Nothing Special   »   [go: up one dir, main page]

WO2023139166A1 - Methods for controlling plant pathogens - Google Patents

Methods for controlling plant pathogens Download PDF

Info

Publication number
WO2023139166A1
WO2023139166A1 PCT/EP2023/051257 EP2023051257W WO2023139166A1 WO 2023139166 A1 WO2023139166 A1 WO 2023139166A1 EP 2023051257 W EP2023051257 W EP 2023051257W WO 2023139166 A1 WO2023139166 A1 WO 2023139166A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
plant
fungicides
pydiflumetofen
spp
Prior art date
Application number
PCT/EP2023/051257
Other languages
French (fr)
Inventor
Gabriel SCALLIET
Luca CORNETTI
Lorenzo Borghi
Stefano TORRIANI
Original Assignee
Syngenta Crop Protection Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Crop Protection Ag filed Critical Syngenta Crop Protection Ag
Publication of WO2023139166A1 publication Critical patent/WO2023139166A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles

Definitions

  • the present invention relates to a method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni resistant to succinate dehydrogenase inhibitor fungicides on cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen.
  • the present invention relates to a method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • Plant pathogens are organisms that cause disease in a plant. This may result in reduced plant growth, plant assimilation or even impairment of the vital functions of the plant resulting in a reduction or loss of plant productivity.
  • Plant pathogens include viruses, bacteria, nematodes, insects and fungi, and they are capable of reproducing within or on its host spreading from one plant to another. Symptoms of a plant disease include change in colour, shape or function, for example the fungi Zymoseptoria tritici (synonyms Septoria tritici and Mycosphaerella graminicola) cause pale brown to greenish-grey oval lesions in the leaves of wheat. In case of moderate to high disease pressure, it can cause significant loss in plant productivity.
  • Pyrenophora teres is a necrotrophic fungal pathogen causing net blotch on barley, which is currently the most dominant barley disease in Western Europe.
  • Ramularia collo-cygni is a fungal pathogen which has gained increasing importance in Europe as the causal agent of Ramularia leaf spot, a devastating barley disease.
  • Fungicides are chemical or biological agents used for protecting plants against pathogens that are sprayed onto the crop, soil or seed, inhibiting the development or killing fungi and/or their spores.
  • fungicides which affect pathogens in different ways.
  • the chemical structure of the active ingredient (Al) fungicide and the target inhibited usually defines its mode of action, in other words, how it interacts with a pathogen.
  • one type of fungicide may bind to enzymes involved in nucleic acid metabolism of the fungi such that the reproduction and the pathogen’s ability to control key aspects of its biology are disrupted.
  • Another type of fungicide inhibits the biochemistry pathways involved in converting nutrients into the energy needed for a pathogen to grow.
  • SDHIs succinate dehydrogenase inhibitors
  • C-H152R and the following double mutations C-N86S+B-N225T and C-N86S+C-L85P were shown to impact the sensitivity of Zymoseptoria tritici to SDHI fungicides most.
  • Evidence for fitness penalties associated with the mutation C-H152R were observed in research studies by FRAC member companies
  • the resistance factors were low for B-H277Y, D-D124E, D-D145G and moderate for C-G79R, C-H134R, C- S135R, C-N75S, C-R64K, D-H134R, and C-K49E.
  • the mutation D-G138V was detected for the first time in 2015 and found to be associated to very low resistance factors.
  • the compound 3-(difluoromethyl)-/V-methoxy-1-methyl-/V-[1-methyl-2-(2,4,6-trichloro- phenyl)ethyl]-1 /7-pyrazole-4-carboxamide (pydiflumetofen) described in WO 2010/063700 is a broadspectrum foliar fungicide and the first example of the group of N-methoxy-(phenylethyl)-pyrazole- carboxamides within the SDHI fungicide class.
  • the use of pydiflumetofen to control single Zymoseptoria tritici strains resistant to SDHI fungicides is known from WO 2018/069114.
  • the use of pydiflumetofen to control single Pyrenophora teres and Ramularia collo-cygni strains resistant to SDHI fungicides is known from EP3718406.
  • the present invention is based on the surprising finding that pydiflumetofen also exhibits control over plant pathogens Zymoseptoria tritici, Pyrenophora teres, and Ramularia collo-cygni on cereals, wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • a method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • a method for controlling plant pathogens Zymoseptoria tritici on cereals comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici contains multiple mutations on the succinate dehydrogenase subunit C gene.
  • a method for controlling plant pathogens Pyrenophora teres on cereals comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer ortautomerthereof, and wherein the Pyrenophora teres contains multiple mutations on the succinate dehydrogenase subunit C gene.
  • a method for controlling plant Ramularia collo-cygni on cereals comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains a W80R and an N86S mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains a W80S and an N86R mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains an N86S and an H152R mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains an N86S and an H152Y mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains a T79N and an N86S mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains a T79N and an H152R mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains a T79N and an H152Y mutation on the succinate dehydrogenase subunit C gene.
  • the plant pathogen Zymoseptoria tritici contains a W80R and an H152R mutation on the succinate dehydrogenase subunit C gene.
  • the term “cereals” or “cereal plants” is understood to mean wheat, barley, or triticale.
  • the method of the present invention relates to the treatment of a cereal plant, wherein the plant is wheat.
  • the method of the present invention relates to the treatment of a cereal plant, wherein the plant is barley.
  • the method of the present invention relates to the treatment of a cereal plant, wherein the plant is triticale.
  • the method comprises treating cereal seeds with a fungicidally effective amount of pydiflumetofen. In another embodiment, the method comprises treating wheat, barley, or triticale seeds with a fungicidally effective amount of pydiflumetofen. In a preferred embodiment, the method comprises treating wheat seeds with a fungicidally effective amount of pydiflumetofen.
  • pydiflumetofen or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • pydiflumetofen or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogen Zymoseptoria tritici, on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • pydiflumetofen or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogen Pyrenophora teres, on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • pydiflumetofen or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogen Ramularia collo-cygni, on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene.
  • Pydiflumetofen may be, for example, effective against fungi and fungal vectors of disease (as well as phytopathogenic bacteria), and viruses.
  • These fungi and fungal vectors of disease as well as phytopathogenic bacteria and viruses are for example: Absidia corymbifera, Alternaria spp, Aphanomyces spp, Ascochyta spp, Aspergillus spp. including A. flavus, A. fumigatus, A. nidulans, A. niger, A. terrus, Aureobasidium spp. including A. pullulans, Blastomyces dermatitidis, Blumeria graminis, Bremia lactucae, Botryosphaeria spp.
  • B. dothidea, B. obtusa, Botrytis spp. comprising B. cinerea, Candida spp. including C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cephaloascus fragrans, Ceratocystis spp, Cercospora spp. including C. arachidicola, Cercosporidium personatum, Cladosporium spp, Claviceps purpurea, Coccidioides immitis, Cochliobolus spp, Colletotrichum spp. including C.
  • capsulatum Laetisaria fuciformis, Leptographium lindbergi, Leveillula taurica, Lophodermium seditiosum, Microdochium nivale, Microsporum spp, Monilinia spp, Mucor spp, Mycosphaerella spp. including M. graminicola, M. pomi, Oncobasidium theobromaeon, Ophiostoma piceae, Paracoccidioides spp, Penicillium spp. including P. digitatum, P. italicum, Petriellidium spp, Peronosclerospora spp. Including P. maydis, P.
  • leucotricha Polymyxa graminis, Polymyxa betae, Pseudocercosporella herpotrichoides, Pseudomonas spp, Pseudoperonospora spp. including P. cubensis, P. humuli, Pseudopeziza tracheiphila, Puccinia Spp. including P. hordei, P. recondita, P. striiformis, P. triticina, Pyrenopeziza spp, Pyrenophora spp, Pyricularia spp. including P. oryzae, Pythium spp. including P.
  • target crops and/or useful plants to be protected typically comprise perennial and annual crops, such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries; cereals for example barley, maize (corn), millet, oats, rice, rye, sorghum triticale and wheat; fibre plants for example cotton, flax, hemp, jute and sisal; field crops for example sugar and fodder beet, coffee, hops, mustard, oilseed rape (canola), poppy, sugar cane, sunflower, tea and tobacco; fruit trees for example apple, apricot, avocado, banana, cherry, citrus, nectarine, peach, pear and plum; grasses for example Bermuda grass, bluegrass, bentgrass, centipede grass, fescue, ryegrass, St.
  • perennial and annual crops such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries
  • cereals for example barley, maize (corn), millet, oats
  • Augustine grass and Zoysia grass herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme; legumes for example beans, lentils, peas and soya beans; nuts for example almond, cashew, ground nut, hazelnut, peanut, pecan, pistachio and walnut; palms for example oil palm; ornamentals for example flowers, shrubs and trees; other trees, for example cacao, coconut, olive and rubber; vegetables for example asparagus, aubergine, broccoli, cabbage, carrot, cucumber, garlic, lettuce, marrow, melon, okra, onion, pepper, potato, pumpkin, rhubarb, spinach and tomato; and vines for example grapes.
  • herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme
  • legumes for example beans, lentils, peas and soya beans
  • useful plants is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol- pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering.
  • herbicides like bromoxynil or classes of herbicides
  • EPSPS (5-enol- pyrovyl-shikimate-3-phosphate-synthase) inhibitors
  • GS glutamine synthetase
  • PPO protoporphyrinogen-oxidase
  • imazamox by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola).
  • crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady®, Herculex I® and LibertyLink®.
  • useful plants is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • plant pathogen also known as crop pathogen or just pathogen, refers to a living organism negatively affecting the structure, development and/or vital functions of a plant.
  • a plant pathogen may be a virus, viroids, fungi, nematodes, bacteria, phytoplasm, protozoa, algae, insect and/or parasitic plants.
  • the term plant pathogen should be understood to mean an individual organism or several organisms of the plant pathogen.
  • a plant pathogen population as used herein refers to a representation of individual plant pathogens present in a location.
  • Sensitivity refers to the susceptibility of a plant pathogen to a pesticide such as a fungicide. Variations of sensitivity to fungicides can result from a range of different mechanisms as described in the background section, for example mutations in the genome.
  • Resistance, or fungicide resistance, or pesticide resistance refers to the ability of a plant pathogen to survive the exposure to pesticides designed to control it.
  • sensitivity several mechanisms, such as those described in the background section, can shape the resistance or adaptation level.
  • resistance of a plant pathogen means that the plant pathogen becomes less sensitive to such an extent that a pesticide such as a fungicide is no longer effective in controlling the development, reproduction and viability of the plant pathogen.
  • Resistance development refers to a plant pathogen which develops a lower sensitivity to a fungicide or pesticide. Lower sensitivity can result in complete resistance or gradual resistance to a fungicide or pesticide. A single mechanism or a combination of mechanisms can shape resistance development. The resistance development depends on how fast these mechanisms are selected in a population of time and space.
  • YieldGard® (maize variety that expresses a Cry(IA)(b) toxin); YieldGard Rootworm® (maize variety that expresses a CrylllB(bl) toxin); YieldGard Plus® (maize variety that expresses a Cry(IA)(b) and a Cryl IIB(b1 ) toxin); Starlink® (maize variety that expresses a Cry9(c) toxin); Herculex I® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry(IA)(c) toxin); Bollgard I® (cotton variety that expresses a Cry(IA)(c) toxin
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as 8-endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins from Bacillus cereus or Bacillus popilliae such as 8-endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecd
  • 8-endotoxins for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • Truncated toxins for example a truncated CrylAb, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • amino acid replacements preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G- recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
  • the processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a
  • transgenic crops are:
  • Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylAb toxin. Bt1 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G- protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylAb toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • locus means fields in or on which plants are growing, or where seeds of cultivated plants are sown, or where seed will be placed into the soil. It includes soil, seeds, and seedlings, as well as established vegetation.
  • plants refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
  • plant propagation material is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably “plant propagation material” is understood to denote seeds.
  • Pesticidal agents referred to herein using their common name are known, for example, from “The Pesticide Manual”, 15th Ed., British Crop Protection Council 2009.
  • Pydiflumetofen may be used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end, they may be conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions or suspensions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
  • further adjuvants such as stabilizers, antifoams, viscosity regulator
  • Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers.
  • Such carriers are for example described in WO 97/33890.
  • Pydiflumetofen is normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds.
  • further compounds can be, e.g., fertilizers or micronutrient donors or other preparations, which influence the growth of plants. They can also be selective herbicides or non-selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
  • Pydiflumetofen may be used in the form of (fungicidal) compositions for controlling or protecting against phytopathogenic microorganisms, comprising pydiflumetofen as active ingredient in free form or in agrochemically usable salt form, and at least one of the above-mentioned adjuvants.
  • the invention provides a composition, preferably a fungicidal composition, comprising pydiflumetofen, an agriculturally acceptable carrier and optionally an adjuvant.
  • An agricultural acceptable carrier is for example a carrier that is suitable for agricultural use.
  • Agricultural carriers are well known in the art.
  • said composition may comprise at least one or more pesticidally active compounds, for example an additional fungicidal active ingredient in addition to pydiflumetofen.
  • Pydiflumetofen may be the sole active ingredient of a composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate.
  • An additional active ingredient may, in some cases, result in unexpected synergistic activities.
  • Suitable additional active ingredients include the following acycloamino acid fungicides, aliphatic nitrogen fungicides, amide fungicides, anilide fungicides, antibiotic fungicides, aromatic fungicides, arsenical fungicides, aryl phenyl ketone fungicides, benzamide fungicides, benzanilide fungicides, benzimidazole fungicides, benzothiazole fungicides, botanical fungicides, bridged diphenyl fungicides, carbamate fungicides, carbanilate fungicides, conazole fungicides, copper fungicides, dicarboximide fungicides, dinitrophenol fungicides, dithiocarbamate fungicides, dithiolane fungicides, furamide fungicides, furanilide fungicides, hydrazide fungicides, imidazole fungicides, mercury fungicides, morpholine fungicide
  • suitable additional active ingredients also include the following: a compound selected from the group of substances consisting of petroleum oils, 1 ,1-bis(4-chlorophenyl)-2-ethoxyethanol, 2,4- dichlorophenyl benzenesulfonate, 2-fluoro-N-methyl-N-1 -naphthylacetamide, 4-chlorophenyl phenyl sulfone, acetoprole, aldoxycarb, amidithion, amidothioate, amiton, amiton hydrogen oxalate, amitraz, aramite, arsenous oxide, azobenzene, azothoate, benomyl, benoxafos, benzyl benzoate, bixafen, brofenvalerate, bromocyclen, bromophos, bromopropylate, buprofezin, butocarboxim, butoxycarboxim, butylpyridaben, calcium polys
  • lecontei NPV, Orius spp. Paecilomyces fumosoroseus, Phytoseiulus persimilis, Steinernema bibionis, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, Steinernema riobrave, Steinernema riobravis, Steinernema scapterisci, Steinernema spp., Trichogramma spp., Typhlodromus occidentalis, Verticillium lecanii, apholate, bisazir, busulfan, dimatif, hemel, hempa, metepa, methiotepa, methyl apholate, morzid, penfluron, tepa, thiohempa, thiotepa, tretamine, uredepa, (E)-dec-5-en-1-yl acetate
  • Pydiflumetofen may also be used in combination with anthelmintic agents.
  • anthelmintic agents include, compounds selected from the macrocyclic lactone class of compounds such as ivermectin, avermectin, abamectin, emamectin, eprinomectin, doramectin, selamectin, moxidectin, nemadectin and milbemycin derivatives as described in EP-357460, EP-444964 and EP-594291.
  • Additional anthelmintic agents include semisynthetic and biosynthetic avermectin/milbemycin derivatives such as those described in US-5015630, WO-9415944 and WO-9522552. Additional anthelmintic agents include the benzimidazoles such as albendazole, cambendazole, fenbendazole, flubendazole, mebendazole, oxfendazole, oxibendazole, parbendazole, and other members of the class. Additional anthelmintic agents include imidazothiazoles and tetrahydropyrimidines such as tetramisole, levamisole, pyrantel pamoate, oxantel or morantel. Additional anthelmintic agents include flukicides, such as triclabendazole and clorsulon and the cestocides, such as praziquantel and epsiprantel.
  • Pydiflumetofen may be used in combination with derivatives and analogues of the paraherquamide/marcfortine class of anthelmintic agents, as well as the antiparasitic oxazolines such as those disclosed in US-5478855, US- 4639771 and DE-19520936.
  • Pydiflumetofen may be used in combination with derivatives and analogues of the general class of dioxomorpholine antiparasitic agents as described in WO-9615121 and also with anthelmintic active cyclic depsipeptides such as those described in WO-9611945, WO-9319053, WO- 9325543, EP- 626375, EP-382173, WO-9419334, EP-382173, and EP-503538.
  • Pydiflumetofen may be used in combination with other ectoparasiticides; for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
  • ectoparasiticides for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
  • Pydiflumetofen may be used in combination with terpene alkaloids, for example those described in WO 95/19363 or WO 04/72086, particularly the compounds disclosed therein.
  • Organophosphates acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, bromophos, bromophos-ethyl, cadusafos, chlorethoxyphos, chlorpyrifos, chlorfenvinphos, chlormephos, demeton, demeton-S-methyl, demeton- S-methyl sulphone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate
  • Carbamates alanycarb, aldicarb, 2-sec-butylphenyl methylcarbamate, benfuracarb, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenoxycarb, fenthiocarb, furathiocarb, HCN-801 , isoprocarb, indoxacarb, methiocarb, methomyl, 5-methyl-m-cumenylbutyryl(methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, UC-51717.
  • Pyrethroids acrinathin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)-(1 R)-cis-2,2-dimethyl-3- (2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, bifenthrin, beta-cyfluthrin, cyfluthrin, a- cypermethrin, beta -cypermethrin, bioallethrin, bioallethrin((S)-cyclopentylisomer), bioresmethrin, bifenthrin, NCI-85193, cycloprothrin, cyhalothrin, cythithrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, ethofenprox, fenfluthrin, fenpropathrin, fenval
  • Arthropod growth regulators a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron, buprofezin, diofenolan, hexythiazox, etoxazole, chlorfentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide; c) juvenoids: pyriproxyfen, methoprene (including S-methoprene), fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen.
  • antiparasitics acequinocyl, amitraz, AKD-1022, ANS-118, azadirachtin, Bacillus thuringiensis, bensultap, bifenazate, binapacryl, bromopropylate, BTG-504, BTG-505, camphechlor, cartap, chlorobenzilate, chlordimeform, chlorfenapyr, chromafenozide, clothianidine, cyromazine, diacloden, diafenthiuron, DBI-3204, dinactin, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, endosulfan, ethiprole, ethofenprox, fenazaquin, flumite, MTI-800, fenpyroximate, fluacrypyrim, flubenzimine, flubrocythrinate, flufenzine, flufenprox, fluproxyfen, halofenprox, hydr
  • Biological agents Bacillus thuringiensis ssp aizawai, kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, entomopathogenic bacteria, virus and fungi.
  • Bactericides chlortetracycline, oxytetracycline, streptomycin.
  • Another aspect of invention is related to the use of pydiflumetofen, or of a composition comprising pydiflumetofen, or of a fungicidal or insecticidal mixture comprising pydiflumetofen, in admixture with other fungicides or insecticides as described above, for controlling or preventing infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g., harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g., harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • a further aspect of invention is related to a method of controlling or preventing an infestation of plants, e.g., useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of pydiflumetofen as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to any part of the non-living materials.
  • useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of pydiflumetofen as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to
  • Controlling or preventing means reducing infestation by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, to such a level that an improvement is demonstrated.
  • a preferred method of controlling or preventing an infestation of crop plants by phytopathogenic microorganisms, especially fungal organisms, or insects which comprises the application of pydiflumetofen, or an agrochemical composition which contains pydiflumetofen, is foliar application.
  • the frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen or insect.
  • pydiflumetofen can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying pydiflumetofen in solid form to the soil, e.g., in granular form (soil application).
  • Pydiflumetofen may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
  • a formulation e.g. a composition containing pydiflumetofen, and, if desired, a solid or liquid adjuvant or monomers for encapsulating pydiflumetofen, may be prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • extenders for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • Typical rates of application per hectare is generally 1 g to 2000 g of pydiflumetofen per hectare, in particular 10 g to 1000 g/ha, preferably 10 to 800 g/ha, more preferably 20 g to 600 g/ha, and most preferably 40 g to 500 g/ha.
  • pydiflumetofen is applied at 40 g to 400 g of active ingredient per hectare.
  • convenient rates of application are from 1 mg to 50 g of active substance per kg of seeds, preferably from 10 mg to 30 g of active substance per kg of seeds, and more preferably, from 10 mg to 1 g of active substance per kg of seeds.
  • compositions of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EG), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK
  • compositions may be produced in conventional manner, e.g., by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects).
  • appropriate formulation inerts diiluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects.
  • conventional slow release formulations may be employed where long lasting efficacy is intended.
  • Particularly formulations to be applied in spraying forms such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g.
  • a seed dressing formulation is applied in a manner known per se to the seeds employing the combination of the invention and a diluent in suitable seed dressing formulation form, e.g., as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • suitable seed dressing formulation form e.g., as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • seed dressing formulations are known in the art.
  • Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
  • the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of pydiflumetofen together with component (B) and (C), and optionally other active agents, particularly microbiocides or conservatives or the like.
  • Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent.
  • Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent.
  • commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
  • Wettable powders a) b) c) active ingredient 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate 6 % 10 % phenol polyethylene glycol ether 2 % (7-8 mol of ethylene oxide) highly dispersed silicic acid 5 % 10 % 10 % Kaolin 62 % 27 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with waterto give suspensions of the desired concentration.
  • Powders for dry seed treatment a) b) c) active ingredient 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 % Kaolin 65 % 40 % Talcum 20 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsifiable concentrate active ingredient 10 % octylphenol polyethylene glycol ether 3 % (4-5 mol of ethylene oxide) calcium dodecylbenzenesulfonate 3 % castor oil polyglycol ether (35 mol of ethylene oxide) 4 %
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • Extruder granules Active ingredient 15 % sodium lignosulfonate 2 % carboxymethylcellulose 1 %
  • Kaolin 82 % The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • Active ingredient 8 polyethylene glycol (mol. wt. 200) 3 %
  • the finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • Flowable concentrate for seed treatment active ingredient 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
  • Silicone oil (in the form of a 75 % emulsion in water) 0.2 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of a combination of pydiflumetofen are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1).
  • This mixture is emulsified in a mixture of 1 .2 parts of polyvinyl alcohol, 0.05 parts of a defoamer and 51 .6 parts of water until the desired particle size is achieved.
  • To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • Example 1 Detection and Quantification of Resistant Variants in Natural Populations
  • pydiflumetofen showed a surprisingly high intrinsic activity compared to other SDHIs on SDHI sensitive (wild type), single resistant and double resistant mutants. Multiple resistant isolates showed significant lower sensitivity (i.e. higher EC50 values) to all SDHIs than sensitive ones, except for the surprisingly high activity of pydiflumetofen.
  • % efficacy (% disease in untreated - % disease in treatment) x 100 % I % disease in untreated.
  • Trials with potted wheat plants were conducted in 2022 to understand the capability of different SDHI containing products to control individual Zymoseptoria tritici isolates expressing one or multiple mutations on the SDH gene subunits.
  • pydiflumetofen was the only active substance able to provide >85% disease control for all Zymoseptoria tritici isolates, including isolates harbouring multiple mutations in the SDH genes of the fungus.
  • This high disease control level was provided at low to medium disease pressure (29DAI, 17%-78% disease on untreated check) and at medium to high disease pressure (34 DAI, 69%-99% disease on untreated check), as well as on the flag leaf (L1) and on lower leaves (L2).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A method for controlling Zymoseptoria tritici resistant to succinate dehydrogenase inhibitor fungicides on cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen. In particular, a method for controlling multiple Zymoseptoria tritici mutations resistant to succinate dehydrogenase inhibitor fungicides on cereal plants.

Description

METHODS FOR CONTROLLING PLANT PATHOGENS
The present invention relates to a method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni resistant to succinate dehydrogenase inhibitor fungicides on cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen. In particular, the present invention relates to a method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
Plant pathogens are organisms that cause disease in a plant. This may result in reduced plant growth, plant assimilation or even impairment of the vital functions of the plant resulting in a reduction or loss of plant productivity. Plant pathogens include viruses, bacteria, nematodes, insects and fungi, and they are capable of reproducing within or on its host spreading from one plant to another. Symptoms of a plant disease include change in colour, shape or function, for example the fungi Zymoseptoria tritici (synonyms Septoria tritici and Mycosphaerella graminicola) cause pale brown to greenish-grey oval lesions in the leaves of wheat. In case of moderate to high disease pressure, it can cause significant loss in plant productivity. Pyrenophora teres is a necrotrophic fungal pathogen causing net blotch on barley, which is currently the most dominant barley disease in Western Europe. Ramularia collo-cygni is a fungal pathogen which has gained increasing importance in Europe as the causal agent of Ramularia leaf spot, a devastating barley disease.
All species of plants, cultivated and wild, can be susceptible to disease. For farmers, plant pathogens may reduce yield and quality of agricultural production causing substantial economic loss. As such, there are has been extensive research and development in managing or controlling plant disease including crop rotation, appropriate planting date and plant density, control of field moisture, breeding plants with greater resistance to pathogens, and application of pesticides or biopesticide.
Fungicides are chemical or biological agents used for protecting plants against pathogens that are sprayed onto the crop, soil or seed, inhibiting the development or killing fungi and/or their spores. There are various types of fungicides which affect pathogens in different ways. The chemical structure of the active ingredient (Al) fungicide and the target inhibited usually defines its mode of action, in other words, how it interacts with a pathogen. For example, one type of fungicide may bind to enzymes involved in nucleic acid metabolism of the fungi such that the reproduction and the pathogen’s ability to control key aspects of its biology are disrupted. Another type of fungicide inhibits the biochemistry pathways involved in converting nutrients into the energy needed for a pathogen to grow. An example of such a fungicide class is succinate dehydrogenase inhibitors (SDHIs) which inhibit the cellular respiration and energy production of the fungi by targeting the enzyme succinate dehydrogenase. SDHI fungicides have been widely used over the past few decades for Zymoseptoria tritici, Pyrenophora teres and Ramularia collo-cygni control in Europe and other geographic regions of the globe.
However, resistance to SDHI fungicides has been reported in more recent years. For example, in Zymoseptoria tritici different mutations in the subunits B, C and D of the sdh genes (which is part of the ubiquinone and SDHI binding site of the complex II) have been found reducing the pathogen sensitivity to SDHI fungicides. Monitoring data published on the FRAC (Fungicide Resistance Action Committee) website indicates that mutations like B-N225T, C-T79N, C-W80S, C-N86S and C-H152R can confer different degrees of resistance to Zymoseptoria tritici. Incomplete cross resistance to SDHI fungicides has been observed.
Zymoseptoria tritici
Monitoring data published on the FRAC website has documented that the following isolates, which possess reduced sensitivity, have been detected:
Since 2012, few isolates with reduced sensitivity were detected in Germany, France, Ireland and the United Kingdom (SDH subunit C: T79N, W80S, N86S, SDH subunit B: N225T, T268I).
In 2015 and 2016, single isolates with moderate resistance factors and bearing the mutation H152R (SDH subunit C) were detected in Ireland and the United Kingdom, and the mutation was detected for the first time in Italy and the Netherlands in 2016. The following mutations with low resistance factors were also reported for the first time in 2016: B-T268A, B-N225I, C-T79I, C-R151 S, C- N86A, as well as mutations C-N33T, C-N34T, which were not associated with any sensitivity change.
In 2017, data for isolates with reduced sensitivity associated to the following mutations were reported from a broad range of countries: B-T268I/A, B-N225I, B-R265P, C-T168R, C-T79N/I, C- R151 S/T/M, C-N86S/A, C-W80S, C-V166M, D-I50F, and D-M114V.
In 2018, sensitivity data for more than 2000 isolates was presented from a broad range of countries; compared to 2017, the frequency of isolates showing low resistance factors increased in Northern-Germany, Ireland, the Netherlands and the United Kingdom. These isolates were detected again at low frequency in Denmark, France, Southern-Germany, Poland, and for the first time in Ukraine. These isolates were mainly associated to the following mutations: B-T268I/A, B-N225I, B-R265P, C- A84F, C-P127A, C-T168R, C-T79N/I, C-R151 S/T/M, C-N86S/A, C-W80S, C-V166M, D-I50F, D-M114V, and D-D129G. Among the mentioned mutations, the C-T79N and C-N86S were the most frequent mutations found. Single strains carrying double mutations associated with C-N86S and C-T79N have now been reported.
C-H152R and the following double mutations C-N86S+B-N225T and C-N86S+C-L85P were shown to impact the sensitivity of Zymoseptoria tritici to SDHI fungicides most. Evidence for fitness penalties associated with the mutation C-H152R were observed in research studies by FRAC member companies
Pyrenophora teres
Extensive monitoring programs have been carried out since 2003 and reported in FRAC for Pyrenophora teres (net blotch). Until 2011 , all tested isolates were considered sensitive (within the baseline range). However, in 2012, the sensitivity of two isolates from North Germany were outside of the baseline range. A target site mutation was identified in the SDH-B subunit at position 277 (B-H277Y). In 2013 and 2014, more isolates were detected with reduced sensitivity, carrying different mutations in Germany, France, Italy and the United Kingdom. The predominant mutation was C-G79R. The resistance factors were low for B-H277Y, D-D124E, D-D145G and moderate for C-G79R, C-H134R, C- S135R, C-N75S, C-R64K, D-H134R, and C-K49E. The mutation D-G138V was detected for the first time in 2015 and found to be associated to very low resistance factors.
Ramularia collo-cygni
Monitoring results published in FRAC for Ramularia collo-cygni showed that in 2015, extensive monitoring in Germany showed particularly in trial-sites for the first time occurrence of strains with strongly decreased dose-response in bioassays, carrying the mutation C-H146R or C-H153R. Another mutation, C-N87S, which was found to be associated with low resistance factors, was found in Germany, Ireland and Slovenia in single isolates. Samples carrying the mutations C-H146R or C-H153R, associated with significantly decreased sensitivity, were detected in Germany, Ireland, the Netherlands and the UK in 2016. A heterogeneous situation, ranging from low to high (frequency of mutations and sensitivity), was observed in Belgium, Germany, Denmark, the United Kingdom, Ireland and the Netherlands in 2015. Significantly decreased sensitivity is mainly associated with the mutations C- G91 R, C-H146R/L, C-G171 D or C-H153R. Additionally, a mutation linked to lower resistance factors (C- N87S) was detected. Mutations linked to lower resistance factors (C-N87S, B-T267I, B-N224T) have also been detected in Europe
Surprisingly, despite the monitoring reports describing that resistance evolution of SDHI fungicides has been to date dominated by single variants, it has now been found that in the above mentioned pathogens, significant incidence and frequency of strains combining multiple mutations of the above mentioned variants.
The compound 3-(difluoromethyl)-/V-methoxy-1-methyl-/V-[1-methyl-2-(2,4,6-trichloro- phenyl)ethyl]-1 /7-pyrazole-4-carboxamide (pydiflumetofen) described in WO 2010/063700 is a broadspectrum foliar fungicide and the first example of the group of N-methoxy-(phenylethyl)-pyrazole- carboxamides within the SDHI fungicide class. The use of pydiflumetofen to control single Zymoseptoria tritici strains resistant to SDHI fungicides is known from WO 2018/069114. The use of pydiflumetofen to control single Pyrenophora teres and Ramularia collo-cygni strains resistant to SDHI fungicides is known from EP3718406.
The present invention is based on the surprising finding that pydiflumetofen also exhibits control over plant pathogens Zymoseptoria tritici, Pyrenophora teres, and Ramularia collo-cygni on cereals, wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
Thus, in a first aspect, there is provided a method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
In one embodiment, there is provided a method for controlling plant pathogens Zymoseptoria tritici on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici contains multiple mutations on the succinate dehydrogenase subunit C gene.
In another embodiment, there is provided a method for controlling plant pathogens Pyrenophora teres on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer ortautomerthereof, and wherein the Pyrenophora teres contains multiple mutations on the succinate dehydrogenase subunit C gene.
In a further embodiment, there is provided a method for controlling plant Ramularia collo-cygni on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
In one embodiment, the plant pathogen Zymoseptoria tritici contains a W80R and an N86S mutation on the succinate dehydrogenase subunit C gene.
In one embodiment, the plant pathogen Zymoseptoria tritici contains a W80S and an N86R mutation on the succinate dehydrogenase subunit C gene.
In one embodiment, the plant pathogen Zymoseptoria tritici contains an N86S and an H152R mutation on the succinate dehydrogenase subunit C gene.
In one embodiment, the plant pathogen Zymoseptoria tritici contains an N86S and an H152Y mutation on the succinate dehydrogenase subunit C gene.
In one embodiment, the plant pathogen Zymoseptoria tritici contains a T79N and an N86S mutation on the succinate dehydrogenase subunit C gene.
In a further embodiment, the plant pathogen Zymoseptoria tritici contains a T79N and an H152R mutation on the succinate dehydrogenase subunit C gene.
In a father embodiment, the plant pathogen Zymoseptoria tritici contains a T79N and an H152Y mutation on the succinate dehydrogenase subunit C gene.
In a further embodiment, the plant pathogen Zymoseptoria tritici contains a W80R and an H152R mutation on the succinate dehydrogenase subunit C gene.
As used herein, the term “cereals” or “cereal plants” is understood to mean wheat, barley, or triticale. In one embodiment, the method of the present invention relates to the treatment of a cereal plant, wherein the plant is wheat. In another embodiment, the method of the present invention relates to the treatment of a cereal plant, wherein the plant is barley. In a further embodiment, the method of the present invention relates to the treatment of a cereal plant, wherein the plant is triticale.
In a further embodiment, the method comprises treating cereal seeds with a fungicidally effective amount of pydiflumetofen. In another embodiment, the method comprises treating wheat, barley, or triticale seeds with a fungicidally effective amount of pydiflumetofen. In a preferred embodiment, the method comprises treating wheat seeds with a fungicidally effective amount of pydiflumetofen.
In a further aspect of the invention, there is provided the use of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene. In particular, there is provided the use of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogen Zymoseptoria tritici, on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene. In another embodiment, there is provided the use of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogen Pyrenophora teres, on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene. In a further embodiment, there is provided the use of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogen Ramularia collo-cygni, on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene.
Pydiflumetofen may be, for example, effective against fungi and fungal vectors of disease (as well as phytopathogenic bacteria), and viruses. These fungi and fungal vectors of disease as well as phytopathogenic bacteria and viruses are for example: Absidia corymbifera, Alternaria spp, Aphanomyces spp, Ascochyta spp, Aspergillus spp. including A. flavus, A. fumigatus, A. nidulans, A. niger, A. terrus, Aureobasidium spp. including A. pullulans, Blastomyces dermatitidis, Blumeria graminis, Bremia lactucae, Botryosphaeria spp. including B. dothidea, B. obtusa, Botrytis spp. inclusing B. cinerea, Candida spp. including C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cephaloascus fragrans, Ceratocystis spp, Cercospora spp. including C. arachidicola, Cercosporidium personatum, Cladosporium spp, Claviceps purpurea, Coccidioides immitis, Cochliobolus spp, Colletotrichum spp. including C. musae, Cryptococcus neoformans, Diaporthe spp, Didymella spp, Drechslera spp, Elsinoe spp, Epidermophyton spp, Erwinia amylovora, Erysiphe spp. including E. cichoracearum, Eutypa lata, Fusarium spp. including F. culmorum, F. graminearum, F. langsethiae, F. moniliforme, F. oxysporum, F. proliferatum, F. subglutinans, F. solani, Gaeumannomyces graminis, Gibberella fujikuroi, Gloeodes pomigena, Gloeosporium musarum, Glomerella cingulate, Guignardia bidwellii, Gymnosporangium juniperi-virginianae, Helminthosporium spp, Hemileia spp, Histoplasma spp. including H. capsulatum, Laetisaria fuciformis, Leptographium lindbergi, Leveillula taurica, Lophodermium seditiosum, Microdochium nivale, Microsporum spp, Monilinia spp, Mucor spp, Mycosphaerella spp. including M. graminicola, M. pomi, Oncobasidium theobromaeon, Ophiostoma piceae, Paracoccidioides spp, Penicillium spp. including P. digitatum, P. italicum, Petriellidium spp, Peronosclerospora spp. Including P. maydis, P. philippinensis and P. sorghi, Peronospora spp, Phaeosphaeria nodorum, Phakopsora pachyrhizi, Phellinus igniarus, Phialophora spp, Phoma spp, Phomopsis viticola, Phytophthora spp. including P. infestans, Plasmopara spp. including P. halstedii, P. viticola, Pleospora spp., Podosphaera spp. including P. leucotricha, Polymyxa graminis, Polymyxa betae, Pseudocercosporella herpotrichoides, Pseudomonas spp, Pseudoperonospora spp. including P. cubensis, P. humuli, Pseudopeziza tracheiphila, Puccinia Spp. including P. hordei, P. recondita, P. striiformis, P. triticina, Pyrenopeziza spp, Pyrenophora spp, Pyricularia spp. including P. oryzae, Pythium spp. including P. ultimum, Ramularia spp, Rhizoctonia spp, Rhizomucor pusillus, Rhizopus arrhizus, Rhynchosporium spp, Scedosporium spp. including S. apiospermum and S. prolificans, Schizothyrium pomi, Sclerotinia spp, Sclerotium spp, Septoria spp, including S. nodorum, S. tritici, Sphaerotheca macularis, Sphaerotheca fusca (Sphaerotheca fuliginea), Sporothorix spp, Stagonospora nodorum, Stemphylium spp., Stereum hirsutum, Thanatephorus cucumeris, Thielaviopsis basicola, Tilletia spp, Trichoderma spp., including T. harzianum, T. pseudokoningii, T. viride, Trichophyton spp, Typhula spp, Uncinula necator, Urocystis spp, Ustilago spp, Venturia spp. including V. inaequalis, Verticillium spp, and Xanthomonas spp.
Within the scope of present invention, target crops and/or useful plants to be protected typically comprise perennial and annual crops, such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries; cereals for example barley, maize (corn), millet, oats, rice, rye, sorghum triticale and wheat; fibre plants for example cotton, flax, hemp, jute and sisal; field crops for example sugar and fodder beet, coffee, hops, mustard, oilseed rape (canola), poppy, sugar cane, sunflower, tea and tobacco; fruit trees for example apple, apricot, avocado, banana, cherry, citrus, nectarine, peach, pear and plum; grasses for example Bermuda grass, bluegrass, bentgrass, centipede grass, fescue, ryegrass, St. Augustine grass and Zoysia grass; herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme; legumes for example beans, lentils, peas and soya beans; nuts for example almond, cashew, ground nut, hazelnut, peanut, pecan, pistachio and walnut; palms for example oil palm; ornamentals for example flowers, shrubs and trees; other trees, for example cacao, coconut, olive and rubber; vegetables for example asparagus, aubergine, broccoli, cabbage, carrot, cucumber, garlic, lettuce, marrow, melon, okra, onion, pepper, potato, pumpkin, rhubarb, spinach and tomato; and vines for example grapes.
The term "useful plants" is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol- pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady®, Herculex I® and LibertyLink®.
The term "useful plants" is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
As used herein the term “plant pathogen", also known as crop pathogen or just pathogen, refers to a living organism negatively affecting the structure, development and/or vital functions of a plant. For example, a plant pathogen may be a virus, viroids, fungi, nematodes, bacteria, phytoplasm, protozoa, algae, insect and/or parasitic plants. The term plant pathogen should be understood to mean an individual organism or several organisms of the plant pathogen.
A plant pathogen population as used herein refers to a representation of individual plant pathogens present in a location.
Sensitivity, or fungicide sensitivity, or pesticide sensitivity, refers to the susceptibility of a plant pathogen to a pesticide such as a fungicide. Variations of sensitivity to fungicides can result from a range of different mechanisms as described in the background section, for example mutations in the genome.
Resistance, or fungicide resistance, or pesticide resistance, refers to the ability of a plant pathogen to survive the exposure to pesticides designed to control it. As for sensitivity, several mechanisms, such as those described in the background section, can shape the resistance or adaptation level. In contrast to sensitivity, resistance of a plant pathogen means that the plant pathogen becomes less sensitive to such an extent that a pesticide such as a fungicide is no longer effective in controlling the development, reproduction and viability of the plant pathogen.
Resistance development refers to a plant pathogen which develops a lower sensitivity to a fungicide or pesticide. Lower sensitivity can result in complete resistance or gradual resistance to a fungicide or pesticide. A single mechanism or a combination of mechanisms can shape resistance development. The resistance development depends on how fast these mechanisms are selected in a population of time and space.
Examples of such plants are: YieldGard® (maize variety that expresses a Cry(IA)(b) toxin); YieldGard Rootworm® (maize variety that expresses a CrylllB(bl) toxin); YieldGard Plus® (maize variety that expresses a Cry(IA)(b) and a Cryl IIB(b1 ) toxin); Starlink® (maize variety that expresses a Cry9(c) toxin); Herculex I® (maize variety that expresses a CrylF(a2) toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a Cry(IA)(c) toxin); Bollgard I® (cotton variety that expresses a Cry(IA)(c) toxin); Bollgard II® (cotton variety that expresses a Cry(IA)(c) and a Cryl(IA)(b) toxin); VIPCOT® (cotton variety that expresses a VIP toxin); NewLeaf® (potato variety that expresses a Cryll(IA) toxin); NatureGard® Agrisure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt11 corn borer (CB) trait), Agrisure® RW (corn rootworm trait) and Protecta ®. The term "crops" is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as 8-endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
In the context of the present invention there are to be understood by 8-endotoxins, for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701). Truncated toxins, for example a truncated CrylAb, are known. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G- recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073. The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a CrylAc toxin); Bollgard II® (cotton variety that expresses a CrylAc and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a CrylAb toxin); NewLeaf® (potato variety that expresses a Cry3A toxin); NatureGard®, Agrisure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt11 corn borer (CB) trait) and Protecta®.
Further examples of such transgenic crops are:
1. Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylAb toxin. Bt1 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a CrylAb toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
3. MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G- protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02.
6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.
7. NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylAb toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
The term “locus” as used herein means fields in or on which plants are growing, or where seeds of cultivated plants are sown, or where seed will be placed into the soil. It includes soil, seeds, and seedlings, as well as established vegetation.
The term “plants” refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
The term “plant propagation material” is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably “plant propagation material” is understood to denote seeds.
Pesticidal agents referred to herein using their common name are known, for example, from "The Pesticide Manual", 15th Ed., British Crop Protection Council 2009.
Pydiflumetofen may be used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end, they may be conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions or suspensions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
Suitable carriers and adjuvants, e.g., for agricultural use, can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO 97/33890.
Pydiflumetofen is normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be, e.g., fertilizers or micronutrient donors or other preparations, which influence the growth of plants. They can also be selective herbicides or non-selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
Pydiflumetofen may be used in the form of (fungicidal) compositions for controlling or protecting against phytopathogenic microorganisms, comprising pydiflumetofen as active ingredient in free form or in agrochemically usable salt form, and at least one of the above-mentioned adjuvants.
The invention provides a composition, preferably a fungicidal composition, comprising pydiflumetofen, an agriculturally acceptable carrier and optionally an adjuvant. An agricultural acceptable carrier is for example a carrier that is suitable for agricultural use. Agricultural carriers are well known in the art. Preferably, said composition may comprise at least one or more pesticidally active compounds, for example an additional fungicidal active ingredient in addition to pydiflumetofen.
Pydiflumetofen may be the sole active ingredient of a composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate. An additional active ingredient may, in some cases, result in unexpected synergistic activities.
Examples of suitable additional active ingredients include the following acycloamino acid fungicides, aliphatic nitrogen fungicides, amide fungicides, anilide fungicides, antibiotic fungicides, aromatic fungicides, arsenical fungicides, aryl phenyl ketone fungicides, benzamide fungicides, benzanilide fungicides, benzimidazole fungicides, benzothiazole fungicides, botanical fungicides, bridged diphenyl fungicides, carbamate fungicides, carbanilate fungicides, conazole fungicides, copper fungicides, dicarboximide fungicides, dinitrophenol fungicides, dithiocarbamate fungicides, dithiolane fungicides, furamide fungicides, furanilide fungicides, hydrazide fungicides, imidazole fungicides, mercury fungicides, morpholine fungicides, organophosphorous fungicides, organotin fungicides, oxathiin fungicides, oxazole fungicides, phenylsulfamide fungicides, polysulfide fungicides, pyrazole fungicides, pyridine fungicides, pyrimidine fungicides, pyrrole fungicides, quaternary ammonium fungicides, quinoline fungicides, quinone fungicides, quinoxaline fungicides, strobilurin fungicides, sulfonanilide fungicides, thiadiazole fungicides, thiazole fungicides, thiazolidine fungicides, thiocarbamate fungicides, thiophene fungicides, triazine fungicides, triazole fungicides, triazolopyrimidine fungicides, urea fungicides, valinamide fungicides, and zinc fungicides.
Examples of suitable additional active ingredients also include the following: a compound selected from the group of substances consisting of petroleum oils, 1 ,1-bis(4-chlorophenyl)-2-ethoxyethanol, 2,4- dichlorophenyl benzenesulfonate, 2-fluoro-N-methyl-N-1 -naphthylacetamide, 4-chlorophenyl phenyl sulfone, acetoprole, aldoxycarb, amidithion, amidothioate, amiton, amiton hydrogen oxalate, amitraz, aramite, arsenous oxide, azobenzene, azothoate, benomyl, benoxafos, benzyl benzoate, bixafen, brofenvalerate, bromocyclen, bromophos, bromopropylate, buprofezin, butocarboxim, butoxycarboxim, butylpyridaben, calcium polysulfide, camphechlor, carbanolate, carbophenothion, cymiazole, chino- methionat, chlorbenside, chlordimeform, chlordimeform hydrochloride, chlorfenethol, chlorfenson, chlorfensulfide, chlorobenzilate, chloromebuform, chloromethiuron, chloropropylate, chlorthiophos, cinerin I, cinerin II, cinerins, closantel, coumaphos, crotamiton, crotoxyphos, cufraneb, cyanthoate, DCPM, DDT, demephion, demephion-O, demephion-S, demeton-methyl, demeton-O, demeton-O- methyl, demeton-S, demeton-S-methyl, demeton-S-methylsulfon, dichlofluanid, dichlorvos, dicliphos, dienochlor, dimefox, dinex, dinex-diclexine, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, dioxathion, diphenyl sulfone, disulfiram, DNOC, dofenapyn, doramectin, endothion, eprinomectin, ethoate-methyl, etrimfos, fenazaflor, fenbutatin oxide, fenothiocarb, fenpyrad, fen- pyroximate, fenpyrazamine, fenson, fentrifanil, flubenzimine, flucycloxuron, fluenetil, fluorbenside, FMC 1137, formetanate, formetanate hydrochloride, formparanate, gamma-HCH, glyodin, halfenprox, hexadecyl cyclopropanecarboxylate, isocarbophos, jasmolin I, jasmolin II, jodfenphos, lindane, malonoben, mecarbam, mephosfolan, mesulfen, methacrifos, methyl bromide, metolcarb, mexacarbate, milbemycin oxime, mipafox, monocrotophos, morphothion, moxidectin, naled, 4-chloro-2-(2-chloro-2- methyl-propyl)-5-[(6-iodo-3-pyridyl)methoxy]pyridazin-3-one, nifluridide, nikkomycins, nitrilacarb, nitrilacarb 1 :1 zinc chloride complex, omethoate, oxydeprofos, oxydisulfoton, pp'-DDT, parathion, permethrin, phenkapton, phosalone, phosfolan, phosphamidon, polychloroterpenes, polynactins, proclonol, promacyl, propoxur, prothidathion, prothoate, pyrethrin I, pyrethrin II, pyrethrins, pyridaphenthion, pyrimitate, quinalphos, quintiofos, R-1492, phosglycin, rotenone, schradan, sebufos, selamectin, sophamide, SSI-121 , sulfiram, sulfluramid, sulfotep, sulfur, diflovidazin, tau-fluvalinate, TEPP, terbam, tetradifon, tetrasul, thiafenox, thiocarboxime, thiofanox, thiometon, thioquinox, thuringiensin, triamiphos, triarathene, triazophos, triazuron, trifenofos, trinactin, vamidothion, vaniliprole, bethoxazin, copper dioctanoate, copper sulfate, cybutryne, dichlone, dichlorophen, endothal, fentin, hydrated lime, nabam, quinoclamine, quinonamid, simazine, triphenyltin acetate, triphenyltin hydroxide, crufomate, piperazine, thiophanate, chloralose, fenthion, pyridin-4-amine, strychnine, 1-hydroxy-1 H- pyridine-2-thione, 4-(quinoxalin-2-ylamino)benzenesulfonamide, 8-hydroxyquinoline sulfate, bronopol, copper hydroxide, cresol, dipyrithione, dodicin, fenaminosulf, formaldehyde, hydrargaphen, kasugamycin, kasugamycin hydrochloride hydrate, nickel bis(dimethyldithiocarbamate), nitrapyrin, octhilinone, oxolinic acid, oxytetracycline, potassium hydroxyquinoline sulfate, probenazole, streptomycin, streptomycin sesquisulfate, tecloftalam, thiomersal, Adoxophyes orana GV, Agrobacterium radiobacter, Amblyseius spp., Anagrapha falcifera NPV, Anagrus atomus, Aphelinus abdominalis, Aphidius colemani, Aphidoletes aphidimyza, Autographa californica NPV, Bacillus sphaericus Neide, Beauveria brongniartii, Chrysoperla carnea, Cryptolaemus montrouzieri, Cydia pomonella GV, Dacnusa sibirica, Diglyphus isaea, Encarsia formosa, Eretmocerus eremicus, Heterorhabditis bacteriophora and H. megidis, Hippodamia convergens, Leptomastix dactylopii, Macrolophus caliginosus, Mamestra brassicae NPV, Metaphycus helvolus, Metarhizium anisopliae var. acridum, Metarhizium anisopliae var. anisopliae, Neodiprion sertifer NPV and N. lecontei NPV, Orius spp., Paecilomyces fumosoroseus, Phytoseiulus persimilis, Steinernema bibionis, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, Steinernema riobrave, Steinernema riobravis, Steinernema scapterisci, Steinernema spp., Trichogramma spp., Typhlodromus occidentalis, Verticillium lecanii, apholate, bisazir, busulfan, dimatif, hemel, hempa, metepa, methiotepa, methyl apholate, morzid, penfluron, tepa, thiohempa, thiotepa, tretamine, uredepa, (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol, (E)-tridec-4-en-1-yl acetate, (E)-6-methylhept-2-en-4-ol, (E,Z)-tetradeca-4,10- dien-1-yl acetate, (Z)-dodec-7-en-1-yl acetate, (Z)-hexadec-11-enal, (Z)-hexadec-l 1-en-1-yl acetate, (Z)-hexadec-13-en-11-yn-1-yl acetate, (Z)-icos-13-en-10-one, (Z)-tetradec-7-en-1-al, (Z)-tetradec-9-en- 1-ol, (Z)-tetradec-9-en-1-yl acetate, (7E,9Z)-dodeca-7,9-dien-1-yl acetate, (9Z,11 E)-tetradeca-9,11- dien-1-yl acetate, (9Z,12E)-tetradeca-9,12-dien-1-yl acetate, 14-methyloctadec-1-ene, 4-methylnonan- 5-ol with 4-methylnonan-5-one, alpha-multistriatin, brevicomin, codlelure, codlemone, cuelure, disparlure, dodec-8-en-1-yl acetate, dodec-9-en-1-yl acetate, dodeca-8, 10-dien-1-yl acetate, dominicalure, ethyl 4-methyloctanoate, eugenol, frontalin, grandlure, grandlure I, grandlure II, grandlure III, grandlure IV, hexalure, ipsdienol, ipsenol, japonilure, lineatin, litlure, looplure, medlure, megatomoic acid, methyl eugenol, muscalure, octadeca-2,13-dien-1-yl acetate, octadeca-3,13-dien-1-yl acetate, orfralure, oryctalure, ostramone, siglure, sordidin, sulcatol, tetradec-11-en-1-yl acetate, trimedlure, trimedlure A, trimedlure Bi, trimedlure B2, trimedlure C, trunc-call, 2-(octylthio)ethanol, butopyronoxyl, butoxy(polypropylene glycol), dibutyl adipate, dibutyl phthalate, dibutyl succinate, diethyltoluamide, dimethyl carbate, dimethyl phthalate, ethyl hexanediol, hexamide, methoquin-butyl, methylneodecanamide, oxamate, picaridin, 1-dichloro-1 -nitroethane, 1 ,1-dichloro-2,2-bis(4- ethylphenyl)ethane, 1 ,2-dichloropropane with 1 ,3-dichloropropene, 1-bromo-2-chloroethane, 2,2,2- trichloro-1-(3,4-dichlorophenyl)ethyl acetate, 2,2-dichlorovinyl 2-ethylsulfinylethyl methyl phosphate, 2- (1 ,3-dithiolan-2-yl)phenyl dimethylcarbamate, 2-(2-butoxyethoxy)ethyl thiocyanate, 2-(4,5-dimethyl-1 ,3- dioxolan-2-yl)phenyl methylcarbamate, 2-(4-chloro-3,5-xylyloxy)ethanol, 2-chlorovinyl diethyl phosphate, 2-imidazolidone, 2-isovalerylindan-1 ,3-dione, 2-methyl(prop-2-ynyl)aminophenyl methylcarbamate, 2-thiocyanatoethyl laurate, 3-bromo-1 -chloroprop-1 -ene, 3-methyl-1-phenylpyrazol- 5-yl dimethylcarbamate, 4-methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate, 5,5-dimethyl-3- oxocyclohex-1-enyl dimethylcarbamate, acethion, acrylonitrile, aldrin, allosamidin, allyxycarb, alphaecdysone, aluminium phosphide, aminocarb, anabasine, athidathion, azamethiphos, Bacillus thuringiensis delta endotoxins, barium hexafluorosilicate, barium polysulfide, barthrin, Bayer 22/190, Bayer 22408, beta-cyfluthrin, beta-cypermethrin, bioethanomethrin, biopermethrin, bis(2-chloroethyl) ether, borax, bromfenvinfos, bromo-DDT, bufencarb, butacarb, butathiofos, butonate, calcium arsenate, calcium cyanide, carbon disulfide, carbon tetrachloride, cartap hydrochloride, cevadine, chlorbicyclen, chlordane, chlordecone, chloroform, chloropicrin, chlorphoxim, chlorprazophos, cis-resmethrin, cismethrin, clocythrin, copper acetoarsenite, copper arsenate, copper oleate, coumithoate, cryolite, CS 708, cyanofenphos, cyanophos, cyclethrin, cythioate, d-tetramethrin, DAEP, dazomet, decarbofuran, diamidafos, dicapthon, dichlofenthion, dicresyl, dicyclanil, dieldrin, diethyl 5-methylpyrazol-3-yl phosphate, dilor, dimefluthrin, dimetan, dimethrin, dimethylvinphos, dimetilan, dinoprop, dinosam, dinoseb, diofenolan, dioxabenzofos, dithicrofos, DSP, ecdysterone, El 1642, EMPC, EPBP, etaphos, ethiofencarb, ethyl formate, ethylene dibromide, ethylene dichloride, ethylene oxide, EXD, fenchlorphos, fenethacarb, fenitrothion, fenoxacrim, fenpirithrin, fensulfothion, fenthion-ethyl, flucofuron, fosmethilan, fospirate, fosthietan, furathiocarb, furethrin, guazatine, guazatine acetates, sodium tetrathiocarbonate, halfenprox, HCH, HEOD, heptachlor, heterophos, HHDN, hydrogen cyanide, hyquincarb, IPSP, isazofos, isobenzan, isodrin, isofenphos, isolane, isoprothiolane, isoxathion, juvenile hormone I, juvenile hormone II, juvenile hormone III, kelevan, kinoprene, lead arsenate, leptophos, lirimfos, lythidathion, m- cumenyl methylcarbamate, magnesium phosphide, mazidox, mecarphon, menazon, mercurous chloride, mesulfenfos, metam, metam-potassium, metam-sodium, methanesulfonyl fluoride, methocrotophos, methoprene, methothrin, methoxychlor, methyl isothiocyanate, methylchloroform, methylene chloride, metoxadiazone, mirex, naftalofos, naphthalene, NC-170, nicotine, nicotine sulfate, nithiazine, nornicotine, 0-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate, O,O-diethyl 0-4- methyl-2-oxo-2H-chromen-7-yl phosphorothioate, O,O-diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate, O,O,O',O'-tetrapropyl dithiopyrophosphate, oleic acid, para-dichlorobenzene, parathion-methyl, pentachlorophenol, pentachlorophenyl laurate, PH 60-38, phenkapton, phosnichlor, phosphine, phoxim-methyl, pirimetaphos, polychlorodicyclopentadiene isomers, potassium arsenite, potassium thiocyanate, precocene I, precocene II, precocene III, primidophos, profluthrin, promecarb, prothiofos, pyrazophos, pyresmethrin, quassia, quinalphos-methyl, quinothion, rafoxanide, resmethrin, rotenone, kadethrin, ryania, ryanodine, sabadilla, schradan, sebufos, SI-0009, thiapronil, sodium arsenite, sodium cyanide, sodium fluoride, sodium hexafluorosilicate, sodium pentachlorophenoxide, sodium selenate, sodium thiocyanate, sulcofuron, sulcofuron-sodium, sulfuryl fluoride, sulprofos, tar oils, tazimcarb, TDE, tebupirimfos, temephos, terallethrin, tetrachloroethane, thicrofos, thiocyclam, thiocyclam hydrogen oxalate, thionazin, thiosultap, thiosultap-sodium, tralomethrin, transpermethrin, triazamate, trichlormetaphos-3, trichloronat, trimethacarb, tolprocarb, triclopyricarb, triprene, veratridine, veratrine, XMC, zetamethrin, zinc phosphide, zolaprofos, meperfluthrin, tetramethylfluthrin, bis(tributyltin) oxide, bromoacetamide, ferric phosphate, niclosamide-olamine, tributyltin oxide, pyrimorph, trifenmorph, 1 ,2-dibromo-3-chloropropane, 1 ,3-dichloropropene, 3,4-dichlorotetrahydrothio- phene 1 ,1-dioxide, 3-(4-chlorophenyl)-5-methylrhodanine, 5-methyl-6-thioxo-1 ,3,5-thiadiazinan-3- ylacetic acid, 6-isopentenylaminopurine, anisiflupurin, benclothiaz, cytokinins, DCIP, furfural, isamidofos, kinetin, Myrothecium verrucaria composition, tetrachlorothiophene, xylenols, zeatin, potassium ethylxanthate, acibenzolar, acibenzolar-S-methyl, Reynoutria sachalinensis extract, alphachlorohydrin, antu, barium carbonate, bisthiosemi, brodifacoum, bromadiolone, bromethalin, chlorophacinone, cholecalciferol, coumachlor, coumafuryl, coumatetralyl, crimidine, difenacoum, difethialone, diphacinone, ergocalciferol, flocoumafen, fluoroacetamide, flupropadine, flupropadine hydrochloride, norbormide, phosacetim, phosphorus, pindone, pyrinuron, scilliroside, sodium fluoroacetate, thallium sulfate, warfarin, 2-(2-butoxyethoxy)ethyl piperonylate, 5-(1 ,3-benzodioxol-5-yl)-3- hexylcyclohex-2-enone, farnesol with nerolidol, verbutin, MGK 264, piperonyl butoxide, piprotal, propyl isomer, S421 , sesamex, sesasmolin, sulfoxide, anthraquinone, copper naphthenate, copper oxychloride, dicyclopentadiene, thiram, zinc naphthenate, ziram, imanin, ribavirin, chloroinconazide, mercuric oxide, thiophanate-methyl, azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, furametpyr, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, paclobutrazole, pefurazoate, penconazole, prothioconazole, pyrifenox, prochloraz, propiconazole, pyrisoxazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole, ancymidol, fenarimol, nuarimol, bupirimate, dimethirimol, ethirimol, dodemorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph, cyprodinil, mepanipyrim, pyrimethanil, fenpiclonil, fludioxonil, benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl, carbendazim, debacarb, fuberidazole, thiabendazole, chlozolinate, dichlozoline, myclozoline, procymidone, vinclozoline, boscalid, carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, penthiopyrad, thifluzamide, dodine, iminoctadine, azoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, flufenoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, trifloxystrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, ferbam, mancozeb, maneb, metiram, propineb, zineb, captafol, captan, fluoroimide, folpet, tolylfluanid, bordeaux mixture, copper oxide, mancopper, oxinecopper, nitrothal-isopropyl, edifenphos, iprobenphos, phosdiphen, tolclofos-methyl, anilazine, benthiavalicarb, blasticidin-S, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, cyclobutrifluram, diclocymet, diclomezine, dicloran, diethofencarb, dimethomorph, flumorph, dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxanil, ferimzone, fluazinam, flumetylsulforim, fluopicolide, fluoxytioconazole, flusulfamide, fluxapyroxad, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, cyazofamid, methasulfocarb, metrafenone, pencycuron, phthalide, polyoxins, propamocarb, pyribencarb, proquinazid, pyroquilon, pyriofenone, quinoxyfen, quintozene, tiadinil, triazoxide, tricyclazole, triforine, validamycin, valifenalate, zoxamide, mandipropamid, flubeneteram, isopyrazam, sedaxane, benzovindiflupyr, pydiflumetofen, 3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxylic acid (3',4',5'-trifluoro-biphenyl-2-yl)-amide, isoflucypram, isotianil, dipymetitrone, 6-ethyl-5,7-dioxo- pyrrolo[4,5][1 ,4]dithiino[1 ,2-c]isothiazole-3-carbonitrile, 2-(difluoromethyl)-N-[3-ethyl-1 ,1-dimethyl- indan-4-yl]pyridine-3-carboxamide, 4-(2,6-difluorophenyl)-6-methyl-5-phenyl-pyridazine-3-carbonitrile, (R)-3-(difluoromethyl)-1-methyl-N-[1 ,1 ,3-trimethylindan-4-yl]pyrazole-4-carboxamide, 4-(2-bromo-4- fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine, 4- (2- bromo- 4- fluorophenyl) - N- (2- chloro- 6- fluorophenyl) - 1 , 3- dimethyl- 1 H- pyrazol- 5- amine, fluindapyr, coumethoxystrobin (jiaxiangjunzhi), Ivbenmixianan, dichlobentiazox, mandestrobin, 3-(4,4-difluoro-3,4-dihydro-3,3- dimethylisoquinolin-1-yl)quinolone, 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-quinolyl)oxy]phenyl]propan-2-ol, oxathiapiprolin, tert-butyl N-[6-[[[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2- pyridyl]carbamate, pyraziflumid, inpyrfluxam, trolprocarb, mefentrifluconazole, ipfentrifluconazole, 2- (difluoromethyl)-N-[(3R)-3-ethyl-1 ,1-dimethyl-indan-4-yl]pyridine-3-carboxamide, N'-(2,5-dimethyl-4- phenoxy-phenyl)-N-ethyl-N-methyl-formamidine, N'-[4-(4,5-dichlorothiazol-2-yl)oxy-2,5-dimethyl- phenyl]-N-ethyl-N-methyl-formamidine, [2-[3-[2-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetyl]-4- piperidyl]thiazol-4-yl]-4,5-dihydroisoxazol-5-yl]-3-chloro-phenyl] methanesulfonate, but-3-ynyl N-[6- [[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate, methyl N-[[5-[4- (2,4-dimethylphenyl)triazol-2-yl]-2-methyl-phenyl]methyl]carbamate, 3-chloro-6-methyl-5-phenyl-4- (2,4,6-trifluorophenyl)pyridazine, pyridachlometyl, 3-(difluoromethyl)-1-methyl-N-[1 ,1 ,3-trimethylindan- 4-yl]pyrazole-4-carboxamide, 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4- methyl-tetrazol-5-one, 1-methyl-4-[3-methyl-2-[[2-methyl-4-(3,4,5-trimethylpyrazol-1- yl)phenoxy]methyl]phenyl]tetrazol-5-one, aminopyrifen, ametoctradin, amisulbrom, penflufen, (Z,2E)-5- [1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-pent-3-enamide, florylpicoxamid, fenpicoxamid, metarylpicoxamid, tebufloquin, ipflufenoquin, quinofumelin, isofetamid, ethyl 1-[[4-[[2- (trifluoromethyl)-l ,3-dioxolan-2-yl]methoxy]phenyl]methyl]pyrazole-3-carboxylate (may be prepared from the methods described in WO 2020/056090), ethyl 1-[[4-[(Z)-2-ethoxy-3,3,3-trifluoro-prop-1- enoxy]phenyl]methyl]pyrazole-3-carboxylate (may be prepared from the methods described in WO 2020/056090), methyl N-[[4-[1-(4-cyclopropyl-2,6-difluoro-phenyl)pyrazol-4-yl]-2-methyl- phenyl]methyl]carbamate (may be prepared from the methods described in WO 2020/097012), methyl N-[[4-[1-(2,6-difluoro-4-isopropyl-phenyl)pyrazol-4-yl]-2-methyl-phenyl]methyl]carbamate (may be prepared from the methods described in WO 2020/097012), 6-chloro-3-(3-cyclopropyl-2-fluoro- phenoxy)-N-[2-(2,4-dimethylphenyl)-2,2-difluoro-ethyl]-5-methyl-pyridazine-4-carboxamide (may be prepared from the methods described in WO 2020/109391), 6-chloro-N-[2-(2-chloro-4-methyl-phenyl)- 2,2-difluoro-ethyl]-3-(3-cyclopropyl-2-fluoro-phenoxy)-5-methyl-pyridazine-4-carboxamide (may be prepared from the methods described in WO 2020/109391), 6-chloro-3-(3-cyclopropyl-2-fluoro- phenoxy)-N-[2-(3,4-dimethylphenyl)-2,2-difluoro-ethyl]-5-methyl-pyridazine-4-carboxamide (may be prepared from the methods described in WO 2020/109391), N-[2-[2,4-dichloro-phenoxy]phenyl]-3- (difluoromethyl)-1-methyl-pyrazole-4-carboxamide, N-[2-[2-chloro-4-(trifluoromethyl)phenoxy]phenyl]- 3-(difluoromethyl)-1-methyl-pyrazole-4-carboxamide, benzothiostrobin, phenamacril, 5-amino-1 ,3,4- thiadiazole-2-thiol zinc salt (2:1), fluopyram, flufenoxadiazam, flutianil, fluopimomide, pyrapropoyne, picarbutrazox, 2-(difluoromethyl)-N-(3-ethyl-1 ,1-dimethyl-indan-4-yl)pyridine-3-carboxamide, 2- (difluoromethyl) - N- ((3R) - 1 , 1 , 3- trimethylindan- 4-yl) pyridine- 3- carboxamide, 4-[[6-[2-(2,4- difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile, metyltetraprole, 2- (difluoromethyl) - N- ((3R) - 1 , 1 , 3- trimethylindan- 4- yl) pyridine- 3- carboxamide, a-(1 ,1-dimethylethyl)-a-[4'-(trifluoromethoxy) [1 , 1 '-biphenyl]-4- yl] -5- pyrimidinemethanol, fluoxapiprolin, enoxastrobin, methyl (Z)-3-methoxy-2-[2-methyl-5-[4-(trifluoromethyl)triazol-2-yl]phenoxy]prop-2- enoate, methyl (Z)-3-methoxy-2-[2-methyl-5-(4-propyltriazol-2-yl)phenoxy]prop-2-enoate, methyl (Z)-2- [5-(3-isopropylpyrazol-1-yl)-2-methyl-phenoxy]-3-methoxy-prop-2-enoate, methyl (Z)-3-methoxy-2-[2- methyl-5-(3-propylpyrazol-1 -yl)phenoxy]prop-2-enoate, methyl (Z)-3-methoxy-2-[2-methyl-5-[3- (trifluoromethyl)pyrazol-1-yl]phenoxy]prop-2-enoate (these compounds may be prepared from the methods described in W02020/079111), methyl (Z)-2-(5-cyclohexyl-2-methyl-phenoxy)-3-methoxy- prop-2-enoate, methyl (Z)-2-(5-cyclopentyl-2-methyl-phenoxy)-3-methoxy-prop-2-enoate (these compounds may be prepared from the methods described in W02020/193387), 4-[[6-[2-(2,4- difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy] benzonitrile, 4-[[6-[2- (2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(5-sulfanyl-1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy] benzonitrile, 4-[[6-[2-(2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(5-thioxo-4H-1 ,2,4-triazol-1 - yl)propyl]-3-pyridyl]oxy]benzonitrile, trinexapac, coumoxystrobin, zhongshengmycin, thiodiazole copper, zinc thiazole, amectotractin, iprodione, seboctylamine, N'-[5-bromo-2-methyl-6-[(1 S)-1-methyl-2- propoxy-ethoxy]-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-bromo-2-methyl-6-[(1 R)-1 -methyl-2- propoxy-ethoxy]-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-bromo-2-methyl-6-(1-methyl-2- propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-chloro-2-methyl-6-(1-methyl-2- propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-bromo-2-methyl-6-(1-methyl-2- propoxy-ethoxy)-3-pyridyl]-N-isopropyl-N-methyl-formamidine (these compounds may be prepared from the methods described in WO2015/155075); N'-[5-bromo-2-methyl-6-(2-propoxypropoxy)-3-pyridyl]-N- ethyl-N-methyl-formamidine (this compound may be prepared from the methods described in IPCOM000249876D); N-isopropyl-N’-[5-methoxy-2-methyl-4-(2, 2, 2-trifluoro-1 -hydroxy-1 -phenyl- ethyl)phenyl]-N-methyl-formamidine, N’-[4-(1-cyclopropyl-2,2,2-trifluoro-1-hydroxy-ethyl)-5-methoxy-2- methyl-phenyl]-N-isopropyl-N-methyl-formamidine (these compounds may be prepared from the methods described in WO2018/228896); N-ethyl-N’-[5-methoxy-2-methyl-4-[(2-trifluoromethyl)oxetan- 2-yl]phenyl]-N-methyl-formamidine, N-ethyl-N’-[5-methoxy-2-methyl-4-[(2- trifuoromethyl)tetrahydrofuran-2-yl]phenyl]-N-methyl-formamidine (these compounds may be prepared from the methods described in WO2019/110427); N-[(1 R)-1-benzyl-3-chloro-1-methyl-but-3-enyl]-8- fluoro-quinoline-3-carboxamide, N-[(1 S)-1 -benzyl-3-chloro-1 -methyl-but-3-enyl]-8-fluoro-quinoline-3- carboxamide, N-[(1 R)-1 -benzyl-3,3,3-trifluoro-1 -methyl-propyl]-8-fluoro-quinoline-3-carboxamide, N- [(1 S)-1 -benzyl-3,3,3-trifluoro-1 -methyl-propyl]-8-fluoro-quinoline-3-carboxamide, N-[(1 R)-1 -benzyl- 1 ,3- dimethyl-butyl]-7,8-difluoro-quinoline-3-carboxamide,
N-[(1 S)-1 -benzyl- 1 ,3-dimethyl-butyl]-7,8-difluoro-quinoline-3-carboxamide, 8-fluoro-N-[(1 R)-1 -[(3- fluorophenyl)methyl]-1 ,3-dimethyl-butyl]quinoline-3-carboxamide, 8-fluoro-N-[(1 S)-1 -[(3- fluorophenyl)methyl]-1 ,3-dimethyl-butyl]quinoline-3-carboxamide, N-[(1 R)-1-benzyl-1 ,3-dimethyl-butyl]- 8-fluoro-quinoline-3-carboxamide, N-[(1 S)-1-benzyl-1 ,3-dimethyl-butyl]-8-fluoro-quinoline-3- carboxamide,
N-((1 R)-1-benzyl-3-chloro-1-methyl-but-3-enyl)-8-fluoro-quinoline-3-carboxamide, N-((1 S)-1-benzyl-3- chloro-1-methyl-but-3-enyl)-8-fluoro-quinoline-3-carboxamide (these compounds may be prepared from the methods described in WO2017/153380); 1-(6,7-dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4,4,5-trifluoro-
3.3-dimethyl-isoquinoline, 1-(6,7-dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4,4,6-trifluoro-3,3-dimethyl- isoquinoline, 4,4-difluoro-3,3-dimethyl-1 -(6-methylpyrazolo[1 ,5-a]pyridin-3-yl)isoquinoline, 4,4-difluoro-
3.3-dimethyl-1 -(7-methylpyrazolo[1 ,5-a]pyridin-3-yl)isoquinoline, 1 -(6-chloro-7-methyl-pyrazolo[1 ,5- a]pyridin-3-yl)-4,4-difluoro-3,3-dimethyl-isoquinoline (these compounds may be prepared from the methods described in WO2017/025510); 1-(4,5-dimethylbenzimidazol-1-yl)-4,4,5-trifluoro-3,3-dimethyl- isoquinoline, 1 -(4,5-dimethylbenzimidazol-1 -yl)-4,4-difluoro-3,3-dimethyl-isoquinoline, 6-chloro-4,4- difluoro-3,3-dimethyl-1-(4-methylbenzimidazol-1-yl)isoquinoline, 4,4-difluoro-1-(5-fluoro-4-methyl- benzimidazol-1-yl)-3,3-dimethyl-isoquinoline, 3-(4,4-difluoro-3,3-dimethyl-1-isoquinolyl)-7,8-dihydro- 6H-cyclopenta[e]benzimidazole (these compounds may be prepared from the methods described in WO2016/156085); N-methoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]cyclopropanecarboxamide, N,2-dimethoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]propanamide, N-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]propanamide, 1 -methoxy-3-methyl-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]urea, 1 ,3-dimethoxy-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea, 3-ethy I- 1 -methoxy-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea, N-[[4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide, 4,4-dimethyl-2-[[4-[5- (trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-3-one, 5,5-dimethyl-2-[[4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-3-one, ethyl 1 -[[4-[5-(trifluoromethyl)-
1 .2.4-oxadiazol-3-yl]phenyl]methyl]pyrazole-4-carboxylate, N,N-dimethyl-1-[[4-[5-(trifluoromethyl)-
1 .2.4-oxadiazol-3-yl]phenyl]methyl]-1 ,2,4-triazol-3-amine (these compounds may be prepared from the methods described in WO 2017/055473, WO 2017/055469, WO 2017/093348 and WO 2017/118689); 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol (this compound may be prepared from the methods described in WO 2017/029179); 2-[6-(4-bromophenoxy)-2- (trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol (this compound may be prepared from the methods described in WO 2017/029179); 3-[2-(1-chlorocyclopropyl)-3-(2-fluorophenyl)-2-hydroxy- propyl]imidazole-4-carbonitrile (this compound may be prepared from the methods described in WO 2016/156290); 3-[2-(1-chlorocyclopropyl)-3-(3-chloro-2-fluoro-phenyl)-2-hydroxy-propyl]imidazole-4- carbonitrile (this compound may be prepared from the methods described in WO 2016/156290); (4- phenoxyphenyl)methyl 2-amino-6-methyl-pyridine-3-carboxylate (this compound may be prepared from the methods described in WO 2014/006945); 2,6-Dimethyl-1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole- 1 ,3,5,7(2H,6H)-tetrone (this compound may be prepared from the methods described in WO 2011/138281) N-methyl-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzenecarbothioamide; N-methyl- 4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide; (Z,2E)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxy- 2-methoxyimino-N,3-dimethyl-pent-3-enamide (this compound may be prepared from the methods described in WO 2018/153707); N'-(2-chloro-5-methyl-4-phenoxy-phenyl)-N-ethyl-N-methyl- formamidine; N'-[2-chloro-4-(2-fluorophenoxy)-5-methyl-phenyl]-N-ethyl-N-methyl-formamidine (this compound may be prepared from the methods described in WO 2016/202742); 2-(difluoromethyl)-N- [(3S)-3-ethyl-1 ,1-dimethyl-indan-4-yl]pyridine-3-carboxamide (this compound may be prepared from the methods described in WO 2014/095675); (5-methyl-2-pyridyl)-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methanone, (3-methylisoxazol-5-yl)-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methanone (these compounds may be prepared from the methods described in WO 2017/220485); 2-oxo-N-propyl-2-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]acetamide (this compound may be prepared from the methods described in WO 2018/065414); ethyl 1-[[5-[5- (trifluoromethyl)-l ,2,4-oxadiazol-3-yl]-2-thienyl]methyl]pyrazole-4-carboxylate (this compound may be prepared from the methods described in WO 2018/158365); 2,2-difluoro-N-methyl-2-[4-[5- (trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]acetamide, N-[(E)-methoxyiminomethyl]-4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]benzamide, N-[(Z)-methoxyiminomethyl]-4-[5-(trifluoromethyl)-
1 .2.4-oxadiazol-3-yl]benzamide, N-[N-methoxy-C-methyl-carbonimidoyl]-4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]benzamide (these compounds may be prepared from the methods described in WO 2018/202428).
Pydiflumetofen may also be used in combination with anthelmintic agents. Such anthelmintic agents include, compounds selected from the macrocyclic lactone class of compounds such as ivermectin, avermectin, abamectin, emamectin, eprinomectin, doramectin, selamectin, moxidectin, nemadectin and milbemycin derivatives as described in EP-357460, EP-444964 and EP-594291. Additional anthelmintic agents include semisynthetic and biosynthetic avermectin/milbemycin derivatives such as those described in US-5015630, WO-9415944 and WO-9522552. Additional anthelmintic agents include the benzimidazoles such as albendazole, cambendazole, fenbendazole, flubendazole, mebendazole, oxfendazole, oxibendazole, parbendazole, and other members of the class. Additional anthelmintic agents include imidazothiazoles and tetrahydropyrimidines such as tetramisole, levamisole, pyrantel pamoate, oxantel or morantel. Additional anthelmintic agents include flukicides, such as triclabendazole and clorsulon and the cestocides, such as praziquantel and epsiprantel.
Pydiflumetofen may be used in combination with derivatives and analogues of the paraherquamide/marcfortine class of anthelmintic agents, as well as the antiparasitic oxazolines such as those disclosed in US-5478855, US- 4639771 and DE-19520936.
Pydiflumetofen may be used in combination with derivatives and analogues of the general class of dioxomorpholine antiparasitic agents as described in WO-9615121 and also with anthelmintic active cyclic depsipeptides such as those described in WO-9611945, WO-9319053, WO- 9325543, EP- 626375, EP-382173, WO-9419334, EP-382173, and EP-503538.
Pydiflumetofen may be used in combination with other ectoparasiticides; for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
Pydiflumetofen may be used in combination with terpene alkaloids, for example those described in WO 95/19363 or WO 04/72086, particularly the compounds disclosed therein.
Other examples of such biologically active compounds that pydiflumetofen may be used in combination with include but are not restricted to the following: Organophosphates: acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, bromophos, bromophos-ethyl, cadusafos, chlorethoxyphos, chlorpyrifos, chlorfenvinphos, chlormephos, demeton, demeton-S-methyl, demeton- S-methyl sulphone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, methacriphos, methamidophos, methidathion, methyl-parathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, paraoxon, parathion, parathion-methyl, phenthoate, phosalone, phosfolan, phosphocarb, phosmet, phosphamidon, phorate, phoxim, pirimiphos, pirimiphos-methyl, profenofos, propaphos, proetamphos, prothiofos, pyraclofos, pyridapenthion, quinalphos, sulprophos, temephos, terbufos, tebupirimfos, tetrachlorvinphos, thimeton, triazophos, trichlorfon, vamidothion.
Carbamates: alanycarb, aldicarb, 2-sec-butylphenyl methylcarbamate, benfuracarb, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenoxycarb, fenthiocarb, furathiocarb, HCN-801 , isoprocarb, indoxacarb, methiocarb, methomyl, 5-methyl-m-cumenylbutyryl(methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, UC-51717.
Pyrethroids: acrinathin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)-(1 R)-cis-2,2-dimethyl-3- (2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, bifenthrin, beta-cyfluthrin, cyfluthrin, a- cypermethrin, beta -cypermethrin, bioallethrin, bioallethrin((S)-cyclopentylisomer), bioresmethrin, bifenthrin, NCI-85193, cycloprothrin, cyhalothrin, cythithrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, ethofenprox, fenfluthrin, fenpropathrin, fenvalerate, flucythrinate, flumethrin, fluvalinate (D isomer), imiprothrin, cyhalothrin, lambda-cyhalothrin, permethrin, phenothrin, prallethrin, pyrethrins (natural products), resmethrin, tetramethrin, transfluthrin, theta-cypermethrin, silafluofen, t-fluvalinate, tefluthrin, tralomethrin, Zeta-cypermethrin.
Arthropod growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron, buprofezin, diofenolan, hexythiazox, etoxazole, chlorfentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide; c) juvenoids: pyriproxyfen, methoprene (including S-methoprene), fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen.
Other antiparasitics: acequinocyl, amitraz, AKD-1022, ANS-118, azadirachtin, Bacillus thuringiensis, bensultap, bifenazate, binapacryl, bromopropylate, BTG-504, BTG-505, camphechlor, cartap, chlorobenzilate, chlordimeform, chlorfenapyr, chromafenozide, clothianidine, cyromazine, diacloden, diafenthiuron, DBI-3204, dinactin, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, endosulfan, ethiprole, ethofenprox, fenazaquin, flumite, MTI-800, fenpyroximate, fluacrypyrim, flubenzimine, flubrocythrinate, flufenzine, flufenprox, fluproxyfen, halofenprox, hydramethylnon, I KI-220 , kanemite, NC-196, neem guard, nidinorterfuran, nitenpyram, SD-35651 , WL-108477, pirydaryl, propargite, protrifenbute, pymethrozine, pyridaben, pyrimidifen, NC-1111 , R-195.RH-0345, RH-2485, RYI-210, S-1283, S-1833, SI-8601 , silafluofen, silomadine, spinosad, tebufenpyrad, tetradifon, tetranactin, thiacloprid, thiocyclam, thiamethoxam, tolfenpyrad, triazamate, triethoxyspinosyn, trinactin, verbutin, vertalec, YI-5301 .
Biological agents: Bacillus thuringiensis ssp aizawai, kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, entomopathogenic bacteria, virus and fungi. Bactericides: chlortetracycline, oxytetracycline, streptomycin. Other biological agents: enrofloxacin, febantel, penethamate, moloxicam, cefalexin, kanamycin, pimobendan, clenbuterol, omeprazole, tiamulin, benazepril, pyriprole, cefquinome, florfenicol, buserelin, cefovecin, tulathromycin, ceftiour, carprofen, metaflumizone, praziquarantel, triclabendazole.
Another aspect of invention is related to the use of pydiflumetofen, or of a composition comprising pydiflumetofen, or of a fungicidal or insecticidal mixture comprising pydiflumetofen, in admixture with other fungicides or insecticides as described above, for controlling or preventing infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g., harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
A further aspect of invention is related to a method of controlling or preventing an infestation of plants, e.g., useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of pydiflumetofen as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to any part of the non-living materials.
Controlling or preventing means reducing infestation by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, to such a level that an improvement is demonstrated.
A preferred method of controlling or preventing an infestation of crop plants by phytopathogenic microorganisms, especially fungal organisms, or insects which comprises the application of pydiflumetofen, or an agrochemical composition which contains pydiflumetofen, is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen or insect. However, pydiflumetofen can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying pydiflumetofen in solid form to the soil, e.g., in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field. Pydiflumetofen may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
A formulation, e.g. a composition containing pydiflumetofen, and, if desired, a solid or liquid adjuvant or monomers for encapsulating pydiflumetofen, may be prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
Typical rates of application per hectare is generally 1 g to 2000 g of pydiflumetofen per hectare, in particular 10 g to 1000 g/ha, preferably 10 to 800 g/ha, more preferably 20 g to 600 g/ha, and most preferably 40 g to 500 g/ha. In particular, pydiflumetofen is applied at 40 g to 400 g of active ingredient per hectare. When used for treating seeds or as a drenching agent, convenient rates of application are from 1 mg to 50 g of active substance per kg of seeds, preferably from 10 mg to 30 g of active substance per kg of seeds, and more preferably, from 10 mg to 1 g of active substance per kg of seeds.
The compositions of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EG), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
Such compositions may be produced in conventional manner, e.g., by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects). Also conventional slow release formulations may be employed where long lasting efficacy is intended. Particularly formulations to be applied in spraying forms, such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g. the condensation product of formaldehyde with naphthalene sulphonate, an alkylarylsulphonate, a lignin sulphonate, a fatty alkyl sulphate, and ethoxylated alkylphenol and an ethoxylated fatty alcohol.
A seed dressing formulation is applied in a manner known per se to the seeds employing the combination of the invention and a diluent in suitable seed dressing formulation form, e.g., as an aqueous suspension or in a dry powder form having good adherence to the seeds. Such seed dressing formulations are known in the art. Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
In general, the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of pydiflumetofen together with component (B) and (C), and optionally other active agents, particularly microbiocides or conservatives or the like.
Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent. Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
Formulation Examples
Wettable powders a) b) c) active ingredient 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate 6 % 10 % phenol polyethylene glycol ether 2 % (7-8 mol of ethylene oxide) highly dispersed silicic acid 5 % 10 % 10 % Kaolin 62 % 27 %
The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with waterto give suspensions of the desired concentration.
Powders for dry seed treatment a) b) c) active ingredient 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 % Kaolin 65 % 40 % Talcum 20 %
The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
Emulsifiable concentrate active ingredient 10 % octylphenol polyethylene glycol ether 3 % (4-5 mol of ethylene oxide) calcium dodecylbenzenesulfonate 3 % castor oil polyglycol ether (35 mol of ethylene oxide) 4 %
Cyclohexanone 30 % xylene mixture 50 %
Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water.
Dusts a) b) c)
Active ingredient 5 % 6 % 4 % talcum 95 %
Kaolin 94 % mineral filler 96 %
Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
Extruder granules Active ingredient 15 % sodium lignosulfonate 2 % carboxymethylcellulose 1 %
Kaolin 82 % The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water.
The mixture is extruded and then dried in a stream of air.
Coated granules
Active ingredient 8 % polyethylene glycol (mol. wt. 200) 3 %
Kaolin 89 %
The finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
Suspension concentrate active ingredient 40 % propylene glycol 10 % nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6 %
Sodium lignosulfonate 10 % carboxymethylcellulose 1 % silicone oil (in the form of a 75 % emulsion in water) 1 %
Water 32 %
The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Flowable concentrate for seed treatment active ingredient 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
1 ,2-benzisothiazolin-3-one (in the form of a 20% solution in water) 0.5 % monoazo-pigment calcium salt 5 %
Silicone oil (in the form of a 75 % emulsion in water) 0.2 %
Water 45.3 %
The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Slow Release Capsule Suspension
28 parts of a combination of pydiflumetofen are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1). This mixture is emulsified in a mixture of 1 .2 parts of polyvinyl alcohol, 0.05 parts of a defoamer and 51 .6 parts of water until the desired particle size is achieved. To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
The obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent. The capsule suspension formulation contains 28% of the active ingredients. The medium capsule diameter is 8-15 microns.
The resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
Examples
The present invention will now be described with reference to the following examples, which are by way of illustration and do not limited the scope of the invention in any way.
Example 1 : Detection and Quantification of Resistant Variants in Natural Populations
Wheat leaves with typical symptoms of septoria leaf blotch were collected in 2021 from commercial and trial sites. From each site a total of 30 clearly defined singly symptoms were punched and pooled for total DNA extraction. Target gene(s) were amplified and sequenced to map the diversity of resistant variants in each population. The incidence (intended as number of populations showing detection of resistance variant) and frequency (in population with detection) were inferred through a dedicated bioinformatic pipeline (Figures 1 A) and B)).
Example 2: Bioassays
In microtiter tests pydiflumetofen showed a surprisingly high intrinsic activity compared to other SDHIs on SDHI sensitive (wild type), single resistant and double resistant mutants. Multiple resistant isolates showed significant lower sensitivity (i.e. higher EC50 values) to all SDHIs than sensitive ones, except for the surprisingly high activity of pydiflumetofen.
The impact of sdh multiple resistant isolates and wild types on SDHIs were tested in the greenhouse. Efficacy of active ingredients (tech a.i.) of a range of SDHI fungicides were tested using standard formulations. Multiple resistant isolates were propagated on MYA medium (1 % malt extract, 0.4% yeast extract, 0.4% glucose, 2% agar) for 7 days with a 12 h light/12 h dark cycle at 18°C. 14 day old wheat plants were spray-inoculated with spore suspensions (2.4 x 10'pores/ml) until prior to run off, and incubated for 4 days at 18°C and 98% relative humidity (RH). Then, SDHI fungicides were applied by spraying them in a spray chamber. Water volume was adjusted accordingly. Afterwards plants were be incubated at 16°C and 70-80% RH. Diseased leaf area containing pycnidia were assessed at 21 and 25 days after inoculation and fungicide efficacy calculated using Abbott’s formula: % efficacy = (% disease in untreated - % disease in treatment) x 100 % I % disease in untreated.
Example 3: Field Trials
Field trials were conducted during 2021 in locations where detection of multiple resistant strains had been confirmed. Amongst the SDHI fungicides tested, pydiflumetofen showed the highest efficacy to control Septoria tritici (Figures 2 A) and B)).
Example 4: Trial with potted plants in polytunnel and climate chamber
Trials with potted wheat plants were conducted in 2022 to understand the capability of different SDHI containing products to control individual Zymoseptoria tritici isolates expressing one or multiple mutations on the SDH gene subunits.
Method: After winter and before onset of the growth period in spring, individual plants at stage BBCH 29-30 from a Zymoseptoria tritici sensitive winter wheat variety were transplanted from field to pots. Potted plants were grown in a polytunnel providing regular irrigation, fertilization, and pest control until BBCH 49 to produce essentially disease-free plants with the flag leaf (L1) fully emerged. BBCH 49 plants were either left untreated (= untreated check), or treated with pydiflumetofen at 166g/ha, or treated with another SDHI fungicide at recommended rate (fluxapyroxad at 125g/ha, isoflucypram at 75g/ha, bixafen at 125g/ha) using regular field trialling equipment and a water volume usual for fungicide treatments of wheat (100-400L/ha). One day after fungicide application, plants were transferred to a climate chamber and inoculated with a spore suspension of one pure isolate of Zymoseptoria tritici. After infection, plants were kept in the climate chamber until development of Septoria leaf blotch symptoms on the leaves, by providing regular irrigation and fertilization, as well as light and humidity conditions conductive for the establishment and development of the disease. Inoculum from either one of six distinct Zymoseptoria tritici isolates previously propagated on agar plates were used for infection. For each treatment- isolate combination, 4 individual pots were produced and evaluated. At 29 days and 34 days after infection (DAI), the flag leaf (L1) and the following leaf (L2) were evaluated for coverage with Zymoseptoria tritici symptoms (% disease coverage), and from this value the reduction of disease coverage as compared to the untreated check was calculated (% disease control). The average of all pots with the same treatment was used, and a statistical evaluation (F-test) of the results including arcsine transformation of values was performed. Significant difference (p<0.05) is indicated by different letters. The results are shown below in Tables 1 and 2.
Figure imgf000027_0001
Unlike other SDHI fungicides tested, pydiflumetofen was the only active substance able to provide >85% disease control for all Zymoseptoria tritici isolates, including isolates harbouring multiple mutations in the SDH genes of the fungus. This high disease control level was provided at low to medium disease pressure (29DAI, 17%-78% disease on untreated check) and at medium to high disease pressure (34 DAI, 69%-99% disease on untreated check), as well as on the flag leaf (L1) and on lower leaves (L2).

Claims

1 . A method for controlling plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo- cygni on cereals, comprising treating the cereal plants, by applying to the plant, plant part, plant propagation material, or plant growing locus, a fungicidally effective amount of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, and wherein the Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni contain multiple mutations on the succinate dehydrogenase subunit C gene.
2. The method according to claim 1 , wherein the plant pathogen is Zymoseptoria tritici.
3. The method according to claim 1 or claim 2, wherein the Zymoseptoria tritici, contains a W80R and an N86S mutation on the succinate dehydrogenase subunit C gene.
4. The method according to claim 1 or claim 2, wherein the Zymoseptoria tritici, contains a W80S and an N86R mutation on the succinate dehydrogenase subunit C gene.
5. The method according to claim 1 or claim 2, wherein the Zymoseptoria tritici, contains an N86S and a H152R mutation on the succinate dehydrogenase subunit C gene.
6. The method according to claim 1 or claim 2, wherein the Zymoseptoria tritici, contains an N86S and a H152Y mutation on the succinate dehydrogenase subunit C gene.
7. The method according to claim 1 or claim 2, wherein the Zymoseptoria tritici, contains a T79N and an N86S mutation on the succinate dehydrogenase subunit C gene.
8. The method according to any one of claims 1 to 7, wherein the cereal plant is wheat.
9. The method according to any one of claims 1 to 8, wherein pydiflumetofen is applied to the plant, plant part, plant propagation material, or plant growing locus in an amount of from 10 g/ha to 1000 g/ha.
10. Use of pydiflumetofen, or an agrochemically acceptable salt, isomer, stereoisomer, diastereoisomer, enantiomer or tautomer thereof, to control plant pathogens Zymoseptoria tritici, Pyrenophora teres, or Ramularia collo-cygni on cereals, wherein the plant pathogen contain multiple mutations on the succinate dehydrogenase subunit C gene.
PCT/EP2023/051257 2022-01-19 2023-01-19 Methods for controlling plant pathogens WO2023139166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22152303.8 2022-01-19
EP22152303 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023139166A1 true WO2023139166A1 (en) 2023-07-27

Family

ID=79730319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/051257 WO2023139166A1 (en) 2022-01-19 2023-01-19 Methods for controlling plant pathogens

Country Status (1)

Country Link
WO (1) WO2023139166A1 (en)

Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0357460A2 (en) 1988-09-02 1990-03-07 Sankyo Company Limited 13-Substituted milbemycin derivatives, their preparation and use
EP0367474A1 (en) 1988-11-01 1990-05-09 Mycogen Corporation Novel bacillus thuringiensis isolate denoted b.t. ps81gg, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0382173A2 (en) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. PF 1022 substance, method of producing same and anthelmintic composition containing same
WO1990013651A1 (en) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Bacterial genes
EP0401979A2 (en) 1989-05-18 1990-12-12 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0444964A1 (en) 1990-03-01 1991-09-04 Sankyo Company Limited Milbemycin ether derivatives, their preparation and their anthelmintic uses
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0503538A1 (en) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Medicinal composition containing an anthelmintic cyclic depsipeptide
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1993019053A1 (en) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Depsipeptide derivative, production thereof and use thereof
WO1993025543A2 (en) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines and enniatine derivates used to control endoparasites
EP0594291A1 (en) 1992-09-01 1994-04-27 Sankyo Company Limited Novel processes for the production of 13-ether derivatives of milbemycins, and novel intermediates therefor
WO1994015944A1 (en) 1993-01-18 1994-07-21 Pfizer Limited New antiparasitic agents related to the milbemycins and avermectins
WO1994019334A1 (en) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Pf1022 derivative, cyclic depsipeptide
EP0626375A1 (en) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides having endoparasiticidal activity
WO1995019363A1 (en) 1994-01-14 1995-07-20 Pfizer Inc. Antiparasitic pyrrolobenzoxazine compounds
WO1995022552A1 (en) 1994-02-16 1995-08-24 Pfizer Limited Antiparasitic agents
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1996011945A2 (en) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Cyclic depsipeptide sulfonylation, sulfenylation and phosphorylation process
WO1996015121A1 (en) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Use of dioxomorpholines to combat endoparasites, novel dioxomorpholines and process for their production
DE19520936A1 (en) 1995-06-08 1996-12-12 Bayer Ag Ectoparasiticides means
WO1997033890A1 (en) 1996-03-11 1997-09-18 Novartis Ag Pyrimidin-4-one derivatives as pesticide
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2004072086A2 (en) 2003-02-14 2004-08-26 Pfizer Limited Antiparasitic terpene alkaloids
WO2010063700A2 (en) 2008-12-05 2010-06-10 Syngenta Participations Ag Novel microbiocides
WO2011138281A2 (en) 2010-05-06 2011-11-10 Bayer Cropscience Ag Process for the preparation of dithiine tetracarboxydiimides
WO2014006945A1 (en) 2012-07-04 2014-01-09 アグロカネショウ株式会社 2-aminonicotinic acid ester derivative and bactericide containing same as active ingredient
WO2014095675A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic-indanyl carboxamides as fungicides
WO2015155075A1 (en) 2014-04-11 2015-10-15 Syngenta Participations Ag Fungicidal n'-[2-methyl-6-[2-alkoxy-ethoxy]-3-pyridyl]-n-alkyl-formamidine derivatives for use in agriculture
WO2016156085A1 (en) 2015-03-27 2016-10-06 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2016156290A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2016202742A1 (en) 2015-06-15 2016-12-22 Bayer Cropscience Aktiengesellschaft Halogen-substituted phenoxyphenylamidines and the use thereof as fungicides
WO2017025510A1 (en) 2015-08-12 2017-02-16 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2017029179A1 (en) 2015-08-14 2017-02-23 Bayer Cropscience Aktiengesellschaft Triazole derivatives, intermediates thereof and their use as fungicides
WO2017055473A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017055469A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017093348A1 (en) 2015-12-02 2017-06-08 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017118689A1 (en) 2016-01-08 2017-07-13 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017153380A1 (en) 2016-03-10 2017-09-14 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
WO2017220485A1 (en) 2016-06-21 2017-12-28 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018065414A1 (en) 2016-10-06 2018-04-12 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018069114A1 (en) 2016-10-12 2018-04-19 Basf Se Method to control septoria tritici resistant to succinate dehydrogenase inhibitor fungicides
WO2018153707A1 (en) 2017-02-22 2018-08-30 Basf Se Crystalline forms of a strobilurin type compound for combating phytopathogenic fungi
WO2018158365A1 (en) 2017-03-03 2018-09-07 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018202428A1 (en) 2017-05-02 2018-11-08 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
WO2018228896A1 (en) 2017-06-14 2018-12-20 Syngenta Participations Ag Fungicidal compositions
WO2019110427A1 (en) 2017-12-04 2019-06-13 Syngenta Participations Ag Microbiocidal phenylamidine derivatives
WO2020056090A1 (en) 2018-09-14 2020-03-19 Fmc Corporation Fungicidal halomethyl ketones and hydrates
WO2020079111A1 (en) 2018-10-18 2020-04-23 Syngenta Crop Protection Ag Microbiocidal compounds
WO2020097012A1 (en) 2018-11-06 2020-05-14 Fmc Corporation Substituted tolyl as fungicides
WO2020109391A1 (en) 2018-11-28 2020-06-04 Bayer Aktiengesellschaft Pyridazine (thio)amides as fungicidal compounds
EP3718406A1 (en) 2019-04-02 2020-10-07 Basf Se Method for controlling net blotch and/or ramularia resistant to succinate dehydrogenase inhibitor fungicides

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0357460A2 (en) 1988-09-02 1990-03-07 Sankyo Company Limited 13-Substituted milbemycin derivatives, their preparation and use
EP0367474A1 (en) 1988-11-01 1990-05-09 Mycogen Corporation Novel bacillus thuringiensis isolate denoted b.t. ps81gg, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0382173A2 (en) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. PF 1022 substance, method of producing same and anthelmintic composition containing same
WO1990013651A1 (en) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Bacterial genes
EP0401979A2 (en) 1989-05-18 1990-12-12 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0444964A1 (en) 1990-03-01 1991-09-04 Sankyo Company Limited Milbemycin ether derivatives, their preparation and their anthelmintic uses
EP0503538A1 (en) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Medicinal composition containing an anthelmintic cyclic depsipeptide
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1993019053A1 (en) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Depsipeptide derivative, production thereof and use thereof
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1993025543A2 (en) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines and enniatine derivates used to control endoparasites
EP0594291A1 (en) 1992-09-01 1994-04-27 Sankyo Company Limited Novel processes for the production of 13-ether derivatives of milbemycins, and novel intermediates therefor
WO1994015944A1 (en) 1993-01-18 1994-07-21 Pfizer Limited New antiparasitic agents related to the milbemycins and avermectins
WO1994019334A1 (en) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Pf1022 derivative, cyclic depsipeptide
EP0626375A1 (en) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides having endoparasiticidal activity
WO1995019363A1 (en) 1994-01-14 1995-07-20 Pfizer Inc. Antiparasitic pyrrolobenzoxazine compounds
WO1995022552A1 (en) 1994-02-16 1995-08-24 Pfizer Limited Antiparasitic agents
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO1996011945A2 (en) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Cyclic depsipeptide sulfonylation, sulfenylation and phosphorylation process
WO1996015121A1 (en) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Use of dioxomorpholines to combat endoparasites, novel dioxomorpholines and process for their production
DE19520936A1 (en) 1995-06-08 1996-12-12 Bayer Ag Ectoparasiticides means
WO1997033890A1 (en) 1996-03-11 1997-09-18 Novartis Ag Pyrimidin-4-one derivatives as pesticide
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2004072086A2 (en) 2003-02-14 2004-08-26 Pfizer Limited Antiparasitic terpene alkaloids
WO2010063700A2 (en) 2008-12-05 2010-06-10 Syngenta Participations Ag Novel microbiocides
WO2011138281A2 (en) 2010-05-06 2011-11-10 Bayer Cropscience Ag Process for the preparation of dithiine tetracarboxydiimides
WO2014006945A1 (en) 2012-07-04 2014-01-09 アグロカネショウ株式会社 2-aminonicotinic acid ester derivative and bactericide containing same as active ingredient
WO2014095675A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic-indanyl carboxamides as fungicides
WO2015155075A1 (en) 2014-04-11 2015-10-15 Syngenta Participations Ag Fungicidal n'-[2-methyl-6-[2-alkoxy-ethoxy]-3-pyridyl]-n-alkyl-formamidine derivatives for use in agriculture
WO2016156085A1 (en) 2015-03-27 2016-10-06 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2016156290A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2016202742A1 (en) 2015-06-15 2016-12-22 Bayer Cropscience Aktiengesellschaft Halogen-substituted phenoxyphenylamidines and the use thereof as fungicides
WO2017025510A1 (en) 2015-08-12 2017-02-16 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2017029179A1 (en) 2015-08-14 2017-02-23 Bayer Cropscience Aktiengesellschaft Triazole derivatives, intermediates thereof and their use as fungicides
WO2017055473A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017055469A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017093348A1 (en) 2015-12-02 2017-06-08 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017118689A1 (en) 2016-01-08 2017-07-13 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017153380A1 (en) 2016-03-10 2017-09-14 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
WO2017220485A1 (en) 2016-06-21 2017-12-28 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018065414A1 (en) 2016-10-06 2018-04-12 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018069114A1 (en) 2016-10-12 2018-04-19 Basf Se Method to control septoria tritici resistant to succinate dehydrogenase inhibitor fungicides
EP3525585A1 (en) * 2016-10-12 2019-08-21 Basf Se Method to controlseptoria tritici
WO2018153707A1 (en) 2017-02-22 2018-08-30 Basf Se Crystalline forms of a strobilurin type compound for combating phytopathogenic fungi
WO2018158365A1 (en) 2017-03-03 2018-09-07 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018202428A1 (en) 2017-05-02 2018-11-08 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
WO2018228896A1 (en) 2017-06-14 2018-12-20 Syngenta Participations Ag Fungicidal compositions
WO2019110427A1 (en) 2017-12-04 2019-06-13 Syngenta Participations Ag Microbiocidal phenylamidine derivatives
WO2020056090A1 (en) 2018-09-14 2020-03-19 Fmc Corporation Fungicidal halomethyl ketones and hydrates
WO2020079111A1 (en) 2018-10-18 2020-04-23 Syngenta Crop Protection Ag Microbiocidal compounds
WO2020097012A1 (en) 2018-11-06 2020-05-14 Fmc Corporation Substituted tolyl as fungicides
WO2020109391A1 (en) 2018-11-28 2020-06-04 Bayer Aktiengesellschaft Pyridazine (thio)amides as fungicidal compounds
EP3718406A1 (en) 2019-04-02 2020-10-07 Basf Se Method for controlling net blotch and/or ramularia resistant to succinate dehydrogenase inhibitor fungicides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"The Pesticide Manual", 2009, BRITISH CROP PROTECTION COUNCIL
BASF KRISTIN ET AL: "Succinate Dehydrogenase Inhibitor (SDHI) Working Group Meeting on January 21/22, 2020 Protocol of the discussions and use recommendations of the SDHI Working Group of the Fungicide Resistance Action Committee (FRAC)", 21 January 2020 (2020-01-21), pages 1 - 25, XP055930574, Retrieved from the Internet <URL:https://www.frac.info/docs/default-source/working-groups/sdhi-fungicides/sdhi-meeting-minutes/minutes-of-the-2020-sdhi-meeting-21-22th-of-january-2020-with-recommendations-for-2020.pdf?sfvrsn=5918499a_2> [retrieved on 20220613] *
KIIKER RIINU ET AL: "Changes in DMI, SDHI, and QoI Fungicide Sensitivity in the Estonian Zymoseptoria tritici Population between 2019 and 2020", MICROORGANISMS, vol. 9, no. 4, 12 April 2021 (2021-04-12), pages 814, XP055930430, DOI: 10.3390/microorganisms9040814 *
SUN BINGXUE ET AL: "Double Mutations in Succinate Dehydrogenase Are Involved in SDHI Resistance in Corynespora cassiicola", MICROORGANISMS, vol. 10, no. 1, 9 January 2022 (2022-01-09), pages 132, XP055930499, DOI: 10.3390/microorganisms10010132 *

Similar Documents

Publication Publication Date Title
AU2019386994B2 (en) Microbiocidal 2-acylamino-thiazole-4-carboxamide derivatives
AU2019389778B2 (en) Microbiocidal thiazole derivatives
WO2021244952A1 (en) Microbiocidal derivatives
US20240208962A1 (en) Microbiocidal quinoline/quinoxaline benzothiazine derivatives
WO2022207479A1 (en) Microbiocidal isonicotinic amide derivatives
EP3947371B1 (en) Microbiocidal thiazole derivatives
EP4132924B1 (en) Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
US20240300917A1 (en) Microbiocidal quinoline/quinoxaline isoquinoline derivatives
EP3994124A1 (en) Microbiocidal picolinamide derivatives
EP3976622B1 (en) Microbiocidal derivatives
WO2023139166A1 (en) Methods for controlling plant pathogens
WO2024100069A1 (en) Microbiocidal pyridine derivatives
WO2023111215A1 (en) Microbiocidal pyridine-substituted benzothiazine derivatives
WO2020239855A1 (en) Microbiocidal derivatives
WO2021204855A1 (en) Microbiocidal quinoline dihydropyrrolopyrazine derivatives
EP3976601A1 (en) Microbiocidal derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23701415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE