Nothing Special   »   [go: up one dir, main page]

WO2023243516A1 - Reactive curing agent - Google Patents

Reactive curing agent Download PDF

Info

Publication number
WO2023243516A1
WO2023243516A1 PCT/JP2023/021191 JP2023021191W WO2023243516A1 WO 2023243516 A1 WO2023243516 A1 WO 2023243516A1 JP 2023021191 W JP2023021191 W JP 2023021191W WO 2023243516 A1 WO2023243516 A1 WO 2023243516A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
curing agent
reactive curing
resin composition
Prior art date
Application number
PCT/JP2023/021191
Other languages
French (fr)
Japanese (ja)
Inventor
達宏 松原
和希 西川
吉生 岡本
正 澤里
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023243516A1 publication Critical patent/WO2023243516A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used

Definitions

  • the present invention relates to a reactive curing agent.
  • Copper clad laminates are known as printed circuit boards that electrically connect/insulate electronic components constituting a circuit and mechanically arrange/fix the components.
  • CCL involves impregnating glass fiber with a thermosetting resin composition containing epoxy resin or polyphenylene ether resin and a reactive curing agent to obtain prepreg, which is a semi-cured resin sheet. It is obtained by stacking multiple sheets sandwiched between copper foils and bonding them under heat.
  • styrene-maleic anhydride copolymer SMA is often used because of its low dielectric loss.
  • the present invention aims to provide a reactive curing agent that has improved solubility in methyl ethyl ketone (MEK) and can improve the heat resistance of a thermosetting resin composition.
  • MEK methyl ethyl ketone
  • a reactive curing agent containing a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit The weight average molecular weight of the copolymer is 10,000 or more and less than 90,000, and the copolymer has a weight average molecular weight of 10,000 or more and less than 90,000, and the copolymer has a weight average molecular weight of 100,000 or more and less than 90,000;
  • a reactive curing agent containing 3.0% by mass or more and less than 49.0% by mass of monomer units the solubility in MEK can be improved, and the thermosetting resin composition It has been found that it is possible to improve the heat resistance of.
  • a reactive curing agent containing a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit The weight average molecular weight of the copolymer is 10,000 or more and less than 90,000, The copolymer contains 3.0% by mass or more and less than 49.0% by mass of the maleimide monomer units when the total monomer units contained in the copolymer is 100% by mass. include, Reactive hardener. [2] The copolymer contains 3.0 to 30.0% by mass of the maleimide monomer units when the total of monomer units contained in the copolymer is 100% by mass. , The reactive curing agent according to [1].
  • the copolymer has 100% by mass of the total monomer units contained in the copolymer, 45.0 to 96.9% by mass of the aromatic vinyl monomer unit, Containing 0.1 to 25% by mass of the unsaturated acid anhydride monomer unit and 0.0 to 20.0% by mass of other monomer units,
  • the reactive curing agent according to [2].
  • the number of the unsaturated acid anhydride monomer units contained per molecular chain of the copolymer is 2 to 25.
  • the reactive curing agent according to any one of [1] to [3].
  • the copolymer has a glass transition temperature of 125 to 200°C.
  • the reactive curing agent according to any one of [1] to [4].
  • the copolymer has a weight average molecular weight of 15,000 to 80,000, The reactive curing agent according to any one of [1] to [5].
  • the copolymer has a weight average molecular weight of 20,000 to 70,000, The reactive curing agent according to any one of [1] to [5]. Regarding.
  • thermosetting resin composition By employing the reactive curing agent of the present invention, solubility in MEK is improved. Moreover, the heat resistance of the thermosetting resin composition can be improved. Therefore, it is suitably used in applications that require heat resistance, such as copper-clad laminates.
  • the reactive curing agent includes a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit.
  • the monomer units contained in the copolymer will be explained below.
  • aromatic vinyl monomer unit examples include styrene, o-methylstyrene, m-methylstyrene, p-methyl Examples include styrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, and the like. Among these, styrene is preferred from the viewpoint of solubility of the copolymer in MEK.
  • the aromatic vinyl monomer may be used alone, or two or more types may be used in combination.
  • the copolymer according to the present embodiment contains 45.0 to 96.9% by mass of aromatic vinyl monomer units when the total amount of monomer units contained in the copolymer is 100% by mass.
  • the content is preferably 45.0 to 89.9% by mass, still more preferably 55.0 to 85.0% by mass, and particularly preferably 60.0 to 80.0% by mass.
  • the content of aromatic vinyl monomer units is 45.0% by mass or more, the solubility of the copolymer in MEK will improve, and if it is 96.9% by mass or less, it will contribute to improving heat resistance. Since the copolymer can contain a larger amount of maleimide monomer units that can be used, the heat resistance of the thermosetting resin composition containing the copolymer is improved.
  • the content of aromatic vinyl monomer units is a value measured by 13 C-NMR.
  • the content of the aromatic vinyl monomer units means the total amount of the aromatic vinyl monomer units used together.
  • Examples of the unsaturated acid anhydride monomer from which the unsaturated acid anhydride monomer unit contained in the copolymer according to the present embodiment is derived include maleic anhydride, itaconic anhydride, and citraconic anhydride. and aconitic acid anhydride. Among these, maleic anhydride is preferred from the viewpoint of imparting curability to the thermosetting resin composition blended with the copolymer.
  • the unsaturated acid anhydride monomer may be used alone, or two or more types may be used in combination.
  • the copolymer according to the present embodiment contains 0.1 to 25% by mass of unsaturated acid anhydride monomer units when the total amount of monomer units contained in the copolymer is 100% by mass.
  • the content is preferably from 0.1 to 8.0% by mass, even more preferably from 0.1 to 6.0% by mass, particularly preferably from 0.1 to 4.0% by mass.
  • the content of the unsaturated acid anhydride monomer unit is 0.1% by mass or more, the curability of the thermosetting resin composition containing the copolymer will improve, and if the content is 25% by mass or less, The thermal stability of the copolymer and the moisture absorption resistance and thermal stability of the thermosetting resin composition blended with the copolymer are improved.
  • the content of unsaturated acid anhydride monomer units is a value measured by 13 C-NMR.
  • the content of the unsaturated acid anhydride monomer unit means the total amount of the unsaturated acid anhydride monomer unit used together.
  • maleimide monomer from which the maleimide monomer unit contained in the copolymer according to the present embodiment is derived examples include N-alkyl maleimide such as N-methylmaleimide, N-butylmaleimide, and N-cyclohexylmaleimide.
  • maleimide and N-arylmaleimides such as N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-methoxyphenylmaleimide, and N-tribromophenylmaleimide.
  • N-arylmaleimide is preferred from the viewpoint of thermal stability of the copolymer, and N-phenylmaleimide is more preferred.
  • the maleimide monomer may be used alone or in combination of two or more types.
  • a maleimide monomer unit for example, a copolymer obtained by copolymerizing a raw material consisting of an unsaturated acid anhydride monomer unit with other monomers is treated with ammonia or primary It can be imidized with an amine.
  • a raw material consisting of a maleimide monomer may be copolymerized with other monomers.
  • the copolymer according to this embodiment contains maleimide monomer units in an amount of 3.0% by mass or more and 49.0% by mass when the total amount of monomer units contained in the copolymer is 100% by mass.
  • the content is preferably 3.0 to 30.0% by weight, more preferably 14.0 to 28.0% by weight, and even more preferably 18.0 to 26.0% by weight.
  • 3.0, 5.0, 8.0, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5 It is preferably 30.0, 35.0, 40.0, 45.0, 48.0, or 48.9% by mass, even if it is within the range between any two of the numerical values exemplified here. good.
  • the content of the maleimide monomer unit is 3.0% by mass or more, the heat resistance of the thermosetting resin composition containing the copolymer will improve, and if the content is less than 49.0% by mass, the copolymer will improve the heat resistance.
  • the solubility of the polymer in MEK is improved.
  • the content of maleimide monomer units is a value measured by 13 C-NMR.
  • the content of the maleimide monomer unit means the total amount of the maleimide monomer unit used in combination.
  • the copolymer according to this embodiment contains copolymerizable monomers other than aromatic vinyl monomers, unsaturated acid anhydride monomers, and maleimide monomers as other monomers. Copolymerization may be carried out within a range that does not impede the effects of the invention.
  • Other monomers that can be copolymerized with the copolymer according to this embodiment include vinyl cyanide monomers, acrylic acid ester monomers, methacrylic acid ester monomers, vinyl carboxylic acid monomers, and acrylic acid monomers. Examples include acid amide and methacrylic acid amide. Among these, vinyl cyanide monomers and methacrylic acid ester monomers are preferred from the viewpoint of affinity with epoxy resins.
  • Examples of vinyl cyanide monomers include acrylonitrile, methacrylonitrile, ethacrylonitrile, and fumaronitrile.
  • Examples of the acrylic ester monomer include methyl acrylic ester, ethyl acrylic ester, butyl acrylic ester, and the like.
  • Examples of the methacrylate monomer include methyl methacrylate and ethyl methacrylate.
  • Examples of vinyl carboxylic acid monomers include acrylic acid and methacrylic acid. Other monomers that can be copolymerized into the copolymer may be used alone, or two or more types may be used in combination.
  • Such other copolymerizable monomers can be copolymerized within a range that does not impede the effects of the present invention, but from the viewpoint of the balance between affinity with the epoxy resin and solubility in MEK, It is preferable to contain 0.0 to 20.0 mass % of other monomer units, more preferably 0.1 to 10.0 mass % when the total of monomer units contained in is 100 mass %. %, more preferably 0.5 to 5.0% by mass. Specifically, for example, it is preferably 0.0, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0, or 20.0% by mass, and the It may be within a range between any two values.
  • the affinity with the epoxy resin is improved, and when it is 20.0% by mass or less, the solubility in MEK is improved.
  • the content of other monomer units is a value measured by 13 C-NMR.
  • it means the total amount of other monomer units used together.
  • the reactive curing agent according to the present embodiment may contain additives as described below within a range that does not impede the effects of the present invention.
  • heat stabilizers such as hindered phenol compounds, lactone compounds, phosphorus compounds, and sulfur compounds, and hindered amine compounds are added to the polymerization solution as necessary.
  • Compounds, light stabilizers such as benzotriazole compounds, lubricants, plasticizers, colorants, antistatic agents, mineral oil, and other additives may be added.
  • the amount added is preferably less than 0.2 parts by mass per 100 parts by mass of total monomer units. These additives may be used alone or in combination of two or more.
  • the polymerization mode of the copolymer contained in the reactive curing agent according to the present embodiment includes, for example, solution polymerization, bulk polymerization, and the like.
  • Solution polymerization is preferable from the viewpoint that a copolymer having a more uniform copolymer composition can be obtained by polymerizing while performing partial addition or the like.
  • the solvent for solution polymerization is non-polymerizable from the viewpoint that by-products are less likely to be produced and there are fewer adverse effects.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone
  • ethers such as tetrahydrofuran and 1,4-dioxane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene, N,N-dimethylformamide, and dimethyl
  • sulfoxide N-methyl-2-pyrrolidone, etc.
  • methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of ease of solvent removal during devolatilization and recovery of the copolymer.
  • the polymerization process may be a continuous polymerization type, a batch type (batch type), or a semi-batch type.
  • the method for producing the copolymer according to the present embodiment is not particularly limited, but it can preferably be obtained by radical polymerization, and the polymerization temperature is preferably in the range of 80 to 150°C.
  • the polymerization initiator is not particularly limited, but includes known azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, and azobismethylbutyronitrile, and benzoyl.
  • Peroxide t-butylperoxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethyl
  • organic peroxides such as hexanoate, di-t-butyl peroxide, dicumyl peroxide, and ethyl-3,3-di-(t-butylperoxy)butyrate can be used; You may use a species or a combination of two or more species.
  • the amount of the polymerization initiator used is not particularly limited, but it is preferably used in an amount of 0.1 to 1.5% by mass, more preferably 0.1 to 1.5% by mass based on 100% by mass of all monomer units. It is 1.0% by mass. It is preferable that the amount of the polymerization initiator used is 0.1% by mass or more because a sufficient polymerization rate can be obtained. When the amount of the polymerization initiator used is 1.5% by mass or less, the polymerization rate can be suppressed, so reaction control becomes easy and it becomes easy to obtain the target molecular weight.
  • a chain transfer agent can be used in the production of the copolymer according to this embodiment.
  • the chain transfer agent used is not particularly limited, but includes, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, ⁇ -methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene, etc. be.
  • the amount of chain transfer used is not particularly limited as long as the target molecular weight can be obtained, but it should be 0.01 to 2.0% by mass based on 100% by mass of all monomer units. It is preferably 0.1 to 1.5% by mass, and more preferably 0.1 to 1.5% by mass. If the amount of chain transfer agent used is 0.01% by mass to 1.2% by mass, the target molecular weight can be easily obtained.
  • a method for introducing the maleimide monomer unit into the copolymer As a method for introducing the maleimide monomer unit into the copolymer according to the present embodiment, a method of copolymerizing a maleimide monomer, an aromatic vinyl monomer, and other monomers (direct method) , or by copolymerizing an unsaturated acid anhydride monomer, aromatic vinyl monomer, or other monomer in advance, and then reacting the unsaturated acid anhydride group with ammonia or a primary amine.
  • post-imidization method There is a method of converting an unsaturated acid anhydride group into a maleimide monomer unit (post-imidization method). The post-imidization method is preferable because it reduces the amount of maleimide monomer remaining in the copolymer.
  • the primary amines used in the post-imidization method include, for example, methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-octylamine, and cyclohexyl.
  • Examples include amines, alkylamines such as decylamine, chloro- or bromine-substituted alkylamines, aromatic amines such as aniline, toluidine, and naphthylamine, and among these, aniline and cyclohexylamine are preferred.
  • These primary amines may be used alone or in combination of two or more.
  • the amount of primary amine added is not particularly limited, but is preferably 0.7 to 1.1 molar equivalent, more preferably 0.85 to 1.05 molar equivalent relative to the unsaturated acid anhydride group. It is. It is preferable that the amount is 0.7 molar equivalent or more based on the unsaturated acid anhydride monomer unit in the crude product raw material because the thermal stability of the copolymer will be good. Moreover, if it is 1.1 molar equivalent or less, it is preferable because the amount of primary amine remaining in the copolymer is reduced.
  • a catalyst may be used when introducing the maleimide monomer unit by the post-imidization method.
  • the catalyst can improve the dehydration ring closure reaction in the reaction between ammonia or a primary amine and an unsaturated acid anhydride group, particularly in the reaction of converting an unsaturated acid anhydride group into a maleimide group.
  • the type of catalyst is not particularly limited, for example, a tertiary amine can be used.
  • Tertiary amines are not particularly limited, but include, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, N,N-dimethylaniline, N,N-diethylaniline, and the like.
  • the amount of the tertiary amine added is not particularly limited, it is preferably 0.01 molar equivalent or more based on the unsaturated acid anhydride group.
  • the temperature of the imidization reaction in the present invention is preferably 100 to 250°C, more preferably 120 to 200°C. If the temperature of the imidization reaction is 100° C. or higher, the reaction rate is sufficiently high and it is preferable from the viewpoint of productivity. It is preferable that the temperature of the imidization reaction is 250° C. or lower because it is possible to suppress deterioration of physical properties due to thermal deterioration of the copolymer.
  • the method for removing volatile components such as the solvent used for solution polymerization and unreacted monomers from the solution after solution polymerization of the copolymer or from the solution after post-imidization is a known method.
  • a vacuum devolatilization tank equipped with a heater or a devolatilization extruder equipped with a vent can be used.
  • the devolatilized copolymer in a molten state is transferred to the granulation process, extruded into strands from a multi-hole die, and can be processed into pellets using a cold cut method, an air hot cut method, or an underwater hot cut method. .
  • the obtained pellets can be processed into a powdered copolymer by passing through a pulverization process.
  • Forming the copolymer into a powder has the advantage of increasing its dissolution rate when blended into a thermosetting resin composition.
  • the extruded copolymer may be recovered and pulverized to form a powder without going through the step of pelletizing.
  • Suitable crushing devices include rotary blade crusher, turbo mill crusher, turbo disk mill crusher, turbo cutter crusher, jet mill crusher, impact crusher, hammer crusher, and vibration crusher. There are type crushers, etc.
  • the weight average molecular weight (Mw) of the copolymer according to this embodiment is 10,000 or more and less than 90,000, preferably 15,000 to 80,000, more preferably 20,000 to 70,000, More preferably, it is 30,000 to 70,000. Specifically, for example, it is preferably 1, 2, 3, 4, 5, 6, 7, 8, or 89,000, and is within the range between any two of the numerical values exemplified here. Good too. If the weight average molecular weight (Mw) of the copolymer is 10,000 or more, the amount of chain transfer agent used in the copolymerization process is reduced, so the amount of VOC contained in the resulting copolymer can be reduced.
  • the solubility of the copolymer in MEK can be improved.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the copolymer is a polystyrene equivalent value measured by gel permeation chromatography (GPC), and can be measured, for example, under the following conditions.
  • Equipment name SYSTEM-21 Shodex (manufactured by Showa Denko K.K.) Column: 3 PL gel MIXED-B in series Temperature: 40°C Detection: Differential refractive index
  • Solvent Tetrahydrofuran Concentration: 2% by mass Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).
  • the number average molecular weight (Mn) of the copolymer according to this embodiment is preferably 10,000 to 40,000, more preferably 20,000 to 40,000. Specifically, for example, it is preferably 1, 2, 3, or 40,000, and may be within a range between any two of the numerical values exemplified here. If the number average molecular weight (Mn) of the copolymer is 10,000 or more, the amount of chain transfer agent used in the copolymerization process is reduced, so the amount of VOC contained in the resulting copolymer can be reduced.
  • the solubility of the copolymer in MEK and the curability of the thermosetting resin composition blended with the copolymer can be improved.
  • To control the number average molecular weight (Mn) of the copolymer there are methods such as adjusting the polymerization temperature, polymerization time, and amount of polymerization initiator added, as well as adjusting the solvent concentration and the amount of chain transfer agent added.
  • the number average molecular weight (Mn) of the copolymer is a polystyrene equivalent value measured by gel permeation chromatography (GPC), and can be measured under the same conditions as the weight average molecular weight (Mw) described above, for example. .
  • the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer according to this embodiment is preferably 2 to 25, more preferably 3 to 16, and more preferably 4 to 12. It is more preferable that Specifically, the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 15, 20, or 25, and may be within a range between any two of the numerical values exemplified here.
  • the curability of the thermosetting resin composition containing the copolymer will improve; If it exists, the balance between the thermal decomposability of the copolymer and the curability of the thermosetting resin composition containing the copolymer will be improved.
  • the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer for example, the content of unsaturated acid anhydride monomer units in the copolymer and the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer can be controlled. There are methods such as adjusting the number average molecular weight (Mn) of the coalescence.
  • the glass transition temperature (Tg) of the copolymer according to this embodiment is preferably 125°C to 200°C, more preferably 130°C to 190°C, and even more preferably 135°C to 180°C. preferable. Specifically, for example, it is preferably 125, 130, 135, 140, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, or 200°C, and any of the values exemplified here. or within a range between the two.
  • the glass transition temperature (Tg) of the copolymer is 125°C or higher, the heat resistance of the thermosetting resin composition containing the copolymer will improve, and if it is 200°C or lower, the copolymer will become MEK. can improve the solubility of
  • the glass transition temperature (Tg) of the copolymer can be controlled, for example, by adjusting the content of maleimide monomer units contained in the copolymer and the weight average molecular weight of the copolymer.
  • the glass transition temperature is an intermediate glass transition temperature (Tmg) measured by DSC in accordance with JIS K-7121, and is a measured value under the measurement conditions described below.
  • the amount of residual aromatic vinyl monomer in the copolymer according to the present embodiment is preferably 0 to 500 ppm, more preferably 0 to 400 ppm, and even more preferably 0 to 300 ppm. Specifically, for example, it is preferably 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 50 ppm or less. If the amount of residual aromatic vinyl monomer in the copolymer is 500 ppm or less, the amount of VOC contained in the copolymer can be reduced.
  • the amount of residual maleimide monomer in the copolymer according to the present embodiment is preferably 0 to 500 ppm, more preferably 0 to 400 ppm, and even more preferably 0 to 300 ppm. Specifically, for example, it is preferably 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 ppm or less. If the amount of residual maleimide monomer in the copolymer is 500 ppm or less, the amount of VOC contained in the copolymer can be reduced. The amount of maleimide monomer remaining in the copolymer is measured under the following conditions.
  • GC-2010 manufactured by Shimadzu Corporation
  • Temperature-rising analysis is performed at a column temperature of 80°C (initial). (Temperature rising analysis conditions) 80°C: Hold for 12 minutes
  • 80-280°C Increase temperature at 20°C/min for 10 minutes
  • 280°C Hold for 10 minutes
  • FID Procedure Dissolve 0.5 g of sample in 5 ml of 1,2-dichloroethane solution (0.014 g/L) containing undecane (internal standard substance).
  • the amount of residual maleimide monomer in the copolymer can be reduced, for example, by employing a post-imidization method in the production of the copolymer.
  • the copolymer according to this embodiment has excellent thermal stability.
  • the thermal stability of a copolymer is an index evaluated by the 5% mass reduction temperature by thermogravimetric analysis (TGA), and is a value measured at a heating rate of 5°C/min in a nitrogen atmosphere. be. If the copolymer has a high 5% mass reduction temperature by thermogravimetric analysis (TGA) and has excellent thermal stability, the reactive curing agent containing the copolymer also has excellent thermal stability. Become something.
  • the copolymer according to this embodiment has excellent solubility in ethyl methyl ketone (MEK).
  • MEK ethyl methyl ketone
  • the solubility of the copolymer in MEK is defined as the weight percent concentration (wt%) of the MEK solution in which the maximum amount of copolymer that can be dissolved in 10 g of MEK at 23 ° C. It is. Specifically, a predetermined amount of the copolymer is added to MEK in three portions at 23° C., and the copolymer is dissolved by stirring.
  • the second addition of the copolymer is carried out 1 hour after the first addition of the copolymer
  • the third addition of the copolymer is carried out 1 hour after the second addition of the copolymer.
  • confirm that all added copolymer is completely dissolved within 4 hours. Varying the predetermined amount of copolymer to be dissolved, determining the maximum amount of copolymer that can be dissolved, and calculating the weight percent concentration (wt%) of the MEK solution when the maximum amount of copolymer is dissolved. do.
  • the copolymer according to this embodiment has excellent solubility in ethyl methyl ketone (MEK), and therefore, the reactive curing agent obtained by blending the copolymer also has excellent solubility in MEK. Become something. Therefore, when the reactive curing agent according to the present embodiment is used as a reactive curing agent in a thermosetting resin composition impregnated into glass fibers, for example, in the production of prepreg for copper clad laminates (CCL), In addition, the amount of copolymer blended into the thermosetting resin composition can be increased. If the amount of the copolymer added to the thermosetting resin composition increases, the properties of the various monomer units contained in the copolymer can be utilized to improve the properties of the thermosetting resin composition, such as heat resistance.
  • MEK ethyl methyl ketone
  • solubility in MEK when the solubility in MEK is excellent, it can be expected that the solubility in solvents other than MEK used in the production of CCL, such as acetone, toluene, and cyclohexanone, is also excellent.
  • thermosetting resin composition can be obtained by blending the reactive curing agent according to this embodiment with a thermosetting resin.
  • a thermosetting resin for example, a resin that is impregnated into glass fibers in the production of a prepreg for a copper clad laminate (CCL) can be used, and examples thereof include epoxy resin, cyanate resin, bismaleimide resin, and the like.
  • the thermosetting resin composition may contain other resins, additives, etc. as necessary.
  • thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment includes butadiene rubber, isoprene rubber, acrylate rubber, Graft copolymers containing these and elastomers such as hydrogenated products of the graft copolymers may be blended within a range that does not impair the effects of the present invention.
  • a curing agent such as a styrene-maleic anhydride copolymer according to the present invention is added to the thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment for the purpose of improving curability. It may be added to the reactive curing agent to the extent that it does not impair the effects of the present invention. Furthermore, for the purpose of accelerating the curing properties of the curing agent, an amine curing accelerator, an imidazole curing accelerator, a phosphorus curing accelerator, etc. may be blended within a range that does not impair the effects of the present invention.
  • phosphate ester flame retardants such as tricresyl phosphate and triphenyl phosphate, red phosphorus, antimony trioxide, aluminum hydroxide, and hydroxide are added.
  • Flame retardants such as inorganic substances such as magnesium may be added to the extent that the effects of the present invention are not impaired.
  • inorganic fillers such as silica, mica, talc, short glass fibers, fine glass powder, and hollow glass may be blended within the range that does not impair the effects of the present invention. It's okay.
  • thermosetting resin composition is obtained by dissolving the reactive curing agent according to the present embodiment, the thermosetting resin, and other resins and additives in an organic solvent, and then mixing the mixture.
  • organic solvents include ketones such as MEK, cyclohexanone, and methyl isobutyl ketone.
  • thermosetting resin composition obtained by blending the reactive curing agent with this embodiment has excellent heat resistance.
  • the heat resistance of the thermosetting resin composition is a property evaluated by the glass transition temperature (Tg) measured by DSC in accordance with JIS C 6481.
  • the glass transition temperature (Tg) is an intermediate glass transition temperature (Tmg), and is a value measured under the measurement conditions described below.
  • thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment employs a reactive curing agent with improved solubility in MEK.
  • the amount of reactive curing agent that can be blended increases. Since the reactive curing agent according to the present embodiment contains a maleimide monomer unit that can contribute to improving the heat resistance of the thermosetting resin composition, as a result, the heat resistance of the thermosetting resin composition is improved. is excellent.
  • thermosetting resin composition obtained by this process has excellent heat resistance.
  • the thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment employs a reactive curing agent with improved solubility in MEK. The amount of reactive curing agent that can be blended increases. Therefore, it is possible to reduce the amount of the styrene-maleic anhydride copolymer used in combination with the thermosetting resin composition.
  • thermosetting resin composition Since the styrene-maleic anhydride copolymer has a lower glass transition temperature than the reactive curing agent according to this embodiment, the amount added to the thermosetting resin composition can be reduced, resulting in a thermosetting resin.
  • the composition has excellent heat resistance.
  • thermosetting resin composition obtained by blending the reactive curing agent with the present embodiment can also be made to have excellent curability by adjusting the number average molecular weight of the copolymer.
  • the curability of a thermosetting resin composition is a property evaluated by the degree of resin curing calculated by measuring the glass transition temperature (Tg) by the TMA method under the following measurement conditions in accordance with JIS C 6481. Device name: Q400 manufactured by T.A. Instrument Japan Co., Ltd. Temperature increase rate: 5°C/min
  • the thermosetting resin composition obtained by blending the reactive curing agent according to this embodiment employs a reactive curing agent with improved solubility in MEK.
  • the reactive curing agent according to the present embodiment contains an unsaturated acid anhydride monomer unit that can react with the thermosetting resin in the thermosetting resin composition. can improve the curability of
  • the cured product of the thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment has moisture absorption resistance by reducing the amount of unsaturated acid anhydride monomer units in the copolymer. It is also possible to use a material with excellent properties.
  • the moisture absorption resistance of a cured product of a thermosetting resin composition is a property evaluated by water absorption rate measured in accordance with JIS C 6481.
  • thermosetting resin composition obtained by blending the reactive curing agent according to this embodiment is MEK Since a reactive curing agent with improved solubility in the thermosetting resin composition is used, the amount of reactive curing agent that can be blended into the thermosetting resin composition increases. Therefore, it is possible to reduce the amount of the styrene-maleic anhydride copolymer used in combination with the thermosetting resin composition.
  • the styrene-maleic anhydride copolymer has higher hygroscopicity than the reactive curing agent according to this embodiment, it is possible to reduce the amount of the styrene-maleic anhydride copolymer to be added to the thermosetting resin composition. Excellent moisture absorption resistance.
  • St styrene
  • AN acrylonitrile
  • NPMI N-phenylmaleimide
  • MAH maleic anhydride
  • MEK methyl ethyl ketone
  • Example 1 Synthesis of copolymer (P-1)> 83 parts by mass of styrene, 1 part by mass of maleic anhydride, 0.6 parts by mass of ⁇ -methylstyrene dimer, and 26 parts by mass of methyl ethyl ketone were placed in an autoclave with a capacity of approximately 120 liters equipped with a stirrer, and the gas phase was heated with nitrogen gas. After the substitution, the temperature was raised to 92° C. over 40 minutes while stirring.
  • the imidization reaction solution was put into a vent type screw extruder, and volatile components were removed to obtain a pellet-shaped copolymer.
  • the obtained pellets were pulverized using a rotary blade type pulverizer to obtain a powdery copolymer (P-1).
  • P-1 powdery copolymer
  • Table 1 shows the analysis results of the obtained copolymer (P-1).
  • composition analysis of the copolymer (P-1) was carried out by 13 C-NMR method under the measurement conditions described below.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer (P-1) are polystyrene equivalent values measured by gel permeation chromatography (GPC), and were measured under the following conditions.
  • GPC gel permeation chromatography
  • Equipment name SYSTEM-21 Shodex (manufactured by Showa Denko K.K.) Column: 3 PL gel MIXED-B in series Temperature: 40°C Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).
  • N Number of unsaturated acid anhydride monomer units per molecular chain of copolymer
  • the number (N) of unsaturated acid anhydride monomer units per molecular chain of the copolymer (P-1) is the total number of monomer units contained in the copolymer (P-1).
  • N (A/100) ⁇ Mn/98 Formula (1)
  • the glass transition temperature of the copolymer (P-1) is the intermediate glass transition temperature (Tmg) measured by DSC in accordance with JIS K-7121, and was measured under the measurement conditions described below.
  • solubility in MEK is determined by the weight percent concentration (wt%) of an MEK solution in which the maximum amount of copolymer (P-1) that can be dissolved in 10 g of MEK at 23°C is ) was evaluated. At 23° C., a predetermined amount of copolymer (P-1) was added to 10 g of MEK in three portions, and the copolymer was dissolved by stirring. At this time, the second addition of the copolymer (P-1) was carried out 1 hour after the first addition of the copolymer (P-1), and the second addition of the copolymer (P-1) was carried out.
  • Thermal stability of copolymer> The 5% mass reduction temperature of the copolymer (P-1) by thermogravimetric analysis (TGA) was measured at a heating rate of 5° C./min under a nitrogen atmosphere.
  • copolymer (P-17) For the copolymer (P-17), styrene, maleic anhydride, N-phenylmaleimide, ⁇ -methylstyrene dimer, and methyl ethyl ketone are first charged into an autoclave. After the polymerization is completed, the imidization reaction is not performed, and the polymerization reaction solution is charged into a vent type screw extruder to remove volatile components to obtain a pellet-shaped copolymer. The obtained pellets are pulverized using a rotary blade type pulverizer to obtain a powdery copolymer (P-17).
  • the imidization reaction solution after the reaction is put into a vent-type screw extruder to remove volatile components, and then the copolymers are recovered without going through the pelletization process. .
  • the recovered copolymer is pulverized using a rotary blade type pulverizer to obtain a powdered copolymer.
  • the composition and properties of copolymers (P-2) to (P-24) are measured by the same method as for copolymer (P-1).
  • the compositions and properties of copolymers (P-2) to (P-24) are shown in Tables 1 and 2.
  • the recovered copolymer is pulverized using a rotary blade type pulverizer to obtain a powdered copolymer.
  • the composition and physical properties of copolymers (PB-1) to (PB-9) are measured in the same manner as for copolymer (P-1).
  • Table 3 shows the composition and physical properties of copolymers (PB-1) to (PB-9).
  • the amounts of the copolymer as a reactive curing agent and the styrene-maleic anhydride copolymer as a curing agent to be used together are adjusted so that the total amount of the two curing agents is 10 g.
  • the copolymer is mixed according to the value of the weight percent concentration
  • the amount Y (unit: g) of the polymer and the amount Z (unit: g) of the styrene-maleic anhydride copolymer are adjusted as follows.
  • the glass transition temperature (Tg) is an intermediate glass transition temperature (Tmg), and is a value measured under the measurement conditions described below.
  • Device name Robot DSC6200 manufactured by Seiko Instruments Co., Ltd. Temperature rising rate: 10°C/min Evaluation criteria A (very good): Over 180°C B (excellent): Over 175°C, below 180°C C (good): Over 170°C, below 175°C D (slightly poor) : 160°C or higher, 170°C or lower E (poor): Below 160°C Table 1 shows the heat resistance of epoxy resin compositions (R-1) to (R-24) and (RB-1) to (RB-9). It is shown in Table 3.
  • ⁇ Curability of epoxy resin composition The curability of the epoxy resin composition is evaluated by the following method.
  • - Sample preparation method The epoxy resin composition is spread on a Kapton film, heated and dried at 160° C. for 10 minutes, and the solid content is taken out by a casting method to obtain a sample before hardening. Next, using this solid content, pressing is performed for 90 minutes at a pressure of 25 kg/cm 2 and a temperature of 185° C. to obtain a cured sample.
  • ⁇ Measurement method of curing property In accordance with JIS C 6481, the degree of resin curing is calculated by measuring the glass transition temperature (Tg) using the TMA method.Device name: Manufactured by TA Instruments Japan Co., Ltd.
  • ⁇ Moisture absorption resistance of cured product of epoxy resin composition The moisture absorption resistance of the cured product of the epoxy resin composition is evaluated by the following method. - Sample preparation method: Spread the epoxy resin composition on Kapton film, heat and dry at 160°C for 10 minutes, and remove the solid content by casting. Next, using this solid content, pressing is performed for 90 minutes at a pressure of 25 kg/cm 2 and a temperature of 185° C. to obtain a resin plate.
  • the reactive curing agent since a copolymer with improved solubility in MEK is used as the reactive curing agent, a larger amount of the copolymer is added to the epoxy resin composition. It can be added to things. Therefore, the heat resistance of the epoxy resin composition is improved due to the maleimide monomer unit contained in the copolymer.
  • the reactive curing agent according to this embodiment can be obtained by blending the reactive curing agent according to the example.
  • the epoxy resin composition has improved heat resistance.
  • the curability of the epoxy resin composition is improved.
  • an epoxy resin composition containing a reactive curing agent in which the composition of the monomer units contained in the copolymer is appropriately adjusted by blending a larger amount of the copolymer into the epoxy resin composition, the amount of the styrene-maleic anhydride copolymer, which is another curing agent used in combination, can be reduced, and the moisture absorption resistance of the cured product of the epoxy resin composition is improved.
  • the reactive curing agent according to the comparative example has poor performance in at least one of solubility in MEK and improvement in heat resistance of the epoxy resin composition when blended into the epoxy resin composition.
  • the present invention provides a reactive curing agent that has improved solubility in methyl ethyl ketone (MEK) and can improve the heat resistance of a thermosetting resin composition.
  • MEK methyl ethyl ketone
  • the copolymer contained in the reactive curing agent of the present invention can be suitably used as a heat resistance imparting agent that imparts heat resistance to ABS and other resins, or as a compatibilizer for polymer alloys. be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a reactive curing agent that has improved solubility in methyl ethyl ketone and can improve the heat resistance of thermosetting resin compositions. The present invention provides a reactive curing agent comprising a copolymer containing an aromatic vinyl-based monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide-based monomer unit, wherein the copolymer has a weight average molecular weight of 10,000 or more and less than 90,000, and contains 3.0 mass% or more and less than 49.0 mass% of the maleimide-based monomer unit when the total amount of the monomer units constituting the copolymer is taken as 100 mass%.

Description

反応性硬化剤reactive curing agent
 本発明は、反応性硬化剤に関するものである。 The present invention relates to a reactive curing agent.
 回路を構成する電子部品同士の電気的な接続/絶縁、部品の機械的な配置/固定をするプリント基板として、銅張積層板(CCL)が知られている。CCLは、ガラスファイバーにエポキシ樹脂やポリフェニレンエーテル樹脂と反応性硬化剤を含有する熱硬化性樹脂組成物を含侵させて、半硬化状態の樹脂シートであるプリプレグを得て、このプリプレグの両面を銅箔で挟んだものを複数枚重ね、加熱圧着して得られるものである。
 反応性硬化剤としては、誘電損失が小さいことからスチレン-無水マレイン酸共重合体(SMA)が用いられることが多い。また、反応性硬化剤としてスチレン(St)-無水マレイン酸(MAH)-Nフェニルマレイミド(NPMI)共重合体が使用可能であることも知られている(特許文献1~4)。
2. Description of the Related Art Copper clad laminates (CCL) are known as printed circuit boards that electrically connect/insulate electronic components constituting a circuit and mechanically arrange/fix the components. CCL involves impregnating glass fiber with a thermosetting resin composition containing epoxy resin or polyphenylene ether resin and a reactive curing agent to obtain prepreg, which is a semi-cured resin sheet. It is obtained by stacking multiple sheets sandwiched between copper foils and bonding them under heat.
As the reactive curing agent, styrene-maleic anhydride copolymer (SMA) is often used because of its low dielectric loss. It is also known that a styrene (St)-maleic anhydride (MAH)-N phenylmaleimide (NPMI) copolymer can be used as a reactive curing agent (Patent Documents 1 to 4).
特表2022-508173Special table 2022-508173 特開2020-169276JP2020-169276 特許5474561Patent 5474561 特許4807434Patent 4807434
 本発明は、メチルエチルケトン(MEK)への溶解性が向上され、熱硬化性樹脂組成物の耐熱性を向上させることが可能な反応性硬化剤を提供しようとするものである。 The present invention aims to provide a reactive curing agent that has improved solubility in methyl ethyl ketone (MEK) and can improve the heat resistance of a thermosetting resin composition.
 本発明者らの検討の結果、芳香族ビニル系単量体単位、不飽和酸無水物単量体単位、マレイミド系単量体単位を含有する共重合体を含む反応性硬化剤であって、前記共重合体の重量平均分子量が1万以上、9万未満であり、前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、前記マレイミド系単量体単位3.0質量%以上、49.0質量%未満を含む、反応性硬化剤を採用すれば、MEKへの溶解性を向上させることができ、また、熱硬化性樹脂組成物の耐熱性を向上させることが可能であることを見出した。
 即ち、本発明は、
 [1] 芳香族ビニル系単量体単位、不飽和酸無水物単量体単位、マレイミド系単量体単位を含有する共重合体を含む反応性硬化剤であって、
 前記共重合体の重量平均分子量が1万以上、9万未満であり、
 前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、前記マレイミド系単量体単位3.0質量%以上、49.0質量%未満を含む、
反応性硬化剤。
 [2] 前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、前記マレイミド系単量体単位3.0~30.0質量%を含む、
[1]に記載の反応性硬化剤。
 [3] 前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、
  前記芳香族ビニル系単量体単位45.0~96.9質量%、
  前記不飽和酸無水物単量体単位0.1~25質量%、及び
  その他単量体単位0.0~20.0質量%を含む、
[2]に記載の反応性硬化剤。
 [4] 前記共重合体の分子鎖1本あたりに含有される前記不飽和酸無水物単量体単位の数が、2~25である、
[1]~[3]のいずれか一つに記載の反応性硬化剤。
 [5] 前記共重合体のガラス転移温度が125~200℃である、
[1]~[4]のいずれか一つに記載の反応性硬化剤。
 [6] 前記共重合体の重量平均分子量が1.5万~8万である、
[1]~[5]のいずれか一つに記載の反応性硬化剤。
 [7] 前記共重合体の重量平均分子量が2万~7万である、
[1]~[5]のいずれか一つに記載の反応性硬化剤。
に関する。
As a result of studies by the present inventors, a reactive curing agent containing a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit, The weight average molecular weight of the copolymer is 10,000 or more and less than 90,000, and the copolymer has a weight average molecular weight of 10,000 or more and less than 90,000, and the copolymer has a weight average molecular weight of 100,000 or more and less than 90,000; By employing a reactive curing agent containing 3.0% by mass or more and less than 49.0% by mass of monomer units, the solubility in MEK can be improved, and the thermosetting resin composition It has been found that it is possible to improve the heat resistance of.
That is, the present invention
[1] A reactive curing agent containing a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit,
The weight average molecular weight of the copolymer is 10,000 or more and less than 90,000,
The copolymer contains 3.0% by mass or more and less than 49.0% by mass of the maleimide monomer units when the total monomer units contained in the copolymer is 100% by mass. include,
Reactive hardener.
[2] The copolymer contains 3.0 to 30.0% by mass of the maleimide monomer units when the total of monomer units contained in the copolymer is 100% by mass. ,
The reactive curing agent according to [1].
[3] The copolymer has 100% by mass of the total monomer units contained in the copolymer,
45.0 to 96.9% by mass of the aromatic vinyl monomer unit,
Containing 0.1 to 25% by mass of the unsaturated acid anhydride monomer unit and 0.0 to 20.0% by mass of other monomer units,
The reactive curing agent according to [2].
[4] The number of the unsaturated acid anhydride monomer units contained per molecular chain of the copolymer is 2 to 25.
The reactive curing agent according to any one of [1] to [3].
[5] The copolymer has a glass transition temperature of 125 to 200°C.
The reactive curing agent according to any one of [1] to [4].
[6] The copolymer has a weight average molecular weight of 15,000 to 80,000,
The reactive curing agent according to any one of [1] to [5].
[7] The copolymer has a weight average molecular weight of 20,000 to 70,000,
The reactive curing agent according to any one of [1] to [5].
Regarding.
 本発明の反応性硬化剤を採用すれば、MEKへの溶解性が向上されている。また、熱硬化性樹脂組成物の耐熱性を向上させることができる。このため、銅張積層板のような耐熱性が要求される用途に好適に利用される。 By employing the reactive curing agent of the present invention, solubility in MEK is improved. Moreover, the heat resistance of the thermosetting resin composition can be improved. Therefore, it is suitably used in applications that require heat resistance, such as copper-clad laminates.
<用語の説明>
 本願明細書において、「A~B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In the present specification, the description "A to B" means greater than or equal to A and less than or equal to B.
 以下、本発明の実施形態について、詳細に説明する。本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。以下に示す実施形態中で示した各種特徴事項は互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Various features shown in the embodiments described below can be combined with each other. Further, the invention is established independently for each characteristic matter.
<反応性硬化剤に含有される共重合体>
 本実施形態にかかる反応性硬化剤は、芳香族ビニル系単量体単位、不飽和酸無水物単量体単位、マレイミド系単量体単位を含有する共重合体を含む。共重合体に含有される単量体単位について、以下説明する。
<Copolymer contained in reactive curing agent>
The reactive curing agent according to this embodiment includes a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit. The monomer units contained in the copolymer will be explained below.
<芳香族ビニル系単量体単位>
 本実施形態にかかる共重合体に含有される芳香族ビニル系単量体単位が由来する芳香族ビニル系単量体としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等が挙げられる。これらの中でも共重合体のMEKへの溶解性の観点からスチレンが好ましい。芳香族ビニル系単量体は、単独でも良いが2種類以上を併用しても良い。
<Aromatic vinyl monomer unit>
Examples of the aromatic vinyl monomer from which the aromatic vinyl monomer unit contained in the copolymer according to the present embodiment is derived include styrene, o-methylstyrene, m-methylstyrene, p-methyl Examples include styrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene, and the like. Among these, styrene is preferred from the viewpoint of solubility of the copolymer in MEK. The aromatic vinyl monomer may be used alone, or two or more types may be used in combination.
 本実施形態にかかる共重合体は、共重合体に含有される単量体単位の合計を100質量%とした場合に芳香族ビニル系単量体単位を45.0~96.9質量%含有することが好ましく、より好ましくは45.0~89.9質量%含有し、さらに好ましくは55.0~85.0質量%含有し、特に好ましくは60.0~80.0質量%含有する。具体的には例えば、45.0、50.0、55.0、60.0、65.0、70.0、74.0、76.0、78.0、80.0、82.0、84.0、85.0、86.0、88.0、89.9、又は96.9質量%であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。芳香族ビニル系単量体単位の含有量が45.0質量%以上であれば、共重合体のMEKへの溶解性が向上し、96.9質量%以下であれば、耐熱性向上に寄与し得るマレイミド系単量体単位を共重合体により多く含有させることができるため、共重合体を配合した熱硬化性樹脂組成物の耐熱性が向上する。芳香族ビニル系単量体単位の含有量は、13C-NMRによって測定した値である。
 なお、芳香族ビニル系単量体単位を併用する場合には、芳香族ビニル系単量体単位の含有量は、併用する芳香族ビニル系単量体単位の合計量を意味する。
The copolymer according to the present embodiment contains 45.0 to 96.9% by mass of aromatic vinyl monomer units when the total amount of monomer units contained in the copolymer is 100% by mass. The content is preferably 45.0 to 89.9% by mass, still more preferably 55.0 to 85.0% by mass, and particularly preferably 60.0 to 80.0% by mass. Specifically, for example, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0, 74.0, 76.0, 78.0, 80.0, 82.0, It is preferably 84.0, 85.0, 86.0, 88.0, 89.9, or 96.9% by mass, even if it is within the range between any two of the numerical values exemplified here. good. If the content of aromatic vinyl monomer units is 45.0% by mass or more, the solubility of the copolymer in MEK will improve, and if it is 96.9% by mass or less, it will contribute to improving heat resistance. Since the copolymer can contain a larger amount of maleimide monomer units that can be used, the heat resistance of the thermosetting resin composition containing the copolymer is improved. The content of aromatic vinyl monomer units is a value measured by 13 C-NMR.
In addition, when aromatic vinyl monomer units are used together, the content of the aromatic vinyl monomer units means the total amount of the aromatic vinyl monomer units used together.
<不飽和酸無水物単量体単位>
 本実施形態にかかる共重合体に含有される不飽和酸無水物単量体単位が由来する不飽和酸無水物単量体としては、例えば、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物等がある。これらの中でも共重合体を配合した熱硬化性樹脂組成物への硬化性付与の観点からマレイン酸無水物が好ましい。不飽和酸無水物単量体は単独でも良いが2種類以上を併用しても良い。
<Unsaturated acid anhydride monomer unit>
Examples of the unsaturated acid anhydride monomer from which the unsaturated acid anhydride monomer unit contained in the copolymer according to the present embodiment is derived include maleic anhydride, itaconic anhydride, and citraconic anhydride. and aconitic acid anhydride. Among these, maleic anhydride is preferred from the viewpoint of imparting curability to the thermosetting resin composition blended with the copolymer. The unsaturated acid anhydride monomer may be used alone, or two or more types may be used in combination.
 本実施形態にかかる共重合体は、共重合体に含有される単量体単位の合計を100質量%とした場合に不飽和酸無水物単量体単位を0.1~25質量%含有することが好ましく、より好ましくは0.1~8.0質量%含有し、さらに好ましくは0.1~6.0質量%含有し、特に好ましくは0.1~4.0質量%含有する。具体的には例えば、0.1、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、5.0、6.0、7.0、8.0、10、15、20、又は25質量%であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。不飽和酸無水物単量体単位の含有量が0.1質量%以上であれば、共重合体を配合した熱硬化性樹脂組成物の硬化性が向上し、25質量%以下であれば、共重合体の熱安定性や、共重合体を配合した熱硬化性樹脂組成物の耐吸湿性や熱安定性が向上する。不飽和酸無水物単量体単位の含有量は、13C-NMRによって測定した値である。
 なお、不飽和酸無水物単量体単位を併用する場合には、不飽和酸無水物単量体単位の含有量は、併用する不飽和酸無水物単量体単位の合計量を意味する。
The copolymer according to the present embodiment contains 0.1 to 25% by mass of unsaturated acid anhydride monomer units when the total amount of monomer units contained in the copolymer is 100% by mass. The content is preferably from 0.1 to 8.0% by mass, even more preferably from 0.1 to 6.0% by mass, particularly preferably from 0.1 to 4.0% by mass. Specifically, for example, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, It is preferably 7.0, 8.0, 10, 15, 20, or 25% by mass, and may be within a range between any two of the numerical values exemplified here. If the content of the unsaturated acid anhydride monomer unit is 0.1% by mass or more, the curability of the thermosetting resin composition containing the copolymer will improve, and if the content is 25% by mass or less, The thermal stability of the copolymer and the moisture absorption resistance and thermal stability of the thermosetting resin composition blended with the copolymer are improved. The content of unsaturated acid anhydride monomer units is a value measured by 13 C-NMR.
In addition, when an unsaturated acid anhydride monomer unit is used together, the content of the unsaturated acid anhydride monomer unit means the total amount of the unsaturated acid anhydride monomer unit used together.
<マレイミド系単量体単位>
 本実施形態にかかる共重合体に含有されるマレイミド系単量体単位が由来するマレイミド系単量体としては、例えば、N-メチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミド等のN-アルキルマレイミド、及びN-フェニルマレイミド、N-クロルフェニルマレイミド、N-メチルフェニルマレイミド、N-メトキシフェニルマレイミド、N-トリブロモフェニルマレイミド等のN-アリールマレイミド等がある。これらの中でも、共重合体の熱安定性の観点からN-アリールマレイミドが好ましく、N-フェニルマレイミドがさらに好ましい。マレイミド系単量体は、単独でも良いが2種類以上を併用しても良い。
 共重合体にマレイミド系単量体単位を含有させるには、例えば、不飽和酸無水物単量体単位からなる原料を他の単量体と共重合させた共重合体をアンモニア又は第1級アミンでイミド化させればよい。あるいは、マレイミド系単量体からなる原料を他の単量体と共重合させてもよい。
<Maleimide monomer unit>
Examples of the maleimide monomer from which the maleimide monomer unit contained in the copolymer according to the present embodiment is derived include N-alkyl maleimide such as N-methylmaleimide, N-butylmaleimide, and N-cyclohexylmaleimide. Examples include maleimide and N-arylmaleimides such as N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-methoxyphenylmaleimide, and N-tribromophenylmaleimide. Among these, N-arylmaleimide is preferred from the viewpoint of thermal stability of the copolymer, and N-phenylmaleimide is more preferred. The maleimide monomer may be used alone or in combination of two or more types.
In order to make the copolymer contain a maleimide monomer unit, for example, a copolymer obtained by copolymerizing a raw material consisting of an unsaturated acid anhydride monomer unit with other monomers is treated with ammonia or primary It can be imidized with an amine. Alternatively, a raw material consisting of a maleimide monomer may be copolymerized with other monomers.
 本実施形態にかかる共重合体は、共重合体に含有される単量体単位の合計を100質量%とした場合にマレイミド系単量体単位を3.0質量%以上、49.0質量%未満含有し、好ましくは3.0~30.0質量%含有し、より好ましくは14.0~28.0質量%含有し、さらに好ましくは18.0~26.0質量%含有する。具体的には例えば、3.0、5.0、8.0、10.0、12.5、15.0、17.5、20.0、22.5、25.0、27.5、30.0、35.0、40.0、45.0、48.0、又は48.9質量%であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。マレイミド系単量体単位の含有量が3.0質量%以上であれば、共重合体を配合した熱硬化性樹脂組成物の耐熱性が向上し、49.0質量%未満であれば、共重合体のMEKへの溶解性が向上する。マレイミド系単量体単位の含有量は、13C-NMRによって測定した値である。
 なお、マレイミド系単量体単位を併用する場合には、マレイミド系単量体単位の含有量は、併用するマレイミド系単量体単位の合計量を意味する。
The copolymer according to this embodiment contains maleimide monomer units in an amount of 3.0% by mass or more and 49.0% by mass when the total amount of monomer units contained in the copolymer is 100% by mass. The content is preferably 3.0 to 30.0% by weight, more preferably 14.0 to 28.0% by weight, and even more preferably 18.0 to 26.0% by weight. Specifically, for example, 3.0, 5.0, 8.0, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, It is preferably 30.0, 35.0, 40.0, 45.0, 48.0, or 48.9% by mass, even if it is within the range between any two of the numerical values exemplified here. good. If the content of the maleimide monomer unit is 3.0% by mass or more, the heat resistance of the thermosetting resin composition containing the copolymer will improve, and if the content is less than 49.0% by mass, the copolymer will improve the heat resistance. The solubility of the polymer in MEK is improved. The content of maleimide monomer units is a value measured by 13 C-NMR.
In addition, when a maleimide monomer unit is used in combination, the content of the maleimide monomer unit means the total amount of the maleimide monomer unit used in combination.
<その他単量体単位>
 本実施形態にかかる共重合体は、芳香族ビニル系単量体、不飽和酸無水物単量体、及びマレイミド系単量体以外の共重合可能な単量体を、その他単量体として本発明の効果を阻害しない範囲で共重合させても良い。本実施形態にかかる共重合体に共重合可能なその他単量体としては、シアン化ビニル系単量体、アクリル酸エステル単量体、メタクリル酸エステル単量体、ビニルカルボン酸単量体、アクリル酸アミド及びメタクリル酸アミド等が挙げられる。これらの中でもエポキシ樹脂との親和性の観点からシアン化ビニル系単量体、メタクリル酸エステル単量体が好ましい。
 シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が挙げられる。
 アクリル酸エステル単量体としては、例えば、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等が挙げられる。
 メタクリル酸エステル単量体としては、例えば、メチルメタクリル酸エステル、エチルメタクリル酸エステル等が挙げられる。
 ビニルカルボン酸単量体としては、例えば、アクリル酸、メタクリル酸等が挙げられる。
 共重合体に共重合可能なその他単量体は、単独でも良いが2種類以上を併用しても良い。
<Other monomer units>
The copolymer according to this embodiment contains copolymerizable monomers other than aromatic vinyl monomers, unsaturated acid anhydride monomers, and maleimide monomers as other monomers. Copolymerization may be carried out within a range that does not impede the effects of the invention. Other monomers that can be copolymerized with the copolymer according to this embodiment include vinyl cyanide monomers, acrylic acid ester monomers, methacrylic acid ester monomers, vinyl carboxylic acid monomers, and acrylic acid monomers. Examples include acid amide and methacrylic acid amide. Among these, vinyl cyanide monomers and methacrylic acid ester monomers are preferred from the viewpoint of affinity with epoxy resins.
Examples of vinyl cyanide monomers include acrylonitrile, methacrylonitrile, ethacrylonitrile, and fumaronitrile.
Examples of the acrylic ester monomer include methyl acrylic ester, ethyl acrylic ester, butyl acrylic ester, and the like.
Examples of the methacrylate monomer include methyl methacrylate and ethyl methacrylate.
Examples of vinyl carboxylic acid monomers include acrylic acid and methacrylic acid.
Other monomers that can be copolymerized into the copolymer may be used alone, or two or more types may be used in combination.
 このような共重合可能なその他単量体は、本発明の効果を阻害しない範囲で共重合可能であるが、エポキシ樹脂との親和性とMEKへの溶解性のバランスの観点から、共重合体に含有される単量体単位の合計を100質量%とした場合にその他単量体単位を0.0~20.0質量%含有することが好ましく、より好ましくは0.1~10.0質量%含有し、さらに好ましくは0.5~5.0質量%含有する。具体的には例えば、0.0、0.5、1.0、2.0、5.0、10.0、15.0、又は20.0質量%であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。その他単量体単位が含有されると、エポキシ樹脂との親和性が向上し、20.0質量%以下であれば、MEKへの溶解性が向上する。その他単量体単位の含有量は、13C-NMRによって測定した値である。
 なお、その他単量体単位を併用する場合には、併用するその他単量体単位の合計量を意味する。
Such other copolymerizable monomers can be copolymerized within a range that does not impede the effects of the present invention, but from the viewpoint of the balance between affinity with the epoxy resin and solubility in MEK, It is preferable to contain 0.0 to 20.0 mass % of other monomer units, more preferably 0.1 to 10.0 mass % when the total of monomer units contained in is 100 mass %. %, more preferably 0.5 to 5.0% by mass. Specifically, for example, it is preferably 0.0, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0, or 20.0% by mass, and the It may be within a range between any two values. When other monomer units are contained, the affinity with the epoxy resin is improved, and when it is 20.0% by mass or less, the solubility in MEK is improved. The content of other monomer units is a value measured by 13 C-NMR.
In addition, when other monomer units are used together, it means the total amount of other monomer units used together.
<反応性硬化剤に含有される添加剤>
 本実施形態にかかる反応性硬化剤は、本発明の効果を阻害しない範囲において以下に説明されるような添加剤を含有し得る。
 反応性硬化剤に含有される共重合体の重合終了後、重合液には必要に応じて、ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等の光安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を加えても構わない。その添加量は全単量体単位100質量部に対して0.2質量部未満であることが好ましい。これらの添加剤は単独で用いても、2種類以上を併用しても構わない。
<Additives contained in reactive curing agent>
The reactive curing agent according to the present embodiment may contain additives as described below within a range that does not impede the effects of the present invention.
After the polymerization of the copolymer contained in the reactive curing agent is completed, heat stabilizers such as hindered phenol compounds, lactone compounds, phosphorus compounds, and sulfur compounds, and hindered amine compounds are added to the polymerization solution as necessary. Compounds, light stabilizers such as benzotriazole compounds, lubricants, plasticizers, colorants, antistatic agents, mineral oil, and other additives may be added. The amount added is preferably less than 0.2 parts by mass per 100 parts by mass of total monomer units. These additives may be used alone or in combination of two or more.
<共重合体の製造>
 本実施形態にかかる反応性硬化剤に含有される共重合体の重合様式は、例えば、溶液重合、塊状重合等がある。分添等を行いながら重合することで、共重合組成がより均一な共重合体を得られるという観点から、溶液重合が好ましい。溶液重合の溶媒は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等であり、共重合体の脱揮回収時における溶媒除去の容易性から、メチルエチルケトン、メチルイソブチルケトンが好ましい。重合プロセスは、連続重合式、バッチ式(回分式)、半回分式のいずれも適用できる。
<Production of copolymer>
The polymerization mode of the copolymer contained in the reactive curing agent according to the present embodiment includes, for example, solution polymerization, bulk polymerization, and the like. Solution polymerization is preferable from the viewpoint that a copolymer having a more uniform copolymer composition can be obtained by polymerizing while performing partial addition or the like. It is preferable that the solvent for solution polymerization is non-polymerizable from the viewpoint that by-products are less likely to be produced and there are fewer adverse effects. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone, ethers such as tetrahydrofuran and 1,4-dioxane, aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene, N,N-dimethylformamide, and dimethyl These include sulfoxide, N-methyl-2-pyrrolidone, etc., and methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of ease of solvent removal during devolatilization and recovery of the copolymer. The polymerization process may be a continuous polymerization type, a batch type (batch type), or a semi-batch type.
 本実施形態にかかる共重合体の製造方法としては、特に限定されるものではないが、好ましくはラジカル重合により得ることができ、重合温度は80~150℃の範囲であることが好ましい。重合開始剤としては特に限定されるものではないが、例えばアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物や、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の公知の有機過酸化物を用いることができ、これらの1種あるいは2種類以上を組み合わせて使用しても良い。重合の反応速度や重合率制御の観点から、10時間半減期が70~120℃であるアゾ化合物や有機過酸化物を用いるのが好ましい。重合開始剤の使用量は、特に限定されるものではないが、全単量体単位100質量%に対して0.1~1.5質量%使用することが好ましく、さらに好ましくは0.1~1.0質量%である。重合開始剤の使用量が0.1質量%以上であれば、十分な重合速度が得られるため好ましい。重合開始剤の使用量が1.5質量%以下であれば、重合速度が抑制できるため反応制御が容易になり、目標分子量を得ることが容易になる。 The method for producing the copolymer according to the present embodiment is not particularly limited, but it can preferably be obtained by radical polymerization, and the polymerization temperature is preferably in the range of 80 to 150°C. The polymerization initiator is not particularly limited, but includes known azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, and azobismethylbutyronitrile, and benzoyl. Peroxide, t-butylperoxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethyl Known organic peroxides such as hexanoate, di-t-butyl peroxide, dicumyl peroxide, and ethyl-3,3-di-(t-butylperoxy)butyrate can be used; You may use a species or a combination of two or more species. From the viewpoint of polymerization reaction rate and polymerization rate control, it is preferable to use an azo compound or an organic peroxide having a 10-hour half-life of 70 to 120°C. The amount of the polymerization initiator used is not particularly limited, but it is preferably used in an amount of 0.1 to 1.5% by mass, more preferably 0.1 to 1.5% by mass based on 100% by mass of all monomer units. It is 1.0% by mass. It is preferable that the amount of the polymerization initiator used is 0.1% by mass or more because a sufficient polymerization rate can be obtained. When the amount of the polymerization initiator used is 1.5% by mass or less, the polymerization rate can be suppressed, so reaction control becomes easy and it becomes easy to obtain the target molecular weight.
 本実施形態にかかる共重合体の製造には、連鎖移動剤を使用することが出来る。使用される連鎖移動剤としては、特に限定されるものではないが、例えばn-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、α-メチルスチレンダイマー、チオグリコール酸エチル、リモネン、ターピノーレン等がある。連鎖移動量の使用量は、目標分子量が得られる範囲であれば、特に限定されるものではないが、全単量体単位100質量%に対して0.01~2.0質量%であることが好ましく、さらに好ましくは0.1~1.5質量%である。連鎖移動剤の使用量が0.01質量%~1.2質量%であれば、目標分子量を容易に得ることができる。 A chain transfer agent can be used in the production of the copolymer according to this embodiment. The chain transfer agent used is not particularly limited, but includes, for example, n-octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, α-methylstyrene dimer, ethyl thioglycolate, limonene, terpinolene, etc. be. The amount of chain transfer used is not particularly limited as long as the target molecular weight can be obtained, but it should be 0.01 to 2.0% by mass based on 100% by mass of all monomer units. It is preferably 0.1 to 1.5% by mass, and more preferably 0.1 to 1.5% by mass. If the amount of chain transfer agent used is 0.01% by mass to 1.2% by mass, the target molecular weight can be easily obtained.
 本実施形態にかかる共重合体へのマレイミド系単量体単位の導入方法としては、マレイミド系単量体、芳香族ビニル系単量体、その他単量体とを共重合する方法(直接法)、或いは不飽和酸無水物単量体、芳香族ビニル系単量体、その他単量体とを予め共重合しておき、更にアンモニア又は第1級アミンで不飽和酸無水物基を反応させる事により不飽和酸無水物基をマレイミド系単量体単位に変換する方法(後イミド化法)がある。後イミド化法の方が、共重合体中の残存マレイミド系単量体量が少なくなるので好ましい。 As a method for introducing the maleimide monomer unit into the copolymer according to the present embodiment, a method of copolymerizing a maleimide monomer, an aromatic vinyl monomer, and other monomers (direct method) , or by copolymerizing an unsaturated acid anhydride monomer, aromatic vinyl monomer, or other monomer in advance, and then reacting the unsaturated acid anhydride group with ammonia or a primary amine. There is a method of converting an unsaturated acid anhydride group into a maleimide monomer unit (post-imidization method). The post-imidization method is preferable because it reduces the amount of maleimide monomer remaining in the copolymer.
 後イミド化法で用いる第1級アミンとは、例えば、メチルアミン、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-オクチルアミン、シクロヘキシルアミン、デシルアミン等のアルキルアミン類及びクロル又はブロム置換アルキルアミン、アニリン、トルイジン、ナフチルアミン等の芳香族アミンがあり、この中でもアニリン、シクロヘキシルアミンが好ましい。これらの第1級アミンは、単独で使用しても2種類以上を組み合わせて使用しても良い。第1級アミンの添加量は特に限定されるものではないが、不飽和酸無水物基に対して好ましくは0.7~1.1モル当量、さらに好ましくは0.85~1.05モル当量である。粗生成物原料中の不飽和酸無水物単量体単位に対して0.7モル当量以上であれば、共重合体の熱安定性が良好となるため好ましい。また、1.1モル当量以下であれば、共重合体中に残存する第1級アミン量が低減するため好ましい。 The primary amines used in the post-imidization method include, for example, methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-octylamine, and cyclohexyl. Examples include amines, alkylamines such as decylamine, chloro- or bromine-substituted alkylamines, aromatic amines such as aniline, toluidine, and naphthylamine, and among these, aniline and cyclohexylamine are preferred. These primary amines may be used alone or in combination of two or more. The amount of primary amine added is not particularly limited, but is preferably 0.7 to 1.1 molar equivalent, more preferably 0.85 to 1.05 molar equivalent relative to the unsaturated acid anhydride group. It is. It is preferable that the amount is 0.7 molar equivalent or more based on the unsaturated acid anhydride monomer unit in the crude product raw material because the thermal stability of the copolymer will be good. Moreover, if it is 1.1 molar equivalent or less, it is preferable because the amount of primary amine remaining in the copolymer is reduced.
 マレイミド系単量体単位を後イミド化法で導入する際に触媒を用いてもよい。触媒は、アンモニア又は第1級アミンと不飽和酸無水物基との反応、特に不飽和酸無水物基からマレイミド基に変換する反応において、脱水閉環反応を向上させる事ができる。触媒の種類は特に限定されるものではないが、例えば第3級アミンを使用する事ができる。第3級アミンとしては特に限定されるものではないが、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N、N-ジメチルアニリン、N、N-ジエチルアニリン等が挙げられる。第3級アミンの添加量は特に限定されるものではないが、不飽和酸無水物基に対し、0.01モル当量以上が好ましい。本発明におけるイミド化反応の温度は好ましくは100~250℃であり、さらに好ましくは120~200℃である。イミド化反応の温度が100℃以上であれば、反応速度が十分に早く生産性の面から好ましい。イミド化反応の温度が250℃以下であれば共重合体の熱劣化による物性低下を抑制できるため好ましい。 A catalyst may be used when introducing the maleimide monomer unit by the post-imidization method. The catalyst can improve the dehydration ring closure reaction in the reaction between ammonia or a primary amine and an unsaturated acid anhydride group, particularly in the reaction of converting an unsaturated acid anhydride group into a maleimide group. Although the type of catalyst is not particularly limited, for example, a tertiary amine can be used. Tertiary amines are not particularly limited, but include, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, N,N-dimethylaniline, N,N-diethylaniline, and the like. Although the amount of the tertiary amine added is not particularly limited, it is preferably 0.01 molar equivalent or more based on the unsaturated acid anhydride group. The temperature of the imidization reaction in the present invention is preferably 100 to 250°C, more preferably 120 to 200°C. If the temperature of the imidization reaction is 100° C. or higher, the reaction rate is sufficiently high and it is preferable from the viewpoint of productivity. It is preferable that the temperature of the imidization reaction is 250° C. or lower because it is possible to suppress deterioration of physical properties due to thermal deterioration of the copolymer.
 共重合体の溶液重合終了後の溶液或いは後イミド化終了後の溶液から、溶液重合に用いた溶媒や未反応の単量体などの揮発分を取り除く方法(脱揮方法)は、公知の手法が採用できる。例えば、加熱器付きの真空脱揮槽やベント付き脱揮押出機を用いることができる。脱揮された溶融状態の共重合体は、造粒工程に移送され、多孔ダイよりストランド状に押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット状に加工することができる。得られたペレットは、粉砕工程を経ることにより、共重合体をパウダー状に加工することができる。共重合体をパウダー状にすることにより、熱硬化性樹脂組成物に配合する際の溶解速度が速くなるという利点がある。なお、共重合体の重量平均分子量を低下させた場合には、ペレット化する工程を経ずに、押出した共重合体を回収して粉砕することでパウダー状に加工してもよい。粉砕方法としては、特に限定はなく、公知の粉砕技術を用いることが出来る。好適に使用できる粉砕装置としては、回転羽根式粉砕機、ターボミル式粉砕機、ターボディスクミル式粉砕機、ターボカッター式粉砕機、ジェットミル式粉砕機、衝撃式粉砕機、ハンマー式粉砕機、振動式粉砕機等がある。 The method for removing volatile components such as the solvent used for solution polymerization and unreacted monomers from the solution after solution polymerization of the copolymer or from the solution after post-imidization (devolatilization method) is a known method. can be adopted. For example, a vacuum devolatilization tank equipped with a heater or a devolatilization extruder equipped with a vent can be used. The devolatilized copolymer in a molten state is transferred to the granulation process, extruded into strands from a multi-hole die, and can be processed into pellets using a cold cut method, an air hot cut method, or an underwater hot cut method. . The obtained pellets can be processed into a powdered copolymer by passing through a pulverization process. Forming the copolymer into a powder has the advantage of increasing its dissolution rate when blended into a thermosetting resin composition. In addition, when the weight average molecular weight of the copolymer is lowered, the extruded copolymer may be recovered and pulverized to form a powder without going through the step of pelletizing. There are no particular limitations on the pulverization method, and any known pulverization technique can be used. Suitable crushing devices include rotary blade crusher, turbo mill crusher, turbo disk mill crusher, turbo cutter crusher, jet mill crusher, impact crusher, hammer crusher, and vibration crusher. There are type crushers, etc.
<共重合体の重量平均分子量(Mw)>
 本実施形態にかかる共重合体の重量平均分子量(Mw)は、1万以上、9万未満であり、好ましくは1.5万~8万であり、より好ましくは2万~7万であり、さらに好ましくは3万~7万である。具体的には例えば、1、2、3、4、5、6、7、8、又は8.9万であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。共重合体の重量平均分子量(Mw)が1万以上であれば、共重合体の重合工程で用いる連鎖移動剤の量が低減されているため、得られる共重合体に含有されるVOC量を低減でき、9万未満であれば、共重合体のMEKへの溶解性を向上できる。
 共重合体の重量平均分子量(Mw)を制御するには、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶媒濃度および連鎖移動剤添加量を調整する等の方法がある。
<Weight average molecular weight (Mw) of copolymer>
The weight average molecular weight (Mw) of the copolymer according to this embodiment is 10,000 or more and less than 90,000, preferably 15,000 to 80,000, more preferably 20,000 to 70,000, More preferably, it is 30,000 to 70,000. Specifically, for example, it is preferably 1, 2, 3, 4, 5, 6, 7, 8, or 89,000, and is within the range between any two of the numerical values exemplified here. Good too. If the weight average molecular weight (Mw) of the copolymer is 10,000 or more, the amount of chain transfer agent used in the copolymerization process is reduced, so the amount of VOC contained in the resulting copolymer can be reduced. If it is less than 90,000, the solubility of the copolymer in MEK can be improved.
To control the weight average molecular weight (Mw) of the copolymer, there are methods such as adjusting the polymerization temperature, polymerization time, and amount of polymerization initiator added, as well as adjusting the solvent concentration and the amount of chain transfer agent added. .
 共重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、例えば、次の条件で測定することができる。
  装置名:SYSTEM-21 Shodex(昭和電工株式会社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製する。
The weight average molecular weight (Mw) of the copolymer is a polystyrene equivalent value measured by gel permeation chromatography (GPC), and can be measured, for example, under the following conditions.
Equipment name: SYSTEM-21 Shodex (manufactured by Showa Denko K.K.)
Column: 3 PL gel MIXED-B in series Temperature: 40℃
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).
<共重合体の数平均分子量(Mn)>
 本実施形態にかかる共重合体の数平均分子量(Mn)は、1万~4万であることが好ましく、より好ましくは2万~4万である。具体的には例えば、1、2、3、又は4万であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。共重合体の数平均分子量(Mn)が1万以上であれば、共重合体の重合工程で用いる連鎖移動剤の量が低減されているため、得られる共重合体に含有されるVOC量を低減でき、4万以下であれば、共重合体のMEKへの溶解性や共重合体を配合した熱硬化性樹脂組成物の硬化性を向上できる。
 共重合体の数平均分子量(Mn)を制御するには、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶媒濃度および連鎖移動剤添加量を調整する等の方法がある。
 共重合体の数平均分子量(Mn)ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、例えば、上述の重量平均分子量(Mw)と同様の条件で測定することができる。
<Number average molecular weight (Mn) of copolymer>
The number average molecular weight (Mn) of the copolymer according to this embodiment is preferably 10,000 to 40,000, more preferably 20,000 to 40,000. Specifically, for example, it is preferably 1, 2, 3, or 40,000, and may be within a range between any two of the numerical values exemplified here. If the number average molecular weight (Mn) of the copolymer is 10,000 or more, the amount of chain transfer agent used in the copolymerization process is reduced, so the amount of VOC contained in the resulting copolymer can be reduced. If it is 40,000 or less, the solubility of the copolymer in MEK and the curability of the thermosetting resin composition blended with the copolymer can be improved.
To control the number average molecular weight (Mn) of the copolymer, there are methods such as adjusting the polymerization temperature, polymerization time, and amount of polymerization initiator added, as well as adjusting the solvent concentration and the amount of chain transfer agent added. .
The number average molecular weight (Mn) of the copolymer is a polystyrene equivalent value measured by gel permeation chromatography (GPC), and can be measured under the same conditions as the weight average molecular weight (Mw) described above, for example. .
<共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数>
 本実施形態にかかる共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数は、2~25であることが好ましく、3~16であることがより好ましく、4~12であることがさらに好ましい。共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数は、具体的には例えば、2、3、4、5、6、7、8、9、10、11、12、15、20、又は25であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数が2以上であれば、共重合体を配合した熱硬化性樹脂組成物の硬化性が向上し、25以下であれば、共重合体の熱分解性と、共重合体を配合した熱硬化性樹脂組成物の硬化性とのバランスが向上する。
 共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数を制御するには、例えば、共重合体中の不飽和酸無水物単量体単位の含有量や、共重合体の数平均分子量(Mn)を調整する等の方法がある。
<Number of unsaturated acid anhydride monomer units per molecular chain of copolymer>
The number of unsaturated acid anhydride monomer units per molecular chain of the copolymer according to this embodiment is preferably 2 to 25, more preferably 3 to 16, and more preferably 4 to 12. It is more preferable that Specifically, the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 15, 20, or 25, and may be within a range between any two of the numerical values exemplified here. If the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer is 2 or more, the curability of the thermosetting resin composition containing the copolymer will improve; If it exists, the balance between the thermal decomposability of the copolymer and the curability of the thermosetting resin composition containing the copolymer will be improved.
To control the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer, for example, the content of unsaturated acid anhydride monomer units in the copolymer and the number of unsaturated acid anhydride monomer units per molecular chain of the copolymer can be controlled. There are methods such as adjusting the number average molecular weight (Mn) of the coalescence.
 共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数(N)は、共重合体に含有される単量体単位の合計を100質量%とした場合の共重合体中の不飽和酸無水物単量体単位の含有量(A、単位:質量%)と、共重合体の数平均分子量(Mn)とから、以下の式(1)により算出することができる。
  N=(A/100)×Mn/98    式(1)
The number (N) of unsaturated acid anhydride monomer units per molecular chain of the copolymer is the number (N) of the copolymer when the total of monomer units contained in the copolymer is 100% by mass. It can be calculated by the following formula (1) from the content (A, unit: mass %) of unsaturated acid anhydride monomer units in the copolymer and the number average molecular weight (Mn) of the copolymer.
N=(A/100)×Mn/98 Formula (1)
<共重合体のガラス転移温度Tg>
 本実施形態にかかる共重合体のガラス転移温度(Tg)は、125℃~200℃であることが好ましく、130℃~190℃であることがより好ましく、135℃~180℃であることがさらに好ましい。具体的には例えば、125、130、135、140、150、155、160、165、170、175、180、185、190、195、又は200℃であることが好ましく、ここで例示した数値の何れか2つの間の範囲内であってもよい。共重合体のガラス転移温度(Tg)が125℃以上であれば、共重合体を配合した熱硬化性樹脂組成物の耐熱性が向上し、200℃以下であれば、共重合体のMEKへの溶解性を向上できる。
 共重合体のガラス転移温度(Tg)は、例えば、共重合体に含有されるマレイミド系単量体単位の含有量や共重合体の重量平均分子量を調整することにより制御することができる。
<Glass transition temperature Tg of copolymer>
The glass transition temperature (Tg) of the copolymer according to this embodiment is preferably 125°C to 200°C, more preferably 130°C to 190°C, and even more preferably 135°C to 180°C. preferable. Specifically, for example, it is preferably 125, 130, 135, 140, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, or 200°C, and any of the values exemplified here. or within a range between the two. If the glass transition temperature (Tg) of the copolymer is 125°C or higher, the heat resistance of the thermosetting resin composition containing the copolymer will improve, and if it is 200°C or lower, the copolymer will become MEK. can improve the solubility of
The glass transition temperature (Tg) of the copolymer can be controlled, for example, by adjusting the content of maleimide monomer units contained in the copolymer and the weight average molecular weight of the copolymer.
 ガラス転移温度はJIS K-7121に準拠して、DSCにて測定される中間ガラス転移温度(Tmg)であり、下記記載の測定条件における測定値である。
   装置名:セイコーインスツルメンツ(株)社製 Robot DSC6200
   昇温速度:10℃/分
The glass transition temperature is an intermediate glass transition temperature (Tmg) measured by DSC in accordance with JIS K-7121, and is a measured value under the measurement conditions described below.
Device name: Robot DSC6200 manufactured by Seiko Instruments Co., Ltd.
Heating rate: 10℃/min
<共重合体中の残存芳香族ビニル系単量体量>
 本実施形態にかかる共重合体中の残存芳香族ビニル系単量体量は、0~500ppmであることが好ましく、0~400ppmであることがより好ましく、0~300ppmであることがさらに好ましい。具体的には例えば、1、50、100、150、200、250、300、350、400、450、又は50ppm以下であることが好ましい。共重合体中の残存芳香族ビニル系単量体量が500ppm以下であれば、共重合体に含有されるVOC量を低減できる。
 共重合体中の残存芳香族ビニル系単量体量は、前処理として、共重合体を50mLの三角フラスコに0.3~0.4g秤量し、内部標準(シクロペンタノール)入りDMFを10mL加えて溶解させた後、次の条件にて測定される。
  装置名:GC-12A(株式会社島津製作所製)
  検出器:FID
  カラム:3mガラスカラム(充填剤:液相PEG20M+TCEP(15+5))
  温度:INJ 150℃、DET 150℃、カラム 115℃
  注入量:1μL
 共重合体中の残存芳香族ビニル系単量体量は、例えば、重合工程における連鎖移動剤量を低減することにより低減することができる。
<Amount of residual aromatic vinyl monomer in copolymer>
The amount of residual aromatic vinyl monomer in the copolymer according to the present embodiment is preferably 0 to 500 ppm, more preferably 0 to 400 ppm, and even more preferably 0 to 300 ppm. Specifically, for example, it is preferably 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 50 ppm or less. If the amount of residual aromatic vinyl monomer in the copolymer is 500 ppm or less, the amount of VOC contained in the copolymer can be reduced.
To determine the amount of residual aromatic vinyl monomer in the copolymer, as a pretreatment, weigh 0.3 to 0.4 g of the copolymer into a 50 mL Erlenmeyer flask, and add 10 mL of DMF containing an internal standard (cyclopentanol). After addition and dissolution, measurement is performed under the following conditions.
Equipment name: GC-12A (manufactured by Shimadzu Corporation)
Detector: FID
Column: 3m glass column (filling material: liquid phase PEG20M+TCEP (15+5))
Temperature: INJ 150℃, DET 150℃, column 115℃
Injection volume: 1μL
The amount of residual aromatic vinyl monomer in the copolymer can be reduced, for example, by reducing the amount of chain transfer agent in the polymerization step.
<共重合体の残存マレイミド系単量体量>
 本実施形態にかかる共重合体中の残存マレイミド系単量体量は、0~500ppmであることが好ましく、0~400ppmであることがより好ましく、0~300ppmであることがさらに好ましい。具体的には例えば、1、50、100、150、200、250、300、350、400、450、又は500ppm以下であることが好ましい。共重合体中の残存マレイミド系単量体量が500ppm以下であれば、共重合体に含有されるVOC量を低減できる。
 共重合体中の残存マレイミド系単量体量は、下記条件で測定される。
  装置名:GC-2010(島津製作所製)
  カラム:キャピラリーカラムDB-5MS(フェニルアレンポリマー)
  温度 :注入口280℃、検出器280℃
      カラム温度80℃(初期)で昇温分析を行う。
      (昇温分析条件)
        80℃:ホールド12分
        80~280℃:20℃/分で昇温10分
        280℃:ホールド10分
  検出器:FID
   手順 :試料0.5gをウンデカン(内部標準物質)入り1,2-ジクロロエタン溶液(0.014g/L)5mlに溶解させる。その後、n-ヘキサン5mlを加えて振とう器で10~15分間振とうし、析出させる。ポリマーを析出・沈殿させた状態で上澄み液のみをGCに注入する。得られた単量体のピーク面積から、内部標準物質より求めた係数を用いて、定量値を算出する。
 共重合体中の残存マレイミド系単量体量は、例えば、共重合体の製造において後イミド化法を採用することにより低減することができる。
<Amount of residual maleimide monomer in copolymer>
The amount of residual maleimide monomer in the copolymer according to the present embodiment is preferably 0 to 500 ppm, more preferably 0 to 400 ppm, and even more preferably 0 to 300 ppm. Specifically, for example, it is preferably 1, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 ppm or less. If the amount of residual maleimide monomer in the copolymer is 500 ppm or less, the amount of VOC contained in the copolymer can be reduced.
The amount of maleimide monomer remaining in the copolymer is measured under the following conditions.
Device name: GC-2010 (manufactured by Shimadzu Corporation)
Column: Capillary column DB-5MS (phenylarene polymer)
Temperature: Inlet 280℃, detector 280℃
Temperature-rising analysis is performed at a column temperature of 80°C (initial).
(Temperature rising analysis conditions)
80℃: Hold for 12 minutes 80-280℃: Increase temperature at 20℃/min for 10 minutes 280℃: Hold for 10 minutes Detector: FID
Procedure: Dissolve 0.5 g of sample in 5 ml of 1,2-dichloroethane solution (0.014 g/L) containing undecane (internal standard substance). Then, add 5 ml of n-hexane and shake for 10 to 15 minutes with a shaker to cause precipitation. With the polymer precipitated and precipitated, only the supernatant liquid is injected into the GC. From the peak area of the obtained monomer, a quantitative value is calculated using a coefficient determined from an internal standard substance.
The amount of residual maleimide monomer in the copolymer can be reduced, for example, by employing a post-imidization method in the production of the copolymer.
<共重合体の特性>
<共重合体の熱安定性>
 本実施形態にかかる共重合体は、熱安定性に優れている。ここで、共重合体の熱安定性とは、熱重量分析(TGA)による5質量%減少温度により評価される指標であり、窒素雰囲気下で5℃/分の昇温速度により測定した値である。
 共重合体の熱重量分析(TGA)による5質量%減少温度が高く、共重合体の熱安定性が優れている場合、当該共重合体を含有する反応性硬化剤の熱安定性も優れたものとなる。
<Characteristics of copolymer>
<Thermal stability of copolymer>
The copolymer according to this embodiment has excellent thermal stability. Here, the thermal stability of a copolymer is an index evaluated by the 5% mass reduction temperature by thermogravimetric analysis (TGA), and is a value measured at a heating rate of 5°C/min in a nitrogen atmosphere. be.
If the copolymer has a high 5% mass reduction temperature by thermogravimetric analysis (TGA) and has excellent thermal stability, the reactive curing agent containing the copolymer also has excellent thermal stability. Become something.
<共重合体のMEKへの溶解性>
 本実施形態にかかる共重合体は、エチルメチルケトン(MEK)への溶解性に優れている。ここで、共重合体のMEKへの溶解性とは、23℃において10gのMEKに溶解し得る最大量の共重合体を溶解させたMEK溶液の重量パーセント濃度(wt%)で規定されるものである。
 具体的には、23℃において、所定量の共重合体を3回に分けてMEKに添加し、撹拌により共重合体を溶解させる。この際、1回目の共重合体の添加から1時間後に共重合体の2回目の添加を実施し、2回目の共重合体の添加から1時間後に共重合体の3回目の添加を実施する。3回目の共重合体の添加後、4時間以内に添加した全ての共重合体が完全に溶解することを確認する。溶解させる所定量の共重合体量を変化させ、溶解し得る共重合体の最大量を求め、当該最大量の共重合体を溶解させた場合のMEK溶液の重量パーセント濃度(wt%)を算出する。
<Solubility of copolymer in MEK>
The copolymer according to this embodiment has excellent solubility in ethyl methyl ketone (MEK). Here, the solubility of the copolymer in MEK is defined as the weight percent concentration (wt%) of the MEK solution in which the maximum amount of copolymer that can be dissolved in 10 g of MEK at 23 ° C. It is.
Specifically, a predetermined amount of the copolymer is added to MEK in three portions at 23° C., and the copolymer is dissolved by stirring. At this time, the second addition of the copolymer is carried out 1 hour after the first addition of the copolymer, and the third addition of the copolymer is carried out 1 hour after the second addition of the copolymer. . After the third addition of copolymer, confirm that all added copolymer is completely dissolved within 4 hours. Varying the predetermined amount of copolymer to be dissolved, determining the maximum amount of copolymer that can be dissolved, and calculating the weight percent concentration (wt%) of the MEK solution when the maximum amount of copolymer is dissolved. do.
 本実施形態にかかる共重合体は、エチルメチルケトン(MEK)への溶解性に優れており、よって、当該共重合体を配合して得られる反応性硬化剤もMEKへの溶解性に優れたものとなる。このため、本実施形態にかかる反応性硬化剤は、例えば、銅張積層板(CCL)のプリプレグの製造において、ガラスファイバーに含侵させる熱硬化性樹脂組成物の反応性硬化剤として使用した場合に、熱硬化性樹脂組成物への共重合体の配合量を多くすることができる。熱硬化性樹脂組成物への共重合体の配合量が多くなれば、共重合体に含まれる各種単量体単位の特性を活用して、例えば耐熱性等の熱硬化性樹脂組成物の特性を向上させることができる。なお、MEKへの溶解性に優れる場合には、アセトン、トルエン、シクロヘキサノン等、CCLの製造で使用されるMEK以外の溶剤への溶解性にも優れることが期待できる。 The copolymer according to this embodiment has excellent solubility in ethyl methyl ketone (MEK), and therefore, the reactive curing agent obtained by blending the copolymer also has excellent solubility in MEK. Become something. Therefore, when the reactive curing agent according to the present embodiment is used as a reactive curing agent in a thermosetting resin composition impregnated into glass fibers, for example, in the production of prepreg for copper clad laminates (CCL), In addition, the amount of copolymer blended into the thermosetting resin composition can be increased. If the amount of the copolymer added to the thermosetting resin composition increases, the properties of the various monomer units contained in the copolymer can be utilized to improve the properties of the thermosetting resin composition, such as heat resistance. can be improved. In addition, when the solubility in MEK is excellent, it can be expected that the solubility in solvents other than MEK used in the production of CCL, such as acetone, toluene, and cyclohexanone, is also excellent.
<反応性硬化剤を配合した熱硬化性樹脂組成物>
 本実施形態にかかる反応性硬化剤を、熱硬化性樹脂に配合して、熱硬化性樹脂組成物を得ることができる。熱硬化性樹脂としては、例えば、銅張積層板(CCL)のプリプレグの製造においてガラスファイバーに含侵させる樹脂を用いることができ、例えば、エポキシ樹脂、シアネート樹脂、ビスマレイミド樹脂等が挙げられる。
 熱硬化性樹脂組成物は、必要に応じて他の樹脂や添加剤等を含有してもよい。
<Thermosetting resin composition containing reactive curing agent>
A thermosetting resin composition can be obtained by blending the reactive curing agent according to this embodiment with a thermosetting resin. As the thermosetting resin, for example, a resin that is impregnated into glass fibers in the production of a prepreg for a copper clad laminate (CCL) can be used, and examples thereof include epoxy resin, cyanate resin, bismaleimide resin, and the like.
The thermosetting resin composition may contain other resins, additives, etc. as necessary.
<他の樹脂>
 本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物には、熱硬化性樹脂組成物と金属箔の剥離強度向上を目的として、ブタジエンゴム、イソプレンゴム、アクリレートゴム、これらを含むグラフト共重合体、当該グラフト共重合体の水素添加物等のエラストマーを本発明の効果を損なわない範囲で配合してもよい。
<Other resins>
The thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment includes butadiene rubber, isoprene rubber, acrylate rubber, Graft copolymers containing these and elastomers such as hydrogenated products of the graft copolymers may be blended within a range that does not impair the effects of the present invention.
<添加剤>
 本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物には、硬化性の向上を目的として、スチレン-無水マレイン酸共重合体等の硬化剤を、本発明にかかる反応性硬化剤に追加して、本発明の効果を損なわない範囲で配合してもよい。
 また、硬化剤の硬化性を促進する目的で、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤等を、本発明の効果を損なわない範囲で配合してもよい。
 さらに、熱硬化性樹脂組成物に難燃性を付与する目的で、トリクレジルホスフェート、及びトリフェニルホスフェート等のリン酸エステル系難燃剤、赤リン、三酸化アンチモン、水酸化アルミニウム、及び水酸化マグネシウム等の無機物、等の難燃剤を本発明の効果を損なわない範囲で配合してもよい。
 また、低熱膨張率化や高弾性率化を目的に、シリカ、マイカ、タルク、ガラス短繊維、ガラス微粉末、及び中空ガラス等の無機充填剤を、本発明の効果を損なわない範囲で配合してもよい。
<Additives>
A curing agent such as a styrene-maleic anhydride copolymer according to the present invention is added to the thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment for the purpose of improving curability. It may be added to the reactive curing agent to the extent that it does not impair the effects of the present invention.
Furthermore, for the purpose of accelerating the curing properties of the curing agent, an amine curing accelerator, an imidazole curing accelerator, a phosphorus curing accelerator, etc. may be blended within a range that does not impair the effects of the present invention.
Furthermore, for the purpose of imparting flame retardancy to the thermosetting resin composition, phosphate ester flame retardants such as tricresyl phosphate and triphenyl phosphate, red phosphorus, antimony trioxide, aluminum hydroxide, and hydroxide are added. Flame retardants such as inorganic substances such as magnesium may be added to the extent that the effects of the present invention are not impaired.
In addition, for the purpose of lowering the coefficient of thermal expansion and increasing the modulus of elasticity, inorganic fillers such as silica, mica, talc, short glass fibers, fine glass powder, and hollow glass may be blended within the range that does not impair the effects of the present invention. It's okay.
<熱硬化性樹脂組成物の製造>
 熱硬化性樹脂組成物は、本実施形態にかかる反応性硬化剤、熱硬化性樹脂、及び他の樹脂や添加剤を、有機溶媒に溶解させ、これを混合して得られる。このような有機溶媒としては、例えば、MEK、シクロヘキサノン、メチルイソブチルケトン等のケトン類が挙げられる。
<Manufacture of thermosetting resin composition>
The thermosetting resin composition is obtained by dissolving the reactive curing agent according to the present embodiment, the thermosetting resin, and other resins and additives in an organic solvent, and then mixing the mixture. Examples of such organic solvents include ketones such as MEK, cyclohexanone, and methyl isobutyl ketone.
<熱硬化性樹脂組成物の特性>
<熱硬化性樹脂組成物の耐熱性>
 本実施形態に反応性硬化剤を配合して得られる熱硬化性樹脂組成物は、耐熱性に優れる。ここで、熱硬化性樹脂組成物の耐熱性とは、JIS C 6481に準拠し、DSCで測定されるガラス転移温度(Tg)により評価される特性である。ここで、ガラス転移温度(Tg)は、中間ガラス転移温度(Tmg)であり、以下に記載の測定条件における測定値である。
   装置名:セイコーインスツルメンツ(株)社製 Robot DSC6200
   昇温速度:10℃/分
<Characteristics of thermosetting resin composition>
<Heat resistance of thermosetting resin composition>
The thermosetting resin composition obtained by blending the reactive curing agent with this embodiment has excellent heat resistance. Here, the heat resistance of the thermosetting resin composition is a property evaluated by the glass transition temperature (Tg) measured by DSC in accordance with JIS C 6481. Here, the glass transition temperature (Tg) is an intermediate glass transition temperature (Tmg), and is a value measured under the measurement conditions described below.
Device name: Robot DSC6200 manufactured by Seiko Instruments Co., Ltd.
Heating rate: 10℃/min
 本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物は、MEKへの溶解性が向上された反応性硬化剤を採用しているため、熱硬化性樹脂組成物に配合可能な反応性硬化剤の量が多くなる。本実施形態にかかる反応性硬化剤には、熱硬化性樹脂組成物の耐熱性向上に寄与し得るマレイミド系単量体単位が含有されているため、結果として熱硬化性樹脂組成物の耐熱性が優れる。 The thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment employs a reactive curing agent with improved solubility in MEK. The amount of reactive curing agent that can be blended increases. Since the reactive curing agent according to the present embodiment contains a maleimide monomer unit that can contribute to improving the heat resistance of the thermosetting resin composition, as a result, the heat resistance of the thermosetting resin composition is improved. is excellent.
 また、熱硬化性樹脂の硬化剤として、例えば、スチレン-無水マレイン酸共重合体を本実施形態にかかる反応性硬化剤と併用する場合においても、本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物は耐熱性に優れる。
 本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物は、MEKへの溶解性が向上された反応性硬化剤を採用しているため、熱硬化性樹脂組成物に配合可能な反応性硬化剤の量が多くなる。このため、併用するスチレン-無水マレイン酸共重合体の熱硬化性樹脂組成物への配合量を減らすことが可能となる。スチレン-無水マレイン酸共重合体は、本実施形態にかかる反応性硬化剤よりガラス転移温度が低いため、熱硬化性樹脂組成物への配合量を減らすことができることにより、結果として熱硬化性樹脂組成物の耐熱性が優れる。
Furthermore, even when a styrene-maleic anhydride copolymer is used in combination with the reactive curing agent according to this embodiment as a curing agent for a thermosetting resin, the reactive curing agent according to this embodiment may be blended. The thermosetting resin composition obtained by this process has excellent heat resistance.
The thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment employs a reactive curing agent with improved solubility in MEK. The amount of reactive curing agent that can be blended increases. Therefore, it is possible to reduce the amount of the styrene-maleic anhydride copolymer used in combination with the thermosetting resin composition. Since the styrene-maleic anhydride copolymer has a lower glass transition temperature than the reactive curing agent according to this embodiment, the amount added to the thermosetting resin composition can be reduced, resulting in a thermosetting resin. The composition has excellent heat resistance.
<熱硬化性樹脂組成物の硬化性>
 本実施形態に反応性硬化剤を配合して得られる熱硬化性樹脂組成物は、共重合体の数平均分子量を調整することにより、硬化性に優れるものとすることも可能である。
 熱硬化性樹脂組成物の硬化性とは、JIS C 6481に準拠し、下記測定条件におけるTMA法によるガラス転移温度(Tg)の測定によって算出される樹脂硬化度により評価される特性である。
   装置名:ティー・エイ・インスツルメント・ジャパン(株)社製、Q400
   昇温速度:5℃/分
 本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物は、MEKへの溶解性が向上された反応性硬化剤を採用しているため、熱硬化性樹脂組成物へ配合可能な反応性硬化剤の量が多くなる。本実施形態にかかる反応性硬化剤には、熱硬化性樹脂組成物中の熱硬化性樹脂と反応し得る不飽和酸無水物単量体単位が含有されているため、熱硬化性樹脂組成物の硬化性を向上させることができる。
<Curability of thermosetting resin composition>
The thermosetting resin composition obtained by blending the reactive curing agent with the present embodiment can also be made to have excellent curability by adjusting the number average molecular weight of the copolymer.
The curability of a thermosetting resin composition is a property evaluated by the degree of resin curing calculated by measuring the glass transition temperature (Tg) by the TMA method under the following measurement conditions in accordance with JIS C 6481.
Device name: Q400 manufactured by T.A. Instrument Japan Co., Ltd.
Temperature increase rate: 5°C/min The thermosetting resin composition obtained by blending the reactive curing agent according to this embodiment employs a reactive curing agent with improved solubility in MEK. , the amount of reactive curing agent that can be incorporated into the thermosetting resin composition increases. The reactive curing agent according to the present embodiment contains an unsaturated acid anhydride monomer unit that can react with the thermosetting resin in the thermosetting resin composition. can improve the curability of
<熱硬化性樹脂組成物の硬化物の耐吸湿性>
 本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物の硬化物は、共重合体中の不飽和酸無水物単量体単位の量を低減することにより、耐吸湿性に優れるものとすることも可能である。
 熱硬化性樹脂組成物の硬化物の耐吸湿性とは、JIS C 6481に準拠して測定される、吸水率により評価される特性である。
 特に、スチレン-無水マレイン酸共重合体と本実施形態にかかる反応性硬化剤を併用する場合において、本実施形態にかかる反応性硬化剤を配合して得られる熱硬化性樹脂組成物は、MEKへの溶解性が向上された反応性硬化剤を採用しているため、熱硬化性樹脂組成物に配合可能な反応性硬化剤の量が多くなる。このため、併用するスチレン-無水マレイン酸共重合体の熱硬化性樹脂組成物への配合量を減らすことが可能となる。スチレン-無水マレイン酸共重合体は本実施形態にかかる反応性硬化剤より吸湿性が高いため、熱硬化性樹脂組成物への配合量を減らすことができることにより、結果として熱硬化性樹脂組成物の耐吸湿性が優れる。
<Moisture absorption resistance of cured product of thermosetting resin composition>
The cured product of the thermosetting resin composition obtained by blending the reactive curing agent according to the present embodiment has moisture absorption resistance by reducing the amount of unsaturated acid anhydride monomer units in the copolymer. It is also possible to use a material with excellent properties.
The moisture absorption resistance of a cured product of a thermosetting resin composition is a property evaluated by water absorption rate measured in accordance with JIS C 6481.
In particular, when the styrene-maleic anhydride copolymer and the reactive curing agent according to this embodiment are used together, the thermosetting resin composition obtained by blending the reactive curing agent according to this embodiment is MEK Since a reactive curing agent with improved solubility in the thermosetting resin composition is used, the amount of reactive curing agent that can be blended into the thermosetting resin composition increases. Therefore, it is possible to reduce the amount of the styrene-maleic anhydride copolymer used in combination with the thermosetting resin composition. Since the styrene-maleic anhydride copolymer has higher hygroscopicity than the reactive curing agent according to this embodiment, it is possible to reduce the amount of the styrene-maleic anhydride copolymer to be added to the thermosetting resin composition. Excellent moisture absorption resistance.
 以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
 表中、Stはスチレン、ANはアクリロニトリル、NPMIはN-フェニルマレイミド、MAHは無水マレイン酸、MEKはメチルエチルケトンを示す。
Hereinafter, detailed contents will be explained using examples, but the present invention is not limited to the following examples.
In the table, St represents styrene, AN represents acrylonitrile, NPMI represents N-phenylmaleimide, MAH represents maleic anhydride, and MEK represents methyl ethyl ketone.
<実施例1:共重合体(P-1)の合成>
 攪拌機を備えた容積約120リットルのオートクレーブ中にスチレン83質量部、マレイン酸無水物1質量部、α-メチルスチレンダイマー0.6質量部、メチルエチルケトン26質量部を仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて92℃まで昇温した。昇温後92℃を保持しながら、マレイン酸無水物16質量部とt-ブチルパーオキシ-2-エチルヘキサノエート0.6質量部をメチルエチルケトン78質量部に溶解した溶液を5時間かけて連続的に添加した。添加終了後、120℃に昇温し、1時間反応させて重合を終了させた。その後、重合液にアニリン15質量部、トリエチルアミン0.3質量部を加え140℃で6時間反応させた。反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状の共重合体を得た。得られたペレットを、回転羽根式粉砕機により粉砕し、パウダー状の共重合体(P-1)を得た。後述の13C-NMR法にて共重合体(P-1)の組成分析を行ったところ、スチレン74.0質量%、N-フェニルマレイミド23.0質量%、無水マレイン酸3.0質量%であった。得られた共重合体(P-1)の分析結果を表1に示す。
<Example 1: Synthesis of copolymer (P-1)>
83 parts by mass of styrene, 1 part by mass of maleic anhydride, 0.6 parts by mass of α-methylstyrene dimer, and 26 parts by mass of methyl ethyl ketone were placed in an autoclave with a capacity of approximately 120 liters equipped with a stirrer, and the gas phase was heated with nitrogen gas. After the substitution, the temperature was raised to 92° C. over 40 minutes while stirring. After raising the temperature, a solution of 16 parts by mass of maleic anhydride and 0.6 parts by mass of t-butylperoxy-2-ethylhexanoate dissolved in 78 parts by mass of methyl ethyl ketone was continuously heated for 5 hours while maintaining the temperature at 92°C. added. After the addition was completed, the temperature was raised to 120°C, and the reaction was carried out for 1 hour to complete the polymerization. Thereafter, 15 parts by mass of aniline and 0.3 parts by mass of triethylamine were added to the polymerization solution, and the mixture was reacted at 140° C. for 6 hours. After the completion of the reaction, the imidization reaction solution was put into a vent type screw extruder, and volatile components were removed to obtain a pellet-shaped copolymer. The obtained pellets were pulverized using a rotary blade type pulverizer to obtain a powdery copolymer (P-1). When the composition of the copolymer (P-1) was analyzed using the 13 C-NMR method described below, it was found to be 74.0% by mass of styrene, 23.0% by mass of N-phenylmaleimide, and 3.0% by mass of maleic anhydride. Met. Table 1 shows the analysis results of the obtained copolymer (P-1).
<組成分析>
 共重合体(P-1)の組成分析は、13C-NMR法にて下記記載の測定条件で測定した。
   装置名:FT-NMR  AVANCE300(BRUKER社製)
   溶媒:重水素化クロロホルム
   濃度:14質量%
   温度:27℃
   積算回数:8000回
<Composition analysis>
The composition analysis of the copolymer (P-1) was carried out by 13 C-NMR method under the measurement conditions described below.
Equipment name: FT-NMR AVANCE300 (manufactured by BRUKER)
Solvent: Deuterated chloroform Concentration: 14% by mass
Temperature: 27℃
Accumulated number of times: 8000 times
<重量平均分子量(Mw)及び数平均分子量(Mn)>
 共重合体(P-1)の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、次の条件で測定した。
  装置名:SYSTEM-21 Shodex(昭和電工株式会社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
<Weight average molecular weight (Mw) and number average molecular weight (Mn)>
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer (P-1) are polystyrene equivalent values measured by gel permeation chromatography (GPC), and were measured under the following conditions. .
Equipment name: SYSTEM-21 Shodex (manufactured by Showa Denko K.K.)
Column: 3 PL gel MIXED-B in series Temperature: 40℃
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).
<共重合体の分子鎖1本あたりの不飽和酸無水物単量体単位の個数>
 共重合体(P-1)の分子鎖1本あたりの不飽和酸無水物単量体単位の個数(N)は、共重合体(P-1)に含有される単量体単位の合計を100質量%とした場合の共重合体(P-1)中の不飽和酸無水物単量体単位の含有量(A、単位:質量%)と、共重合体(P-1)の数平均分子量(Mn)とから、以下の式(1)により算出した。
  N=(A/100)×Mn/98    式(1)
<Number of unsaturated acid anhydride monomer units per molecular chain of copolymer>
The number (N) of unsaturated acid anhydride monomer units per molecular chain of the copolymer (P-1) is the total number of monomer units contained in the copolymer (P-1). Content (A, unit: mass%) of unsaturated acid anhydride monomer units in copolymer (P-1) when 100% by mass and number average of copolymer (P-1) It was calculated from the molecular weight (Mn) using the following formula (1).
N=(A/100)×Mn/98 Formula (1)
<ガラス転移温度(Tg)>
 共重合体(P-1)のガラス転移温度はJIS K-7121に準拠して、DSCにて測定された中間ガラス転移温度(Tmg)であり、下記記載の測定条件で測定した。
   装置名:セイコーインスツルメンツ(株)社製 Robot DSC6200
   昇温速度:10℃/分
<Glass transition temperature (Tg)>
The glass transition temperature of the copolymer (P-1) is the intermediate glass transition temperature (Tmg) measured by DSC in accordance with JIS K-7121, and was measured under the measurement conditions described below.
Device name: Robot DSC6200 manufactured by Seiko Instruments Co., Ltd.
Heating rate: 10℃/min
<MEKへの溶解性>
 共重合体(P-1)のMEKへの溶解性は、23℃において10gのMEKに溶解し得る最大量の共重合体(P-1)を溶解させたMEK溶液の重量パーセント濃度(wt%)により評価した。
 23℃において、所定量の共重合体(P-1)を3回に分けて10gのMEKに添加し、撹拌により共重合体を溶解させた。この際、1回目の共重合体(P-1)の添加から1時間後に共重合体(P-1)の2回目の添加を実施し、2回目の共重合体(P-1)の添加から1時間後に共重合体(P-1)の3回目の添加を実施した。3回目の共重合体(P-1)の添加後、4時間以内に添加した全ての共重合体(P-1)が完全に溶解することを確認した。溶解させる所定量の共重合体(P-1)の量を変化させ、溶解し得る共重合体(P-1)の最大量を求めた。当該最大量の共重合体(P-1)を溶解させた場合のMEK溶液の重量パーセント濃度(wt%)を算出した。
<Solubility in MEK>
The solubility of copolymer (P-1) in MEK is determined by the weight percent concentration (wt%) of an MEK solution in which the maximum amount of copolymer (P-1) that can be dissolved in 10 g of MEK at 23°C is ) was evaluated.
At 23° C., a predetermined amount of copolymer (P-1) was added to 10 g of MEK in three portions, and the copolymer was dissolved by stirring. At this time, the second addition of the copolymer (P-1) was carried out 1 hour after the first addition of the copolymer (P-1), and the second addition of the copolymer (P-1) was carried out. One hour later, the third addition of copolymer (P-1) was carried out. After the third addition of copolymer (P-1), it was confirmed that all of the added copolymer (P-1) was completely dissolved within 4 hours. A predetermined amount of copolymer (P-1) to be dissolved was varied, and the maximum amount of copolymer (P-1) that could be dissolved was determined. The weight percent concentration (wt%) of the MEK solution when the maximum amount of copolymer (P-1) was dissolved was calculated.
<残存スチレン単量体量>
 共重合体(P-1)中の残存スチレン単量体量は以下の手順により測定した。
 前処理として、共重合体(P-1)を50mLの三角フラスコに0.3~0.4g秤量し、内部標準(シクロペンタノール)入りDMFを10mL加え共重合体(P-1)を溶解させ、次の条件にて測定した。
  装置名:GC-12A(株式会社島津製作所製)
  検出器:FID
  カラム:3mガラスカラム(充填剤:液相PEG20M+TCEP(15+5))
  温度:INJ 150℃、DET 150℃、カラム 115℃
   注入量:1μL
<Residual styrene monomer amount>
The amount of styrene monomer remaining in the copolymer (P-1) was measured by the following procedure.
As a pretreatment, weigh 0.3 to 0.4 g of copolymer (P-1) into a 50 mL Erlenmeyer flask, add 10 mL of DMF containing internal standard (cyclopentanol), and dissolve copolymer (P-1). and measured under the following conditions.
Equipment name: GC-12A (manufactured by Shimadzu Corporation)
Detector: FID
Column: 3m glass column (filling material: liquid phase PEG20M+TCEP (15+5))
Temperature: INJ 150℃, DET 150℃, column 115℃
Injection volume: 1μL
<残存N-フェニルマレイミド単量体量>
 共重合体(P-1)中の残存N-フェニルマレイミド単量体量は、以下の条件により測定した。
  装置名:GC-2010(島津製作所製)
  カラム:キャピラリーカラムDB-5MS(フェニルアレンポリマー)
  温度 :注入口280℃、検出器280℃
      カラム温度80℃(初期)で昇温分析を行った。
      (昇温分析条件)
        80℃:ホールド12分
        80~280℃:20℃/分で昇温10分
        280℃:ホールド10分
  検出器:FID
   手順 :共重合体(P-1)0.5gをウンデカン(内部標準物質)入り1,2-ジクロロエタン溶液(0.014g/L)5mlに溶解させた。その後、n-ヘキサン5mlを加えて振とう器で10~15分間振とうし、析出させた。ポリマーを析出・沈殿させた状態で上澄み液のみをGCに注入した。得られた単量体のピーク面積から、内部標準物質より求めた係数を用いて、定量値を算出した。
<Amount of residual N-phenylmaleimide monomer>
The amount of residual N-phenylmaleimide monomer in the copolymer (P-1) was measured under the following conditions.
Device name: GC-2010 (manufactured by Shimadzu Corporation)
Column: Capillary column DB-5MS (phenylarene polymer)
Temperature: Inlet 280℃, detector 280℃
Temperature-rising analysis was performed at a column temperature of 80°C (initial stage).
(Temperature rising analysis conditions)
80℃: Hold for 12 minutes 80-280℃: Increase temperature at 20℃/min for 10 minutes 280℃: Hold for 10 minutes Detector: FID
Procedure: 0.5 g of copolymer (P-1) was dissolved in 5 ml of a 1,2-dichloroethane solution (0.014 g/L) containing undecane (internal standard substance). Thereafter, 5 ml of n-hexane was added and the mixture was shaken for 10 to 15 minutes to cause precipitation. With the polymer precipitated and precipitated, only the supernatant liquid was injected into the GC. From the peak area of the obtained monomer, a quantitative value was calculated using a coefficient determined from an internal standard substance.
<共重合体の熱安定性>
 共重合体(P-1)の熱重量分析(TGA)による5質量%減少温度を、窒素雰囲気下で5℃/分の昇温速度により測定した。
<Thermal stability of copolymer>
The 5% mass reduction temperature of the copolymer (P-1) by thermogravimetric analysis (TGA) was measured at a heating rate of 5° C./min under a nitrogen atmosphere.
<実施例2~24:共重合体(P-2)~(P-24)の合成>
 共重合体(P-1)の合成と同様の操作により、仕込む単量体の量、重合開始剤の量、連鎖移動剤の量、トリエチルアミンの量、及び反応時間を適宜調整して、共重合体(P-2)~(P-24)を得る。
 なお、アクリロニトリル単量体単位を含む共重合体の合成は、最初にスチレン、アクリロニトリル、マレイン酸無水物、α-メチルスチレンダイマー、及びメチルエチルケトンをオートクレーブに仕込む。
 また、共重合体(P-17)については、最初にスチレン、マレイン酸無水物、N-フェニルマレイミド、α-メチルスチレンダイマー、及びメチルエチルケトンをオートクレーブに仕込む。重合終了後、イミド化反応を実施せず、重合反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去してペレット状の共重合体を得る。得られたペレットを、回転羽根式粉砕機により粉砕し、パウダー状の共重合体(P-17)を得る。
 分子量が比較的低い共重合体は、反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去した後、ペレット化の工程を経ずに共重合体を回収する。回収された共重合体を、回転羽根式粉砕機により粉砕し、パウダー状共重合体を得る。
 共重合体(P-2)~(P-24)の組成及び特性は、共重合体(P-1)と同様の方法により測定する。
 共重合体(P-2)~(P-24)の組成及び特性を表1~2に示す。
<Examples 2 to 24: Synthesis of copolymers (P-2) to (P-24)>
Copolymerization was carried out in the same manner as in the synthesis of copolymer (P-1) by appropriately adjusting the amount of monomers to be charged, the amount of polymerization initiator, the amount of chain transfer agent, the amount of triethylamine, and the reaction time. Combined products (P-2) to (P-24) are obtained.
In the synthesis of a copolymer containing acrylonitrile monomer units, styrene, acrylonitrile, maleic anhydride, α-methylstyrene dimer, and methyl ethyl ketone are first charged in an autoclave.
For the copolymer (P-17), styrene, maleic anhydride, N-phenylmaleimide, α-methylstyrene dimer, and methyl ethyl ketone are first charged into an autoclave. After the polymerization is completed, the imidization reaction is not performed, and the polymerization reaction solution is charged into a vent type screw extruder to remove volatile components to obtain a pellet-shaped copolymer. The obtained pellets are pulverized using a rotary blade type pulverizer to obtain a powdery copolymer (P-17).
For copolymers with relatively low molecular weights, the imidization reaction solution after the reaction is put into a vent-type screw extruder to remove volatile components, and then the copolymers are recovered without going through the pelletization process. . The recovered copolymer is pulverized using a rotary blade type pulverizer to obtain a powdered copolymer.
The composition and properties of copolymers (P-2) to (P-24) are measured by the same method as for copolymer (P-1).
The compositions and properties of copolymers (P-2) to (P-24) are shown in Tables 1 and 2.
<比較例1~9:共重合体(PB-1)~(PB-9)の合成>
 共重合体(P-1)の合成と同様の操作により、仕込む単量体の量、重合開始剤の量、連鎖移動剤の量、トリエチルアミンの量、及び反応時間を適宜調整して、共重合体(PB-1)~(PB-9)を得る。
 分子量が比較的低い共重合体は、反応終了後のイミド化反応液をベントタイプスクリュー式押出機に投入し、揮発分を除去した後、ペレット化の工程を経ずに共重合体を回収する。回収された共重合体を、回転羽根式粉砕機により粉砕し、パウダー状共重合体を得る。
 共重合体(PB-1)~(PB-9)の組成及び物性は、共重合体(P-1)と同様の方法により測定する。
 共重合体(PB-1)~(PB-9)の組成及び物性を表3に示す。
<Comparative Examples 1 to 9: Synthesis of copolymers (PB-1) to (PB-9)>
Copolymerization was carried out in the same manner as in the synthesis of copolymer (P-1) by appropriately adjusting the amount of monomers to be charged, the amount of polymerization initiator, the amount of chain transfer agent, the amount of triethylamine, and the reaction time. Combined products (PB-1) to (PB-9) are obtained.
For copolymers with relatively low molecular weights, the imidization reaction solution after the reaction is put into a vent-type screw extruder to remove volatile components, and then the copolymers are recovered without going through the pelletization process. . The recovered copolymer is pulverized using a rotary blade type pulverizer to obtain a powdered copolymer.
The composition and physical properties of copolymers (PB-1) to (PB-9) are measured in the same manner as for copolymer (P-1).
Table 3 shows the composition and physical properties of copolymers (PB-1) to (PB-9).
<エポキシ樹脂組成物(R-1)~(R-24)、(RB-1)~(RB-9)の製造>
 反応性硬化剤としての各共重合体(P-1)~(P-24)、(PB-1)~(PB-9)、エポキシ樹脂(商品名:EPICLON N-673、DIC社製)20g、及び併用する硬化剤としてのスチレン-無水マレイン酸共重合体(分子鎖1本あたりの無水マレイン酸単量体単位の個数:9個、ガラス転移温度:120℃、商品名:EF40、Polyscope社製)、及び難燃剤(PX-200、第八化学工業社)15gを、40gのMEKに溶解させて、エポキシ樹脂組成物(R-1)~(R-24)、(RB-1)~(RB-9)を得る。
 なお、反応性硬化剤としての共重合体、及び併用する硬化剤としてのスチレン-無水マレイン酸共重合体の配合量は、二つの硬化剤の合計量が10gとなるように調整する。具体的には、共重合体のMEKへの溶解性の評価において測定した、最大量の共重合体を溶解させた場合のMEK溶液の重量パーセント濃度X(wt%)の値に応じて、共重合体の配合量Y(単位g)及びスチレン-無水マレイン酸共重合体の配合量Z(単位g)を以下のように調整する。
 X(wt%)が0wt%以上、50wt%未満の場合
共重合体の配合量 Y=2×X×(10/100)
スチレン-無水マレイン酸共重合体の配合量 Z=10-Y
 X(wt%)が50wt%以上の場合
共重合体の配合量 Y=10
スチレン-無水マレイン酸共重合体の配合量 Z=0
<Production of epoxy resin compositions (R-1) to (R-24), (RB-1) to (RB-9)>
20 g of each copolymer (P-1) to (P-24), (PB-1) to (PB-9), epoxy resin (trade name: EPICLON N-673, manufactured by DIC Corporation) as a reactive curing agent , and a styrene-maleic anhydride copolymer as a curing agent used in combination (number of maleic anhydride monomer units per molecular chain: 9, glass transition temperature: 120°C, product name: EF40, Polyscope) ) and 15 g of a flame retardant (PX-200, Daihachi Kagaku Kogyo Co., Ltd.) were dissolved in 40 g of MEK to prepare epoxy resin compositions (R-1) to (R-24), (RB-1) to (RB-9) is obtained.
The amounts of the copolymer as a reactive curing agent and the styrene-maleic anhydride copolymer as a curing agent to be used together are adjusted so that the total amount of the two curing agents is 10 g. Specifically, the copolymer is mixed according to the value of the weight percent concentration The amount Y (unit: g) of the polymer and the amount Z (unit: g) of the styrene-maleic anhydride copolymer are adjusted as follows.
When X (wt%) is 0 wt% or more and less than 50 wt%, the amount of copolymer blended is Y = 2 x X x (10/100)
Blending amount of styrene-maleic anhydride copolymer Z=10-Y
When X (wt%) is 50wt% or more, the amount of copolymer blended is Y=10
Blending amount of styrene-maleic anhydride copolymer Z=0
<エポキシ樹脂組成物の特性>
<エポキシ樹脂組成物の硬化後の耐熱性>
 エポキシ樹脂組成物の硬化後の耐熱性を、以下の方法により評価する。
 サンプル調製方法:エポキシ樹脂組成物をカプトンフィルム上に展開し、160℃で10分加熱乾燥してキャスト法により固形分を取り出す。次にこの固形分を用いて、圧力25kg/cm、温度185℃で90分間プレスを行って、樹脂板を得る。
・耐熱性の測定方法:JIS C 6481に準拠し、DSCによりガラス転移温度(Tg)を測定する。ここで、ガラス転移温度(Tg)は中間ガラス転移温度(Tmg)であり、下記記載の測定条件における測定値である。
   装置名:セイコーインスツルメンツ(株)社製 Robot DSC6200
   昇温速度:10℃/分
・評価基準
A(非常に優れる):180℃超
B(優れる):175℃超、180℃以下
C(良好):170℃超、175℃以下
D(やや劣る):160℃以上、170℃以下
E(劣る):160℃未満
 エポキシ樹脂組成物(R-1)~(R-24)、(RB-1)~(RB-9)の耐熱性を表1~表3に示す。
<Characteristics of epoxy resin composition>
<Heat resistance after curing of epoxy resin composition>
The heat resistance of the epoxy resin composition after curing is evaluated by the following method.
Sample preparation method: The epoxy resin composition is spread on a Kapton film, heated and dried at 160°C for 10 minutes, and the solid content is taken out by a casting method. Next, using this solid content, pressing is performed for 90 minutes at a pressure of 25 kg/cm 2 and a temperature of 185° C. to obtain a resin plate.
-Measurement method of heat resistance: Glass transition temperature (Tg) is measured by DSC in accordance with JIS C 6481. Here, the glass transition temperature (Tg) is an intermediate glass transition temperature (Tmg), and is a value measured under the measurement conditions described below.
Device name: Robot DSC6200 manufactured by Seiko Instruments Co., Ltd.
Temperature rising rate: 10°C/min Evaluation criteria A (very good): Over 180°C B (excellent): Over 175°C, below 180°C C (good): Over 170°C, below 175°C D (slightly poor) : 160°C or higher, 170°C or lower E (poor): Below 160°C Table 1 shows the heat resistance of epoxy resin compositions (R-1) to (R-24) and (RB-1) to (RB-9). It is shown in Table 3.
<エポキシ樹脂組成物の硬化性>
 エポキシ樹脂組成物の硬化性を、以下の方法により評価する。
・サンプル調製方法:エポキシ樹脂組成物をカプトンフィルム上に展開し、160℃で10分加熱乾燥してキャスト法により固形分を取り出し、硬化前のサンプルとする。次にこの固形分を用いて、圧力25kg/cm、温度185℃で90分間プレスを行って、硬化後のサンプルを得る。
・硬化性の測定方法:JIS C 6481に準拠し、TMA法によるガラス転移温度(Tg)を測定して樹脂硬化度を算出する
   装置名:ティー・エイ・インスツルメント・ジャパン(株)社製、Q400
   昇温速度:5℃/分
・評価基準
A(非常に優れる):硬化度50超
B(優れる):硬化度40超、50以下
C(良好):硬化度30超、40以下
D(やや劣る):硬化度20以上、30以下
E(劣る):硬化度20未満
 エポキシ樹脂組成物(R-1)~(R-24)、(RB-1)~(RB-9)の硬化性を表1~表3に示す。
<Curability of epoxy resin composition>
The curability of the epoxy resin composition is evaluated by the following method.
- Sample preparation method: The epoxy resin composition is spread on a Kapton film, heated and dried at 160° C. for 10 minutes, and the solid content is taken out by a casting method to obtain a sample before hardening. Next, using this solid content, pressing is performed for 90 minutes at a pressure of 25 kg/cm 2 and a temperature of 185° C. to obtain a cured sample.
・Measurement method of curing property: In accordance with JIS C 6481, the degree of resin curing is calculated by measuring the glass transition temperature (Tg) using the TMA method.Device name: Manufactured by TA Instruments Japan Co., Ltd. ,Q400
Temperature rising rate: 5°C/min Evaluation criteria A (very good): Curing degree over 50 B (excellent): Curing degree over 40, 50 or less C (good): Curing degree over 30, 40 or less D (slightly poor) ): Curing degree 20 or more, 30 or less E (poor): Curing degree less than 20 The curability of epoxy resin compositions (R-1) to (R-24), (RB-1) to (RB-9) is shown below. 1 to Table 3.
<エポキシ樹脂組成物の硬化物の耐吸湿性>
 エポキシ樹脂組成物の硬化物の耐吸湿性を、以下の方法により評価する。
・サンプル調製方法:エポキシ樹脂組成物をカプトンフィルム上に展開し、160℃で10分加熱乾燥してキャスト法により固形分を取り出す。次にこの固形分を用いて、圧力25kg/cm、温度185℃で90分間プレスを行って、樹脂板を得る。
・測定方法:JIS C 6481に準拠し、吸水率を測定する
・評価基準
A(非常に優れる):0.5%未満
B(優れる):0.5%以上、1.0%未満
C(良好):1.0%以上、1.5%未満
D(やや劣る):1.5以上、2.0%以下
E(劣る):2.0%超
 エポキシ樹脂組成物(R-1)~(R-24)、(RB-1)~(RB-9)の硬化物の耐吸湿性を表1~表3に示す。
<Moisture absorption resistance of cured product of epoxy resin composition>
The moisture absorption resistance of the cured product of the epoxy resin composition is evaluated by the following method.
- Sample preparation method: Spread the epoxy resin composition on Kapton film, heat and dry at 160°C for 10 minutes, and remove the solid content by casting. Next, using this solid content, pressing is performed for 90 minutes at a pressure of 25 kg/cm 2 and a temperature of 185° C. to obtain a resin plate.
・Measurement method: Measure water absorption according to JIS C 6481 ・Evaluation criteria A (very good): less than 0.5% B (excellent): 0.5% or more, less than 1.0% C (good) ): 1.0% or more, less than 1.5% D (slightly inferior): 1.5 or more, 2.0% or less E (poor): more than 2.0% Epoxy resin composition (R-1) ~ ( Tables 1 to 3 show the moisture absorption resistance of the cured products of R-24) and (RB-1) to (RB-9).
 実施例にかかる反応性硬化剤を配合したエポキシ樹脂組成物においては、MEKへの溶解性が向上された共重合体を反応性硬化剤として用いているため、共重合体をより多くエポキシ樹脂組成物に配合することができる。このため、共重合体に含まれるマレイミド系単量体単位に起因してエポキシ樹脂組成物の耐熱性が向上される。 In the epoxy resin composition blended with the reactive curing agent according to the example, since a copolymer with improved solubility in MEK is used as the reactive curing agent, a larger amount of the copolymer is added to the epoxy resin composition. It can be added to things. Therefore, the heat resistance of the epoxy resin composition is improved due to the maleimide monomer unit contained in the copolymer.
 また、熱硬化性樹脂の硬化剤として、スチレン-無水マレイン酸共重合体を本実施形態にかかる反応性硬化剤と併用する場合においても、実施例にかかる反応性硬化剤を配合して得られるエポキシ樹脂組成物は、耐熱性が向上される。
 共重合体の数平均分子量等を適宜調整した反応性硬化剤を配合したエポキシ樹脂組成物においては、エポキシ樹脂組成物の硬化性が向上される。
 さらに、共重合体に含有される単量体単位の組成等を適宜調整した反応性硬化剤を配合したエポキシ樹脂組成物においては、共重合体をより多くエポキシ樹脂組成物に配合することにより、併用する他の硬化剤であるスチレン-無水マレイン酸共重合体の配合量を減らすことができ、エポキシ樹脂組成物の硬化物の耐吸湿性が向上される。
Furthermore, even when a styrene-maleic anhydride copolymer is used in combination with the reactive curing agent according to this embodiment as a curing agent for a thermosetting resin, it can be obtained by blending the reactive curing agent according to the example. The epoxy resin composition has improved heat resistance.
In an epoxy resin composition containing a reactive curing agent whose number average molecular weight and the like of the copolymer are appropriately adjusted, the curability of the epoxy resin composition is improved.
Furthermore, in an epoxy resin composition containing a reactive curing agent in which the composition of the monomer units contained in the copolymer is appropriately adjusted, by blending a larger amount of the copolymer into the epoxy resin composition, The amount of the styrene-maleic anhydride copolymer, which is another curing agent used in combination, can be reduced, and the moisture absorption resistance of the cured product of the epoxy resin composition is improved.
 比較例にかかる反応性硬化剤においては、MEKへの溶解性、及び、エポキシ樹脂組成物に配合した際のエポキシ樹脂組成物の耐熱性向上の少なくとも一つにおいて性能が劣る。 The reactive curing agent according to the comparative example has poor performance in at least one of solubility in MEK and improvement in heat resistance of the epoxy resin composition when blended into the epoxy resin composition.
 本発明により、メチルエチルケトン(MEK)への溶解性が向上され、熱硬化性樹脂組成物の耐熱性を向上可能な反応性硬化剤が提供される。反応性硬化剤を、熱硬化性樹脂に配合することにより、耐熱性が要求される用途に好適に利用される。
 さらに、本発明の反応性硬化剤に含有される共重合体は、ABSやその他の樹脂に耐熱性を付与する耐熱付与剤として、あるいは、ポリマーアロイの相溶化剤としての用途にも好適に利用される。
The present invention provides a reactive curing agent that has improved solubility in methyl ethyl ketone (MEK) and can improve the heat resistance of a thermosetting resin composition. By blending a reactive curing agent with a thermosetting resin, it can be suitably used in applications requiring heat resistance.
Furthermore, the copolymer contained in the reactive curing agent of the present invention can be suitably used as a heat resistance imparting agent that imparts heat resistance to ABS and other resins, or as a compatibilizer for polymer alloys. be done.

Claims (7)

  1.  芳香族ビニル系単量体単位、不飽和酸無水物単量体単位、マレイミド系単量体単位を含有する共重合体を含む反応性硬化剤であって、
     前記共重合体の重量平均分子量が1万以上、9万未満であり、
     前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、前記マレイミド系単量体単位3.0質量%以上、49.0質量%未満を含む、
    反応性硬化剤。
    A reactive curing agent comprising a copolymer containing an aromatic vinyl monomer unit, an unsaturated acid anhydride monomer unit, and a maleimide monomer unit,
    The weight average molecular weight of the copolymer is 10,000 or more and less than 90,000,
    The copolymer contains 3.0% by mass or more and less than 49.0% by mass of the maleimide monomer units when the total monomer units contained in the copolymer is 100% by mass. include,
    Reactive hardener.
  2.  前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、前記マレイミド系単量体単位3.0~30.0質量%を含む、
    請求項1に記載の反応性硬化剤。
    The copolymer contains 3.0 to 30.0% by mass of the maleimide monomer units, when the total of monomer units contained in the copolymer is 100% by mass.
    The reactive curing agent according to claim 1.
  3.  前記共重合体は、前記共重合体に含有される単量体単位の合計を100質量%とした場合に、
      前記芳香族ビニル系単量体単位45.0~96.9質量%、
      前記不飽和酸無水物単量体単位0.1~25質量%、及び
      その他単量体単位0.0~20.0質量%を含む、
    請求項2に記載の反応性硬化剤。
    The copolymer has 100% by mass of monomer units contained in the copolymer,
    45.0 to 96.9% by mass of the aromatic vinyl monomer unit,
    Containing 0.1 to 25% by mass of the unsaturated acid anhydride monomer unit and 0.0 to 20.0% by mass of other monomer units,
    The reactive curing agent according to claim 2.
  4.  前記共重合体の分子鎖1本あたりに含有される前記不飽和酸無水物単量体単位の数が、2~25である、
    請求項1~請求項3のいずれか一項に記載の反応性硬化剤。
    The number of unsaturated acid anhydride monomer units contained per molecular chain of the copolymer is 2 to 25.
    The reactive curing agent according to any one of claims 1 to 3.
  5.  前記共重合体のガラス転移温度が125~200℃である、
    請求項1~請求項3のいずれか一項に記載の反応性硬化剤。
    The copolymer has a glass transition temperature of 125 to 200°C.
    The reactive curing agent according to any one of claims 1 to 3.
  6.  前記共重合体の重量平均分子量が1.5万~8万である、
    請求項1~請求項3のいずれか一項に記載の反応性硬化剤。
    The weight average molecular weight of the copolymer is 15,000 to 80,000,
    The reactive curing agent according to any one of claims 1 to 3.
  7.  前記共重合体の重量平均分子量が2万~7万である、
    請求項1~請求項3のいずれか一項に記載の反応性硬化剤。
    The weight average molecular weight of the copolymer is 20,000 to 70,000,
    The reactive curing agent according to any one of claims 1 to 3.
PCT/JP2023/021191 2022-06-14 2023-06-07 Reactive curing agent WO2023243516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095944 2022-06-14
JP2022095944 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243516A1 true WO2023243516A1 (en) 2023-12-21

Family

ID=89191172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021191 WO2023243516A1 (en) 2022-06-14 2023-06-07 Reactive curing agent

Country Status (2)

Country Link
TW (1) TW202402836A (en)
WO (1) WO2023243516A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019744A (en) * 1999-06-30 2001-01-23 Ind Technol Res Inst Curing agent used for epoxy resin
WO2003087230A1 (en) * 2002-04-16 2003-10-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition and prepreg and laminated sheet using the same
JP2005008847A (en) * 2003-05-28 2005-01-13 Jsr Corp Hardenable resin composition, protective film and method of forming protective film
JP2005281445A (en) * 2004-03-29 2005-10-13 Jsr Corp Thermosetting composition, antihalation film of solid image pick-up device, its formation method and solid image pick-up device
JP2007056151A (en) * 2005-08-25 2007-03-08 Showa Highpolymer Co Ltd Maleimide-based resin containing ethylenic unsaturated group, its manufacturing process, photo-curable composition containing maleimide-based resin containing ethylenic unsaturated group
JP2008133353A (en) * 2006-11-28 2008-06-12 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg and laminate using the resin composition
WO2010082617A1 (en) * 2009-01-16 2010-07-22 電気化学工業株式会社 Maleimide copolymer, process for the production thereof, and heat-resistant resin compositions containing same
WO2022234829A1 (en) * 2021-05-06 2022-11-10 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019744A (en) * 1999-06-30 2001-01-23 Ind Technol Res Inst Curing agent used for epoxy resin
WO2003087230A1 (en) * 2002-04-16 2003-10-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition and prepreg and laminated sheet using the same
JP2005008847A (en) * 2003-05-28 2005-01-13 Jsr Corp Hardenable resin composition, protective film and method of forming protective film
JP2005281445A (en) * 2004-03-29 2005-10-13 Jsr Corp Thermosetting composition, antihalation film of solid image pick-up device, its formation method and solid image pick-up device
JP2007056151A (en) * 2005-08-25 2007-03-08 Showa Highpolymer Co Ltd Maleimide-based resin containing ethylenic unsaturated group, its manufacturing process, photo-curable composition containing maleimide-based resin containing ethylenic unsaturated group
JP2008133353A (en) * 2006-11-28 2008-06-12 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg and laminate using the resin composition
WO2010082617A1 (en) * 2009-01-16 2010-07-22 電気化学工業株式会社 Maleimide copolymer, process for the production thereof, and heat-resistant resin compositions containing same
WO2022234829A1 (en) * 2021-05-06 2022-11-10 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof

Also Published As

Publication number Publication date
TW202402836A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US8742046B2 (en) Maleimide copolymer, process for the production thereof, and heat resistant resin compositions containing same
CN107614598B (en) Heat-resistant resin composition and method for producing same
CN111225929B (en) Maleimide copolymer, method for producing same, and resin composition using maleimide copolymer
JP7245334B2 (en) Maleimide-based copolymer, method for producing the same, and resin composition using the same
WO2023243516A1 (en) Reactive curing agent
JP7545482B2 (en) Maleimide copolymer, maleimide copolymer composition, resin composition, and injection molded article
JP7492952B2 (en) Thermoplastic resin composition and molded article thereof
WO2024195771A1 (en) Method for producing cured body and method for producing molded body
JP3989403B2 (en) Method for producing copolymer resin
CN113614129B (en) Maleimide copolymer, process for producing the same, resin composition, and injection molded article
CN113614129A (en) Maleimide copolymer, method for producing same, resin composition, and injection molded article
WO2023191064A1 (en) Heat-resistance imparter for chlorinated polymers, resin composition, and molded object formed from said resin composition
CN116323798A (en) Heat-resistant resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823808

Country of ref document: EP

Kind code of ref document: A1