のN極と複数のS極とを有している。複数のN極と複数のS極とは、軸線L方向に延在している。複数のN極と複数のS極とは、第1磁極部分41aの外周面に周方向に交互に配置されている。第1磁極部分41aは、キャン30を介して、軸線Lと直交する方向にステーター81と並んでいる。 The first magnetic pole portion 41a has a plurality of N poles and a plurality of S poles. The plurality of N poles and the plurality of S poles extend in the axis L direction. A plurality of N poles and a plurality of S poles are alternately arranged in the circumferential direction on the outer peripheral surface of the first magnetic pole portion 41a. The first magnetic pole portion 41a is aligned with the stator 81 in a direction perpendicular to the axis L with the can 30 interposed therebetween.
 磁気緩衝部分41bは、第1磁極部分41aと第2磁極部分41cとの間に配置されている。磁気緩衝部分41bは、着磁されていない。磁気緩衝部分41bの軸線L方向の長さは、第1磁極部分41aが生じる磁界が第2磁極部分41cが生じる磁界に影響しない長さに設定されている。この長さは、第1磁極部分41aおよび第2磁極部分41cが生じる磁界の強さの測定値やシミュレーション結果などに基づいて設定される。磁気緩衝部分41bは、第1磁極部分41aが生じる磁界と第2磁極部分41cが生じる磁界とが互いに影響することを抑制する。 The magnetic buffer portion 41b is arranged between the first magnetic pole portion 41a and the second magnetic pole portion 41c. The magnetic buffer portion 41b is not magnetized. The length of the magnetic buffer portion 41b in the direction of the axis L is set so that the magnetic field generated by the first magnetic pole portion 41a does not affect the magnetic field generated by the second magnetic pole portion 41c. This length is set based on the measured value of the strength of the magnetic field generated by the first magnetic pole portion 41a and the second magnetic pole portion 41c, simulation results, or the like. The magnetic buffer portion 41b suppresses mutual influence between the magnetic field generated by the first magnetic pole portion 41a and the magnetic field generated by the second magnetic pole portion 41c.
 第2磁極部分41cは、マグネットローター41Aの上端部に配置されている。第2磁極部分41cは、軸線L方向から見たときに円形状の外形を有している。第2磁極部分41cは、1つのN極と1つのS極とを有している。第2磁極部分41cにおける直径Kで区画された一方の部分(第1部分41n)に1つのN極が配置され、他方の部分(第2部分41s)に1つのS極が配置されている。1つのN極と1つのS極とは、軸線Lと直交する方向でかつ直径Kと直交する方向(図8AにおいてX方向)に対向している。第2磁極部分41cは、軸線Lと直交する方向でかつ直径Kと直交する方向に着磁されている。そのため、第2磁極部分41cの磁力線は、図3、図4に示す永久磁石45と同様に、軸線Lと直交する方向(XY平面と平行な方向)に沿って、第1部分41nの外周面から出て第2部分41sの外周面に入る。なお、第2磁極部分41cの外周面には、周方向に交互に並ぶ少なくとも1つのN極と少なくとも1つのS極とが配置されていればよい。第2磁極部分41cは、例えば、周方向に交互に配置された2つのN極と2つのS極とを有してもよい。第2磁極部分41cと角度センサー96とは、キャン30およびカバー本体91を介して、軸線Lと直交する方向に並んでいる。図6において、マグネットローター41Aにおける第1磁極部分41aと磁気緩衝部分41bとの境界と、磁気緩衝部分41bと第2磁極部分41cとの境界と、を破線で示している。 The second magnetic pole portion 41c is arranged at the upper end of the magnet rotor 41A. The second magnetic pole portion 41c has a circular outer shape when viewed from the axis L direction. The second magnetic pole portion 41c has one N pole and one S pole. One N pole is arranged in one portion (first portion 41n) partitioned by diameter K in the second magnetic pole portion 41c, and one S pole is arranged in the other portion (second portion 41s). One N pole and one S pole face each other in a direction orthogonal to the axis L and orthogonal to the diameter K (the X direction in FIG. 8A). The second magnetic pole portion 41c is magnetized in a direction perpendicular to the axis L and a direction perpendicular to the diameter K. Therefore, the magnetic lines of force of the second magnetic pole portion 41c extend along the direction orthogonal to the axis L (the direction parallel to the XY plane), similarly to the permanent magnet 45 shown in FIGS. , and enters the outer peripheral surface of the second portion 41s. At least one N pole and at least one S pole may be arranged alternately in the circumferential direction on the outer peripheral surface of the second magnetic pole portion 41c. The second magnetic pole portion 41c may have, for example, two N poles and two S poles alternately arranged in the circumferential direction. The second magnetic pole portion 41c and the angle sensor 96 are arranged in a direction orthogonal to the axis L with the can 30 and the cover main body 91 interposed therebetween. In FIG. 6, the boundary between the first magnetic pole portion 41a and the magnetic buffer portion 41b and the boundary between the magnetic buffer portion 41b and the second magnetic pole portion 41c in the magnet rotor 41A are indicated by dashed lines.
 電動弁1Aでは、マグネットローター41Aの第2磁極部分41cの磁力線が、軸線Lと直交する方向に沿って第1部分41nの外周面から出て第2部分41sの外周面に入る。また、第1磁極部分41aと第2磁極部分41cとの間に磁気緩衝部分41bがある。磁気緩衝部分41bが、第1磁極部分41aが生じる磁界と第2磁極部分41cが生じる磁界とが互いに影響することを抑制する。そのため、電動弁1Aにおいて、キャン30の側方にある空間(すなわち、キャン30に対して軸線Lと直交する方向にある空間)における磁界の強さが強く、キャン30の側方に配置した角度センサー96によって正確にマグネットローター41A(第2磁極部分41c)の回転角度を検出することができる。また、キャン30の側方に角度センサー96を配置することで、電動弁1Aの高さ寸法を小さくすることができる。 In the electric valve 1A, the magnetic lines of force of the second magnetic pole portion 41c of the magnet rotor 41A go out along the direction perpendicular to the axis L from the outer peripheral surface of the first portion 41n and enter the outer peripheral surface of the second portion 41s. There is also a magnetic buffer portion 41b between the first magnetic pole portion 41a and the second magnetic pole portion 41c. The magnetic buffer portion 41b suppresses mutual influence between the magnetic field generated by the first magnetic pole portion 41a and the magnetic field generated by the second magnetic pole portion 41c. Therefore, in the motor-operated valve 1A, the strength of the magnetic field in the space on the side of the can 30 (that is, the space in the direction perpendicular to the axis L with respect to the can 30) is strong, and the angle placed on the side of the can 30 The sensor 96 can accurately detect the rotation angle of the magnet rotor 41A (second magnetic pole portion 41c). Further, by arranging the angle sensor 96 on the side of the can 30, the height dimension of the motor operated valve 1A can be reduced.
(第2実施例)
 以下、本発明の第2実施例に係る電動弁について、図9、図10を参照して説明する。
(Second embodiment)
A motor operated valve according to a second embodiment of the present invention will be described below with reference to FIGS. 9 and 10. FIG.
 図9、図10は、本発明の第2実施例に係る電動弁の縦断面図である。図9は、弁口の開口面積が最小の状態の電動弁を示す。図10は、弁口の開口面積が最大の状態の電動弁を示す。 9 and 10 are longitudinal sectional views of an electrically operated valve according to the second embodiment of the present invention. FIG. 9 shows the motor-operated valve with the minimum opening area of the valve port. FIG. 10 shows the motor-operated valve with the maximum opening area of the valve port.
 図9、図10に示すように、本実施例に係る電動弁2は、弁本体110と、ホルダー120と、ガイドブッシュ125と、ケースとしてのキャン130と、駆動機構140と、弁体170と、ステーターユニット180と、を有している。 As shown in FIGS. 9 and 10, the motor operated valve 2 according to this embodiment includes a valve body 110, a holder 120, a guide bush 125, a can 130 as a case, a drive mechanism 140, and a valve body 170. , and a stator unit 180 .
 弁本体110は、直方体形状を有している。弁本体110は、弁室113と、弁室113に接続された弁口114と、を有している。弁本体110は、第1通路117と、第2通路118と、を有している。第1通路117の一端部は弁室113と接続され、第1通路117の他端部は弁本体110の左側面110aに開口している。第2通路118の一端部は弁口114を介して弁室113と接続され、第2通路118の他端部は弁本体110の右側面110bに開口している。弁本体110は、取付孔119を有している。取付孔119は、弁本体110の上面110cに開口している。取付孔119の内周面には、雌ねじが形成されている。取付孔119の底面119aには、弁室113が開口している。 The valve body 110 has a cuboid shape. The valve body 110 has a valve chamber 113 and a valve port 114 connected to the valve chamber 113 . The valve body 110 has a first passageway 117 and a second passageway 118 . One end of the first passage 117 is connected to the valve chamber 113 , and the other end of the first passage 117 opens to the left side surface 110 a of the valve body 110 . One end of the second passage 118 is connected to the valve chamber 113 via the valve port 114 , and the other end of the second passage 118 opens to the right side surface 110 b of the valve body 110 . The valve body 110 has a mounting hole 119 . The mounting hole 119 opens to the upper surface 110 c of the valve body 110 . A female thread is formed on the inner peripheral surface of the attachment hole 119 . The valve chamber 113 is open to the bottom surface 119 a of the mounting hole 119 .
 ホルダー120は、円筒形状を有している。ホルダー120の外周面の下部には、雄ねじが形成されている。ホルダー120の雄ねじは、弁本体110の取付孔119の雌ねじに螺合される。ホルダー120は、弁本体110にねじ構造で取り付けられている。 The holder 120 has a cylindrical shape. A male thread is formed on the lower portion of the outer peripheral surface of the holder 120 . The male thread of the holder 120 is screwed into the female thread of the mounting hole 119 of the valve body 110 . The holder 120 is attached to the valve body 110 with a screw structure.
 ガイドブッシュ125は、第1円筒部126と、第2円筒部127と、を有している。第2円筒部127の外径は、第1円筒部126の外径より小さい。第2円筒部127は、第1円筒部126の上端部に同軸に接続されている。第2円筒部127の外周面には、雄ねじ127aが形成されている。第1円筒部126は、ホルダー120の嵌合孔120aに圧入されている。 The guide bush 125 has a first cylindrical portion 126 and a second cylindrical portion 127 . The outer diameter of the second cylindrical portion 127 is smaller than the outer diameter of the first cylindrical portion 126 . The second cylindrical portion 127 is coaxially connected to the upper end portion of the first cylindrical portion 126 . A male thread 127 a is formed on the outer peripheral surface of the second cylindrical portion 127 . The first cylindrical portion 126 is press-fitted into the fitting hole 120 a of the holder 120 .
 キャン130は、円筒形状を有している。キャン130は、上端部が塞がれかつ下端部が開口している。キャン130の下端部は、円環板形状の接合部材135の外周縁に接合されている。接合部材135の内側にはホルダー120の上部が配置されている。接合部材135の内周縁は、ホルダー120に接合されている。キャン130は、接合部材135およびホルダー120を介して、弁本体110に固定されている。 The can 130 has a cylindrical shape. The can 130 is closed at its upper end and open at its lower end. A lower end portion of the can 130 is joined to an outer peripheral edge of an annular plate-shaped joining member 135 . An upper portion of the holder 120 is arranged inside the joint member 135 . The inner peripheral edge of the joining member 135 is joined to the holder 120 . The can 130 is fixed to the valve body 110 via the joint member 135 and the holder 120 .
 駆動機構140は、弁体170を上下方向(Z方向)に移動させる。駆動機構140は、マグネットローター141と、弁軸ホルダー142と、弁軸143と、永久磁石145と、を有している。 The drive mechanism 140 moves the valve body 170 in the vertical direction (Z direction). The drive mechanism 140 has a magnet rotor 141 , a valve shaft holder 142 , a valve shaft 143 and permanent magnets 145 .
 マグネットローター141は、円筒形状を有している。マグネットローター141の外径は、キャン130の内径より小さい。マグネットローター141は、キャン130の内側に回転可能に配置されている。マグネットローター141は、複数のN極と複数のS極とを有している。複数のN極と複数のS極とは、軸線L方向に延在している。複数のN極と複数のS極とは、マグネットローター141の外周面に周方向に交互に配置されている。軸線Lは、Z方向と平行である。 The magnet rotor 141 has a cylindrical shape. The outer diameter of the magnet rotor 141 is smaller than the inner diameter of the can 130 . The magnet rotor 141 is rotatably arranged inside the can 130 . The magnet rotor 141 has a plurality of N poles and a plurality of S poles. The plurality of N poles and the plurality of S poles extend in the axis L direction. A plurality of N poles and a plurality of S poles are alternately arranged in the circumferential direction on the outer peripheral surface of the magnet rotor 141 . The axis L is parallel to the Z direction.
 弁軸ホルダー142は、上端部が塞がれた円筒形状を有している。弁軸ホルダー142の上端部には支持リング144が固定されている。支持リング144は、マグネットローター141と弁軸ホルダー142とを連結している。弁軸ホルダー142の内周面には、雌ねじ142aが形成されている。雌ねじ142aは、ガイドブッシュ125の雄ねじ127aと螺合される。 The valve shaft holder 142 has a cylindrical shape with a closed upper end. A support ring 144 is fixed to the upper end of the valve stem holder 142 . A support ring 144 connects the magnet rotor 141 and the valve shaft holder 142 . A female thread 142 a is formed on the inner peripheral surface of the valve shaft holder 142 . Female thread 142 a is screwed with male thread 127 a of guide bush 125 .
 弁軸143は、円柱形状を有している。弁軸143の上端部143aは、弁軸ホルダー142を貫通している。弁軸143の上端部143aには、抜け止め用のプッシュナット147が取り付けられている。弁軸143は、ガイドブッシュ125の内側およびホルダー120の内側に配置されている。弁軸143の下端部は、弁室113に配置されている。弁軸ホルダー142と弁軸143の段部143bとの間には、閉弁ばね148が配置されている。閉弁ばね148は、圧縮コイルばねである。閉弁ばね148は、弁軸143を下方に向けて押している。 The valve stem 143 has a cylindrical shape. An upper end portion 143 a of the valve shaft 143 passes through the valve shaft holder 142 . A push nut 147 is attached to the upper end portion 143a of the valve shaft 143 to prevent it from coming off. The valve stem 143 is arranged inside the guide bush 125 and inside the holder 120 . A lower end portion of the valve shaft 143 is arranged in the valve chamber 113 . A valve closing spring 148 is arranged between the valve shaft holder 142 and the stepped portion 143 b of the valve shaft 143 . The valve closing spring 148 is a compression coil spring. The valve closing spring 148 pushes the valve shaft 143 downward.
 永久磁石145は、キャン130の内側においてマグネットローター141の上方に配置されている。永久磁石145は、円環板形状を有している。永久磁石145は、軸線L方向から見たときに円形状の外形を有している。永久磁石145は、固定具146を介して支持リング144に固定されている。永久磁石145は、マグネットローター141と同軸に配置されており、マグネットローター141とともに回転される。永久磁石145は、マグネットローター141の回転軸周りに回転される。マグネットローター141の回転軸は、軸線Lと一致する。軸線L方向は回転軸方向である。マグネットローター141および永久磁石145は、回転とともに軸線L方向に移動する。 The permanent magnet 145 is arranged above the magnet rotor 141 inside the can 130 . The permanent magnet 145 has an annular plate shape. The permanent magnet 145 has a circular outer shape when viewed from the axis L direction. Permanent magnets 145 are secured to support ring 144 via fasteners 146 . The permanent magnet 145 is arranged coaxially with the magnet rotor 141 and rotates together with the magnet rotor 141 . The permanent magnet 145 is rotated around the rotation axis of the magnet rotor 141 . The rotation axis of the magnet rotor 141 coincides with the axis L. The direction of the axis L is the direction of the rotation axis. The magnet rotor 141 and the permanent magnets 145 move in the direction of the axis L as they rotate.
 永久磁石145は、電動弁1の永久磁石45と同一(実質的に同一を含む)の構成を有している。永久磁石145は、1つのN極と1つのS極とを有している。永久磁石145における直径で区画された一方の部分(第1部分)に1つのN極が配置され、他方の部分(第2部分)に1つのS極が配置されている。1つのN極と1つのS極とは、軸線Lと直交する方向でかつ直径と直交する方向に対向している。永久磁石145は、軸線Lと直交する方向でかつ直径と直交する方向に着磁されている。そのため、永久磁石145の磁力線は、軸線Lと直交する方向(XY平面と平行な方向)に沿って、第1部分の外周面から出て第2部分の外周面に入る。 The permanent magnet 145 has the same (including substantially the same) configuration as the permanent magnet 45 of the electric valve 1 . Permanent magnet 145 has one north pole and one south pole. One N pole is arranged in one portion (first portion) of the permanent magnet 145 divided by the diameter, and one S pole is arranged in the other portion (second portion). One north pole and one south pole face each other in a direction perpendicular to the axis L and a direction perpendicular to the diameter. The permanent magnet 145 is magnetized in a direction perpendicular to the axis L and a direction perpendicular to the diameter. Therefore, the magnetic lines of force of the permanent magnet 145 exit from the outer peripheral surface of the first portion and enter the outer peripheral surface of the second portion along the direction perpendicular to the axis L (the direction parallel to the XY plane).
 弁体170は、先端が下方を向く略円すい形状を有している。弁体170は、弁軸143の下端部に一体的に接続されている。弁体170は、弁口114と上下方向に対向して配置されている。弁体170は、弁口114に対して進退することにより、弁口114の開口面積を無段階(実質的に無段階を含む)に変更する。弁口114の最小面積は0より大きくてもよい(すなわち、わずかに弁口114が開いた状態)。または、弁口114の最小面積は0でもよい(すなわち、弁口114が全閉状態)。 The valve body 170 has a substantially conical shape with the tip facing downward. The valve body 170 is integrally connected to the lower end of the valve shaft 143 . The valve body 170 is arranged to face the valve port 114 in the vertical direction. The valve body 170 advances and retreats with respect to the valve port 114 to steplessly (including substantially steplessly) change the opening area of the valve port 114 . The minimum area of the valve orifice 114 may be greater than 0 (ie, the valve orifice 114 is slightly open). Alternatively, the minimum area of the valve port 114 may be 0 (that is, the valve port 114 is fully closed).
 ステーターユニット180は、ステーター81と、カバー90と、基板95と、を有している。ステーター81とカバー90と基板95とは、電動弁1のものと同一(実質的に同一を含む)であるので、同一の符号を付して詳細説明を省略する。 The stator unit 180 has a stator 81 , a cover 90 and a substrate 95 . The stator 81, the cover 90, and the substrate 95 are the same (including substantially the same) as those of the motor-operated valve 1, so they are denoted by the same reference numerals and detailed description thereof is omitted.
 ステーター81は、キャン130を介して、軸線Lと直交する方向にマグネットローター141と並んでいる。ステーター81は、マグネットローター141とともにステッピングモーターを構成する。 The stator 81 is aligned with the magnet rotor 141 in a direction perpendicular to the axis L via the can 130 . The stator 81 constitutes a stepping motor together with the magnet rotor 141 .
 次に、電動弁2の動作について説明する。 Next, the operation of the electric valve 2 will be explained.
 電動弁2において、ステーター81のコイルに電流を流して、マグネットローター141を一方向に回転させる。マグネットローター141とともに弁軸ホルダー142が回転する。弁軸ホルダー142の雌ねじ142aとガイドブッシュ125の雄ねじ127aとのねじ送り作用により、弁軸ホルダー142が下方に移動する。弁軸ホルダー142とともに弁軸143および弁体170も下方に移動し、弁口114の開口面積が小さくなる。図9は、弁口114の開口面積が最小の状態の電動弁2を示している。 In the electric valve 2, current is passed through the coil of the stator 81 to rotate the magnet rotor 141 in one direction. A valve shaft holder 142 rotates together with the magnet rotor 141 . The screw feeding action of the female thread 142a of the valve stem holder 142 and the male thread 127a of the guide bush 125 causes the valve stem holder 142 to move downward. The valve shaft 143 and the valve body 170 move downward together with the valve shaft holder 142, and the opening area of the valve port 114 becomes smaller. FIG. 9 shows the motor-operated valve 2 with the minimum opening area of the valve port 114 .
 電動弁2において、ステーター81のコイルに電流を流して、マグネットローター141を他方向に回転させる。マグネットローター141とともに弁軸ホルダー142が回転する。弁軸ホルダー142の雌ねじ142aとガイドブッシュ125の雄ねじ127aとのねじ送り作用により、弁軸ホルダー142が上方に移動する。弁軸ホルダー142とともに弁軸143および弁体170も上方に移動し、弁口114の開口面積が大きくなる。図10は、弁口114の開口面積が最大の状態の電動弁2を示している。 In the electric valve 2, current is applied to the coil of the stator 81 to rotate the magnet rotor 141 in the other direction. A valve shaft holder 142 rotates together with the magnet rotor 141 . The screw feeding action of the female thread 142a of the valve stem holder 142 and the male thread 127a of the guide bush 125 causes the valve stem holder 142 to move upward. The valve shaft 143 and the valve body 170 move upward together with the valve shaft holder 142, and the opening area of the valve port 114 increases. FIG. 10 shows the motor operated valve 2 in a state where the opening area of the valve port 114 is maximized.
 永久磁石145は、マグネットローター141とともに回転し、マグネットローター141とともに軸線L方向に移動する。永久磁石145は、図9に示す位置から図10に示す位置まで移動する。角度センサー96と永久磁石145とは、キャン130およびカバー本体91を介して、軸線Lと直交する方向に常に並ぶ。換言すると、角度センサー96の軸線L方向の位置と永久磁石145と軸線L方向の位置とは、常に重なっている。 The permanent magnet 145 rotates together with the magnet rotor 141 and moves along the axis L direction together with the magnet rotor 141 . Permanent magnet 145 moves from the position shown in FIG. 9 to the position shown in FIG. The angle sensor 96 and the permanent magnet 145 are always aligned in a direction orthogonal to the axis L with the can 130 and the cover body 91 interposed therebetween. In other words, the position of the angle sensor 96 in the direction of the axis L and the position of the permanent magnet 145 in the direction of the axis L always overlap.
 電動弁2は、電動弁1と同一(実質的に同一を含む)の作用効果を有する。 The motor-operated valve 2 has the same (including substantially the same) effects as the motor-operated valve 1.
 また、電動弁2において、永久磁石145が、回転とともに軸線L方向に移動する。そして、角度センサー96が、軸線Lと直交する方向に永久磁石145と常に並ぶ。このようにすることで、永久磁石145が軸線L方向に移動した際に永久磁石145が角度センサー96と軸線L方向に離れる場合に比べて、より正確にマグネットローター141(永久磁石145)の回転角度を検出することができる。 Also, in the electric valve 2, the permanent magnet 145 moves in the direction of the axis L as it rotates. The angle sensor 96 is always aligned with the permanent magnet 145 in the direction perpendicular to the axis L. By doing so, the rotation of the magnet rotor 141 (permanent magnet 145) can be performed more accurately than when the permanent magnet 145 moves in the direction of the axis L and is separated from the angle sensor 96 in the direction of the axis L. Angle can be detected.
 次に、電動弁2の変形例に係る電動弁2Aについて、図11、図12を参照して説明する。 Next, a motor-operated valve 2A according to a modified example of the motor-operated valve 2 will be described with reference to FIGS. 11 and 12. FIG.
 図11、図12は、図9の電動弁の変形例に係る電動弁の縦断面図である。図11は、弁口の開口面積が最小の状態の電動弁を示す。図12は、弁口の開口面積が最大の状態の電動弁を示す。 11 and 12 are vertical cross-sectional views of motor-operated valves according to modifications of the motor-operated valve of FIG. FIG. 11 shows the motor-operated valve with the minimum opening area of the valve port. FIG. 12 shows the motor-operated valve with the maximum opening area of the valve port.
 電動弁2Aは、下記(1)、(2)以外は、上述した電動弁2と同一(実質的に同一を含む)である。
 (1)電動弁2Aは、永久磁石145および固定具146を有していない。
 (2)電動弁2Aは、マグネットローター141に代えて、マグネットローター141Aを有している。
 そのため、電動弁2Aの説明において、電動弁2と同一の構成については同一の符号を付して詳細説明を省略する。
The motor-operated valve 2A is the same (including substantially the same) as the above-described motor-operated valve 2 except for the following (1) and (2).
(1) Electric valve 2A does not have permanent magnet 145 and fixture 146 .
(2) The electric valve 2A has a magnet rotor 141A instead of the magnet rotor 141.
Therefore, in the description of the motor-operated valve 2A, the same components as those of the motor-operated valve 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 マグネットローター141Aは、電動弁1Aのマグネットローター41Aと同一(実質的に同一を含む)の構成を有している。マグネットローター141Aは、円筒形状を有している。マグネットローター141Aの外径は、キャン130の内径より小さい。マグネットローター141Aは、キャン130の内側に回転可能に配置されている。マグネットローター141Aと弁軸ホルダー142とは、支持リング144によって連結されている。マグネットローター141Aは、弁軸ホルダー142とともに回転する。 The magnet rotor 141A has the same (including substantially the same) configuration as the magnet rotor 41A of the motor-operated valve 1A. The magnet rotor 141A has a cylindrical shape. The magnet rotor 141 A has an outer diameter smaller than the inner diameter of the can 130 . The magnet rotor 141A is rotatably arranged inside the can 130 . The magnet rotor 141A and the valve shaft holder 142 are connected by a support ring 144. As shown in FIG. The magnet rotor 141A rotates together with the valve stem holder 142. As shown in FIG.
 マグネットローター141Aは、軸線L方向に順に接続された、第1磁極部分41aと、磁気緩衝部分41bと、第2磁極部分41cと、を有している。第1磁極部分41aと磁気緩衝部分41bと第2磁極部分41cとは、電動弁1Aのものと同一(実質的に同一を含む)であるので、同一の符号を付して詳細説明を省略する。図11、図12において、マグネットローター141Aにおける第1磁極部分41aと磁気緩衝部分41bとの境界と、磁気緩衝部分41bと第2磁極部分41cとの境界と、を破線で示している。 The magnet rotor 141A has a first magnetic pole portion 41a, a magnetic buffer portion 41b, and a second magnetic pole portion 41c, which are connected in order in the direction of the axis L. The first magnetic pole portion 41a, the magnetic buffer portion 41b, and the second magnetic pole portion 41c are the same (including substantially the same) as those of the motor operated valve 1A, so they are denoted by the same reference numerals and detailed description thereof is omitted. . 11 and 12, the boundary between the first magnetic pole portion 41a and the magnetic buffer portion 41b and the boundary between the magnetic buffer portion 41b and the second magnetic pole portion 41c in the magnet rotor 141A are indicated by dashed lines.
 マグネットローター141Aは、回転とともに軸線L方向に移動する。マグネットローター141Aの第2磁極部分41cは、図11に示す位置から図12に示す位置まで移動する。角度センサー96と第2磁極部分41cとは、キャン130およびカバー本体91を介して、軸線Lと直交する方向に常に並ぶ。換言すると、角度センサー96の軸線L方向の位置と第2磁極部分41cと軸線L方向の位置とは、常に重なっている。 The magnet rotor 141A moves in the direction of the axis L as it rotates. The second magnetic pole portion 41c of the magnet rotor 141A moves from the position shown in FIG. 11 to the position shown in FIG. The angle sensor 96 and the second magnetic pole portion 41c are always aligned in a direction perpendicular to the axis L with the can 130 and the cover body 91 interposed therebetween. In other words, the position of the angle sensor 96 in the direction of the axis L and the position of the second magnetic pole portion 41c in the direction of the axis L always overlap.
 電動弁2Aは、電動弁1Aと同一(実質的に同一を含む)の作用効果を有する。 The motor-operated valve 2A has the same (including substantially the same) effects as the motor-operated valve 1A.
 また、電動弁2Aにおいて、マグネットローター141Aが、回転とともに軸線L方向に移動する。そして、角度センサー96が、軸線Lと直交する方向に第2磁極部分41cと常に並ぶ。このようにすることで、マグネットローター141Aが軸線L方向に移動した際に第2磁極部分41cが角度センサー96と軸線L方向に離れる場合に比べて、より正確にマグネットローター141A(第2磁極部分41c)の回転角度を検出することができる。 Also, in the electric valve 2A, the magnet rotor 141A moves in the direction of the axis L as it rotates. The angle sensor 96 is always aligned with the second magnetic pole portion 41c in the direction orthogonal to the axis L. By doing so, compared to the case where the second magnetic pole portion 41c separates from the angle sensor 96 in the direction of the axis L when the magnet rotor 141A moves in the direction of the axis L, the magnet rotor 141A (the second magnetic pole portion) can be detected more accurately. 41c) can be detected.
 本明細書において、「円筒」や「円柱」等の形状を示す各用語は、実質的にその用語の形状を有する部材や部材の部分にも用いられている。例えば、「円筒形状の部材」は、円筒形状の部材と実質的に円筒形状の部材とを含む。 In this specification, each term indicating a shape such as "cylinder" or "cylinder" is also used for a member or a portion of a member that substantially has the shape of the term. For example, a "cylindrical member" includes a cylindrical member and a substantially cylindrical member.
 上記に本発明の実施例を説明したが、本発明は実施例の構成に限定されるものではない。前述の実施例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、実施例の特徴を適宜組み合わせたものも、本発明の趣旨に反しない限り、本発明の範囲に含まれる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations of the embodiments. A person skilled in the art may add, delete, or change the design of the above-described embodiments as appropriate, or combine the features of the embodiments as appropriate, as long as they do not conflict with the spirit of the present invention. included in the range of
(第1実施例)
 1、1A…電動弁、10…弁本体、10a…左側面、10b…右側面、10c…上面、13…弁室、14…弁口、17…第1通路、18…第2通路、19…取付孔、19a…底面、20…ホルダー、25…弁体支持部材、25a…環状平面、30…キャン、35…接合部材、40…駆動機構、41…マグネットローター、41A…マグネットローター、41a…第1磁極部分、41b…磁気緩衝部分、41c…第2磁極部分、41n…第1部分、41s…第2部分、42…連結部材、43…ローター軸、44…軸受部材、45…永久磁石、45n…第1部分、45s…第2部分、46…磁気遮蔽部材、50…遊星歯車機構、51…歯車ケース、52…固定リング歯車、53…太陽歯車、54…遊星歯車、55…キャリア、56…出力歯車、57…出力軸、57a…スリット、60…案内部材、65…駆動軸、66…円柱部、67…平板部、68…ボール、70…弁体、71…ステム、72…弁部、73…ばね受け部、73a…フランジ部、74…ボール受け部、75…開弁ばね、80…ステーターユニット、81…ステーター、84…端子、90…カバー、91…カバー本体、91a…第1周壁部、91b…上壁部、91c…第2周壁部、91d…円筒部、91e…ボス、92…蓋体、93…コネクタ、94…基板収容空間、95…基板、95a…貫通孔、96…角度センサー、F…磁力線、K…直径、L…軸線。
(第2実施例)
 2、2A…電動弁、110…弁本体、110a…左側面、110b…右側面、110c…上面、113…弁室、114…弁口、117…第1通路、118…第2通路、119…取付孔、119a…底面、120…ホルダー、120a…嵌合孔、125…ガイドブッシュ、126…第1円筒部、127…第2円筒部、127a…雄ねじ、130…キャン、135…接合部材、140…駆動機構、141…マグネットローター、141A…マグネットローター、142…弁軸ホルダー、142a…雌ねじ、143…弁軸、143a…上端部、143b…段部、144…支持リング、145…永久磁石、146…固定具、147…プッシュナット、148…閉弁ばね、170…弁体、180…ステーターユニット。

 
(First embodiment)
Reference Signs List 1, 1A... Electric valve 10... Valve body 10a... Left side 10b... Right side 10c... Top 13... Valve chamber 14... Valve port 17... First passage 18... Second passage 19... Mounting hole 19a Bottom surface 20 Holder 25 Valve support member 25a Annular plane 30 Can 35 Joining member 40 Drive mechanism 41 Magnet rotor 41A Magnet rotor 41a Third 1 magnetic pole portion 41b magnetic buffer portion 41c second magnetic pole portion 41n first portion 41s second portion 42 connecting member 43 rotor shaft 44 bearing member 45 permanent magnet 45n First part 45s Second part 46 Magnetic shielding member 50 Planetary gear mechanism 51 Gear case 52 Fixed ring gear 53 Sun gear 54 Planetary gear 55 Carrier 56 Output gear 57 Output shaft 57a Slit 60 Guide member 65 Drive shaft 66 Cylindrical portion 67 Flat plate portion 68 Ball 70 Valve body 71 Stem 72 Valve portion DESCRIPTION OF SYMBOLS 73... Spring receiving part, 73a... Flange part, 74... Ball receiving part, 75... Valve-opening spring, 80... Stator unit, 81... Stator, 84... Terminal, 90... Cover, 91... Cover body, 91a... First peripheral wall Part 91b Upper wall portion 91c Second peripheral wall portion 91d Cylindrical portion 91e Boss 92 Lid 93 Connector 94 Substrate housing space 95 Substrate 95a Through hole 96 Angle sensor, F... line of magnetic force, K... diameter, L... axis.
(Second embodiment)
2, 2A... motor operated valve 110... valve main body 110a... left side 110b... right side 110c... top 113... valve chamber 114... valve opening 117... first passage 118... second passage 119... Mounting hole 119a Bottom surface 120 Holder 120a Fitting hole 125 Guide bush 126 First cylindrical portion 127 Second cylindrical portion 127a Male screw 130 Can 135 Joining member 140 Drive mechanism 141 Magnet rotor 141A Magnet rotor 142 Valve shaft holder 142a Female screw 143 Valve shaft 143a Upper end 143b Stepped portion 144 Support ring 145 Permanent magnet 146 -- Fixture, 147 -- Push nut, 148 -- Valve closing spring, 170 -- Valve element, 180 -- Stator unit.

Claims (6)

  1.  円筒形状のケースと、前記ケースの内側に配置されたマグネットローターと、前記ケースの内側に配置され、前記マグネットローターとともに回転される永久磁石と、前記ケースの外側に配置されたステーターを有するステーターユニットと、を有する電動弁であって、
     前記永久磁石が、少なくとも1つのN極と少なくとも1つのS極とを有し、
     前記永久磁石の着磁方向が、前記マグネットローターの回転軸と直交する方向であり、
     前記ステーターユニットが、前記永久磁石の回転角度を検出する角度センサーを有し、
     前記角度センサーが、前記回転軸と直交する方向に前記ケースと並んでいることを特徴とする電動弁。
    A stator unit having a cylindrical case, a magnet rotor arranged inside the case, a permanent magnet arranged inside the case and rotated together with the magnet rotor, and a stator arranged outside the case. and a motor operated valve having
    the permanent magnet has at least one north pole and at least one south pole;
    the direction of magnetization of the permanent magnet is perpendicular to the rotation axis of the magnet rotor;
    The stator unit has an angle sensor that detects the rotation angle of the permanent magnet,
    A motor-operated valve, wherein the angle sensor is aligned with the case in a direction orthogonal to the rotating shaft.
  2.  円筒形状のケースと、前記ケースの内側に配置されたマグネットローターと、前記ケースの外側に配置されたステーターを有するステーターユニットと、を有する電動弁であって、
     前記マグネットローターが、当該マグネットローターの回転軸方向に順に接続された、第1磁極部分と、磁気緩衝部分と、第2磁極部分と、を有し、
     前記第1磁極部分の外周面に、周方向に交互に並ぶ複数のN極と複数のS極とが配置され、
     前記第2磁極部分の外周面に、周方向に交互に並ぶ少なくとも1つのN極と少なくとも1つのS極とが配置され、
     前記第2磁極部分の着磁方向が、前記回転軸と直交する方向であり、
     前記ステーターユニットが、前記第2磁極部分の回転角度を検出する角度センサーを有し、
     前記角度センサーが、前記回転軸と直交する方向に前記ケースと並んでいることを特徴とする電動弁。
    An electrically operated valve having a cylindrical case, a magnet rotor arranged inside the case, and a stator unit having a stator arranged outside the case,
    the magnet rotor has a first magnetic pole portion, a magnetic buffer portion, and a second magnetic pole portion, which are connected in order in the rotation axis direction of the magnet rotor;
    A plurality of N poles and a plurality of S poles arranged alternately in the circumferential direction are arranged on the outer peripheral surface of the first magnetic pole portion,
    At least one N pole and at least one S pole are arranged alternately in the circumferential direction on the outer peripheral surface of the second magnetic pole portion,
    the magnetization direction of the second magnetic pole portion is a direction orthogonal to the rotation axis;
    the stator unit has an angle sensor that detects the rotation angle of the second magnetic pole portion;
    A motor-operated valve, wherein the angle sensor is aligned with the case in a direction orthogonal to the rotating shaft.
  3.  前記永久磁石が、回転とともに前記回転軸方向に移動し、
     前記角度センサーが、前記回転軸と直交する方向に前記永久磁石と常に並ぶ、請求項1に記載の電動弁。
    The permanent magnet moves in the direction of the rotation axis as it rotates,
    2. The motor-operated valve according to claim 1, wherein said angle sensor is always aligned with said permanent magnet in a direction perpendicular to said axis of rotation.
  4.  前記マグネットローターが、回転とともに前記回転軸方向に移動し、
     前記角度センサーが、前記回転軸と直交する方向に前記第2磁極部分と常に並ぶ、請求項2に記載の電動弁。
    The magnet rotor moves in the direction of the rotation axis as it rotates,
    3. The motor operated valve of claim 2, wherein said angle sensor is always aligned with said second pole portion in a direction perpendicular to said axis of rotation.
  5.  前記磁気緩衝部分が、着磁されていない部分であり、
     前記磁気緩衝部分の前記回転軸方向の長さが、前記第1磁極部分が生じる磁界が前記第2磁極部分が生じる磁界に影響しない長さである、請求項2に記載の電動弁。
    The magnetic buffer portion is a non-magnetized portion,
    3. The motor-operated valve according to claim 2, wherein the length of the magnetic buffer portion in the direction of the rotation axis is such that the magnetic field generated by the first magnetic pole portion does not affect the magnetic field generated by the second magnetic pole portion.
  6.  前記角度センサーが、前記回転軸と直交する第1方向の磁界成分の向きおよび大きさと、前記回転軸と直交しかつ前記第1方向と直交する第2方向の磁界成分の向きおよび大きさと、を検出する、請求項1~請求項5のいずれか一項に記載の電動弁。

     
    The angle sensor detects the direction and magnitude of a magnetic field component in a first direction perpendicular to the rotation axis and the direction and magnitude of a magnetic field component in a second direction perpendicular to the rotation axis and the first direction. The motor operated valve according to any one of claims 1 to 5, which detects.

PCT/JP2022/014734 2021-06-29 2022-03-25 Electric valve WO2023276366A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022532631A JP7114145B1 (en) 2021-06-29 2022-03-25 electric valve
CN202280023022.2A CN117460907A (en) 2021-06-29 2022-03-25 Electric valve
DE112022003294.4T DE112022003294T5 (en) 2021-06-29 2022-03-25 Solenoid valve
KR1020237031936A KR20230145600A (en) 2021-06-29 2022-03-25 electric valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107913 2021-06-29
JP2021-107913 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276366A1 true WO2023276366A1 (en) 2023-01-05

Family

ID=84691363

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/014734 WO2023276366A1 (en) 2021-06-29 2022-03-25 Electric valve
PCT/JP2022/025335 WO2023276886A1 (en) 2021-06-29 2022-06-24 Motorized valve

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025335 WO2023276886A1 (en) 2021-06-29 2022-06-24 Motorized valve

Country Status (3)

Country Link
JP (1) JP7350411B2 (en)
CN (1) CN117480336A (en)
WO (2) WO2023276366A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198777A (en) * 1987-10-07 1989-04-17 Saginomiya Seisakusho Inc Step motor valve and operating method therefor
JPH09502501A (en) * 1994-01-27 1997-03-11 エッチアール テキストロン インコーポレイテッド Direct drive servo valve with motor position sensor
JP2001012633A (en) * 1999-06-29 2001-01-16 Fuji Koki Corp Device for detecting valve opening of motor-driven valve and device for controlling opening of motor-driven valve
JP2003042325A (en) * 2001-07-26 2003-02-13 Saginomiya Seisakusho Inc Electric valve, driving device thereof, and refrigerating cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253310A (en) * 1991-01-29 1992-09-09 Canon Inc Manufacture of resin magnet
JP4253310B2 (en) 2005-03-22 2009-04-08 株式会社東芝 Central monitoring device for monitoring power distribution facilities and monitoring recording method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198777A (en) * 1987-10-07 1989-04-17 Saginomiya Seisakusho Inc Step motor valve and operating method therefor
JPH09502501A (en) * 1994-01-27 1997-03-11 エッチアール テキストロン インコーポレイテッド Direct drive servo valve with motor position sensor
JP2001012633A (en) * 1999-06-29 2001-01-16 Fuji Koki Corp Device for detecting valve opening of motor-driven valve and device for controlling opening of motor-driven valve
JP2003042325A (en) * 2001-07-26 2003-02-13 Saginomiya Seisakusho Inc Electric valve, driving device thereof, and refrigerating cycle device

Also Published As

Publication number Publication date
CN117480336A (en) 2024-01-30
JPWO2023276886A1 (en) 2023-01-05
WO2023276886A1 (en) 2023-01-05
JP7350411B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
US8222777B2 (en) Rotary single-phase electromagnetic servo actuator comprising an actuator and a position sensor
JP7551173B2 (en) Motor-operated valve
US6483296B1 (en) Angular position detection apparatus
CN101120177B (en) Bearing with rotation detection device
US7019516B2 (en) Magnetic sensor unit less responsive to leaking magnetic flux
JP7366731B2 (en) sensor
CN1033053C (en) High sensitivity magnetic actuator
JP7368023B2 (en) electric valve
JP7114145B1 (en) electric valve
JPWO2005040730A1 (en) Rotation angle detector
WO2023276366A1 (en) Electric valve
JP2002156247A (en) Rotation angle sensor
JPH1183422A (en) Rotation angle sensor
EP4224681A1 (en) Stator unit and electric valve
WO2022168652A1 (en) Electric valve
WO2018193616A1 (en) Dc motor, egr valve, vg actuator, and wastegate actuator
JP2007327860A (en) Angle detector
JP4983455B2 (en) Rotation angle detector
EP0756174B1 (en) Wheel speed detector
KR100468789B1 (en) non contact type position sensor
JP2022098153A (en) Rotational angle sensor
JP5339446B2 (en) Rotary solenoid
CN116710687A (en) Electric valve
JP2002031505A (en) Non-contact rotation angle sensor and its sensor core
JPH084041B2 (en) Potentiometer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022532631

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237031936

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031936

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280023022.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22832527

Country of ref document: EP

Kind code of ref document: A1