Nothing Special   »   [go: up one dir, main page]

WO2023139703A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2023139703A1
WO2023139703A1 PCT/JP2022/001826 JP2022001826W WO2023139703A1 WO 2023139703 A1 WO2023139703 A1 WO 2023139703A1 JP 2022001826 W JP2022001826 W JP 2022001826W WO 2023139703 A1 WO2023139703 A1 WO 2023139703A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat source
pipe
valve
flow path
Prior art date
Application number
PCT/JP2022/001826
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 北村
博幸 岡野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023574955A priority Critical patent/JPWO2023139703A1/ja
Priority to CN202280086463.7A priority patent/CN118511041A/en
Priority to PCT/JP2022/001826 priority patent/WO2023139703A1/en
Publication of WO2023139703A1 publication Critical patent/WO2023139703A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present disclosure relates to an air conditioner having a repeater that supplies refrigerant supplied from a heat source device to indoor units.
  • An air conditioner that uses a refrigeration cycle has a refrigerant circuit in which a heat source unit having a compressor and a heat source side heat exchanger and an indoor unit having an expansion valve and a load side heat exchanger are connected by piping, and refrigerant flows.
  • the air conditioner absorbs or radiates heat from the air in the air-conditioned space, which is the object of heat exchange, and changes the pressure, temperature, etc. of the refrigerant flowing through the refrigerant circuit to perform air conditioning.
  • Patent Document 1 discloses a configuration in which a relay device between a heat source unit and an indoor unit switches between a flow of refrigerant during cooling operation and a flow of refrigerant during heating operation by two electromagnetic valves.
  • Patent Document 1 when power supply to the air conditioner is stopped in order to draw a vacuum, the electromagnetic valve of the repeater closes. Therefore, in order to make it possible to evacuate the gas branch pipe that connects the relay unit and the indoor unit, it is necessary to provide an orifice, for example, in the cooling switching solenoid valve. However, when an orifice is provided in the cooling switching solenoid valve, part of the refrigerant supplied from the compressor during heating operation passes through the cooling switching solenoid valve orifice and flows into the low-pressure pipe without passing through the indoor unit, resulting in a decrease in the heating capacity of the indoor unit.
  • the present disclosure solves the problems described above, and provides an air conditioner capable of suppressing a decrease in heating capacity and reducing the evacuation time.
  • the air conditioning apparatus comprises: a heat source unit having a compressor, a flow path switching valve and a heat source side heat exchanger; an indoor unit having a load side flow control valve and a load side heat exchanger and performing cooling operation or heating operation; a repeater connected to the heat source unit by a low pressure pipe and a high pressure pipe, connected to the indoor unit by a gas branch pipe and a liquid branch pipe, and supplying refrigerant supplied from the heat source unit to the indoor unit;
  • the branch unit is connected to the gas branch pipe and the low pressure pipe, and has an expansion valve whose degree of opening can be adjusted.
  • the low-pressure pipe can be closed during heating operation, and the gas branch pipe and the low-pressure pipe can be communicated to open the low-pressure pipe when stopped.
  • the gas branch pipe and the low-pressure pipe can be communicated to open the low-pressure pipe when stopped.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1.
  • FIG. 4 is a graph showing the relationship between the control amount and the degree of opening of the three-way electric expansion valve according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram showing the state of the air conditioner according to Embodiment 1 during cooling only operation.
  • FIG. 2 is a refrigerant circuit diagram showing the state of the air conditioner according to Embodiment 1 during heating only operation.
  • FIG. 3 is a refrigerant circuit diagram showing a state of the air conditioner according to Embodiment 1 during cooling-main operation.
  • FIG. 2 is a refrigerant circuit diagram showing a state of the air conditioner according to Embodiment 1 during heating main operation.
  • FIG. 4 is a flow chart showing the control operation of the three-way electric expansion valve according to Embodiment 1;
  • FIG. 7 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2;
  • 9 is a flow chart showing control operations of a heating on-off valve and a cooling expansion valve according to Embodiment 2.
  • FIG. 7 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2;
  • 9 is a flow chart showing control operations of a heating on-off valve and a cooling expansion valve according to Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner 1 according to Embodiment 1.
  • the air conditioner 1 includes a heat source device 100, a plurality of indoor units 300a and 300b, a repeater 200, and a control device 10.
  • the number of heat source devices 100 and repeaters 200 may be two or more. Also, the number of indoor units may be one or three or more.
  • the air conditioner 1 is configured by connecting a heat source device 100, indoor units 300a and 300b, and a relay device 200.
  • the heat source device 100 has a function of supplying heat to the two indoor units 300a and 300b.
  • the indoor units 300a and 300b are connected in parallel and have the same configuration.
  • the indoor units 300 a and 300 b have a function of cooling or heating an air-conditioned space such as a room with heat supplied from the heat source unit 100 .
  • the relay device 200 is interposed between the heat source device 100 and the indoor units 300a and 300b, and has a function of switching the flow of refrigerant supplied from the heat source device 100 in response to requests from the indoor units 300a and 300b and supplying the refrigerant to the indoor units 300a and 300b.
  • the heat source device 100 and the relay device 200 are connected on the high pressure side by a high pressure pipe 402 through which a high pressure refrigerant flows, and are connected on the low pressure side by a low pressure pipe 401 through which a low pressure refrigerant flows. Further, the repeater 200 and the indoor units 300a and 300b are connected by gas branch pipes 403a and 403b and liquid branch pipes 404a and 404b, respectively. Refrigerant in a gas state mainly flows through the gas branch pipes 403a and 403b. Liquid refrigerant mainly flows through the liquid branch pipes 404a and 404b.
  • the heat source device 100 includes a compressor 101 , a flow path switching valve 102 , a heat source side heat exchange unit 120 , an accumulator 104 , and a heat source side flow adjustment unit 140 .
  • the compressor 101 is a fluid machine that draws in low-pressure gas refrigerant, compresses it, and discharges it as high-pressure gas refrigerant.
  • the compressor 101 is, for example, an inverter-driven compressor with an adjustable operating frequency.
  • the channel switching valve 102 is a four-way valve that switches the channel of the refrigerant discharged from the compressor 101 . Note that the flow path switching valve 102 may be configured by combining a two-way valve, a three-way valve, or the like.
  • the heat source side heat exchange unit 120 includes a main pipe 114, a heat source side heat exchanger 103, a heat source side blower 111, a bypass pipe 113, a heat source side flow control valve 109, and a bypass flow control valve 110.
  • the heat source side heat exchanger 103 is a heat exchanger that performs heat exchange between the refrigerant flowing inside and the air blown by the heat source side blower 111 .
  • the heat source side heat exchanger 103 functions as an evaporator or a condenser.
  • the heat source side heat exchanger 103 may be, for example, a water-cooled heat exchanger that exchanges heat between water or brine and a refrigerant.
  • the heat source side blower 111 is a propeller fan, cross flow fan, or multi-blade centrifugal fan that supplies air to the heat source side heat exchanger 103 .
  • the heat exchange capacity is controlled by controlling the rotational speed of the heat source side blower 111 . Note that when the heat source side heat exchanger 103 is of a water-cooled type, the heat source side blower 111 is omitted, and a pump for circulating the heat medium is provided instead.
  • the main pipe 114 has one end connected to the flow path switching valve 102 and the other end connected to the high pressure pipe 402, and the heat source side heat exchanger 103 and the heat source side flow control valve 109 are provided.
  • the bypass pipe 113 has one end connected to the flow path switching valve 102 and the other end connected to the high pressure pipe 402 , and is connected in parallel to the main pipe 114 .
  • the refrigerant flowing through the bypass pipe 113 does not pass through the heat source side heat exchanger 103 and is not heat-exchanged.
  • the heat source side flow control valve 109 is connected in series with the heat source side heat exchanger 103 in the main pipe 114 and adjusts the flow rate of the refrigerant flowing through the main pipe 114 to reduce the pressure.
  • the heat source side flow control valve 109 is configured by, for example, a two-way electric expansion valve whose opening degree can be adjusted.
  • the bypass flow control valve 110 is provided in the bypass pipe 113 and adjusts the flow rate of the refrigerant flowing through the bypass pipe 113 to reduce the pressure.
  • the bypass flow regulating valve 110 is composed of, for example, an electric expansion valve whose degree of opening can be adjusted.
  • the accumulator 104 is provided between the flow path switching valve 102 and the suction port of the compressor 101 .
  • the accumulator 104 has a refrigerant storage function of storing excess refrigerant, and a gas-liquid separation function of separating the gas-liquid two-phase refrigerant flowing into the accumulator 104, discharging the gas refrigerant to the compressor 101, and retaining the liquid refrigerant.
  • the heat source side passage adjustment unit 140 has a third check valve 105, a fourth check valve 106, a fifth check valve 107, and a sixth check valve .
  • the third check valve 105 is provided in a pipe connecting the heat source side heat exchange unit 120 and the high pressure pipe 402 and allows the refrigerant to flow from the heat source side heat exchange unit 120 toward the high pressure pipe 402 .
  • the fourth check valve 106 is provided in a pipe connecting the flow path switching valve 102 of the heat source device 100 and the low pressure pipe 401 and allows the refrigerant to flow from the low pressure pipe 401 toward the flow path switching valve 102 .
  • the fifth check valve 107 is provided in a pipe connecting the flow path switching valve 102 of the heat source device 100 and the high pressure pipe 402 and allows the refrigerant to flow from the flow path switching valve 102 toward the high pressure pipe 402 .
  • the sixth check valve 108 is provided in a pipe connecting the heat source side heat exchange unit 120 and the low pressure pipe 401 and allows the refrigerant to flow from the low pressure pipe 401 toward the heat source side heat exchange unit 120 .
  • the heat source device 100 is provided with a discharge pressure sensor 126 .
  • the discharge pressure sensor 126 is provided in a pipe connecting the flow path switching valve 102 and the discharge side of the compressor 101 and detects the pressure of the refrigerant discharged from the compressor 101 .
  • the discharge pressure sensor 126 transmits a signal of the detected discharge pressure to the control device 10 .
  • the heat source device 100 is provided with a suction pressure sensor 127 .
  • the suction pressure sensor 127 is provided in a pipe connecting the flow path switching valve 102 and the accumulator 104 and detects the pressure of the refrigerant sucked into the compressor 101 .
  • the suction pressure sensor 127 transmits a detected suction pressure signal to the control device 10 .
  • each pressure sensor may have a storage device or the like.
  • each pressure sensor accumulates detected pressure data in a storage device or the like for a predetermined period, and transmits a signal including the accumulated pressure data to the control device 10 at predetermined intervals.
  • the heat source device 100 is provided with refrigerant enclosures 131 and 132 .
  • the refrigerant enclosing part 131 is provided in a pipe connecting the flow path switching valve 102 and the discharge side of the compressor 101 , and enables refrigerant encapsulation or evacuation from the discharge side of the compressor 101 .
  • the refrigerant enclosing part 132 is provided in a pipe that connects the flow path switching valve 102 and the accumulator 104 , and enables refrigerant encapsulation or vacuum drawing from the suction side of the compressor 101 .
  • the refrigerant sealed portions 131 and 132 are configured by, for example, check joints.
  • the indoor units 300a and 300b respectively include load-side heat exchangers 301a and 301b that function as condensers or evaporators, and load-side flow control valves 302a and 302b that adjust the flow rate of the refrigerant flowing through the indoor units 300a and 300b.
  • the load-side heat exchangers 301a and 301b are heat exchangers that exchange heat between refrigerant flowing inside and air blown by an indoor fan (not shown).
  • the load-side heat exchangers 301a and 301b may be water-cooled heat exchangers that exchange heat between water or brine and a refrigerant, for example.
  • the load-side flow control valves 302a and 302b adjust the flow rate of the refrigerant flowing into or out of the load-side heat exchangers 301a and 301b to reduce the pressure.
  • the load-side flow control valves 302a and 302b are composed of, for example, two-way electric expansion valves whose opening can be adjusted.
  • the degree of opening of the load-side flow control valves 302a and 302b during cooling is controlled by the controller 10 based on the degree of superheat on the outlet side of the load-side heat exchangers 301a and 301b.
  • the degree of opening of the load-side flow control valves 302a and 302b during heating is controlled by the controller 10 based on the degree of supercooling on the outlet side of the load-side heat exchangers 301a and 301b.
  • the indoor units 300a and 300b are provided with gas pipe temperature sensors 304a and 304b and liquid pipe temperature sensors 303a and 303b, respectively.
  • Gas pipe temperature sensors 304a and 304b are provided between load side heat exchangers 301a and 301b and repeater 200, respectively.
  • the gas pipe temperature sensors 304a and 304b detect the temperature of the refrigerant flowing through the gas branch pipes 403a and 403b connecting the load side heat exchangers 301a and 301b and the repeater 200 .
  • the gas pipe temperature sensors 304 a and 304 b are composed of, for example, thermistors, and send signals of detected temperatures to the control device 10 .
  • the liquid pipe temperature sensors 303a and 303b are provided between the load side heat exchangers 301a and 301b and the load side flow control valves 302a and 302b, respectively.
  • the liquid pipe temperature sensors 303a and 303b detect the temperature of refrigerant flowing through pipes connecting the load side heat exchangers 301a and 301b and the load side flow control valves 302a and 302b.
  • the liquid tube temperature sensors 303 a and 303 b are composed of, for example, thermistors, and transmit signals of detected temperatures to the control device 10 .
  • the gas pipe temperature sensors 304a and 304b and the liquid pipe temperature sensors 303a and 303b may each have a storage device or the like.
  • each temperature sensor accumulates detected temperature data in a storage device or the like for a predetermined period, and transmits a signal including the accumulated temperature data to the control device 10 at predetermined intervals.
  • the repeater 200 includes a first branch portion 240, a second branch portion 250, a gas-liquid separator 201, a relay bypass pipe 209, a first flow control valve 204, a second flow control valve 205, a first heat exchange portion 206, and a second heat exchange portion 207.
  • the first branch 240 is connected to the gas branch pipes 403a and 403b on one side and to the low pressure pipe 401 and the high pressure pipe 402 on the other.
  • the first branch portion 240 connects the gas branch pipes 403a and 403b to the low-pressure pipe 401 or the high-pressure pipe 402 so that the direction of refrigerant flow during cooling operation is different from that during heating operation.
  • the first branch 240 includes three-way electric expansion valves 202a and 202b whose opening is adjustable.
  • the three-way electric expansion valve 202a is connected to the gas branch pipe 403a, the high pressure pipe 402, and the low pressure pipe 401.
  • the three-way electric expansion valve 202b is connected to the gas branch pipe 403b, the high pressure pipe 402 and the low pressure pipe 401.
  • the three-way electric expansion valves 202a and 202b have the function of switching the flow direction of the refrigerant and the function of adjusting the flow rate of the refrigerant.
  • the three-way electric expansion valve 202a has a first flow path that connects the gas branch pipe 403a and the low-pressure pipe 401, and a second flow path that connects the gas branch pipe 403a and the high-pressure pipe 402.
  • the three-way electric expansion valve 202b has a first flow path that connects the gas branch pipe 403b and the low-pressure pipe 401, and a second flow path that connects the gas branch pipe 403b and the high-pressure pipe 402.
  • the first flow path and the second flow path are opened and closed, and the flow rate of the refrigerant flowing through the first flow path and the second flow path is adjusted.
  • the opening degree of the three-way electric expansion valve 202a is controlled so as to open the first channel that communicates the gas branch pipe 403a and the low-pressure pipe 401 and close the second channel. Further, when the indoor unit 300a performs the heating operation, the opening degree of the three-way electric expansion valve 202a is controlled so as to open the second passage that communicates the gas branch pipe 403a and the high-pressure pipe 402 and close the first passage. Similarly, when the indoor unit 300b performs cooling operation, the three-way electric expansion valve 202b is controlled to open the first flow path that communicates the gas branch pipe 403b and the low-pressure pipe 401 and close the second flow path. Further, when the indoor unit 300b performs heating operation, the three-way electric expansion valve 202b is controlled to open the second flow path connecting the gas branch pipe 403b and the high-pressure pipe 402 and close the first flow path.
  • the second branch 250 is connected to the liquid branch pipes 404a and 404b on one side and to the low pressure pipe 401 and the high pressure pipe 402 on the other.
  • the second branch portion 250 connects the liquid branch pipes 404a and 404b to the low-pressure pipe 401 or the high-pressure pipe 402 so that the direction of refrigerant flow during cooling operation is different from that during heating operation.
  • the second branch 250 has first check valves 210a and 210b and second check valves 211a and 211b.
  • One of the first check valves 210a and 210b is connected to the liquid branch pipes 404a and 404b, and the other is connected to the high pressure pipe 402, allowing the refrigerant to flow from the high pressure pipe 402 to the liquid branch pipes 404a and 404b.
  • One of the second check valves 211a and 211b is connected to the liquid branch pipes 404a and 404b, and the other is connected to the low pressure pipe 401, allowing the refrigerant to flow from the liquid branch pipes 404a and 404b toward the low pressure pipe 401.
  • the gas-liquid separator 201 separates a gas state refrigerant and a liquid state refrigerant, the inflow side is connected to the high-pressure pipe 402, the gas outflow side is connected to the first branch portion 240, and the liquid outflow side is connected to the second branch portion 250.
  • the relay bypass pipe 209 connects the second branch portion 250 and the low pressure pipe 401 .
  • the first flow control valve 204 is connected to the liquid outflow side of the gas-liquid separator 201, and is composed of, for example, a two-way electric expansion valve whose opening degree can be adjusted. The first flow control valve 204 adjusts the flow rate of the liquid refrigerant flowing out of the gas-liquid separator 201 to reduce the pressure.
  • the first heat exchange section 206 is provided between the liquid outflow side of the gas-liquid separator 201 and the first flow control valve 204 and in the relay bypass pipe 209 .
  • the first heat exchange section 206 exchanges heat between the liquid refrigerant flowing out of the gas-liquid separator 201 and the refrigerant flowing through the relay bypass pipe 209 .
  • the second heat exchange section 207 is provided downstream of the first flow control valve 204 and the relay bypass pipe 209 .
  • the second heat exchange section 207 exchanges heat between the refrigerant flowing out of the first flow control valve 204 and the refrigerant flowing through the relay bypass pipe 209 .
  • the second flow control valve 205 is connected to the upstream side of the second heat exchange section 207 in the relay bypass pipe 209, and is composed of, for example, a two-way electric expansion valve whose opening can be adjusted.
  • the second flow control valve 205 adjusts the flow rate of the refrigerant that has flowed into the relay bypass pipe 209 among the refrigerant that has flowed out of the second heat exchange section 207 to reduce the pressure.
  • the upstream sides of the first check valves 210 a and 210 b are connected to the downstream side of the second heat exchange section 207 and the relay bypass pipe 209 . Therefore, the refrigerant flowing out of the second heat exchange section 207 is divided into refrigerant heading to the first check valves 210 a and 210 b and refrigerant flowing into the relay bypass pipe 209 . Further, downstream sides of the second check valves 211 a and 211 b are connected between the first flow control valve 204 and the upstream side of the second heat exchange section 207 .
  • the refrigerant flowing out of the second check valves 211a and 211b flows into the second heat exchange section 207 and is heat-exchanged, and then flows into the first check valves 210a and 210b and the refrigerant flowing into the relay bypass pipe 209.
  • the repeater 200 is also provided with a first pressure sensor 231 , a second pressure sensor 232 , and a relay bypass temperature sensor 208 .
  • the first pressure sensor 231 is provided between the first heat exchange section 206 and the upstream side of the first flow control valve 204 and detects the pressure of the refrigerant on the liquid outflow side of the gas-liquid separator 201 .
  • the first pressure sensor 231 transmits a detected pressure signal to the control device 10 .
  • the second pressure sensor 232 is provided between the downstream side of the first flow control valve 204 and the second heat exchange section 207, and detects the pressure of the refrigerant flowing out of the first flow control valve 204.
  • the second pressure sensor 232 transmits a detected pressure signal to the control device 10 .
  • the opening of the first flow control valve 204 is adjusted by the controller 10 so that the difference between the pressure detected by the first pressure sensor 231 and the pressure detected by the second pressure sensor 232 is constant.
  • the relay bypass temperature sensor 208 is provided on the relay bypass pipe 209 and detects the temperature of the refrigerant flowing through the relay bypass pipe 209 .
  • the relay bypass temperature sensor 208 is composed of, for example, a thermistor or the like, and transmits a detected temperature signal to the control device 10 .
  • the degree of opening of the second flow control valve 205 is adjusted by the control device 10 based on at least one of the pressure detected by the first pressure sensor 231, the pressure detected by the second pressure sensor 232, and the temperature detected by the relay bypass temperature sensor 208.
  • first pressure sensor 231, the second pressure sensor 232, and the relay bypass temperature sensor 208 may have a storage device or the like.
  • each pressure sensor and temperature sensor accumulates the detected pressure or temperature data in a storage device or the like for a predetermined period, and transmits a signal including the accumulated pressure or temperature data to the control device 10 every predetermined period.
  • refrigerant In the air conditioner 1, the inside of the piping is filled with refrigerant.
  • refrigerants include, for example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium; chlorine-free CFC alternative refrigerants such as HFC410A, HFC407C, and HFC404A; and CFC refrigerants such as R22 and R134a used in existing products.
  • HFC407C is a non-azeotropic mixed refrigerant in which HFCs R32, R125, and R134a are mixed at ratios of 23 wt %, 25 wt %, and 52 wt %, respectively.
  • the interior of the pipe of the air conditioner 1 may be filled with a heat medium instead of the refrigerant.
  • the heat medium is, for example, water or brine.
  • control device 10 The control device 10 controls the operation of the air conditioner 1 as a whole.
  • the control device 10 is composed of a computer having a memory for storing data and programs required for control and a CPU for executing the programs, dedicated hardware such as ASIC or FPGA, or both.
  • the control device 10 controls the driving frequency of the compressor 101, the heat source side blower 111, and the indoor units 300a and 300b based on the detection information received from the gas pipe temperature sensors 304a and 304b, the liquid pipe temperature sensors 303a and 303b, the first pressure sensor 231, the second pressure sensor 232, the relay bypass temperature sensor 208, the discharge pressure sensor 126, and the suction pressure sensor 127, and instructions from a remote controller (not shown).
  • the number of rotations of an indoor fan (not shown) provided in , the switching of the flow path switching valve 102, the opening of the three-way electric expansion valves 202a and 202b, the heat source side flow control valve 109, the bypass flow control valve 110, the load side flow control valves 302a and 302b, the first flow control valve 204 and the opening of the second flow control valve 205, etc. are controlled.
  • control device 10 may calculate the cooling capacity or heating capacity in the cooling main operation and the heating main operation from the discharge pressure detected by the discharge pressure sensor 126 or the suction pressure detected by the suction pressure sensor 127.
  • control device 10 may calculate the cooling capacity or heating capacity in the cooling main operation and the heating main operation using the evaporation temperature and the condensation temperature obtained from the temperatures detected by the gas pipe temperature sensors 304a and 304b and the liquid pipe temperature sensors 303a and 303b.
  • control device 10 is mounted on the heat source device 100 in FIG. 1, it may be mounted on either the relay device 200 or the indoor unit 300a or 300b, or may be provided separately from the heat source device 100, the relay device 200, or the indoor unit 300a or 300b.
  • the heat source device 100, the relay device 200, and the indoor units 300a and 300b may each include a control device, and may be connected to each other by wireless or wired communication so as to transmit and receive various data.
  • FIG. 2 is a graph showing the relationship between the control amount and the degree of opening of the three-way electric expansion valve 202a according to the first embodiment.
  • the relationship between the control amount and the opening of the three-way electric expansion valve 202b is the same as the relationship between the control amount and the opening of the three-way electric expansion valve 202a shown in FIG.
  • the vertical axis is the degree of opening of the three-way electric expansion valve 202a
  • the horizontal axis is the control amount transmitted from the control device 10 to the three-way electric expansion valve 202a.
  • the "control amount” here corresponds to the number of pulses of the pulse signal transmitted from the control device 10 to the three-way electric expansion valve 202a.
  • both the first flow path and the second flow path of the three-way electric expansion valve 202a are closed regardless of the control amount. Further, when the control amount is P2 or more, the second flow path communicating between the gas branch pipe 403a and the high-pressure pipe 402 is opened, and the first flow path communicating between the gas branch pipe 403a and the low-pressure pipe 401 is closed.
  • the control amount is the maximum control amount Pmax, the opening of the second flow path of the three-way electric expansion valve 202a becomes the maximum opening A1, and as the control amount decreases, the opening of the second flow path of the three-way electric expansion valve 202a decreases.
  • the air conditioner 1 has, as operation modes, a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation.
  • the cooling-only operation is a mode in which all of the indoor units 300a and 300b perform the cooling operation.
  • the heating only operation is a mode in which all of the indoor units 300a and 300b perform the heating operation.
  • the cooling main operation is a mode in which the capacity of the cooling operation is larger than the capacity of the heating operation among the simultaneous cooling and heating operations.
  • the heating-dominant operation is a mode in which the capacity of the heating operation is larger than the capacity of the cooling operation among the simultaneous cooling and heating operations.
  • the control device 10 performs cooling-only operation, heating-only operation, cooling-dominant operation, or heating-dominant operation in accordance with the operation request to the indoor units 300a and 300b. Each operation will be described with reference to FIGS. 3 to 6.
  • FIG. 3 to 6 the high-pressure refrigerant is indicated by solid line arrows, and the low-pressure refrigerant is indicated by broken line arrows.
  • FIGS. 3 to 6 among the check valves, the check valves through which the refrigerant does not flow are shown in black.
  • FIG. 3 is a refrigerant circuit diagram showing the state of the air conditioner 1 according to Embodiment 1 during cooling only operation.
  • the cooling only operation all of the indoor units 300a and 300b perform the cooling operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, and is heat-exchanged with the outdoor air blown by the heat source-side blower 111 in the heat source-side heat exchanger 103 to be condensed and liquefied.
  • the condensed and liquefied refrigerant then passes through the heat source side flow control valve 109 , the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 .
  • the bypass flow control valve 110 is fully closed, no refrigerant flows through the bypass pipe 113 .
  • the refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201, and the liquid state refrigerant flows out from the liquid outflow side, flows through the first heat exchange section 206, the first flow control valve 204, and the second heat exchange section 207 in order, and branches at the second branch section 250.
  • the branched refrigerant flows into the indoor units 300a and 300b through the first check valves 210a and 210b and the liquid branch pipes 404a and 404b, respectively.
  • the liquid branch pipes 404a and 404b have a lower pressure than the high pressure pipe 402, so no refrigerant flows through the second check valves 211a and 211b.
  • the refrigerants that have flowed into the indoor units 300a and 300b are reduced to low pressure by the load side flow control valves 302a and 302b that are controlled based on the degree of superheat on the outlet side of the load side heat exchangers 301a and 301b.
  • the depressurized refrigerant flows into the load-side heat exchangers 301a and 301b, where it is heat-exchanged with the indoor air and evaporates. At that time, the room in which the indoor units 300a and 300b are installed is cooled.
  • the gaseous refrigerant flows into the first branch portion 240 of the repeater 200 through the gas branch pipes 403a and 403b.
  • the control device 10 controls the opening degrees of the three-way electric expansion valves 202a and 202b so that the first flow path communicating with the low-pressure pipe 401 is opened and the second flow path communicating with the high-pressure pipe 402 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 passes through the first flow paths of the three-way electric expansion valves 202 a and 202 b, then merges and passes through the low-pressure pipe 401 .
  • part of the refrigerant that has passed through the second heat exchange section 207 flows into the relay bypass pipe 209 .
  • the refrigerant that has flowed into the relay bypass pipe 209 is decompressed to a low pressure by the second flow control valve 205, and then heat-exchanged with the refrigerant that has passed through the first flow control valve 204 in the second heat exchange section 207, i.e., the refrigerant before branching to the relay bypass pipe 209, and evaporates.
  • the refrigerant is heat-exchanged with the refrigerant before flowing into the first flow rate control valve 204, and is evaporated.
  • the evaporated refrigerant flows into the low-pressure pipe 401 and joins the refrigerant that has passed through the three-way electric expansion valves 202a and 202b. After that, the merged refrigerant is sucked into the compressor 101 through the fourth check valve 106 , the flow path switching valve 102 and the accumulator 104 .
  • FIG. 4 is a refrigerant circuit diagram showing the state of the air-conditioning apparatus 1 according to Embodiment 1 during heating only operation.
  • the heating only operation all of the indoor units 300a and 300b perform the heating operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow switching valve 102 , the fifth check valve 107 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 .
  • the refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201 , and the gas state refrigerant flows out from the gas outlet side of the gas-liquid separator 201 and flows into the first branch portion 240 .
  • the control device 10 controls the opening degrees of the three-way electric expansion valves 202a and 202b so that the second flow path communicating with the high-pressure pipe 402 is opened and the first flow path communicating with the low-pressure pipe 401 is closed.
  • the refrigerant that has flowed into the first branch portion 240 passes through the second flow paths of the three-way electric expansion valves 202a and 202b, the gas branch pipes 403a and 403b, and flows into the indoor units 300a and 300b, respectively.
  • the refrigerant that has flowed into the indoor units 300a and 300b is heat-exchanged with the indoor air in the load-side heat exchangers 301a and 301b, respectively, and is condensed and liquefied. At that time, the room in which the indoor units 300a and 300b are installed is heated. Then, the condensed and liquefied refrigerant is decompressed through load side flow control valves 302a and 302b controlled based on the degree of subcooling on the outlet side of load side heat exchangers 301a and 301b, respectively.
  • the refrigerant decompressed by the load-side flow control valves 302a and 302b passes through the liquid branch pipes 404a and 404b and the second check valves 211a and 211b of the second branch portion 250, respectively, and then joins. At this time, no refrigerant flows through the first check valves 210a and 210b.
  • the merged refrigerant passes through the second heat exchange section 207, flows into the relay bypass pipe 209, and is decompressed to a low pressure by the second flow control valve 205. After that, the decompressed refrigerant flows out from the second branching portion 250 and is heat-exchanged with the refrigerant before branching to the relay bypass pipe 209 to evaporate.
  • the refrigerant passes through the first heat exchange section 206 .
  • the first flow control valve 204 is closed during the heating only operation.
  • the refrigerant that has passed through the first heat exchange section 206 flows into the low-pressure pipe 401, passes through the sixth check valve 108, is decompressed by the heat source side flow control valve 109, and is heat-exchanged with the outdoor air blown by the heat source side blower 111 in the heat source side heat exchanger 103 to be evaporated and gasified.
  • the gasified refrigerant is sucked into the compressor 101 through the flow switching valve 102 and the accumulator 104 . Since the bypass flow control valve 110 is fully closed, no refrigerant flows through the bypass pipe 113 .
  • FIG. 5 is a refrigerant circuit diagram showing a state of the air-conditioning apparatus 1 according to Embodiment 1 during cooling-main operation.
  • the indoor unit 300a performs the cooling operation
  • the indoor unit 300b performs the heating operation
  • the cooling capacity is larger.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102 and branches into refrigerant flowing into the main pipe 114 and refrigerant flowing into the bypass pipe 113 .
  • the bypass flow control valve 110 is open.
  • the refrigerant that has flowed into the main pipe 114 exchanges heat with the outdoor air blown by the heat source side blower 111 in the heat source side heat exchanger 103 to condense and liquefy.
  • the condensed and liquefied refrigerant is then decompressed by the heat source side flow control valve 109 .
  • the refrigerant flowing into bypass pipe 113 is decompressed by bypass flow control valve 110 .
  • the refrigerant that has flowed into the heat source side heat exchanger 103 and the refrigerant that has flowed into the bypass pipe 113 join in front of the third check valve 105 and pass through the third check valve 105 and the high-pressure pipe 402 to reach the gas-liquid separator 201 .
  • the refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201 .
  • the liquid refrigerant flowing out from the liquid outflow side of the gas-liquid separator 201 passes through the first heat exchange section 206 , the first flow control valve 204 and the second heat exchange section 207 to reach the second branch section 250 .
  • the refrigerant flows into the indoor unit 300a through the first check valve 210a of the second branch 250 and the liquid branch pipe 404a. Since the liquid branch pipe 404a has a lower pressure than the high pressure pipe 402, the refrigerant does not flow through the second check valve 211a.
  • the refrigerant that has flowed into the indoor unit 300a is decompressed to a low pressure by the load side flow control valve 302a controlled based on the degree of superheat on the outlet side of the load side heat exchanger 301a.
  • the depressurized refrigerant flows into the load-side heat exchanger 301a, where it is heat-exchanged with the indoor air and evaporates.
  • the room in which the indoor unit 300a is installed is cooled.
  • the gaseous refrigerant flows into the first branch portion 240 of the repeater 200 through the gas branch pipe 403a.
  • the three-way electric expansion valve 202a connected to the indoor unit 300a that performs cooling operation in the cooling-main operation is controlled by the control device 10 so that the first flow path communicating with the low-pressure pipe 401 is opened and the second flow path communicating with the high-pressure pipe 402 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows into the low-pressure pipe 401 through the first flow path of the three-way electric expansion valve 202a.
  • the gaseous refrigerant flowing out from the gas outflow side of the gas-liquid separator 201 flows into the first branch portion 240 .
  • the three-way electric expansion valve 202b connected to the indoor unit 300b that performs heating operation in the cooling-main operation is controlled by the control device 10 so that the second flow path communicating with the high-pressure pipe 402 is opened and the first flow path communicating with the low-pressure pipe 401 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows into the indoor unit 300b through the second flow path of the three-way electric expansion valve 202b and the gas branch pipe 403b.
  • the refrigerant that has flowed into the indoor unit 300b is heat-exchanged with the indoor air in the load-side heat exchanger 301b to be condensed and liquefied.
  • the room in which the indoor unit 300b is installed is heated.
  • the condensed and liquefied refrigerant passes through the load side flow control valve 302b controlled based on the degree of subcooling on the outlet side of the load side heat exchanger 301b, and becomes an intermediate pressure liquid state between high pressure and low pressure.
  • the refrigerant in the intermediate-pressure liquid state passes through the liquid branch pipe 404 b and the second check valve 211 b of the second branch portion 250 and flows into the second heat exchange portion 207 . At this time, the refrigerant does not flow through the first check valve 210b.
  • the refrigerant flows into the relay bypass pipe 209 and is depressurized to a low pressure by the second flow rate control valve 205, and then heat-exchanged in the second heat exchange section 207 with the refrigerant that has passed through the first flow rate control valve 204, i.e., the refrigerant before branching to the relay bypass pipe 209, and evaporates. Furthermore, in the first heat exchange section 206, the refrigerant is heat-exchanged with the refrigerant before flowing into the first flow rate control valve 204, and is evaporated. The evaporated refrigerant flows into the low-pressure pipe 401 and joins with the refrigerant that has passed through the three-way electric expansion valve 202a. After that, the merged refrigerant is sucked into the compressor 101 through the fourth check valve 106 , the flow path switching valve 102 and the accumulator 104 .
  • FIG. 6 is a refrigerant circuit diagram showing a state of the air-conditioning apparatus 1 according to Embodiment 1 during heating-main operation.
  • the indoor unit 300a performs the cooling operation and the indoor unit 300b performs the heating operation and the heating capacity is larger will be described below.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 101 passes through the flow switching valve 102 , the fifth check valve 107 and the high-pressure pipe 402 , and reaches the gas-liquid separator 201 .
  • the refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201 .
  • the gaseous refrigerant flowing out from the gas outflow side of the gas-liquid separator 201 flows into the first branch portion 240 .
  • the three-way electric expansion valve 202b connected to the indoor unit 300b that performs the heating operation is controlled by the control device 10 so that the second flow path communicating with the high-pressure pipe 402 is opened and the first flow path communicating with the low-pressure pipe 401 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows into the indoor unit 300b through the second flow path of the three-way electric expansion valve 202b and the gas branch pipe 403b.
  • the refrigerant that has flowed into the indoor unit 300b is heat-exchanged with the indoor air in the load-side heat exchanger 301b to be condensed and liquefied.
  • the room in which the indoor unit 300b is installed is heated.
  • the condensed and liquefied refrigerant passes through the load side flow control valve 302b controlled based on the degree of subcooling on the outlet side of the load side heat exchanger 301b, and becomes an intermediate pressure liquid state between high pressure and low pressure.
  • the refrigerant in the intermediate-pressure liquid state passes through the liquid branch pipe 404 b and the second check valve 211 b of the second branch portion 250 and flows into the second heat exchange portion 207 .
  • the refrigerant does not flow through the first check valve 210b.
  • the refrigerant that has passed through the second check valve 211 b flows out from the liquid outflow side of the gas-liquid separator 201 and joins the liquid state refrigerant that has passed through the first heat exchange section 206 and the first flow control valve 204 .
  • the merged refrigerant branches into refrigerant flowing into the second branch portion 250 and refrigerant flowing into the relay bypass pipe 209 .
  • the refrigerant that has flowed into the second branch portion 250 passes through the first check valve 210a and the liquid branch pipe 404a of the second branch portion 250 and flows into the indoor unit 300a. Since the liquid branch pipe 404a has a lower pressure than the high pressure pipe 402, the refrigerant does not flow through the second check valve 211a. Then, the refrigerant that has flowed into the indoor unit 300a is decompressed to a low pressure by the load side flow control valve 302a controlled based on the degree of superheat on the outlet side of the load side heat exchanger 301a. The depressurized refrigerant flows into the load-side heat exchanger 301a, where it is heat-exchanged with the indoor air and evaporates. At that time, the room in which the indoor unit 300a is installed is cooled. Then, the gaseous refrigerant flows into the first branch portion 240 of the repeater 200 through the gas branch pipe 403a.
  • the three-way electric expansion valve 202a connected to the indoor unit 300a that performs cooling operation during heating-dominant operation is controlled by the control device 10 so that the first flow path communicating with the low-pressure pipe 401 is opened and the second flow path communicating with the high-pressure pipe 402 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows through the first flow path of the three-way electric expansion valve 202 a and into the low-pressure pipe 401 .
  • the refrigerant that has flowed into the relay bypass pipe 209 is depressurized to a low pressure by the second flow control valve 205, and then heat-exchanged in the second heat exchange section 207 with the refrigerant that has flowed out of the second branching section 250, i.e., the refrigerant before branching to the relay bypass piping 209, and evaporates.
  • the refrigerant is heat-exchanged with the refrigerant before flowing into the first flow rate control valve 204, and is evaporated.
  • the evaporated refrigerant flows into the low-pressure pipe 401 and joins with the refrigerant that has passed through the three-way electric expansion valve 202a.
  • the merged refrigerant passes through the sixth check valve 108 and flows into the main pipe 114 and the bypass pipe 113 .
  • the bypass flow control valve 110 is open.
  • the refrigerant that has flowed into the main pipe 114 is depressurized by the heat source side flow control valve 109, exchanges heat with the outdoor air blown by the heat source side blower 111 in the heat source side heat exchanger 103, and evaporates.
  • the refrigerant that has flowed into the bypass pipe 113 is decompressed by the bypass flow control valve 110 and then joins the refrigerant that has flowed out from the main pipe 114 .
  • the merged refrigerant is sucked into the compressor 101 through the flow path switching valve 102 and the accumulator 104 .
  • the refrigerant circuit diagram when the air conditioner 1 is stopped is the same as the refrigerant circuit diagram during the cooling only operation in FIG. 3 .
  • the compressor 101 is stopped, and the flow path switching valve 102 is switched so that the discharge pipe of the compressor 101 and the main pipe 114 are communicated.
  • the heat source side flow rate adjustment valve 109, the bypass flow rate adjustment valve 110, the first flow rate adjustment valve 204, and the second flow rate adjustment valve 205 are opened at preset opening degrees.
  • the load side flow control valves 302a and 302b are closed.
  • the three-way electric expansion valves 202a and 202b are controlled by the control amount Pmin. That is, when the air conditioner 1 is stopped, the three-way electric expansion valves 202a and 202b are controlled so that the first flow path communicating with the low pressure pipe 401 is opened and the second flow path communicating with the high pressure pipe 402 is closed.
  • the air conditioner 1 can be evacuated by connecting, for example, a vacuum pump to the refrigerant sealed portions 131 and 132 and activating the vacuum pump.
  • FIG. 7 is a flow chart showing the control operation of the three-way electric expansion valve 202a according to the first embodiment.
  • the control operation of the three-way electric expansion valve 202b is also the same as the control operation of the three-way electric expansion valve 202a.
  • the control device 10 determines the control amount of the three-way electric expansion valve 202a according to the operation mode required for the indoor unit 300a connected to the three-way electric expansion valve 202a.
  • the control device 10 determines whether or not the heat source device 100 is in operation (S1).
  • the control device 10 determines that the heat source device 100 is in operation.
  • the control device 10 determines the state of the indoor unit 300a (S2).
  • the control device 10 determines whether the indoor unit 300a is requesting stop, cooling operation, or heating operation.
  • the control device 10 transmits a pulse signal of the control amount P1 to the three-way electric expansion valve 202a (S3).
  • S3 the three-way electric expansion valve 202a
  • the control device 10 transmits a pulse signal of the control amount Pmax to the three-way electric expansion valve 202a (S4).
  • the second flow path of the three-way electric expansion valve 202a is opened and the first flow path is closed. That is, when the heat source unit 100 is in operation and the indoor unit 300a performs heating operation, the gas branch pipe 403a of the indoor unit 300a and the high pressure pipe 402 are communicated.
  • the control device 10 transmits a pulse signal of the control amount Pmin to the three-way electric expansion valve 202a (S5).
  • the first flow path of the three-way electric expansion valve 202a is opened and the second flow path is closed. That is, when the heat source device 100 is in operation and the indoor unit 300a performs cooling operation, or when the heat source device 100 is stopped, the gas branch pipe 403a of the indoor unit 300a and the low pressure pipe 401 are communicated.
  • the three-way electric expansion valves 202a and 202b of the repeater 200 communicate the gas branch pipes 403a and 403b with the high pressure pipe 402 to close the refrigerant flow to the low pressure pipe 401.
  • the refrigerant flowing from the high-pressure pipe 402 is not bypassed from the three-way electric expansion valves 202a and 202b to the low-pressure pipe 401, and the reduction in heating capacity can be suppressed compared to the conventional air conditioner.
  • the three-way electric expansion valves 202a and 202b allow the gas branch pipes 403a and 403b and the low pressure pipe 401 to communicate with each other at the maximum degree of opening. By vacuuming in such a state, it is possible to secure a larger flow rate of air flowing through the gas branch pipes 403a and 403b and the low-pressure pipe 401 than in the conventional case, and the time required for vacuuming the air conditioner 1 can be reduced.
  • the three-way electric expansion valves 202a and 202b to switch the refrigerant flow during cooling operation and heating operation, it is possible to reduce the number of parts of the first branch portion 240, and the space occupied within the repeater 200 can also be reduced. Furthermore, when switching the flow of the refrigerant during cooling operation and heating operation with a plurality of valves for one indoor unit 300a, it is actually difficult to operate the plurality of valves at the same time, resulting in a time lag of several seconds. On the other hand, by switching one three-way electric expansion valve 202a for one indoor unit 300a, the control target becomes one, so there is no need to consider the occurrence of time lag.
  • FIG. 8 is a refrigerant circuit diagram of an air conditioner 1A according to Embodiment 2. As shown in FIG. As shown in FIG. 8, an air conditioner 1A of Embodiment 2 differs from that of Embodiment 1 in the configuration of a first branch portion 240A of a repeater 200A. Other configurations of the air conditioner 1A are the same as those of the first embodiment.
  • the first branch portion 240A of the repeater 200A of the present embodiment includes heating on-off valves 213a and 213b and cooling expansion valves 214a and 214b.
  • One of the heating on-off valves 213 a and 213 b is connected to the gas branch pipes 403 a and 403 b , and the other is connected to the high pressure pipe 402 .
  • One of the cooling expansion valves 214 a and 214 b is connected to the gas branch pipes 403 a and 403 b and the other is connected to the low pressure pipe 401 .
  • the heating on-off valves 213a and 213b are, for example, electromagnetic valves.
  • the cooling expansion valves 214a and 214b are composed of, for example, two-way electric expansion valves whose opening can be adjusted.
  • FIG. 9 is a flow chart showing control operations of the heating on-off valve 213a and the cooling expansion valve 214a according to the second embodiment.
  • the control operation of the heating on-off valve 213b and the cooling expansion valve 214b is the same as the control operation of the heating on-off valve 213a and the cooling expansion valve 214a.
  • the control device 10 determines the opening/closing of the heating on/off valve 213a and the opening of the cooling expansion valve 214a according to the operation mode required for the indoor unit 300a connected to the heating on/off valve 213a and the cooling expansion valve 214a.
  • the control device 10 determines whether the heat source equipment 100 is in operation (S21). Here, when the compressor 101 is in operation, it is determined that the heat source device 100 is in operation. If the heat source device 100 is in operation (S21: YES), the control device 10 determines the state of the indoor unit 300a (S22). Here, the control device 10 determines whether the indoor unit 300a is requesting stop, cooling operation, or heating operation.
  • the control device 10 closes both the heating on-off valve 213a and the cooling expansion valve 214a (S23). That is, when the heat source unit 100 is in operation and the indoor unit 300a is stopped, the gas branch pipe 403a of the indoor unit 300a is closed.
  • the control device 10 opens the heating on-off valve 213a and closes the cooling expansion valve 214a (S24). Accordingly, when the heat source unit 100 is in operation and the indoor unit 300a performs heating operation, the gas branch pipe 403a of the indoor unit 300a and the high-pressure pipe 402 are communicated with each other.
  • the controller 10 closes the heating on-off valve 213a and opens the cooling expansion valve 214a (S25).
  • the control device 10 fully opens the cooling expansion valve 214a.
  • the gas branch pipes 403a and 403b and the high pressure pipe 402 are communicated, and the flow of refrigerant to the low pressure pipe 401 can be closed. Therefore, since the refrigerant flowing from the high-pressure pipe 402 does not bypass the cooling expansion valves 214a and 214b to the low-pressure pipe 401, the reduction in heating capacity can be suppressed compared to the conventional air conditioner.
  • the gas branch pipes 403a and 403b and the low-pressure pipe 401 can be communicated with each other at the maximum degree of opening. By vacuuming in such a state, it is possible to secure a larger flow rate of air flowing through the gas branch pipes 403a and 403b and the low-pressure pipe 401 than in the conventional case, and the time required for vacuuming the air conditioner 1 can be reduced.
  • the control device 10 when the indoor unit 300a requests to stop (S2: stop), the control device 10 is configured to transmit a pulse signal of the control amount P1 to the three-way electric expansion valve 202a.
  • the control device 10 when the heat source device 100 is not in operation (S1: NO), the control device 10 is configured to transmit a pulse signal of the control amount Pmin to the three-way electric expansion valve 202a.
  • the control amount may be set larger than Pmin.
  • the degree of opening of the three-way electric expansion valve 202a can be reduced, and the stagnation amount of the refrigerant can be suppressed.
  • a heating expansion valve consisting of a two-way electric expansion valve whose opening degree can be adjusted may be used.
  • the control device 10 closes both the heating expansion valve and the cooling expansion valve 214a.
  • the control device 10 fully opens the heating expansion valve and closes the cooling expansion valve 214a.
  • the control device 10 closes the heating expansion valve and opens the cooling expansion valve 214a. Also in this case, the same effect as in the second embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This air conditioning device comprises: a heat source machine having a compressor, a flow path switching valve, and a heat source-side heat exchanger; an indoor unit that has a load-side flow rate adjustment valve and a load-side heat exchanger, and performs a cooling operation or a heating operation; a relay that is connected to the heat source machine by a low-pressure tube and a high-pressure tube, is connected to the indoor unit by a gas branch tube and a liquid branch tube, and supplies, to the indoor unit, a refrigerant supplied from the heat source machine; and a control device, wherein the relay comprises a branch part that allows communication between the gas branch tube and the low-pressure tube when the indoor unit performs the cooling operation, and allows communication between the gas branch tube and the high-pressure tube when the indoor unit performs the heating operation, the branch part has an expansion valve which is connected to the gas branch tube and the low-pressure tube and of which the opening degree is adjustable, and the control device controls the expansion valve such that communication is allowed between the gas branch tube and the low-pressure tube when the heat source machine is stopped.

Description

空気調和装置air conditioner
 本開示は、熱源機から供給される冷媒を室内機に供給する中継機を有する空気調和装置に関するものである。 The present disclosure relates to an air conditioner having a repeater that supplies refrigerant supplied from a heat source device to indoor units.
 冷凍サイクルを利用した空気調和装置は、圧縮機及び熱源側熱交換器を有する熱源機と、膨張弁及び負荷側熱交換器を有する室内機とが配管によって接続され、冷媒が流れる冷媒回路を備えている。空気調和装置は、負荷側熱交換器において冷媒が蒸発又は凝縮する際に、熱交換対象である空調対象空間の空気に対し吸熱又は放熱して、冷媒回路に流れる冷媒の圧力及び温度等を変化させながら、空気調和を行う。 An air conditioner that uses a refrigeration cycle has a refrigerant circuit in which a heat source unit having a compressor and a heat source side heat exchanger and an indoor unit having an expansion valve and a load side heat exchanger are connected by piping, and refrigerant flows. When the refrigerant evaporates or condenses in the load-side heat exchanger, the air conditioner absorbs or radiates heat from the air in the air-conditioned space, which is the object of heat exchange, and changes the pressure, temperature, etc. of the refrigerant flowing through the refrigerant circuit to perform air conditioning.
 また、熱源機と、複数の室内機と、熱源機から供給される冷媒を複数の室内機に分配する中継機とを備える空気調和装置も知られている。このような空気調和装置では、リモートコントローラにより設定された設定温度及び室内温度等に応じて、複数の室内機において、それぞれ冷房運転又は暖房運転の要否が自動的に判断され、室内機ごとに冷房運転又は暖房運転を行う冷暖同時運転が実施される。冷暖同時運転が実施される空気調和装置として、特許文献1には、熱源機と室内機との間の中継機において、冷房運転時の冷媒の流れと暖房運転時の冷媒の流れとを2個の電磁弁によって切替える構成が開示されている。 Also known is an air conditioner that includes a heat source device, a plurality of indoor units, and a repeater that distributes the refrigerant supplied from the heat source device to the plurality of indoor units. In such an air conditioner, the necessity of cooling operation or heating operation is automatically determined in each of the plurality of indoor units according to the set temperature and indoor temperature set by the remote controller, and cooling operation or heating operation is performed for each indoor unit. Simultaneous cooling and heating operation is performed. As an air conditioner that performs simultaneous cooling and heating operation, Patent Document 1 discloses a configuration in which a relay device between a heat source unit and an indoor unit switches between a flow of refrigerant during cooling operation and a flow of refrigerant during heating operation by two electromagnetic valves.
特許第6895901号公報Japanese Patent No. 6895901
 特許文献1の構成では、真空引きなどを行うために空気調和装置への通電を停止すると、中継機の電磁弁が閉止する。そのため、中継機と室内機とを接続するガス枝管の真空引きを可能とするためには、冷房切替用電磁弁に、例えばオリフィスを設ける必要がある。しかしながら、冷房切替用電磁弁にオリフィスを設けた場合、暖房運転時に圧縮機から供給される冷媒の一部が室内機を経由せずに冷房切替用電磁弁のオリフィスを通って低圧管へと流れてしまい、室内機の暖房能力が低下してしまう。一方、暖房能力の低下を抑制するためにオリフィスの径を小さくすると、空気調和装置全体を真空引きする際にオリフィスを流れる空気流量が減少してしまい、真空引きに時間を要してしまう。従って、従来の高背においては、暖房能力向上と真空引き時間の削減とはトレードオフの関係になっており、これらを両立することが困難であるという課題がある。 In the configuration of Patent Document 1, when power supply to the air conditioner is stopped in order to draw a vacuum, the electromagnetic valve of the repeater closes. Therefore, in order to make it possible to evacuate the gas branch pipe that connects the relay unit and the indoor unit, it is necessary to provide an orifice, for example, in the cooling switching solenoid valve. However, when an orifice is provided in the cooling switching solenoid valve, part of the refrigerant supplied from the compressor during heating operation passes through the cooling switching solenoid valve orifice and flows into the low-pressure pipe without passing through the indoor unit, resulting in a decrease in the heating capacity of the indoor unit. On the other hand, if the diameter of the orifice is reduced in order to suppress the deterioration of the heating capacity, the flow rate of air flowing through the orifice decreases when the entire air conditioner is evacuated, and it takes time to evacuate. Therefore, in the conventional tall type, there is a trade-off relationship between the improvement of the heating capacity and the reduction of the evacuation time, and there is a problem that it is difficult to achieve both of them.
 本開示は、上記のよう課題を解決するものであり、暖房能力の低下を抑制するとともに、真空引き時間を削減することができる空気調和装置を提供するものである。 The present disclosure solves the problems described above, and provides an air conditioner capable of suppressing a decrease in heating capacity and reducing the evacuation time.
 本開示に係る空気調和装置は、圧縮機、流路切替弁及び熱源側熱交換器を有する熱源機と、負荷側流量調整弁及び負荷側熱交換器を有し、冷房運転又は暖房運転を実施する室内機と、低圧管及び高圧管によって熱源機に接続され、ガス枝管及び液枝管によって室内機に接続され、熱源機から供給される冷媒を室内機に供給する中継機と、制御装置と、を備え、中継機は、室内機が冷房運転をする場合にはガス枝管と低圧管とを連通し、室内機が暖房運転をする場合には、ガス枝管と高圧管とを連通する分岐部を備え、分岐部は、ガス枝管と低圧管とに接続され、開度を調整可能な膨張弁を有し、制御装置は、熱源機の停止時に、ガス枝管と低圧管とが連通するよう膨張弁を制御する。 The air conditioning apparatus according to the present disclosure comprises: a heat source unit having a compressor, a flow path switching valve and a heat source side heat exchanger; an indoor unit having a load side flow control valve and a load side heat exchanger and performing cooling operation or heating operation; a repeater connected to the heat source unit by a low pressure pipe and a high pressure pipe, connected to the indoor unit by a gas branch pipe and a liquid branch pipe, and supplying refrigerant supplied from the heat source unit to the indoor unit; When the indoor unit is in a heating operation, the branch unit is connected to the gas branch pipe and the low pressure pipe, and has an expansion valve whose degree of opening can be adjusted.
 本開示の空気調和装置によれば、中継機の分岐部に開度を調整可能な膨張弁を設けることにより、暖房運転時に低圧管を閉止できるとともに、停止時にガス枝管と低圧管とを連通させて低圧管を開放することが可能となる。これにより、暖房能力の低下を抑制するとともに真空引き時間を削減することができる。 According to the air conditioner of the present disclosure, by providing an expansion valve whose opening degree can be adjusted at the branch of the repeater, the low-pressure pipe can be closed during heating operation, and the gas branch pipe and the low-pressure pipe can be communicated to open the low-pressure pipe when stopped. As a result, it is possible to suppress a decrease in the heating capacity and reduce the evacuation time.
実施の形態1に係る空気調和装置の冷媒回路図である。2 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る三方電気式膨張弁の制御量と開度との関係を示すグラフである。4 is a graph showing the relationship between the control amount and the degree of opening of the three-way electric expansion valve according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の全冷房運転時の状態を示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram showing the state of the air conditioner according to Embodiment 1 during cooling only operation. 実施の形態1に係る空気調和装置の全暖房運転時の状態を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing the state of the air conditioner according to Embodiment 1 during heating only operation. 実施の形態1に係る空気調和装置の冷房主体運転時の状態を示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram showing a state of the air conditioner according to Embodiment 1 during cooling-main operation. 実施の形態1に係る空気調和装置の暖房主体運転時の状態を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing a state of the air conditioner according to Embodiment 1 during heating main operation. 実施の形態1に係る三方電気式膨張弁の制御動作を示すフローチャートである。4 is a flow chart showing the control operation of the three-way electric expansion valve according to Embodiment 1; 実施の形態2に係る空気調和装置の冷媒回路図である。FIG. 7 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2; 実施の形態2に係る暖房用開閉弁及び冷房用膨張弁の制御動作を示すフローチャートである。9 is a flow chart showing control operations of a heating on-off valve and a cooling expansion valve according to Embodiment 2. FIG.
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Embodiments will be described below based on the drawings. In addition, in each figure, the same reference numerals denote the same or corresponding parts, and this is common throughout the specification. Also, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions. Furthermore, in the drawings below, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置1の冷媒回路図である。図1に示すように、空気調和装置1は、熱源機100と、複数の室内機300a及び300bと、中継機200と、制御装置10とを備えている。なお、実施の形態1では、1台の熱源機100に2台の室内機300a及び300bが接続された構成について説明するが、熱源機100及び中継機200の台数は2台以上でもよい。また、室内機の台数は1台又は3台以上でもよい。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram of an air conditioner 1 according to Embodiment 1. FIG. As shown in FIG. 1, the air conditioner 1 includes a heat source device 100, a plurality of indoor units 300a and 300b, a repeater 200, and a control device 10. In Embodiment 1, a configuration in which two indoor units 300a and 300b are connected to one heat source device 100 will be described, but the number of heat source devices 100 and repeaters 200 may be two or more. Also, the number of indoor units may be one or three or more.
(空気調和装置の構成)
 図1に示すように、空気調和装置1は、熱源機100と、室内機300a及び300bと、中継機200とが接続されて構成されている。熱源機100は、2台の室内機300a及び300bに熱を供給する機能を有している。室内機300a及び300bは、それぞれ互いに並列に接続されており、それぞれ同じ構成を有している。室内機300a及び300bは、熱源機100から供給される熱によって、室内等の空調対象空間を冷房又は暖房する機能を有している。中継機200は、熱源機100と室内機300a及び300bとの間に介在し、室内機300a及び300bからの要求に応じて熱源機100から供給される冷媒の流れを切替えて室内機300a及び300bに供給する機能を有している。
(Configuration of air conditioner)
As shown in FIG. 1, the air conditioner 1 is configured by connecting a heat source device 100, indoor units 300a and 300b, and a relay device 200. As shown in FIG. The heat source device 100 has a function of supplying heat to the two indoor units 300a and 300b. The indoor units 300a and 300b are connected in parallel and have the same configuration. The indoor units 300 a and 300 b have a function of cooling or heating an air-conditioned space such as a room with heat supplied from the heat source unit 100 . The relay device 200 is interposed between the heat source device 100 and the indoor units 300a and 300b, and has a function of switching the flow of refrigerant supplied from the heat source device 100 in response to requests from the indoor units 300a and 300b and supplying the refrigerant to the indoor units 300a and 300b.
 熱源機100と中継機200とは、高圧側において、高圧の冷媒が流れる高圧管402によって接続され、低圧側において、低圧の冷媒が流れる低圧管401によって接続されている。また、中継機200と室内機300a及び300bとは、それぞれ、ガス枝管403a及び403b、並びに液枝管404a及び404bによって接続されている。ガス枝管403a及び403bには、主にガス状態の冷媒が流れる。液枝管404a及び404bには、主に液状態の冷媒が流れる。 The heat source device 100 and the relay device 200 are connected on the high pressure side by a high pressure pipe 402 through which a high pressure refrigerant flows, and are connected on the low pressure side by a low pressure pipe 401 through which a low pressure refrigerant flows. Further, the repeater 200 and the indoor units 300a and 300b are connected by gas branch pipes 403a and 403b and liquid branch pipes 404a and 404b, respectively. Refrigerant in a gas state mainly flows through the gas branch pipes 403a and 403b. Liquid refrigerant mainly flows through the liquid branch pipes 404a and 404b.
(熱源機100)
 熱源機100は、圧縮機101と、流路切替弁102と、熱源側熱交換ユニット120と、アキュムレータ104と、熱源側流路調整ユニット140と、を備えている。圧縮機101は、低圧のガス冷媒を吸入して圧縮し、高圧のガス冷媒として吐出する流体機械である。圧縮機101は、例えば運転周波数を調整可能なインバータ駆動の圧縮機である。流路切替弁102は、圧縮機101から吐出された冷媒の流路を切替える四方弁である。なお、流路切替弁102は、二方弁又は三方弁等を組み合わせることによって構成されてもよい。
(Heat source machine 100)
The heat source device 100 includes a compressor 101 , a flow path switching valve 102 , a heat source side heat exchange unit 120 , an accumulator 104 , and a heat source side flow adjustment unit 140 . The compressor 101 is a fluid machine that draws in low-pressure gas refrigerant, compresses it, and discharges it as high-pressure gas refrigerant. The compressor 101 is, for example, an inverter-driven compressor with an adjustable operating frequency. The channel switching valve 102 is a four-way valve that switches the channel of the refrigerant discharged from the compressor 101 . Note that the flow path switching valve 102 may be configured by combining a two-way valve, a three-way valve, or the like.
 熱源側熱交換ユニット120は、主管114と、熱源側熱交換器103と、熱源側送風機111と、バイパス管113と、熱源側流量調整弁109と、バイパス流量調整弁110とを備えている。熱源側熱交換器103は、内部を流通する冷媒と、熱源側送風機111により送風される空気との熱交換を行う熱交換器である。熱源側熱交換器103は、蒸発器又は凝縮器として機能する。なお、熱源側熱交換器103は、例えば水又はブラインと冷媒との間で熱交換を行う水冷式の熱交換器であってもよい。 The heat source side heat exchange unit 120 includes a main pipe 114, a heat source side heat exchanger 103, a heat source side blower 111, a bypass pipe 113, a heat source side flow control valve 109, and a bypass flow control valve 110. The heat source side heat exchanger 103 is a heat exchanger that performs heat exchange between the refrigerant flowing inside and the air blown by the heat source side blower 111 . The heat source side heat exchanger 103 functions as an evaporator or a condenser. The heat source side heat exchanger 103 may be, for example, a water-cooled heat exchanger that exchanges heat between water or brine and a refrigerant.
 熱源側送風機111は、熱源側熱交換器103に空気を供給するプロペラファン、クロスフローファン、又は多翼遠心ファンである。熱源側送風機111の回転数が制御されることで、熱交換容量が制御される。なお、熱源側熱交換器103が水冷式の場合は、熱源側送風機111は省略され、替わりに熱媒体を循環させるポンプが設けられる。 The heat source side blower 111 is a propeller fan, cross flow fan, or multi-blade centrifugal fan that supplies air to the heat source side heat exchanger 103 . The heat exchange capacity is controlled by controlling the rotational speed of the heat source side blower 111 . Note that when the heat source side heat exchanger 103 is of a water-cooled type, the heat source side blower 111 is omitted, and a pump for circulating the heat medium is provided instead.
 主管114は、一方が流路切替弁102に接続され、他方が高圧管402に接続されており、熱源側熱交換器103及び熱源側流量調整弁109が設けられている。バイパス管113は、一方が流路切替弁102に接続され、他方が高圧管402に接続されており、主管114に並列に接続されている。バイパス管113に流れる冷媒は、熱源側熱交換器103を通過せず、熱交換されない。 The main pipe 114 has one end connected to the flow path switching valve 102 and the other end connected to the high pressure pipe 402, and the heat source side heat exchanger 103 and the heat source side flow control valve 109 are provided. The bypass pipe 113 has one end connected to the flow path switching valve 102 and the other end connected to the high pressure pipe 402 , and is connected in parallel to the main pipe 114 . The refrigerant flowing through the bypass pipe 113 does not pass through the heat source side heat exchanger 103 and is not heat-exchanged.
 熱源側流量調整弁109は、主管114において熱源側熱交換器103に直列に接続されており、主管114に流れる冷媒の流量を調整し、減圧するものである。熱源側流量調整弁109は、例えば開度を調整可能な二方電気式膨張弁等で構成されている。バイパス流量調整弁110は、バイパス管113に設けられており、バイパス管113に流れる冷媒の流量を調整し、減圧するものである。バイパス流量調整弁110は、例えば開度を調整可能な電気式膨張弁等で構成されている。 The heat source side flow control valve 109 is connected in series with the heat source side heat exchanger 103 in the main pipe 114 and adjusts the flow rate of the refrigerant flowing through the main pipe 114 to reduce the pressure. The heat source side flow control valve 109 is configured by, for example, a two-way electric expansion valve whose opening degree can be adjusted. The bypass flow control valve 110 is provided in the bypass pipe 113 and adjusts the flow rate of the refrigerant flowing through the bypass pipe 113 to reduce the pressure. The bypass flow regulating valve 110 is composed of, for example, an electric expansion valve whose degree of opening can be adjusted.
 アキュムレータ104は、流路切替弁102と、圧縮機101の吸入口との間に設けられている。アキュムレータ104は、余剰冷媒を貯留する冷媒貯留機能と、アキュムレータ104に流入する気液二相冷媒を分離してガス冷媒を圧縮機101に排出し、液冷媒を滞留させる気液分離機能とを有している。 The accumulator 104 is provided between the flow path switching valve 102 and the suction port of the compressor 101 . The accumulator 104 has a refrigerant storage function of storing excess refrigerant, and a gas-liquid separation function of separating the gas-liquid two-phase refrigerant flowing into the accumulator 104, discharging the gas refrigerant to the compressor 101, and retaining the liquid refrigerant.
 熱源側流路調整ユニット140は、第3逆止弁105、第4逆止弁106、第5逆止弁107、第6逆止弁108を有している。第3逆止弁105は、熱源側熱交換ユニット120と高圧管402とを接続する配管に設けられ、熱源側熱交換ユニット120から高圧管402に向かう冷媒の流れを許容する。第4逆止弁106は、熱源機100の流路切替弁102と低圧管401とを接続する配管に設けられ、低圧管401から流路切替弁102に向かう冷媒の流れを許容する。第5逆止弁107は、熱源機100の流路切替弁102と高圧管402とを接続する配管に設けられ、流路切替弁102から高圧管402に向かう冷媒の流れを許容する。第6逆止弁108は、熱源側熱交換ユニット120と低圧管401とを接続する配管に設けられ、低圧管401から熱源側熱交換ユニット120に向かう冷媒の流れを許容する。 The heat source side passage adjustment unit 140 has a third check valve 105, a fourth check valve 106, a fifth check valve 107, and a sixth check valve . The third check valve 105 is provided in a pipe connecting the heat source side heat exchange unit 120 and the high pressure pipe 402 and allows the refrigerant to flow from the heat source side heat exchange unit 120 toward the high pressure pipe 402 . The fourth check valve 106 is provided in a pipe connecting the flow path switching valve 102 of the heat source device 100 and the low pressure pipe 401 and allows the refrigerant to flow from the low pressure pipe 401 toward the flow path switching valve 102 . The fifth check valve 107 is provided in a pipe connecting the flow path switching valve 102 of the heat source device 100 and the high pressure pipe 402 and allows the refrigerant to flow from the flow path switching valve 102 toward the high pressure pipe 402 . The sixth check valve 108 is provided in a pipe connecting the heat source side heat exchange unit 120 and the low pressure pipe 401 and allows the refrigerant to flow from the low pressure pipe 401 toward the heat source side heat exchange unit 120 .
 また、熱源機100には、吐出圧力センサ126が設けられている。吐出圧力センサ126は、流路切替弁102と圧縮機101の吐出側とを接続する配管に設けられており、圧縮機101から吐出される冷媒の圧力を検出するものである。吐出圧力センサ126は、検出した吐出圧力の信号を制御装置10に送信する。 Also, the heat source device 100 is provided with a discharge pressure sensor 126 . The discharge pressure sensor 126 is provided in a pipe connecting the flow path switching valve 102 and the discharge side of the compressor 101 and detects the pressure of the refrigerant discharged from the compressor 101 . The discharge pressure sensor 126 transmits a signal of the detected discharge pressure to the control device 10 .
 また、熱源機100には、吸入圧力センサ127が設けられている。吸入圧力センサ127は、流路切替弁102とアキュムレータ104とを接続する配管に設けられており、圧縮機101に吸入される冷媒の圧力を検出するものである。吸入圧力センサ127は、検出した吸入圧力の信号を制御装置10に送信する。 Also, the heat source device 100 is provided with a suction pressure sensor 127 . The suction pressure sensor 127 is provided in a pipe connecting the flow path switching valve 102 and the accumulator 104 and detects the pressure of the refrigerant sucked into the compressor 101 . The suction pressure sensor 127 transmits a detected suction pressure signal to the control device 10 .
 なお、吐出圧力センサ126及び吸入圧力センサ127は、それぞれ記憶装置等を有していてもよい。この場合、各圧力センサは、検出した圧力のデータを記憶装置等に所定期間蓄積し、所定の周期毎に蓄積された圧力のデータを含む信号を制御装置10に送信する。 Note that the discharge pressure sensor 126 and the suction pressure sensor 127 may each have a storage device or the like. In this case, each pressure sensor accumulates detected pressure data in a storage device or the like for a predetermined period, and transmits a signal including the accumulated pressure data to the control device 10 at predetermined intervals.
 また、熱源機100には、冷媒封入部131及び132が設けられている。冷媒封入部131は、流路切替弁102と圧縮機101の吐出側とを接続する配管に設けられており、圧縮機101の吐出側から冷媒封入又は真空引きを可能とするものである。冷媒封入部132は、流路切替弁102とアキュムレータ104とを接続する配管に設けられており、圧縮機101の吸入側から冷媒封入又は真空引きを可能とするものである。冷媒封入部131及び132は、例えばチェックジョイント等で構成されている。 In addition, the heat source device 100 is provided with refrigerant enclosures 131 and 132 . The refrigerant enclosing part 131 is provided in a pipe connecting the flow path switching valve 102 and the discharge side of the compressor 101 , and enables refrigerant encapsulation or evacuation from the discharge side of the compressor 101 . The refrigerant enclosing part 132 is provided in a pipe that connects the flow path switching valve 102 and the accumulator 104 , and enables refrigerant encapsulation or vacuum drawing from the suction side of the compressor 101 . The refrigerant sealed portions 131 and 132 are configured by, for example, check joints.
(室内機300a及び300b)
 室内機300a及び300bは、それぞれ、凝縮器又は蒸発器として機能する負荷側熱交換器301a及び301bと、室内機300a及び300bに流通する冷媒の流量を調整する負荷側流量調整弁302a及び302bとを備えている。負荷側熱交換器301a及び301bは、内部を流通する冷媒と、室内送風機(図示せず)により送風される空気との熱交換を行う熱交換器である。なお、負荷側熱交換器301a及び301bは、例えば水又はブラインと冷媒との間で熱交換を行う水冷式の熱交換器であってもよい。
( Indoor units 300a and 300b)
The indoor units 300a and 300b respectively include load- side heat exchangers 301a and 301b that function as condensers or evaporators, and load-side flow control valves 302a and 302b that adjust the flow rate of the refrigerant flowing through the indoor units 300a and 300b. The load- side heat exchangers 301a and 301b are heat exchangers that exchange heat between refrigerant flowing inside and air blown by an indoor fan (not shown). The load- side heat exchangers 301a and 301b may be water-cooled heat exchangers that exchange heat between water or brine and a refrigerant, for example.
 負荷側流量調整弁302a及び302bは、負荷側熱交換器301a及び301bに流入する又は負荷側熱交換器301a及び301bから流出する冷媒の流量を調整し、減圧するものである。負荷側流量調整弁302a及び302bは、例えば開度を調整可能な二方電気式膨張弁等で構成されている。冷房時における負荷側流量調整弁302a及び302bの開度は、制御装置10によって、負荷側熱交換器301a及び301bの出口側の過熱度に基づきそれぞれ制御される。また、暖房時における負荷側流量調整弁302a及び302bの開度は、制御装置10によって、負荷側熱交換器301a及び301bの出口側の過冷却度に基づきそれぞれ制御される。 The load-side flow control valves 302a and 302b adjust the flow rate of the refrigerant flowing into or out of the load- side heat exchangers 301a and 301b to reduce the pressure. The load-side flow control valves 302a and 302b are composed of, for example, two-way electric expansion valves whose opening can be adjusted. The degree of opening of the load-side flow control valves 302a and 302b during cooling is controlled by the controller 10 based on the degree of superheat on the outlet side of the load- side heat exchangers 301a and 301b. In addition, the degree of opening of the load-side flow control valves 302a and 302b during heating is controlled by the controller 10 based on the degree of supercooling on the outlet side of the load- side heat exchangers 301a and 301b.
 室内機300a及び300bには、それぞれ、ガス管温度センサ304a及び304b、並びに液管温度センサ303a及び303bが設けられている。ガス管温度センサ304a及び304bは、それぞれ、負荷側熱交換器301a及び301bと中継機200との間に設けられている。ガス管温度センサ304a及び304bは、負荷側熱交換器301a及び301bと中継機200とを接続するガス枝管403a及び403bに流れる冷媒の温度を検出するものである。ガス管温度センサ304a及び304bは、例えばサーミスタ等で構成されており、検出された温度の信号を制御装置10に送信する。 The indoor units 300a and 300b are provided with gas pipe temperature sensors 304a and 304b and liquid pipe temperature sensors 303a and 303b, respectively. Gas pipe temperature sensors 304a and 304b are provided between load side heat exchangers 301a and 301b and repeater 200, respectively. The gas pipe temperature sensors 304a and 304b detect the temperature of the refrigerant flowing through the gas branch pipes 403a and 403b connecting the load side heat exchangers 301a and 301b and the repeater 200 . The gas pipe temperature sensors 304 a and 304 b are composed of, for example, thermistors, and send signals of detected temperatures to the control device 10 .
 液管温度センサ303a及び303bは、それぞれ、負荷側熱交換器301a及び301bと負荷側流量調整弁302a及び302bとの間に設けられている。液管温度センサ303a及び303bは、負荷側熱交換器301a及び301bと負荷側流量調整弁302a及び302bとを接続する配管に流れる冷媒の温度を検出するものである。液管温度センサ303a及び303bは、例えばサーミスタ等で構成されており、検出された温度の信号を制御装置10に送信する。 The liquid pipe temperature sensors 303a and 303b are provided between the load side heat exchangers 301a and 301b and the load side flow control valves 302a and 302b, respectively. The liquid pipe temperature sensors 303a and 303b detect the temperature of refrigerant flowing through pipes connecting the load side heat exchangers 301a and 301b and the load side flow control valves 302a and 302b. The liquid tube temperature sensors 303 a and 303 b are composed of, for example, thermistors, and transmit signals of detected temperatures to the control device 10 .
 ガス管温度センサ304a及び304b、並びに液管温度センサ303a及び303bは、それぞれ記憶装置等を有していてもよい。この場合、各温度センサは、検出された温度のデータを記憶装置等に所定期間蓄積し、所定の周期毎に蓄積された温度のデータを含む信号を制御装置10に送信する。 The gas pipe temperature sensors 304a and 304b and the liquid pipe temperature sensors 303a and 303b may each have a storage device or the like. In this case, each temperature sensor accumulates detected temperature data in a storage device or the like for a predetermined period, and transmits a signal including the accumulated temperature data to the control device 10 at predetermined intervals.
(中継機200)
 中継機200は、第1分岐部240と、第2分岐部250と、気液分離器201と、中継バイパス配管209と、第1流量調整弁204と、第2流量調整弁205と、第1熱交換部206と、第2熱交換部207とを備えている。
(Relay machine 200)
The repeater 200 includes a first branch portion 240, a second branch portion 250, a gas-liquid separator 201, a relay bypass pipe 209, a first flow control valve 204, a second flow control valve 205, a first heat exchange portion 206, and a second heat exchange portion 207.
 第1分岐部240は、一方がガス枝管403a及び403bに接続され、他方が低圧管401及び高圧管402に接続されている。第1分岐部240は、ガス枝管403a及び403bを低圧管401又は高圧管402に接続し、冷房運転時の冷媒の流通方向と暖房運転時の冷媒の流通方向とを異ならせるものである。第1分岐部240は、開度を調整可能な三方電気式膨張弁202a及び202bを備えている。 The first branch 240 is connected to the gas branch pipes 403a and 403b on one side and to the low pressure pipe 401 and the high pressure pipe 402 on the other. The first branch portion 240 connects the gas branch pipes 403a and 403b to the low-pressure pipe 401 or the high-pressure pipe 402 so that the direction of refrigerant flow during cooling operation is different from that during heating operation. The first branch 240 includes three-way electric expansion valves 202a and 202b whose opening is adjustable.
 三方電気式膨張弁202aは、ガス枝管403aと、高圧管402と、低圧管401とに接続されている。三方電気式膨張弁202bは、ガス枝管403bと、高圧管402と、低圧管401とに接続されている。三方電気式膨張弁202a及び202bは、冷媒の流れ方向を切り替える機能を有するとともに、冷媒の流量を調整する機能を有している。具体的には、三方電気式膨張弁202aは、ガス枝管403aと低圧管401とを連通させる第1流路と、ガス枝管403aと高圧管402とを連通させる第2流路とを有している。同様に、三方電気式膨張弁202bは、ガス枝管403bと低圧管401とを連通させる第1流路と、ガス枝管403bと高圧管402とを連通させる第2流路とを有している。そして、制御装置10によって三方電気式膨張弁202a及び202bの開度が制御されることで、第1流路及び第2流路が開閉されるとともに、第1流路及び第2流路を流れる冷媒の流量が調整される。 The three-way electric expansion valve 202a is connected to the gas branch pipe 403a, the high pressure pipe 402, and the low pressure pipe 401. The three-way electric expansion valve 202b is connected to the gas branch pipe 403b, the high pressure pipe 402 and the low pressure pipe 401. The three-way electric expansion valves 202a and 202b have the function of switching the flow direction of the refrigerant and the function of adjusting the flow rate of the refrigerant. Specifically, the three-way electric expansion valve 202a has a first flow path that connects the gas branch pipe 403a and the low-pressure pipe 401, and a second flow path that connects the gas branch pipe 403a and the high-pressure pipe 402. Similarly, the three-way electric expansion valve 202b has a first flow path that connects the gas branch pipe 403b and the low-pressure pipe 401, and a second flow path that connects the gas branch pipe 403b and the high-pressure pipe 402. By controlling the opening degrees of the three-way electric expansion valves 202a and 202b by the control device 10, the first flow path and the second flow path are opened and closed, and the flow rate of the refrigerant flowing through the first flow path and the second flow path is adjusted.
 室内機300aが冷房運転を行う場合、三方電気式膨張弁202aは、ガス枝管403aと低圧管401とを連通する第1流路を開放し、第2流路を閉止するよう開度が制御される。また、室内機300aが暖房運転を行う場合、三方電気式膨張弁202aは、ガス枝管403aと高圧管402とを連通する第2流路を開放し、第1流路を閉止するよう開度が制御される。同様に、室内機300bが冷房運転を行う場合、三方電気式膨張弁202bは、ガス枝管403bと低圧管401とを連通する第1流路を開放し、第2流路を閉止するよう制御される。また、室内機300bが暖房運転を行う場合、三方電気式膨張弁202bは、ガス枝管403bと高圧管402とを連通する第2流路を開放し、第1流路を閉止するよう制御される。 When the indoor unit 300a performs cooling operation, the opening degree of the three-way electric expansion valve 202a is controlled so as to open the first channel that communicates the gas branch pipe 403a and the low-pressure pipe 401 and close the second channel. Further, when the indoor unit 300a performs the heating operation, the opening degree of the three-way electric expansion valve 202a is controlled so as to open the second passage that communicates the gas branch pipe 403a and the high-pressure pipe 402 and close the first passage. Similarly, when the indoor unit 300b performs cooling operation, the three-way electric expansion valve 202b is controlled to open the first flow path that communicates the gas branch pipe 403b and the low-pressure pipe 401 and close the second flow path. Further, when the indoor unit 300b performs heating operation, the three-way electric expansion valve 202b is controlled to open the second flow path connecting the gas branch pipe 403b and the high-pressure pipe 402 and close the first flow path.
 第2分岐部250は、一方が液枝管404a及び404bに接続され、他方が低圧管401及び高圧管402に接続されている。第2分岐部250は、液枝管404a及び404bを低圧管401又は高圧管402に接続し、冷房運転時の冷媒の流通方向と暖房運転時の冷媒の流通方向とを異ならせるものである。第2分岐部250は、第1逆止弁210a及び210bと、第2逆止弁211a及び211bとを有している。 The second branch 250 is connected to the liquid branch pipes 404a and 404b on one side and to the low pressure pipe 401 and the high pressure pipe 402 on the other. The second branch portion 250 connects the liquid branch pipes 404a and 404b to the low-pressure pipe 401 or the high-pressure pipe 402 so that the direction of refrigerant flow during cooling operation is different from that during heating operation. The second branch 250 has first check valves 210a and 210b and second check valves 211a and 211b.
 第1逆止弁210a及び210bは、それぞれの一方が液枝管404a及び404bに接続され、それぞれの他方が高圧管402に接続されており、高圧管402から液枝管404a及び404bに向かう冷媒の流通を許容する。 One of the first check valves 210a and 210b is connected to the liquid branch pipes 404a and 404b, and the other is connected to the high pressure pipe 402, allowing the refrigerant to flow from the high pressure pipe 402 to the liquid branch pipes 404a and 404b.
 第2逆止弁211a及び211bは、それぞれの一方が液枝管404a及び404bに接続され、それぞれの他方が低圧管401に接続されており、液枝管404a及び404bから低圧管401に向かう冷媒の流通を許容する。 One of the second check valves 211a and 211b is connected to the liquid branch pipes 404a and 404b, and the other is connected to the low pressure pipe 401, allowing the refrigerant to flow from the liquid branch pipes 404a and 404b toward the low pressure pipe 401.
 気液分離器201は、ガス状態の冷媒と液状態の冷媒とを分離するものであり、流入側が高圧管402に接続され、ガス流出側が第1分岐部240に接続され、液流出側が第2分岐部250に接続されている。中継バイパス配管209は、第2分岐部250と低圧管401とを接続するものである。第1流量調整弁204は、気液分離器201の液流出側に接続されており、例えば開度を調整可能な二方電気式膨張弁等で構成されている。第1流量調整弁204は、気液分離器201から流出する液状態の冷媒の流量を調整し、減圧するものである。 The gas-liquid separator 201 separates a gas state refrigerant and a liquid state refrigerant, the inflow side is connected to the high-pressure pipe 402, the gas outflow side is connected to the first branch portion 240, and the liquid outflow side is connected to the second branch portion 250. The relay bypass pipe 209 connects the second branch portion 250 and the low pressure pipe 401 . The first flow control valve 204 is connected to the liquid outflow side of the gas-liquid separator 201, and is composed of, for example, a two-way electric expansion valve whose opening degree can be adjusted. The first flow control valve 204 adjusts the flow rate of the liquid refrigerant flowing out of the gas-liquid separator 201 to reduce the pressure.
 第1熱交換部206は、気液分離器201の液流出側と第1流量調整弁204との間、及び中継バイパス配管209に設けられている。第1熱交換部206は、気液分離器201から流出する液状態の冷媒と、中継バイパス配管209に流れる冷媒とを熱交換するものである。第2熱交換部207は、第1流量調整弁204の下流側と中継バイパス配管209に設けられている。第2熱交換部207は、第1流量調整弁204から流出する冷媒と、中継バイパス配管209に流れる冷媒とを熱交換するものである。 The first heat exchange section 206 is provided between the liquid outflow side of the gas-liquid separator 201 and the first flow control valve 204 and in the relay bypass pipe 209 . The first heat exchange section 206 exchanges heat between the liquid refrigerant flowing out of the gas-liquid separator 201 and the refrigerant flowing through the relay bypass pipe 209 . The second heat exchange section 207 is provided downstream of the first flow control valve 204 and the relay bypass pipe 209 . The second heat exchange section 207 exchanges heat between the refrigerant flowing out of the first flow control valve 204 and the refrigerant flowing through the relay bypass pipe 209 .
 第2流量調整弁205は、中継バイパス配管209において、第2熱交換部207の上流側に接続されており、例えば開度を調整可能な二方電気式膨張弁等で構成されている。第2流量調整弁205は、第2熱交換部207から流出した冷媒のうち、中継バイパス配管209に流入した冷媒の流量を調整し、減圧するものである。 The second flow control valve 205 is connected to the upstream side of the second heat exchange section 207 in the relay bypass pipe 209, and is composed of, for example, a two-way electric expansion valve whose opening can be adjusted. The second flow control valve 205 adjusts the flow rate of the refrigerant that has flowed into the relay bypass pipe 209 among the refrigerant that has flowed out of the second heat exchange section 207 to reduce the pressure.
 ここで、第1逆止弁210a及び210bの上流側は、第2熱交換部207の下流側及び中継バイパス配管209に接続されている。従って、第2熱交換部207から流出した冷媒は、第1逆止弁210a及び210bに向かう冷媒と、中継バイパス配管209に流入する冷媒とに分かれる。また、第2逆止弁211a及び211bの下流側は、第1流量調整弁204と第2熱交換部207の上流側との間に接続されている。即ち、第2逆止弁211a及び211bから流出した冷媒は、第2熱交換部207に流入して熱交換された後、第1逆止弁210a及び210bに向かう冷媒と、中継バイパス配管209に流入する冷媒とに分かれる。 Here, the upstream sides of the first check valves 210 a and 210 b are connected to the downstream side of the second heat exchange section 207 and the relay bypass pipe 209 . Therefore, the refrigerant flowing out of the second heat exchange section 207 is divided into refrigerant heading to the first check valves 210 a and 210 b and refrigerant flowing into the relay bypass pipe 209 . Further, downstream sides of the second check valves 211 a and 211 b are connected between the first flow control valve 204 and the upstream side of the second heat exchange section 207 . That is, the refrigerant flowing out of the second check valves 211a and 211b flows into the second heat exchange section 207 and is heat-exchanged, and then flows into the first check valves 210a and 210b and the refrigerant flowing into the relay bypass pipe 209.
 また、中継機200には、第1圧力センサ231、第2圧力センサ232、及び中継バイパス温度センサ208が設けられている。第1圧力センサ231は、第1熱交換部206と第1流量調整弁204の上流側との間に設けられており、気液分離器201の液流出側の冷媒の圧力を検出するものである。第1圧力センサ231は、検出された圧力の信号を制御装置10に送信する。 The repeater 200 is also provided with a first pressure sensor 231 , a second pressure sensor 232 , and a relay bypass temperature sensor 208 . The first pressure sensor 231 is provided between the first heat exchange section 206 and the upstream side of the first flow control valve 204 and detects the pressure of the refrigerant on the liquid outflow side of the gas-liquid separator 201 . The first pressure sensor 231 transmits a detected pressure signal to the control device 10 .
 第2圧力センサ232は、第1流量調整弁204の下流側と第2熱交換部207との間に設けられており、第1流量調整弁204から流出した冷媒の圧力を検出するものである。第2圧力センサ232は、検出された圧力の信号を制御装置10に送信する。第1流量調整弁204は、第1圧力センサ231によって検出された圧力と第2圧力センサ232によって検出された圧力との差が一定となるように制御装置10によって開度が調整される。 The second pressure sensor 232 is provided between the downstream side of the first flow control valve 204 and the second heat exchange section 207, and detects the pressure of the refrigerant flowing out of the first flow control valve 204. The second pressure sensor 232 transmits a detected pressure signal to the control device 10 . The opening of the first flow control valve 204 is adjusted by the controller 10 so that the difference between the pressure detected by the first pressure sensor 231 and the pressure detected by the second pressure sensor 232 is constant.
 中継バイパス温度センサ208は、中継バイパス配管209に設けられており、中継バイパス配管209に流れる冷媒の温度を検出するものである。中継バイパス温度センサ208は、例えばサーミスタ等で構成されており、検出された温度の信号を制御装置10に送信する。第2流量調整弁205は、第1圧力センサ231によって検出された圧力、第2圧力センサ232によって検出された圧力及び中継バイパス温度センサ208によって検出された温度のうち少なくとも一つ以上に基づいて、制御装置10によって開度が調整される。 The relay bypass temperature sensor 208 is provided on the relay bypass pipe 209 and detects the temperature of the refrigerant flowing through the relay bypass pipe 209 . The relay bypass temperature sensor 208 is composed of, for example, a thermistor or the like, and transmits a detected temperature signal to the control device 10 . The degree of opening of the second flow control valve 205 is adjusted by the control device 10 based on at least one of the pressure detected by the first pressure sensor 231, the pressure detected by the second pressure sensor 232, and the temperature detected by the relay bypass temperature sensor 208.
 なお、第1圧力センサ231、第2圧力センサ232及び中継バイパス温度センサ208は、記憶装置等を有していてもよい。この場合、各圧力センサ及び温度センサは、検出された圧力又は温度のデータを記憶装置等に所定期間蓄積し、所定の周期毎に蓄積された圧力又は温度のデータを含む信号を制御装置10に送信する。 Note that the first pressure sensor 231, the second pressure sensor 232, and the relay bypass temperature sensor 208 may have a storage device or the like. In this case, each pressure sensor and temperature sensor accumulates the detected pressure or temperature data in a storage device or the like for a predetermined period, and transmits a signal including the accumulated pressure or temperature data to the control device 10 every predetermined period.
(冷媒)
 空気調和装置1は、配管の内部に冷媒が充填されている。冷媒は、例えば二酸化炭素(CO)、炭化水素、ヘリウム等の自然冷媒、HFC410A、HFC407C、HFC404A等の塩素を含有しないフロン代替冷媒、又は既存の製品に使用されるR22、R134a等のフロン系冷媒等である。なお、HFC407Cは、HFCのR32、R125、及びR134aが、それぞれ23wt%、25wt%、及び52wt%の比率で混合されている非共沸混合冷媒である。また、空気調和装置1の配管の内部に、冷媒ではなく熱媒体が充填されていてもよい。熱媒体は、例えば水又はブライン等である。
(Refrigerant)
In the air conditioner 1, the inside of the piping is filled with refrigerant. Refrigerants include, for example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium; chlorine-free CFC alternative refrigerants such as HFC410A, HFC407C, and HFC404A; and CFC refrigerants such as R22 and R134a used in existing products. HFC407C is a non-azeotropic mixed refrigerant in which HFCs R32, R125, and R134a are mixed at ratios of 23 wt %, 25 wt %, and 52 wt %, respectively. Further, the interior of the pipe of the air conditioner 1 may be filled with a heat medium instead of the refrigerant. The heat medium is, for example, water or brine.
(制御装置10)
 制御装置10は、空気調和装置1全体の動作を制御するものである。制御装置10は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUと、を備えるコンピュータ、ASIC又はFPGAなどの専用のハードウェア、もしくはその両方で構成される。制御装置10は、ガス管温度センサ304a及び304b、液管温度センサ303a及び303b、第1圧力センサ231、第2圧力センサ232、中継バイパス温度センサ208、吐出圧力センサ126及び吸入圧力センサ127から受信した検出情報、並びにリモコン(図示せず)からの指示に基づいて、圧縮機101の駆動周波数、熱源側送風機111及び室内機300a及び300bに設けられている室内送風機(図示せず)の回転数、流路切替弁102の切り替え、三方電気式膨張弁202a及び202bの開度、熱源側流量調整弁109、バイパス流量調整弁110、負荷側流量調整弁302a及び302b、並びに第1流量調整弁204及び第2流量調整弁205の開度等を制御する。
(control device 10)
The control device 10 controls the operation of the air conditioner 1 as a whole. The control device 10 is composed of a computer having a memory for storing data and programs required for control and a CPU for executing the programs, dedicated hardware such as ASIC or FPGA, or both. The control device 10 controls the driving frequency of the compressor 101, the heat source side blower 111, and the indoor units 300a and 300b based on the detection information received from the gas pipe temperature sensors 304a and 304b, the liquid pipe temperature sensors 303a and 303b, the first pressure sensor 231, the second pressure sensor 232, the relay bypass temperature sensor 208, the discharge pressure sensor 126, and the suction pressure sensor 127, and instructions from a remote controller (not shown). The number of rotations of an indoor fan (not shown) provided in , the switching of the flow path switching valve 102, the opening of the three-way electric expansion valves 202a and 202b, the heat source side flow control valve 109, the bypass flow control valve 110, the load side flow control valves 302a and 302b, the first flow control valve 204 and the opening of the second flow control valve 205, etc. are controlled.
 また、制御装置10は、吐出圧力センサ126によって検出された吐出圧力又は吸入圧力センサ127によって検出された吸入圧力から、冷房主体運転及び暖房主体運転における冷房容量又は暖房容量を演算してもよい。もしくは、制御装置10は、ガス管温度センサ304a及び304bと、液管温度センサ303a及び303bとによって検出された温度から求められる蒸発温度及び凝縮温度を用いて冷房主体運転及び暖房主体運転における冷房容量又は暖房容量を演算してもよい。 Also, the control device 10 may calculate the cooling capacity or heating capacity in the cooling main operation and the heating main operation from the discharge pressure detected by the discharge pressure sensor 126 or the suction pressure detected by the suction pressure sensor 127. Alternatively, the control device 10 may calculate the cooling capacity or heating capacity in the cooling main operation and the heating main operation using the evaporation temperature and the condensation temperature obtained from the temperatures detected by the gas pipe temperature sensors 304a and 304b and the liquid pipe temperature sensors 303a and 303b.
 なお、図1では制御装置10は、熱源機100に搭載されているが、これに限らず、中継機200、室内機300a又は300bの何れかに搭載されてもよいし、熱源機100、中継機200、室内機300a又は300bとは別に設けられてもよい。もしくは、熱源機100、中継機200、室内機300a及び300bが、それぞれ制御装置を備え、互いに無線又は有線によって通信可能に接続され、各種データ等を送受信してもよい。 Although the control device 10 is mounted on the heat source device 100 in FIG. 1, it may be mounted on either the relay device 200 or the indoor unit 300a or 300b, or may be provided separately from the heat source device 100, the relay device 200, or the indoor unit 300a or 300b. Alternatively, the heat source device 100, the relay device 200, and the indoor units 300a and 300b may each include a control device, and may be connected to each other by wireless or wired communication so as to transmit and receive various data.
 次に、第1分岐部240の三方電気式膨張弁202a及び202bの動作について説明する。図2は、実施の形態1に係る三方電気式膨張弁202aの制御量と開度との関係を示すグラフである。三方電気式膨張弁202bの制御量と開度の関係は、図2に示す三方電気式膨張弁202aの制御量と開度の関係と同じである。図2において、縦軸は三方電気式膨張弁202aの開度であり、横軸は制御装置10から三方電気式膨張弁202aに送信される制御量である。ここでの「制御量」は、制御装置10から三方電気式膨張弁202aに送信されるパルス信号のパルス数に相当する。 Next, the operation of the three-way electric expansion valves 202a and 202b of the first branch portion 240 will be described. FIG. 2 is a graph showing the relationship between the control amount and the degree of opening of the three-way electric expansion valve 202a according to the first embodiment. The relationship between the control amount and the opening of the three-way electric expansion valve 202b is the same as the relationship between the control amount and the opening of the three-way electric expansion valve 202a shown in FIG. In FIG. 2, the vertical axis is the degree of opening of the three-way electric expansion valve 202a, and the horizontal axis is the control amount transmitted from the control device 10 to the three-way electric expansion valve 202a. The "control amount" here corresponds to the number of pulses of the pulse signal transmitted from the control device 10 to the three-way electric expansion valve 202a.
 図2において、三方電気式膨張弁202aでは、制御量がP1未満の場合、ガス枝管403aと低圧管401とを連通する第1流路が開放され、ガス枝管403aと高圧管402とを連通する第2流路が閉止される。また、制御量が最小制御量Pminの場合、三方電気式膨張弁202aの第1流路の開度が最大開度A1となり、制御量が大きくなるにつれて三方電気式膨張弁202aの第1流路の開度は小さくなる。 In FIG. 2, in the three-way electric expansion valve 202a, when the control amount is less than P1, the first flow path communicating between the gas branch pipe 403a and the low-pressure pipe 401 is opened, and the second flow path communicating between the gas branch pipe 403a and the high-pressure pipe 402 is closed. When the control amount is the minimum control amount Pmin, the opening of the first flow path of the three-way electric expansion valve 202a becomes the maximum opening A1, and as the control amount increases, the opening of the first flow path of the three-way electric expansion valve 202a decreases.
 次に、制御量がP1以上P2未満の場合、制御量に依らず、三方電気式膨張弁202aの第1流路及び第2流路の両方が閉止される。さらに制御量がP2以上の場合、ガス枝管403aと高圧管402とを連通する第2流路が開放され、ガス枝管403aと低圧管401とを連通する第1流路が閉止される。また、制御量が最大制御量Pmaxの場合、三方電気式膨張弁202aの第2流路の開度は最大開度A1となり、制御量が小さくなるにつれて三方電気式膨張弁202aの第2流路の開度は小さくなる。 Next, when the control amount is greater than or equal to P1 and less than P2, both the first flow path and the second flow path of the three-way electric expansion valve 202a are closed regardless of the control amount. Further, when the control amount is P2 or more, the second flow path communicating between the gas branch pipe 403a and the high-pressure pipe 402 is opened, and the first flow path communicating between the gas branch pipe 403a and the low-pressure pipe 401 is closed. When the control amount is the maximum control amount Pmax, the opening of the second flow path of the three-way electric expansion valve 202a becomes the maximum opening A1, and as the control amount decreases, the opening of the second flow path of the three-way electric expansion valve 202a decreases.
(空気調和装置の動作)
 次に、空気調和装置1の動作について説明する。空気調和装置1は、運転モードとして、全冷房運転、全暖房運転、冷房主体運転及び暖房主体運転を有している。全冷房運転は、室内機300a及び300bの全てが冷房運転を行うモードである。全暖房運転は、室内機300a及び300bの全てが暖房運転を行うモードである。冷房主体運転は、冷暖同時運転のうち、冷房運転の容量が暖房運転の容量よりも大きいモードである。暖房主体運転は、冷暖同時運転のうち、暖房運転の容量が冷房運転の容量よりも大きいモードである。制御装置10は、室内機300a及び300bに対する運転要求に応じて、全冷房運転、全暖房運転、冷房主体運転又は暖房主体運転を実施する。各運転について、図3~図6を参照して説明する。なお、図3~図6において、高圧冷媒を実線矢印で示し、低圧冷媒を破線矢印で示している。また、図3~図6において、各逆止弁のうち、冷媒が流れない逆止弁を黒塗りで示している。
(Operation of air conditioner)
Next, the operation of the air conditioner 1 will be described. The air conditioner 1 has, as operation modes, a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation. The cooling-only operation is a mode in which all of the indoor units 300a and 300b perform the cooling operation. The heating only operation is a mode in which all of the indoor units 300a and 300b perform the heating operation. The cooling main operation is a mode in which the capacity of the cooling operation is larger than the capacity of the heating operation among the simultaneous cooling and heating operations. The heating-dominant operation is a mode in which the capacity of the heating operation is larger than the capacity of the cooling operation among the simultaneous cooling and heating operations. The control device 10 performs cooling-only operation, heating-only operation, cooling-dominant operation, or heating-dominant operation in accordance with the operation request to the indoor units 300a and 300b. Each operation will be described with reference to FIGS. 3 to 6. FIG. 3 to 6, the high-pressure refrigerant is indicated by solid line arrows, and the low-pressure refrigerant is indicated by broken line arrows. In addition, in FIGS. 3 to 6, among the check valves, the check valves through which the refrigerant does not flow are shown in black.
(全冷房運転)
 先ず、全冷房運転について説明する。図3は、実施の形態1に係る空気調和装置1の全冷房運転時の状態を示す冷媒回路図である。全冷房運転では、室内機300a及び300bの全てが冷房運転を行う。図3に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、熱源側熱交換器103において熱源側送風機111によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、その後、熱源側流量調整弁109、第3逆止弁105、高圧管402を通って、気液分離器201に至る。ここで、バイパス流量調整弁110は全閉されているため、バイパス管113に冷媒は流れない。
(All cooling operation)
First, the cooling only operation will be explained. FIG. 3 is a refrigerant circuit diagram showing the state of the air conditioner 1 according to Embodiment 1 during cooling only operation. In the cooling only operation, all of the indoor units 300a and 300b perform the cooling operation. As shown in FIG. 3, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, and is heat-exchanged with the outdoor air blown by the heat source-side blower 111 in the heat source-side heat exchanger 103 to be condensed and liquefied. The condensed and liquefied refrigerant then passes through the heat source side flow control valve 109 , the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 . Here, since the bypass flow control valve 110 is fully closed, no refrigerant flows through the bypass pipe 113 .
 そして、冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離され、液状態の冷媒が液流出側から流出し、第1熱交換部206、第1流量調整弁204、第2熱交換部207の順に流れ、第2分岐部250において分岐する。分岐した冷媒は、それぞれ、第1逆止弁210a及び210b、並びに液枝管404a及び404bを通って、室内機300a及び300bに流入する。全冷房運転において、液枝管404a及び404bは高圧管402よりも低圧であるため、第2逆止弁211a及び211bには冷媒が流れない。 Then, the refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201, and the liquid state refrigerant flows out from the liquid outflow side, flows through the first heat exchange section 206, the first flow control valve 204, and the second heat exchange section 207 in order, and branches at the second branch section 250. The branched refrigerant flows into the indoor units 300a and 300b through the first check valves 210a and 210b and the liquid branch pipes 404a and 404b, respectively. In full cooling operation, the liquid branch pipes 404a and 404b have a lower pressure than the high pressure pipe 402, so no refrigerant flows through the second check valves 211a and 211b.
 そして、室内機300a及び300bに流入した冷媒は、それぞれ、負荷側熱交換器301a及び301bの出口側の過熱度に基づき制御された負荷側流量調整弁302a及び302bによって、低圧まで減圧される。減圧された冷媒は、負荷側熱交換器301a及び301bに流入し、負荷側熱交換器301a及び301bで室内空気と熱交換されて蒸発ガス化する。その際、室内機300a及び300bが設置された室内が冷房される。そして、ガス状態となった冷媒は、それぞれ、ガス枝管403a及び403bを通って中継機200の第1分岐部240に流入する。 Then, the refrigerants that have flowed into the indoor units 300a and 300b are reduced to low pressure by the load side flow control valves 302a and 302b that are controlled based on the degree of superheat on the outlet side of the load side heat exchangers 301a and 301b. The depressurized refrigerant flows into the load- side heat exchangers 301a and 301b, where it is heat-exchanged with the indoor air and evaporates. At that time, the room in which the indoor units 300a and 300b are installed is cooled. Then, the gaseous refrigerant flows into the first branch portion 240 of the repeater 200 through the gas branch pipes 403a and 403b.
 全冷房運転時において、制御装置10は、低圧管401と連通する第1流路が開放され、高圧管402と連通する第2流路が閉止されるよう、三方電気式膨張弁202a及び202bの開度を制御する。そのため、第1分岐部240に流入した冷媒は、三方電気式膨張弁202a及び202bの第1流路を通り、その後合流し、低圧管401を通過する。 During the cooling only operation, the control device 10 controls the opening degrees of the three-way electric expansion valves 202a and 202b so that the first flow path communicating with the low-pressure pipe 401 is opened and the second flow path communicating with the high-pressure pipe 402 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 passes through the first flow paths of the three-way electric expansion valves 202 a and 202 b, then merges and passes through the low-pressure pipe 401 .
 また、第2熱交換部207を通過した冷媒の一部は、中継バイパス配管209に流入する。そして、中継バイパス配管209に流入した冷媒は、第2流量調整弁205で低圧まで減圧された後、第2熱交換部207において、第1流量調整弁204を通過した冷媒、即ち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1熱交換部206において、第1流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、三方電気式膨張弁202a及び202bを通った冷媒と合流する。その後、合流した冷媒は、第4逆止弁106、流路切替弁102、及びアキュムレータ104を経て圧縮機101に吸入される。 Also, part of the refrigerant that has passed through the second heat exchange section 207 flows into the relay bypass pipe 209 . The refrigerant that has flowed into the relay bypass pipe 209 is decompressed to a low pressure by the second flow control valve 205, and then heat-exchanged with the refrigerant that has passed through the first flow control valve 204 in the second heat exchange section 207, i.e., the refrigerant before branching to the relay bypass pipe 209, and evaporates. Furthermore, in the first heat exchange section 206, the refrigerant is heat-exchanged with the refrigerant before flowing into the first flow rate control valve 204, and is evaporated. The evaporated refrigerant flows into the low-pressure pipe 401 and joins the refrigerant that has passed through the three-way electric expansion valves 202a and 202b. After that, the merged refrigerant is sucked into the compressor 101 through the fourth check valve 106 , the flow path switching valve 102 and the accumulator 104 .
(全暖房運転)
 次に、全暖房運転について説明する。図4は、実施の形態1に係る空気調和装置1の全暖房運転時の状態を示す冷媒回路図である。全暖房運転では、室内機300a及び300bの全てが暖房運転を行う。図4に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、第5逆止弁107及び高圧管402を通って、気液分離器201に至る。
(All heating operation)
Next, the heating only operation will be explained. FIG. 4 is a refrigerant circuit diagram showing the state of the air-conditioning apparatus 1 according to Embodiment 1 during heating only operation. In the heating only operation, all of the indoor units 300a and 300b perform the heating operation. As shown in FIG. 4 , the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow switching valve 102 , the fifth check valve 107 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 .
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離され、ガス状態の冷媒が気液分離器201のガス流出側から流出し、第1分岐部240に流入する。全暖房運転時において、制御装置10は、高圧管402と連通する第2流路が開放され、低圧管401と連通する第1流路が閉止されるよう、三方電気式膨張弁202a及び202bの開度を制御する。そのため、第1分岐部240に流入した冷媒は、三方電気式膨張弁202a及び202bの第2流路を通り、ガス枝管403a及び403bを通って、室内機300a及び300bにそれぞれ流入する。 The refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201 , and the gas state refrigerant flows out from the gas outlet side of the gas-liquid separator 201 and flows into the first branch portion 240 . During the heating only operation, the control device 10 controls the opening degrees of the three-way electric expansion valves 202a and 202b so that the second flow path communicating with the high-pressure pipe 402 is opened and the first flow path communicating with the low-pressure pipe 401 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 passes through the second flow paths of the three-way electric expansion valves 202a and 202b, the gas branch pipes 403a and 403b, and flows into the indoor units 300a and 300b, respectively.
 室内機300a及び300bに流入した冷媒は、それぞれ、負荷側熱交換器301a及び301bで室内空気と熱交換されて凝縮液化する。その際、室内機300a及び300bが設置された室内が暖房される。そして、凝縮液化した冷媒は、それぞれ、負荷側熱交換器301a及び301bの出口側の過冷却度に基づき制御された負荷側流量調整弁302a及び302bを通り減圧される。 The refrigerant that has flowed into the indoor units 300a and 300b is heat-exchanged with the indoor air in the load- side heat exchangers 301a and 301b, respectively, and is condensed and liquefied. At that time, the room in which the indoor units 300a and 300b are installed is heated. Then, the condensed and liquefied refrigerant is decompressed through load side flow control valves 302a and 302b controlled based on the degree of subcooling on the outlet side of load side heat exchangers 301a and 301b, respectively.
 負荷側流量調整弁302a及び302bにて減圧された冷媒は、それぞれ、液枝管404a及び404b、及び第2分岐部250の第2逆止弁211a及び211bを通り、その後合流する。なお、このとき、第1逆止弁210a及び210bには冷媒が流れない。合流した冷媒は、第2熱交換部207を通り、中継バイパス配管209に流入し、第2流量調整弁205で低圧まで減圧される。その後、減圧された冷媒は、第2分岐部250から流出し、中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。 The refrigerant decompressed by the load-side flow control valves 302a and 302b passes through the liquid branch pipes 404a and 404b and the second check valves 211a and 211b of the second branch portion 250, respectively, and then joins. At this time, no refrigerant flows through the first check valves 210a and 210b. The merged refrigerant passes through the second heat exchange section 207, flows into the relay bypass pipe 209, and is decompressed to a low pressure by the second flow control valve 205. After that, the decompressed refrigerant flows out from the second branching portion 250 and is heat-exchanged with the refrigerant before branching to the relay bypass pipe 209 to evaporate.
 さらに、冷媒は、第1熱交換部206を通過する。なお、全暖房運転において、第1流量調整弁204は閉止されている。第1熱交換部206を通過した冷媒は、低圧管401に流入し、第6逆止弁108を通過して、熱源側流量調整弁109によって減圧され、熱源側熱交換器103において熱源側送風機111によって送風される室外空気と熱交換されて蒸発ガス化する。ガス化した冷媒は、流路切替弁102、及びアキュムレータ104を経て圧縮機101に吸入される。なお、バイパス流量調整弁110は全閉されているため、バイパス管113に冷媒は流れない。 Furthermore, the refrigerant passes through the first heat exchange section 206 . Note that the first flow control valve 204 is closed during the heating only operation. The refrigerant that has passed through the first heat exchange section 206 flows into the low-pressure pipe 401, passes through the sixth check valve 108, is decompressed by the heat source side flow control valve 109, and is heat-exchanged with the outdoor air blown by the heat source side blower 111 in the heat source side heat exchanger 103 to be evaporated and gasified. The gasified refrigerant is sucked into the compressor 101 through the flow switching valve 102 and the accumulator 104 . Since the bypass flow control valve 110 is fully closed, no refrigerant flows through the bypass pipe 113 .
(冷房主体運転)
 次に、冷房主体運転について説明する。図5は、実施の形態1に係る空気調和装置1の冷房主体運転時の状態を示す冷媒回路図である。以下では、室内機300aが冷房運転を行い、室内機300bから暖房運転を行う場合であって、冷房容量の方が大きい場合について説明する。図5に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、主管114に流入する冷媒とバイパス管113に流入する冷媒とに分岐する。冷房主体運転において、バイパス流量調整弁110は開放されている。
(cooling main operation)
Next, the cooling main operation will be explained. FIG. 5 is a refrigerant circuit diagram showing a state of the air-conditioning apparatus 1 according to Embodiment 1 during cooling-main operation. A case will be described below in which the indoor unit 300a performs the cooling operation and the indoor unit 300b performs the heating operation, and the cooling capacity is larger. As shown in FIG. 5 , the high-temperature, high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102 and branches into refrigerant flowing into the main pipe 114 and refrigerant flowing into the bypass pipe 113 . In the cooling-dominant operation, the bypass flow control valve 110 is open.
 主管114に流入した冷媒は、熱源側熱交換器103において熱源側送風機111によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、その後、熱源側流量調整弁109で減圧される。一方、バイパス管113に流入した冷媒は、バイパス流量調整弁110で減圧される。熱源側熱交換器103に流入した冷媒とバイパス管113に流入した冷媒は、第3逆止弁105の前において合流し、第3逆止弁105及び高圧管402を通って、気液分離器201に至る。 The refrigerant that has flowed into the main pipe 114 exchanges heat with the outdoor air blown by the heat source side blower 111 in the heat source side heat exchanger 103 to condense and liquefy. The condensed and liquefied refrigerant is then decompressed by the heat source side flow control valve 109 . On the other hand, the refrigerant flowing into bypass pipe 113 is decompressed by bypass flow control valve 110 . The refrigerant that has flowed into the heat source side heat exchanger 103 and the refrigerant that has flowed into the bypass pipe 113 join in front of the third check valve 105 and pass through the third check valve 105 and the high-pressure pipe 402 to reach the gas-liquid separator 201 .
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201の液流出側から流出した液状の冷媒は、第1熱交換部206、第1流量調整弁204、及び第2熱交換部207を通って、第2分岐部250に至る。冷媒は、第2分岐部250の第1逆止弁210a及び液枝管404aを通って、室内機300aに流入する。液枝管404aは高圧管402よりも低圧であるため、第2逆止弁211aには冷媒が流れない。 The refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201 . The liquid refrigerant flowing out from the liquid outflow side of the gas-liquid separator 201 passes through the first heat exchange section 206 , the first flow control valve 204 and the second heat exchange section 207 to reach the second branch section 250 . The refrigerant flows into the indoor unit 300a through the first check valve 210a of the second branch 250 and the liquid branch pipe 404a. Since the liquid branch pipe 404a has a lower pressure than the high pressure pipe 402, the refrigerant does not flow through the second check valve 211a.
 そして、室内機300aに流入した冷媒は、負荷側熱交換器301aの出口側の過熱度に基づき制御された負荷側流量調整弁302aによって、低圧まで減圧される。減圧された冷媒は、負荷側熱交換器301aに流入し、負荷側熱交換器301aで室内空気と熱交換されて蒸発ガス化する。その際、室内機300aが設置された室内が冷房される。そして、ガス状態となった冷媒は、ガス枝管403aを通って中継機200の第1分岐部240に流入する。 Then, the refrigerant that has flowed into the indoor unit 300a is decompressed to a low pressure by the load side flow control valve 302a controlled based on the degree of superheat on the outlet side of the load side heat exchanger 301a. The depressurized refrigerant flows into the load-side heat exchanger 301a, where it is heat-exchanged with the indoor air and evaporates. At that time, the room in which the indoor unit 300a is installed is cooled. Then, the gaseous refrigerant flows into the first branch portion 240 of the repeater 200 through the gas branch pipe 403a.
 冷房主体運転において冷房運転を行う室内機300aに接続された三方電気式膨張弁202aは、低圧管401と連通する第1流路が開放され、高圧管402と連通する第2流路が閉止されるよう制御装置10によって制御される。そのため、第1分岐部240に流入した冷媒は、三方電気式膨張弁202aの第1流路を通って、低圧管401に流入する。 The three-way electric expansion valve 202a connected to the indoor unit 300a that performs cooling operation in the cooling-main operation is controlled by the control device 10 so that the first flow path communicating with the low-pressure pipe 401 is opened and the second flow path communicating with the high-pressure pipe 402 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows into the low-pressure pipe 401 through the first flow path of the three-way electric expansion valve 202a.
 一方、気液分離器201のガス流出側から流出したガス状の冷媒は、第1分岐部240に流入する。冷房主体運転において暖房運転を行う室内機300bに接続された三方電気式膨張弁202bは、高圧管402と連通する第2流路が開放され、低圧管401と連通する第1流路が閉止されるよう制御装置10によって制御される。そのため、第1分岐部240に流入した冷媒は、三方電気式膨張弁202bの第2流路及びガス枝管403bを通って、室内機300bに流入する。 On the other hand, the gaseous refrigerant flowing out from the gas outflow side of the gas-liquid separator 201 flows into the first branch portion 240 . The three-way electric expansion valve 202b connected to the indoor unit 300b that performs heating operation in the cooling-main operation is controlled by the control device 10 so that the second flow path communicating with the high-pressure pipe 402 is opened and the first flow path communicating with the low-pressure pipe 401 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows into the indoor unit 300b through the second flow path of the three-way electric expansion valve 202b and the gas branch pipe 403b.
 室内機300bに流入した冷媒は、負荷側熱交換器301bで室内空気と熱交換されて凝縮液化する。その際、室内機300bが設置された室内が暖房される。そして、凝縮液化した冷媒は、負荷側熱交換器301bの出口側の過冷却度に基づき制御された負荷側流量調整弁302bを通って、高圧と低圧との中間の圧力である中間圧の液状態となる。中間圧の液状態となった冷媒は、液枝管404b及び第2分岐部250の第2逆止弁211bを通り、第2熱交換部207に流入する。なお、このとき、第1逆止弁210bには冷媒が流れない。 The refrigerant that has flowed into the indoor unit 300b is heat-exchanged with the indoor air in the load-side heat exchanger 301b to be condensed and liquefied. At that time, the room in which the indoor unit 300b is installed is heated. Then, the condensed and liquefied refrigerant passes through the load side flow control valve 302b controlled based on the degree of subcooling on the outlet side of the load side heat exchanger 301b, and becomes an intermediate pressure liquid state between high pressure and low pressure. The refrigerant in the intermediate-pressure liquid state passes through the liquid branch pipe 404 b and the second check valve 211 b of the second branch portion 250 and flows into the second heat exchange portion 207 . At this time, the refrigerant does not flow through the first check valve 210b.
 その後、冷媒は、中継バイパス配管209に流入し、第2流量調整弁205で低圧まで減圧された後、第2熱交換部207において、第1流量調整弁204を通過した冷媒、即ち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1熱交換部206において、第1流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、三方電気式膨張弁202aを通った冷媒と合流する。その後、合流した冷媒は、第4逆止弁106、流路切替弁102、及びアキュムレータ104を経て圧縮機101に吸入される。 After that, the refrigerant flows into the relay bypass pipe 209 and is depressurized to a low pressure by the second flow rate control valve 205, and then heat-exchanged in the second heat exchange section 207 with the refrigerant that has passed through the first flow rate control valve 204, i.e., the refrigerant before branching to the relay bypass pipe 209, and evaporates. Furthermore, in the first heat exchange section 206, the refrigerant is heat-exchanged with the refrigerant before flowing into the first flow rate control valve 204, and is evaporated. The evaporated refrigerant flows into the low-pressure pipe 401 and joins with the refrigerant that has passed through the three-way electric expansion valve 202a. After that, the merged refrigerant is sucked into the compressor 101 through the fourth check valve 106 , the flow path switching valve 102 and the accumulator 104 .
(暖房主体運転)
 次に、暖房主体運転について説明する。図6は、実施の形態1に係る空気調和装置1の暖房主体運転時の状態を示す冷媒回路図である。以下では、室内機300aが冷房運転を行い、室内機300bから暖房運転を行う場合であって、暖房容量の方が大きい場合について説明する。図6に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、第5逆止弁107及び高圧管402を通って、気液分離器201に至る。
(heating main operation)
Next, the heating main operation will be explained. FIG. 6 is a refrigerant circuit diagram showing a state of the air-conditioning apparatus 1 according to Embodiment 1 during heating-main operation. A case where the indoor unit 300a performs the cooling operation and the indoor unit 300b performs the heating operation and the heating capacity is larger will be described below. As shown in FIG. 6 , the high-temperature, high-pressure gas refrigerant discharged from the compressor 101 passes through the flow switching valve 102 , the fifth check valve 107 and the high-pressure pipe 402 , and reaches the gas-liquid separator 201 .
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201のガス流出側から流出したガス状の冷媒は、第1分岐部240に流入する。暖房主体運転において暖房運転を行う室内機300bに接続された三方電気式膨張弁202bは、高圧管402と連通する第2流路が開放され、低圧管401と連通する第1流路が閉止されるよう制御装置10によって制御される。そのため、第1分岐部240に流入した冷媒は、三方電気式膨張弁202bの第2流路及びガス枝管403bを通って、室内機300bに流入する。 The refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by the gas-liquid separator 201 . The gaseous refrigerant flowing out from the gas outflow side of the gas-liquid separator 201 flows into the first branch portion 240 . In the heating main operation, the three-way electric expansion valve 202b connected to the indoor unit 300b that performs the heating operation is controlled by the control device 10 so that the second flow path communicating with the high-pressure pipe 402 is opened and the first flow path communicating with the low-pressure pipe 401 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows into the indoor unit 300b through the second flow path of the three-way electric expansion valve 202b and the gas branch pipe 403b.
 室内機300bに流入した冷媒は、負荷側熱交換器301bで室内空気と熱交換されて凝縮液化する。その際、室内機300bが設置された室内が暖房される。そして、凝縮液化した冷媒は、負荷側熱交換器301bの出口側の過冷却度に基づき制御された負荷側流量調整弁302bを通って、高圧と低圧との中間の圧力である中間圧の液状態となる。中間圧の液状態となった冷媒は、液枝管404b及び第2分岐部250の第2逆止弁211bを通り、第2熱交換部207に流入する。なお、このとき、第1逆止弁210bには冷媒が流れない。そして、第2逆止弁211bを通った冷媒は、気液分離器201の液流出側から流出し、第1熱交換部206及び第1流量調整弁204を通過した液状態の冷媒と合流する。合流した冷媒は、第2分岐部250に流入する冷媒と中継バイパス配管209に流入する冷媒とに分岐する。 The refrigerant that has flowed into the indoor unit 300b is heat-exchanged with the indoor air in the load-side heat exchanger 301b to be condensed and liquefied. At that time, the room in which the indoor unit 300b is installed is heated. Then, the condensed and liquefied refrigerant passes through the load side flow control valve 302b controlled based on the degree of subcooling on the outlet side of the load side heat exchanger 301b, and becomes an intermediate pressure liquid state between high pressure and low pressure. The refrigerant in the intermediate-pressure liquid state passes through the liquid branch pipe 404 b and the second check valve 211 b of the second branch portion 250 and flows into the second heat exchange portion 207 . At this time, the refrigerant does not flow through the first check valve 210b. The refrigerant that has passed through the second check valve 211 b flows out from the liquid outflow side of the gas-liquid separator 201 and joins the liquid state refrigerant that has passed through the first heat exchange section 206 and the first flow control valve 204 . The merged refrigerant branches into refrigerant flowing into the second branch portion 250 and refrigerant flowing into the relay bypass pipe 209 .
 第2分岐部250に流入した冷媒は、第2分岐部250の第1逆止弁210a及び液枝管404aを通って、室内機300aに流入する。液枝管404aは高圧管402よりも低圧であるため、第2逆止弁211aには冷媒が流れない。そして、室内機300aに流入した冷媒は、負荷側熱交換器301aの出口側の過熱度に基づき制御された負荷側流量調整弁302aによって、低圧まで減圧される。減圧された冷媒は、負荷側熱交換器301aに流入し、負荷側熱交換器301aで室内空気と熱交換されて蒸発ガス化する。その際、室内機300aが設置された室内が冷房される。そして、ガス状態となった冷媒は、ガス枝管403aを通って中継機200の第1分岐部240に流入する。 The refrigerant that has flowed into the second branch portion 250 passes through the first check valve 210a and the liquid branch pipe 404a of the second branch portion 250 and flows into the indoor unit 300a. Since the liquid branch pipe 404a has a lower pressure than the high pressure pipe 402, the refrigerant does not flow through the second check valve 211a. Then, the refrigerant that has flowed into the indoor unit 300a is decompressed to a low pressure by the load side flow control valve 302a controlled based on the degree of superheat on the outlet side of the load side heat exchanger 301a. The depressurized refrigerant flows into the load-side heat exchanger 301a, where it is heat-exchanged with the indoor air and evaporates. At that time, the room in which the indoor unit 300a is installed is cooled. Then, the gaseous refrigerant flows into the first branch portion 240 of the repeater 200 through the gas branch pipe 403a.
 暖房主体運転時において冷房運転を行う室内機300aに接続された三方電気式膨張弁202aは、低圧管401と連通する第1流路が開放され、高圧管402と連通する第2流路が閉止されるよう制御装置10によって制御される。そのため、第1分岐部240に流入した冷媒は、三方電気式膨張弁202aの第1流路を通り、低圧管401に流入する。 The three-way electric expansion valve 202a connected to the indoor unit 300a that performs cooling operation during heating-dominant operation is controlled by the control device 10 so that the first flow path communicating with the low-pressure pipe 401 is opened and the second flow path communicating with the high-pressure pipe 402 is closed. Therefore, the refrigerant that has flowed into the first branch portion 240 flows through the first flow path of the three-way electric expansion valve 202 a and into the low-pressure pipe 401 .
 一方、中継バイパス配管209に流入した冷媒は、第2流量調整弁205で低圧まで減圧された後、第2熱交換部207において、第2分岐部250から流出した冷媒、即ち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1熱交換部206において、第1流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、三方電気式膨張弁202aを通った冷媒と合流する。その後、合流した冷媒は、第6逆止弁108を通過して、主管114とバイパス管113に流入する。暖房主体運転において、バイパス流量調整弁110は開放されている。 On the other hand, the refrigerant that has flowed into the relay bypass pipe 209 is depressurized to a low pressure by the second flow control valve 205, and then heat-exchanged in the second heat exchange section 207 with the refrigerant that has flowed out of the second branching section 250, i.e., the refrigerant before branching to the relay bypass piping 209, and evaporates. Furthermore, in the first heat exchange section 206, the refrigerant is heat-exchanged with the refrigerant before flowing into the first flow rate control valve 204, and is evaporated. The evaporated refrigerant flows into the low-pressure pipe 401 and joins with the refrigerant that has passed through the three-way electric expansion valve 202a. After that, the merged refrigerant passes through the sixth check valve 108 and flows into the main pipe 114 and the bypass pipe 113 . In the heating-dominant operation, the bypass flow control valve 110 is open.
 主管114に流入した冷媒は、熱源側流量調整弁109によって減圧され、熱源側熱交換器103において熱源側送風機111によって送風される室外空気と熱交換されて蒸発ガス化する。一方、バイパス管113に流入した冷媒は、バイパス流量調整弁110によって減圧され、その後、主管114から流出した冷媒と合流する。合流した冷媒は、流路切替弁102、及びアキュムレータ104を経て圧縮機101に吸入される。 The refrigerant that has flowed into the main pipe 114 is depressurized by the heat source side flow control valve 109, exchanges heat with the outdoor air blown by the heat source side blower 111 in the heat source side heat exchanger 103, and evaporates. On the other hand, the refrigerant that has flowed into the bypass pipe 113 is decompressed by the bypass flow control valve 110 and then joins the refrigerant that has flowed out from the main pipe 114 . The merged refrigerant is sucked into the compressor 101 through the flow path switching valve 102 and the accumulator 104 .
(停止状態)
 次に、空気調和装置1が停止している場合について説明する。空気調和装置1が停止している場合の冷媒回路図は、図3の全冷房運転時の冷媒回路図と同じになる。空気調和装置1が停止している場合、室内機300a及び300bからの運転要求はなく、圧縮機101は停止しており、流路切替弁102は圧縮機101の吐出配管と主管114とが連通するよう切り替えられている。また熱源側流量調整弁109、バイパス流量調整弁110、第1流量調整弁204、及び第2流量調整弁205は予め設定された開度で開放されている。負荷側流量調整弁302a及び302bは閉止されている。
(State of standstill)
Next, a case where the air conditioner 1 is stopped will be described. The refrigerant circuit diagram when the air conditioner 1 is stopped is the same as the refrigerant circuit diagram during the cooling only operation in FIG. 3 . When the air conditioner 1 is stopped, there is no operation request from the indoor units 300a and 300b, the compressor 101 is stopped, and the flow path switching valve 102 is switched so that the discharge pipe of the compressor 101 and the main pipe 114 are communicated. Also, the heat source side flow rate adjustment valve 109, the bypass flow rate adjustment valve 110, the first flow rate adjustment valve 204, and the second flow rate adjustment valve 205 are opened at preset opening degrees. The load side flow control valves 302a and 302b are closed.
 また、空気調和装置1が停止している場合、三方電気式膨張弁202a及び202bは、制御量Pminで制御される。すなわち、空気調和装置1が停止している場合、三方電気式膨張弁202a及び202bは、低圧管401と連通する第1流路が開放され、高圧管402と連通する第2流路が閉止されるよう制御される。この状態で冷媒封入部131及び132に、例えば真空ポンプを接続し、真空ポンプを起動させることで、空気調和装置1の真空引きを行うことができる。 Also, when the air conditioner 1 is stopped, the three-way electric expansion valves 202a and 202b are controlled by the control amount Pmin. That is, when the air conditioner 1 is stopped, the three-way electric expansion valves 202a and 202b are controlled so that the first flow path communicating with the low pressure pipe 401 is opened and the second flow path communicating with the high pressure pipe 402 is closed. In this state, the air conditioner 1 can be evacuated by connecting, for example, a vacuum pump to the refrigerant sealed portions 131 and 132 and activating the vacuum pump.
 図7は、実施の形態1に係る三方電気式膨張弁202aの制御動作を示すフローチャートである。三方電気式膨張弁202bの制御動作も三方電気式膨張弁202aの制御動作と同じである。制御装置10は、三方電気式膨張弁202aに接続された室内機300aに対して要求される運転モードに応じて、三方電気式膨張弁202aの制御量を決定する。まず、制御装置10は、熱源機100が運転中か否かを判断する(S1)。ここでは、圧縮機101が運転中の場合、制御装置10は、熱源機100が運転中と判断する。熱源機100が運転中の場合(S1:YES)、制御装置10は、室内機300aの状態を判断する(S2)。ここでは、制御装置10は、室内機300aが停止、冷房運転又は暖房運転の何れを要求しているかを判断する。 FIG. 7 is a flow chart showing the control operation of the three-way electric expansion valve 202a according to the first embodiment. The control operation of the three-way electric expansion valve 202b is also the same as the control operation of the three-way electric expansion valve 202a. The control device 10 determines the control amount of the three-way electric expansion valve 202a according to the operation mode required for the indoor unit 300a connected to the three-way electric expansion valve 202a. First, the control device 10 determines whether or not the heat source device 100 is in operation (S1). Here, when the compressor 101 is in operation, the control device 10 determines that the heat source device 100 is in operation. When the heat source device 100 is in operation (S1: YES), the control device 10 determines the state of the indoor unit 300a (S2). Here, the control device 10 determines whether the indoor unit 300a is requesting stop, cooling operation, or heating operation.
 室内機300aが停止を要求している場合(S2:停止)、制御装置10は、三方電気式膨張弁202aに対して制御量P1のパルス信号を送信する(S3)。これにより、三方電気式膨張弁202aの第1流路及び第2流路の両方が閉止される。すなわち、熱源機100が運転中であって室内機300aが停止している場合は、室内機300aのガス枝管403aが閉止される。 When the indoor unit 300a requests to stop (S2: stop), the control device 10 transmits a pulse signal of the control amount P1 to the three-way electric expansion valve 202a (S3). As a result, both the first flow path and the second flow path of the three-way electric expansion valve 202a are closed. That is, when the heat source unit 100 is in operation and the indoor unit 300a is stopped, the gas branch pipe 403a of the indoor unit 300a is closed.
 室内機300aが暖房運転を要求している場合(S2:暖房)、制御装置10は、三方電気式膨張弁202aに対して制御量Pmaxのパルス信号を送信する(S4)。これにより、三方電気式膨張弁202aの第2流路が開放され、第1流路が閉止される。すなわち、熱源機100が運転中であって室内機300aが暖房運転を行う場合は、室内機300aのガス枝管403aと高圧管402とが連通される。 When the indoor unit 300a requests heating operation (S2: heating), the control device 10 transmits a pulse signal of the control amount Pmax to the three-way electric expansion valve 202a (S4). As a result, the second flow path of the three-way electric expansion valve 202a is opened and the first flow path is closed. That is, when the heat source unit 100 is in operation and the indoor unit 300a performs heating operation, the gas branch pipe 403a of the indoor unit 300a and the high pressure pipe 402 are communicated.
 室内機300aが冷房運転を要求している場合(S2:冷房)、又は熱源機100が運転中でない場合(S1:NO)、制御装置10は、三方電気式膨張弁202aに対して制御量Pminのパルス信号を送信する(S5)。これにより、三方電気式膨張弁202aの第1流路が開放され、第2流路が閉止される。すなわち、熱源機100が運転中であって室内機300aが冷房運転を行う場合、又は熱源機100が停止している場合は、室内機300aのガス枝管403aと低圧管401とが連通される。 When the indoor unit 300a requests cooling operation (S2: cooling), or when the heat source device 100 is not in operation (S1: NO), the control device 10 transmits a pulse signal of the control amount Pmin to the three-way electric expansion valve 202a (S5). As a result, the first flow path of the three-way electric expansion valve 202a is opened and the second flow path is closed. That is, when the heat source device 100 is in operation and the indoor unit 300a performs cooling operation, or when the heat source device 100 is stopped, the gas branch pipe 403a of the indoor unit 300a and the low pressure pipe 401 are communicated.
 以上のように、本実施の形態では、室内機300a及び300bが暖房運転を要求している場合、中継機200の三方電気式膨張弁202a及び202bは、ガス枝管403a及び403bと高圧管402を連通し、低圧管401への冷媒の流れを閉止する。これにより、高圧管402から流れてきた冷媒が三方電気式膨張弁202a及び202bから低圧管401へバイパスされることがなく、従来の空気調和装置と比較して暖房能力の低下を抑制することができる。 As described above, in the present embodiment, when the indoor units 300a and 300b request heating operation, the three-way electric expansion valves 202a and 202b of the repeater 200 communicate the gas branch pipes 403a and 403b with the high pressure pipe 402 to close the refrigerant flow to the low pressure pipe 401. As a result, the refrigerant flowing from the high-pressure pipe 402 is not bypassed from the three-way electric expansion valves 202a and 202b to the low-pressure pipe 401, and the reduction in heating capacity can be suppressed compared to the conventional air conditioner.
 また、熱源機100が停止していると判断された場合、三方電気式膨張弁202a及び202bは、ガス枝管403a及び403bと低圧管401とを最大開度で連通する。このような状態で真空引きを行うことで、従来よりもガス枝管403a及び403bと低圧管401とを流れる空気の流量を大きく確保することができ、空気調和装置1の真空引きに要する時間を削減することができる。 Also, when it is determined that the heat source device 100 is stopped, the three-way electric expansion valves 202a and 202b allow the gas branch pipes 403a and 403b and the low pressure pipe 401 to communicate with each other at the maximum degree of opening. By vacuuming in such a state, it is possible to secure a larger flow rate of air flowing through the gas branch pipes 403a and 403b and the low-pressure pipe 401 than in the conventional case, and the time required for vacuuming the air conditioner 1 can be reduced.
 また、三方電気式膨張弁202a及び202bを用いて、冷房運転時及び暖房運転時の冷媒の流れを切り替えることで、第1分岐部240の部品点数を少なくすることができ、中継機200内における占有スペースも削減することができる。さらに、1つの室内機300aに対して複数の弁で冷房運転時及び暖房運転時の冷媒の流れを切り替える場合は、複数の弁を同時に操作することが実際には難しく、数秒のタイムラグが発生してしまう。これに対し、1つの室内機300aに対して1つの三方電気式膨張弁202aにより切り替えを行うことで、制御対象が1つになるためタイムラグの発生を考慮する必要がなくなる。 In addition, by using the three-way electric expansion valves 202a and 202b to switch the refrigerant flow during cooling operation and heating operation, it is possible to reduce the number of parts of the first branch portion 240, and the space occupied within the repeater 200 can also be reduced. Furthermore, when switching the flow of the refrigerant during cooling operation and heating operation with a plurality of valves for one indoor unit 300a, it is actually difficult to operate the plurality of valves at the same time, resulting in a time lag of several seconds. On the other hand, by switching one three-way electric expansion valve 202a for one indoor unit 300a, the control target becomes one, so there is no need to consider the occurrence of time lag.
 実施の形態2.
 図8は、実施の形態2に係る空気調和装置1Aの冷媒回路図である。図8に示すように、実施の形態2の空気調和装置1Aは、中継機200Aの第1分岐部240Aの構成において実施の形態1と相違する。空気調和装置1Aのその他の構成は、実施の形態1と同じである。
Embodiment 2.
FIG. 8 is a refrigerant circuit diagram of an air conditioner 1A according to Embodiment 2. As shown in FIG. As shown in FIG. 8, an air conditioner 1A of Embodiment 2 differs from that of Embodiment 1 in the configuration of a first branch portion 240A of a repeater 200A. Other configurations of the air conditioner 1A are the same as those of the first embodiment.
 図8に示すように、本実施の形態の中継機200Aの第1分岐部240Aは、暖房用開閉弁213a及び213b、並びに冷房用膨張弁214a及び214bを備えている。暖房用開閉弁213a及び213bは、それぞれの一方がガス枝管403a及び403bに接続され、それぞれの他方が高圧管402に接続されている。冷房用膨張弁214a及び214bは、それぞれの一方がガス枝管403a及び403bに接続され、それぞれの他方が低圧管401に接続されている。暖房用開閉弁213a及び213bは、例えば電磁弁である。冷房用膨張弁214a及び214bは、例えば開度を調整可能な二方電気式膨張弁等で構成されている。 As shown in FIG. 8, the first branch portion 240A of the repeater 200A of the present embodiment includes heating on-off valves 213a and 213b and cooling expansion valves 214a and 214b. One of the heating on-off valves 213 a and 213 b is connected to the gas branch pipes 403 a and 403 b , and the other is connected to the high pressure pipe 402 . One of the cooling expansion valves 214 a and 214 b is connected to the gas branch pipes 403 a and 403 b and the other is connected to the low pressure pipe 401 . The heating on-off valves 213a and 213b are, for example, electromagnetic valves. The cooling expansion valves 214a and 214b are composed of, for example, two-way electric expansion valves whose opening can be adjusted.
 図9は、実施の形態2に係る暖房用開閉弁213a及び冷房用膨張弁214aの制御動作を示すフローチャートである。暖房用開閉弁213b及び冷房用膨張弁214bの制御動作は暖房用開閉弁213a及び冷房用膨張弁214aの制御動作と同じである。制御装置10は、暖房用開閉弁213a及び冷房用膨張弁214aに接続された室内機300aに対して要求される運転モードに応じて、暖房用開閉弁213aの開閉及び冷房用膨張弁214aの開度を決定する。 FIG. 9 is a flow chart showing control operations of the heating on-off valve 213a and the cooling expansion valve 214a according to the second embodiment. The control operation of the heating on-off valve 213b and the cooling expansion valve 214b is the same as the control operation of the heating on-off valve 213a and the cooling expansion valve 214a. The control device 10 determines the opening/closing of the heating on/off valve 213a and the opening of the cooling expansion valve 214a according to the operation mode required for the indoor unit 300a connected to the heating on/off valve 213a and the cooling expansion valve 214a.
 まず、制御装置10は、熱源機100が運転中か否かを判断する(S21)。ここでは、圧縮機101が運転中の場合、熱源機100が運転中と判断する。熱源機100が運転中の場合(S21:YES)、制御装置10は、室内機300aの状態を判断する(S22)。ここでは、制御装置10は、室内機300aが停止、冷房運転又は暖房運転の何れを要求しているかを判断する。 First, the control device 10 determines whether the heat source equipment 100 is in operation (S21). Here, when the compressor 101 is in operation, it is determined that the heat source device 100 is in operation. If the heat source device 100 is in operation (S21: YES), the control device 10 determines the state of the indoor unit 300a (S22). Here, the control device 10 determines whether the indoor unit 300a is requesting stop, cooling operation, or heating operation.
 室内機300aが停止を要求している場合(S22:停止)、制御装置10は、暖房用開閉弁213a及び冷房用膨張弁214aの両方を閉止する(S23)。すなわち、熱源機100が運転中であって室内機300aが停止している場合は、室内機300aのガス枝管403aが閉止される。 When the indoor unit 300a requests to stop (S22: stop), the control device 10 closes both the heating on-off valve 213a and the cooling expansion valve 214a (S23). That is, when the heat source unit 100 is in operation and the indoor unit 300a is stopped, the gas branch pipe 403a of the indoor unit 300a is closed.
 室内機300aが暖房運転を要求している場合(S22:暖房)、制御装置10は、暖房用開閉弁213aを開放し、冷房用膨張弁214aを閉止する(S24)。これにより、熱源機100が運転中であって室内機300aが暖房運転を行う場合は、室内機300aのガス枝管403aと高圧管402とが連通される。 When the indoor unit 300a requests heating operation (S22: heating), the control device 10 opens the heating on-off valve 213a and closes the cooling expansion valve 214a (S24). Accordingly, when the heat source unit 100 is in operation and the indoor unit 300a performs heating operation, the gas branch pipe 403a of the indoor unit 300a and the high-pressure pipe 402 are communicated with each other.
 室内機300aが冷房運転を要求している場合(S22:冷房)、又は熱源機100が運転中でない場合(S21:NO)、制御装置10は、暖房用開閉弁213aを閉止し、冷房用膨張弁214aを開放する(S25)。ここでは、制御装置10は、冷房用膨張弁214aを全開とする。これにより、熱源機100が運転中であって室内機300aが冷房運転を行う場合、又は熱源機100が停止している場合は、室内機300aのガス枝管403aと低圧管401とが連通される。 When the indoor unit 300a requests cooling operation (S22: Cooling), or when the heat source device 100 is not in operation (S21: NO), the controller 10 closes the heating on-off valve 213a and opens the cooling expansion valve 214a (S25). Here, the control device 10 fully opens the cooling expansion valve 214a. Thereby, when the heat source device 100 is in operation and the indoor unit 300a performs cooling operation, or when the heat source device 100 is stopped, the gas branch pipe 403a of the indoor unit 300a and the low pressure pipe 401 are communicated.
 以上のように、本実施の形態においても、室内機300a及び300bが暖房運転を要求していると判断された場合、ガス枝管403a及び403bと高圧管402を連通し、低圧管401への冷媒の流れを閉止することができる。このため、高圧管402から流れてきた冷媒が冷房用膨張弁214a及び214bから低圧管401へとバイパスすることがないため、従来の空気調和装置と比較して暖房能力の低下を抑制することができる。 As described above, also in the present embodiment, when it is determined that the indoor units 300a and 300b request heating operation, the gas branch pipes 403a and 403b and the high pressure pipe 402 are communicated, and the flow of refrigerant to the low pressure pipe 401 can be closed. Therefore, since the refrigerant flowing from the high-pressure pipe 402 does not bypass the cooling expansion valves 214a and 214b to the low-pressure pipe 401, the reduction in heating capacity can be suppressed compared to the conventional air conditioner.
 また、熱源機100が停止していると判断された場合、ガス枝管403a及び403bと低圧管401とを最大開度で連通することができる。このような状態で真空引きを行うことで、従来よりもガス枝管403a及び403bと低圧管401とを流れる空気の流量を大きく確保することができ、空気調和装置1の真空引きに要する時間を削減することができる。 Also, when it is determined that the heat source device 100 is stopped, the gas branch pipes 403a and 403b and the low-pressure pipe 401 can be communicated with each other at the maximum degree of opening. By vacuuming in such a state, it is possible to secure a larger flow rate of air flowing through the gas branch pipes 403a and 403b and the low-pressure pipe 401 than in the conventional case, and the time required for vacuuming the air conditioner 1 can be reduced.
 以上が実施の形態の説明であるが、本開示は、上記の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形又は組み合わせることが可能である。例えば、実施の形態1において、室内機300aが停止を要求している場合(S2:停止)、制御装置10は、三方電気式膨張弁202aに対して制御量P1のパルス信号を送信する構成としたが、P1以上P2以下の任意の制御量のパルス信号を送信してもよい。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure. For example, in the first embodiment, when the indoor unit 300a requests to stop (S2: stop), the control device 10 is configured to transmit a pulse signal of the control amount P1 to the three-way electric expansion valve 202a.
 また、実施の形態1において、熱源機100が運転中でない場合(S1:NO)、制御装置10は、三方電気式膨張弁202aに対して制御量Pminのパルス信号を送信する構成としたが、Pmin以上P1未満の任意の制御量のパルス信号を送信してもよい。例えば、熱源機100が停止中に中継機200から室内機300aのガス枝管403aを通って負荷側熱交換器301aでの冷媒の寝込みが想定される場合には、制御量をPminよりも大きく設定してもよい。これにより三方電気式膨張弁202aの開度を小さくすることができ、冷媒の寝込み量を抑えることができる。 Further, in Embodiment 1, when the heat source device 100 is not in operation (S1: NO), the control device 10 is configured to transmit a pulse signal of the control amount Pmin to the three-way electric expansion valve 202a. For example, when the refrigerant is expected to stagnate in the load-side heat exchanger 301a from the relay device 200 through the gas branch pipe 403a of the indoor unit 300a while the heat source device 100 is stopped, the control amount may be set larger than Pmin. As a result, the degree of opening of the three-way electric expansion valve 202a can be reduced, and the stagnation amount of the refrigerant can be suppressed.
 また、実施の形態2において、暖房用開閉弁213a及び213bに替えて、開度が調整可能な二方電気式膨張弁からなる暖房用膨張弁を用いてもよい。この場合、室内機300aが停止を要求している場合(S22:停止)、制御装置10は、暖房用膨張弁と冷房用膨張弁214aの両方を閉止する。また、室内機300aが暖房運転を要求している場合(S22:暖房)、制御装置10は、暖房用膨張弁を全開とし、冷房用膨張弁214aを閉止する。さらに、室内機300aが冷房運転を要求している場合(S22:冷房)、又は熱源機100が運転中でない場合(S21:NO)、制御装置10は、暖房用膨張弁を閉止し、冷房用膨張弁214aを開放する。この場合も実施の形態2と同様の効果を得ることができる。 Further, in Embodiment 2, instead of the heating on-off valves 213a and 213b, a heating expansion valve consisting of a two-way electric expansion valve whose opening degree can be adjusted may be used. In this case, when the indoor unit 300a requests to be stopped (S22: stop), the control device 10 closes both the heating expansion valve and the cooling expansion valve 214a. When the indoor unit 300a requests the heating operation (S22: heating), the control device 10 fully opens the heating expansion valve and closes the cooling expansion valve 214a. Furthermore, when the indoor unit 300a requests cooling operation (S22: cooling) or when the heat source device 100 is not in operation (S21: NO), the control device 10 closes the heating expansion valve and opens the cooling expansion valve 214a. Also in this case, the same effect as in the second embodiment can be obtained.
 1、1A 空気調和装置、10 制御装置、100 熱源機、101 圧縮機、102 流路切替弁、103 熱源側熱交換器、104 アキュムレータ、105 第3逆止弁、106 第4逆止弁、107 第5逆止弁、108 第6逆止弁、109 熱源側流量調整弁、110 バイパス流量調整弁、111 熱源側送風機、113 バイパス管、114 主管、120 熱源側熱交換ユニット、126 吐出圧力センサ、127 吸入圧力センサ、131、132 冷媒封入部、140 熱源側流路調整ユニット、200、200A 中継機、201 気液分離器、202a、202b 三方電気式膨張弁、204 第1流量調整弁、205 第2流量調整弁、206 第1熱交換部、207 第2熱交換部、208 中継バイパス温度センサ、209 中継バイパス配管、210a、210b 第1逆止弁、211a、211b 第2逆止弁、213a、213b 暖房用開閉弁、214a、214b 冷房用膨張弁、231 第1圧力センサ、232 第2圧力センサ、240、240A 第1分岐部、250 第2分岐部、300a、300b 室内機、301a、301b 負荷側熱交換器、302a、302b 負荷側流量調整弁、303a、303b 液管温度センサ、304a、304b ガス管温度センサ、401 低圧管、402 高圧管、403a、403b ガス枝管、404a、404b 液枝管。 1, 1A air conditioner, 10 control device, 100 heat source machine, 101 compressor, 102 flow path switching valve, 103 heat source side heat exchanger, 104 accumulator, 105 third check valve, 106 fourth check valve, 107 fifth check valve, 108 sixth check valve, 109 heat source side flow control valve, 110 bypass flow control valve, 11 1 heat source side blower, 113 bypass pipe, 114 main pipe, 120 heat source side heat exchange unit, 126 discharge pressure sensor, 127 suction pressure sensor, 131, 132 refrigerant enclosure, 140 heat source side passage adjustment unit, 200, 200A repeater, 201 gas-liquid separator, 202a, 202b three-way electric expansion valve, 204 first flow rate adjustment valve, 20 5 second flow control valve, 206 first heat exchange section, 207 second heat exchange section, 208 relay bypass temperature sensor, 209 relay bypass pipe, 210a, 210b first check valve, 211a, 211b second check valve, 213a, 213b heating on-off valve, 214a, 214b cooling expansion valve, 231 first pressure sensor, 232 second Pressure sensors 240, 240A First branch 250 Second branch 300a, 300b Indoor units 301a, 301b Load side heat exchangers 302a, 302b Load side flow control valves 303a, 303b Liquid pipe temperature sensors 304a, 304b Gas pipe temperature sensors 401 Low pressure pipes 402 High pressure pipes 403a, 40 3b gas branch pipe, 404a, 404b liquid branch pipe.

Claims (8)

  1.  圧縮機、流路切替弁及び熱源側熱交換器を有する熱源機と、
     負荷側流量調整弁及び負荷側熱交換器を有し、冷房運転又は暖房運転を実施する室内機と、
     低圧管及び高圧管によって前記熱源機に接続され、ガス枝管及び液枝管によって前記室内機に接続され、前記熱源機から供給される冷媒を前記室内機に供給する中継機と、
     制御装置と、を備え、
     前記中継機は、前記室内機が前記冷房運転をする場合には前記ガス枝管と前記低圧管とを連通し、前記室内機が前記暖房運転をする場合には、前記ガス枝管と前記高圧管とを連通する分岐部を備え、
     前記分岐部は、前記ガス枝管と前記低圧管とに接続され、開度を調整可能な膨張弁を有し、
     前記制御装置は、前記熱源機の停止時に、前記ガス枝管と前記低圧管とが連通するよう前記膨張弁を制御する空気調和装置。
    a heat source device having a compressor, a flow path switching valve, and a heat source side heat exchanger;
    an indoor unit having a load-side flow control valve and a load-side heat exchanger and performing cooling operation or heating operation;
    a repeater connected to the heat source unit by a low-pressure pipe and a high-pressure pipe, connected to the indoor unit by a gas branch pipe and a liquid branch pipe, and supplying the refrigerant supplied from the heat source unit to the indoor unit;
    a controller;
    The relay unit communicates the gas branch pipe and the low-pressure pipe when the indoor unit performs the cooling operation, and communicates the gas branch pipe and the high-pressure pipe when the indoor unit performs the heating operation.
    the branching portion is connected to the gas branch pipe and the low-pressure pipe, and has an expansion valve capable of adjusting the degree of opening;
    The controller controls the expansion valve so that the gas branch pipe and the low-pressure pipe communicate with each other when the heat source equipment is stopped.
  2.  前記膨張弁は、前記ガス枝管と前記低圧管とを連通する第1流路と、前記ガス枝管と前記高圧管とを連通する第2流路を有する三方電気式膨張弁である請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the expansion valve is a three-way electric expansion valve having a first flow path that communicates the gas branch pipe and the low-pressure pipe, and a second flow path that communicates the gas branch pipe and the high-pressure pipe.
  3.  前記制御装置は、
     前記熱源機が停止している場合、前記第1流路を開放し、前記第2流路を閉止するよう前記三方電気式膨張弁を制御する請求項2に記載の空気調和装置。
    The control device is
    3. The air conditioner according to claim 2, wherein the three-way electric expansion valve is controlled to open the first flow path and close the second flow path when the heat source device is stopped.
  4.  前記制御装置は、
     前記熱源機が運転しており、前記室内機が停止している場合、前記第1流路及び前記第2流路を閉止するよう前記三方電気式膨張弁を制御する請求項3に記載の空気調和装置。
    The control device is
    4. The air conditioner according to claim 3, wherein the three-way electric expansion valve is controlled to close the first flow path and the second flow path when the heat source unit is in operation and the indoor unit is stopped.
  5.  前記制御装置は、
     前記熱源機が運転しており、前記室内機が冷房運転を行う場合、前記第1流路を開放し、前記第2流路を閉止するよう前記三方電気式膨張弁を制御する請求項3又は4に記載の空気調和装置。
    The control device is
    5. The air conditioner according to claim 3 or 4, wherein the three-way electric expansion valve is controlled to open the first flow path and close the second flow path when the heat source device is in operation and the indoor unit performs cooling operation.
  6.  前記制御装置は、
     前記熱源機が運転しており、前記室内機が暖房運転を行う場合、前記第2流路を開放し、前記第1流路を閉止するよう前記三方電気式膨張弁を制御する請求項3~5の何れか一項に記載の空気調和装置。
    The control device is
    When the heat source unit is operating and the indoor unit performs heating operation, the three-way electric expansion valve is controlled to open the second flow path and close the first flow path. The air conditioner according to any one of claims 3 to 5.
  7.  前記膨張弁は、二方電気式膨張弁で構成される冷房用膨張弁であり、
     前記分岐部は、前記ガス枝管と前記高圧管とに接続された暖房用開閉弁をさらに備える請求項1に記載の空気調和装置。
    The expansion valve is a cooling expansion valve composed of a two-way electric expansion valve,
    The air conditioner according to claim 1, wherein the branch portion further includes a heating on-off valve connected to the gas branch pipe and the high-pressure pipe.
  8.  前記制御装置は、
     前記熱源機が停止している場合、前記ガス枝管と前記低圧管とが連通するよう前記冷房用膨張弁を制御し、前記ガス枝管と前記高圧管とが閉止するよう前記暖房用開閉弁を制御する請求項7に記載の空気調和装置。
    The control device is
    8. The air conditioner according to claim 7, wherein when the heat source equipment is stopped, the cooling expansion valve is controlled so that the gas branch pipe and the low-pressure pipe are communicated, and the heating on-off valve is controlled so that the gas branch pipe and the high-pressure pipe are closed.
PCT/JP2022/001826 2022-01-19 2022-01-19 Air conditioning device WO2023139703A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023574955A JPWO2023139703A1 (en) 2022-01-19 2022-01-19
CN202280086463.7A CN118511041A (en) 2022-01-19 2022-01-19 Air conditioner
PCT/JP2022/001826 WO2023139703A1 (en) 2022-01-19 2022-01-19 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001826 WO2023139703A1 (en) 2022-01-19 2022-01-19 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2023139703A1 true WO2023139703A1 (en) 2023-07-27

Family

ID=87348336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001826 WO2023139703A1 (en) 2022-01-19 2022-01-19 Air conditioning device

Country Status (3)

Country Link
JP (1) JPWO2023139703A1 (en)
CN (1) CN118511041A (en)
WO (1) WO2023139703A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089643A (en) * 1983-10-19 1985-05-20 松下精工株式会社 Multi-chamber type air cooling heat pump system air conditioner
JPS63169451A (en) * 1987-01-06 1988-07-13 三菱電機株式会社 Operation controller for multi-chamber type air conditioner
JP6895901B2 (en) 2016-02-08 2021-06-30 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089643A (en) * 1983-10-19 1985-05-20 松下精工株式会社 Multi-chamber type air cooling heat pump system air conditioner
JPS63169451A (en) * 1987-01-06 1988-07-13 三菱電機株式会社 Operation controller for multi-chamber type air conditioner
JP6895901B2 (en) 2016-02-08 2021-06-30 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
CN118511041A (en) 2024-08-16
JPWO2023139703A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP6895901B2 (en) Air conditioner
EP3467406B1 (en) Air conditioner
WO2016157519A1 (en) Air-conditioning device
WO2014141375A1 (en) Air conditioner
WO2014141374A1 (en) Air conditioner
JP5968519B2 (en) Air conditioner
WO2014054120A1 (en) Air conditioner
JP6223469B2 (en) Air conditioner
WO2013179334A1 (en) Air conditioning device
WO2018003096A1 (en) Air-conditioning device
US11022354B2 (en) Air conditioner
WO2016079834A1 (en) Air conditioning device
JP6644131B2 (en) Air conditioner
WO2019053876A1 (en) Air conditioning device
JP2010276239A (en) Refrigerating air-conditioning device
JPWO2012085965A1 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
GB2561752A (en) Refrigeration cycle device
JP6198945B2 (en) Air conditioner
WO2016189739A1 (en) Air conditioning device
JP6370489B2 (en) Air conditioner
WO2019053872A1 (en) Air-conditioning apparatus
WO2023139703A1 (en) Air conditioning device
WO2022224390A1 (en) Refrigeration cycle device
JP2018096575A (en) Freezer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18709056

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280086463.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022921862

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022921862

Country of ref document: EP

Effective date: 20240819