WO2023127964A1 - Battery module and method for manufacturing same - Google Patents
Battery module and method for manufacturing same Download PDFInfo
- Publication number
- WO2023127964A1 WO2023127964A1 PCT/JP2022/048658 JP2022048658W WO2023127964A1 WO 2023127964 A1 WO2023127964 A1 WO 2023127964A1 JP 2022048658 W JP2022048658 W JP 2022048658W WO 2023127964 A1 WO2023127964 A1 WO 2023127964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- gas barrier
- barrier film
- battery module
- negative electrode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 38
- 230000004888 barrier function Effects 0.000 claims abstract description 210
- 230000003287 optical effect Effects 0.000 claims abstract description 142
- 238000000605 extraction Methods 0.000 claims description 199
- 239000007774 positive electrode material Substances 0.000 claims description 116
- 229920005989 resin Polymers 0.000 claims description 111
- 239000011347 resin Substances 0.000 claims description 111
- 239000007773 negative electrode material Substances 0.000 claims description 73
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 239000004745 nonwoven fabric Substances 0.000 claims description 11
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 239000013013 elastic material Substances 0.000 claims description 4
- 230000001902 propagating effect Effects 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 238000003856 thermoforming Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 188
- 238000007789 sealing Methods 0.000 abstract description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 373
- 239000000463 material Substances 0.000 description 85
- -1 polyethylene Polymers 0.000 description 67
- 229910001416 lithium ion Inorganic materials 0.000 description 51
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 43
- 239000011231 conductive filler Substances 0.000 description 42
- 239000008151 electrolyte solution Substances 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 27
- 239000011230 binding agent Substances 0.000 description 26
- 239000004020 conductor Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 25
- 239000000835 fiber Substances 0.000 description 25
- 239000002245 particle Substances 0.000 description 25
- 239000011248 coating agent Substances 0.000 description 24
- 238000000576 coating method Methods 0.000 description 24
- 229920001940 conductive polymer Polymers 0.000 description 23
- 239000000203 mixture Substances 0.000 description 22
- 239000004743 Polypropylene Substances 0.000 description 21
- 229920001155 polypropylene Polymers 0.000 description 21
- 239000004698 Polyethylene Substances 0.000 description 19
- 229910052799 carbon Inorganic materials 0.000 description 19
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 229920000573 polyethylene Polymers 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 239000002861 polymer material Substances 0.000 description 18
- 229910052723 transition metal Inorganic materials 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 238000009826 distribution Methods 0.000 description 13
- 239000010935 stainless steel Substances 0.000 description 13
- 229910001220 stainless steel Inorganic materials 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000004840 adhesive resin Substances 0.000 description 12
- 229920006223 adhesive resin Polymers 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 12
- 239000006258 conductive agent Substances 0.000 description 12
- 238000009461 vacuum packaging Methods 0.000 description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 11
- 238000007599 discharging Methods 0.000 description 11
- 239000007784 solid electrolyte Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 239000003575 carbonaceous material Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000003125 aqueous solvent Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 239000007769 metal material Substances 0.000 description 8
- 229920003050 poly-cycloolefin Polymers 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 150000003624 transition metals Chemical class 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 239000011149 active material Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000011116 polymethylpentene Substances 0.000 description 7
- 150000005676 cyclic carbonates Chemical class 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920002239 polyacrylonitrile Polymers 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 229910013716 LiNi Inorganic materials 0.000 description 4
- 229910000914 Mn alloy Inorganic materials 0.000 description 4
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 150000004651 carbonic acid esters Chemical class 0.000 description 4
- 239000006182 cathode active material Substances 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000011883 electrode binding agent Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000976 ink Substances 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002905 metal composite material Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920001197 polyacetylene Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229920006380 polyphenylene oxide Polymers 0.000 description 4
- 229920000128 polypyrrole Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 150000005678 chain carbonates Chemical class 0.000 description 3
- 239000006231 channel black Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000006232 furnace black Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 239000006233 lamp black Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical class [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011856 silicon-based particle Substances 0.000 description 3
- 239000002153 silicon-carbon composite material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003457 sulfones Chemical class 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 3
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 2
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910000681 Silicon-tin Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical class [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 2
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 description 2
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical class [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 239000011304 carbon pitch Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- WCCJDBZJUYKDBF-UHFFFAOYSA-N copper silicon Chemical compound [Si].[Cu] WCCJDBZJUYKDBF-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007849 furan resin Substances 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- LQJIDIOGYJAQMF-UHFFFAOYSA-N lambda2-silanylidenetin Chemical compound [Si].[Sn] LQJIDIOGYJAQMF-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- UIDWHMKSOZZDAV-UHFFFAOYSA-N lithium tin Chemical compound [Li].[Sn] UIDWHMKSOZZDAV-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000006253 pitch coke Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- NYGFLHQWSWRNIP-UHFFFAOYSA-N 2-(2,2,2-trifluoroethoxy)-1,3,2$l^{5}-dioxaphospholane 2-oxide Chemical compound FC(F)(F)COP1(=O)OCCO1 NYGFLHQWSWRNIP-UHFFFAOYSA-N 0.000 description 1
- WJSTWAMKWXORCA-UHFFFAOYSA-N 2-(2-methoxyethoxy)-1,3,2$l^{5}-dioxaphospholane 2-oxide Chemical compound COCCOP1(=O)OCCO1 WJSTWAMKWXORCA-UHFFFAOYSA-N 0.000 description 1
- IUVGGESEBFJHPK-UHFFFAOYSA-N 2-ethoxy-1,3,2$l^{5}-dioxaphospholane 2-oxide Chemical compound CCOP1(=O)OCCO1 IUVGGESEBFJHPK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910005143 FSO2 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910013084 LiNiPO4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- RSYNHXZMASRGMC-UHFFFAOYSA-N butan-2-yl hydrogen carbonate Chemical compound CCC(C)OC(O)=O RSYNHXZMASRGMC-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- UAEWCWCMYQAIDR-UHFFFAOYSA-N diethyl methyl phosphate Chemical compound CCOP(=O)(OC)OCC UAEWCWCMYQAIDR-UHFFFAOYSA-N 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical compound C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- JQVXMIPNQMYRPE-UHFFFAOYSA-N ethyl dimethyl phosphate Chemical compound CCOP(=O)(OC)OC JQVXMIPNQMYRPE-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- YYSONLHJONEUMT-UHFFFAOYSA-N pentan-3-yl hydrogen carbonate Chemical compound CCC(CC)OC(O)=O YYSONLHJONEUMT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- RXPQRKFMDQNODS-UHFFFAOYSA-N tripropyl phosphate Chemical compound CCCOP(=O)(OCCC)OCCC RXPQRKFMDQNODS-UHFFFAOYSA-N 0.000 description 1
- ZMQDTYVODWKHNT-UHFFFAOYSA-N tris(2,2,2-trifluoroethyl) phosphate Chemical compound FC(F)(F)COP(=O)(OCC(F)(F)F)OCC(F)(F)F ZMQDTYVODWKHNT-UHFFFAOYSA-N 0.000 description 1
- SLVHCWLFRYIBQT-UHFFFAOYSA-N tris(trichloromethyl) phosphate Chemical compound ClC(Cl)(Cl)OP(=O)(OC(Cl)(Cl)Cl)OC(Cl)(Cl)Cl SLVHCWLFRYIBQT-UHFFFAOYSA-N 0.000 description 1
- HYFGMEKIKXRBIP-UHFFFAOYSA-N tris(trifluoromethyl) phosphate Chemical compound FC(F)(F)OP(=O)(OC(F)(F)F)OC(F)(F)F HYFGMEKIKXRBIP-UHFFFAOYSA-N 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/222—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/227—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/231—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/271—Lids or covers for the racks or secondary casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/569—Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery module and its manufacturing method.
- a battery module of a lithium ion battery is, for example, an assembled battery in which a plurality of lithium ion single cells having an active material layer and a current collector are stacked, and a film sealing the assembled battery, and an electrode of the assembled battery It is covered with an exterior body made of a gas barrier film that absorbs gas generated from, etc. (see Patent Documents 1 and 2).
- a laminate film of aluminum or the like is used as the gas barrier film.
- a battery module of a lithium ion battery it is necessary to manage the state of each unit cell that constitutes the assembled battery. For example, when charging an assembled battery, it is necessary to manage charging so that there is no overcharged unit cell. Therefore, a battery module equipped with a transmission/reception unit that transmits and receives the state of each unit cell of the assembled battery by optical signal, and a battery module configured to detect the state of the unit cell with a single light-receiving diode through a common optical fiber are being developed. have been devised (see Patent Documents 3 and 4). 2. Description of the Related Art Conventionally, batteries such as lithium ion secondary batteries have been used as batteries for vehicles, for example.
- Lithium ion secondary batteries generate heat due to their internal resistance during the process of charging and discharging, and the amount of heat generated is particularly large in large batteries through which large currents pass. Therefore, in order to suppress the temperature rise of the battery, a through hole for air cooling and a through hole for cooling water to obtain a higher cooling effect are provided inside the battery.
- the battery module in order to grasp the state of the single cells that make up the assembled battery, the battery module is provided with a light emitting section that emits an optical signal indicating the state of each single cell.
- An optical component such as an optical waveguide may be arranged for transmitting the optical signal of the optical signal to the outside. Since the optical component directly receives the optical signal from the optical component inside the exterior body of the battery module and transmits the optical signal to the outside of the exterior body, the optical component includes a front part for receiving the optical signal. In some cases, the rear stage portion, which is arranged inside the battery module armor and propagates the received optical signal, is pulled out of the battery module armor.
- a battery module comprises A positive electrode current collector including a resin current collector layer; a positive electrode having a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector; a negative electrode current collector including a resin current collector layer; A plurality of unit cells are stacked each including a negative electrode having a negative electrode active material layer containing a negative electrode active material formed on a current collector, and a separator disposed between the positive electrode active material layer and the negative electrode active material layer.
- the present invention it is possible to provide a battery module that simplifies the internal configuration of the battery module, allows the assembled battery to be sealed by the exterior body, and can be easily assembled, and a method for manufacturing the same.
- FIG. 1 is a schematic perspective view showing the configuration of a battery module of a first embodiment according to a first aspect of the invention.
- FIG. 2 is a schematic perspective view showing a structure, which is a constituent element of the battery module of the first embodiment according to the first aspect of the invention, with a part of the gas barrier film cut away.
- FIG. 3 is a schematic cross-sectional view showing only a unit cell that constitutes an assembled battery, which is a constituent element of the battery module of the first embodiment according to the first aspect of the invention.
- FIG. 4 is a schematic perspective view showing a partly cutaway unit cell provided with a light-emitting portion, which is a constituent element of the battery module of the first embodiment according to the first aspect of the invention.
- FIG. 1 is a schematic perspective view showing the configuration of a battery module of a first embodiment according to a first aspect of the invention.
- FIG. 2 is a schematic perspective view showing a structure, which is a constituent element of the battery module of the first embodiment according to the first
- FIG. 5 is a schematic perspective view showing an enlarged view of only the light-emitting portion, which is a constituent element of the battery module of the first embodiment according to the first aspect of the invention.
- FIG. 6 is a schematic cross-sectional view showing how light guide tubes are arranged in a structure that is a component of the battery module of the first embodiment according to the first aspect of the invention.
- FIG. 7 is a block diagram schematically showing a circuit configuration including peripheral members of the battery module of the first embodiment according to the first aspect of the invention.
- FIG. 8A is a schematic diagram showing an example of optical signal patterns when the voltages of the cells are different.
- FIG. 8B is a schematic diagram showing an example of optical signal patterns when the voltages of the cells are different.
- FIG. 8C is a schematic diagram showing an example of optical signal patterns when the voltages of the cells are different.
- FIG. 8D is a schematic diagram showing an example of optical signal patterns when the voltages of the cells are different.
- FIG. 8E is a schematic diagram showing an example of optical signal patterns when the voltages of the cells are different.
- FIG. 8F is a schematic diagram showing an example of an optical signal pattern when the temperature of the cell is equal to or higher than a predetermined temperature.
- FIG. 9 is a schematic diagram showing another example of optical signal patterns when the voltages of the cells are different.
- FIG. 10A is a schematic diagram showing an example of an optical signal pattern derived from a light guide tube.
- FIG. 10B is a schematic diagram showing an example of an optical signal pattern derived from a light guide tube.
- FIG. 10C is a schematic diagram showing an example of an optical signal pattern derived from a light guide tube.
- FIG. 11 is a schematic perspective view showing how the battery module of the first embodiment is manufactured using a deep drawing vacuum packaging machine.
- FIG. 12A is a schematic cross-sectional view showing the configuration of the sealing portion of the deep drawing vacuum packaging machine used in the first embodiment according to the first aspect of the invention.
- FIG. 12B is a schematic cross-sectional view showing the configuration of the sealing portion of the deep drawing vacuum packaging machine used in the first embodiment according to the first aspect of the invention.
- FIG. 13 is a schematic perspective view showing an exploded battery module manufactured in the first embodiment according to the first aspect of the invention.
- FIG. 14A is a schematic perspective view showing the configuration of the battery module of the second embodiment according to the first aspect of the invention.
- FIG. 14B is a schematic perspective view showing an exploded light guide section, which is a constituent element of the battery module of the second embodiment according to the first aspect of the invention.
- FIG. 14C is a schematic perspective view showing how the light guide section 52 and the light receiving section are attached to the structure in the battery module of the second embodiment according to the first aspect of the invention.
- FIG. 15A is a schematic perspective view for explaining method 1 for manufacturing a battery module in the second embodiment according to the first aspect of the invention.
- FIG. 15B is a schematic perspective view for explaining method 2 for manufacturing a battery module in the second embodiment according to the first aspect of the invention.
- FIG. 15C is a schematic perspective view for explaining method 3 for manufacturing a battery module in the second embodiment according to the first aspect of the invention.
- FIG. 16A is a partially cutaway perspective view showing a partially exploded configuration of Modification 1 of the battery module of the second embodiment according to the first aspect of the invention.
- 16B is a partially cutaway perspective view showing the configuration of Modification 1 of the battery module of the second embodiment according to the first aspect of the invention.
- FIG. FIG. 17 is a schematic cross-sectional view showing the configuration of Modification 2 of the battery module of the second embodiment according to the first aspect of the invention.
- FIG. 18 is a perspective view showing a secondary battery module according to the second aspect of the invention.
- FIG. 19 is a side sectional view of a secondary battery module according to the second aspect of the invention.
- FIG. 20A is an enlarged cross-sectional view of a battery cell as a lithium ion secondary battery.
- FIG. 20B is a diagram showing an enlarged cross-sectional view of another battery cell as a lithium ion secondary battery.
- FIG. 21A is a diagram showing an example of forming a positive electrode-side current extraction layer on a positive electrode current collector for a battery cell in a secondary battery module.
- FIG. 21B is a diagram showing an example of forming a positive electrode-side current extraction layer on a positive electrode current collector for a battery cell in a secondary battery module.
- FIG. 22 is a diagram showing an example of forming an assembled battery in which a plurality of battery cells are stacked and connected.
- FIG. 21A is an enlarged cross-sectional view of a battery cell as a lithium ion secondary battery.
- FIG. 20B is a diagram showing an enlarged cross-sectional view of another battery cell as a lithium ion secondary battery.
- FIG. 21A is a
- FIG. 23A is a diagram showing an example in which the positive electrode side current extraction layer is made of a material in which a small hole penetrating from the upper end to the lower end is formed.
- FIG. 23B is a diagram showing an example in which the positive current extraction layer is made of a material in which a small hole penetrating from the upper end to the lower end is formed.
- FIG. 24 is a diagram showing an example in which a plurality of battery cells share a negative current supply layer and a positive current extraction layer.
- FIG. 25 is a perspective view showing an example in which a negative rectifying section and a positive rectifying section are provided in the secondary battery module according to the second aspect of the invention.
- FIG. 26 is a side sectional view showing an example in which a negative rectifying section and a positive rectifying section are provided in the secondary battery module according to the second aspect of the invention.
- FIG. 27 is a diagram showing the battery cell portion of the secondary battery module according to the second aspect of the invention with dotted lines.
- FIG. 28 is a diagram showing the operation of the secondary battery module according to the second aspect of the invention.
- FIG. 29 is a perspective view showing another example in which a negative rectifying section and a positive rectifying section are provided in the secondary battery module according to the second aspect of the invention.
- FIG. 30 is a diagram showing an example of mounting a plurality of current extraction portions as conductors, a positive electrode conductive line, and a positive electrode junction portion.
- FIG. 31 is a plan view of the positive electrode side current extraction layer viewed from above in the third embodiment according to the second aspect of the invention.
- FIG. 32 is a plan view showing another form of the positive electrode side current extraction layer viewed from above in the third embodiment according to the second aspect of the invention.
- FIG. 33 is a plan view of the negative electrode side current supply layer viewed from below in the third embodiment according to the second aspect of the invention.
- Embodiments disclose a battery module of a lithium ion secondary battery and a method of manufacturing the same.
- a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to the lithium ion secondary battery, and includes other secondary batteries.
- Lithium-ion secondary batteries include not only the embodiments described below, but also batteries using a liquid material for the electrolyte and batteries using a solid material for the electrolyte (so-called all-solid-state batteries).
- the lithium ion battery in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector. Including a battery with a body.
- a resin current collector is used as a resin current collector for a bipolar electrode, which will be described later, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to obtain a bipolar electrode. may be configured.
- the lithium ion battery in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to form an electrode, and in the case of a bipolar battery, is a bipolar electrode having a positive electrode layer formed by applying a positive electrode active material or the like using a binder to one surface of a current collector, and a negative electrode layer formed by applying a negative electrode active material or the like using a binder to the opposite surface of the current collector. including those that consist of
- FIG. 1 is a schematic perspective view showing the configuration of the battery module of the first embodiment.
- FIG. 2 is a schematic perspective view showing a structure, which is a component of the battery module of FIG. 1, with a part of the gas barrier film cut away.
- FIG. 3 is a schematic cross-sectional view showing only a unit cell that constitutes an assembled battery, which is a component of the battery module of the first embodiment.
- FIG. 4 is a schematic perspective view showing a partially cutaway unit cell provided with a light-emitting portion.
- FIG. 5 is a schematic perspective view showing an enlarged view of only the light emitting portion.
- FIG. 6 is a schematic cross-sectional view showing how light guide tubes are arranged in a structure.
- the battery module of this embodiment includes an assembled battery 11, a plurality of light emitting units 12, a gas barrier film 13, a light guide tube 14, a light receiving unit 15, and a battery state analyzer 16. configured as follows.
- the assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with a gas barrier film 13 , and the structure including the gas barrier film 13 is called a structure 10 .
- the assembled battery 11 is formed by stacking a plurality of unit cells 21 of lithium ion secondary batteries (five layers in the examples of FIGS. 2 and 6).
- the unit cells 21 adjacent in the stacking direction are stacked such that the upper surface of the negative electrode current collector and the lower surface of the positive electrode current collector are adjacent to each other, and the lead wires 22 and 23 are in contact with the uppermost surface and the lowermost surface.
- Each unit cell 21 is connected in series.
- the assembled battery 11 in this embodiment includes a plurality of individual cells 21 stacked and connected in series as described above. It also includes those in which multiple layers are laminated so as to contact with.
- the current collector of the unit cell 21 can also be used as a resin current collector for a bipolar electrode in which a positive electrode is formed on one surface of the current collector and a negative electrode is formed on the other surface of the current collector. Therefore, in the assembled battery 11 of the present embodiment, a positive electrode is formed on one surface of a current collector (bipolar electrode resin current collector) and a negative electrode is formed on the other surface to form a bipolar electrode, It includes a laminate (bipolar battery) in which a bipolar electrode is laminated with a separator.
- FIG. 21 A single-layer cell 21, which is a component of the assembled battery 11, is shown in FIG.
- a positive electrode 24 and a negative electrode 26 are laminated with a separator 25 interposed therebetween, and a sealing portion 27 is provided to surround and seal the outer peripheral portions of the positive electrode 24, the separator 25, and the negative electrode 26, and is sealed.
- An electrolytic solution is enclosed in the inside.
- the positive electrode 24 is formed by stacking a positive current collector 31 and a positive electrode active material layer 32 .
- the negative electrode 26 is formed by stacking a negative electrode current collector 33 and a negative electrode active material layer 34 .
- the assembled battery 11 preferably has flexibility. For example, excellent flexibility can be obtained by using a resin current collector as the current collector.
- Positive electrode current collector Materials constituting the positive electrode current collector 31 include metallic materials such as copper, aluminum, titanium, stainless steel, steel, nickel, and alloys thereof, baked carbon, conductive polymer materials, conductive glass, and the like. .
- the current collector is preferably a resin current collector made of a conductive polymer material.
- the shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above material or a deposited layer made of fine particles made of the above material.
- the thickness of the current collector is not particularly limited, it is preferably 50 ⁇ m to 500 ⁇ m.
- the conductive polymer material that constitutes the resin current collector for example, a conductive polymer or a resin to which a conductive agent is added as necessary can be used.
- the conductive agent that constitutes the conductive polymer material the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
- the positive electrode current collector 31 preferably contains a conductive filler and a matrix resin.
- matrix resins include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), polytetrafluoroethylene (PTFE ), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resins, silicone resins or mixtures thereof.
- PE polyethylene
- PP polypropylene
- PMP polymethylpentene
- PCO polycycloolefin
- PET polyethylene terephthalate
- PEN polyethernitrile
- PTFE polytetrafluoroethylene
- SBR polyacrylonitrile
- PAN polymethyl acrylate
- PMA polymethyl methacryl
- polyethylene polyethylene
- PP polypropylene
- PMP polymethylpentene
- PCO polycycloolefin
- the conductive filler is selected from materials having electrical conductivity. Specifically, metal [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. ], and mixtures thereof, but are not limited thereto. These conductive fillers may be used singly or in combination of two or more. Also, alloys or metal oxides thereof may be used. From the viewpoint of electrical stability, preferred are aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof, more preferred are silver, aluminum, stainless steel and carbon, and still more preferred is carbon. These conductive fillers may be those obtained by coating a conductive material (a metal material among the conductive filler materials described above) around a particulate ceramic material or a resin material by plating or the like.
- a conductive material a metal material among the conductive filler materials described above
- the average particle size of the conductive filler is not particularly limited, but from the viewpoint of the electrical characteristics of the battery, it is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.02 ⁇ m to 5 ⁇ m. More preferably, it is between 0.03 ⁇ m and 1 ⁇ m.
- the "particle diameter” means the maximum distance L among the distances between any two points on the outline of the particle.
- the value of "average particle size” is the average value of the particle size of particles observed in several to several tens of fields of view using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
- the shape (form) of the conductive filler is not limited to a particle form, and may be in a form other than the particle form. good.
- the conductive filler may be a conductive fiber having a fibrous shape.
- conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metals and graphite in synthetic fibers, and metals such as stainless steel.
- fibrillated metal fibers include fibrillated metal fibers, conductive fibers obtained by coating the surface of organic fibers with metal, and conductive fibers obtained by coating the surfaces of organic fibers with a resin containing a conductive substance.
- carbon fibers are preferred.
- a polypropylene resin in which graphene is kneaded is also preferable.
- the average fiber diameter is preferably 0.1 ⁇ m to 20 ⁇ m.
- the weight ratio of the conductive filler in the resin current collector is preferably 5% to 90% by weight, more preferably 20% to 80% by weight.
- the weight ratio of the conductive filler is preferably 20% by weight to 30% by weight.
- the resin current collector may contain other components (dispersant, cross-linking accelerator, cross-linking agent, colorant, ultraviolet absorber, plasticizer, etc.) in addition to the matrix resin and the conductive filler. Moreover, a plurality of resin current collectors may be laminated and used, or a resin current collector and a metal foil may be laminated and used.
- the thickness of the positive electrode current collector 31 is not particularly limited, it is preferably 5 ⁇ m to 150 ⁇ m.
- the total thickness after lamination is preferably 5 ⁇ m to 150 ⁇ m.
- the positive electrode current collector 31 can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a filler dispersing agent to be used as necessary into a film by a known method.
- Methods for forming the conductive resin composition into a film include, for example, known film forming methods such as a T-die method, an inflation method and a calender method.
- the positive electrode current collector 31 can also be obtained by a molding method other than film molding.
- the positive electrode active material layer 32 is preferably a non-bound mixture containing a positive electrode active material.
- the non-bound body means that the position of the positive electrode active material is not fixed in the positive electrode active material layer, and the positive electrode active materials and the positive electrode active materials and the positive electrode active material and the current collector are irreversibly means not fixed.
- the positive electrode active material layer 32 When the positive electrode active material layer 32 is a non-bound body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. Even when stress is applied to the material layer 32, the positive electrode active material moves, which is preferable because the positive electrode active material layer 22 can be prevented from being broken.
- the positive electrode active material layer 32 which is a non-binder, can be obtained by a method such as forming a positive electrode active material layer containing a positive electrode active material and an electrolytic solution but not containing a binder.
- the binder means an agent that cannot reversibly fix the positive electrode active materials together and the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxyl
- Known solvent-drying type binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene can be used. These binders are used by dissolving or dispersing them in a solvent, and by volatilizing and distilling off the solvent, the surface solidifies without exhibiting adhesiveness, so that the positive electrode active materials and the positive electrode active material and the current collector are solidified. cannot be reversibly fixed.
- the volume average particle size of the positive electrode active material is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.1 ⁇ m to 35 ⁇ m, even more preferably 2 ⁇ m to 30 ⁇ m, from the viewpoint of the electrical characteristics of the battery. .
- the positive electrode active material may be a coated positive electrode active material in which at least part of the surface is coated with a coating material containing a polymer compound. When the positive electrode active material is covered with the coating material, the volume change of the positive electrode is moderated, and the expansion of the positive electrode can be suppressed.
- those described as active material coating resins in JP-A-2017-054703 and WO-2015-005117 can be suitably used.
- the covering material may contain a conductive agent.
- the conductive agent the same conductive filler contained in the positive electrode current collector 21 can be preferably used.
- the positive electrode active material layer 32 may contain an adhesive resin.
- an adhesive resin for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower. Also, those described as adhesives in JP-A-10-255805 can be preferably used.
- adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means
- a solution-drying type electrode binder used as a binding agent is one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other. Therefore, the binder (solution-drying type electrode binder) and the tacky resin are different materials.
- the positive electrode active material layer 32 may contain an electrolytic solution containing an electrolyte and a non-aqueous solvent.
- an electrolytic solution containing an electrolyte and a non-aqueous solvent.
- the electrolyte those used in known electrolytic solutions can be used .
- lithium salts of organic acids such as LiN ( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 and LiC( CF3SO2 ) 3 ; ) is preferred.
- non-aqueous solvent those used in known electrolytic solutions can be used.
- compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
- lactone compounds examples include 5-membered ring ( ⁇ -butyrolactone, ⁇ -valerolactone, etc.) and 6-membered ring lactone compounds ( ⁇ -valerolactone, etc.).
- Cyclic carbonates include propylene carbonate, ethylene carbonate and butylene carbonate.
- Chain carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and di-n-propyl carbonate.
- chain carboxylic acid esters examples include methyl acetate, ethyl acetate, propyl acetate and methyl propionate.
- Cyclic ethers include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane and 1,4-dioxane. Chain ethers include dimethoxymethane and 1,2-dimethoxyethane.
- Phosphate esters include trimethyl phosphate, triethyl phosphate, ethyldimethyl phosphate, diethylmethyl phosphate, tripropyl phosphate, tributyl phosphate, tri(trifluoromethyl) phosphate, tri(trichloromethyl) phosphate, Tri(trifluoroethyl) phosphate, tri(triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphospholan-2-one, 2-trifluoroethoxy-1,3,2- dioxaphospholan-2-one, 2-methoxyethoxy-1,3,2-dioxaphospholan-2-one and the like. Acetonitrile etc.
- nitrile compound nitrile compound
- DMF etc. are mentioned as an amide compound.
- Sulfones include dimethylsulfone, diethylsulfone, and the like.
- the non-aqueous solvent may be used singly or in combination of two or more.
- non-aqueous solvents preferred from the viewpoint of battery output and charge-discharge cycle characteristics are lactone compounds, cyclic carbonates, chain carbonates and phosphates, and more preferred are lactone compounds, cyclic carbonates and chains.
- carbonic acid ester and particularly preferred is a mixture of cyclic carbonic acid ester and chain carbonic acid ester. Most preferred is a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC).
- the positive electrode active material layer 32 may contain a conductive aid.
- a conductive aid a conductive material similar to the conductive filler contained in the positive electrode current collector 21 can be suitably used.
- the weight ratio of the conductive aid in the positive electrode active material layer 32 is preferably 3% to 10% by weight.
- the positive electrode active material layer 32 can be produced, for example, by applying a slurry containing a positive electrode active material and an electrolytic solution to the surface of the positive electrode current collector 31 or the substrate and removing excess electrolytic solution.
- the cathode active material layer 22 may be combined with the cathode current collector 31 by a method such as transfer.
- the slurry may contain a conductive aid and an adhesive resin, if necessary.
- the positive electrode active material may be a coated positive electrode active material.
- the thickness of the positive electrode active material layer 32 is not particularly limited, it is preferably 150 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 450 ⁇ m, from the viewpoint of battery performance.
- the negative electrode current collector 33 As the negative electrode current collector 33, one having the same structure as that described for the positive electrode current collector 31 can be appropriately selected and used, and can be obtained by the same method. Although the thickness of the negative electrode current collector 33 is not particularly limited, it is preferably 5 ⁇ m to 150 ⁇ m.
- the negative electrode active material layer 34 is preferably a non-bonded mixture containing a negative electrode active material. Reasons why the negative electrode active material layer is preferably a non-binder, and reasons why the positive electrode active material layer 32 is preferably a non-binder , and the method for obtaining the positive electrode active material layer 32 which is a non-binder.
- negative electrode active materials include carbon-based materials [graphite, non-graphitizable carbon, amorphous carbon, baked resin bodies (for example, carbonized products obtained by baking phenolic resin and furan resin, etc.), cokes (for example, pitch coke, needle coke and petroleum coke, etc.) and carbon fiber, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles whose surface is coated with silicon and / or silicon carbide, silicon particles or oxide Silicon particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon-titanium alloy, silicon - manganese alloys, silicon-copper alloys and silicon-tin alloys, etc.)], conductive polymers (e.g., polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metal
- carbon-based materials silicon-based materials, and mixtures thereof are preferable from the viewpoint of battery capacity and the like.
- carbon-based material graphite, non-graphitizable carbon, and amorphous carbon are more preferable, and as the silicon-based material, silicon oxide and silicon-carbon composites are more preferred.
- the volume average particle size of the negative electrode active material is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.1 ⁇ m to 20 ⁇ m, even more preferably 2 ⁇ m to 10 ⁇ m, from the viewpoint of the electrical characteristics of the battery.
- the volume average particle size of the negative electrode active material means the particle size (Dv50) at an integrated value of 50% in the particle size distribution determined by the microtrack method (laser diffraction/scattering method).
- the microtrack method is a method of obtaining a particle size distribution by utilizing scattered light obtained by irradiating particles with laser light.
- a Microtrac manufactured by Nikkiso Co., Ltd. or the like can be used.
- the negative electrode active material may be a coated negative electrode active material in which at least part of the surface is coated with a coating material containing a polymer compound. When the periphery of the negative electrode active material is covered with the coating material, the volume change of the negative electrode is moderated, and the expansion of the negative electrode can be suppressed.
- the same coating material as that constituting the coated positive electrode active material can be suitably used.
- the negative electrode active material layer 34 contains an electrolytic solution containing an electrolyte and a non-aqueous solvent.
- an electrolytic solution similar to the electrolytic solution contained in the positive electrode active material layer 32 can be suitably used.
- the negative electrode active material layer 34 may contain a conductive aid.
- a conductive aid a conductive material similar to the conductive filler contained in the positive electrode active material layer 32 can be preferably used.
- the weight ratio of the conductive aid in the negative electrode active material layer 34 is preferably 2% to 10% by weight.
- the negative electrode active material layer 34 may contain an adhesive resin.
- the adhesive resin the same adhesive resin as an optional component of the positive electrode active material layer 32 can be preferably used.
- the negative electrode active material layer 34 can be produced, for example, by applying a slurry containing a negative electrode active material and an electrolytic solution to the surface of the negative electrode current collector 33 or the substrate and removing excess electrolytic solution.
- the negative electrode active material layer 34 may be combined with the negative electrode current collector 33 by a transfer method or the like.
- the slurry may contain a conductive aid, an adhesive resin, or the like, if necessary.
- the negative electrode active material may be a coated negative electrode active material.
- the thickness of the negative electrode active material layer 34 is not particularly limited, it is preferably 150 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 450 ⁇ m, from the viewpoint of battery performance.
- separator 25 As the separator 25, a porous film made of polyethylene or polypropylene, a laminated film of the above porous films (laminated film of porous polyethylene film and porous polypropylene, etc.), synthetic fiber (polyester fiber, aramid fiber, etc.), or glass fiber and separators used in known lithium-ion cells, such as non-woven fabrics made of such materials, and those having ceramic fine particles such as silica, alumina, and titania adhered to their surfaces.
- the unit cell 21 has a configuration in which an electrolytic solution is enclosed by sealing the outer peripheries of the positive electrode active material layer 32 and the negative electrode active material layer 34 .
- a method of sealing the outer peripheries of the positive electrode active material layer 32 and the negative electrode active material layer 33 for example, a method of sealing using the sealing portion 27 can be given.
- the seal portion 27 is arranged between the positive electrode current collector 31 and the negative electrode current collector 33 and has a function of sealing the outer periphery of the separator 25 .
- the material for the seal portion 27 is not particularly limited as long as it is a material that is durable against the electrolytic solution, but a polymer material is preferable, and a thermosetting polymer material is more preferable. Specifically, epoxy-based resins, polyolefin-based resins, polyurethane-based resins, polyvinylidene fluoride resins, and the like can be mentioned, and epoxy-based resins are preferred because of their high durability and ease of handling.
- the sealing portion 27 may be a frame made of a polymer material that is durable against the above-described electrolytic solution and having a through hole for accommodating the positive electrode active material layer 32 or the negative electrode active material layer 34 .
- the positive electrode current collector 31 or the negative electrode current collector 33 is bonded to one frame surface of the frame to seal one end of the through hole, and the other frame of the frame is sealed.
- the unit cell 21 can be obtained by a method of bonding and sealing the frames with the separator inserted on the surface.
- the cell 21 according to this embodiment is not limited to the illustrated example.
- the unit cell 21 in this embodiment includes a battery using a liquid material for the electrolyte and a battery using a solid material for the electrolyte (so-called all-solid battery).
- the unit cell in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector.
- the resin current collector is used as a resin current collector for a bipolar electrode as described above, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode.
- a model electrode may also be used.
- the unit cell in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to form an electrode, and in the case of a bipolar battery, A bipolar electrode having a positive electrode layer is formed by applying a positive electrode active material or the like using a binder to one surface of the current collector, and a negative electrode layer is formed by applying a negative electrode active material or the like to the opposite surface using a binder. Including configured.
- Light-emitting part As shown in FIGS. 2 and 4, on the side surface of the assembled battery 11, light-emitting units 12 for transmitting optical signals based on the state of each unit cell 21 constituting the assembled battery 11 are arranged. is provided.
- the light emitting section 12 includes a wiring board 41 having wiring inside or on the surface thereof, a light emitting element 42 mounted on the wiring board 41 , and two control elements 43 .
- Measurement terminals 44 a and 44 b are provided at the ends of the wiring board 41 .
- the measurement terminals 44a and 44b are provided at positions where one measurement terminal contacts the positive electrode current collector and the other measurement terminal contacts the negative electrode current collector when connected to the cell 12 .
- the measurement terminals 44 a and 44 b are voltage measurement terminals for measuring the voltage between the positive electrode current collector and the negative electrode current collector of the cell 12 .
- a measurement terminal (not shown) is also provided on the surface of the wiring board 41 that faces the back side of the light emitting element 42 . This measurement terminal (not shown) can be used as a temperature measurement terminal for measuring the temperature of the cell 12 .
- the light emitting unit 12 measures the characteristics of the cell 21 and emits an optical signal according to the characteristics.
- the measurement terminals 44 a and 44 b and a temperature measurement terminal are electrically connected to the control element 43 , and the control element 43 is electrically connected to the light emitting element 42 .
- the control element 43 controls the light emitting element 42 to emit light according to a predetermined optical signal pattern based on the information indicating the characteristics of the cell 21 measured by the measuring terminals 44a and 44b.
- the information measured by the measurement terminals 44a and 44b is preferably the voltage and temperature of the cell 12.
- the light emitting element 42 emits light according to a predetermined optical signal pattern based on the control signal generated by the control element 43 to generate an optical signal.
- a rigid substrate or a flexible substrate can be used as the wiring substrate 41 constituting the light emitting section 12 .
- the wiring substrate is shaped as shown in FIG. 5, it is preferable to use a flexible substrate.
- the control element 43 any semiconductor element such as IC, LSI, etc. can be used.
- FIG. X shows an example in which two control elements are mounted, the number of control elements is not limited, and may be one or three or more.
- light-emitting element 42 an element capable of converting an electric signal into an optical signal, such as an LED element or an organic EL element, can be used, and the LED element is preferable.
- light emitting element 42 may be one or more of a light emitting element having a center wavelength of 700 nm to 800 nm, a light emitting element having a center wavelength of 850 nm to 950 nm, or a light emitting element having a center wavelength of 1000 nm to 1400 nm.
- a light emitting element with a center wavelength of 700 nm to 800 nm and a light emitting element with a center wavelength of 850 nm to 950 nm may be combined to form the light emitting section 12, or a light emitting element with a center wavelength of 850 nm to 950 nm and a light emitting element with a center wavelength of 1000 nm to 1400 nm.
- the light-emitting element 12 may be configured by combining the light-emitting elements of In the present embodiment, a case is exemplified in which the light emitting unit 12 that emits signal light with a center wavelength within the range of visible light, for example, a center wavelength of 700 nm to 800 nm, is used as an optical signal. It should be noted that it is not essential that the light-emitting section 12 has a wiring board, and the light-emitting section 12 may be configured by connecting the control element and the light-emitting element without using the wiring board.
- the light emitting unit 12 is electrically connected to the negative electrode current collector and the positive electrode current collector of the cell 21 so as to be able to receive power supply from the assembled battery 21 .
- the light emitting part 12 is electrically connected to the negative electrode current collector and the positive electrode current collector, the light emitting element 42 can emit light by receiving power supply from the assembled battery 11 . Since it is not necessary to provide a power source and wiring for causing the light emitting element 42 to emit light, the configuration can be simplified.
- electrodes for receiving power supply are not shown in FIG. 5, it is preferable to provide electrodes other than the measurement terminals in the light emitting section.
- the negative electrode current collector and the positive electrode current collector are resin current collectors, and the negative electrode current collector and the positive electrode current collector are is preferably directly coupled and electrically connected to the electrode of the light-emitting portion.
- the resin current collector and the electrode of the light emitting part 12 are brought into contact with each other, and the resin current collector is heated to soften the resin, thereby directly bonding the resin current collector and the electrode of the light emitting part.
- electrical connection can be made by interposing another conductive bonding material such as solder between the current collector and the light emitting section 12 .
- the assembled battery 11 and the plurality of light emitting units 12 are housed while being covered with a gas barrier film 13 that is an exterior body.
- the gas barrier film 13 seals the assembled battery 11 and the plurality of light-emitting portions 12 in a state in which the tip portions of the lead-out terminals 22 and 23 of the assembled battery 11 are pulled out to the outside.
- the gas barrier film 13 has a function of preventing permeation of various gases such as hydrogen gas generated from the electrodes of the assembled battery 11, etc. transparent.
- the optical signal of the light emitting element 42 has a center wavelength within the range of visible light, for example, 700 nm to 800 nm, so the gas barrier film 13 is transparent to the visible light.
- the gas barrier film 13 may be transparent to the infrared light.
- the gas barrier film 13 is a member having a function of transmitting an optical signal emitted from the light emitting element 42 of the light emitting section 12.
- a suitable material corresponding to visible light is a base film (PET (polyethylene terephthalate resin), nylon, etc.) on which inorganic deposition barrier layers and coating barrier layers such as alumina (Al 2 O 3 ) and silicon oxide (SiO x ) are laminated, and silicon oxide etc. on a base plastic film. Vacuum vapor deposition etc. are mentioned.
- the gas barrier film 13 is transparent to the optical signal emitted from the light emitting element 42 of the light emitting section 12 and has the function of transmitting the optical signal. Therefore, an optical signal emitted from the light emitting element 42 covered with the gas barrier film 13 can be received outside the structure 10 via the gas barrier film 13 . Therefore, as shown in FIG. 6, the battery module of the present embodiment may have a configuration in which the gas barrier film 13 covers the plurality of light-emitting portions 12 provided on the side surface of the assembled battery 11 in direct proximity to or in contact with them.
- an optical component or the like for transmitting an optical signal indicating the state of the unit cell 21 constituting the assembled battery 12 to the outside is arranged. It is not necessary to draw out a part of the external body from the exterior body. Since optical components are easily damaged, in a configuration in which a part of the optical component is pulled out of the gas barrier film 13, a large pressure cannot be applied to the optical component when sealing with the gas barrier film 13, resulting in incomplete sealing. There is concern that In the present embodiment, such an optical component may be arranged outside the gas barrier film 13 isolated from the structure 10, so that the internal configuration of the structure 10 (the configuration sealed with the gas barrier film 13) is greatly reduced. In addition, the assembled battery 11 can be reliably sealed by the gas barrier film 13, and a battery module in which weakening of the structure 10 is suppressed is realized.
- the light guide tube 14 guides the optical signal generated by the light emitting element 42 of the light emitting section 12, and includes a plurality of light emitting sections 12 outside the structure 10 as shown in FIGS. It is provided in contact with or close to the surface of the gas barrier film 13 so as to cover the region through the gas barrier film 13 .
- the light guide tube 14 has a width sufficient to receive the optical signal from the light emitting element 42 of the light emitting section 12 (the length in the direction orthogonal to the stacking direction of the unit cells 21, or the light emitting element 42 in the unit cell 21). length in the direction along the provided edge).
- the width dimension of the light guide tube 14 is larger than the maximum dimension of the light emitting surface of the light emitting element 42 (the diameter if the light emitting surface is circular, and the diagonal if the light emitting surface is rectangular).
- the light guide tube 14 is arranged so as to cover the light-emitting surfaces of the plurality of light-emitting portions 12 (each corresponding to the plurality of stacked unit cells 21) (preferably to cover the entire light-emitting surface).
- the light guide tube 14 is arranged so as to cover all of the light emitting directions of the light emitting section 12 (including cases in which the direction is aligned with the vertical direction of the light emitting surface and cases in which the direction is inclined from the vertical direction of the light emitting surface).
- the light guide tube 14 is made of a material with a higher refractive index than the surrounding medium (for example, air).
- the high refractive index means a refractive index with a difference between the refractive index of the surrounding medium and a value that allows incident light to be confined in the light guide tube 14 and propagated.
- the light guide tube 14 can be configured using a resin film or resin plate with a high refractive index.
- the resin that forms the resin film or the resin plate that constitutes the light guide tube 14 is not limited, but may be an acrylic resin or the like.
- a flexible resin film or resin plate can be selected from among high-refractive-index resins called optical materials.
- a resin that forms the resin film or resin plate that constitutes the light guide tube 14 is preferably a material that does not easily absorb the emission wavelength band of the light emitting element 42 .
- the resin forming the resin film or resin plate should have a low absorption peak at 700 nm to 800 nm. If the emission wavelength band of the light emitting element 42 is infrared light, a material with a low absorption peak in the range of 850 nm to 950 nm is desirable.
- the gas barrier film 13 is transparent to the optical signal emitted from the light emitting element 42 of the light emitting section 12 and has the function of transmitting the optical signal. Therefore, the light guide tube 14 is arranged outside the gas barrier film 13 isolated from the structure 10, and the optical signal emitted from the light emitting element 42 covered with the gas barrier film 13 is guided through the gas barrier film 13. can be done. Since there is no need to dispose part of the light guide tube 14 inside the gas barrier film 13, the internal configuration of the structure 10 is greatly simplified, and the assembled battery 11 can be reliably sealed by the gas barrier film 13. be done.
- the light receiving section 15 includes, outside the gas barrier film 13, a light receiving element 45 for receiving a plurality of optical signals propagating inside the light guide tube 14.
- the light receiving element 45 receives the optical signals.
- An LED element, a phototransistor, or the like can be used as the light receiving element 45, and an LED element is preferable.
- the light receiving section 15 may be one in which the light receiving element 45 is mounted on a wiring board, or the light receiving section 15 may be the light receiving element itself.
- FIG. 7 is a block diagram schematically showing a circuit configuration including peripheral members of the battery module of this embodiment.
- the gas barrier film 13 that seals the assembled battery 11 and the plurality of light-emitting portions 12 is indicated by broken lines.
- the light guide tube 14 is located outside the dotted line area, and is shown to be arranged outside the gas barrier film 13 . Lead wires 22 and 23 are also led out of the gas barrier film 13 .
- a light-receiving section 15 is connected to a light guide tube 14 provided outside the gas barrier film 13 , so that a light receiving element 45 of the light-receiving section 15 can receive an optical signal derived from one end of the light guide tube 14 .
- a battery state analyzer 16 is connected to the light receiving unit 15 , the battery state analyzer 16 analyzes the optical signal, and analyzes the characteristics of the cells 21 included in the assembled battery 11 .
- the lead wires 22 and 23 are connected to the device main body 100, and the device operates in the device main body 100 using the assembled battery 11 as a power source.
- the light emitting unit 12 has a voltage measuring terminal for measuring the voltage between the positive electrode current collector and the negative electrode current collector of the cell 21 and a temperature sensor for measuring the temperature of the cell 21 .
- a measurement terminal is provided, and a control element 43 is provided for controlling the light emitting element 42 to emit light in a predetermined optical signal pattern according to the voltage measured by the voltage measurement terminal and the temperature measured by the temperature measurement terminal. ing.
- the control element 43 controls the light emitting element 42 to emit light according to a predetermined optical signal pattern.
- FIGS. 8A to 8E are schematic diagrams showing examples of optical signal patterns when the voltages of the cells 21 are different.
- 8A to 8E show optical signal patterns when the single cell voltage is 4 V to 4.5 V, 3.5 V to 4 V, 3 V to 3.5 V, 2.5 V to 3 V, and 2 V to 2.5 V, respectively.
- These patterns are pulse patterns in which the ON/OFF of the optical signal is repeated within a predetermined period of time, and the predetermined period of time is 100 seconds.
- the predetermined time is not particularly limited, and can be any time.
- the duration of one light emission is the same, and the higher the voltage, the greater the number of repetitions of light emission ON/OFF.
- Any optical signal pattern may be used.
- the optical signal pattern may be such that the number of times of light emission ON/OFF is the same and the higher the voltage, the longer the time for one light emission.
- it is not necessary that the duration of one light emission within a predetermined period of time is the same.
- the shape of the optical signal pattern is made to differ in voltage increments of 0.5 V, the voltage increment width is not particularly limited.
- the light emission time is the same, and the higher the voltage, the higher the number of repetitions of light emission ON/OFF
- the time and the number of repetitions of ON/OFF of light emission may be varied for each predetermined voltage.
- the light emission time (W 2 ) at the voltage of 3 V is set shorter than the light emission time (2W 1 ) at the voltage of 4 V, and the light emission ON/OFF at the voltage of 3 V is repeated.
- the optical signal pattern is such that the number of repetitions of light emission ON/OFF is smaller than that at a voltage of 4V.
- each light emission time (W 3 ) at the voltage of 2V is made shorter than each light emission time (W 2 ) at the voltage of 3V, and light emission is ON/ON at the voltage of 2V.
- the optical signal pattern is such that the number of OFF repetitions is greater than when the voltage is 3V.
- light guide 14 is fed with light signals from all light emitting elements 42 (five light emitting elements 42 in this embodiment), and light guide 14 provides a common light path for these light signals. do. Therefore, transmission in the light guide tube 14 may occur in a crossed state. As shown in FIGS. 8A to 8E, if the same optical signal pattern is used for one light emission time, the transmission is likely to occur in a crossed state in the light guide tube 14. However, as shown in FIG. , for each predetermined voltage range), by setting a different light emission time and a different number of repetitions of light emission ON/OFF, crosstalk can be suppressed compared to the embodiments of FIGS. 8A to 8E. However, it is possible to easily determine which voltage (or which voltage range) a specific optical signal corresponds to from a plurality of mixed optical signals.
- FIG. 8F is a schematic diagram showing an example of an optical signal pattern when the temperature of the cell 21 is equal to or higher than a predetermined temperature.
- a predetermined temperature it is determined that a failure mode of temperature abnormality has occurred, and an optical signal pattern of "temperature abnormality" as shown in FIG. 8F is generated regardless of the voltage of the cell 21. make it If the temperature of the cell 21 is less than the predetermined temperature, the temperature measured by the temperature measurement terminal is not reflected in the optical signal pattern.
- FIGS. 10A to 10C are schematic diagrams showing examples of optical signal patterns derived from optical waveguides.
- all the optical signal patterns divided every 100 seconds are optical signal patterns corresponding to voltages of 3V to 3.5V, and the voltages of all the cells 21 are within the range of 3V to 3.5V.
- the optical signal patterns divided every 100 seconds include one optical signal pattern corresponding to a voltage of 2V to 2.5V, three optical signal patterns corresponding to a voltage of 3V to 3.5V, and voltages of 4V to 4.5V.
- There is one optical signal pattern corresponding to 5V and it can be seen that the voltage varies among the cells 21 .
- the optical signal patterns divided every 100 seconds include four optical signal patterns corresponding to voltages of 3 V to 3.5 V and one optical signal pattern corresponding to abnormal temperature. It can be seen that a temperature anomaly has occurred. Since thermal runaway may have started in the unit cell 21 in which the temperature abnormality has occurred, it is necessary to consider replacement.
- the optical signal patterns shown in FIGS. 10B and 10C it can be seen from the optical signal patterns shown in FIGS. 10B and 10C that some of the five cells 21 may be malfunctioning.
- the state (voltage and temperature) of the cell 21 is constantly monitored, and when an optical signal pattern corresponding to a cell 21 with a sudden drop or rise in voltage is observed, the cell 21 with an abnormal temperature If the corresponding optical signal pattern is seen, it can be determined that the state inside the assembled battery 11 is defective.
- the light receiving unit 15 receives such an optical signal pattern, converts it into an electric signal (pulse signal), reads the electric signal in the battery state analyzer, and obtains information on the voltage or temperature of the cell 21 . As a result, information about the total number of cells 21 with a certain voltage in the assembled battery 11 and information about the total number of cells 21 with abnormal temperature are obtained.
- FIGS. 10A to 10C show optical signal patterns of five 500 s regions of 100 s per unit cell 21 .
- the pattern is shown without gaps every 100 seconds, but there may be an area without optical signal pattern information between the optical signal pattern of one cell 21 and the optical signal pattern of another cell 21 .
- it is examined what kind of optical signal pattern is obtained in a time longer than the predetermined time of the pulse pattern per unit cell 21 multiplied by the number of stacks of the unit cells 21. can recognize the state of each cell 21 included in (the total number of cells 21 of what V in the assembled battery 11, and the total number of cells 21 with abnormal temperature) .
- the gas barrier film 13 is transparent to the optical signal emitted from the light emitting element 42 of the light emitting section 12 and has the function of transmitting the optical signal. Therefore, by providing the gas barrier film 13 so as to directly cover the light emitting element 42 of the light emitting section 12 , the optical signal from the light emitting element 42 can be externally received via the gas barrier film 13 .
- FIG. 11 is a schematic perspective view showing how the battery module of the first embodiment is manufactured using a deep drawing vacuum packaging machine. This deep-drawing vacuum packaging machine seals the assembled battery according to the battery module of the present embodiment with a gas barrier film to produce a structure.
- the deep-drawing vacuum packaging machine inserts the above-described assembled battery 11 between the first gas barrier film 101 as the main film and the second gas barrier film 102 as the sealing film, and then removes the air inside while removing both films 101. , 102 are stuck together.
- the first gas barrier film 101 and the second gas barrier film 102 at least the first gas barrier film 101 is a strip-shaped transparent film having the same configuration as the gas barrier film 13 described above.
- both films 101 and 102 are strip-shaped transparent films having the same configuration as the gas barrier film 13 .
- the first gas barrier film 101 and the second gas barrier film 102 are rolled around mandrels 110a and 110b and incorporated into a deep drawing vacuum packaging machine.
- the mandrel 110a around which the first gas barrier film 101 is wound is arranged below the end of the apparatus, and the first gas barrier film 101 pulled out therefrom comes into contact with the upper guide roller 115, and the tip of the first gas barrier film 101 moves in the direction of the arrow A. move on.
- the molding unit 111 includes a suction box 111a above and below the first gas barrier film 101, a heater 111b, and an elevation cylinder (not shown) for displacing the suction box 111a in the vertical direction of arrow B.
- the forming part 111 sequentially forms a plurality of concave portions 101a on the surface of the first gas barrier film 101 moving in the horizontal direction of arrow A. As shown in FIG. Here, a plurality of recesses 101 a are formed in two rows along the longitudinal direction of the first gas barrier film 101 .
- Each concave portion 101a is a space for accommodating the sealed object 103 (the assembled battery 11 and each unit cell 21 having the light-emitting portion 12 disposed therein) according to the present embodiment. A size and depth suitable for the battery 11 are ensured.
- the objects to be sealed 103 are successively inserted into the concave portions 101a manually or by a predetermined supply device.
- the leading end portions of the lead wires 22 and 23 of the assembled battery 11 are placed in the first direction. 1 project from both ends of the gas barrier film 101 .
- the upper surface of the first gas barrier film 101 is covered with the second gas barrier film 102 .
- the leading end portions of the lead wires 22 and 23 of the assembled battery 11 protrude to the outside.
- the mandrel 110b around which the second gas barrier film 102 is wound is placed above the apparatus, and the second gas barrier film 102 pulled out therefrom passes through two guide rollers 116 and 117, and the upper surface of the first gas barrier film 101 to reach
- the first gas barrier film 101 and the second gas barrier film 102 have the same width. Further, in an actual apparatus, a drive mechanism using a chain or the like is provided in order to send out both films 101 and 102 at a specified timing and by a specified length.
- the sealing part 112 seals the first gas barrier film 101 and the second gas barrier film 102 while degassing, and seals the object 103 to be sealed.
- FIG. 12A and 12B are schematic cross-sectional views showing the configuration of the sealing portion 112 of the deep drawing vacuum packaging machine, where FIG. 12A is a cross-sectional view along the longitudinal direction of the first gas barrier film 101, and FIG. 12B is the first gas barrier film. 3 is a cross-sectional view along the width direction of the film 101.
- FIG. The sealing portion 112 is composed of a movable box 112a below both films 101 and 102 and a fixed box 112b above them.
- the movable box 112a When the concave portion 101a containing the object 103 to be sealed reaches the fixed position of the sealing portion 112, the movable box 112a is lifted by the lifting cylinder, and both the films 101 and 102 are sandwiched between the movable box 112a and the fixed box 112b. At that time, the inside is made to have a negative pressure, and air is removed from the concave portion 101a. At the same time, both the films 101 and 102 are locally heated by the sealing portion 112c, and the films 101 and 102 are adhered so as to surround the concave portion 101a, thereby sealing the object 103 to be sealed. After that, the movable box 112a is lowered to release both the films 101 and 102. ⁇
- both the films 101 and 102 that have passed through the sealing portion 112 are cut by the vertical cutter 113 and the horizontal cutter 114 for each sealed object 103, and the cut film 101 and 102 are covered with the gas barrier film 13.
- the structure 10 according to this embodiment is formed by sealing the sealing body 103 .
- the horizontal cutter 114 extends in the width direction of both films 101 and 102 and is displaced in the vertical direction by an elevating cylinder. Therefore, when the recessed portion 101a is at a predetermined position, the films 101 and 102 are cut in the width direction when the elevating cylinder is temporarily raised.
- the side portions of both films 101 and 102 are cut by a disk-shaped vertical cutter 113, the concave portions 101a are individually cut out, and the individual structures 10 are formed.
- the light guide tube 14 is arranged so as to cover the area where the plurality of light emitting parts 12 on the surface of the gas barrier film 13 of the formed structure 10 can be seen through the gas barrier film 13 . After that, by attaching the light receiving portion 15 to the light guide tube 14, the battery module of the present embodiment is completed.
- the forming part 111 that forms the concave portion 101a in the first gas barrier film 101 is composed of a suction box 111a, a heater 111b, and the like. It's becoming The upper portion of the side walls surrounding the opening is a horizontally finished support surface.
- a vacuum pump is used to create a negative pressure in the suction box 111a, and both are connected by a pipe serving as an air flow path. Then, the suction box 111a is assembled with the mold with the lower packing interposed therebetween, and the upper packing is placed on the mold.
- the mold is used to form the concave portion 101a in the first gas barrier film 101, and has a structure in which a sheet metal is finished into a predetermined shape by bending or welding.
- the outside of the upper edge of the frame is a frame plate that unfolds horizontally.
- the bottom plate and the side plate function as a mold for transferring the concave portion 101a to the first gas barrier film 101, and the first gas barrier film 101 is brought into close contact with the inner peripheral surface thereof. Therefore, the bottom plate and the side plate are provided with a plurality of ventilation holes for sucking air, and when the inside of the suction box 111a becomes a negative pressure, the first gas barrier film 101 is sucked and closely attached.
- the frame plate is for placing the mold on the suction box 111a, and the outer edge of the frame plate rests on the support surface. Furthermore, the frame plate also serves to close the opening in order to maintain the negative pressure inside the suction box 111a. Therefore, it is not necessary to provide holes for air passages in the frame plate.
- the band-shaped film in which the recessed portion 101a for housing the sealed object 103 is formed is, for example, a transparent film in which alumina (Al 2 O 3 ) or silicon oxide (SiO x ) is vapor-deposited on a PET film.
- a first gas barrier film 101 is used. With laminated films such as aluminum, which were conventionally used as gas barrier films, it was difficult to deep-draw to a sufficient depth to form recesses. By using the first gas barrier film 101, which is a film, deeper drawing becomes possible. This makes it possible to easily form the desired recesses 101a that match the size and depth of the object 103 to be sealed with high precision in the first gas barrier film 101 .
- the structure 10 in a state in which the tip portions of the lead-out terminals 22 and 23 of the assembled battery 11 are pulled out of the gas barrier film 13 .
- the object 103 to be sealed is inserted in a state protruding from the outside of the , and the second gas barrier film 102 is overlapped on the first gas barrier film 101 to seal the object 103 to be sealed.
- the object to be sealed 103 can be reliably sealed with both films 101 and 102 while projecting the tip portion from the overlapped portion of both films 101 and 102 .
- FIG. 14A is a schematic perspective view showing the configuration of the battery module of the second embodiment.
- FIG. 14B is a schematic perspective view showing an exploded light guide portion that is a component of the battery module of the second embodiment.
- FIG. 14C is a schematic perspective view showing how the light guide section 52 and the light receiving section are attached to the structure in the battery module of the second embodiment.
- the battery module 1 of the present embodiment includes an assembled battery 11, a plurality of light-emitting portions 12, a gas barrier film 13, a light-shielding film 51 on the gas barrier film 13, a light guide portion 52, and a light receiving portion 15. , and a battery state analyzer 16 .
- the assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with the gas barrier film 13 , and the structure including the gas barrier film 13 and the light shielding film 51 is referred to as a structure 20 .
- the assembled battery 11 and the plurality of light emitting units 12 are housed while being covered with a gas barrier film 13 that is an exterior body.
- a light shielding film 51 is formed on the surface of the gas barrier film 13 except for a window portion 51a which is a region including the arrangement positions of the light emitting elements 42 of the plurality of light emitting portions 12 .
- the material (light shielding agent) of the light shielding film 51 for example, black ink containing carbon black, silver ink containing aluminum fine particles, or gray light shielding mixture of these inks and white ink containing titanium oxide is used. agent or the like can be used.
- the light shielding film 51 by providing the light shielding film 51 on the surface of the gas barrier film 13 excluding the window portion 51a, the influence of disturbance light on optical transmission is suppressed.
- the window portion 51a which is an area in which the light shielding film 51 is not formed, is formed in an area including the arrangement positions of the light emitting elements 42 of the plurality of light emitting sections 12, here a rectangular area.
- the gas barrier film 13 is exposed, and an optical signal emitted from the light emitting element 42 of the light emitting portion 12 positioned within the region of the window portion 51a passes through the gas barrier film 13 transparent to the optical signal. permeate to the outside through
- the light guide section 52 has a light guide tube 14 similar to that of the first embodiment, and light shielding fins 53 to which the light guide tube 14 is attached and which covers it.
- the light shielding fin 53 has a surface covered with a light shielding film similar to the light shielding film 51 .
- the light shielding fins 53 may be formed by double molding, for example.
- the light guide section 52 is arranged in the structure 20 so that the light guide tube 14 covers the window section 51a.
- the light guide tube 14 is provided outside the structure 20 in contact with or close to the surface of the gas barrier film 13 so as to cover the region including the plurality of light emitting units 12 via the gas barrier film 13 .
- the window 51a is completely shielded, and substantially the entire surface of the structure 20 is covered with the light shielding film.
- the light guide portion 52 is provided with the light receiving portion 15 so that the light receiving element 45 is optically connected to the light guide tube 14 .
- An optical signal emitted from the light-emitting element 42 of the light-emitting portion 12 passes through the window portion 51 a of the gas barrier film 13 , propagates through the light guide tube 14 , and is received by the light-receiving portion 15 .
- the surface of the gas barrier film 13 transparent to the optical signal is covered with the light shielding film 51 except for the window portion 51a, and the light guide portion 52 is arranged so as to cover the window portion 51a.
- Substantially the entire surface of the structure 20 is covered with a light shielding film.
- optical signals are transmitted and received through the gas barrier film 13 between the light emitting element 42 of the light emitting section 12 in the structure 20 and the light receiving section 15 in the light guide section 52 .
- reliable sealing of the battery pack 11 by the gas barrier film 13 is obtained.
- by appropriately providing a light shielding film it is possible to realize a battery module capable of performing efficient optical transmission while suppressing the influence of disturbance light on optical transmission as much as possible.
- Manufacturing method 1 will be described with reference to FIG. 15A.
- a main film 201 is used in which the entire surface of the first gas barrier film 101, which is a strip-shaped transparent film, is coated with a light shielding film 51 by printing or the like.
- the entire surface of the second gas barrier film 102 is coated with a light shielding film to form a sealing film.
- the sealing film it is conceivable to use the second gas barrier film 102 as it is without forming a light shielding film. Both films are used to form individual structures 20 on a deep draw vacuum packaging machine.
- the window 51a is formed in the structure 20. Then, as shown in FIG.
- the window portion 51a is formed by scraping or dissolving a region of the light shielding film 51 formed on the outermost surface of the structure 20, which includes the arrangement positions of the plurality of light emitting elements 42, here, a rectangular region. be.
- the gas barrier film 13 is exposed at the window portion 51a.
- the light guide part 52 is arranged in the window part 51 a so that the window part 51 a of the formed structure 20 is covered with the light guide tube 14 .
- the light receiving section 15 is attached to the light guide section 52 to complete the battery module of the present embodiment.
- the window portion 51a can be accurately and easily formed at the desired position of each molded structure 20 .
- Manufacturing method 2 will be described with reference to FIG. 15B.
- individual structures 10 are formed by a deep draw vacuum packaging machine using a first gas barrier film 101 as a main film and a second gas barrier film 102 as a sealing film. to form
- a light shielding film 51 is formed on the surface of the gas barrier film 13 that is the exterior body of the structure 10 .
- a region including the arrangement positions of the plurality of light emitting elements 42 inside the gas barrier film 13, which is a window portion forming portion of the structure 10, here, a rectangular region is masked with a mask member 81, and in this state, the structure The entire surface of 10 is coated by spraying paint, which is a light shielding agent, from a nozzle 82 . Thereby, the light shielding film 51 is formed.
- the light shielding film 51 is also formed on the rear surface portion of the structure 10, it is conceivable that it is not formed on the rear surface portion.
- a structure 20 having a window portion 51a, which is a portion where the light shielding film 51 is not formed, in a rectangular region including the arrangement positions of the plurality of light emitting elements 42 is formed.
- the gas barrier film 13 is exposed at the window portion 51a.
- the light guide part 52 is arranged in the window part 51 a so that the window part 51 a of the formed structure 20 is covered with the light guide tube 14 .
- the light receiving section 15 is attached to the light guide section 52 to complete the battery module of the present embodiment.
- the light shielding film 51 and the window 51a are formed after the structure 10 is assembled. Therefore, the window portion 51a can be accurately and easily formed at the desired position of each molded structure 20 .
- a main film 301 is used in which a light shielding film 51 is formed by printing or the like on the surface of the first gas barrier film 101, which is a strip-shaped transparent film.
- a portion to be formed of the window portion 51a when the structure 20 is formed that is, a portion to be formed located on the side surface of the concave portion 101a formed in the first gas barrier film 101 is formed.
- a main film 301 is formed by removing the light shielding film 51 .
- the entire surface of the second gas barrier film 102 is coated with a light shielding film to form a sealing film.
- the sealing film it is conceivable to use the second gas barrier film 102 as it is without forming a light shielding film. Both films are used to form individual structures 20 each having a window 51a by means of a deep drawing vacuum packaging machine.
- the light guide part 52 is arranged in the window part 51 a so that the window part 51 a of the formed structure 20 is covered with the light guide tube 14 .
- the light receiving section 15 is attached to the light guide section 52 to complete the battery module of the present embodiment.
- a plurality of windows 51a are formed in the state of the main film for forming the first gas barrier film, and the structure 20 is formed using this main film. Therefore, it is possible to inexpensively and easily mass-produce battery modules each including the individual structures 20 in which the window portions 51a are formed.
- Modification 1 16A and 16B are partially cutaway perspective views showing the configuration of Modification 1 of the battery module of the second embodiment, and FIG. 16B shows a state in which the light receiving portion 53 is attached to the structure 30.
- the battery module 1 of Modification 1 includes an assembled battery 11, a plurality of light emitting units 12, a gas barrier film 13, a light shielding film 51 on the gas barrier film 13, a plurality of light receiving units 54, and a battery state analyzer. 16.
- the assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with the gas barrier film 13 , and the structure including the gas barrier film 13 and the light shielding film 51 is referred to as a structure 30 .
- the assembled battery 11 and the plurality of light emitting units 12 are housed while being covered with a gas barrier film 13 that is an exterior body.
- a light shielding film 51 is formed on the surface of the gas barrier film 13 except for the openings 51b that are aligned with the light emitting elements 42 of the plurality of light emitting units 12 .
- Each opening 51b which is a region in which the light shielding film 51 is not formed, is formed to have substantially the same size and shape as the size and shape of each light emitting element 42 (here, circular shape, for example).
- the gas barrier film 13 is exposed, and an optical signal emitted from the light emitting element 42 of the light emitting unit 12 aligned with each opening 51b passes through the gas barrier film 13 transparent to the optical signal. permeate to the outside.
- each opening 51b is formed to have a minimum necessary size for transmitting the optical signal from each light emitting element 42 to the outside through the gas barrier film 13, and each opening of the barrier film 13
- the surface other than the portion 51b is covered with the light shielding film 51. As shown in FIG. This configuration suppresses the influence of disturbance light on optical transmission as much as possible.
- each opening 51b of the structure 30 is directly provided with the corresponding light receiving section 54 .
- Each light receiving unit 54 is arranged outside the gas barrier film 13 so as to face the corresponding light emitting element 42 with only the gas barrier film 13 interposed therebetween.
- the light-receiving unit 54 includes a light-receiving element that receives the optical signal transmitted from the light-receiving unit 53 and transmitted through the gas barrier film 13 . It is possible to obtain an electric signal indicating the state inside the cell 21 in which the light receiving portion 53 is arranged.
- An LED element, a phototransistor, or the like can be used as the light receiving element, and the LED element is preferable.
- the light receiving section 54 may be a light receiving element mounted on a wiring substrate, or the light receiving section 54 may be the light receiving element itself.
- the surface of the gas barrier film 13 transparent to the optical signal is covered with the light shielding film 51 except for the plurality of openings 51b, and each light receiving section 54 is arranged in the corresponding opening 51b.
- the opening 51b is closed, and substantially the entire surface of the structure 30 is covered with the light shielding film.
- optical signals are transmitted and received through the gas barrier film 13 between the light-emitting element 42 of the light-emitting section 12 and the light-receiving section 54 in the structure 30 .
- reliable sealing of the battery pack 11 by the gas barrier film 13 is obtained.
- by appropriately providing a light shielding film it is possible to realize a battery module capable of performing efficient optical transmission while suppressing the influence of disturbance light on optical transmission as much as possible.
- the corresponding light receiving section 54 is directly connected to each opening 51b of the structure 30 without arranging an optical component such as an optical conduit between the light emitting element 42 of the light emitting section 12 and the light receiving section 54. is provided in This simplifies not only the internal configuration of the structural body 30 but also the external configuration of the structural body 30, realizing a simple battery module with a reduced number of parts.
- each light receiving section 54 is arranged so as to correspond to the light emitting section 12 arranged for each unit cell 21 constituting the assembled battery 12 . Therefore, the optical signal from each unit cell 21 can be independently received by the corresponding light receiving unit 54, and the state of each unit cell 21 (whether there is an abnormality in the voltage or temperature of the unit cell 21) can be recognized. be able to.
- the light shielding film 51 is formed by printing or the like on the entire surface of the first gas barrier film 101 which is a strip-shaped transparent film. It is conceivable to form each opening 51b in the structure 20 after forming the individual structures 20 using the main film 201 coated with .
- the gas barrier film 13 is formed.
- the structure 20 having the openings 51b may be formed by forming the light shielding film 51 on the entire surface of the gas barrier film 13 while masking the portions where the openings 51b are to be formed, and removing the masking. good.
- the formation planned portions of the openings 51b when the structure 20 is formed that is, the first gas barrier film 101
- Individual structures 20 having respective openings 51b are formed using a main film 301 formed by printing a light shielding film 51 except for the portions to be formed located on the side surfaces of the recesses 101a to be formed.
- FIG. 17 is a schematic cross-sectional view showing the configuration of Modification 2 of the battery module of the second embodiment.
- the battery module 1 of Modification 2 includes an assembled battery 11, a plurality of light emitting units 12, a gas barrier film 13, a light shielding film 51 on the gas barrier film 13, light shielding fins 55, a light receiving unit 15, and a battery state analyzer 16. It is configured.
- the assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with the gas barrier film 13, and the structure including the gas barrier film 13 and the light shielding film 51 is the structure 20 as in the second embodiment.
- a light shielding fin 55 is provided so as to cover the window 51a formed in the structure 20 .
- the light shielding fin 55 has a surface covered with a light shielding film similar to the light shielding film 51 .
- the light-shielding fin 55 is attached with the light-receiving section 15 having the light-receiving element 45 as in the first embodiment.
- the light receiving section 15 is a common light receiving section for the plurality of light emitting sections 12 .
- the surface of the gas barrier film 13 transparent to the optical signal is covered with the light shielding film 51 except for the window 51a, and the light shielding fins 55 are arranged so as to cover the window 51a.
- Substantially the entire surface of the body 20 is covered with a light shielding film.
- optical signals are transmitted and received between the light emitting element 42 of the light emitting section 12 and the light receiving section 15 in the structure 20 via the gas barrier film 13 .
- reliable sealing of the battery pack 11 by the gas barrier film 13 is obtained.
- by appropriately providing a light shielding film it is possible to realize a battery module capable of performing efficient optical transmission while suppressing the influence of disturbance light on optical transmission as much as possible.
- the window portion 51a of the structure 20 and the light shielding fin 55 are arranged without arranging an optical component such as an optical conduit in the light shielding fin 55 (between the light emitting element 42 of the light emitting portion 12 and the light receiving portion 15).
- a light receiving portion 15 is directly provided in a state separated by . This simplifies not only the internal configuration of the structural body 20 but also the external configuration of the structural body 20, realizing a simple battery module with a reduced number of parts.
- the battery module includes a positive electrode current collector including a resin current collector layer and a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector.
- a negative electrode having a negative electrode current collector including a resin current collector layer and a negative electrode active material layer including a negative electrode active material formed on the negative electrode current collector; the positive electrode active material layer and the negative electrode active material an assembled battery in which a plurality of lithium-ion cells are stacked, and a separator disposed between layers; and a gas barrier film covering the assembled battery, the gas barrier film as a whole being transparent to the optical signal.
- the light emitting section may transmit the optical signal to the outside through the gas barrier film.
- a light guide tube may be provided outside the gas barrier film so as to cover the plurality of light emitting portions via the gas barrier film.
- a light receiving section may be provided outside the gas barrier film to receive the plurality of optical signals propagating inside the light guide tube.
- a light receiving section may be provided outside the gas barrier film to directly receive the optical signal transmitted from the light emitting section through the gas barrier film.
- the gas barrier film may be provided with a light shielding layer for shielding the optical signal on a part of the surface, and may not be provided with the light shielding layer at a position corresponding to the light emitting portion on the surface.
- the surface of the gas barrier film may be covered with the light shielding layer except for the portion aligned with the region including the plurality of light emitting portions.
- the surface of the gas barrier film may be covered with the light shielding layer except for the portions where the positions of the light emitting portions are aligned.
- a method for manufacturing a battery module according to an embodiment of the present invention is the above-described method for manufacturing a battery module, wherein the surface of a strip-shaped first gas barrier film that becomes the gas barrier film that is transparent to the optical signal as a whole is a step of sequentially forming a plurality of recesses by heat molding; and a step of sequentially fitting a structure including the assembled battery and a plurality of light emitting portions provided for each of the unit cells into the recesses. a step of successively sealing a plurality of the structures by overlapping a strip-shaped second gas barrier film on the first gas barrier film; and a step of cutting the first gas barrier film and the second gas barrier film for each structure. , has
- the band-shaped first gas barrier film which is subjected to the step of forming the recesses, is covered with the light-shielding layer except for a portion aligned with the region including the plurality of light-emitting portions, and the band-shaped first gas barrier film is
- the portion may be located on the side surface of the concave portion.
- the strip-shaped first gas barrier film provided for the step of forming the recesses is covered with the light-shielding layer except for a portion aligned with each light-emitting portion, and the strip-shaped first gas barrier film is covered with the light-shielding layer.
- the portion may be positioned on the side surface of the recess when the recess is formed in the .
- High energy density lithium-ion batteries are known as batteries that can be used as power sources for electric vehicles and hybrid electric vehicles. Also known is a configuration in which a laminated battery having a structure in which a plurality of lithium ion batteries are laminated (for example, JP-A-2021-34141) is housed in an exterior body such as a laminated film.
- the entire laminated battery is covered with the outer package and vacuumed (vacuum packed). At this time, for example, if air remains inside the laminated battery, there is a risk that the laminated battery will not adhere well even if it is evacuated.
- an object of the second aspect of the invention is to provide a secondary battery module capable of suppressing air from remaining inside the laminated battery.
- a secondary battery module comprising a laminated battery in which a plurality of storage elements each having a negative electrode current collector, a negative electrode active material layer, a separator or a solid electrolyte, a positive electrode active material layer, and a positive electrode current collector are stacked, A current extraction layer is in contact with at least one surface of the outermost layer in the laminated battery, A small hole penetrating vertically is formed in the current extraction layer, Secondary battery module.
- the small holes are either circular, elliptical, or slit-shaped in plan view,
- the dimension of the minor axis of the elliptical shape is 0.2 mm to 2 mm
- the radius of the circular shape is 0.2 mm to 2 mm.
- a plurality of the small holes are formed in the current extraction layer, and relatively more small holes are formed in the central portion of the current extraction layer than in the peripheral portion of the current extraction layer.
- the secondary battery module according to any one of [1] to [3].
- the current extraction layer includes a positive current extraction layer and a negative current supply layer,
- the positive electrode-side current extraction layer and the negative electrode-side current supply layer are made of an elastic material that is elastically deformable,
- the secondary battery module according to any one of [1] to [4].
- a PTC thermistor is interposed between the positive current collector and the positive current extraction layer.
- the secondary battery module according to any one of [1] to [6].
- a PTC thermistor is interposed between the negative electrode current collector and the negative electrode current supply layer.
- the secondary battery module according to any one of [1] to [7].
- the positive electrode-side current extraction layer includes a plurality of current extraction portions and a plurality of positive electrode conductive wires for electrically connecting each of the current extraction portions to the positive electrode confluence portion. are substantially identical to each other,
- a positive electrode rectifying section that delivers current during discharge extends in the width direction.
- the secondary battery module according to any one of [1] to [9].
- FIG. 18 is a perspective view showing a secondary battery module 401 according to a first embodiment to which aspects of the present invention are applied, and FIG. 19 shows a side sectional view thereof.
- a negative electrode 402 composed of a negative electrode current collector 411 and a negative electrode active material layer 412 and a positive electrode 403 composed of a positive electrode active material layer 414 and a positive electrode current collector 415, which are power storage elements, are connected to a separator 413.
- It is configured as a battery cell 420 consisting of a laminated battery (single battery) on a flat plate that is laminated with an intervening layer.
- the negative electrode current collector 411, the negative electrode active material layer 412, the separator 413, the positive electrode active material layer 414, and the positive electrode current collector 415 face upward in FIG. are laminated together, and formed in a substantially rectangular flat plate shape as a whole.
- the secondary battery module 401 further includes an annular frame member 9 arranged around the periphery of the battery cells 420 .
- the edge of the separator 413 is embedded in the frame member 409 to support the separator 413, and the frame member 409 brings the positive electrode current collector 415 and the negative electrode current collector 411 into surface contact with the upper surface and the lower surface of the frame member 409. They are fixed on top of each other.
- the negative electrode active material layer 412 and the positive electrode active material layer 414 are firmly prevented from leaking to the outside.
- the frame member 409 can determine the positional relationship among the negative electrode current collector 411 , the separator 413 , and the positive electrode current collector 415 .
- the gap between the negative electrode current collector 411 and the separator 413 and the gap between the separator 413 and the positive electrode current collector 415 are adjusted in advance according to the capacity of the battery.
- a negative electrode current collector 411, a separator 413, and a positive electrode current collector 415 can be fixed to each other.
- a negative electrode current supply layer 410 as a conductor layer is laminated on the lower side of the negative electrode current collector 411 in a planar shape, and a positive electrode current extraction layer, which is also a conductor layer, is laminated on the upper side of the positive electrode current collector 415 .
- 416 are stacked in a plane.
- the negative current supply layer 410 and the positive current extraction layer 416 are provided with conductive portions 407 and 408 to which current is supplied, respectively.
- the battery cell 420 is composed of a so-called lithium-ion secondary battery.
- FIG. 20A shows an enlarged cross-sectional view of a battery cell 420 as a lithium ion secondary battery.
- the constituent positive electrode active material layer 414 contains a positive electrode active material 442 and an electrolytic solution 443 .
- a battery cell 420 When such a battery cell 420 is operated as a lithium ion secondary battery, first, the positive terminal of a charger (not shown) is connected to the positive electrode 403 side and the negative electrode terminal of the charger is connected to the negative electrode 402 side to allow current to flow. As a result, electrons separated from the positive electrode active material 442 containing lithium-transition metal composite oxide or the like flow through an external circuit including a charger and reach the negative electrode active material 441 made of a carbonaceous material or the like. In the meantime, positively charged lithium ions are attracted to the negative electrode 402 side, flow through the electrolytic solution 443, reach the negative electrode active material 441, and are occluded therein. When all the lithium atoms in the positive electrode active material 442 reach the negative electrode active material 441, the battery cell 420 is fully charged.
- An external load (not shown) is connected between the positive electrode 403 and the negative electrode 2 during discharging.
- the lithium ions occluded in the negative electrode active material 441 return to a stable state as part of the lithium-transition metal composite oxide, so they pass through the electrolytic solution 443 and move toward the positive electrode.
- Energy is also consumed when electrons flow from the negative electrode 402 through an external load to the positive electrode 3 side.
- a lithium transition metal composite oxide that is, a composite oxide of lithium and a transition metal ⁇ composite oxide containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 , etc.), composite oxides containing two transition metal elements (e.g., LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/ 3Co1 /3Al1 / 3O2 and LiNi0.8Co0.15Al0.05O2 ) and composite oxides containing three or more metal elements [ e.g.
- Metal phosphates e.g. LiFePO4 , LiCoPO4 , LiMnPO4 and LiNiPO4
- transition metal oxides e.g. MnO2 and V2O5
- transition metal sulfides e.g. MoS2 and TiS2
- highly conductive Molecules such as polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole, and the like.
- the lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
- the positive electrode active material 442 is preferably a coated positive electrode active material coated with a conductive aid and a coating resin. By covering the positive electrode active material 442 with the covering resin, the volume change of the electrode is alleviated, and the expansion of the electrode can be suppressed.
- Conductive agents include metallic conductive agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof. These conductive aids may be used singly or in combination of two or more. Conductive aids may also be used as these alloys or metal oxides. From the viewpoint of electrical stability, the conductive aid is more preferably composed of aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids, and mixtures thereof. Among them, the conductive aid is more preferably composed of silver, gold, aluminum, stainless steel, and a carbon-based conductive aid, and particularly preferably composed of a carbon-based conductive aid.
- a particle-based ceramic material or a resin material coated with a conductive material by plating or the like may be applied as these conductive aids. It is preferable that the conductive material to be coated is made of a metal among the above-described conductive aids.
- the form of the conductive aid is not limited to the particle form, and may be in a form other than the particle form. good.
- the coating resin a material described as a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 may be used.
- the ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is 1:0. 0.01 to 1:50, more preferably 1:0.2 to 1:3.0.
- the positive electrode active material 442 may further contain a conductive aid in addition to the conductive aid contained in the coated positive electrode active material.
- a conductive aid in addition to the conductive aid contained in the coated positive electrode active material.
- the same conductive aid as the conductive aid contained in the above-described coated positive electrode active material can be preferably used.
- the positive electrode active material 442 is preferably a non-binding material that does not contain a binder that binds the positive electrode active materials 442 together.
- the non-binding body means that the positive electrode active materials 442 are irreversibly fixed to each other and the positive electrode active material 442 and the current collector without fixing the positions of the positive electrode active materials 442 by a binder as a so-called binder. It means the state of not When the positive electrode active materials 442 are non-bound, the positive electrode active materials 442 are not irreversibly fixed to each other, and thus the interfaces between the positive electrode active materials 442 can be separated without mechanical destruction.
- the positive electrode active material layer 414 containing the positive electrode active material 442 which is a non-binder, the positive electrode active material 442 and the electrolytic solution 443 and containing no binder can be obtained by a method such as the following.
- the binder means an agent that cannot reversibly fix the positive electrode active materials 442 together and the positive electrode active material 442 and the current collector, and includes starch, polyvinylidene fluoride, and polyvinyl alcohol. , carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene, and other known solvent-drying binders for lithium ion batteries. These binders are used by dissolving or dispersing them in a solvent, and by volatilizing and distilling off the solvent, the surfaces of the positive electrode active materials 442 are solidified without exhibiting stickiness. It cannot be reversibly fixed to the body.
- the positive electrode active material layer 414 may contain an adhesive resin in addition to the positive electrode active material 442 described above.
- an adhesive resin for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower. Also, those described as adhesives in JP-A-10-255805 can be preferably used.
- the sticky resin means a resin that does not solidify and has stickiness even when the solvent component is volatilized and dried.
- the tackiness as used herein means the property of adhering by applying a slight pressure without using water, solvent, heat, or the like.
- a solution-drying type electrode binder used as a binding agent is one that dries and solidifies by volatilizing a solvent component to firmly adhere and fix active materials together. Therefore, the solution-drying type electrode binder and the adhesive resin are different materials.
- the thickness of the positive electrode active material layer 414 is not particularly limited, it is preferably 150 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 450 ⁇ m, from the viewpoint of battery performance.
- a known negative electrode active material for lithium ion batteries can be used, and carbon-based materials [graphite, non-graphitizable carbon, amorphous carbon, baked resin (for example, phenolic resin and carbonized furan resin, etc.), cokes (e.g., pitch coke, needle coke, petroleum coke, etc.), carbon fibers, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composite bodies (carbon particles coated with silicon and/or silicon carbide, silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys , silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (e.g., polyacety
- the negative electrode active material 441 may be composed of a coated negative electrode active material coated with a conductive aid and a coating resin similar to the coated positive electrode active material described above.
- the conductive aid and the coating resin the same conductive aid and coating resin as those for the coated positive electrode active material described above can be suitably used.
- the negative electrode active material layer 412 may further contain a conductive aid in addition to the conductive aid contained in the coated negative electrode active material.
- a conductive aid in addition to the conductive aid contained in the coated negative electrode active material.
- the same conductive aid as the conductive aid contained in the above-described coated positive electrode active material can be preferably used.
- the negative electrode active material layer 412 is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials 441 together. Further, like the positive electrode active material layer, it may contain an adhesive resin.
- the thickness of the negative electrode active material layer 412 is not particularly limited, it is preferably 150 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 450 ⁇ m, from the viewpoint of battery performance.
- a known electrolytic solution containing an electrolyte and a non-aqueous solvent which is used for manufacturing known lithium ion batteries, can be used.
- the electrolytic solution 443 can ensure a so-called high electrical conductivity, which allows a large number of lithium ions to move between the negative electrode 402 and the positive electrode 403 at high speed, and has electrochemical stability (oxidation resistance during charging).
- the most suitable material is selected from the viewpoints of properties, resistance to reduction during discharge) and thermal stability, and a substance containing lithium ions serving as charge carriers is applied.
- Examples of the electrolytic solution 443 include inorganic acid lithium salts such as LiN(FSO 2 ) 2 , LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and lithium salts of organic acids such as LiC(CF 3 SO 2 ) 3 and the like.
- imide-based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , etc. ] and LiPF6 .
- non-aqueous solvent those used in known electrolytic solutions can be used. compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
- the non-aqueous solvent may be used singly or in combination of two or more.
- lactone compounds preferred from the viewpoint of battery output and charge-discharge cycle characteristics are lactone compounds, cyclic carbonates, chain carbonates and phosphates, and more preferred are lactone compounds, cyclic carbonates and chains.
- carbonic acid ester more preferably a mixture of a cyclic carbonate and a chain carbonic acid ester.
- PC Propylene carbonate
- EC ethylene carbonate
- DEC diethyl carbonate
- the electrolyte concentration of the electrolytic solution 443 is preferably 1 mol/L to 5 mol/L, more preferably 1.5 mol/L to 4 mol/L, and even more preferably 2 mol/L to 3 mol/L. .
- the electrolyte concentration of the electrolytic solution 443 is less than 1 mol/L, sufficient input/output characteristics of the battery may not be obtained, and if it exceeds 5 mol/L, the electrolyte may precipitate.
- the electrolyte concentration of the electrolyte solution 443 can be confirmed by extracting the electrolyte solution 443 forming the battery cell 420 without using a solvent or the like and measuring the concentration.
- Materials constituting the negative electrode current collector 411 and the positive electrode current collector 415 include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, baked carbon, conductive polymer materials, and conductive materials. Glass etc. are mentioned. Among these materials, aluminum is preferable for the positive electrode current collector 415 and copper is preferable for the negative electrode current collector 411 from the viewpoint of weight reduction, corrosion resistance, and high conductivity.
- the negative electrode current collector 411 and the positive electrode current collector 415 are preferably resin current collectors made of a conductive polymer material.
- a conductive polymer material constituting the resin current collector for example, a conductive polymer or a matrix resin to which a conductive agent is added as necessary can be used.
- the conductive agent that constitutes the conductive polymer material the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
- resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof etc.
- PE polyethylene
- PP polypropylene
- PMP polymethylpentene
- PCO polycycloolefin
- PET polyethylene terephthalate
- PEN polyethernitrile
- PTFE poly Tetrafluoroethylene
- SBR polyacrylonitrile
- PAN polymethyl acrylate
- PMA polymethyl methacrylate
- PVdF polyvinylidene fluoride
- PE polyethylene
- PP polypropylene
- PMP polymethylpentene
- PCO polycycloolefin
- the conductive agent may be composed of a conductive filler.
- Conductive fillers include metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon-based materials [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.). ), etc.], and mixtures thereof, among which carbon-based materials are preferred. If the conductive filler is a carbon-based material, it is possible to prevent the negative electrode active material 441 and the positive electrode active material 442 from being mixed with metal derived from the negative electrode current collector 411 and the positive electrode current collector 415 . Especially in the positive electrode active material 442, it leads to suppression of characteristic deterioration.
- Such conductive fillers may be used singly or in combination of two or more.
- the conductive filler may be an alloy of the above metals or a metal oxide.
- the conductive filler may be a particulate ceramic material or a resin material coated with a conductive material composed of the above-described metal or the like by plating or the like.
- the average particle size of the conductive filler is not particularly limited, but from the viewpoint of the electrical characteristics of the battery, it is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.02 ⁇ m to 5 ⁇ m. More preferably, it is between 0.03 ⁇ m and 1 ⁇ m.
- shape (form) of the conductive filler is not limited to the particle form, and may be in a form other than the particle form.
- the conductive filler may be a conductive fiber having a fibrous shape.
- conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metals and graphite in synthetic fibers, and metals such as stainless steel.
- fibrillated metal fibers include fibrillated metal fibers, conductive fibers obtained by coating the surface of organic fibers with metal, and conductive fibers obtained by coating the surfaces of organic fibers with a resin containing a conductive substance.
- the conductive filler is preferably carbon fiber, or a polypropylene resin in which graphene is kneaded.
- the average fiber diameter is preferably 0.1 ⁇ m to 20 ⁇ m.
- the weight ratio of the conductive filler in the negative electrode current collector 411 and the positive electrode current collector 415 is preferably 5% to 90% by weight, more preferably 20% to 80% by weight.
- the weight ratio of the conductive filler is preferably 20% by weight to 30% by weight.
- the resin current collector may contain other components (dispersant, cross-linking accelerator, cross-linking agent, colorant, ultraviolet absorber, plasticizer, etc.) in addition to the matrix resin and the conductive filler. Also, a plurality of resin current collectors may be laminated and used, or a resin current collector and a metal foil may be laminated and used.
- the thickness of the negative electrode current collector 411 and the positive electrode current collector 415 is not particularly limited, it is preferably 5 ⁇ m to 150 ⁇ m.
- the total thickness after lamination is preferably 5 ⁇ m to 150 ⁇ m.
- the negative electrode current collector 411 and the positive electrode current collector 415 are formed by, for example, a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a dispersing agent for a filler used if necessary, and formed into a film by a known method. can be obtained by Methods for forming such a conductive resin composition into a film include, for example, known film forming methods such as a T-die method, an inflation method and a calender method.
- the negative electrode current collector 411 and the positive electrode current collector 415 can also be obtained by a molding method other than film molding.
- the shape of the negative electrode current collector 411 and the positive electrode current collector 415 is not particularly limited, and may be a sheet body or a plate-like body made of the above materials, or a deposited layer made of fine particles made of the above materials.
- the thicknesses of the negative electrode current collector 411 and the positive electrode current collector 415 are not particularly limited, but are preferably 50 ⁇ m to 500 ⁇ m.
- the separator 413 is made of a polyolefin such as polyethylene (PE) or polypropylene (PP), a porous film made of aromatic polyamide, a porous polyethylene film and a porous polypropylene, from the viewpoint of the required electrical insulation and ion conductivity. Laminated films with, synthetic resins such as polyester fibers and aramid fibers, or non-woven fabrics made of glass fibers, fluorine resins, etc., and those with ceramic fine particles such as silica, alumina, and titania attached to their surfaces are applied. .
- the material forming the separator 413 is not limited to the above-described example, and it is a matter of course that a known separator material for a lithium ion secondary battery may be applied.
- Materials constituting the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 are metals such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, like the negative electrode current collector 411 and the positive electrode current collector 415. materials, as well as calcined carbon, conductive polymeric materials, conductive glass, and the like.
- the negative electrode-side current supply layer 410 and the positive electrode-side current extraction layer 416 may be composed of a resin current collector made of a conductive polymer material.
- a conductive polymer or a matrix resin to which a conductive agent made of a conductive filler is added as needed may be used.
- the same material as the resin current collector described above can be applied, but it is also possible to apply a conductive elastomer obtained by melt-mixing the conductive filler and a rubber-like polymer.
- rubber-like polymers include silicone, urethane, neoprene, butyl rubber, ethene-propene rubber, acrylate rubber, butadiene rubber, coloprene rubber, nitrile rubber, 1-1 propene rubber, fluororubber, styrene-butadiene, natural rubber, and combinations thereof. is applicable.
- the materials constituting the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 are either or both of the negative electrode current supply layer 410 and the positive electrode current extraction layer 416, such as a conductive polymer material, carbon fiber, or the like. It may be composed of an elastic material that can be elastically deformed, such as a nonwoven fabric made of. Since the negative current supply layer 410 and the positive current extraction layer 416 are elastically deformable, the negative current collector 411, the positive current collector 415, and the frame member 409 are fixed in a state where the adhesiveness is enhanced. becomes possible.
- the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 By elastically pressing the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 to fix them to the negative electrode active material layer 412, the positive electrode active material layer 414, and the frame member 409, an air layer is formed between them. can be prevented, and the resistance can be kept low and uniformized.
- the negative current supply layer 410 and the positive current extraction layer 416 are made of a non-woven fabric made of carbon fiber or the like, if the current distribution is suppressed, a hard material whose volume change is small even under normal conditions is used. In the carbon-based nonwoven fabric, the distribution of volume change is further reduced, and it is possible to achieve further extension of life.
- small holes are naturally formed in the meshes of the fibers of the nonwoven fabric, and there is a possibility that small holes may be naturally formed between the negative electrode current supply layer 410 or the positive electrode current extraction layer 416 and the negative electrode current collector 411 or the positive electrode current collector 415 . Air bubbles that form in the can escape through this small hole.
- the negative electrode-side current supply layer 410 is not limited to being configured separately from the negative electrode current collector 411, and may be integrated with each other.
- the positive electrode-side current extraction layer 416 is not limited to being configured separately from the positive electrode current collector 415, and may be integrated with each other.
- the material forming the frame member 409 is not particularly limited as long as it has adhesiveness to the negative electrode current collector 411 and the positive electrode current collector 415 and is durable to the electrolytic solution 443 .
- Materials, especially thermosetting resins, are preferred.
- Specific examples of the material forming the frame member 409 include epoxy-based resin, polyolefin-based resin, polyurethane-based resin, and polyvinylidene fluoride resin. Epoxy-based resin is preferred because of its high durability and ease of handling. preferable.
- the negative electrode current collector 411, the negative electrode active material layer 412, the separator 413, the positive electrode active material layer 414, and the positive electrode current collector 415 are stacked in this order.
- the electrolytic solution 343 is injected, the outer circumferences of the negative electrode active material layer 412, the separator 413 and the positive electrode active material 414 are sealed with the frame member 9, and further the negative electrode side current supply layer 410 and the positive electrode side current extraction layer 416 are laminated.
- a lithium-ion secondary battery consisting of a single cell is produced by a method in which one frame member 409 and the other frame member 409 are adhered and sealed in a state where the separator 413 is inserted in the other frame member 409.
- a cell 420 can be obtained.
- FIG. 21A and 21B show an example of forming a positive current extraction layer 416 on a positive current collector 415 for a battery cell 420 in a secondary battery module 401.
- FIG. 21A and 21B show an example of forming a positive current extraction layer 416 on a positive current collector 415 for a battery cell 420 in a secondary battery module 401.
- FIG. 21A when the positive electrode current extraction layer 416 is formed on the positive electrode current collector 415 described above, air bubbles 481 may be naturally formed.
- this battery cell 420 is placed in a reduced pressure environment for a certain period of time.
- the battery cell 420 is placed in, for example, a pressure-reduced constant temperature bath and the pressure is reduced.
- FIG. 21B it is possible to remove air bubbles formed between the positive current collector 415 and the positive current extraction layer 416 .
- the air bubbles can be removed by placing them in a reduced pressure environment.
- a battery cell 420' configured with a so-called all-solid lithium ion battery using a solid electrolyte 446 as shown in FIG. 20B instead of the liquid electrolytic solution 443 is substituted. You may do so.
- the configuration of the separator 413 is omitted, and the entire area from the negative electrode 402 to the positive electrode 403 is filled with the solid electrolyte 446 .
- the negative electrode active material layer 412 the negative electrode active material 441 is interposed in the solid electrolyte 446 .
- the cathode active material 442 is interposed in the solid electrolyte 446 .
- the details and materials of the components that make up the battery cell 420′ are the same as the components that make up the battery cell 420, so the same reference numerals are used to omit the description below. do.
- Solid electrolyte 446 includes known solid polymer electrolytes such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
- the solid electrolyte 446 contains a supporting salt (lithium salt) to ensure ionic conductivity.
- LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used as the supporting salt.
- polyalkylene oxide polymers such as PEO and PPO that constitute the solid electrolyte 446 are lithium such as LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 and LiN(SO 2 C 2 F 5 ) 2 . It has the property of being able to dissolve salts well, and by forming a crosslinked structure between the two, excellent mechanical strength can be exhibited.
- the battery cell 420' using the above-described solid electrolyte 446 as an electrolyte, since the electrolyte has no fluidity, a sealing structure for preventing the electrolyte from flowing out is not required, thereby simplifying the configuration of the secondary battery module 401. becomes possible.
- the battery cell 420 ′ by using a solid electrolyte, it is possible to prevent liquid leakage, prevent liquid junction, which is a problem unique to lithium ion secondary batteries, and improve reliability. can be improved.
- the secondary battery module 401 to which the aspect of the present invention is applied is not limited to the case where the battery cells 420 of the lithium ion secondary battery are composed of single cells.
- an assembled battery 450 may be formed by stacking and connecting a plurality of battery cells 420 .
- the conductive portion 408 connected to the positive electrode side current extraction layer 416 of the battery cell 420 at the top and the battery at the bottom are connected.
- a current may be freely supplied through the conductive portion 407 connected to the negative current supply layer 410 of the cell 420 .
- the battery cells 20 that are connected to each other are stacked such that the lower surface of the negative electrode current supply layer 410 and the upper surface of the positive electrode current extraction layer 416 are adjacent to each other.
- a plurality of battery cells 420 may be connected in parallel, or series connection and parallel connection may be combined.
- a high capacity and high output can be obtained by configuring the assembled battery 450 in this way.
- the conductive portions 407 and 408 connected to the negative current supply layer 410 and the positive current extraction layer 416 of each battery cell 420 may be configured to independently supply current.
- the above-described first aspect of the invention may be applied to the assembled battery 450 to which the aspect of the invention is applied.
- the assembled battery 11 of FIG. 1, the assembled battery 51 of FIGS. 14A, 14C, and 16B, etc. in the first aspect of the invention are replaced with the assembled battery 450 of the aspect of the invention, and the battery module according to the first aspect of the invention is obtained. can be considered.
- the lithium ions occluded in the negative electrode active material 441 move toward the positive electrode active material 442 .
- a current can flow uniformly without generating a local resistance distribution on the negative current supply layer 410 and the positive current extraction layer 416 .
- the temperature does not rise locally in those areas, and a large current easily flows locally without a local decrease in resistance. You can avoid falling into a vicious circle.
- FIG. 23A illustrates a case where a plurality of small holes 496 are formed vertically through the positive current extraction layer 416 .
- the following effects are obtained.
- air bubbles 481 are formed between the positive electrode current collector 415 and the positive electrode-side current extraction layer 416 during manufacturing, the air in the air bubbles 481 can be reduced by placing them in a reduced pressure environment as shown in FIG. 23B. The bubbles 481 can be removed by passing through the holes 496 and being released to the outside.
- a small hole 496 penetrating vertically may be formed in the negative current extraction layer 410 .
- adhesion between the negative electrode current collector 411 and the negative electrode current extraction layer 410 is improved.
- by forming small holes 496 in both the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 adhesion between the negative electrode current collector 411 and the negative electrode current extraction layer 410 and positive electrode collection can be improved. Both the adhesion between the conductor 415 and the positive current extraction layer 416 can be reliably improved.
- a non-woven fabric made of carbon fiber or the like has been described as an example, but the present invention is limited to this. It may be constructed of any material that is electrically conductive and in which the perforations 496 are formed.
- the small hole 496 formed in the negative current supply layer 410 and/or the positive current extraction layer 416 has, for example, a circular shape, an elliptical shape, or a slit shape in plan view.
- the dimension of the minor axis of the elliptical shape is preferably 0.2 mm to 2 mm.
- the radius of the circular shape is preferably 0.2 mm to 2 mm.
- the dimension of the minor axis of the elliptical shape of the small hole 496 or the dimension of the radius of the circular shape is less than 0.2 mm, the gap between the negative electrode current collector 411 and the negative electrode current extraction layer 410 and/or the positive electrode current collector Air bubbles 481 generated between 415 and positive electrode-side current extraction layer 416 may not be completely removed, and air bubbles 481 may not be sufficiently removed. Further, if the dimension of the minor axis of the elliptical shape of the small hole 496 or the dimension of the radius of the circular shape exceeds 2 mm, it is difficult for the current to flow in the plane of the negative electrode current extraction layer 410 and/or the positive electrode current extraction layer 416. parts may occur.
- the entire surface of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416 can be discharged. can flow uniformly, and air bubbles 481 generated between the negative electrode current collector 411 and the negative electrode current extraction layer 410 and/or between the positive electrode current collector 415 and the positive electrode current extraction layer 416 are reliably eliminated. can be removed as soon as possible.
- the small holes 496 are formed in a slit shape, a It is preferable to form the slit relatively long enough to reliably remove the generated air bubble 481 .
- the plurality of small holes 496 are formed relatively more in the central portion than in the peripheral portion of the plane of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416 .
- the plurality of small holes 496 may be arranged evenly and regularly within the plane of the negative current extraction layer 410 and/or the positive current extraction layer 416 .
- the entire in-plane Air bubbles 481 can be more reliably removed over the entire time. Note that the above tendency becomes remarkable when a non-woven fabric made of carbon fiber or the like is used as the material for the negative current extraction layer 410 and the positive current extraction layer 416. It is particularly desirable to have relatively more at the central portion than at the inner peripheral portion.
- the secondary battery module even if it is manufactured under the desired reduced pressure, it is difficult to remove air bubbles in the plane of the negative electrode side current extraction layer and/or the positive electrode side current extraction layer. For example, as described above, it is more difficult to remove air bubbles in the central portion of the plane than in the peripheral portion. Such a tendency is recognized as the size of the battery cell increases, and is particularly noticeable when the size of the battery cell is 20 cm ⁇ 20 cm or more, or when the battery cell is flat and has a short axis length of 20 cm or more.
- the present invention is applied to the battery cell 420 of this size, the small hole 496 is formed in the surface of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416, and furthermore, as described above.
- the shape and arrangement of the holes 496 even if a large-sized air bubble 81 is generated in the plane of the negative electrode side current extraction layer 410 and/or the positive side current extraction layer 416 during manufacturing, the entire area of the plane can be prevented. Air bubbles 481 can be reliably removed over a period of time.
- FIG. 24 shows an example in which a plurality of battery cells 20 share the negative current supply layer 410 and the positive current extraction layer 416 .
- a plurality of battery cells 420 are arranged between one negative current supply layer 410 and one positive current extraction layer 416 .
- the negative electrode side current supply layer 410 and the positive electrode side current extraction layer 416 are commonly used.
- local current concentration can be suppressed in each battery cell 420 based on a similar mechanism.
- a positive temperature coefficient (PTC) thermistor (not shown) is interposed between the positive current collector 415 and the positive current extraction layer 416 and/or between the negative current collector 411 and the negative current supply layer 410. may be installed.
- This PTC thermistor may be made of a material such as an organic polymer in which conductive powder is dispersed.
- the resistance of PTC thermistors is usually almost constant from room temperature to the Curie temperature, but increases sharply when the Curie temperature is exceeded. In this embodiment, by utilizing this characteristic, the resistance of the PTC thermistor is rapidly increased as the temperature rises, thereby equalizing the resistances of the negative current supply layer 410 and the positive current extraction layer 416, and locally current concentration can be suppressed.
- the negative electrode-side current supply layer 410 and the positive electrode-side current extraction layer 416 a so-called functionally graded material (FGM: Functionally Graded Material) can be used for that portion. ) may be applied.
- FGM Functionally Graded Material
- the resistance value is changed continuously or stepwise within the material.
- the aspect of the present invention may include the configuration of the second embodiment described below.
- the second embodiment will be described below.
- the same components and members as those in the first embodiment described above are given the same reference numerals, and the description thereof will be omitted.
- the negative electrode rectifying section 405 is formed in a rod shape, and the extending direction of the rod shape is substantially the lateral direction y. It is extended like this.
- the negative electrode rectifying portion 5 is formed in a convex shape downward from the lower surface of the negative electrode current supply layer 410 below the negative electrode current collector 411 .
- the negative rectifying section 405 is provided at one end in the longitudinal direction x perpendicular to the width direction y, but it is not limited to this.
- the negative rectifying section 405 extends from one end side to the other end side in the width direction y, but is not limited to this, and extends from one end side and/or the other end side in the width direction y. It goes without saying that it may be configured such that it does not reach the side.
- the negative electrode rectifying section 405 is connected to a conductive section 407 made of a conductive layer for supplying current from an electric circuit during discharging, in other words, for sending electrons during discharging.
- a positive electrode rectifying section 406 to which current is supplied extends in the width direction y (the depth direction in FIG. 19) in the positive electrode side current extraction layer 416 .
- the positive electrode rectifying section 406 is formed in a bar shape and extends so that the extending direction of the bar shape is substantially the lateral direction y.
- the positive rectifying section 406 is formed in a convex shape upward from the upper surface of the positive current extraction layer 416 above the positive current collector 415 . It is assumed that the positive rectifying section 406 is provided at one end in the longitudinal direction x perpendicular to the width direction y, but it is not limited to this.
- the positive rectifying section 406 extends from one end side to the other end side in the width direction y, but it is not limited to this, and the one end side and/or the other end in the width direction y is extended. It goes without saying that it may be configured such that it does not reach the side.
- a conductive portion 408 made of a conductive layer is connected to the positive rectifying portion 406 to supply current to the electric circuit during discharge.
- the positive rectifying section 406 is provided at one end in the longitudinal direction x
- the negative rectifying section 405 is provided at the other end in the longitudinal direction x, which is the opposite side.
- the cross-sectional view as shown in FIG. 26 exemplifies the case where the positive rectifying section 406 and the negative rectifying section 405 are arranged diagonally, but it is not limited to this.
- the negative rectification unit 405 and the positive rectification unit 406 are not necessarily limited to the case where both are mounted. good.
- the negative electrode rectifying portion 405 and the positive electrode rectifying portion 406 are metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, similarly to the negative electrode current collector 411 and the positive electrode current collector 415, and Examples include calcined carbon, conductive polymer materials, and conductive glass.
- the negative rectifying section 405 and the positive rectifying section 406 may be composed of a resin current collector made of a conductive polymer material.
- a conductive polymer or a matrix resin to which a conductive filler made of a conductive filler is added may be used.
- the negative rectifying section 405 is configured to have a lower resistance than the negative current supply layer 410
- the positive rectifying section 406 is configured to have a lower resistance than the positive current extraction layer 416 .
- the material used for the negative current supply layer 410 is a metal material
- the material forming the negative electrode rectifying section 405 has a lower resistance value than the metal material used for the negative current supply layer 410.
- a material having physical properties may be selected.
- the material used for the positive electrode current extraction layer 416 is a metal material
- the material constituting the positive electrode rectifying section 406 has a higher resistance value than the metal material used for the positive electrode current extraction layer 416 .
- a material with low physical properties may be selected.
- the material used for the negative rectifying section 405 and the negative current supply layer 410 is a resin current collector made of a conductive polymer material
- the material constituting the negative rectifying section 405 is the negative current supply layer.
- the material of the conductive filler added to the resin current collector may be selected or the amount of the conductive filler added may be adjusted so that the resistance is lower than that of the layer 410 .
- the material used for the positive rectifying section 406 and the positive current extraction layer 416 is a resin current collector made of a conductive polymer material
- the material forming the positive rectifying section 6 is The material of the conductive filler added to the resin current collector may be selected or the amount of the conductive filler added may be adjusted so that the resistance is lower than that of the extraction layer 416 .
- the adjustment of the resistances of the negative electrode rectification unit 405 and the positive electrode rectification unit 406 can be realized by previously adjusting the shape that affects the resistance value, such as the cross-sectional area and length, in addition to the above-described method of selecting materials. can be For example, the positive rectifying section 406 shown in FIG. adjusted to be lower.
- FIG. 28 shows the paths through which the currents P to S flow when the secondary battery module 401 is composed of single cells, in other words, the paths along which electrons move.
- the propagation path of It is natural for the propagation path of to take a linear movement path parallel to the longitudinal direction x. Similarly, it is self-evident that electrons trying to propagate from the positive electrode rectifying section 406 on the positive current extraction layer 416 try to move in the shortest possible distance. Naturally, the path is parallel to the longitudinal direction x and linear. In other words, this electron propagation path can be considered as a current flow path. The path through which this current flows is parallel to the longitudinal direction x and linear on the positive electrode-side current extraction layer 416, and is also parallel to the longitudinal direction x on the negative electrode-side current supply layer 410. And it becomes natural that it becomes linear.
- the lithium ions occluded in the negative electrode active material 441 move toward the positive electrode active material 442 . Since it is obvious that the lithium ions try to move toward the positive electrode active material 442 in the shortest possible distance, the movement path is perpendicular to the longitudinal direction x and parallel to the thickness direction z. , and linear.
- the positive electrode rectifying section 406 extends in the width direction y in the positive electrode side current extraction layer 416 .
- various currents P to S flow in the negative electrode rectifying section 405. All of these flow straight through the positive electrode side current extraction layer 416 in a direction parallel to the longitudinal direction x. By doing so, it is taken in by the positive electrode rectifying section 406 .
- the positive rectifying section 406 is not extended in the width direction y, the paths through which all the currents P to S flow on the positive electrode side current extraction layer 416 are not straight, but oblique. The current propagation path becomes longer.
- the positive electrode rectifying section 406 extending in the width direction y is disposed on one end side in the longitudinal direction, the flow from each location in the width direction y
- the incoming currents P to S reach the positive rectifying section 406 by naturally traveling straight in the longitudinal direction x.
- the currents P to S do not take oblique paths on the positive electrode-side current extraction layer 416, but go straight in the longitudinal direction x, and are extracted to the positive electrode rectifying section 406 along the shortest route. becomes.
- the positive electrode rectifying section 406 by configuring the positive electrode rectifying section 406 to have a resistance lower than that of the positive electrode side current extraction layer 416 , the current flowing on the positive electrode side current extraction layer 416 flows smoothly toward the positive electrode rectifying section 6 .
- the flow path of all the currents P to S and the movement of lithium ions from the negative electrode rectifying section 405 in the negative electrode side current supply layer 410 are parallel to the longitudinal direction x and linear. From there, lithium ions move from the negative electrode 402 toward the positive electrode 403 in a direction parallel to the thickness direction z and in a straight line, and further inside the positive electrode side current extraction layer 416 to the positive electrode rectifying section 6. Currents P to S flow linearly in a direction parallel to the longitudinal direction x.
- the flow path of the currents P to S in the negative electrode current supply layer 410 and the direction of movement of the lithium ions, and the direction of movement of the lithium ions and the flow path of the currents P to S in the positive electrode current extraction layer 416 are substantially perpendicular to each other. becomes.
- the positive rectifying section 406 extends in the width direction y, the path from the negative rectifying section 405 to the positive rectifying section 406 through which all the currents P to S flow is shortest distance.
- the paths through which the currents P to S flow in the negative current supply layer 410 and the positive current extraction layer 416 are shortened, so that the resistance can be reduced.
- the paths of the currents P to S flowing through the negative current supply layer 410 and the positive current extraction layer 416 are all parallel to the longitudinal direction x, and the propagation distances are equal. The uniformity of the resistance in the supply layer 410 and the positive current extraction layer 416 can be achieved.
- a current can flow uniformly without generating a local resistance distribution on the negative current supply layer 410 and the positive current extraction layer 416 .
- the temperature does not rise locally in those areas, and a large current easily flows locally without a local decrease in resistance. You can avoid falling into a vicious circle.
- a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform, thereby suppressing deterioration of the battery cell 420 itself. can be achieved, and by extension the life of the battery cell 420 can be increased.
- the negative electrode rectifying portion 405 is not an essential component in the present invention, it is extended in the width direction y so that the current is dispersed in the width direction y before the negative electrode side current supply layer 410 . can be propagated upwards. Therefore, in the present invention having the positive rectifying section 406 extending in the width direction y, by extending the negative rectifying section 405 also in the width direction y, the paths of the respective currents are arranged in the longitudinal direction. The current can flow parallel to x, which is more suitable for uniform current distribution.
- both the positive rectifying section 406 and the negative rectifying section 405 may extend from one end side to the other end side in the width direction y.
- the current can be dispersed over the entire length in the width direction y on the side of the negative rectification section 405 , and the dispersed current is allowed to travel straight in parallel to the longitudinal direction x, so that all of these are transferred to the positive rectification section 406 . It becomes possible to take out at As a result, by dispersing the current more and lowering the resistance value, local concentration of the current can be further suppressed.
- both the positive rectifying section 406 and the negative rectifying section 405 extend from one end side to the other end side in the width direction y, and either the positive rectifying section 406 or the negative rectifying section 405 It may extend from one end side to the other end side in the width direction y. It goes without saying that both the positive rectifying section 406 and the negative rectifying section 405 may not reach the one end side and the other end side in the width direction y.
- the positive electrode rectifying section 406 is provided on one end side in the longitudinal direction x, and the negative electrode rectifying section 405 is provided on the other end side in the longitudinal direction x. 403 and the negative electrode 402 can be effectively used for discharging.
- FIG. 29 shows a secondary battery module 401' according to another embodiment to which aspects of the present invention are applied.
- the same constituent elements and members as those of the above-described secondary battery module 401 are denoted by the same reference numerals, and descriptions thereof are omitted below.
- the secondary battery module 401' is similar to the secondary battery module 401 in that it has the battery cells 420 described above. However, in this secondary battery module 401', the positive rectifying section 406 and the negative rectifying section 405 extend in the longitudinal direction x. A conductive portion 408 for supplying current to the electric circuit is connected to the positive rectifying portion 406 , and a conductive portion 407 is connected to the negative rectifying portion 405 .
- the path through which the current flows is the positive electrode side current extraction layer. 416 , it is parallel to the width direction y and linear, and similarly on the negative electrode side current supply layer 410 , it is natural to be parallel to the width direction y and linear.
- the lithium ions occluded in the negative electrode active material 441 move toward the positive electrode active material 442 . Since it is obvious that the lithium ions try to move toward the positive electrode active material 442 in the shortest possible distance, they are linear and parallel to the thickness direction z.
- the positive electrode rectifying section 406 extends in the longitudinal direction x in the positive electrode side current extraction layer 416 .
- various currents T to V flow in the negative electrode rectifying section 405. All of these flow through the positive electrode side current extraction layer 416 in a direction parallel to the width direction y and in a straight line. By going straight, it is taken in by the positive electrode rectifying section 406 . That is, the currents T to V flowing from each location in the longitudinal direction x naturally travel straight in the width direction y and reach the positive rectifying section 406 . As a result, the currents T to V do not take oblique paths on the positive electrode-side current extraction layer 416, but go straight in the width direction y, and are extracted to the positive electrode rectifying section 406 along the shortest route. It will happen.
- the path from the negative rectifying section 405 to the positive rectifying section 406, through which all the currents T to V flow, is the shortest. be the distance.
- the paths through which the currents T to V flow in the negative current supply layer 410 and the positive current extraction layer 416 are shortened, and the propagation distances are made equal, so that the resistance can be reduced and uniformed.
- a current can flow uniformly without generating a local resistance distribution on the negative electrode current supply layer 410 and the positive electrode current extraction layer 416, and the temperature does not rise locally. It is possible to prevent a vicious circle in which a large current tends to flow locally without causing a dramatic decrease in resistance.
- the positive rectifying section 406 and the negative rectifying section 405 are extended in the longitudinal direction x, so that the current flows in the width direction y. Since the lateral direction y is shorter than the longitudinal direction x, the distance through which the current flows can be shortened. Since the resistance decreases as the distance through which the current flows becomes shorter, it is possible to increase the effect of lowering the resistance and making it uniform. Therefore, according to the secondary battery module 401', the deterioration of the battery cells 420 themselves can be further suppressed, and the life of the battery cells 420 can be extended more preferably.
- either one or both of the positive rectifying section 406 and the negative rectifying section 405 may extend from one end side to the other end side in the longitudinal direction y.
- the current can be dispersed over the entire length in the longitudinal direction x on the side of the negative rectifying section 405 , and the dispersed current is allowed to travel straight in parallel to the lateral direction y, so that all of these are transferred to the positive rectifying section 406 . It becomes possible to take out at As a result, by dispersing the current more and lowering the resistance value, local concentration of the current can be further suppressed.
- the positive rectification section 406 is provided on one end side in the width direction y
- the negative rectification section 405 is provided on the other end side in the width direction y. It is possible to effectively utilize the positive electrode 403 and the negative electrode 402 in the discharge.
- small holes 496 may be formed in the negative current extraction layer 410 and/or the positive current extraction layer 416 as in the first embodiment. As a result, local concentration of current can be suppressed during discharging and charging, and the life of the battery can be further extended.
- air bubbles 481 are formed between them, the air in the air bubbles 481 passes through the small holes 496 and is released to the outside by putting in a reduced pressure environment, so that the air bubbles 481 can be removed.
- a positive electrode side current extraction layer 416 in other words, on the upper surface of the positive electrode current collector 415, a plurality of current extraction portions 436 as conductors and a positive electrode conductive wire 422 are provided. , a positive junction 426 is mounted.
- FIG. 31 is a plan view of the positive electrode side current extraction layer 416 viewed from above.
- a plurality of current extraction portions 436a to 436d are connected to the upper surface of the positive electrode current collector 415 as conductors.
- the current extracting portions 436a to 436d are electrically connected to the positive electrode current collector 415.
- the positive current extraction layer 416 also includes a plurality of positive conductive wires 422 a to 422 d for electrically connecting the current extraction portions 436 a to 436 d to the positive junction 426 .
- the lengths from the current extraction portions 436a to 436d of the positive electrode conductors 422a to 422d to the positive electrode junction portion 426 are substantially the same.
- the term “substantially the same” as used herein is not limited to the case where the lengths are completely the same, and the total length may have a difference of about 20%.
- the positive current extraction layer 416 is divided into a plurality of regions 432a to 432d whose top surfaces are substantially uniform.
- the term "substantially uniform” as used herein refers to the case where the regions 432a to 432d are completely symmetrical in shape and have the same area. The shape of 432d may deviate slightly from perfect symmetry, and an error may occur in the area between regions 432a-432d.
- areas 432a to 432d do not need to consist of areas that are clearly physically separated, and may be areas that are not physically separated and are separated beyond what they appear to be.
- the term "apparent division” as used herein means a division allocated in design, that is, although it is divided as a region on the design drawing, it is actually a single positive electrode side current extraction layer 416 that has no division as a whole. It may be configured. Also, the regions 432a to 432d may be composed of physically distinct regions. In such a case, the positive current extraction layer 416 is separated by an insulator or the like so as to form mutually independent regions 432a to 432d.
- the positive electrode-side current extraction layer 416 When the positive electrode-side current extraction layer 416 is physically divided into a plurality of regions 432a to 432d, not only the positive electrode-side current extraction layer 416 but also the negative electrode current collector 411, the negative electrode active material layer 412, and the separator that constitute the battery cell 420. 413 and the positive electrode active material layer 414 may be similarly separated via an insulator or the like.
- the regions 432a to 432d are formed by equally dividing the positive electrode side current extraction layer 416, which is square in plan view, into four parts, and are exactly square in plan view.
- the regions 432a to 432d are not limited to having such a shape, and if the positive electrode side current extraction layer 416 is rectangular in plan view, it can be It may be configured in a rectangular shape divided into four.
- the positive electrode side current extraction layer 416 is divided into four regions 432a to 432d has been described as an example, but the present invention is not limited to this, and any number of regions can be used as long as there is a plurality of regions. It may be configured by being divided. Even in such a case, it is assumed that the regions 432 are configured to be equal to each other. It may be understood that there is. Also, the respective regions are not limited to a completely equal relationship, and may be approximately equal (substantially equal).
- the current extraction portions 436a-436d are provided substantially at the center of the above-described regions 432a-432d.
- the positive electrode junction part 426 is located at the center of the positive electrode current collector 415 composed of the regions 432a to 432d, and is provided at a junction where the boundaries of the regions 432a to 432d intersect each other at one point.
- positive electrode conductive wires 422a to 422d extend linearly from current extraction portions 436a to 436d provided substantially at the center of regions 432a to 432d toward this positive electrode junction portion 426.
- the positive electrode conductors 422a to 422d are linearly extended from the current extraction portions 436a to 436d provided substantially at the center of the regions 432a to 432d provided evenly to each other toward the positive electrode junction portion 426. , it is obvious that the lengths are geometrically the same. In this way, the lengths of the positive electrode conductors 422a-422d are designed to be the same as each other, but they are not necessarily exactly the same, and there may be some length deviation between the positive electrode conductors 422a-422d. is acceptable.
- a conductive portion 408 made of a conductive layer for supplying current to the electric circuit during discharge is connected from the positive junction portion 426 .
- the positive electrode junction 426 be formed at the center of the positive electrode current collector 415 composed of the regions 432a to 432d.
- the lengths of the positive electrode conductors 322a to 322d are adjusted as shown in FIG. 32 so that the lengths from the current extraction portions 436a to 436d to the positive electrode junction portion 426 are substantially the same. It will happen.
- the wiring composed of the current extraction portions 436a to 436d, the positive electrode conductors 322a to 322d, and the positive electrode junction portion 426 is not essential, and at least the wiring provided with the current extraction portion 436 may be used. good.
- the current extraction part 436 is configured to pass through the positive electrode current extraction layer 416 from the upper end to the lower end, which is convenient when another circuit is connected to the upper part of the positive electrode current extraction layer 416. can be increased.
- the negative electrode-side current supply layer 410 is formed on the lower surface of the negative electrode current collector 411 as shown in FIG. 33, and is composed of an insulator.
- a plurality of current supply parts 435a to 435d as conductors are connected to the lower surface of the negative current collector 411.
- FIG. The current supply parts 435 a to 435 d are electrically connected to the negative electrode current collector 411 .
- the negative electrode-side current supply layer 410 includes a plurality of negative electrode conductive lines 421a to 321d for electrically connecting the current supply portions 435a to 435d to the negative electrode junction portion 425.
- the lengths from the current supply portions 435a to 435d of the negative electrode conductive lines 421a to 321d to the negative electrode junction portion 425 are substantially the same.
- the negative electrode current supply layer 410 also has a lower surface divided into a plurality of regions 431a to 431d that are substantially equal to each other. Details of the regions 431a to 431d are the same as those of the regions 432a to 432d described above.
- the current supply parts 435a to 435d are provided substantially in the center of the above-described regions 431a to 431d.
- the negative junction 425 is located at the center of the negative current supply layer 410 consisting of the regions 431a to 431d, and is provided at a junction where the boundaries of the regions 431a to 431d intersect at one point. That is, the negative electrode conductive lines 421a to 421d are linearly extended from the current supply portions 435a to 435d provided approximately at the center of the regions 431a to 431d which are evenly provided to each other toward the negative electrode junction portion 425. , it is obvious that the lengths are geometrically the same.
- the lengths of the negative electrode conductors 421a to 421d are designed to be the same as each other, but they do not necessarily have to be exactly the same. is acceptable.
- a conductive portion 7 made of a conductive layer to which current is supplied from an electric circuit during discharge is connected to the negative electrode junction portion 425 .
- the negative electrode junction 425 is formed at the center of the negative electrode current supply layer 410 composed of the regions 431a to 431d, and is formed at a location other than the center of the negative electrode current supply layer 410. may Even in such a case, the negative electrode conductive lines 421a to 421d need to be adjusted so that the lengths from the current supply portions 435a to 435d to the negative electrode junction portion 25 are substantially the same.
- the wiring consisting of the current supply portions 435a to 435d, the negative electrode conductive wires 421a to 421d, and the negative electrode junction portion 425 is not essential, and at least the wiring provided with the current supply portion 435 may be used. good.
- the current supply portion 435 is configured to penetrate the negative electrode current supply layer 410 from the upper end to the lower end, which is convenient when another circuit is connected to the lower portion of the negative electrode current supply layer 410. can be increased.
- the current in each of the regions 432a to 432d in the positive electrode current extraction layer 416 is taken out by a current take-out portion 436 provided at the center. That is, the currents are dispersed in each of the regions 432 a to 432 d and extracted to the current extracting portion 436 , and the extracted currents are dispersed and flow through the positive electrode conductors 422 to be sent to the positive electrode junction portion 426 . Similarly, the current flowing into the negative electrode junction portion 425 is dispersed and branched to each negative electrode conductive line 421 to reach the current supply portion 435 .
- the current from the external circuit flows into the negative electrode confluence portion 425 and is dispersed in each negative electrode conductive line 421 from here to reach the current supply portion 435 . Since the current supply unit 435 is provided for each of the regions 431a to 431d, the current can be supplied to the regions 431a to 431d. As a result, the current flowing through the negative electrode current collector 411 can be distributed without being concentrated in one pole.
- the current supplied to the negative electrode current collector 411 and the current taken out from the positive electrode current collector 415 can be distributed without being concentrated in the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 .
- the current flowing through each negative electrode conductive line 421 and each positive electrode conductive line 422 can be decreased, and the resistance can be decreased.
- the paths of the currents flowing through the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 via the negative electrode conductive wires 421 and the positive electrode conductive wires 422 have the same propagation distance. Uniform resistance can be achieved in the current supply layer 410 and the positive current extraction layer 416 .
- a current can flow uniformly without generating a local resistance distribution on the negative current supply layer 410 and the positive current extraction layer 416 .
- the temperature does not rise locally in those areas, and a large current easily flows locally without a local decrease in resistance. You can avoid falling into a vicious circle.
- a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform, thereby suppressing deterioration of the battery cell 420 itself. can be achieved, and by extension the life of the battery cell 420 can be increased.
- the aspect of the present invention includes, on the positive electrode side, a plurality of positive electrode conductor wires 422 for electrically connecting from each current extraction portion 436 to the positive electrode junction portion 426, and the positive electrode conductor wires 422 are The lengths are substantially the same as each other.
- the current extraction portions 436 are provided at approximately equal positions in the positive electrode side current extraction layer 416 .
- the current to be taken out from the positive electrode side current extraction layer 416 can be taken out more evenly between the plurality of current extraction portions 436, and the current can be distributed and distributed to the plurality of positive electrode conductive wires 422. This eliminates the occurrence of a portion where a large amount of current locally flows.
- the positive current extraction layer 416 is divided into a plurality of regions 432 that are substantially equal to each other, and each current extraction part 436 is provided substantially at the center of each region 432, so that the positive current extraction layer 416 It becomes possible to more evenly extract the current to be extracted among the plurality of current extracting portions 436 .
- a plurality of negative electrode conductive wires 421 are provided for electrically connecting each current supply portion 35 to a negative electrode junction portion 425, and the lengths of the negative electrode conductive wires 421 are substantially equal to each other. assumed to be the same.
- the current supply portions 435 are provided at substantially equal positions on the negative electrode side current supply layer 410 .
- the current to be supplied to the negative electrode current collector 411 can be more uniformly supplied among the plurality of current supply portions 435, and the current supply portion 435 is provided with a plurality of negative electrode conductive wires. 421 can be dispersively flowed, and there is no occurrence of a portion where a large amount of current flows locally.
- the negative electrode-side current supply layer 410 is divided into a plurality of regions 431 that are substantially equal to each other, and each current supply portion 435 is provided substantially at the center of each region 431, so that the negative electrode current collector 411 is It becomes possible to more evenly supply the current to be supplied between the plurality of current supply units 435 .
- the positive current extraction layer 416 and the current extraction part 406, the positive conductive wire 422, and the positive junction part 426 included in the positive current extraction layer 416 may be classified in function like a so-called printed circuit board. That is, the positive current extraction layer 416 may be made of an insulator on the printed circuit board, and the current extraction part 406, the positive conductive wire 422, and the positive junction part 426 may be configured as wiring on the printed circuit board.
- the functions of the negative current supply layer 410 and the current supply section 405, the negative conductive line 421, and the negative junction 425 included in the negative current supply layer 410 may be classified like a so-called printed circuit board. That is, the negative current supply layer 410 may be made of an insulator on the printed circuit board, and the current supply part 405, the negative conductive line 421, and the negative junction 425 may be made of wiring on the printed circuit board.
- the material thereof may be a paper substrate impregnated with phenol resin, or a paper substrate impregnated with epoxy resin.
- impregnated material glass fabric (woven glass fiber) impregnated with epoxy resin, paper base material impregnated with polyimide resin, glass cloth base material It may be composed of materials impregnated with fluororesin, glass cloth substrate impregnated with PPO (Poly Phenylene Oxide) resin, metal-based substrates such as aluminum, or glass-ceramic based substrates. It may be configured with a substrate that has
- the functions like the printed circuit board it is possible to reduce the contact resistance when connecting directly to other circuits or printed circuit boards (not shown).
- the current supply portion 405, the negative electrode conductive wire 421, the negative junction portion 425, the current supply portion 405, and the negative electrode conductive layer are formed.
- the easiness of the work can be improved in providing the wiring consisting of the line 421 and the negative electrode confluence portion 425 . As a result, it is possible to enhance the convenience in providing the wiring described above.
- small holes 496 may be formed in the negative current extraction layer 410 and/or the positive current extraction layer 416 as in the first embodiment.
- each small hole 496 is formed in a portion where the current extraction portion 436, the positive electrode conductive wire 422, and the positive electrode junction portion 426 are not formed in the plane of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416.
- a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform.
- a secondary battery module is a laminated battery obtained by laminating a plurality of storage elements each having a negative electrode current collector, a negative electrode active material layer, a separator or a solid electrolyte, a positive electrode active material layer, and a positive electrode current collector.
- a current extraction layer is in contact with at least one surface of the outermost layer in the laminated battery, and a small hole penetrating vertically is formed in the current extraction layer.
- the small holes are circular, elliptical, or slit-shaped in plan view.
- the dimension of the minor axis of the elliptical shape is 0.2 mm to 2 mm
- the radius of the circular shape is 0.2 mm to 2 mm.
- a plurality of small holes are formed in the current extraction layer, and relatively more small holes are formed in the central portion of the current extraction layer than in the peripheral portion of the current extraction layer.
- the current extraction layer includes a positive electrode current extraction layer and a negative electrode current supply layer, and the positive electrode current extraction layer and the negative electrode current supply layer are made of elastically deformable elastic material. ing.
- the current extraction layer is made of nonwoven fabric.
- a PTC thermistor is interposed between the positive current collector and the positive current extraction layer.
- a PTC thermistor is interposed between the negative electrode current collector and the negative electrode current supply layer.
- the positive electrode-side current extraction layer includes a plurality of current extraction portions and a plurality of positive electrode conductive wires for electrically connecting the current extraction portions to the positive electrode merging portion.
- the length of each positive electrode conductive wire is substantially the same as each other.
- the positive electrode rectifying section that delivers current during discharge extends in the width direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
In this battery module, a battery assembly (11) and a plurality of light emitting units (12) are covered by and accommodated in a gas barrier film (13), which is an exterior body. The gas barrier film (13) has a function of preventing the permeation of various gases such as hydrogen gas generated from electrodes of the battery assembly (11), for example, and as a whole is transparent with respect to optical signals emitted from light emitting elements (42) of the light emitting units (12). The optical signals emitted from the light emitting elements (42) covered by the gas barrier film (13) are received outside a structural body (10) through the gas barrier film (13). According to this battery module, sealing of the battery assembly by means of the exterior body can be implemented while simplifying the internal configuration of the battery module, thereby facilitating assembly.
Description
本発明は、電池モジュール及びその製造方法に関するものである。
The present invention relates to a battery module and its manufacturing method.
近年、電気自動車及びハイブリッド電気自動車等の電源や、携帯電話及びスマートフォン等の携帯型電子機器の電源として、例えばリチウムイオン電池等の薄型電池が用いられている。リチウムイオン電池の電池モジュールは、例えば、活物質層及び集電体を有する複数のリチウムイオン単電池が積層されてなる組電池が、当該組電池を封止するフィルムであって、組電池の電極等から発生するガスを吸収するガスバリアフィルムの外装体で覆われて構成されている(特許文献1,2を参照)。ガスバリアフィルムとしては、アルミニウム等のラミネートフィルムが用いられている。
In recent years, thin batteries such as lithium ion batteries have been used as power sources for electric vehicles, hybrid electric vehicles, etc., and as power sources for mobile electronic devices such as mobile phones and smart phones. A battery module of a lithium ion battery is, for example, an assembled battery in which a plurality of lithium ion single cells having an active material layer and a current collector are stacked, and a film sealing the assembled battery, and an electrode of the assembled battery It is covered with an exterior body made of a gas barrier film that absorbs gas generated from, etc. (see Patent Documents 1 and 2). A laminate film of aluminum or the like is used as the gas barrier film.
また、リチウムイオン電池の電池モジュールでは、組電池を構成する各単電池の状態を管理することを要する。例えば、組電池を充電する際に、過充電状態となる単電池が存在することがないように充電管理を行うことが必要である。そのため、組電池の個々の単電池の状態を光信号で送受信する送受信ユニットが設けられた電池モジュールや、単電池の状態を共通の光ファイバーにより1個の受光ダイオードで検出する構成の電池モジュール等が案出されている(特許文献3,4を参照)。
従来より、例えば車載用のバッテリとして、リチウムイオン二次電池等の電池が適用されている。リチウムイオン二次電池では、充電・放電の過程において、その内部抵抗により発熱が生じ、特に大電流が通過する大型電池においては発熱量が大きい。そのため、電池の温度上昇を抑制すべく、空冷を行うための空気を流す貫通孔や、より高い冷却効果を得るための冷却水を流す貫通孔を電池内部に設ける工夫がなされている。 Moreover, in a battery module of a lithium ion battery, it is necessary to manage the state of each unit cell that constitutes the assembled battery. For example, when charging an assembled battery, it is necessary to manage charging so that there is no overcharged unit cell. Therefore, a battery module equipped with a transmission/reception unit that transmits and receives the state of each unit cell of the assembled battery by optical signal, and a battery module configured to detect the state of the unit cell with a single light-receiving diode through a common optical fiber are being developed. have been devised (see Patent Documents 3 and 4).
2. Description of the Related Art Conventionally, batteries such as lithium ion secondary batteries have been used as batteries for vehicles, for example. Lithium ion secondary batteries generate heat due to their internal resistance during the process of charging and discharging, and the amount of heat generated is particularly large in large batteries through which large currents pass. Therefore, in order to suppress the temperature rise of the battery, a through hole for air cooling and a through hole for cooling water to obtain a higher cooling effect are provided inside the battery.
従来より、例えば車載用のバッテリとして、リチウムイオン二次電池等の電池が適用されている。リチウムイオン二次電池では、充電・放電の過程において、その内部抵抗により発熱が生じ、特に大電流が通過する大型電池においては発熱量が大きい。そのため、電池の温度上昇を抑制すべく、空冷を行うための空気を流す貫通孔や、より高い冷却効果を得るための冷却水を流す貫通孔を電池内部に設ける工夫がなされている。 Moreover, in a battery module of a lithium ion battery, it is necessary to manage the state of each unit cell that constitutes the assembled battery. For example, when charging an assembled battery, it is necessary to manage charging so that there is no overcharged unit cell. Therefore, a battery module equipped with a transmission/reception unit that transmits and receives the state of each unit cell of the assembled battery by optical signal, and a battery module configured to detect the state of the unit cell with a single light-receiving diode through a common optical fiber are being developed. have been devised (see Patent Documents 3 and 4).
2. Description of the Related Art Conventionally, batteries such as lithium ion secondary batteries have been used as batteries for vehicles, for example. Lithium ion secondary batteries generate heat due to their internal resistance during the process of charging and discharging, and the amount of heat generated is particularly large in large batteries through which large currents pass. Therefore, in order to suppress the temperature rise of the battery, a through hole for air cooling and a through hole for cooling water to obtain a higher cooling effect are provided inside the battery.
リチウムイオン電池の電池モジュールでは、組電池を構成する単電池の状態を把握するには、電池モジュールに各単電池の状態を示す光信号を発信する発光部を設け、更に、少なくとも、発光部からの光信号を外部に伝達するための光導波路等の光学部品を配置することがある。当該光学部品は、電池モジュールの外装体の内部において当該光学部品からの光信号を直接的に受けて外装体の外部に伝達することから、当該光学部品としては、光信号を受信する前段部分を電池モジュールの外装体の内部に配置し、受信した光信号を伝搬する後段部分を電池モジュールの外装体の外部に引き出すことがある。この場合、電池モジュールの内部構成が複雑化するのみならず、組電池の封止が不完全となる懸念があり、電池モジュールの脆弱化を惹起する一原因となるおそれがある。このような複雑な構成の電池モジュールを組み立てることも容易ではない。
In a battery module of a lithium-ion battery, in order to grasp the state of the single cells that make up the assembled battery, the battery module is provided with a light emitting section that emits an optical signal indicating the state of each single cell. An optical component such as an optical waveguide may be arranged for transmitting the optical signal of the optical signal to the outside. Since the optical component directly receives the optical signal from the optical component inside the exterior body of the battery module and transmits the optical signal to the outside of the exterior body, the optical component includes a front part for receiving the optical signal. In some cases, the rear stage portion, which is arranged inside the battery module armor and propagates the received optical signal, is pulled out of the battery module armor. In this case, not only does the internal configuration of the battery module become complicated, but there is also a concern that the sealing of the assembled battery may be incomplete, which may be one of the causes of fragility of the battery module. It is also not easy to assemble a battery module with such a complicated configuration.
本発明は、電池モジュールの内部構成を簡素化しつつ外装体による組電池の封止を実現し、容易に組み立てが可能な電池モジュール及びその製造方法を提供することを目的とする。
It is an object of the present invention to provide a battery module that can be easily assembled by simplifying the internal configuration of the battery module, sealing the assembled battery with an outer package, and a method for manufacturing the same.
本発明者らは、上記のような知見に基づいて鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。
As a result of intensive studies based on the above findings, the inventors came up with the following aspects of the invention.
本発明の一態様に係る電池モジュールは、
樹脂集電体層を含む正極集電体及び前記正極集電体上に形成された正極活物質を含む正極活物質層を有する正極と、樹脂集電体層を含む負極集電体及び前記負極集電体上に形成された負極活物質を含む負極活物質層を有する負極と、前記正極活物質層と前記負極活物質層との間に配置されるセパレータと、を備える単電池が複数積層されてなる組電池と、
前記単電池ごとに設けられ、当該単電池の状態に基づき光信号を送信する複数の発光部と、
前記組電池を覆うガスバリアフィルムと、
を有しており、
前記ガスバリアフィルムは、全体として前記光信号に対して透明である。 A battery module according to an aspect of the present invention comprises
A positive electrode current collector including a resin current collector layer; a positive electrode having a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector; a negative electrode current collector including a resin current collector layer; A plurality of unit cells are stacked each including a negative electrode having a negative electrode active material layer containing a negative electrode active material formed on a current collector, and a separator disposed between the positive electrode active material layer and the negative electrode active material layer. an assembled battery,
a plurality of light emitting units provided for each of the cells and transmitting optical signals based on the state of the cells;
a gas barrier film covering the assembled battery;
and
The gas barrier film as a whole is transparent to the optical signal.
樹脂集電体層を含む正極集電体及び前記正極集電体上に形成された正極活物質を含む正極活物質層を有する正極と、樹脂集電体層を含む負極集電体及び前記負極集電体上に形成された負極活物質を含む負極活物質層を有する負極と、前記正極活物質層と前記負極活物質層との間に配置されるセパレータと、を備える単電池が複数積層されてなる組電池と、
前記単電池ごとに設けられ、当該単電池の状態に基づき光信号を送信する複数の発光部と、
前記組電池を覆うガスバリアフィルムと、
を有しており、
前記ガスバリアフィルムは、全体として前記光信号に対して透明である。 A battery module according to an aspect of the present invention comprises
A positive electrode current collector including a resin current collector layer; a positive electrode having a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector; a negative electrode current collector including a resin current collector layer; A plurality of unit cells are stacked each including a negative electrode having a negative electrode active material layer containing a negative electrode active material formed on a current collector, and a separator disposed between the positive electrode active material layer and the negative electrode active material layer. an assembled battery,
a plurality of light emitting units provided for each of the cells and transmitting optical signals based on the state of the cells;
a gas barrier film covering the assembled battery;
and
The gas barrier film as a whole is transparent to the optical signal.
本発明によれば、電池モジュールの内部構成が簡素化されつつ外装体による組電池の封止が実現でき、容易に組み立てが可能である電池モジュール及びその製造方法を提供することができる。
According to the present invention, it is possible to provide a battery module that simplifies the internal configuration of the battery module, allows the assembled battery to be sealed by the exterior body, and can be easily assembled, and a method for manufacturing the same.
--第1の発明態様--
初めに、第1の発明態様に係る電池モジュール及びその製造方法について説明する。 --First aspect of the invention--
First, a battery module and a manufacturing method thereof according to the first aspect of the invention will be described.
初めに、第1の発明態様に係る電池モジュール及びその製造方法について説明する。 --First aspect of the invention--
First, a battery module and a manufacturing method thereof according to the first aspect of the invention will be described.
以下、第1の発明態様の好適な諸実施形態について、図面を参照しながら詳細に説明する。諸実施形態では、リチウムイオン二次電池の電池モジュール及びその製造方法を開示する。以下では、リチウムイオン二次電池の例を示すが、本発明に係る二次電池の種類としてリチウムイオン二次電池に限定されず、他の二次電池を含む。リチウムイオン二次電池の場合は、以下で説明する態様だけではなく、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態におけるリチウムイオン電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、後述するバイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態におけるリチウムイオン電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。
Hereinafter, preferred embodiments of the first aspect of the invention will be described in detail with reference to the drawings. Embodiments disclose a battery module of a lithium ion secondary battery and a method of manufacturing the same. Although an example of a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to the lithium ion secondary battery, and includes other secondary batteries. Lithium-ion secondary batteries include not only the embodiments described below, but also batteries using a liquid material for the electrolyte and batteries using a solid material for the electrolyte (so-called all-solid-state batteries). In addition, the lithium ion battery in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector. Including a battery with a body. When the resin current collector is used as a resin current collector for a bipolar electrode, which will be described later, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to obtain a bipolar electrode. may be configured. In addition, the lithium ion battery in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to form an electrode, and in the case of a bipolar battery, is a bipolar electrode having a positive electrode layer formed by applying a positive electrode active material or the like using a binder to one surface of a current collector, and a negative electrode layer formed by applying a negative electrode active material or the like using a binder to the opposite surface of the current collector. including those that consist of
<第1の実施形態>
先ず、第1の実施形態について説明する。 <First embodiment>
First, the first embodiment will be described.
先ず、第1の実施形態について説明する。 <First embodiment>
First, the first embodiment will be described.
[電池モジュールの構成]
図1は、第1の実施形態の電池モジュールの構成を示す概略斜視図である。図2は、図1の電池モジュールの構成要素である構造体について、ガスバリアフィルムを一部切り欠いて示す概略斜視図である。図3は、第1の実施形態の電池モジュールの構成要素である組電池を構成する単電池のみを示す概略断面図である。図4は、発光部が設けられた単電池を一部切り欠いて示す概略斜視図である。図5は、発光部のみを拡大して示す概略斜視図である。図6は、構造体に導光管が配置された様子を示す概略断面図である。 [Configuration of battery module]
FIG. 1 is a schematic perspective view showing the configuration of the battery module of the first embodiment. FIG. 2 is a schematic perspective view showing a structure, which is a component of the battery module of FIG. 1, with a part of the gas barrier film cut away. FIG. 3 is a schematic cross-sectional view showing only a unit cell that constitutes an assembled battery, which is a component of the battery module of the first embodiment. FIG. 4 is a schematic perspective view showing a partially cutaway unit cell provided with a light-emitting portion. FIG. 5 is a schematic perspective view showing an enlarged view of only the light emitting portion. FIG. 6 is a schematic cross-sectional view showing how light guide tubes are arranged in a structure.
図1は、第1の実施形態の電池モジュールの構成を示す概略斜視図である。図2は、図1の電池モジュールの構成要素である構造体について、ガスバリアフィルムを一部切り欠いて示す概略斜視図である。図3は、第1の実施形態の電池モジュールの構成要素である組電池を構成する単電池のみを示す概略断面図である。図4は、発光部が設けられた単電池を一部切り欠いて示す概略斜視図である。図5は、発光部のみを拡大して示す概略斜視図である。図6は、構造体に導光管が配置された様子を示す概略断面図である。 [Configuration of battery module]
FIG. 1 is a schematic perspective view showing the configuration of the battery module of the first embodiment. FIG. 2 is a schematic perspective view showing a structure, which is a component of the battery module of FIG. 1, with a part of the gas barrier film cut away. FIG. 3 is a schematic cross-sectional view showing only a unit cell that constitutes an assembled battery, which is a component of the battery module of the first embodiment. FIG. 4 is a schematic perspective view showing a partially cutaway unit cell provided with a light-emitting portion. FIG. 5 is a schematic perspective view showing an enlarged view of only the light emitting portion. FIG. 6 is a schematic cross-sectional view showing how light guide tubes are arranged in a structure.
本実施形態の電池モジュールは、図1及び図2に示すように、組電池11、複数の発光部12、ガスバリアフィルム13、導光管14、受光部15、及び電池状態解析器16を有して構成されている。組電池11及び複数の発光部12は、ガスバリアフィルム13で覆われて封止されており、ガスバリアフィルム13を含む構成を構造体10とする。
As shown in FIGS. 1 and 2, the battery module of this embodiment includes an assembled battery 11, a plurality of light emitting units 12, a gas barrier film 13, a light guide tube 14, a light receiving unit 15, and a battery state analyzer 16. configured as follows. The assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with a gas barrier film 13 , and the structure including the gas barrier film 13 is called a structure 10 .
(組電池)
組電池11は、リチウムイオン二次電池の単電池21が複数積層(図2及び図6の例では5層)されてなるものである。ここでは例えば、積層方向に隣接する単電池21の負極集電体の上面と、正極集電体の下面と、が隣接するように積層され、最上面及び最下面に引出配線22,23が接触するように配置されて、各単電池21が直列接続されている。本実施形態における組電池11は、このように、各々の単電池21が複数積層されて直列接続されるものを含むが、平面状電池(単電池ユニット)を、電気的接続はないが物理的に接触するよう複数積層したものも含まれる。また、単電池21の集電体は、集電体の一方の面に正極が形成され他方の面に負極が形成されたバイポーラ電極用樹脂集電体として用いることもできる。したがって、本実施形態における組電池11は、集電体(バイポーラ電極用樹脂集電体)の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を作製し、双極型電極をセパレータと積層してなる積層体(双極型電池)を含む。 (Battery pack)
The assembledbattery 11 is formed by stacking a plurality of unit cells 21 of lithium ion secondary batteries (five layers in the examples of FIGS. 2 and 6). Here, for example, the unit cells 21 adjacent in the stacking direction are stacked such that the upper surface of the negative electrode current collector and the lower surface of the positive electrode current collector are adjacent to each other, and the lead wires 22 and 23 are in contact with the uppermost surface and the lowermost surface. Each unit cell 21 is connected in series. The assembled battery 11 in this embodiment includes a plurality of individual cells 21 stacked and connected in series as described above. It also includes those in which multiple layers are laminated so as to contact with. Moreover, the current collector of the unit cell 21 can also be used as a resin current collector for a bipolar electrode in which a positive electrode is formed on one surface of the current collector and a negative electrode is formed on the other surface of the current collector. Therefore, in the assembled battery 11 of the present embodiment, a positive electrode is formed on one surface of a current collector (bipolar electrode resin current collector) and a negative electrode is formed on the other surface to form a bipolar electrode, It includes a laminate (bipolar battery) in which a bipolar electrode is laminated with a separator.
組電池11は、リチウムイオン二次電池の単電池21が複数積層(図2及び図6の例では5層)されてなるものである。ここでは例えば、積層方向に隣接する単電池21の負極集電体の上面と、正極集電体の下面と、が隣接するように積層され、最上面及び最下面に引出配線22,23が接触するように配置されて、各単電池21が直列接続されている。本実施形態における組電池11は、このように、各々の単電池21が複数積層されて直列接続されるものを含むが、平面状電池(単電池ユニット)を、電気的接続はないが物理的に接触するよう複数積層したものも含まれる。また、単電池21の集電体は、集電体の一方の面に正極が形成され他方の面に負極が形成されたバイポーラ電極用樹脂集電体として用いることもできる。したがって、本実施形態における組電池11は、集電体(バイポーラ電極用樹脂集電体)の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を作製し、双極型電極をセパレータと積層してなる積層体(双極型電池)を含む。 (Battery pack)
The assembled
(単電池)
組電池11の構成要素である1層の単電池21について、図3に示す。単電池21は、正極電極24及び負極電極26がセパレータ25を介して積層され、正極電極24、セパレータ25、及び負極電極26の外周部を取り囲み封止するシール部27が設けられ、封止された内部に電解液が封入されて構成されている。正極電極24は、正極集電体31及び正極活物質層32が積層されてなる。負極電極26は、負極集電体33及び負極活物質層34が積層されてなる。組電池11は可撓性を有することが好ましい。例えば集電体を樹脂集電体とすることにより、優れた可撓性が得られる。 (cell)
A single-layer cell 21, which is a component of the assembled battery 11, is shown in FIG. In the unit cell 21, a positive electrode 24 and a negative electrode 26 are laminated with a separator 25 interposed therebetween, and a sealing portion 27 is provided to surround and seal the outer peripheral portions of the positive electrode 24, the separator 25, and the negative electrode 26, and is sealed. An electrolytic solution is enclosed in the inside. The positive electrode 24 is formed by stacking a positive current collector 31 and a positive electrode active material layer 32 . The negative electrode 26 is formed by stacking a negative electrode current collector 33 and a negative electrode active material layer 34 . The assembled battery 11 preferably has flexibility. For example, excellent flexibility can be obtained by using a resin current collector as the current collector.
組電池11の構成要素である1層の単電池21について、図3に示す。単電池21は、正極電極24及び負極電極26がセパレータ25を介して積層され、正極電極24、セパレータ25、及び負極電極26の外周部を取り囲み封止するシール部27が設けられ、封止された内部に電解液が封入されて構成されている。正極電極24は、正極集電体31及び正極活物質層32が積層されてなる。負極電極26は、負極集電体33及び負極活物質層34が積層されてなる。組電池11は可撓性を有することが好ましい。例えば集電体を樹脂集電体とすることにより、優れた可撓性が得られる。 (cell)
A single-
(正極集電体)
正極集電体31を構成する材料としては、銅、アルミニウム、チタン、ステンレス、鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。 (Positive electrode current collector)
Materials constituting the positive electrodecurrent collector 31 include metallic materials such as copper, aluminum, titanium, stainless steel, steel, nickel, and alloys thereof, baked carbon, conductive polymer materials, conductive glass, and the like. .
正極集電体31を構成する材料としては、銅、アルミニウム、チタン、ステンレス、鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。 (Positive electrode current collector)
Materials constituting the positive electrode
また、集電体は、導電性高分子材料からなる樹脂集電体であることが好ましい。集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。集電体の厚さは、特に限定されないが、50μm~500μmであることが好ましい。
In addition, the current collector is preferably a resin current collector made of a conductive polymer material. The shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above material or a deposited layer made of fine particles made of the above material. Although the thickness of the current collector is not particularly limited, it is preferably 50 μm to 500 μm.
樹脂集電体を構成する導電性高分子材料としては例えば、導電性高分子や、樹脂に必要に応じて導電剤を添加したものを用いることができる。導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
As the conductive polymer material that constitutes the resin current collector, for example, a conductive polymer or a resin to which a conductive agent is added as necessary can be used. As the conductive agent that constitutes the conductive polymer material, the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
正極集電体31としては、導電性フィラーとマトリックス樹脂とを含むことが好ましい。マトリックス樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
The positive electrode current collector 31 preferably contains a conductive filler and a matrix resin. Examples of matrix resins include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), polytetrafluoroethylene (PTFE ), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resins, silicone resins or mixtures thereof. From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferred. (PMP).
導電性フィラーは、導電性を有する材料から選択される。
具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。これらの導電性フィラーは1種単独で用いても良いし、2種以上併用しても良い。また、これらの合金又は金属酸化物を用いても良い。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、更に好ましくはカーボンである。またこれらの導電性フィラーとしては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電性フィラーの材料のうち金属のもの)をめっき等でコーティングしたものでも良い。 The conductive filler is selected from materials having electrical conductivity.
Specifically, metal [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. ], and mixtures thereof, but are not limited thereto. These conductive fillers may be used singly or in combination of two or more. Also, alloys or metal oxides thereof may be used. From the viewpoint of electrical stability, preferred are aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof, more preferred are silver, aluminum, stainless steel and carbon, and still more preferred is carbon. These conductive fillers may be those obtained by coating a conductive material (a metal material among the conductive filler materials described above) around a particulate ceramic material or a resin material by plating or the like.
具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。これらの導電性フィラーは1種単独で用いても良いし、2種以上併用しても良い。また、これらの合金又は金属酸化物を用いても良い。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、更に好ましくはカーボンである。またこれらの導電性フィラーとしては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電性フィラーの材料のうち金属のもの)をめっき等でコーティングしたものでも良い。 The conductive filler is selected from materials having electrical conductivity.
Specifically, metal [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. ], and mixtures thereof, but are not limited thereto. These conductive fillers may be used singly or in combination of two or more. Also, alloys or metal oxides thereof may be used. From the viewpoint of electrical stability, preferred are aluminum, stainless steel, carbon, silver, copper, titanium and mixtures thereof, more preferred are silver, aluminum, stainless steel and carbon, and still more preferred is carbon. These conductive fillers may be those obtained by coating a conductive material (a metal material among the conductive filler materials described above) around a particulate ceramic material or a resin material by plating or the like.
導電性フィラーの平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01μm~10μmであることが好ましく、0.02μm~5μmであることがより好ましく、0.03μm~1μmであることがさらに好ましい。なお、本明細書中において、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
The average particle size of the conductive filler is not particularly limited, but from the viewpoint of the electrical characteristics of the battery, it is preferably 0.01 μm to 10 μm, more preferably 0.02 μm to 5 μm. More preferably, it is between 0.03 μm and 1 μm. In this specification, the "particle diameter" means the maximum distance L among the distances between any two points on the outline of the particle. The value of "average particle size" is the average value of the particle size of particles observed in several to several tens of fields of view using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
導電性フィラーの形状(形態)は、粒子形態に限られず、粒子形態以外の形態であっても良く、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であっても良い。
The shape (form) of the conductive filler is not limited to a particle form, and may be in a form other than the particle form. good.
導電性フィラーは、その形状が繊維状である導電性繊維であっても良い。導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性の良い金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。導電性フィラーが導電性繊維である場合、その平均繊維径は0.1μm~20μmであることが好ましい。
The conductive filler may be a conductive fiber having a fibrous shape. Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metals and graphite in synthetic fibers, and metals such as stainless steel. Examples include fibrillated metal fibers, conductive fibers obtained by coating the surface of organic fibers with metal, and conductive fibers obtained by coating the surfaces of organic fibers with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferred. A polypropylene resin in which graphene is kneaded is also preferable. When the conductive filler is conductive fiber, the average fiber diameter is preferably 0.1 μm to 20 μm.
樹脂集電体中の導電性フィラーの重量割合は、5重量%~90重量%であることが好ましく、20重量%~80重量%であることがより好ましい。特に、導電性フィラーがカーボンの場合、導電性フィラーの重量割合は、20重量%~30重量%であることが好ましい。
The weight ratio of the conductive filler in the resin current collector is preferably 5% to 90% by weight, more preferably 20% to 80% by weight. In particular, when the conductive filler is carbon, the weight ratio of the conductive filler is preferably 20% by weight to 30% by weight.
樹脂集電体は、マトリックス樹脂及び導電性フィラーの他に、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤等)を含んでいても良い。また、複数の樹脂集電体を積層して用いても良く、樹脂集電体と金属箔とを積層して用いても良い。
The resin current collector may contain other components (dispersant, cross-linking accelerator, cross-linking agent, colorant, ultraviolet absorber, plasticizer, etc.) in addition to the matrix resin and the conductive filler. Moreover, a plurality of resin current collectors may be laminated and used, or a resin current collector and a metal foil may be laminated and used.
正極集電体31の厚さは特に限定されないが、5μm~150μmであることが好ましい。複数の樹脂集電体を積層して正極集電体として用いる場合には、積層後の全体の厚さが5μm~150μmであることが好ましい。
Although the thickness of the positive electrode current collector 31 is not particularly limited, it is preferably 5 μm to 150 μm. When a plurality of resin current collectors are laminated and used as a positive electrode current collector, the total thickness after lamination is preferably 5 μm to 150 μm.
正極集電体31は、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。導電性樹脂組成物をフィルム状に成形する方法としては、例えば、Tダイ法、インフレーション法及びカレンダー法等の公知のフィルム成形法が挙げられる。なお、正極集電体31は、フィルム成形以外の成形方法によっても得ることができる。
The positive electrode current collector 31 can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a filler dispersing agent to be used as necessary into a film by a known method. can. Methods for forming the conductive resin composition into a film include, for example, known film forming methods such as a T-die method, an inflation method and a calender method. The positive electrode current collector 31 can also be obtained by a molding method other than film molding.
(正極活物質層)
正極活物質層32は、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。 (Positive electrode active material layer)
The positive electrodeactive material layer 32 is preferably a non-bound mixture containing a positive electrode active material. Here, the non-bound body means that the position of the positive electrode active material is not fixed in the positive electrode active material layer, and the positive electrode active materials and the positive electrode active materials and the positive electrode active material and the current collector are irreversibly means not fixed.
正極活物質層32は、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。 (Positive electrode active material layer)
The positive electrode
正極活物質層32が非結着体である場合、正極活物質同士は不可逆的に固定されていないため、正極活物質同士の界面を機械的に破壊することなく分離することができ、正極活物質層32に応力がかかった場合でも正極活物質が移動することで正極活物質層22の破壊を防止することができ好ましい。非結着体である正極活物質層32は、正極活物質と電解液とを含みかつ結着剤を含まない正極活物質層にする等の方法で得ることができる。
When the positive electrode active material layer 32 is a non-bound body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. Even when stress is applied to the material layer 32, the positive electrode active material moves, which is preferable because the positive electrode active material layer 22 can be prevented from being broken. The positive electrode active material layer 32, which is a non-binder, can be obtained by a method such as forming a positive electrode active material layer containing a positive electrode active material and an electrolytic solution but not containing a binder.
なお、本明細書において、結着剤とは、正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化するので正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない。
In this specification, the binder means an agent that cannot reversibly fix the positive electrode active materials together and the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxyl Known solvent-drying type binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene can be used. These binders are used by dissolving or dispersing them in a solvent, and by volatilizing and distilling off the solvent, the surface solidifies without exhibiting adhesiveness, so that the positive electrode active materials and the positive electrode active material and the current collector are solidified. cannot be reversibly fixed.
正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO2、LiNiO2、LiAlMnO4、LiMnO2及びLiMn2O4等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO4、LiNi1-xCoxO2、LiMn1-yCoyO2、LiNi1/3Co1/3Al1/3O2及びLiNi0.8Co0.15Al0.05O2)及び金属元素が3種類以上である複合酸化物[例えばLiMaM'bM"cO2(M、M'及びM"はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3O2)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO4、LiCoPO4、LiMnPO4及びLiNiPO4)、遷移金属酸化物(例えばMnO2及びV2O5)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用しても良い。なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであっても良い。
Examples of positive electrode active materials include composite oxides of lithium and transition metals (composite oxides containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 , etc.), transition metal elements Two kinds of composite oxides (for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and a composite oxide containing three or more metal elements [for example, LiM a M′ b M″ c O 2 (M, M′ and M″ are different transition metal elements, , satisfying a+b+c=1, such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), etc.], lithium-containing transition metal phosphates (e.g., LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), Transition metal oxides (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole ) and the like, and two or more of them may be used in combination. Note that the lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
正極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01μm~100μmであることが好ましく、0.1μm~35μmであることがより好ましく、2μm~30μmであることが更に好ましい。
The volume average particle size of the positive electrode active material is preferably 0.01 μm to 100 μm, more preferably 0.1 μm to 35 μm, even more preferably 2 μm to 30 μm, from the viewpoint of the electrical characteristics of the battery. .
正極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆正極活物質であっても良い。正極活物質の周囲が被覆材で被覆されていると、正極の体積変化が緩和され、正極の膨張を抑制することができる。
The positive electrode active material may be a coated positive electrode active material in which at least part of the surface is coated with a coating material containing a polymer compound. When the positive electrode active material is covered with the coating material, the volume change of the positive electrode is moderated, and the expansion of the positive electrode can be suppressed.
被覆材を構成する高分子化合物としては、特開2017-054703号公報及び国際公開第2015-005117号等に活物質被覆用樹脂として記載されたものを好適に用いることができる。
As the polymer compound constituting the coating material, those described as active material coating resins in JP-A-2017-054703 and WO-2015-005117 can be suitably used.
被覆材には、導電剤が含まれていても良い。導電剤としては、正極集電体21に含まれる導電性フィラーと同様のものを好適に用いることができる。
The covering material may contain a conductive agent. As the conductive agent, the same conductive filler contained in the positive electrode current collector 21 can be preferably used.
正極活物質層32には、粘着性樹脂が含まれていても良い。粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805公報に粘着剤として記載されたもの等を好適に用いることができる。なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着剤として用いられる溶液乾燥型の電極用バインダは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。従って、上述した結着剤(溶液乾燥型の電極用バインダ)と粘着性樹脂とは異なる材料である。
The positive electrode active material layer 32 may contain an adhesive resin. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower. Also, those described as adhesives in JP-A-10-255805 can be preferably used. In addition, adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means On the other hand, a solution-drying type electrode binder used as a binding agent is one that evaporates a solvent component to dry and solidify, thereby firmly adhering and fixing active materials to each other. Therefore, the binder (solution-drying type electrode binder) and the tacky resin are different materials.
正極活物質層32には、電解質と非水溶媒を含む電解液が含まれていても良い。電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(FSO2)2及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO2)2、LiN(C2F5SO2)2及びLiC(CF3SO2)3等の有機酸のリチウム塩等が挙げられ、LiN(FSO2)2(LiFSIともいう)が好ましい。
The positive electrode active material layer 32 may contain an electrolytic solution containing an electrolyte and a non-aqueous solvent. As the electrolyte , those used in known electrolytic solutions can be used . lithium salts of organic acids such as LiN ( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 and LiC( CF3SO2 ) 3 ; ) is preferred.
非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。
As the non-aqueous solvent, those used in known electrolytic solutions can be used. compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used.
ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。
Examples of lactone compounds include 5-membered ring (γ-butyrolactone, γ-valerolactone, etc.) and 6-membered ring lactone compounds (δ-valerolactone, etc.).
環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
Cyclic carbonates include propylene carbonate, ethylene carbonate and butylene carbonate. Chain carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and di-n-propyl carbonate.
鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。
Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate and methyl propionate. Cyclic ethers include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane and 1,4-dioxane. Chain ethers include dimethoxymethane and 1,2-dimethoxyethane.
リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、DMF等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。非水溶媒は1種を単独で用いても良いし、2種以上を併用しても良い。
Phosphate esters include trimethyl phosphate, triethyl phosphate, ethyldimethyl phosphate, diethylmethyl phosphate, tripropyl phosphate, tributyl phosphate, tri(trifluoromethyl) phosphate, tri(trichloromethyl) phosphate, Tri(trifluoroethyl) phosphate, tri(triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphospholan-2-one, 2-trifluoroethoxy-1,3,2- dioxaphospholan-2-one, 2-methoxyethoxy-1,3,2-dioxaphospholan-2-one and the like. Acetonitrile etc. are mentioned as a nitrile compound. DMF etc. are mentioned as an amide compound. Sulfones include dimethylsulfone, diethylsulfone, and the like. The non-aqueous solvent may be used singly or in combination of two or more.
非水溶媒のうち、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液である。
Among non-aqueous solvents, preferred from the viewpoint of battery output and charge-discharge cycle characteristics are lactone compounds, cyclic carbonates, chain carbonates and phosphates, and more preferred are lactone compounds, cyclic carbonates and chains. carbonic acid ester, and particularly preferred is a mixture of cyclic carbonic acid ester and chain carbonic acid ester. Most preferred is a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC).
正極活物質層32には、導電助剤が含まれていても良い。導電助剤としては、正極集電体21に含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。
The positive electrode active material layer 32 may contain a conductive aid. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode current collector 21 can be suitably used.
正極活物質層32における導電助剤の重量割合は、3重量%~10重量%であることが好ましい。
The weight ratio of the conductive aid in the positive electrode active material layer 32 is preferably 3% to 10% by weight.
正極活物質層32は、例えば、正極活物質及び電解液を含むスラリーを正極集電体31又は基材の表面に塗布し、余分な電解液を除去する方法によって作製することができる。基材の表面に正極活物質層22を形成した場合、転写等の方法によって正極活物質層32を正極集電体31と組み合わせれば良い。上記スラリーには、必要に応じて、導電助剤や粘着性樹脂が含まれていても良い。また、正極活物質は被覆正極活物質であっても良い。
The positive electrode active material layer 32 can be produced, for example, by applying a slurry containing a positive electrode active material and an electrolytic solution to the surface of the positive electrode current collector 31 or the substrate and removing excess electrolytic solution. When the cathode active material layer 22 is formed on the surface of the substrate, the cathode active material layer 32 may be combined with the cathode current collector 31 by a method such as transfer. The slurry may contain a conductive aid and an adhesive resin, if necessary. Also, the positive electrode active material may be a coated positive electrode active material.
正極活物質層32の厚みは、特に限定されるものではないが、電池性能の観点から、150μm~600μmであることが好ましく、200μm~450μmであることがより好ましい。
Although the thickness of the positive electrode active material layer 32 is not particularly limited, it is preferably 150 μm to 600 μm, more preferably 200 μm to 450 μm, from the viewpoint of battery performance.
(負極集電体)
負極集電体33としては、正極集電体31で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体33の厚さは特に限定されないが、5μm~150μmであることが好ましい。 (Negative electrode current collector)
As the negative electrodecurrent collector 33, one having the same structure as that described for the positive electrode current collector 31 can be appropriately selected and used, and can be obtained by the same method. Although the thickness of the negative electrode current collector 33 is not particularly limited, it is preferably 5 μm to 150 μm.
負極集電体33としては、正極集電体31で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体33の厚さは特に限定されないが、5μm~150μmであることが好ましい。 (Negative electrode current collector)
As the negative electrode
(負極活物質層)
負極活物質層34は、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層34を得る方法等は、正極活物質層32が非結着体であることが好ましい理由、及び非結着体である正極活物質層32を得る方法と同様である。 (Negative electrode active material layer)
The negative electrodeactive material layer 34 is preferably a non-bonded mixture containing a negative electrode active material. Reasons why the negative electrode active material layer is preferably a non-binder, and reasons why the positive electrode active material layer 32 is preferably a non-binder , and the method for obtaining the positive electrode active material layer 32 which is a non-binder.
負極活物質層34は、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層34を得る方法等は、正極活物質層32が非結着体であることが好ましい理由、及び非結着体である正極活物質層32を得る方法と同様である。 (Negative electrode active material layer)
The negative electrode
負極活物質としては、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。上記負極活物質のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施しても良い。
Examples of negative electrode active materials include carbon-based materials [graphite, non-graphitizable carbon, amorphous carbon, baked resin bodies (for example, carbonized products obtained by baking phenolic resin and furan resin, etc.), cokes (for example, pitch coke, needle coke and petroleum coke, etc.) and carbon fiber, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles whose surface is coated with silicon and / or silicon carbide, silicon particles or oxide Silicon particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon-titanium alloy, silicon - manganese alloys, silicon-copper alloys and silicon-tin alloys, etc.)], conductive polymers (e.g., polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metal oxides (titanium oxide and lithium-titanium oxides, etc.), metal alloys (eg, lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.), mixtures of these with carbonaceous materials, and the like. Of the negative electrode active materials described above, those that do not contain lithium or lithium ions inside may be pre-doped in advance to partially or wholly contain lithium or lithium ions.
これらの中でも、電池容量等の観点から、炭素系材料、珪素系材料及びこれらの混合物が好ましく、炭素系材料としては、黒鉛、難黒鉛化性炭素及びアモルファス炭素がさらに好ましく、珪素系材料としては、酸化珪素及び珪素-炭素複合体が更に好ましい。
Among these, carbon-based materials, silicon-based materials, and mixtures thereof are preferable from the viewpoint of battery capacity and the like. As the carbon-based material, graphite, non-graphitizable carbon, and amorphous carbon are more preferable, and as the silicon-based material, , silicon oxide and silicon-carbon composites are more preferred.
負極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01μm~100μmが好ましく、0.1μm~20μmであることがより好ましく、2μm~10μmであることが更に好ましい。
The volume average particle size of the negative electrode active material is preferably 0.01 μm to 100 μm, more preferably 0.1 μm to 20 μm, even more preferably 2 μm to 10 μm, from the viewpoint of the electrical characteristics of the battery.
本明細書において、負極活物質の体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
In this specification, the volume average particle size of the negative electrode active material means the particle size (Dv50) at an integrated value of 50% in the particle size distribution determined by the microtrack method (laser diffraction/scattering method). The microtrack method is a method of obtaining a particle size distribution by utilizing scattered light obtained by irradiating particles with laser light. For the measurement of the volume average particle size, a Microtrac manufactured by Nikkiso Co., Ltd. or the like can be used.
負極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆負極活物質であっても良い。負極活物質の周囲が被覆材で被覆されていると、負極の体積変化が緩和され、負極の膨張を抑制することができる。
The negative electrode active material may be a coated negative electrode active material in which at least part of the surface is coated with a coating material containing a polymer compound. When the periphery of the negative electrode active material is covered with the coating material, the volume change of the negative electrode is moderated, and the expansion of the negative electrode can be suppressed.
被覆材としては、被覆正極活物質を構成する被覆材と同様のものを好適に用いることができる。
As the coating material, the same coating material as that constituting the coated positive electrode active material can be suitably used.
負極活物質層34は、電解質と非水溶媒を含む電解液を含有する。電解液の組成は、正極活物質層32に含まれる電解液と同様の電解液を好適に用いることができる。
The negative electrode active material layer 34 contains an electrolytic solution containing an electrolyte and a non-aqueous solvent. As for the composition of the electrolytic solution, an electrolytic solution similar to the electrolytic solution contained in the positive electrode active material layer 32 can be suitably used.
負極活物質層34には、導電助剤が含まれていても良い。導電助剤としては、正極活物質層32に含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。
The negative electrode active material layer 34 may contain a conductive aid. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode active material layer 32 can be preferably used.
負極活物質層34における導電助剤の重量割合は、2重量%~10重量%であることが好ましい。
The weight ratio of the conductive aid in the negative electrode active material layer 34 is preferably 2% to 10% by weight.
負極活物質層34には、粘着性樹脂が含まれていても良い。粘着性樹脂としては、正極活物質層32の任意成分である粘着性樹脂と同様のものを好適に用いることができる。
The negative electrode active material layer 34 may contain an adhesive resin. As the adhesive resin, the same adhesive resin as an optional component of the positive electrode active material layer 32 can be preferably used.
負極活物質層34は、例えば、負極活物質及び電解液を含むスラリーを負極集電体33又は基材の表面に塗布し、余分な電解液を除去する方法によって作製することができる。基材の表面に負極活物質層34を形成した場合、転写等の方法によって負極活物質層34を負極集電体33と組み合わせれば良い。上記スラリーには、必要に応じて、導電助剤や粘着性樹脂等が含まれていても良い。また、負極活物質は被覆負極活物質であっても良い。
The negative electrode active material layer 34 can be produced, for example, by applying a slurry containing a negative electrode active material and an electrolytic solution to the surface of the negative electrode current collector 33 or the substrate and removing excess electrolytic solution. When the negative electrode active material layer 34 is formed on the surface of the substrate, the negative electrode active material layer 34 may be combined with the negative electrode current collector 33 by a transfer method or the like. The slurry may contain a conductive aid, an adhesive resin, or the like, if necessary. Also, the negative electrode active material may be a coated negative electrode active material.
負極活物質層34の厚みは、特に限定されるものではないが、電池性能の観点から、150μm~600μmであることが好ましく、200μm~450μmであることが更に好ましい。
Although the thickness of the negative electrode active material layer 34 is not particularly limited, it is preferably 150 μm to 600 μm, more preferably 200 μm to 450 μm, from the viewpoint of battery performance.
(セパレータ)
セパレータ25としては、ポリエチレン又はポリプロピレン製の多孔性フィルム、上記多孔性フィルムの積層フィルム(多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム等)、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン単電池に用いられるセパレータが挙げられる。 (separator)
As theseparator 25, a porous film made of polyethylene or polypropylene, a laminated film of the above porous films (laminated film of porous polyethylene film and porous polypropylene, etc.), synthetic fiber (polyester fiber, aramid fiber, etc.), or glass fiber and separators used in known lithium-ion cells, such as non-woven fabrics made of such materials, and those having ceramic fine particles such as silica, alumina, and titania adhered to their surfaces.
セパレータ25としては、ポリエチレン又はポリプロピレン製の多孔性フィルム、上記多孔性フィルムの積層フィルム(多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム等)、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン単電池に用いられるセパレータが挙げられる。 (separator)
As the
単電池21は、正極活物質層32及び負極活物質層34の外周を封止することで電解液が封入された構成である。正極活物質層32及び負極活物質層33の外周を封止する方法としては、例えば、シール部27を用いて封止する方法が挙げられる。シール部27は、正極集電体31及び負極集電体33の間に配置されており、セパレータ25の外周を封止する機能を有する。
The unit cell 21 has a configuration in which an electrolytic solution is enclosed by sealing the outer peripheries of the positive electrode active material layer 32 and the negative electrode active material layer 34 . As a method of sealing the outer peripheries of the positive electrode active material layer 32 and the negative electrode active material layer 33, for example, a method of sealing using the sealing portion 27 can be given. The seal portion 27 is arranged between the positive electrode current collector 31 and the negative electrode current collector 33 and has a function of sealing the outer periphery of the separator 25 .
シール部27としては、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
The material for the seal portion 27 is not particularly limited as long as it is a material that is durable against the electrolytic solution, but a polymer material is preferable, and a thermosetting polymer material is more preferable. Specifically, epoxy-based resins, polyolefin-based resins, polyurethane-based resins, polyvinylidene fluoride resins, and the like can be mentioned, and epoxy-based resins are preferred because of their high durability and ease of handling.
また、シール部27は、上述した電解液に対して耐久性のある高分子材料からなり、正極活物質層32又は負極活物質層34を収容する貫通孔を有する枠体であっても良い。シール部27が枠体である場合には、正極集電体31又は負極集電体33を枠体の一方の枠面に接合して貫通孔の一端を封止し、枠体の他方の枠面上にセパレータを挿入した状態で枠体同士を接着して封止する方法で単電池21を得ることができる。
Further, the sealing portion 27 may be a frame made of a polymer material that is durable against the above-described electrolytic solution and having a through hole for accommodating the positive electrode active material layer 32 or the negative electrode active material layer 34 . When the sealing portion 27 is a frame, the positive electrode current collector 31 or the negative electrode current collector 33 is bonded to one frame surface of the frame to seal one end of the through hole, and the other frame of the frame is sealed. The unit cell 21 can be obtained by a method of bonding and sealing the frames with the separator inserted on the surface.
以上、単電池21の構成の例を説明したが、本実施形態に係る単電池21は、図示の例に限定されない。例えば、本実施形態における単電池21は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態における単電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、上述のようにバイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであっても良い。なお、本実施形態における単電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。
Although an example of the configuration of the cell 21 has been described above, the cell 21 according to this embodiment is not limited to the illustrated example. For example, the unit cell 21 in this embodiment includes a battery using a liquid material for the electrolyte and a battery using a solid material for the electrolyte (so-called all-solid battery). In addition, the unit cell in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector. including batteries with When the resin current collector is used as a resin current collector for a bipolar electrode as described above, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. A model electrode may also be used. Note that the unit cell in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to form an electrode, and in the case of a bipolar battery, A bipolar electrode having a positive electrode layer is formed by applying a positive electrode active material or the like using a binder to one surface of the current collector, and a negative electrode layer is formed by applying a negative electrode active material or the like to the opposite surface using a binder. Including configured.
(発光部)
図2及び図4に示すように、組電池11の側面には、組電池11を構成する単電池21ごとに当該単電池21の状態に基づいて光信号を送信する発光部12がそれぞれ並んで設けられている。 (Light-emitting part)
As shown in FIGS. 2 and 4, on the side surface of the assembledbattery 11, light-emitting units 12 for transmitting optical signals based on the state of each unit cell 21 constituting the assembled battery 11 are arranged. is provided.
図2及び図4に示すように、組電池11の側面には、組電池11を構成する単電池21ごとに当該単電池21の状態に基づいて光信号を送信する発光部12がそれぞれ並んで設けられている。 (Light-emitting part)
As shown in FIGS. 2 and 4, on the side surface of the assembled
発光部12は、図5に示すように、その内部又は表面に配線を有する配線基板41と、配線基板41に実装された発光素子42と、2つ制御素子43とを備える。また、配線基板41の端部には測定端子44a,44bが設けられている。測定端子44a,44bは、単電池12に接続した際に一方の測定端子が正極集電体に接触し、他方の測定端子が負極集電体に接触する位置に設けられている。この場合、測定端子44a,44bは、単電池12の正極集電体と負極集電体の間の電圧を測定する電圧測定端子となる。
また、配線基板41の、発光素子42の裏側にあたる面にも測定端子(不図示)が設けられている。この測定端子(不図示)は、単電池12の温度を測定するための温度測定端子として利用することができる。 As shown in FIG. 5 , thelight emitting section 12 includes a wiring board 41 having wiring inside or on the surface thereof, a light emitting element 42 mounted on the wiring board 41 , and two control elements 43 . Measurement terminals 44 a and 44 b are provided at the ends of the wiring board 41 . The measurement terminals 44a and 44b are provided at positions where one measurement terminal contacts the positive electrode current collector and the other measurement terminal contacts the negative electrode current collector when connected to the cell 12 . In this case, the measurement terminals 44 a and 44 b are voltage measurement terminals for measuring the voltage between the positive electrode current collector and the negative electrode current collector of the cell 12 .
A measurement terminal (not shown) is also provided on the surface of thewiring board 41 that faces the back side of the light emitting element 42 . This measurement terminal (not shown) can be used as a temperature measurement terminal for measuring the temperature of the cell 12 .
また、配線基板41の、発光素子42の裏側にあたる面にも測定端子(不図示)が設けられている。この測定端子(不図示)は、単電池12の温度を測定するための温度測定端子として利用することができる。 As shown in FIG. 5 , the
A measurement terminal (not shown) is also provided on the surface of the
発光部12は、単電池21の特性を測定して当該特性に応じた光信号を発信する。測定端子44a,44b及び温度測定端子(不図示)は、制御素子43と電気的に接続されており、制御素子43は発光素子42と電気的に接続されている。制御素子43は、測定端子44a,44bで測定した単電池21の特性を示す情報に基づき発光素子42を所定の光信号パターンで発光させる制御を行う。測定端子44a,44bで測定した情報としては、単電池12の電圧及び温度であることが好ましい。発光素子42は、制御素子43により生成された制御信号に基づき所定の光信号パターンで発光し、光信号を生じる。
The light emitting unit 12 measures the characteristics of the cell 21 and emits an optical signal according to the characteristics. The measurement terminals 44 a and 44 b and a temperature measurement terminal (not shown) are electrically connected to the control element 43 , and the control element 43 is electrically connected to the light emitting element 42 . The control element 43 controls the light emitting element 42 to emit light according to a predetermined optical signal pattern based on the information indicating the characteristics of the cell 21 measured by the measuring terminals 44a and 44b. The information measured by the measurement terminals 44a and 44b is preferably the voltage and temperature of the cell 12. FIG. The light emitting element 42 emits light according to a predetermined optical signal pattern based on the control signal generated by the control element 43 to generate an optical signal.
発光部12を構成する配線基板41としては、リジッド基板又はフレキシブル基板を使用することができる。図5に示すような配線基板の形状とする場合はフレキシブル基板とすることが好ましい。制御素子43としては、IC、LSI等の任意の半導体素子を使用することができる。また、図Xには制御素子を2つ実装した例を示しているが、制御素子の数は限定されるものではなく、1つでも良く、3つ以上であっても良い。
A rigid substrate or a flexible substrate can be used as the wiring substrate 41 constituting the light emitting section 12 . When the wiring substrate is shaped as shown in FIG. 5, it is preferable to use a flexible substrate. As the control element 43, any semiconductor element such as IC, LSI, etc. can be used. Although FIG. X shows an example in which two control elements are mounted, the number of control elements is not limited, and may be one or three or more.
発光素子42としては、LED素子、有機EL素子等の、電気信号を光信号に変換することのできる素子を使用することができ、LED素子であることが好ましい。例えば、発光素子42は、中心波長が700nm~800nmの発光素子、中心波長が850nm~950nmの発光素子、又は中心波長が1000nm~1400nmの発光素子のうちの1つまたは複数とすることができる。中心波長が700nm~800nmの発光素子と中心波長が850nm~950nmの発光素子とを組み合わせて発光部12を構成しても良いし、中心波長が850nm~950nmの発光素子と中心波長が1000nm~1400nmの発光素子とを組み合わせて発光部12を構成しても良い。本実施形態では、光信号として中心波長が可視光の範囲内、例えば中心波長が700nm~800nmの信号光を発信する発光部12を用いる場合を例示する。
なお、発光部12において配線基板を有することは必須ではなく、制御素子及び発光素子が配線基板を介さずに結線されることにより発光部12を構成していても良い。 As the light-emittingelement 42, an element capable of converting an electric signal into an optical signal, such as an LED element or an organic EL element, can be used, and the LED element is preferable. For example, light emitting element 42 may be one or more of a light emitting element having a center wavelength of 700 nm to 800 nm, a light emitting element having a center wavelength of 850 nm to 950 nm, or a light emitting element having a center wavelength of 1000 nm to 1400 nm. A light emitting element with a center wavelength of 700 nm to 800 nm and a light emitting element with a center wavelength of 850 nm to 950 nm may be combined to form the light emitting section 12, or a light emitting element with a center wavelength of 850 nm to 950 nm and a light emitting element with a center wavelength of 1000 nm to 1400 nm. The light-emitting element 12 may be configured by combining the light-emitting elements of In the present embodiment, a case is exemplified in which the light emitting unit 12 that emits signal light with a center wavelength within the range of visible light, for example, a center wavelength of 700 nm to 800 nm, is used as an optical signal.
It should be noted that it is not essential that the light-emittingsection 12 has a wiring board, and the light-emitting section 12 may be configured by connecting the control element and the light-emitting element without using the wiring board.
なお、発光部12において配線基板を有することは必須ではなく、制御素子及び発光素子が配線基板を介さずに結線されることにより発光部12を構成していても良い。 As the light-emitting
It should be noted that it is not essential that the light-emitting
発光部12は、単電池21の負極集電体及び正極集電体と電気的に接続されており、組電池21からの電力供給を受けることができるようになっていることが好ましい。発光部12が負極集電体及び正極集電体と電気的に接続されていると、組電池11からの電力供給を受けて発光素子42を発光させることができる。発光素子42を発光させるための電源及び配線を設ける必要がないため、簡便な構成とすることができる。
図5には、電力供給を受けるための電極は図示していないが、測定端子とは別の電極を発光部に設けておくことが好ましい。 It is preferable that thelight emitting unit 12 is electrically connected to the negative electrode current collector and the positive electrode current collector of the cell 21 so as to be able to receive power supply from the assembled battery 21 . When the light emitting part 12 is electrically connected to the negative electrode current collector and the positive electrode current collector, the light emitting element 42 can emit light by receiving power supply from the assembled battery 11 . Since it is not necessary to provide a power source and wiring for causing the light emitting element 42 to emit light, the configuration can be simplified.
Although electrodes for receiving power supply are not shown in FIG. 5, it is preferable to provide electrodes other than the measurement terminals in the light emitting section.
図5には、電力供給を受けるための電極は図示していないが、測定端子とは別の電極を発光部に設けておくことが好ましい。 It is preferable that the
Although electrodes for receiving power supply are not shown in FIG. 5, it is preferable to provide electrodes other than the measurement terminals in the light emitting section.
また、発光部12が負極集電体及び正極集電体と電気的に接続される場合、負極集電体及び正極集電体は樹脂集電体であり、負極集電体及び正極集電体が発光部の電極に直接結合して電気的に接続されていることが好ましい。樹脂集電体を使用する場合、樹脂集電体と発光部12の電極を接触させ、樹脂集電体を加熱して樹脂を軟化させることにより、樹脂集電体と発光部の電極を直接結合させることができる。また、半田等の導電性を有する他の接合材を集電体と発光部12の間に介して電気的な接続を行うこともできる。
Further, when the light-emitting portion 12 is electrically connected to the negative electrode current collector and the positive electrode current collector, the negative electrode current collector and the positive electrode current collector are resin current collectors, and the negative electrode current collector and the positive electrode current collector are is preferably directly coupled and electrically connected to the electrode of the light-emitting portion. When using a resin current collector, the resin current collector and the electrode of the light emitting part 12 are brought into contact with each other, and the resin current collector is heated to soften the resin, thereby directly bonding the resin current collector and the electrode of the light emitting part. can be made Also, electrical connection can be made by interposing another conductive bonding material such as solder between the current collector and the light emitting section 12 .
(ガスバリアフィルム)
図1及び図2に示すように、組電池11及び複数の発光部12は、外装体であるガスバリアフィルム13に覆われて収容されている。ガスバリアフィルム13は、組電池11の引出端子22,23の先端部分が外部に引き出された状態で、組電池11及び複数の発光部12を封止している。ガスバリアフィルム13は、組電池11の電極等から発生する水素ガス等の種々のガスの透過を防止する機能を有しており、全体として、発光部12の発光素子42から発光した光信号に対して透明である。本実施形態では、発光素子42の光信号は例えば中心波長が可視光の範囲内、例えば中心波長が700nm~800nmの光であるため、ガスバリアフィルム13は当該可視光に対して透明である。なお、可視光以外の光、例えば赤外光の範囲である中心波長が850nm~950nmの光信号を発光する発光素子42を用いる場合には、ガスバリアフィルム13として当該赤外光に対して透明なものを用いることになる。 (Gas barrier film)
As shown in FIGS. 1 and 2, the assembledbattery 11 and the plurality of light emitting units 12 are housed while being covered with a gas barrier film 13 that is an exterior body. The gas barrier film 13 seals the assembled battery 11 and the plurality of light-emitting portions 12 in a state in which the tip portions of the lead-out terminals 22 and 23 of the assembled battery 11 are pulled out to the outside. The gas barrier film 13 has a function of preventing permeation of various gases such as hydrogen gas generated from the electrodes of the assembled battery 11, etc. transparent. In the present embodiment, the optical signal of the light emitting element 42 has a center wavelength within the range of visible light, for example, 700 nm to 800 nm, so the gas barrier film 13 is transparent to the visible light. In the case of using the light emitting element 42 that emits light other than visible light, for example, an optical signal with a center wavelength of 850 nm to 950 nm in the range of infrared light, the gas barrier film 13 may be transparent to the infrared light. will use things.
図1及び図2に示すように、組電池11及び複数の発光部12は、外装体であるガスバリアフィルム13に覆われて収容されている。ガスバリアフィルム13は、組電池11の引出端子22,23の先端部分が外部に引き出された状態で、組電池11及び複数の発光部12を封止している。ガスバリアフィルム13は、組電池11の電極等から発生する水素ガス等の種々のガスの透過を防止する機能を有しており、全体として、発光部12の発光素子42から発光した光信号に対して透明である。本実施形態では、発光素子42の光信号は例えば中心波長が可視光の範囲内、例えば中心波長が700nm~800nmの光であるため、ガスバリアフィルム13は当該可視光に対して透明である。なお、可視光以外の光、例えば赤外光の範囲である中心波長が850nm~950nmの光信号を発光する発光素子42を用いる場合には、ガスバリアフィルム13として当該赤外光に対して透明なものを用いることになる。 (Gas barrier film)
As shown in FIGS. 1 and 2, the assembled
ガスバリアフィルム13は、発光部12の発光素子42から発光した光信号を透過させる機能を有する部材であり、例えば可視光に対応する好適な材料として、ベースとなるフィルム(PET(ポリエチレンテレフタレート樹脂)、ナイロン等)の上にアルミナ(Al2O3)や酸化ケイ素(SiOx)等の無機蒸着バリア層及びコーティングバリア層が積層されてなるものや、ベースとなるプラスチックフィルムの上に酸化ケイ素等を真空蒸着したもの等が挙げられる。
The gas barrier film 13 is a member having a function of transmitting an optical signal emitted from the light emitting element 42 of the light emitting section 12. For example, a suitable material corresponding to visible light is a base film (PET (polyethylene terephthalate resin), nylon, etc.) on which inorganic deposition barrier layers and coating barrier layers such as alumina (Al 2 O 3 ) and silicon oxide (SiO x ) are laminated, and silicon oxide etc. on a base plastic film. Vacuum vapor deposition etc. are mentioned.
本実施形態では、ガスバリアフィルム13は、発光部12の発光素子42から発光した光信号に対して透明であり、光信号を透過させる機能を有する。そのため、ガスバリアフィルム13に覆われた発光素子42から発光した光信号を、ガスバリアフィルム13を介して構造体10の外部で受光することができる。そのため、本実施形態の電池モジュールは、図6に示すように、ガスバリアフィルム13により組電池11の側面に設けられた複数の発光部12を直接的に近接又は接触して覆う構成とすることができ、構造体10内で発光部12の発光素子42とガスバリアフィルム13との間に、組電池12を構成する単電池21の状態を示す光信号を外部に伝達するための光学部品等を配置したり、その一部を外装体の外部に引き出したりする必要がない。光学部品は損壊し易いため、光学部品の一部をガスバリアフィルム13の外部に引き出す構成では、ガスバリアフィルム13で封止する際に光学部品に大きな圧力をかけることができず、封止が不完全となる懸念がある。本実施形態では、このような光学部品は構造体10から隔絶されたガスバリアフィルム13の外部に配置すれば良いことから、構造体10の内部構成(ガスバリアフィルム13で封止された構成)が大幅に簡素化されると共にガスバリアフィルム13による組電池11の確実な封止が得られ、構造体10の脆弱化を抑止した電池モジュールが実現する。
In this embodiment, the gas barrier film 13 is transparent to the optical signal emitted from the light emitting element 42 of the light emitting section 12 and has the function of transmitting the optical signal. Therefore, an optical signal emitted from the light emitting element 42 covered with the gas barrier film 13 can be received outside the structure 10 via the gas barrier film 13 . Therefore, as shown in FIG. 6, the battery module of the present embodiment may have a configuration in which the gas barrier film 13 covers the plurality of light-emitting portions 12 provided on the side surface of the assembled battery 11 in direct proximity to or in contact with them. In the structure 10, between the light-emitting element 42 of the light-emitting portion 12 and the gas barrier film 13, an optical component or the like for transmitting an optical signal indicating the state of the unit cell 21 constituting the assembled battery 12 to the outside is arranged. It is not necessary to draw out a part of the external body from the exterior body. Since optical components are easily damaged, in a configuration in which a part of the optical component is pulled out of the gas barrier film 13, a large pressure cannot be applied to the optical component when sealing with the gas barrier film 13, resulting in incomplete sealing. There is concern that In the present embodiment, such an optical component may be arranged outside the gas barrier film 13 isolated from the structure 10, so that the internal configuration of the structure 10 (the configuration sealed with the gas barrier film 13) is greatly reduced. In addition, the assembled battery 11 can be reliably sealed by the gas barrier film 13, and a battery module in which weakening of the structure 10 is suppressed is realized.
(導光管)
導光管14は、発光部12の発光素子42で生じた光信号を導光するものであり、図1及び図6に示すように、構造体10の外部で、複数の発光部12を含む領域をガスバリアフィルム13を介して覆うように、ガスバリアフィルム13の表面に接触又は近接して設けられている。導光管14は、発光部12の発光素子42からの光信号を受光するのに十分な幅(単電池21の積層方向に直交する方向の長さ、または単電池21のうち発光素子42が設けられた端辺に沿う方向の長さ)を有する。導光管14の幅方向寸法は発光素子42の発光面の最大寸法(発光面が円形の場合は直径、矩形の場合は対角線)よりも大きい。導光管14は、複数の発光部12の発光面(各々が積層された複数の単電池21に対応する)を覆う(好ましくは発光面の全てを覆う)ように配置されている。導光管14は、発光部12の発光方向(発光面の鉛直方向に一致する場合及び発光面の鉛直方向にから傾斜している場合を含む)の全てを覆うように配置されている。 (light guide tube)
Thelight guide tube 14 guides the optical signal generated by the light emitting element 42 of the light emitting section 12, and includes a plurality of light emitting sections 12 outside the structure 10 as shown in FIGS. It is provided in contact with or close to the surface of the gas barrier film 13 so as to cover the region through the gas barrier film 13 . The light guide tube 14 has a width sufficient to receive the optical signal from the light emitting element 42 of the light emitting section 12 (the length in the direction orthogonal to the stacking direction of the unit cells 21, or the light emitting element 42 in the unit cell 21). length in the direction along the provided edge). The width dimension of the light guide tube 14 is larger than the maximum dimension of the light emitting surface of the light emitting element 42 (the diameter if the light emitting surface is circular, and the diagonal if the light emitting surface is rectangular). The light guide tube 14 is arranged so as to cover the light-emitting surfaces of the plurality of light-emitting portions 12 (each corresponding to the plurality of stacked unit cells 21) (preferably to cover the entire light-emitting surface). The light guide tube 14 is arranged so as to cover all of the light emitting directions of the light emitting section 12 (including cases in which the direction is aligned with the vertical direction of the light emitting surface and cases in which the direction is inclined from the vertical direction of the light emitting surface).
導光管14は、発光部12の発光素子42で生じた光信号を導光するものであり、図1及び図6に示すように、構造体10の外部で、複数の発光部12を含む領域をガスバリアフィルム13を介して覆うように、ガスバリアフィルム13の表面に接触又は近接して設けられている。導光管14は、発光部12の発光素子42からの光信号を受光するのに十分な幅(単電池21の積層方向に直交する方向の長さ、または単電池21のうち発光素子42が設けられた端辺に沿う方向の長さ)を有する。導光管14の幅方向寸法は発光素子42の発光面の最大寸法(発光面が円形の場合は直径、矩形の場合は対角線)よりも大きい。導光管14は、複数の発光部12の発光面(各々が積層された複数の単電池21に対応する)を覆う(好ましくは発光面の全てを覆う)ように配置されている。導光管14は、発光部12の発光方向(発光面の鉛直方向に一致する場合及び発光面の鉛直方向にから傾斜している場合を含む)の全てを覆うように配置されている。 (light guide tube)
The
導光管14は、周囲の媒質(例えば、空気)の屈折率に比べ高屈折率の材料で構成されている。ここで、高屈折率とは、周囲の媒質の屈折率との間の差が、入射した光を導光管14内に閉じ込めて伝搬させることができる程度の値になる屈折率をいう。例えば、導光管14は、高屈折利率の樹脂製フィルム又は樹脂製板を用いて構成することができる。導光管14を構成する樹脂製フィルム又は樹脂製板を形成する樹脂は、限定するものではないが、アクリル樹脂等とすることができる。例えば、樹脂製フィルム又は樹脂製板は、光学材料と呼ばれる高屈折率樹脂の中から柔軟なものを選択することができる。発光素子42の発光波長帯域が吸収され難い材料の導光管14を構成する樹脂製フィルム又は樹脂製板を形成する樹脂が好ましい。本実施形態では、発光素子42の発光波長帯域が可視光であるため、樹脂製フィルム又は樹脂製板を形成する樹脂としては700nm~800nmの吸収ピークが低い材料のものが望ましい。発光素子42の発光波長帯域が赤外光の場合には、850nm~950nmの吸収ピークが低い材料が望ましい。
The light guide tube 14 is made of a material with a higher refractive index than the surrounding medium (for example, air). Here, the high refractive index means a refractive index with a difference between the refractive index of the surrounding medium and a value that allows incident light to be confined in the light guide tube 14 and propagated. For example, the light guide tube 14 can be configured using a resin film or resin plate with a high refractive index. The resin that forms the resin film or the resin plate that constitutes the light guide tube 14 is not limited, but may be an acrylic resin or the like. For example, a flexible resin film or resin plate can be selected from among high-refractive-index resins called optical materials. A resin that forms the resin film or resin plate that constitutes the light guide tube 14 is preferably a material that does not easily absorb the emission wavelength band of the light emitting element 42 . In this embodiment, since the light emission wavelength band of the light emitting element 42 is visible light, it is desirable that the resin forming the resin film or resin plate should have a low absorption peak at 700 nm to 800 nm. If the emission wavelength band of the light emitting element 42 is infrared light, a material with a low absorption peak in the range of 850 nm to 950 nm is desirable.
本実施形態では、ガスバリアフィルム13は、発光部12の発光素子42から発光した光信号に対して透明であり、光信号を透過させる機能を有する。そのため、導光管14を構造体10から隔絶されたガスバリアフィルム13の外側に配置し、ガスバリアフィルム13に覆われた発光素子42から発光した光信号を、ガスバリアフィルム13を介して導光することができる。導光管14の一部をガスバリアフィルム13の内側に配置する必要もないことから、構造体10の内部構成が大幅に簡素化されると共にガスバリアフィルム13による組電池11の確実な封止が得られる。
In this embodiment, the gas barrier film 13 is transparent to the optical signal emitted from the light emitting element 42 of the light emitting section 12 and has the function of transmitting the optical signal. Therefore, the light guide tube 14 is arranged outside the gas barrier film 13 isolated from the structure 10, and the optical signal emitted from the light emitting element 42 covered with the gas barrier film 13 is guided through the gas barrier film 13. can be done. Since there is no need to dispose part of the light guide tube 14 inside the gas barrier film 13, the internal configuration of the structure 10 is greatly simplified, and the assembled battery 11 can be reliably sealed by the gas barrier film 13. be done.
(受光部)
受光部15は、図1に示すように、ガスバリアフィルム13の外部に、導光管14の内部を伝搬する複数の光信号を受信する受光素子45を備えており、受光素子45によって光信号を電気信号に逆変換することで組電池12に含まれる単電池21内の状態を示す電気信号を得ることができる。受光素子45としては、LED素子やフォトトランジスタ等を使用することができ、LED素子が好ましい。受光部15は、受光素子45が配線基板に実装されたものであっても良く、受光部15が受光素子そのものであっても良い。 (Light receiving section)
As shown in FIG. 1, thelight receiving section 15 includes, outside the gas barrier film 13, a light receiving element 45 for receiving a plurality of optical signals propagating inside the light guide tube 14. The light receiving element 45 receives the optical signals. By inversely converting the electric signal into an electric signal, an electric signal indicating the state of the cells 21 included in the assembled battery 12 can be obtained. An LED element, a phototransistor, or the like can be used as the light receiving element 45, and an LED element is preferable. The light receiving section 15 may be one in which the light receiving element 45 is mounted on a wiring board, or the light receiving section 15 may be the light receiving element itself.
受光部15は、図1に示すように、ガスバリアフィルム13の外部に、導光管14の内部を伝搬する複数の光信号を受信する受光素子45を備えており、受光素子45によって光信号を電気信号に逆変換することで組電池12に含まれる単電池21内の状態を示す電気信号を得ることができる。受光素子45としては、LED素子やフォトトランジスタ等を使用することができ、LED素子が好ましい。受光部15は、受光素子45が配線基板に実装されたものであっても良く、受光部15が受光素子そのものであっても良い。 (Light receiving section)
As shown in FIG. 1, the
図7は、本実施形態の電池モジュールの周辺部材も含めた回路構成を模式的に示すブロック図である。
図7では、組電池11及び複数の発光部12を封止するガスバリアフィルム13を破線で示している。導光管14は当該点線の領域外に位置しており、ガスバリアフィルム13の外部に配置されていることが示されている。また、引出配線22,23もガスバリアフィルム13の外部に引き出されている。 FIG. 7 is a block diagram schematically showing a circuit configuration including peripheral members of the battery module of this embodiment.
In FIG. 7, thegas barrier film 13 that seals the assembled battery 11 and the plurality of light-emitting portions 12 is indicated by broken lines. The light guide tube 14 is located outside the dotted line area, and is shown to be arranged outside the gas barrier film 13 . Lead wires 22 and 23 are also led out of the gas barrier film 13 .
図7では、組電池11及び複数の発光部12を封止するガスバリアフィルム13を破線で示している。導光管14は当該点線の領域外に位置しており、ガスバリアフィルム13の外部に配置されていることが示されている。また、引出配線22,23もガスバリアフィルム13の外部に引き出されている。 FIG. 7 is a block diagram schematically showing a circuit configuration including peripheral members of the battery module of this embodiment.
In FIG. 7, the
ガスバリアフィルム13の外部に設けられた導光管14には受光部15が接続されており、導光管14の一端から導出される光信号を受光部15の受光素子45が受信できるようになっている。
受光部15には、電池状態解析器16が接続されており、電池状態解析器16において光信号の解析が行われ、組電池11に含まれる単電池21の特性が解析される。
また、引出配線22,23は機器本体100に接続されており、機器本体100において、組電池11を電源とした機器の動作が行われる。 A light-receivingsection 15 is connected to a light guide tube 14 provided outside the gas barrier film 13 , so that a light receiving element 45 of the light-receiving section 15 can receive an optical signal derived from one end of the light guide tube 14 . ing.
Abattery state analyzer 16 is connected to the light receiving unit 15 , the battery state analyzer 16 analyzes the optical signal, and analyzes the characteristics of the cells 21 included in the assembled battery 11 .
The lead wires 22 and 23 are connected to the device main body 100, and the device operates in the device main body 100 using the assembled battery 11 as a power source.
受光部15には、電池状態解析器16が接続されており、電池状態解析器16において光信号の解析が行われ、組電池11に含まれる単電池21の特性が解析される。
また、引出配線22,23は機器本体100に接続されており、機器本体100において、組電池11を電源とした機器の動作が行われる。 A light-receiving
A
The
続いて、図8A~図10Cを参照して、単電池21の特性に応じた光信号パターンについて説明する。
これらの光信号パターンを得るために、発光部12には単電池21の正極集電体と負極集電体との間の電圧を測定する電圧測定端子と、単電池21の温度を測定する温度測定端子が設けられており、更に電圧測定端子により測定された電圧と温度測定端子により測定された温度に応じて発光素子42を所定の光信号パターンで発光させる制御を行う制御素子43が設けられている。制御素子43により発光素子42を所定の光信号パターンで発光させる制御が行われる。 Next, with reference to FIGS. 8A to 10C, optical signal patterns corresponding to the characteristics of thecell 21 will be described.
In order to obtain these optical signal patterns, thelight emitting unit 12 has a voltage measuring terminal for measuring the voltage between the positive electrode current collector and the negative electrode current collector of the cell 21 and a temperature sensor for measuring the temperature of the cell 21 . A measurement terminal is provided, and a control element 43 is provided for controlling the light emitting element 42 to emit light in a predetermined optical signal pattern according to the voltage measured by the voltage measurement terminal and the temperature measured by the temperature measurement terminal. ing. The control element 43 controls the light emitting element 42 to emit light according to a predetermined optical signal pattern.
これらの光信号パターンを得るために、発光部12には単電池21の正極集電体と負極集電体との間の電圧を測定する電圧測定端子と、単電池21の温度を測定する温度測定端子が設けられており、更に電圧測定端子により測定された電圧と温度測定端子により測定された温度に応じて発光素子42を所定の光信号パターンで発光させる制御を行う制御素子43が設けられている。制御素子43により発光素子42を所定の光信号パターンで発光させる制御が行われる。 Next, with reference to FIGS. 8A to 10C, optical signal patterns corresponding to the characteristics of the
In order to obtain these optical signal patterns, the
図8A~図8Eは、それぞれ単電池21の電圧が異なるときの光信号パターンの例を示す模式図である。図8A~図8Eは、それぞれ単電池電圧が4V~4.5V、3.5V~4V、3V~3.5V、2.5V~3V、2V~2.5Vの場合の光信号パターンを示している。これらのパターンは所定時間内に光信号のON/OFFを繰り返すパルスパターンであり、所定時間は100s(100秒)としている。所定時間は特に限定されるものではなく、任意の時間とすることができる。
FIGS. 8A to 8E are schematic diagrams showing examples of optical signal patterns when the voltages of the cells 21 are different. 8A to 8E show optical signal patterns when the single cell voltage is 4 V to 4.5 V, 3.5 V to 4 V, 3 V to 3.5 V, 2.5 V to 3 V, and 2 V to 2.5 V, respectively. there is These patterns are pulse patterns in which the ON/OFF of the optical signal is repeated within a predetermined period of time, and the predetermined period of time is 100 seconds. The predetermined time is not particularly limited, and can be any time.
これらの例では、1回の発光時間は同じであり、電圧が高いほど発光ON/OFFの繰り返し回数が多い光信号パターンとしているが、電圧と光信号パターンの形状が対応していればどのような光信号パターンであっても構わない。例えば、発光ON/OFFの回数は同じで電圧が高いほど1回の発光時間が長くなるような光信号パターンであっても良い。また、所定時間内における1回の発光時間はすべて同じである必要はない。また、電圧0.5V刻みで光信号パターンの形状が異なるようにしているが、電圧の刻み幅は特に限定されるものではない。
In these examples, the duration of one light emission is the same, and the higher the voltage, the greater the number of repetitions of light emission ON/OFF. Any optical signal pattern may be used. For example, the optical signal pattern may be such that the number of times of light emission ON/OFF is the same and the higher the voltage, the longer the time for one light emission. Moreover, it is not necessary that the duration of one light emission within a predetermined period of time is the same. Also, although the shape of the optical signal pattern is made to differ in voltage increments of 0.5 V, the voltage increment width is not particularly limited.
例えば、図8A~図8Eに示した態様(1回の発光時間は同じで、電圧が高いほど発光ON/OFFの繰り返し回数が多い光信号パターン)とは異なり、図9に示すように、発光時間及び発光ON/OFFの繰り返し回数を、所定電圧毎に異ならせても良い。図9に示す例では、電圧3Vのときの発光時間(W2)を、電圧4Vのときの発光時間(2W1)よりも短くして、また、電圧3Vのときの発光ON/OFFの繰り返し回数を、電圧4Vのときの発光ON/OFFの繰り返し回数よりも少なくした光信号パターンとしている。なお、電圧3Vのときの1回の発光時間と、電圧4Vのときの1回の発光時間とを異ならせても良い(W2≠W1))。また、電圧2Vのときの各々の1回の発光時間(W3)を、電圧3Vのときの各々の1回の発光時間(W2)よりも短くすると共に、電圧2Vのときの発光ON/OFFの繰り返し回数を、電圧3Vのときよりも多くした光信号パターンとしている。
For example, unlike the mode shown in FIGS. 8A to 8E (the light emission time is the same, and the higher the voltage, the higher the number of repetitions of light emission ON/OFF), unlike the light signal pattern shown in FIG. The time and the number of repetitions of ON/OFF of light emission may be varied for each predetermined voltage. In the example shown in FIG. 9, the light emission time (W 2 ) at the voltage of 3 V is set shorter than the light emission time (2W 1 ) at the voltage of 4 V, and the light emission ON/OFF at the voltage of 3 V is repeated. The optical signal pattern is such that the number of repetitions of light emission ON/OFF is smaller than that at a voltage of 4V. Note that the time for one light emission at a voltage of 3 V may be different from the time for one light emission at a voltage of 4 V (W 2 ≠W 1 )). Further, each light emission time (W 3 ) at the voltage of 2V is made shorter than each light emission time (W 2 ) at the voltage of 3V, and light emission is ON/ON at the voltage of 2V. The optical signal pattern is such that the number of OFF repetitions is greater than when the voltage is 3V.
本実施形態では、導光管14には全ての発光素子42(本実施形態では5つの発光素子42)からの光信号が導入され、導光管14はこれらの光信号の共通の光路を提供する。そのため、導光管14内では混線状態での伝送となり得る。図8A~図8Eに示すように、1回の発光時間を同じ光信号パターンとすると、導光管14内で混線状態での伝送となり易いが、図9に示すように、所定電圧毎(或いは、所定の電圧範囲毎)に、異なる発光時間及び異なる発光ON/OFFの繰り返し回数を設定することにより、図8A~図8Eの態様と比較して、混線を抑制することができる即ち、混線したとしても、混線している複数の光信号から、特定の光信号がどの電圧(或いはどの電圧範囲)に対応しているか、判別し易くすることができる。
In this embodiment, light guide 14 is fed with light signals from all light emitting elements 42 (five light emitting elements 42 in this embodiment), and light guide 14 provides a common light path for these light signals. do. Therefore, transmission in the light guide tube 14 may occur in a crossed state. As shown in FIGS. 8A to 8E, if the same optical signal pattern is used for one light emission time, the transmission is likely to occur in a crossed state in the light guide tube 14. However, as shown in FIG. , for each predetermined voltage range), by setting a different light emission time and a different number of repetitions of light emission ON/OFF, crosstalk can be suppressed compared to the embodiments of FIGS. 8A to 8E. However, it is possible to easily determine which voltage (or which voltage range) a specific optical signal corresponds to from a plurality of mixed optical signals.
図8Fは、単電池21の温度が所定温度以上である場合の光信号パターンの例を示す模式図である。単電池21の温度が所定温度以上の場合は、温度異常の故障モードが生じていると判断して、単電池21の電圧に関わらず図8Fのような「温度異常」の光信号パターンを生じるようにする。単電池21の温度が所定温度未満であれば、温度測定端子により測定された温度は光信号パターンに反映されない。
FIG. 8F is a schematic diagram showing an example of an optical signal pattern when the temperature of the cell 21 is equal to or higher than a predetermined temperature. When the temperature of the cell 21 is equal to or higher than a predetermined temperature, it is determined that a failure mode of temperature abnormality has occurred, and an optical signal pattern of "temperature abnormality" as shown in FIG. 8F is generated regardless of the voltage of the cell 21. make it If the temperature of the cell 21 is less than the predetermined temperature, the temperature measured by the temperature measurement terminal is not reflected in the optical signal pattern.
図10A~図10Cは、光導波路から導出される光信号パターンの例を示す模式図である。
図10Aでは、100sごとに区切った全ての光信号パターンが電圧3V~3.5Vに対応する光信号パターンとなっており、全ての単電池21の電圧が3V~3.5Vの範囲内となっていることが判る。
図10Bでは、100sごとに区切った光信号パターンは電圧2V~2.5Vに対応する光信号パターンが1つ、電圧3V~3.5Vに対応する光信号パターンが3つ、電圧4V~4.5Vに対応する光信号パターンが1つとなっており、単電池21ごとに電圧にばらつきがあることが判る。電圧が低すぎる単電池21は短絡の可能性があり、電圧が高すぎる単電池21は過充電の可能性がある。
図10Cでは、100sごとに区切った光信号パターンは電圧3V~3.5Vに対応する光信号パターンが4つ、温度異常に対応する光信号パターンが1つとなっており、1つの単電池21に温度異常が生じていることが判る。
温度異常が生じている単電池21は、熱暴走が始まっている可能性があるので、交換の検討を要する。 10A to 10C are schematic diagrams showing examples of optical signal patterns derived from optical waveguides.
In FIG. 10A, all the optical signal patterns divided every 100 seconds are optical signal patterns corresponding to voltages of 3V to 3.5V, and the voltages of all thecells 21 are within the range of 3V to 3.5V. It turns out that
In FIG. 10B, the optical signal patterns divided every 100 seconds include one optical signal pattern corresponding to a voltage of 2V to 2.5V, three optical signal patterns corresponding to a voltage of 3V to 3.5V, and voltages of 4V to 4.5V. There is one optical signal pattern corresponding to 5V, and it can be seen that the voltage varies among thecells 21 . A cell 21 with too low voltage may be short-circuited, and a cell 21 with too high voltage may be overcharged.
In FIG. 10C, the optical signal patterns divided every 100 seconds include four optical signal patterns corresponding to voltages of 3 V to 3.5 V and one optical signal pattern corresponding to abnormal temperature. It can be seen that a temperature anomaly has occurred.
Since thermal runaway may have started in theunit cell 21 in which the temperature abnormality has occurred, it is necessary to consider replacement.
図10Aでは、100sごとに区切った全ての光信号パターンが電圧3V~3.5Vに対応する光信号パターンとなっており、全ての単電池21の電圧が3V~3.5Vの範囲内となっていることが判る。
図10Bでは、100sごとに区切った光信号パターンは電圧2V~2.5Vに対応する光信号パターンが1つ、電圧3V~3.5Vに対応する光信号パターンが3つ、電圧4V~4.5Vに対応する光信号パターンが1つとなっており、単電池21ごとに電圧にばらつきがあることが判る。電圧が低すぎる単電池21は短絡の可能性があり、電圧が高すぎる単電池21は過充電の可能性がある。
図10Cでは、100sごとに区切った光信号パターンは電圧3V~3.5Vに対応する光信号パターンが4つ、温度異常に対応する光信号パターンが1つとなっており、1つの単電池21に温度異常が生じていることが判る。
温度異常が生じている単電池21は、熱暴走が始まっている可能性があるので、交換の検討を要する。 10A to 10C are schematic diagrams showing examples of optical signal patterns derived from optical waveguides.
In FIG. 10A, all the optical signal patterns divided every 100 seconds are optical signal patterns corresponding to voltages of 3V to 3.5V, and the voltages of all the
In FIG. 10B, the optical signal patterns divided every 100 seconds include one optical signal pattern corresponding to a voltage of 2V to 2.5V, three optical signal patterns corresponding to a voltage of 3V to 3.5V, and voltages of 4V to 4.5V. There is one optical signal pattern corresponding to 5V, and it can be seen that the voltage varies among the
In FIG. 10C, the optical signal patterns divided every 100 seconds include four optical signal patterns corresponding to voltages of 3 V to 3.5 V and one optical signal pattern corresponding to abnormal temperature. It can be seen that a temperature anomaly has occurred.
Since thermal runaway may have started in the
図10B,図10Cに示す光信号パターンでは、5つの単電池のうちいくつかの単電池21に不具合の可能性があることが判る。単電池21の状態(電圧及び温度)を常にモニターしておき、電圧の急低下又は急上昇が生じた単電池21に対応する光信号パターンが見られた場合、温度異常が生じた単電池21に対応する光信号パターンが見られた場合に、組電池11内の状態に不具合が生じていると判断することができる。
It can be seen from the optical signal patterns shown in FIGS. 10B and 10C that some of the five cells 21 may be malfunctioning. The state (voltage and temperature) of the cell 21 is constantly monitored, and when an optical signal pattern corresponding to a cell 21 with a sudden drop or rise in voltage is observed, the cell 21 with an abnormal temperature If the corresponding optical signal pattern is seen, it can be determined that the state inside the assembled battery 11 is defective.
受光部15では、このような光信号パターンを受光して、電気信号(パルス信号)に変換し、電池状態解析器において電気信号を読み取って単電池21の電圧又は温度の情報を得る。その結果、組電池11内に何Vの単電池21が合計何個あるかの情報、温度異常が生じている単電池21が合計何個あるかの情報が得られる。
The light receiving unit 15 receives such an optical signal pattern, converts it into an electric signal (pulse signal), reads the electric signal in the battery state analyzer, and obtains information on the voltage or temperature of the cell 21 . As a result, information about the total number of cells 21 with a certain voltage in the assembled battery 11 and information about the total number of cells 21 with abnormal temperature are obtained.
なお、このような光信号パターンの解析において、単電池21ごとに単電池21の特性(電圧や温度等)に対応する光信号パターンを変えることでどの単電池21がどの光信号パターンに対応するのかを判断することができる。そして、不具合のある単電池21の存在を確認することができる。
In the analysis of such optical signal patterns, by changing the optical signal pattern corresponding to the characteristics (voltage, temperature, etc.) of the single cell 21 for each single cell 21, which single cell 21 corresponds to which optical signal pattern. It is possible to judge whether Then, it is possible to confirm the presence of the defective cell 21 .
また、どの単電池21がどの光信号パターンに対応するのか判断はできない場合であっても、不具合のある単電池21の存在を確認することができるので、組電池11の不具合の発見には問題なく適用することができる。また、単電池21ごとに測定情報を処理するための受光部15や電池状態解析器を備える必要がないので、簡便な構成とすることができる。
In addition, even if it is not possible to determine which unit cell 21 corresponds to which optical signal pattern, it is possible to confirm the existence of a defective unit cell 21, so there is no problem in discovering a defect in the assembled battery 11. can be applied without Moreover, since it is not necessary to provide the light receiving unit 15 and the battery state analyzer for processing the measurement information for each unit cell 21, the configuration can be simplified.
また、単電池21の情報を得る間隔も任意に設定できる。図10A~図10Cには、単電池21の1つあたり100sで5つ分の500sの領域の光信号パターンを示した。ここでは、100sごとに隙間なくパターンを示しているが、ある単電池21の光信号パターンと別の単電池21の光信号パターンの間に光信号パターンの情報がない領域があっても良い。また、単電池21の1つ当たりのパルスパターンの所定時間に単電池21の積層数を乗じた時間よりも長い時間において、どのような光信号パターンが得られているかを調べて、組電池11に含まれる各単電池21の状態(組電池11内に何Vの単電池21が合計何個あるか、温度異常が生じている単電池21が合計何個あるか)を認識することができる。
In addition, the interval at which information on the single battery 21 is obtained can also be arbitrarily set. FIGS. 10A to 10C show optical signal patterns of five 500 s regions of 100 s per unit cell 21 . Here, the pattern is shown without gaps every 100 seconds, but there may be an area without optical signal pattern information between the optical signal pattern of one cell 21 and the optical signal pattern of another cell 21 . In addition, it is examined what kind of optical signal pattern is obtained in a time longer than the predetermined time of the pulse pattern per unit cell 21 multiplied by the number of stacks of the unit cells 21. can recognize the state of each cell 21 included in (the total number of cells 21 of what V in the assembled battery 11, and the total number of cells 21 with abnormal temperature) .
以上説明したように、本実施形態によれば、ガスバリアフィルム13は、発光部12の発光素子42から発光した光信号に対して透明であり、光信号を透過させる機能を有する。そのため、ガスバリアフィルム13を発光部12の発光素子42を直接的に覆うように設けることにより、発光素子42からの光信号をガスバリアフィルム13を介して外部で受信する構成とすることができる。このように本実施形態では、構造体10の内部(ガスバリアフィルム13で封止された内部)に発光部12以外の光学部品を設けることを要さず、光学部品等の一部をガスバリアフィルム13の外部に引き出す必要もないことから、内部構成が大幅に簡素化されると共にガスバリアフィルム13による組電池11の確実な封止が得られ、構造体10の脆弱化を抑止した電池モジュールが実現する。
As described above, according to this embodiment, the gas barrier film 13 is transparent to the optical signal emitted from the light emitting element 42 of the light emitting section 12 and has the function of transmitting the optical signal. Therefore, by providing the gas barrier film 13 so as to directly cover the light emitting element 42 of the light emitting section 12 , the optical signal from the light emitting element 42 can be externally received via the gas barrier film 13 . As described above, in the present embodiment, it is not necessary to provide optical components other than the light emitting unit 12 inside the structure 10 (the inside sealed with the gas barrier film 13), and some of the optical components and the like are replaced by the gas barrier film 13. Since there is no need to pull out to the outside, the internal configuration is greatly simplified, and the assembled battery 11 is reliably sealed by the gas barrier film 13, and a battery module that suppresses the weakening of the structure 10 is realized. .
[電池モジュールの製造方法]
図11は、深絞り真空包装機を用いて、第1の実施形態の電池モジュールを製造する様子を示す概略斜視図である。
この深絞り真空包装機は、本実施形態の電池モジュールに係る組電池をガスバリアフィルムで封止して構造体を作製するものである。 [Method for manufacturing battery module]
FIG. 11 is a schematic perspective view showing how the battery module of the first embodiment is manufactured using a deep drawing vacuum packaging machine.
This deep-drawing vacuum packaging machine seals the assembled battery according to the battery module of the present embodiment with a gas barrier film to produce a structure.
図11は、深絞り真空包装機を用いて、第1の実施形態の電池モジュールを製造する様子を示す概略斜視図である。
この深絞り真空包装機は、本実施形態の電池モジュールに係る組電池をガスバリアフィルムで封止して構造体を作製するものである。 [Method for manufacturing battery module]
FIG. 11 is a schematic perspective view showing how the battery module of the first embodiment is manufactured using a deep drawing vacuum packaging machine.
This deep-drawing vacuum packaging machine seals the assembled battery according to the battery module of the present embodiment with a gas barrier film to produce a structure.
深絞り真空包装機は、主フィルムである第1ガスバリアフィルム101と封止フィルムである第2ガスバリアフィルム102との間に上述した組電池11を挟み込んだ後、内部の空気を抜きながら両フィルム101,102を貼り合わせる機能を有する。第1ガスバリアフィルム101及び第2ガスバリアフィルム102のうち、少なくとも第1ガスバリアフィルム101が上述したガスバリアフィルム13と同じ構成の帯状透明フィルムとされている。本実施形態では、両フィルム101,102の双方をガスバリアフィルム13と同じ構成の帯状透明フィルムとする。
The deep-drawing vacuum packaging machine inserts the above-described assembled battery 11 between the first gas barrier film 101 as the main film and the second gas barrier film 102 as the sealing film, and then removes the air inside while removing both films 101. , 102 are stuck together. Of the first gas barrier film 101 and the second gas barrier film 102, at least the first gas barrier film 101 is a strip-shaped transparent film having the same configuration as the gas barrier film 13 described above. In this embodiment, both films 101 and 102 are strip-shaped transparent films having the same configuration as the gas barrier film 13 .
第1ガスバリアフィルム101及び第2ガスバリアフィルム102は、心棒110a,110bに巻かれたロール状のものとされ、深絞り真空包装機に組み込まれる。第1ガスバリアフィルム101が巻かれた心棒110aは装置端部の下方に配置され、そこから引き出された第1ガスバリアフィルム101は、上方の案内ローラ115に接触し、その先は矢印Aの方向に進む。
The first gas barrier film 101 and the second gas barrier film 102 are rolled around mandrels 110a and 110b and incorporated into a deep drawing vacuum packaging machine. The mandrel 110a around which the first gas barrier film 101 is wound is arranged below the end of the apparatus, and the first gas barrier film 101 pulled out therefrom comes into contact with the upper guide roller 115, and the tip of the first gas barrier film 101 moves in the direction of the arrow A. move on.
成形部111は、第1ガスバリアフィルム101の上方の下方の吸引箱111aと、加熱器111bと、吸引箱111aを矢印Bの上下方向に変位させる不図示の昇降シリンダ等を備えている。成形部111は、矢印Aの水平方向に移動する第1ガスバリアフィルム101の表面に、複数の凹部101aを順次形成する。ここでは、複数の凹部101aが第1ガスバリアフィルム101の長手方向に沿って2列に並んで形成される。各凹部101aは、本実施形態に係る本実施形態に係る被封止体103(組電池11及び各単電池21に発光部12が配設されたもの)を収容するための空間であり、組電池11に適合した大きさ及び深さが確保される。
The molding unit 111 includes a suction box 111a above and below the first gas barrier film 101, a heater 111b, and an elevation cylinder (not shown) for displacing the suction box 111a in the vertical direction of arrow B. The forming part 111 sequentially forms a plurality of concave portions 101a on the surface of the first gas barrier film 101 moving in the horizontal direction of arrow A. As shown in FIG. Here, a plurality of recesses 101 a are formed in two rows along the longitudinal direction of the first gas barrier film 101 . Each concave portion 101a is a space for accommodating the sealed object 103 (the assembled battery 11 and each unit cell 21 having the light-emitting portion 12 disposed therein) according to the present embodiment. A size and depth suitable for the battery 11 are ensured.
第1ガスバリアフィルム101が成形部111を通過して表面に凹部101aが形成された後、人手又は所定の供給装置により、凹部101aに被封止体103を順次嵌入する。ここで、第1ガスバリアフィルム101の幅方向に並ぶ2つの凹部101aにおいて、2つの被封止体103がそれぞれ凹部101aに嵌入されると、組電池11の引出配線22,23の先端部分が第1ガスバリアフィルム101の両端から突出する。
After the first gas barrier film 101 passes through the forming part 111 and the concave portions 101a are formed on the surface, the objects to be sealed 103 are successively inserted into the concave portions 101a manually or by a predetermined supply device. Here, in the two recesses 101a aligned in the width direction of the first gas barrier film 101, when the two objects to be sealed 103 are respectively fitted into the recesses 101a, the leading end portions of the lead wires 22 and 23 of the assembled battery 11 are placed in the first direction. 1 project from both ends of the gas barrier film 101 .
続いて、第1ガスバリアフィルム101の上面に第2ガスバリアフィルム102を覆い被せる。このとき、各凹部101aにおいて、第1ガスバリアフィルム101と第2ガスバリアフィルム102との重畳部位の一端において、組電池11の引出配線22,23の先端部分が外部に突出した状態とされる。この第2ガスバリアフィルム102が巻かれた心棒110bは、装置上方に配置され、そこから引き出された第2ガスバリアフィルム102は、2個の案内ローラ116,117を経て、第1ガスバリアフィルム101の上面に到達する。
Subsequently, the upper surface of the first gas barrier film 101 is covered with the second gas barrier film 102 . At this time, at one end of the overlapping portion of the first gas barrier film 101 and the second gas barrier film 102 in each recess 101a, the leading end portions of the lead wires 22 and 23 of the assembled battery 11 protrude to the outside. The mandrel 110b around which the second gas barrier film 102 is wound is placed above the apparatus, and the second gas barrier film 102 pulled out therefrom passes through two guide rollers 116 and 117, and the upper surface of the first gas barrier film 101 to reach
第1ガスバリアフィルム101と第2ガスバリアフィルム102は、夫々の横幅を揃えてある。また、実際の装置では、両フィルム101,102を規定のタイミングで規定の長さだけ送り出すため、チェーン等を用いた駆動機構を備えている。
The first gas barrier film 101 and the second gas barrier film 102 have the same width. Further, in an actual apparatus, a drive mechanism using a chain or the like is provided in order to send out both films 101 and 102 at a specified timing and by a specified length.
第1ガスバリアフィルム101と第2ガスバリアフィルム102が接触した後、これらは封止部112に到達する。封止部112は、脱気しながら第1ガスバリアフィルム101と第2ガスバリアフィルム102をシーリングし、被封止体103を封止する。
After the first gas barrier film 101 and the second gas barrier film 102 contact each other, they reach the sealing portion 112 . The sealing part 112 seals the first gas barrier film 101 and the second gas barrier film 102 while degassing, and seals the object 103 to be sealed.
図12A及び図12Bは、深絞り真空包装機の封止部112の構成を示す概略断面図であり、図12Aが第1ガスバリアフィルム101の長手方向に沿った断面図、図12Bが第1ガスバリアフィルム101の幅方向に沿った断面図である。
封止部112は、両フィルム101,102の下方の可動箱112aと、上方の固定箱112b等で構成され、可動箱112aは、不図示の昇降シリンダにより矢印Cの上下方向に変位する。被封止体103が収容された凹部101aが封止部112の定位置に到着すると、昇降シリンダで可動箱112aを持ち上げ、可動箱112aと固定箱112bで両フィルム101,102を挟み込む。その際、内部を負圧にし、凹部101aから脱気する。併せて、シーリング部112cにより両フィルム101,102を局所的に加熱し、凹部101aを囲むように両フィルム101,102を貼り合わせ、被封止体103を封止する。その後、可動箱112aを下降させ、両フィルム101,102を解放する。 12A and 12B are schematic cross-sectional views showing the configuration of the sealingportion 112 of the deep drawing vacuum packaging machine, where FIG. 12A is a cross-sectional view along the longitudinal direction of the first gas barrier film 101, and FIG. 12B is the first gas barrier film. 3 is a cross-sectional view along the width direction of the film 101. FIG.
The sealingportion 112 is composed of a movable box 112a below both films 101 and 102 and a fixed box 112b above them. When the concave portion 101a containing the object 103 to be sealed reaches the fixed position of the sealing portion 112, the movable box 112a is lifted by the lifting cylinder, and both the films 101 and 102 are sandwiched between the movable box 112a and the fixed box 112b. At that time, the inside is made to have a negative pressure, and air is removed from the concave portion 101a. At the same time, both the films 101 and 102 are locally heated by the sealing portion 112c, and the films 101 and 102 are adhered so as to surround the concave portion 101a, thereby sealing the object 103 to be sealed. After that, the movable box 112a is lowered to release both the films 101 and 102.例文帳に追加
封止部112は、両フィルム101,102の下方の可動箱112aと、上方の固定箱112b等で構成され、可動箱112aは、不図示の昇降シリンダにより矢印Cの上下方向に変位する。被封止体103が収容された凹部101aが封止部112の定位置に到着すると、昇降シリンダで可動箱112aを持ち上げ、可動箱112aと固定箱112bで両フィルム101,102を挟み込む。その際、内部を負圧にし、凹部101aから脱気する。併せて、シーリング部112cにより両フィルム101,102を局所的に加熱し、凹部101aを囲むように両フィルム101,102を貼り合わせ、被封止体103を封止する。その後、可動箱112aを下降させ、両フィルム101,102を解放する。 12A and 12B are schematic cross-sectional views showing the configuration of the sealing
The sealing
続いて、縦カッター113及び横カッター114により、封止部112を通過した両フィルム101,102を被封止体103ごとに切断し、切断された両フィルム101,102からなるガスバリアフィルム13で被封止体103を封止してなる本実施形態に係る構造体10が形成される。なお、横カッター114は、両フィルム101,102の幅方向に伸び、昇降シリンダで上下方向に変位する。そのため、凹部101aが所定の位置にある際、昇降シリンダを一時的に上昇させると、両フィルム101,102の幅方向に切れ目が入る。次に円盤状の縦カッター113で両フィルム101,102の側部を切断すると、凹部101aが個別に切り出され、個々の構造体10が形成される。
Subsequently, both the films 101 and 102 that have passed through the sealing portion 112 are cut by the vertical cutter 113 and the horizontal cutter 114 for each sealed object 103, and the cut film 101 and 102 are covered with the gas barrier film 13. The structure 10 according to this embodiment is formed by sealing the sealing body 103 . The horizontal cutter 114 extends in the width direction of both films 101 and 102 and is displaced in the vertical direction by an elevating cylinder. Therefore, when the recessed portion 101a is at a predetermined position, the films 101 and 102 are cut in the width direction when the elevating cylinder is temporarily raised. Next, when the side portions of both films 101 and 102 are cut by a disk-shaped vertical cutter 113, the concave portions 101a are individually cut out, and the individual structures 10 are formed.
そして、図13に示すように、形成された構造体10のガスバリアフィルム13表面の複数の発光部12がガスバリアフィルム13から透けて見える領域を覆うように、導光管14を配置する。しかる後、受光部15を導光管14に装着することにより、本実施形態の電池モジュールが完成する。
Then, as shown in FIG. 13 , the light guide tube 14 is arranged so as to cover the area where the plurality of light emitting parts 12 on the surface of the gas barrier film 13 of the formed structure 10 can be seen through the gas barrier film 13 . After that, by attaching the light receiving portion 15 to the light guide tube 14, the battery module of the present embodiment is completed.
ここで、成形部111の構成及び機能について詳述する。
第1ガスバリアフィルム101に凹部101aを形成する成形部111は、吸引箱111a及び加熱器111b等で構成され、吸引箱111aは単純な箱状であるが、その上面は塞がれることなく開口となっている。開口を取り囲む側壁の上部は、水平に仕上げた支持面とされている。また吸引箱111a内を負圧にするため、真空ポンプを用いており、空気の流路となるパイプが双方を結んでいる。そして吸引箱111aには、下パッキンを挟んで金型を組み込み、金型に上パッキンを載置する。 Here, the configuration and function of themolding section 111 will be described in detail.
The formingpart 111 that forms the concave portion 101a in the first gas barrier film 101 is composed of a suction box 111a, a heater 111b, and the like. It's becoming The upper portion of the side walls surrounding the opening is a horizontally finished support surface. A vacuum pump is used to create a negative pressure in the suction box 111a, and both are connected by a pipe serving as an air flow path. Then, the suction box 111a is assembled with the mold with the lower packing interposed therebetween, and the upper packing is placed on the mold.
第1ガスバリアフィルム101に凹部101aを形成する成形部111は、吸引箱111a及び加熱器111b等で構成され、吸引箱111aは単純な箱状であるが、その上面は塞がれることなく開口となっている。開口を取り囲む側壁の上部は、水平に仕上げた支持面とされている。また吸引箱111a内を負圧にするため、真空ポンプを用いており、空気の流路となるパイプが双方を結んでいる。そして吸引箱111aには、下パッキンを挟んで金型を組み込み、金型に上パッキンを載置する。 Here, the configuration and function of the
The forming
金型は、第1ガスバリアフィルム101に凹部101aを形成するために用い、板金を曲げ加工や溶接で所定の形状に仕上げた構造で、その中央を陥没させることで底板と側板が形成され、側板の上端の外側は、水平に展開する額板となっている。底板と側板は、第1ガスバリアフィルム101に凹部101aを転写する型として機能し、その内周面に第1ガスバリアフィルム101を密着させる。そのため底板と側板には、空気を吸い込む通気孔を複数設け、吸引箱111a内が負圧になると、第1ガスバリアフィルム101が吸い寄せられて密着する。
The mold is used to form the concave portion 101a in the first gas barrier film 101, and has a structure in which a sheet metal is finished into a predetermined shape by bending or welding. The outside of the upper edge of the frame is a frame plate that unfolds horizontally. The bottom plate and the side plate function as a mold for transferring the concave portion 101a to the first gas barrier film 101, and the first gas barrier film 101 is brought into close contact with the inner peripheral surface thereof. Therefore, the bottom plate and the side plate are provided with a plurality of ventilation holes for sucking air, and when the inside of the suction box 111a becomes a negative pressure, the first gas barrier film 101 is sucked and closely attached.
額板は、金型を吸引箱111aに載置するためのものであり、額板の外縁部が支持面に載る。更に額板は、吸引箱111a内の負圧を維持するため、開口を塞ぐ役割もある。そのため額板には、空気の流路となる孔を設ける必要がない。
The frame plate is for placing the mold on the suction box 111a, and the outer edge of the frame plate rests on the support surface. Furthermore, the frame plate also serves to close the opening in order to maintain the negative pressure inside the suction box 111a. Therefore, it is not necessary to provide holes for air passages in the frame plate.
本実施形態では、被封止体103を収納する凹部101aが形成される帯状フィルムとして、例えばPETフィルム上にアルミナ(Al2O3)や酸化ケイ素(SiOx)等が蒸着されてなる透明フィルムである第1ガスバリアフィルム101を用いる。ガスバリアフィルムとして従来用いられていたアルミニウム等のラミネートフィルムでは、凹部を形成するための深絞りを十分な深さに行うことが困難であったが、アルミニウム等に比べて加工が容易な材質の透明フィルムである第1ガスバリアフィルム101を用いることで、より深い深絞りが可能となる。これにより、第1ガスバリアフィルム101に、被封止体103の大きさ及び深さに高精度に適合した所期の凹部101aを容易に形成することができる。
In the present embodiment, the band-shaped film in which the recessed portion 101a for housing the sealed object 103 is formed is, for example, a transparent film in which alumina (Al 2 O 3 ) or silicon oxide (SiO x ) is vapor-deposited on a PET film. A first gas barrier film 101 is used. With laminated films such as aluminum, which were conventionally used as gas barrier films, it was difficult to deep-draw to a sufficient depth to form recesses. By using the first gas barrier film 101, which is a film, deeper drawing becomes possible. This makes it possible to easily form the desired recesses 101a that match the size and depth of the object 103 to be sealed with high precision in the first gas barrier film 101 .
本実施形態では、構造体10を、組電池11の引出端子22,23の先端部分がガスバリアフィルム13の外部に引き出された状態に形成する必要があるところ、当該先端部分が第1ガスバリアフィルム101の外部から突出した状態で被封止体103を嵌入させ、第2ガスバリアフィルム102を第1ガスバリアフィルム101に重ね合わせて、被封止体103を封止する。これにより、当該先端部分を両フィルム101,102の重畳部分から突出させつつ、被封止体103を両フィルム101,102で確実に封止することができる。
In the present embodiment, it is necessary to form the structure 10 in a state in which the tip portions of the lead-out terminals 22 and 23 of the assembled battery 11 are pulled out of the gas barrier film 13 . The object 103 to be sealed is inserted in a state protruding from the outside of the , and the second gas barrier film 102 is overlapped on the first gas barrier film 101 to seal the object 103 to be sealed. As a result, the object to be sealed 103 can be reliably sealed with both films 101 and 102 while projecting the tip portion from the overlapped portion of both films 101 and 102 .
<第2の実施形態>
続いて、第2の実施形態について説明する。なお、第1の実施形態の電池モジュールの構成要素と同じものについては、同符号を付して詳しい説明を省略する。 <Second embodiment>
Next, a second embodiment will be described. The same components as those of the battery module of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
続いて、第2の実施形態について説明する。なお、第1の実施形態の電池モジュールの構成要素と同じものについては、同符号を付して詳しい説明を省略する。 <Second embodiment>
Next, a second embodiment will be described. The same components as those of the battery module of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[電池モジュールの構成]
図14Aは、第2の実施形態の電池モジュールの構成を示す概略斜視図である。図14Bは、第2の実施形態の電池モジュールの構成要素である導光部を分解して示す概略斜視図である。図14Cは、第2の実施形態の電池モジュールにおいて、構造体に導光部52及び受光部が装着された様子を示す概略斜視図である。 [Configuration of battery module]
14A is a schematic perspective view showing the configuration of the battery module of the second embodiment. FIG. FIG. 14B is a schematic perspective view showing an exploded light guide portion that is a component of the battery module of the second embodiment. FIG. 14C is a schematic perspective view showing how thelight guide section 52 and the light receiving section are attached to the structure in the battery module of the second embodiment.
図14Aは、第2の実施形態の電池モジュールの構成を示す概略斜視図である。図14Bは、第2の実施形態の電池モジュールの構成要素である導光部を分解して示す概略斜視図である。図14Cは、第2の実施形態の電池モジュールにおいて、構造体に導光部52及び受光部が装着された様子を示す概略斜視図である。 [Configuration of battery module]
14A is a schematic perspective view showing the configuration of the battery module of the second embodiment. FIG. FIG. 14B is a schematic perspective view showing an exploded light guide portion that is a component of the battery module of the second embodiment. FIG. 14C is a schematic perspective view showing how the
本実施形態の電池モジュール1は、図14A及び図14Cに示すように、組電池11、複数の発光部12、ガスバリアフィルム13、ガスバリアフィルム13上の遮光膜51、導光部52、受光部15、及び電池状態解析器16を有して構成されている。組電池11及び複数の発光部12は、ガスバリアフィルム13で覆われて封止されており、ガスバリアフィルム13及び遮光膜51を含む構成を構造体20とする。
As shown in FIGS. 14A and 14C, the battery module 1 of the present embodiment includes an assembled battery 11, a plurality of light-emitting portions 12, a gas barrier film 13, a light-shielding film 51 on the gas barrier film 13, a light guide portion 52, and a light receiving portion 15. , and a battery state analyzer 16 . The assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with the gas barrier film 13 , and the structure including the gas barrier film 13 and the light shielding film 51 is referred to as a structure 20 .
組電池11及び複数の発光部12は、外装体であるガスバリアフィルム13に覆われて収容されている。ガスバリアフィルム13の表面には、複数並ぶ発光部12の発光素子42の配置位置を含む領域である窓部51aを除いて、遮光膜51が形成されている。遮光膜51の材料(遮光剤)としては、例えば、カーボンブラックを含有する黒色インキ、アルミニウム微粒子を含有する銀色インキ、又は、これらのインキと酸化チタンを含有する白色インキを混合したグレー系の遮光剤等を用いることができる。本実施形態では、ガスバリアフィルム13の窓部51aを除く表面に遮光膜51を設けることにより、外乱光の光伝送への影響が抑止される。
The assembled battery 11 and the plurality of light emitting units 12 are housed while being covered with a gas barrier film 13 that is an exterior body. A light shielding film 51 is formed on the surface of the gas barrier film 13 except for a window portion 51a which is a region including the arrangement positions of the light emitting elements 42 of the plurality of light emitting portions 12 . As the material (light shielding agent) of the light shielding film 51, for example, black ink containing carbon black, silver ink containing aluminum fine particles, or gray light shielding mixture of these inks and white ink containing titanium oxide is used. agent or the like can be used. In this embodiment, by providing the light shielding film 51 on the surface of the gas barrier film 13 excluding the window portion 51a, the influence of disturbance light on optical transmission is suppressed.
遮光膜51の非形成領域である窓部51aは、複数並ぶ発光部12の発光素子42の配置位置を含む領域、ここでは長方形状の領域に形成されている。窓部51aでは、ガスバリアフィルム13が露出しており、窓部51aの領域内に位置整合する発光部12の発光素子42から発光した光信号は、当該光信号に対して透明なガスバリアフィルム13を介して外部に透過する。
The window portion 51a, which is an area in which the light shielding film 51 is not formed, is formed in an area including the arrangement positions of the light emitting elements 42 of the plurality of light emitting sections 12, here a rectangular area. In the window portion 51a, the gas barrier film 13 is exposed, and an optical signal emitted from the light emitting element 42 of the light emitting portion 12 positioned within the region of the window portion 51a passes through the gas barrier film 13 transparent to the optical signal. permeate to the outside through
導光部52は、図14Bに示すように、第1の実施形態と同様の導光管14と、導光管14が装着されてこれを覆う遮光フィン53とを有している。遮光フィン53は、表面が遮光膜51と同様の遮光膜で覆われている。遮光フィン53は、例えばダブルモールドで成形しても良い。
As shown in FIG. 14B, the light guide section 52 has a light guide tube 14 similar to that of the first embodiment, and light shielding fins 53 to which the light guide tube 14 is attached and which covers it. The light shielding fin 53 has a surface covered with a light shielding film similar to the light shielding film 51 . The light shielding fins 53 may be formed by double molding, for example.
導光部52は、図14A及び図14Cに示すように、導光管14が窓部51aを覆うように構造体20に配置される。導光管14は、構造体20の外部で、複数の発光部12を含む領域をガスバリアフィルム13を介して覆うように、ガスバリアフィルム13の表面に接触又は近接して設けられている。導光部52が構造体20に配置されることにより窓部51aが完全に遮蔽され、構造体20は実質的にその表面全体が遮光膜で覆われた状態となる。
As shown in FIGS. 14A and 14C, the light guide section 52 is arranged in the structure 20 so that the light guide tube 14 covers the window section 51a. The light guide tube 14 is provided outside the structure 20 in contact with or close to the surface of the gas barrier film 13 so as to cover the region including the plurality of light emitting units 12 via the gas barrier film 13 . By arranging the light guide portion 52 on the structure 20, the window 51a is completely shielded, and substantially the entire surface of the structure 20 is covered with the light shielding film.
導光部52には、受光素子45が導光管14と光学的に接続されるように受光部15が設けられている。
発光部12の発光素子42から発信した光信号は、ガスバリアフィルム13の窓部51aの部分を透過し、導光管14を伝搬して受光部15で受信される。 Thelight guide portion 52 is provided with the light receiving portion 15 so that the light receiving element 45 is optically connected to the light guide tube 14 .
An optical signal emitted from the light-emittingelement 42 of the light-emitting portion 12 passes through the window portion 51 a of the gas barrier film 13 , propagates through the light guide tube 14 , and is received by the light-receiving portion 15 .
発光部12の発光素子42から発信した光信号は、ガスバリアフィルム13の窓部51aの部分を透過し、導光管14を伝搬して受光部15で受信される。 The
An optical signal emitted from the light-emitting
本実施形態では、光信号に対して透明なガスバリアフィルム13の表面が窓部51aを除き遮光膜51で覆われており、導光部52が窓部51aを覆うように配置されることにより、構造体20は実質的にその表面全体が遮光膜で覆われた状態とされる。この状態で、導光部52内では、構造体20内の発光部12の発光素子42と受光部15との間で、ガスバリアフィルム13を介した光信号の送受信が行われる。本実施形態によれば、ガスバリアフィルム13の内側に導光部を配置したり、その一部をガスバリアフィルム13の外部に引き出したりすることを要しないため、電池モジュールの内部構成が大幅に簡素化されると共にガスバリアフィルム13による組電池11の確実な封止が得られる。更には、遮光膜を適宜設けることにより、外乱光の光伝送への影響が可及的に抑止された状態で、効率的な光伝送を行うことができる電池モジュールが実現する。
In this embodiment, the surface of the gas barrier film 13 transparent to the optical signal is covered with the light shielding film 51 except for the window portion 51a, and the light guide portion 52 is arranged so as to cover the window portion 51a. Substantially the entire surface of the structure 20 is covered with a light shielding film. In this state, optical signals are transmitted and received through the gas barrier film 13 between the light emitting element 42 of the light emitting section 12 in the structure 20 and the light receiving section 15 in the light guide section 52 . According to the present embodiment, it is not necessary to dispose the light guide section inside the gas barrier film 13 or pull out part of it to the outside of the gas barrier film 13, so that the internal configuration of the battery module is greatly simplified. In addition, reliable sealing of the battery pack 11 by the gas barrier film 13 is obtained. Furthermore, by appropriately providing a light shielding film, it is possible to realize a battery module capable of performing efficient optical transmission while suppressing the influence of disturbance light on optical transmission as much as possible.
[電池モジュールの製造方法]
本実施形態においても、第1の実施形態と同様に、図11に示した深絞り真空包装機を用いて、本実施形態の電池モジュールを製造する。 [Method for manufacturing battery module]
Also in this embodiment, similarly to the first embodiment, the deep drawing vacuum packaging machine shown in FIG. 11 is used to manufacture the battery module of this embodiment.
本実施形態においても、第1の実施形態と同様に、図11に示した深絞り真空包装機を用いて、本実施形態の電池モジュールを製造する。 [Method for manufacturing battery module]
Also in this embodiment, similarly to the first embodiment, the deep drawing vacuum packaging machine shown in FIG. 11 is used to manufacture the battery module of this embodiment.
(製造方法1)
製造方法1について、図15Aを用いて説明する。製造方法1では、帯状透明フィルムである第1ガスバリアフィルム101の表面全面に、印刷等により遮光膜51を被覆形成した主フィルム201を用いる。第2ガスバリアフィルム102も同様に、表面全面に遮光膜を被覆形成して封止フィルムとする。なお封止フィルムとしては、遮光膜を形成することなく第2ガスバリアフィルム102をそのまま用いることも考えられる。これら両フィルムを用いて、深絞り真空包装機により個々の構造体20を形成する。 (Manufacturing method 1)
Manufacturing method 1 will be described with reference to FIG. 15A. In manufacturing method 1, amain film 201 is used in which the entire surface of the first gas barrier film 101, which is a strip-shaped transparent film, is coated with a light shielding film 51 by printing or the like. Similarly, the entire surface of the second gas barrier film 102 is coated with a light shielding film to form a sealing film. As the sealing film, it is conceivable to use the second gas barrier film 102 as it is without forming a light shielding film. Both films are used to form individual structures 20 on a deep draw vacuum packaging machine.
製造方法1について、図15Aを用いて説明する。製造方法1では、帯状透明フィルムである第1ガスバリアフィルム101の表面全面に、印刷等により遮光膜51を被覆形成した主フィルム201を用いる。第2ガスバリアフィルム102も同様に、表面全面に遮光膜を被覆形成して封止フィルムとする。なお封止フィルムとしては、遮光膜を形成することなく第2ガスバリアフィルム102をそのまま用いることも考えられる。これら両フィルムを用いて、深絞り真空包装機により個々の構造体20を形成する。 (Manufacturing method 1)
Manufacturing method 1 will be described with reference to FIG. 15A. In manufacturing method 1, a
続いて、構造体20に窓部51aを形成する。窓部51aは、構造体20の最表面に形成された遮光膜51の、複数の発光素子42の配置位置を含む領域、ここでは長方形状の領域を、削り取ったり溶解させたりすることにより形成される。窓部51aでは、ガスバリアフィルム13が露出する。
Subsequently, the window 51a is formed in the structure 20. Then, as shown in FIG. The window portion 51a is formed by scraping or dissolving a region of the light shielding film 51 formed on the outermost surface of the structure 20, which includes the arrangement positions of the plurality of light emitting elements 42, here, a rectangular region. be. The gas barrier film 13 is exposed at the window portion 51a.
そして、形成された構造体20の窓部51aが導光管14で覆われるように、窓部51aに導光部52を配置する。しかる後、受光部15を導光部52に装着することにより、本実施形態の電池モジュールが完成する。
Then, the light guide part 52 is arranged in the window part 51 a so that the window part 51 a of the formed structure 20 is covered with the light guide tube 14 . After that, the light receiving section 15 is attached to the light guide section 52 to complete the battery module of the present embodiment.
製造方法1によれば、構造体20の組み立て後に、遮光膜51の一部を除去して窓部51aを形成する。そのため、成形された構造体20ごとに窓部51aを当該構造体20の所期の位置に正確且つ容易に形成することができる。
According to manufacturing method 1, after the structure 20 is assembled, part of the light shielding film 51 is removed to form the window 51a. Therefore, the window portion 51a can be accurately and easily formed at the desired position of each molded structure 20 .
(製造方法2)
製造方法2について、図15Bを用いて説明する。製造方法2では、第1の実施形態と同様に、深絞り真空包装機により、主フィルムである第1ガスバリアフィルム101及び封止フィルムである第2ガスバリアフィルム102を用いて、個々の構造体10を形成する。 (Manufacturing method 2)
Manufacturing method 2 will be described with reference to FIG. 15B. In manufacturing method 2, as in the first embodiment,individual structures 10 are formed by a deep draw vacuum packaging machine using a first gas barrier film 101 as a main film and a second gas barrier film 102 as a sealing film. to form
製造方法2について、図15Bを用いて説明する。製造方法2では、第1の実施形態と同様に、深絞り真空包装機により、主フィルムである第1ガスバリアフィルム101及び封止フィルムである第2ガスバリアフィルム102を用いて、個々の構造体10を形成する。 (Manufacturing method 2)
Manufacturing method 2 will be described with reference to FIG. 15B. In manufacturing method 2, as in the first embodiment,
続いて、構造体10の外装体であるガスバリアフィルム13の表面に、遮光膜51を形成する。例えば、構造体10の窓部形成部位である、ガスバリアフィルム13の内側で複数の発光素子42の配置位置を含む領域、ここでは長方形状の領域をマスク部材81でマスキングし、この状態で構造体10の表面全面にノズル82から遮光剤である塗料を噴霧して塗装する。これにより、遮光膜51が形成される。なお、構造体10の裏面部分にも遮光膜51を形成するが、裏面部分には形成しないことも考えられる。
Subsequently, a light shielding film 51 is formed on the surface of the gas barrier film 13 that is the exterior body of the structure 10 . For example, a region including the arrangement positions of the plurality of light emitting elements 42 inside the gas barrier film 13, which is a window portion forming portion of the structure 10, here, a rectangular region, is masked with a mask member 81, and in this state, the structure The entire surface of 10 is coated by spraying paint, which is a light shielding agent, from a nozzle 82 . Thereby, the light shielding film 51 is formed. Although the light shielding film 51 is also formed on the rear surface portion of the structure 10, it is conceivable that it is not formed on the rear surface portion.
そして、マスク部材61を外すことにより、複数の発光素子42の配置位置を含む長方形状の領域に遮光膜51の非形成部位である窓部51aを有する構造体20が形成される。窓部51aでは、ガスバリアフィルム13が露出する。
Then, by removing the mask member 61, a structure 20 having a window portion 51a, which is a portion where the light shielding film 51 is not formed, in a rectangular region including the arrangement positions of the plurality of light emitting elements 42 is formed. The gas barrier film 13 is exposed at the window portion 51a.
そして、形成された構造体20の窓部51aが導光管14で覆われるように、窓部51aに導光部52を配置する。しかる後、受光部15を導光部52に装着することにより、本実施形態の電池モジュールが完成する。
Then, the light guide part 52 is arranged in the window part 51 a so that the window part 51 a of the formed structure 20 is covered with the light guide tube 14 . After that, the light receiving section 15 is attached to the light guide section 52 to complete the battery module of the present embodiment.
製造方法2によれば、構造体10の組み立て後に、遮光膜51及び窓部51aを形成する。そのため、成形された構造体20ごとに窓部51aを当該構造体20の所期の位置に正確且つ容易に形成することができる。
According to manufacturing method 2, the light shielding film 51 and the window 51a are formed after the structure 10 is assembled. Therefore, the window portion 51a can be accurately and easily formed at the desired position of each molded structure 20 .
(製造方法3)
製造方法3について、図15Cを用いて説明する。製造方法3では、帯状透明フィルムである第1ガスバリアフィルム101の表面に、印刷等により遮光膜51を被覆形成した主フィルム301を用いる。ここでは、第1ガスバリアフィルム101の表面に、構造体20となったときの窓部51aの形成予定部位、即ち第1ガスバリアフィルム101に形成される凹部101aの側面に位置する当該形成予定部位を除いて、遮光膜51を形成し、主フィルム301とする。第2ガスバリアフィルム102には、その表面全面に遮光膜を被覆形成して封止フィルムとする。なお封止フィルムとしては、遮光膜を形成することなく第2ガスバリアフィルム102をそのまま用いることも考えられる。これら両フィルムを用いて、深絞り真空包装機により、夫々窓部51aを有する個々の構造体20を形成する。 (Manufacturing method 3)
Manufacturing method 3 will be described with reference to FIG. 15C. In manufacturing method 3, amain film 301 is used in which a light shielding film 51 is formed by printing or the like on the surface of the first gas barrier film 101, which is a strip-shaped transparent film. Here, on the surface of the first gas barrier film 101, a portion to be formed of the window portion 51a when the structure 20 is formed, that is, a portion to be formed located on the side surface of the concave portion 101a formed in the first gas barrier film 101 is formed. A main film 301 is formed by removing the light shielding film 51 . The entire surface of the second gas barrier film 102 is coated with a light shielding film to form a sealing film. As the sealing film, it is conceivable to use the second gas barrier film 102 as it is without forming a light shielding film. Both films are used to form individual structures 20 each having a window 51a by means of a deep drawing vacuum packaging machine.
製造方法3について、図15Cを用いて説明する。製造方法3では、帯状透明フィルムである第1ガスバリアフィルム101の表面に、印刷等により遮光膜51を被覆形成した主フィルム301を用いる。ここでは、第1ガスバリアフィルム101の表面に、構造体20となったときの窓部51aの形成予定部位、即ち第1ガスバリアフィルム101に形成される凹部101aの側面に位置する当該形成予定部位を除いて、遮光膜51を形成し、主フィルム301とする。第2ガスバリアフィルム102には、その表面全面に遮光膜を被覆形成して封止フィルムとする。なお封止フィルムとしては、遮光膜を形成することなく第2ガスバリアフィルム102をそのまま用いることも考えられる。これら両フィルムを用いて、深絞り真空包装機により、夫々窓部51aを有する個々の構造体20を形成する。 (Manufacturing method 3)
Manufacturing method 3 will be described with reference to FIG. 15C. In manufacturing method 3, a
そして、形成された構造体20の窓部51aが導光管14で覆われるように、窓部51aに導光部52を配置する。しかる後、受光部15を導光部52に装着することにより、本実施形態の電池モジュールが完成する。
Then, the light guide part 52 is arranged in the window part 51 a so that the window part 51 a of the formed structure 20 is covered with the light guide tube 14 . After that, the light receiving section 15 is attached to the light guide section 52 to complete the battery module of the present embodiment.
製造方法3によれば、第1ガスバリアフィルムを形成するための主フィルムの状態で複数の窓部51aを形成し、この主フィルムを用いて構造体20を形成する。そのため、窓部51aが形成された個々の構造体20を備えた電池モジュールを安価で容易に量産することができる。
According to manufacturing method 3, a plurality of windows 51a are formed in the state of the main film for forming the first gas barrier film, and the structure 20 is formed using this main film. Therefore, it is possible to inexpensively and easily mass-produce battery modules each including the individual structures 20 in which the window portions 51a are formed.
[変形例]
以下、第2の実施形態の諸変形例について説明する。なお、第1の実施形態及び第2の実施形態の電池モジュールの構成要素と同じものについては、同符号を付して詳しい説明を省略する。 [Modification]
Various modifications of the second embodiment will be described below. The same components as those of the battery modules of the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
以下、第2の実施形態の諸変形例について説明する。なお、第1の実施形態及び第2の実施形態の電池モジュールの構成要素と同じものについては、同符号を付して詳しい説明を省略する。 [Modification]
Various modifications of the second embodiment will be described below. The same components as those of the battery modules of the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
(変形例1)
図16A及び図16Bは、第2の実施形態の電池モジュールの変形例1の構成を示す一部切り欠き斜視図であり、図16Aでは電池モジュールを構造体30と受光部53に分解して示し、図16Bでは構造体30に受光部53が装着された様子を示している。図16A及び図16Bでは、引出配線22,23の図示を省略している。 (Modification 1)
16A and 16B are partially cutaway perspective views showing the configuration of Modification 1 of the battery module of the second embodiment, and FIG. 16B shows a state in which thelight receiving portion 53 is attached to the structure 30. FIG. In FIGS. 16A and 16B, illustration of the lead wires 22 and 23 is omitted.
図16A及び図16Bは、第2の実施形態の電池モジュールの変形例1の構成を示す一部切り欠き斜視図であり、図16Aでは電池モジュールを構造体30と受光部53に分解して示し、図16Bでは構造体30に受光部53が装着された様子を示している。図16A及び図16Bでは、引出配線22,23の図示を省略している。 (Modification 1)
16A and 16B are partially cutaway perspective views showing the configuration of Modification 1 of the battery module of the second embodiment, and FIG. 16B shows a state in which the
変形例1の電池モジュール1は、図16Aに示すように、組電池11、複数の発光部12、ガスバリアフィルム13、ガスバリアフィルム13上の遮光膜51、複数の受光部54、及び電池状態解析器16を有して構成されている。組電池11及び複数の発光部12は、ガスバリアフィルム13で覆われて封止されており、ガスバリアフィルム13及び遮光膜51を含む構成を構造体30とする。
As shown in FIG. 16A, the battery module 1 of Modification 1 includes an assembled battery 11, a plurality of light emitting units 12, a gas barrier film 13, a light shielding film 51 on the gas barrier film 13, a plurality of light receiving units 54, and a battery state analyzer. 16. The assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with the gas barrier film 13 , and the structure including the gas barrier film 13 and the light shielding film 51 is referred to as a structure 30 .
組電池11及び複数の発光部12は、外装体であるガスバリアフィルム13に覆われて収容されている。ガスバリアフィルム13の表面には、複数並ぶ発光部12の発光素子42ごとに位置整合する部分である各開口部51bを除いて、遮光膜51が形成されている。遮光膜51の非形成領域である各開口部51bは、各発光素子42の大きさ及び形状(ここでは例えば円形状)と略同一の大きさ及び形状に形成されている。各開口部51bでは、ガスバリアフィルム13が露出しており、各開口部51bに位置整合する発光部12の発光素子42から発光した光信号は、当該光信号に対して透明なガスバリアフィルム13を介して外部に透過する。
The assembled battery 11 and the plurality of light emitting units 12 are housed while being covered with a gas barrier film 13 that is an exterior body. A light shielding film 51 is formed on the surface of the gas barrier film 13 except for the openings 51b that are aligned with the light emitting elements 42 of the plurality of light emitting units 12 . Each opening 51b, which is a region in which the light shielding film 51 is not formed, is formed to have substantially the same size and shape as the size and shape of each light emitting element 42 (here, circular shape, for example). At each opening 51b, the gas barrier film 13 is exposed, and an optical signal emitted from the light emitting element 42 of the light emitting unit 12 aligned with each opening 51b passes through the gas barrier film 13 transparent to the optical signal. permeate to the outside.
変形例1では、各開口部51bは、各発光素子42からの光信号をガスバリアフィルム13を介して外部に伝達するための必要最小限の大きさに形成されており、バリアフィルム13の各開口部51bを除く表面が遮光膜51で覆われている。この構成により、外乱光の光伝送への影響が可及的に抑止される。
In Modified Example 1, each opening 51b is formed to have a minimum necessary size for transmitting the optical signal from each light emitting element 42 to the outside through the gas barrier film 13, and each opening of the barrier film 13 The surface other than the portion 51b is covered with the light shielding film 51. As shown in FIG. This configuration suppresses the influence of disturbance light on optical transmission as much as possible.
変形例1では、構造体30の各開口部51bに、対応する受光部54が直接的に設けられている。各受光部54は、ガスバリアフィルム13の外部で、夫々対応する発光素子42と、ガスバリアフィルム13のみを介して対向配置されている。受光部54は、受光部53から発信し、ガスバリアフィルム13を透過した光信号を受信する受光素子を備えており、受光素子によって光信号を電気信号に逆変換することで、組電池12に含まれる当該受光部53が配された単電池21内の状態を示す電気信号を得ることができる。受光素子としては、LED素子やフォトトランジスタ等を使用することができ、LED素子が好ましい。受光部54は、受光素子が配線基板に実装されたものであっても良く、受光部54が受光素子そのものであっても良い。
In Modified Example 1, each opening 51b of the structure 30 is directly provided with the corresponding light receiving section 54 . Each light receiving unit 54 is arranged outside the gas barrier film 13 so as to face the corresponding light emitting element 42 with only the gas barrier film 13 interposed therebetween. The light-receiving unit 54 includes a light-receiving element that receives the optical signal transmitted from the light-receiving unit 53 and transmitted through the gas barrier film 13 . It is possible to obtain an electric signal indicating the state inside the cell 21 in which the light receiving portion 53 is arranged. An LED element, a phototransistor, or the like can be used as the light receiving element, and the LED element is preferable. The light receiving section 54 may be a light receiving element mounted on a wiring substrate, or the light receiving section 54 may be the light receiving element itself.
変形例1では、光信号に対して透明なガスバリアフィルム13の表面が複数の開口51bを除き遮光膜51で覆われており、各受光部54が夫々対応する開口51bに配置されることで各開口51bが塞がり、構造体30は実質的にその表面全体が遮光膜で覆われた状態とされる。この状態で、構造体30内の発光部12の発光素子42と受光部54との間で、ガスバリアフィルム13を介した光信号の送受信が行われる。変形例1によれば、ガスバリアフィルム13の内側に導光部を配置したり、その一部をガスバリアフィルム13の外部に引き出したりすることを要しないため、電池モジュールの内部構成が大幅に簡素化されると共にガスバリアフィルム13による組電池11の確実な封止が得られる。更には、遮光膜を適宜設けることにより、外乱光の光伝送への影響が可及的に抑止された状態で、効率的な光伝送を行うことができる電池モジュールが実現する。
In Modified Example 1, the surface of the gas barrier film 13 transparent to the optical signal is covered with the light shielding film 51 except for the plurality of openings 51b, and each light receiving section 54 is arranged in the corresponding opening 51b. The opening 51b is closed, and substantially the entire surface of the structure 30 is covered with the light shielding film. In this state, optical signals are transmitted and received through the gas barrier film 13 between the light-emitting element 42 of the light-emitting section 12 and the light-receiving section 54 in the structure 30 . According to Modification 1, it is not necessary to dispose the light guide section inside the gas barrier film 13 or draw out part of it to the outside of the gas barrier film 13, so the internal configuration of the battery module is greatly simplified. In addition, reliable sealing of the battery pack 11 by the gas barrier film 13 is obtained. Furthermore, by appropriately providing a light shielding film, it is possible to realize a battery module capable of performing efficient optical transmission while suppressing the influence of disturbance light on optical transmission as much as possible.
変形例1では、発光部12の発光素子42と受光部54との間に光導管等の光学部品を配することなく、構造体30の各開口部51bに、対応する受光部54が直接的に設けられている。これにより、構成体30の内部構成のみならず、構成体30の外部構成も簡素化され、部品点数が削減されたシンプルな電池モジュールが実現する。
In Modification 1, the corresponding light receiving section 54 is directly connected to each opening 51b of the structure 30 without arranging an optical component such as an optical conduit between the light emitting element 42 of the light emitting section 12 and the light receiving section 54. is provided in This simplifies not only the internal configuration of the structural body 30 but also the external configuration of the structural body 30, realizing a simple battery module with a reduced number of parts.
変形例1では、組電池12を構成する単電池21ごとに配された発光部12に夫々対応するように、各受光部54が配置されている。そのため、個々の単電池21からの光信号を対応する受光部54で独立して受信することができ、個々の単電池21の状態(当該単電池21の電圧や温度異常の有無)を認識することができる。
In Modified Example 1, each light receiving section 54 is arranged so as to correspond to the light emitting section 12 arranged for each unit cell 21 constituting the assembled battery 12 . Therefore, the optical signal from each unit cell 21 can be independently received by the corresponding light receiving unit 54, and the state of each unit cell 21 (whether there is an abnormality in the voltage or temperature of the unit cell 21) can be recognized. be able to.
変形例1の電池モジュールを製造する際には、例えば第2の実施形態で説明した製造方法1と同様に、帯状透明フィルムである第1ガスバリアフィルム101の表面全面に、印刷等により遮光膜51を被覆形成した主フィルム201を用いて個々の構造体20を形成した後、構造体20に各開口部51bを形成することが考えられる。
When manufacturing the battery module of Modification 1, for example, in the same manner as in the manufacturing method 1 described in the second embodiment, the light shielding film 51 is formed by printing or the like on the entire surface of the first gas barrier film 101 which is a strip-shaped transparent film. It is conceivable to form each opening 51b in the structure 20 after forming the individual structures 20 using the main film 201 coated with .
また、第2の実施形態で説明した製造方法2と同様に、帯状透明フィルムである第1ガスバリアフィルム101及び第2ガスバリアフィルム102を用いて個々の構造体10を形成した後、ガスバリアフィルム13の各開口部51bの形成予定部位をマスキングした状態でガスバリアフィルム13の表面全面に遮光膜51を形成し、マスクキングを外すことで、各開口部51bを有する構造体20を形成するようにしても良い。
Further, in the same manner as in the manufacturing method 2 described in the second embodiment, after forming the individual structures 10 using the first gas barrier film 101 and the second gas barrier film 102 which are strip-shaped transparent films, the gas barrier film 13 is formed. The structure 20 having the openings 51b may be formed by forming the light shielding film 51 on the entire surface of the gas barrier film 13 while masking the portions where the openings 51b are to be formed, and removing the masking. good.
また、第2の実施形態で説明した製造方法3と同様に、第1ガスバリアフィルム101の表面に、構造体20となったときの各開口部51bの形成予定部位、即ち第1ガスバリアフィルム101に形成される凹部101aの側面に位置する当該形成予定部位を除いて、遮光膜51が印刷形成されてなる主フィルム301を用いて、各開口部51bを有する個々の構造体20を形成するようにしても良い。
In addition, in the same manner as in the manufacturing method 3 described in the second embodiment, on the surface of the first gas barrier film 101, the formation planned portions of the openings 51b when the structure 20 is formed, that is, the first gas barrier film 101 Individual structures 20 having respective openings 51b are formed using a main film 301 formed by printing a light shielding film 51 except for the portions to be formed located on the side surfaces of the recesses 101a to be formed. can be
(変形例2)
図17は、第2の実施形態の電池モジュールの変形例2の構成を示す概略断面図である。
変形例2の電池モジュール1は、組電池11、複数の発光部12、ガスバリアフィルム13、ガスバリアフィルム13上の遮光膜51、遮光フィン55、受光部15、及び電池状態解析器16を有して構成されている。組電池11及び複数の発光部12は、ガスバリアフィルム13で覆われて封止されており、ガスバリアフィルム13及び遮光膜51を含む構成を第2の実施形態と同様に構造体20とする。 (Modification 2)
FIG. 17 is a schematic cross-sectional view showing the configuration of Modification 2 of the battery module of the second embodiment.
The battery module 1 of Modification 2 includes an assembledbattery 11, a plurality of light emitting units 12, a gas barrier film 13, a light shielding film 51 on the gas barrier film 13, light shielding fins 55, a light receiving unit 15, and a battery state analyzer 16. It is configured. The assembled battery 11 and the plurality of light emitting units 12 are covered and sealed with the gas barrier film 13, and the structure including the gas barrier film 13 and the light shielding film 51 is the structure 20 as in the second embodiment.
図17は、第2の実施形態の電池モジュールの変形例2の構成を示す概略断面図である。
変形例2の電池モジュール1は、組電池11、複数の発光部12、ガスバリアフィルム13、ガスバリアフィルム13上の遮光膜51、遮光フィン55、受光部15、及び電池状態解析器16を有して構成されている。組電池11及び複数の発光部12は、ガスバリアフィルム13で覆われて封止されており、ガスバリアフィルム13及び遮光膜51を含む構成を第2の実施形態と同様に構造体20とする。 (Modification 2)
FIG. 17 is a schematic cross-sectional view showing the configuration of Modification 2 of the battery module of the second embodiment.
The battery module 1 of Modification 2 includes an assembled
変形例2では、構造体20に形成された窓部51aを覆うように遮光フィン55が設けられている。遮光フィン55は、表面が遮光膜51と同様の遮光膜で覆われている。
遮光フィン55には、第1の実施形態と同様に受光素子45を備えた受光部15が装着されている。受光部15は、複数の発光部12の共通の受光部とされている。 In Modified Example 2, alight shielding fin 55 is provided so as to cover the window 51a formed in the structure 20 . The light shielding fin 55 has a surface covered with a light shielding film similar to the light shielding film 51 .
The light-shieldingfin 55 is attached with the light-receiving section 15 having the light-receiving element 45 as in the first embodiment. The light receiving section 15 is a common light receiving section for the plurality of light emitting sections 12 .
遮光フィン55には、第1の実施形態と同様に受光素子45を備えた受光部15が装着されている。受光部15は、複数の発光部12の共通の受光部とされている。 In Modified Example 2, a
The light-shielding
変形例2では、光信号に対して透明なガスバリアフィルム13の表面が窓部51aを除き遮光膜51で覆われており、遮光フィン55が窓部51aを覆うように配置されることにより、構造体20は実質的にその表面全体が遮光膜で覆われた状態とされる。この状態で、構造体20内の発光部12の発光素子42と受光部15との間で、ガスバリアフィルム13を介した光信号の送受信が行われる。変形例2によれば、ガスバリアフィルム13の内側に導光部を配置したり、その一部をガスバリアフィルム13の外部に引き出したりすることを要しないため、電池モジュールの内部構成が大幅に簡素化されると共にガスバリアフィルム13による組電池11の確実な封止が得られる。更には、遮光膜を適宜設けることにより、外乱光の光伝送への影響が可及的に抑止された状態で、効率的な光伝送を行うことができる電池モジュールが実現する。
In Modification 2, the surface of the gas barrier film 13 transparent to the optical signal is covered with the light shielding film 51 except for the window 51a, and the light shielding fins 55 are arranged so as to cover the window 51a. Substantially the entire surface of the body 20 is covered with a light shielding film. In this state, optical signals are transmitted and received between the light emitting element 42 of the light emitting section 12 and the light receiving section 15 in the structure 20 via the gas barrier film 13 . According to Modification 2, it is not necessary to dispose the light guide section inside the gas barrier film 13 or pull out part of it to the outside of the gas barrier film 13, so the internal configuration of the battery module is greatly simplified. In addition, reliable sealing of the battery pack 11 by the gas barrier film 13 is obtained. Furthermore, by appropriately providing a light shielding film, it is possible to realize a battery module capable of performing efficient optical transmission while suppressing the influence of disturbance light on optical transmission as much as possible.
更に変形例2では、遮光フィン55内(発光部12の発光素子42と受光部15との間)に光導管等の光学部品を配することなく、構造体20の窓部51aと遮光フィン55により離間した状態で受光部15が直接的に設けられている。これにより、構成体20の内部構成のみならず、構成体20の外部構成も簡素化され、部品点数が削減されたシンプルな電池モジュールが実現する。
Further, in Modification 2, the window portion 51a of the structure 20 and the light shielding fin 55 are arranged without arranging an optical component such as an optical conduit in the light shielding fin 55 (between the light emitting element 42 of the light emitting portion 12 and the light receiving portion 15). A light receiving portion 15 is directly provided in a state separated by . This simplifies not only the internal configuration of the structural body 20 but also the external configuration of the structural body 20, realizing a simple battery module with a reduced number of parts.
以上説明した諸実施形態及び諸変形例は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。諸実施形態及び諸変形例で説明したフローチャート、シーケンス、実施形態が備える各構成要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるものではなく、適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
The embodiments and modifications described above are intended to facilitate understanding of the present invention, and are not intended to limit and interpret the present invention. Flowcharts, sequences, components provided in the embodiments and their arrangement, materials, conditions, shapes and sizes, etc., described in the embodiments and modifications are not limited to those illustrated, and may be changed as appropriate. can be done. Also, it is possible to partially replace or combine the configurations shown in different embodiments.
以上説明したように、本発明の一実施形態に係る電池モジュールは、樹脂集電体層を含む正極集電体及び前記正極集電体上に形成された正極活物質を含む正極活物質層を有する正極と、樹脂集電体層を含む負極集電体及び前記負極集電体上に形成された負極活物質を含む負極活物質層を有する負極と、前記正極活物質層と前記負極活物質層との間に配置されるセパレータと、を備えるリチウムイオン単電池が複数積層されてなる組電池と、前記単電池ごとに設けられ、当該単電池の状態に基づき光信号を送信する複数の発光部と、前記組電池を覆うガスバリアフィルムと、を有しており、前記ガスバリアフィルムは、全体として前記光信号に対して透明である。
As described above, the battery module according to one embodiment of the present invention includes a positive electrode current collector including a resin current collector layer and a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector. a negative electrode having a negative electrode current collector including a resin current collector layer and a negative electrode active material layer including a negative electrode active material formed on the negative electrode current collector; the positive electrode active material layer and the negative electrode active material an assembled battery in which a plurality of lithium-ion cells are stacked, and a separator disposed between layers; and a gas barrier film covering the assembled battery, the gas barrier film as a whole being transparent to the optical signal.
上記一実施形態では、前記発光部は、前記ガスバリアフィルムを介して前記光信号を外部に送信するようにしても良い。
In the above embodiment, the light emitting section may transmit the optical signal to the outside through the gas barrier film.
上記一実施形態では、前記ガスバリアフィルムの外部に、複数の前記発光部を前記ガスバリアフィルムを介して覆う導光管を設けても良い。
In the above embodiment, a light guide tube may be provided outside the gas barrier film so as to cover the plurality of light emitting portions via the gas barrier film.
上記一実施形態では、前記ガスバリアフィルムの外部に、前記導光管の内部を伝搬する複数の前記光信号を受信する受光部を設けても良い。
In the above embodiment, a light receiving section may be provided outside the gas barrier film to receive the plurality of optical signals propagating inside the light guide tube.
上記一実施形態では、前記ガスバリアフィルムの外部に、前記発光部から前記ガスバリアフィルムを介して送信された前記光信号を直接的に受信する受光部を設けても良い。
In the above embodiment, a light receiving section may be provided outside the gas barrier film to directly receive the optical signal transmitted from the light emitting section through the gas barrier film.
上記一実施形態では、前記ガスバリアフィルムは、表面の一部に前記光信号を遮光する遮光層を設け、表面の前記発光部に対応する位置には前記遮光層を設けないようにしても良い。
In the above embodiment, the gas barrier film may be provided with a light shielding layer for shielding the optical signal on a part of the surface, and may not be provided with the light shielding layer at a position corresponding to the light emitting portion on the surface.
上記一実施形態では、前記ガスバリアフィルムの表面を、複数の前記発光部を含む領域に位置整合する部分を除き、前記遮光層で覆うようにしても良い。
In the above embodiment, the surface of the gas barrier film may be covered with the light shielding layer except for the portion aligned with the region including the plurality of light emitting portions.
上記一実施形態では、前記ガスバリアフィルムの表面を、前記発光部ごとに位置整合する部分を除き、前記遮光層で覆うようにしても良い。
In the one embodiment described above, the surface of the gas barrier film may be covered with the light shielding layer except for the portions where the positions of the light emitting portions are aligned.
本発明の一実施形態に係る電池モジュールの製造方法は、上記の電池モジュールの製造方法であって、全体として前記光信号に対して透明である前記ガスバリアフィルムとなる帯状の第1ガスバリアフィルムの表面に、加熱成形により複数の凹部を順次形成する工程と、前記組電池と、前記単電池ごとに設けられた複数の発光部と、を備えた構造体を、前記凹部内に順次嵌入させる工程と、帯状の第2ガスバリアフィルムを前記第1ガスバリアフィルムに重ね合わせて複数の前記構造体を順次封止する工程と、前記構造体ごとに前記第1ガスバリアフィルム及び前記第2ガスバリアフィルムを切り分ける工程と、を有する。
A method for manufacturing a battery module according to an embodiment of the present invention is the above-described method for manufacturing a battery module, wherein the surface of a strip-shaped first gas barrier film that becomes the gas barrier film that is transparent to the optical signal as a whole is a step of sequentially forming a plurality of recesses by heat molding; and a step of sequentially fitting a structure including the assembled battery and a plurality of light emitting portions provided for each of the unit cells into the recesses. a step of successively sealing a plurality of the structures by overlapping a strip-shaped second gas barrier film on the first gas barrier film; and a step of cutting the first gas barrier film and the second gas barrier film for each structure. , has
上記一実施形態では、前記凹部を形成する工程に供される帯状の前記第1ガスバリアフィルムを、複数の前記発光部を含む領域に位置整合する部分を除き、前記遮光層で覆い、帯状の前記第1ガスバリアフィルムに前記凹部を形成した際に、前記凹部の側面に前記部分が位置するようにしても良い。
In the above embodiment, the band-shaped first gas barrier film, which is subjected to the step of forming the recesses, is covered with the light-shielding layer except for a portion aligned with the region including the plurality of light-emitting portions, and the band-shaped first gas barrier film is When the concave portion is formed in the first gas barrier film, the portion may be located on the side surface of the concave portion.
上記一実施形態では、前記凹部を形成する工程に供される帯状の前記第1ガスバリアフィルムは、前記発光部ごとに位置整合する部分を除き、前記遮光層で覆い、帯状の前記第1ガスバリアフィルムに前記凹部を形成した際に、前記凹部の側面に前記部分が位置するようにしても良い。
In the above embodiment, the strip-shaped first gas barrier film provided for the step of forming the recesses is covered with the light-shielding layer except for a portion aligned with each light-emitting portion, and the strip-shaped first gas barrier film is covered with the light-shielding layer. The portion may be positioned on the side surface of the recess when the recess is formed in the .
--第2の発明態様--
次に、第2の発明態様に係る二次電池モジュールについて説明する。 --Second aspect of the invention--
Next, a secondary battery module according to a second aspect of the invention will be described.
次に、第2の発明態様に係る二次電池モジュールについて説明する。 --Second aspect of the invention--
Next, a secondary battery module according to a second aspect of the invention will be described.
電気自動車及びハイブリッド電気自動車等の電源等に使用できる電池として高エネルギー密度のリチウムイオン電池が知られている。また、このリチウムイオン電池を複数積層した構造の積層電池(例えば、特開2021-34141号公報)を、ラミネートフィルム等の外装体に収容した構成も知られている。
High energy density lithium-ion batteries are known as batteries that can be used as power sources for electric vehicles and hybrid electric vehicles. Also known is a configuration in which a laminated battery having a structure in which a plurality of lithium ion batteries are laminated (for example, JP-A-2021-34141) is housed in an exterior body such as a laminated film.
積層電池を外装体内に収容する際には、積層電池全体を外装体で覆って真空引き(真空パック)を行う。この際に、例えば積層電池内部に空気が残っていると、真空引きしても上手く密着されないおそれがある。
When the laminated battery is housed in the outer package, the entire laminated battery is covered with the outer package and vacuumed (vacuum packed). At this time, for example, if air remains inside the laminated battery, there is a risk that the laminated battery will not adhere well even if it is evacuated.
そこで、第2の発明態様では、積層電池内部に空気が残存することを抑制することができる二次電池モジュールを提供することを目的とする。
Therefore, an object of the second aspect of the invention is to provide a secondary battery module capable of suppressing air from remaining inside the laminated battery.
上記のような知見に基づいて鋭意検討を重ねた結果、以下に示す諸態様に想到した。
As a result of extensive research based on the above knowledge, we came up with the following aspects.
[1]
負極集電体、負極活物質層、セパレータ又は固体電解質、正極活物質層及び正極集電体を有する蓄電要素を複数積層されてなる積層電池を備えた二次電池モジュールであって、
前記積層電池における最外層の少なくとも一面には、電流取出層が接しており、
前記電流取出層には、上下に貫通する小孔が形成されている、
二次電池モジュール。 [1]
A secondary battery module comprising a laminated battery in which a plurality of storage elements each having a negative electrode current collector, a negative electrode active material layer, a separator or a solid electrolyte, a positive electrode active material layer, and a positive electrode current collector are stacked,
A current extraction layer is in contact with at least one surface of the outermost layer in the laminated battery,
A small hole penetrating vertically is formed in the current extraction layer,
Secondary battery module.
負極集電体、負極活物質層、セパレータ又は固体電解質、正極活物質層及び正極集電体を有する蓄電要素を複数積層されてなる積層電池を備えた二次電池モジュールであって、
前記積層電池における最外層の少なくとも一面には、電流取出層が接しており、
前記電流取出層には、上下に貫通する小孔が形成されている、
二次電池モジュール。 [1]
A secondary battery module comprising a laminated battery in which a plurality of storage elements each having a negative electrode current collector, a negative electrode active material layer, a separator or a solid electrolyte, a positive electrode active material layer, and a positive electrode current collector are stacked,
A current extraction layer is in contact with at least one surface of the outermost layer in the laminated battery,
A small hole penetrating vertically is formed in the current extraction layer,
Secondary battery module.
[2]
前記小孔は、平面視で、円形状、楕円形状、又は、スリット状、のいずれかである、
[1]に記載の二次電池モジュール。 [2]
The small holes are either circular, elliptical, or slit-shaped in plan view,
The secondary battery module according to [1].
前記小孔は、平面視で、円形状、楕円形状、又は、スリット状、のいずれかである、
[1]に記載の二次電池モジュール。 [2]
The small holes are either circular, elliptical, or slit-shaped in plan view,
The secondary battery module according to [1].
[3]
前記小孔が楕円形状の場合は、当該楕円形状の短軸の寸法が0.2mm~2mmであり、
前記小孔が円形状の場合は、当該円形状の半径の寸法が0.2mm~2mmである、
[1]又は[2]に記載の二次電池モジュール。 [3]
When the small hole has an elliptical shape, the dimension of the minor axis of the elliptical shape is 0.2 mm to 2 mm,
When the small hole is circular, the radius of the circular shape is 0.2 mm to 2 mm.
The secondary battery module according to [1] or [2].
前記小孔が楕円形状の場合は、当該楕円形状の短軸の寸法が0.2mm~2mmであり、
前記小孔が円形状の場合は、当該円形状の半径の寸法が0.2mm~2mmである、
[1]又は[2]に記載の二次電池モジュール。 [3]
When the small hole has an elliptical shape, the dimension of the minor axis of the elliptical shape is 0.2 mm to 2 mm,
When the small hole is circular, the radius of the circular shape is 0.2 mm to 2 mm.
The secondary battery module according to [1] or [2].
[4]
前記小孔は、前記電流取出層に複数形成され、前記電流取出層の周縁部よりも前記電流取出層の中央部に相対的に多く形成されている、
[1]~[3]のいずれか1つに記載の二次電池モジュール。 [4]
A plurality of the small holes are formed in the current extraction layer, and relatively more small holes are formed in the central portion of the current extraction layer than in the peripheral portion of the current extraction layer.
The secondary battery module according to any one of [1] to [3].
前記小孔は、前記電流取出層に複数形成され、前記電流取出層の周縁部よりも前記電流取出層の中央部に相対的に多く形成されている、
[1]~[3]のいずれか1つに記載の二次電池モジュール。 [4]
A plurality of the small holes are formed in the current extraction layer, and relatively more small holes are formed in the central portion of the current extraction layer than in the peripheral portion of the current extraction layer.
The secondary battery module according to any one of [1] to [3].
[5]
前記電流取出層は、正極側電流取出層及び負極側電流供給層を備え、
前記正極側電流取出層及び前記負極側電流供給層は、弾性変形可能な弾性材で構成されている、
[1]~[4]のいずれか1つに記載の二次電池モジュール。 [5]
The current extraction layer includes a positive current extraction layer and a negative current supply layer,
The positive electrode-side current extraction layer and the negative electrode-side current supply layer are made of an elastic material that is elastically deformable,
The secondary battery module according to any one of [1] to [4].
前記電流取出層は、正極側電流取出層及び負極側電流供給層を備え、
前記正極側電流取出層及び前記負極側電流供給層は、弾性変形可能な弾性材で構成されている、
[1]~[4]のいずれか1つに記載の二次電池モジュール。 [5]
The current extraction layer includes a positive current extraction layer and a negative current supply layer,
The positive electrode-side current extraction layer and the negative electrode-side current supply layer are made of an elastic material that is elastically deformable,
The secondary battery module according to any one of [1] to [4].
[6]
前記電流取出層は、不織布で構成されている、
[1]~[5]のいずれか1つに記載の二次電池モジュール。 [6]
wherein the current extraction layer is made of a non-woven fabric,
The secondary battery module according to any one of [1] to [5].
前記電流取出層は、不織布で構成されている、
[1]~[5]のいずれか1つに記載の二次電池モジュール。 [6]
wherein the current extraction layer is made of a non-woven fabric,
The secondary battery module according to any one of [1] to [5].
[7]
前記正極集電体と正極側電流取出層との間には、PTCサーミスタが介装されている、
[1]~[6]のいずれか1つに記載の二次電池モジュール。 [7]
A PTC thermistor is interposed between the positive current collector and the positive current extraction layer.
The secondary battery module according to any one of [1] to [6].
前記正極集電体と正極側電流取出層との間には、PTCサーミスタが介装されている、
[1]~[6]のいずれか1つに記載の二次電池モジュール。 [7]
A PTC thermistor is interposed between the positive current collector and the positive current extraction layer.
The secondary battery module according to any one of [1] to [6].
[8]
上記負極集電体と負極側電流供給層との間には、PTCサーミスタが介装されている、
[1]~[7]のいずれか1つに記載の二次電池モジュール。 [8]
A PTC thermistor is interposed between the negative electrode current collector and the negative electrode current supply layer.
The secondary battery module according to any one of [1] to [7].
上記負極集電体と負極側電流供給層との間には、PTCサーミスタが介装されている、
[1]~[7]のいずれか1つに記載の二次電池モジュール。 [8]
A PTC thermistor is interposed between the negative electrode current collector and the negative electrode current supply layer.
The secondary battery module according to any one of [1] to [7].
[9]
前記正極側電流取出層は、複数の電流取出部と、前記各電流取出部から正極合流部までを電気的に接続するための複数本の正極導電線とを備え、前記各正極導電線の長さは、互いに略同一である、
[7]又は[8]に記載の二次電池モジュール。 [9]
The positive electrode-side current extraction layer includes a plurality of current extraction portions and a plurality of positive electrode conductive wires for electrically connecting each of the current extraction portions to the positive electrode confluence portion. are substantially identical to each other,
The secondary battery module according to [7] or [8].
前記正極側電流取出層は、複数の電流取出部と、前記各電流取出部から正極合流部までを電気的に接続するための複数本の正極導電線とを備え、前記各正極導電線の長さは、互いに略同一である、
[7]又は[8]に記載の二次電池モジュール。 [9]
The positive electrode-side current extraction layer includes a plurality of current extraction portions and a plurality of positive electrode conductive wires for electrically connecting each of the current extraction portions to the positive electrode confluence portion. are substantially identical to each other,
The secondary battery module according to [7] or [8].
[10]
上記正極集電体の上方には、放電時に電流を送出する正極整流部が幅手方向に延設されている、
[1]~[9]のいずれか1つに記載の二次電池モジュール。 [10]
Above the positive electrode current collector, a positive electrode rectifying section that delivers current during discharge extends in the width direction.
The secondary battery module according to any one of [1] to [9].
上記正極集電体の上方には、放電時に電流を送出する正極整流部が幅手方向に延設されている、
[1]~[9]のいずれか1つに記載の二次電池モジュール。 [10]
Above the positive electrode current collector, a positive electrode rectifying section that delivers current during discharge extends in the width direction.
The secondary battery module according to any one of [1] to [9].
本発明態様によれば、積層電池内部に空気が残存することを抑制することができる二次電池モジュールを提供することができる。
According to the aspect of the present invention, it is possible to provide a secondary battery module that can prevent air from remaining inside the laminated battery.
以下、本発明態様に係る諸実施形態について、図面を参照しながら詳細に説明する。
Hereinafter, various embodiments according to aspects of the present invention will be described in detail with reference to the drawings.
<第1の実施形態>
以下、第1の実施形態に係る二次電池モジュールについて、図面を参照しながら詳細に説明をする。 <First Embodiment>
Hereinafter, the secondary battery module according to the first embodiment will be described in detail with reference to the drawings.
以下、第1の実施形態に係る二次電池モジュールについて、図面を参照しながら詳細に説明をする。 <First Embodiment>
Hereinafter, the secondary battery module according to the first embodiment will be described in detail with reference to the drawings.
図18は、本発明態様を適用した第1の実施形態に係る二次電池モジュール401を示す斜視図であり、図19はその側断面図を示している。二次電池モジュール401は、蓄電要素である、負極集電体411及び負極活物質層412からなる負極402と、正極活物質層414及び正極集電体415からなる正極403とが、セパレータ413を介して積層させた平板上の積層電池(単電池)からなる電池セル420として構成される。即ち、二次電池モジュール401を構成する電池セル420は、負極集電体411、負極活物質層412、セパレータ413、正極活物質層414、正極集電体415が、図19における上方向に向けて積層され、全体として略矩形平板状に形成されている。
FIG. 18 is a perspective view showing a secondary battery module 401 according to a first embodiment to which aspects of the present invention are applied, and FIG. 19 shows a side sectional view thereof. In the secondary battery module 401, a negative electrode 402 composed of a negative electrode current collector 411 and a negative electrode active material layer 412 and a positive electrode 403 composed of a positive electrode active material layer 414 and a positive electrode current collector 415, which are power storage elements, are connected to a separator 413. It is configured as a battery cell 420 consisting of a laminated battery (single battery) on a flat plate that is laminated with an intervening layer. That is, in the battery cell 420 constituting the secondary battery module 401, the negative electrode current collector 411, the negative electrode active material layer 412, the separator 413, the positive electrode active material layer 414, and the positive electrode current collector 415 face upward in FIG. are laminated together, and formed in a substantially rectangular flat plate shape as a whole.
二次電池モジュール401は、更に電池セル420の周縁に配設される環状の枠部材9を備えている。枠部材409は、セパレータ413の端部が埋め込まれてなることで当該セパレータ413を支持すると共に、枠部材409は、その上面及び下面に正極集電体415及び負極集電体411を面接触させた上でそれぞれ固定している。負極集電体411、正極集電体415及びセパレータ413の周縁部がこの枠部材409を介して固定されることにより、負極活物質層412及び正極活物質層414を外部に漏洩させることなく強固に封止することが可能となる。また、枠部材409は、負極集電体411、セパレータ413、正極集電体415のそれぞれの位置関係を定めることができる。負極集電体411とセパレータ413との間隔、セパレータ413と正極集電体415との間隔は、電池の容量に応じて予め調整されるが、枠部材409を通じてこの調整された間隔を保持できるように負極集電体411、セパレータ413、正極集電体415を固定することができる。
The secondary battery module 401 further includes an annular frame member 9 arranged around the periphery of the battery cells 420 . The edge of the separator 413 is embedded in the frame member 409 to support the separator 413, and the frame member 409 brings the positive electrode current collector 415 and the negative electrode current collector 411 into surface contact with the upper surface and the lower surface of the frame member 409. They are fixed on top of each other. By fixing the peripheral edge portions of the negative electrode current collector 411, the positive electrode current collector 415, and the separator 413 via the frame member 409, the negative electrode active material layer 412 and the positive electrode active material layer 414 are firmly prevented from leaking to the outside. It becomes possible to seal to Further, the frame member 409 can determine the positional relationship among the negative electrode current collector 411 , the separator 413 , and the positive electrode current collector 415 . The gap between the negative electrode current collector 411 and the separator 413 and the gap between the separator 413 and the positive electrode current collector 415 are adjusted in advance according to the capacity of the battery. A negative electrode current collector 411, a separator 413, and a positive electrode current collector 415 can be fixed to each other.
負極集電体411の下側には、導電体層としての負極側電流供給層410が平面状に積層され、正極集電体415の上側には、同じく導電体層としての正極側電流取出層416が平面状に積層されている。負極側電流供給層410及び正極側電流取出層416には、それぞれ電流が供給される箇所となる導電部407,408が形成されている。
A negative electrode current supply layer 410 as a conductor layer is laminated on the lower side of the negative electrode current collector 411 in a planar shape, and a positive electrode current extraction layer, which is also a conductor layer, is laminated on the upper side of the positive electrode current collector 415 . 416 are stacked in a plane. The negative current supply layer 410 and the positive current extraction layer 416 are provided with conductive portions 407 and 408 to which current is supplied, respectively.
電池セル420は、いわゆるリチウムイオン二次電池で構成される。図20Aは、リチウムイオン二次電池としての電池セル420の拡大断面図を示しており、負極402を構成する負極活物質層412は、負極活物質441と電解液443とを含み、正極403を構成する正極活物質層414は、正極活物質442と電解液443とを含んでいる。
The battery cell 420 is composed of a so-called lithium-ion secondary battery. FIG. 20A shows an enlarged cross-sectional view of a battery cell 420 as a lithium ion secondary battery. The constituent positive electrode active material layer 414 contains a positive electrode active material 442 and an electrolytic solution 443 .
このような電池セル420をリチウムイオン二次電池として動作させる場合、先ず図示しない充電器の正極端子を正極403側に、充電器の負極端子を負極402側に接続して電流を流す。その結果、リチウム遷移金属複合酸化物等を含む正極活物質442から引き離された電子は、充電器を含む外部回路を流れ、炭素系材料等からなる負極活物質441へと到達する。その間において、プラスに帯電したリチウムイオンは、負極402側へと引き寄せられ、電解液443を流れて負極活物質441へと到達し、これに吸蔵される。正極活物質442中の全てのリチウム原子が負極活物質441へと到達することで、電池セル420が完全に充電された状態となる。
When such a battery cell 420 is operated as a lithium ion secondary battery, first, the positive terminal of a charger (not shown) is connected to the positive electrode 403 side and the negative electrode terminal of the charger is connected to the negative electrode 402 side to allow current to flow. As a result, electrons separated from the positive electrode active material 442 containing lithium-transition metal composite oxide or the like flow through an external circuit including a charger and reach the negative electrode active material 441 made of a carbonaceous material or the like. In the meantime, positively charged lithium ions are attracted to the negative electrode 402 side, flow through the electrolytic solution 443, reach the negative electrode active material 441, and are occluded therein. When all the lithium atoms in the positive electrode active material 442 reach the negative electrode active material 441, the battery cell 420 is fully charged.
放電時には、図示しない外部の負荷を正極403と負極2との間に接続する。これにより、この負極活物質441に吸蔵されているリチウムイオンは、リチウム遷移金属複合酸化物の一部として安定な状態に戻るため、電解液443を通過し、正極に向かって移動する。また電子も負極402から外部の負荷を通過して正極3側へと流れ込むことでエネルギーが消費される。正極403と負極402との間にセパレータ413が絶縁層として配置されることで、リチウムイオンのみを透過させつつ、正極403と負極2との内部短絡を防止することで爆発や発火の危険性を抑えることができる。
An external load (not shown) is connected between the positive electrode 403 and the negative electrode 2 during discharging. As a result, the lithium ions occluded in the negative electrode active material 441 return to a stable state as part of the lithium-transition metal composite oxide, so they pass through the electrolytic solution 443 and move toward the positive electrode. Energy is also consumed when electrons flow from the negative electrode 402 through an external load to the positive electrode 3 side. By placing the separator 413 as an insulating layer between the positive electrode 403 and the negative electrode 402, only lithium ions are allowed to permeate while preventing an internal short circuit between the positive electrode 403 and the negative electrode 2, thereby reducing the risk of explosion or fire. can be suppressed.
電池セル420をこのようなリチウムイオン二次電池で実現する場合における各構成要素を構成する材料の好ましい態様について説明をする。
A description will be given of preferred aspects of the materials that make up each component when the battery cell 420 is realized with such a lithium-ion secondary battery.
正極活物質層414に含まれる正極活物質442としては、リチウム遷移金属複合酸化物、即ちリチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO2、LiNiO2、LiAlMnO4、LiMnO2及びLiMn2O4等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO4、LiNi1-xCoxO2、LiMn1-yCoyO2、LiNi1/3Co1/3Al1/3O2及びLiNi0.8Co0.15Al0.05O2)及び金属元素が3種類以上である複合酸化物[例えばLiMaM’bM’’cO2(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3O2)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO4、LiCoPO4、LiMnPO4及びLiNiPO4)、遷移金属酸化物(例えばMnO2及びV2O5)、遷移金属硫化物(例えばMoS2及びTiS2)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられる。正極活物質442は、上述した各リチウム遷移金属複合酸化物等を2種以上併用してもよい。なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
As the positive electrode active material 442 contained in the positive electrode active material layer 414, a lithium transition metal composite oxide, that is, a composite oxide of lithium and a transition metal {composite oxide containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 , etc.), composite oxides containing two transition metal elements (e.g., LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/ 3Co1 /3Al1 / 3O2 and LiNi0.8Co0.15Al0.05O2 ) and composite oxides containing three or more metal elements [ e.g. O 2 (M, M′ and M ″ are different transition metal elements, satisfying a+ b + c =1. Metal phosphates (e.g. LiFePO4 , LiCoPO4 , LiMnPO4 and LiNiPO4 ), transition metal oxides ( e.g. MnO2 and V2O5 ), transition metal sulfides (e.g. MoS2 and TiS2 ) and highly conductive Molecules such as polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and polyvinylcarbazole, and the like. For the positive electrode active material 442, two or more of the lithium-transition metal composite oxides and the like described above may be used in combination. The lithium-containing transition metal phosphate may have a transition metal site partially substituted with another transition metal.
正極活物質442は、導電助剤及び被覆用樹脂で被覆された被覆正極活物質であることが好ましい。正極活物質442の周囲が被覆用樹脂で被覆されていることにより、電極の体積変化が緩和され、電極の膨張を抑制することができる。
The positive electrode active material 442 is preferably a coated positive electrode active material coated with a conductive aid and a coating resin. By covering the positive electrode active material 442 with the covering resin, the volume change of the electrode is alleviated, and the expansion of the electrode can be suppressed.
導電助剤としては、金属系導電助剤[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、炭素系導電助剤[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)等]、及びこれらの混合物等が挙げられる。これらの導電助剤は、1種単独で用いられてもよいし、2種以上併用してもよい。また導電助剤は、これらの合金又は金属酸化物として用いられてもよい。導電助剤は、電気的安定性の観点から、より好ましくはアルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤及びこれらの混合物で構成されていることが好ましい。中でも導電助剤は、銀、金、アルミニウム、ステンレス及び炭素系導電助剤で構成されていることがさらに好ましく、また炭素系導電助剤で構成されていることが特に好ましい。
Conductive agents include metallic conductive agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive agents [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), and mixtures thereof. These conductive aids may be used singly or in combination of two or more. Conductive aids may also be used as these alloys or metal oxides. From the viewpoint of electrical stability, the conductive aid is more preferably composed of aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids, and mixtures thereof. Among them, the conductive aid is more preferably composed of silver, gold, aluminum, stainless steel, and a carbon-based conductive aid, and particularly preferably composed of a carbon-based conductive aid.
またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料をめっき等でコーティングしたものを適用するようにしてもよい。このコーティングする導電性材料は、上述した導電助剤のうち金属のもので構成することが好ましい。
Also, as these conductive aids, a particle-based ceramic material or a resin material coated with a conductive material by plating or the like may be applied. It is preferable that the conductive material to be coated is made of a metal among the above-described conductive aids.
導電助剤の形態は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態とされていてもよい。
The form of the conductive aid is not limited to the particle form, and may be in a form other than the particle form. good.
被覆用樹脂としては、特開2017-054703号公報に記載されている、非水系二次電池活物質被覆用樹脂として記載されている材料を用いるようにしてもよい。
As the coating resin, a material described as a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 may be used.
なお、被覆用樹脂と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆用樹脂(樹脂固形分重量):導電助剤が1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。
The ratio of the coating resin and the conductive aid is not particularly limited, but from the viewpoint of the internal resistance of the battery, etc., the weight ratio of the coating resin (resin solid content weight): conductive aid is 1:0. 0.01 to 1:50, more preferably 1:0.2 to 1:3.0.
正極活物質442は、被覆正極活物質に含まれる導電助剤以外にも更に導電助剤を含んでもよい。この更に含める導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
The positive electrode active material 442 may further contain a conductive aid in addition to the conductive aid contained in the coated positive electrode active material. As the conductive aid to be further included, the same conductive aid as the conductive aid contained in the above-described coated positive electrode active material can be preferably used.
正極活物質442は、互いに当該正極活物質442同士を結着する結着剤を含まない非結着体であることが好ましい。ここで、非結着体とは、正極活物質442がいわゆるバインダとしての結着剤により位置を固定することなく、正極活物質442同士及び正極活物質442と集電体が不可逆的に固定されていない状態をいう。正極活物質442が非結着体である場合には、正極活物質442同士が不可逆的に固定されていないため、正極活物質442同士の界面を機械的に破壊することなく分離することができ、正極活物質層414に応力がかかった場合でも正極活物質442が移動することで正極活物質層414の破壊を防止することができる。非結着体である正極活物質442、正極活物質442と電解液443とを含みかつ結着剤を含まない正極活物質層414にする等の方法で得ることができる。
The positive electrode active material 442 is preferably a non-binding material that does not contain a binder that binds the positive electrode active materials 442 together. Here, the non-binding body means that the positive electrode active materials 442 are irreversibly fixed to each other and the positive electrode active material 442 and the current collector without fixing the positions of the positive electrode active materials 442 by a binder as a so-called binder. It means the state of not When the positive electrode active materials 442 are non-bound, the positive electrode active materials 442 are not irreversibly fixed to each other, and thus the interfaces between the positive electrode active materials 442 can be separated without mechanical destruction. , even when stress is applied to the positive electrode active material layer 414, the positive electrode active material 442 moves, so that the positive electrode active material layer 414 can be prevented from being broken. The positive electrode active material layer 414 containing the positive electrode active material 442 which is a non-binder, the positive electrode active material 442 and the electrolytic solution 443 and containing no binder can be obtained by a method such as the following.
なお、本明細書において、結着剤とは、正極活物質442同士及び正極活物質442と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化するので正極活物質442同士及び正極活物質442と集電体とを可逆的に固定することができない。
In this specification, the binder means an agent that cannot reversibly fix the positive electrode active materials 442 together and the positive electrode active material 442 and the current collector, and includes starch, polyvinylidene fluoride, and polyvinyl alcohol. , carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene, and other known solvent-drying binders for lithium ion batteries. These binders are used by dissolving or dispersing them in a solvent, and by volatilizing and distilling off the solvent, the surfaces of the positive electrode active materials 442 are solidified without exhibiting stickiness. It cannot be reversibly fixed to the body.
正極活物質層414は、上述した正極活物質442以外に粘着性樹脂が含まれていてもよい。粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805公報に粘着剤として記載されたもの等を好適に用いることができる。
The positive electrode active material layer 414 may contain an adhesive resin in addition to the positive electrode active material 442 described above. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower. Also, those described as adhesives in JP-A-10-255805 can be preferably used.
なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性を有する樹脂を意味する。ここでいう粘着性とは、水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質を意味する。一方、結着剤として用いられる溶液乾燥型の電極バインダは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。従って、結着剤としての溶液乾燥型の電極バインダと粘着性樹脂とは互いに異なる材料である。
The sticky resin means a resin that does not solidify and has stickiness even when the solvent component is volatilized and dried. The tackiness as used herein means the property of adhering by applying a slight pressure without using water, solvent, heat, or the like. On the other hand, a solution-drying type electrode binder used as a binding agent is one that dries and solidifies by volatilizing a solvent component to firmly adhere and fix active materials together. Therefore, the solution-drying type electrode binder and the adhesive resin are different materials.
正極活物質層414の厚みは、特に限定されるものではないが、電池性能の観点から、150μm~600μmであることが好ましく、200μm~450μmであることがより好ましい。
Although the thickness of the positive electrode active material layer 414 is not particularly limited, it is preferably 150 μm to 600 μm, more preferably 200 μm to 450 μm, from the viewpoint of battery performance.
負極活物質層412に含まれる負極活物質441としては、公知のリチウムイオン電池用負極活物質が使用でき、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
As the negative electrode active material 441 contained in the negative electrode active material layer 412, a known negative electrode active material for lithium ion batteries can be used, and carbon-based materials [graphite, non-graphitizable carbon, amorphous carbon, baked resin (for example, phenolic resin and carbonized furan resin, etc.), cokes (e.g., pitch coke, needle coke, petroleum coke, etc.), carbon fibers, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composite bodies (carbon particles coated with silicon and/or silicon carbide, silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys , silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (e.g., polyacetylene and polypyrrole, etc.) ), metals (such as tin, aluminum, zirconium and titanium), metal oxides (such as titanium oxide and lithium-titanium oxide) and metal alloys (such as lithium-tin alloys, lithium-aluminum alloys and lithium-aluminum-manganese alloys) etc.) and the like, and mixtures of these with carbonaceous materials.
また、負極活物質441は、上述した被覆正極活物質と同様の導電助剤及び被覆用樹脂で被覆された被覆負極活物質で構成されていてもよい。導電助剤及び被覆用樹脂としては、上述した被覆正極活物質と同様の導電助剤及び被覆用樹脂を好適に用いることができる。
Further, the negative electrode active material 441 may be composed of a coated negative electrode active material coated with a conductive aid and a coating resin similar to the coated positive electrode active material described above. As the conductive aid and the coating resin, the same conductive aid and coating resin as those for the coated positive electrode active material described above can be suitably used.
負極活物質層412は、被覆負極活物質に含まれる導電助剤以外にも更に導電助剤を含んでもよい。この更に含める導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
The negative electrode active material layer 412 may further contain a conductive aid in addition to the conductive aid contained in the coated negative electrode active material. As the conductive aid to be further included, the same conductive aid as the conductive aid contained in the above-described coated positive electrode active material can be preferably used.
負極活物質層412は、正極活物質層414と同様に、互いに当該負極活物質441同士を結着する結着剤を含まない非結着体であることが好ましい。また、正極活物質層と同様に、粘着性樹脂が含まれていてもよい。
Like the positive electrode active material layer 414, the negative electrode active material layer 412 is preferably a non-binding material that does not contain a binder that binds the negative electrode active materials 441 together. Further, like the positive electrode active material layer, it may contain an adhesive resin.
負極活物質層412の厚みは、特に限定されるものではないが、電池性能の観点から、150μm~600μmであることが好ましく、200μm~450μmであることがより好ましい。
Although the thickness of the negative electrode active material layer 412 is not particularly limited, it is preferably 150 μm to 600 μm, more preferably 200 μm to 450 μm, from the viewpoint of battery performance.
負極活物質層412及び正極活物質層414にそれぞれ含まれる電解液443は、公知のリチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する公知の電解液を使用することができる。
For the electrolytic solution 443 contained in each of the negative electrode active material layer 412 and the positive electrode active material layer 414, a known electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used for manufacturing known lithium ion batteries, can be used.
電解液443は、負極402と正極403との間を多数のリチウムイオンが高速で移動することができる、いわゆる高電気伝導率を確保することができ、電気化学的安定性(充電時の耐酸化性、放電時の耐還元性)や熱的安定性の観点から最適な材料が選択され、かつ電荷キャリアとなるリチウムイオンを含む物質が適用される。この電解液443としては、例えば、LiN(FSO2)2、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO2)2、LiN(C2F5SO2)2及びLiC(CF3SO2)3等の有機酸のリチウム塩等が挙げられる。これらのうち、電池出力及び充放電サイクル特性の観点から好ましいのはイミド系電解質[LiN(FSO2)2、LiN(CF3SO2)2及びLiN(C2F5SO2)2等]及びLiPF6である。
The electrolytic solution 443 can ensure a so-called high electrical conductivity, which allows a large number of lithium ions to move between the negative electrode 402 and the positive electrode 403 at high speed, and has electrochemical stability (oxidation resistance during charging). The most suitable material is selected from the viewpoints of properties, resistance to reduction during discharge) and thermal stability, and a substance containing lithium ions serving as charge carriers is applied. Examples of the electrolytic solution 443 include inorganic acid lithium salts such as LiN(FSO 2 ) 2 , LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and lithium salts of organic acids such as LiC(CF 3 SO 2 ) 3 and the like. Among these, imide-based electrolytes [LiN( FSO2 ) 2 , LiN( CF3SO2 ) 2 , LiN( C2F5SO2 ) 2 , etc. ] and LiPF6 .
非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。非水溶媒は、1種を単独で用いるようにしてもよいし、2種以上を併用するようにしてもよい。
As the non-aqueous solvent, those used in known electrolytic solutions can be used. compounds, amide compounds, sulfones, sulfolane, etc. and mixtures thereof can be used. The non-aqueous solvent may be used singly or in combination of two or more.
非水溶媒のうち、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、より好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、さらに好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。特に好ましいのはプロピレンカーボネート(PC)、またはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。
Among non-aqueous solvents, preferred from the viewpoint of battery output and charge-discharge cycle characteristics are lactone compounds, cyclic carbonates, chain carbonates and phosphates, and more preferred are lactone compounds, cyclic carbonates and chains. carbonic acid ester, more preferably a mixture of a cyclic carbonate and a chain carbonic acid ester. Propylene carbonate (PC) or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) is particularly preferred.
電解液443の電解質濃度は、1mol/L~5mol/Lであることが好ましく、1.5mol/L~4mol/Lであることがより好ましく、2mol/L~3mol/Lであることがさらに好ましい。
The electrolyte concentration of the electrolytic solution 443 is preferably 1 mol/L to 5 mol/L, more preferably 1.5 mol/L to 4 mol/L, and even more preferably 2 mol/L to 3 mol/L. .
電解液443の電解質濃度が1mol/L未満であると、電池の充分な入出力特性が得られないことがあり、5mol/Lを超えると、電解質が析出してしまうことがある。
If the electrolyte concentration of the electrolytic solution 443 is less than 1 mol/L, sufficient input/output characteristics of the battery may not be obtained, and if it exceeds 5 mol/L, the electrolyte may precipitate.
なお、電解液443の電解質濃度は、電池セル420を構成する電解液443を、溶媒などを用いずに抽出して、その濃度を測定することで確認することができる。
The electrolyte concentration of the electrolyte solution 443 can be confirmed by extracting the electrolyte solution 443 forming the battery cell 420 without using a solvent or the like and measuring the concentration.
負極集電体411及び正極集電体415を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。これらの材料のうち、軽量化、耐食性、高導電性の観点から、正極集電体415としてはアルミニウムであることが好ましく、負極集電体411としては銅であることが好ましい。
Materials constituting the negative electrode current collector 411 and the positive electrode current collector 415 include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, baked carbon, conductive polymer materials, and conductive materials. Glass etc. are mentioned. Among these materials, aluminum is preferable for the positive electrode current collector 415 and copper is preferable for the negative electrode current collector 411 from the viewpoint of weight reduction, corrosion resistance, and high conductivity.
負極集電体411及び正極集電体415は、その中でも特に導電性高分子材料からなる樹脂集電体であることが好ましい。樹脂集電体を構成する導電性高分子材料としては、例えば、導電性高分子や、マトリックス樹脂に対して必要に応じて導電剤を添加したものを用いることができる。導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
Among them, the negative electrode current collector 411 and the positive electrode current collector 415 are preferably resin current collectors made of a conductive polymer material. As the conductive polymer material constituting the resin current collector, for example, a conductive polymer or a matrix resin to which a conductive agent is added as necessary can be used. As the conductive agent that constitutes the conductive polymer material, the same conductive aid as that contained in the above-described coated positive electrode active material can be preferably used.
導電性高分子材料を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。導電性高分子材料を構成する樹脂としては、電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)を適用することが好ましく、ポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)を適用することが更に好ましい。
Examples of resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), poly Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or mixtures thereof etc. From the viewpoint of electrical stability, it is preferable to use polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and polycycloolefin (PCO) as resins constituting the conductive polymer material. More preferably, polyethylene (PE), polypropylene (PP) and polymethylpentene (PMP) are applied.
マトリックス樹脂に導電剤を添加することにより樹脂集電体を構成する場合において、この導電剤は、導電性フィラーで構成されていてもよい。導電性フィラーは、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、炭素系材料[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、この中でも炭素系材料が好ましい。導電性フィラーが炭素系材料であれば、負極活物質441、正極活物質442に、負極集電体411及び正極集電体415に由来する金属が混入することを防止することができる。特に正極活物質442においては、特性劣化の抑制につながる。
In the case of forming a resin current collector by adding a conductive agent to a matrix resin, the conductive agent may be composed of a conductive filler. Conductive fillers include metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon-based materials [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.). ), etc.], and mixtures thereof, among which carbon-based materials are preferred. If the conductive filler is a carbon-based material, it is possible to prevent the negative electrode active material 441 and the positive electrode active material 442 from being mixed with metal derived from the negative electrode current collector 411 and the positive electrode current collector 415 . Especially in the positive electrode active material 442, it leads to suppression of characteristic deterioration.
このような導電性フィラーは、1種単独で用いてもよいし、2種以上併用してもよい。また、導電性フィラーは、上述した金属の合金又は金属酸化物を用いてもよい。また導電性フィラーとしては、粒子系セラミック材料や樹脂材料の周りに、上述した金属等で構成される導電性材料をめっき等でコーティングしたものでもよい。
Such conductive fillers may be used singly or in combination of two or more. Also, the conductive filler may be an alloy of the above metals or a metal oxide. Also, the conductive filler may be a particulate ceramic material or a resin material coated with a conductive material composed of the above-described metal or the like by plating or the like.
導電性フィラーの平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01μm~10μmであることが好ましく、0.02μm~5μmであることがより好ましく、0.03μm~1μmであることがさらに好ましい。
The average particle size of the conductive filler is not particularly limited, but from the viewpoint of the electrical characteristics of the battery, it is preferably 0.01 μm to 10 μm, more preferably 0.02 μm to 5 μm. More preferably, it is between 0.03 μm and 1 μm.
また、導電性フィラーの形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。
In addition, the shape (form) of the conductive filler is not limited to the particle form, and may be in a form other than the particle form. may
導電性フィラーは、その形状が繊維状である導電性繊維であってもよい。導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。導電性フィラーは、これらの導電性繊維の中では炭素繊維が好ましく、またグラフェンを練りこんだポリプロピレン樹脂も好ましい。ちなにみ、導電性フィラーが導電性繊維である場合、その平均繊維径は0.1μm~20μmであることが好ましい。
The conductive filler may be a conductive fiber having a fibrous shape. Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metals and graphite in synthetic fibers, and metals such as stainless steel. Examples include fibrillated metal fibers, conductive fibers obtained by coating the surface of organic fibers with metal, and conductive fibers obtained by coating the surfaces of organic fibers with a resin containing a conductive substance. Among these conductive fibers, the conductive filler is preferably carbon fiber, or a polypropylene resin in which graphene is kneaded. Incidentally, when the conductive filler is conductive fiber, the average fiber diameter is preferably 0.1 μm to 20 μm.
負極集電体411及び正極集電体415中の導電性フィラーの重量割合は、5重量%~90重量%であることが好ましく、20重量%~80重量%であることがより好ましい。特に、導電性フィラーがカーボンの場合、導電性フィラーの重量割合は、20重量%~30重量%であることが好ましい。
The weight ratio of the conductive filler in the negative electrode current collector 411 and the positive electrode current collector 415 is preferably 5% to 90% by weight, more preferably 20% to 80% by weight. In particular, when the conductive filler is carbon, the weight ratio of the conductive filler is preferably 20% by weight to 30% by weight.
樹脂集電体は、マトリックス樹脂及び導電性フィラーのほかに、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤等)を含んでいてもよい。また、複数の樹脂集電体を積層して用いてもよく、樹脂集電体と金属箔とを積層して用いてもよい。
The resin current collector may contain other components (dispersant, cross-linking accelerator, cross-linking agent, colorant, ultraviolet absorber, plasticizer, etc.) in addition to the matrix resin and the conductive filler. Also, a plurality of resin current collectors may be laminated and used, or a resin current collector and a metal foil may be laminated and used.
負極集電体411及び正極集電体415の厚さは特に限定されないが、5μm~150μmであることが好ましい。複数の樹脂集電体を積層して負極集電体411及び正極集電体415として用いる場合には、積層後の全体の厚さが5μm~150μmであることが好ましい。
Although the thickness of the negative electrode current collector 411 and the positive electrode current collector 415 is not particularly limited, it is preferably 5 μm to 150 μm. When a plurality of resin current collectors are laminated and used as the negative electrode current collector 411 and the positive electrode current collector 415, the total thickness after lamination is preferably 5 μm to 150 μm.
負極集電体411及び正極集電体415は、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。このような導電性樹脂組成物をフィルム状に成形する方法としては、例えば、Tダイ法、インフレーション法及びカレンダー法等の公知のフィルム成形法が挙げられる。なお、負極集電体411及び正極集電体415は、フィルム成形以外の成形方法によっても得ることができる。
The negative electrode current collector 411 and the positive electrode current collector 415 are formed by, for example, a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a dispersing agent for a filler used if necessary, and formed into a film by a known method. can be obtained by Methods for forming such a conductive resin composition into a film include, for example, known film forming methods such as a T-die method, an inflation method and a calender method. The negative electrode current collector 411 and the positive electrode current collector 415 can also be obtained by a molding method other than film molding.
負極集電体411及び正極集電体415の形状は特に限定されず、上述した材料からなるシート体又は板状体、又は上述した材料で構成された微粒子からなる堆積層であってもよい。負極集電体411及び正極集電体415の厚さは、特に限定されないが、50μm~500μmであることが好ましい。
The shape of the negative electrode current collector 411 and the positive electrode current collector 415 is not particularly limited, and may be a sheet body or a plate-like body made of the above materials, or a deposited layer made of fine particles made of the above materials. The thicknesses of the negative electrode current collector 411 and the positive electrode current collector 415 are not particularly limited, but are preferably 50 μm to 500 μm.
セパレータ413は、その要求される電気絶縁性、イオン伝導性の観点から、ポリエチレン(PE)又はポリプロピレン(PP)等のポリオレフィン製や芳香族ポリアミド製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、ポリエステル繊維及びアラミド繊維等の合成樹脂、又はガラス繊維、フッ素樹脂等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が適用される。なお、セパレータ413を構成する材料は、上述した例に限定されるものではなく、公知のリチウムイオン二次電池用のセパレータの材料を適用するようにしてもよいことは勿論である。
The separator 413 is made of a polyolefin such as polyethylene (PE) or polypropylene (PP), a porous film made of aromatic polyamide, a porous polyethylene film and a porous polypropylene, from the viewpoint of the required electrical insulation and ion conductivity. Laminated films with, synthetic resins such as polyester fibers and aramid fibers, or non-woven fabrics made of glass fibers, fluorine resins, etc., and those with ceramic fine particles such as silica, alumina, and titania attached to their surfaces are applied. . The material forming the separator 413 is not limited to the above-described example, and it is a matter of course that a known separator material for a lithium ion secondary battery may be applied.
負極側電流供給層410及び正極側電流取出層416を構成する材料は、負極集電体411及び正極集電体415と同様に銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。このとき、負極側電流供給層410及び正極側電流取出層416は、導電性高分子材料からなる樹脂集電体で構成されるものであってもよく、樹脂集電体を構成する導電性高分子材料としては、例えば、導電性高分子や、マトリックス樹脂に対して必要に応じて導電性フィラーからなる導電剤を添加したものを用いるようにしてもよい。導電性フィラーとしては上述した樹脂集電体と同様のものを適用することができるが、導電性フィラーとゴム状高分子とを溶融混合することで得られる導電性エラストマーを適用することも可能である。このゴム状高分子としてはシリコーン、ウレタン、ネオプレン、ブチルゴム、エテン-プロペンゴム、アクリレートゴム、ブタジエンゴム、コロプレンゴム、ニトリルゴム、1-1プロペンゴム、フッ素系ゴム、スチレン-ブタジエン、天然ゴム及びそれらの組み合わせ等を適用可能である。
Materials constituting the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 are metals such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, like the negative electrode current collector 411 and the positive electrode current collector 415. materials, as well as calcined carbon, conductive polymeric materials, conductive glass, and the like. At this time, the negative electrode-side current supply layer 410 and the positive electrode-side current extraction layer 416 may be composed of a resin current collector made of a conductive polymer material. As the molecular material, for example, a conductive polymer or a matrix resin to which a conductive agent made of a conductive filler is added as needed may be used. As the conductive filler, the same material as the resin current collector described above can be applied, but it is also possible to apply a conductive elastomer obtained by melt-mixing the conductive filler and a rubber-like polymer. be. Examples of rubber-like polymers include silicone, urethane, neoprene, butyl rubber, ethene-propene rubber, acrylate rubber, butadiene rubber, coloprene rubber, nitrile rubber, 1-1 propene rubber, fluororubber, styrene-butadiene, natural rubber, and combinations thereof. is applicable.
また負極側電流供給層410及び正極側電流取出層416を構成する材料は、負極側電流供給層410及び正極側電流取出層416の何れか一方又は両方を、導電性高分子材料やカーボンファイバー等からなる不織布等のような弾性変形可能な弾性材で構成してもよい。負極側電流供給層410や正極側電流取出層416が弾性変形自在になることで、負極集電体411や正極集電体415、更には枠部材409との密着性を高めた状態で固定することが可能となる。負極側電流供給層410や正極側電流取出層416を弾性的に押圧させて負極活物質層412、正極活物質層414、枠部材409へと固定することにより、これらの間に空気層が形成されることを防ぐことができ、より抵抗を低く抑えつつ、均一化することができる。負極側電流供給層410及び正極側電流取出層416の何れか一方又は両方を、カーボンファイバー等からなる不織布で構成した場合には、電流分布を抑制すると、通常であっても体積変化が小さいハードカーボン系の不織布において、さらに体積変化量の分布が小さくなり、更なる長寿命化を図ることが可能となる。また不織布には、繊維における網目において小孔が自然に形成される場合があり、負極側電流供給層410や正極側電流取出層416と、負極集電体411や正極集電体415との間に形成される気泡をこの小孔を介して逃がすことができる。なお、負極側電流供給層410は、負極集電体411と別体で構成される場合に限定されるものでは無く、互いに一体化されたものであってもよい。同様に正極側電流取出層416は、正極集電体415と別体で構成される場合に限定されるものでは無く、互いに一体化されたものであってもよい。
The materials constituting the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 are either or both of the negative electrode current supply layer 410 and the positive electrode current extraction layer 416, such as a conductive polymer material, carbon fiber, or the like. It may be composed of an elastic material that can be elastically deformed, such as a nonwoven fabric made of. Since the negative current supply layer 410 and the positive current extraction layer 416 are elastically deformable, the negative current collector 411, the positive current collector 415, and the frame member 409 are fixed in a state where the adhesiveness is enhanced. becomes possible. By elastically pressing the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 to fix them to the negative electrode active material layer 412, the positive electrode active material layer 414, and the frame member 409, an air layer is formed between them. can be prevented, and the resistance can be kept low and uniformized. When one or both of the negative current supply layer 410 and the positive current extraction layer 416 are made of a non-woven fabric made of carbon fiber or the like, if the current distribution is suppressed, a hard material whose volume change is small even under normal conditions is used. In the carbon-based nonwoven fabric, the distribution of volume change is further reduced, and it is possible to achieve further extension of life. In some cases, small holes are naturally formed in the meshes of the fibers of the nonwoven fabric, and there is a possibility that small holes may be naturally formed between the negative electrode current supply layer 410 or the positive electrode current extraction layer 416 and the negative electrode current collector 411 or the positive electrode current collector 415 . Air bubbles that form in the can escape through this small hole. The negative electrode-side current supply layer 410 is not limited to being configured separately from the negative electrode current collector 411, and may be integrated with each other. Similarly, the positive electrode-side current extraction layer 416 is not limited to being configured separately from the positive electrode current collector 415, and may be integrated with each other.
枠部材409を構成する材料としては、負極集電体411及び正極集電体415との接着性を有し、電解液443に対して耐久性のある材料であれば特に限定されないが、高分子材料、特に熱硬化性樹脂が好ましい。枠部材409を構成する材料は、具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
The material forming the frame member 409 is not particularly limited as long as it has adhesiveness to the negative electrode current collector 411 and the positive electrode current collector 415 and is durable to the electrolytic solution 443 . Materials, especially thermosetting resins, are preferred. Specific examples of the material forming the frame member 409 include epoxy-based resin, polyolefin-based resin, polyurethane-based resin, and polyvinylidene fluoride resin. Epoxy-based resin is preferred because of its high durability and ease of handling. preferable.
上述した構成からなる単電池からなる電池セル420の製造方法としては、例えば、負極集電体411、負極活物質層412、セパレータ413、正極活物質層414、正極集電体415の順に重ね合わせた後、電解液343を注入し、負極活物質層412、セパレータ413及び正極活物質414の外周を枠部材9で封止し、更に負極側電流供給層410及び正極側電流取出層416を積層させることで得ることができる。負極活物質層412及び正極活物質層414の外周を枠部材409で封止する方法としては、負極活物質層412及び正極活物質層414を一方の枠部材409の上面及び下面に接合して封止し、他方の枠部材409においてセパレータ413を挿入した状態で、一方の枠部材409と他方の枠部材409同士を接着して封止する方法で単電池からなるリチウムイオン二次電池の電池セル420を得ることができる。
As a method for manufacturing the battery cell 420 composed of the unit cell having the above-described structure, for example, the negative electrode current collector 411, the negative electrode active material layer 412, the separator 413, the positive electrode active material layer 414, and the positive electrode current collector 415 are stacked in this order. After that, the electrolytic solution 343 is injected, the outer circumferences of the negative electrode active material layer 412, the separator 413 and the positive electrode active material 414 are sealed with the frame member 9, and further the negative electrode side current supply layer 410 and the positive electrode side current extraction layer 416 are laminated. can be obtained by letting As a method for sealing the outer periphery of the negative electrode active material layer 412 and the positive electrode active material layer 414 with the frame member 409, the negative electrode active material layer 412 and the positive electrode active material layer 414 are bonded to the upper and lower surfaces of one frame member 409. A lithium-ion secondary battery consisting of a single cell is produced by a method in which one frame member 409 and the other frame member 409 are adhered and sealed in a state where the separator 413 is inserted in the other frame member 409. A cell 420 can be obtained.
図21A及び図21Bは、二次電池モジュール401における電池セル420につき、正極集電体415上に正極側電流取出層416を形成させる例について示している。
21A and 21B show an example of forming a positive current extraction layer 416 on a positive current collector 415 for a battery cell 420 in a secondary battery module 401. FIG.
図21Aに示すように、上述した正極集電体415に対して正極側電流取出層416を形成させると、気泡481が自然に形成されてしまう場合がある。かかる場合において、この電池セル420を減圧環境下に一定時間載置する。かかる場合には、電池セル420を例えば減圧恒温槽等に入れて減圧する。その結果、図21Bに示すように正極集電体415と、正極側電流取出層416との間に形成されている気泡を除去することが可能となる。同様に負極側電流供給層410と負極集電体411との間に気泡が形成された場合においても、減圧環境下におくことで気泡を除去することが可能となる。
As shown in FIG. 21A, when the positive electrode current extraction layer 416 is formed on the positive electrode current collector 415 described above, air bubbles 481 may be naturally formed. In such a case, this battery cell 420 is placed in a reduced pressure environment for a certain period of time. In such a case, the battery cell 420 is placed in, for example, a pressure-reduced constant temperature bath and the pressure is reduced. As a result, as shown in FIG. 21B, it is possible to remove air bubbles formed between the positive current collector 415 and the positive current extraction layer 416 . Similarly, even when air bubbles are formed between the negative electrode-side current supply layer 410 and the negative electrode current collector 411, the air bubbles can be removed by placing them in a reduced pressure environment.
このようにして気泡が除去されることで、正極集電体415と正極側電流取出層416との間、及び負極側電流供給層410と負極集電体411との間で密着性が向上することとなる。
By removing air bubbles in this way, adhesion between the positive current collector 415 and the positive current extraction layer 416 and between the negative current supply layer 410 and the negative current collector 411 is improved. It will happen.
なお、上述した形態からなる電池セル420では、液体状の電解液443の代わりに図20Bに示すような固体電解質446を用いた、いわゆる全固体リチウムイオン電池で構成した電池セル420´に代替させるようにしてもよい。電池セル420´では、セパレータ413の構成を省略し、負極402から正極403に至るまで固体電解質446で満たされた状態となる。負極活物質層412では、この固体電解質446内に負極活物質441が介在された状態となる。正極活物質層414では、この固体電解質446内に正極活物質442が介在された状態となる。この電池セル420´を構成する各構成要素の詳細や材料については、電池セル420を構成する各構成要素と同様であることから、これと同一の符号を付すことにより、以下での説明を省略する。
In addition, in the battery cell 420 having the above-described configuration, a battery cell 420' configured with a so-called all-solid lithium ion battery using a solid electrolyte 446 as shown in FIG. 20B instead of the liquid electrolytic solution 443 is substituted. You may do so. In the battery cell 420 ′, the configuration of the separator 413 is omitted, and the entire area from the negative electrode 402 to the positive electrode 403 is filled with the solid electrolyte 446 . In the negative electrode active material layer 412 , the negative electrode active material 441 is interposed in the solid electrolyte 446 . In the cathode active material layer 414 , the cathode active material 442 is interposed in the solid electrolyte 446 . The details and materials of the components that make up the battery cell 420′ are the same as the components that make up the battery cell 420, so the same reference numerals are used to omit the description below. do.
固体電解質446としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体のような公知の固体高分子電解質が挙げられる。固体電解質446中には、イオン伝導性を確保するために支持塩(リチウム塩)が含まれる。支持塩としては、LiBF4、LiPF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、またはこれらの混合物等が使用できる。但し、固体電解質446を構成するPEO、PPOのようなポリアルキレンオキシド系高分子は、LiBF4、LiPF6、LiN(SO2CF3)2、LiN(SO2C2F5)2等のリチウム塩をよく溶解し得る特質を備え、両者間で架橋構造を形成することによって、優れた機械的強度を発現させることができる。
Solid electrolyte 446 includes known solid polymer electrolytes such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. The solid electrolyte 446 contains a supporting salt (lithium salt) to ensure ionic conductivity. LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used as the supporting salt. However, polyalkylene oxide polymers such as PEO and PPO that constitute the solid electrolyte 446 are lithium such as LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 and LiN(SO 2 C 2 F 5 ) 2 . It has the property of being able to dissolve salts well, and by forming a crosslinked structure between the two, excellent mechanical strength can be exhibited.
上述した固体電解質446を電解質として用いる電池セル420´によれば、電解質の流動性がないので、電解質の流出を防止するためのシール構造が不要となり、二次電池モジュール401の構成を簡略化することが可能となる。これに加えて、電池セル420´によれば、電解質として固体を用いることで、漏液を防止することが可能となり、リチウムイオン二次電池特有の問題である液絡を防ぎ、信頼性をより向上させることが可能となる。
According to the battery cell 420' using the above-described solid electrolyte 446 as an electrolyte, since the electrolyte has no fluidity, a sealing structure for preventing the electrolyte from flowing out is not required, thereby simplifying the configuration of the secondary battery module 401. becomes possible. In addition, according to the battery cell 420 ′, by using a solid electrolyte, it is possible to prevent liquid leakage, prevent liquid junction, which is a problem unique to lithium ion secondary batteries, and improve reliability. can be improved.
なお、本発明態様を適用した二次電池モジュール401は、リチウムイオン二次電池の電池セル420を単電池で構成される場合に限定されるものではない。例えば図22に示すように、電池セル420を複数に亘り積層させて接続した組電池450を形成するものであってもよい。
It should be noted that the secondary battery module 401 to which the aspect of the present invention is applied is not limited to the case where the battery cells 420 of the lithium ion secondary battery are composed of single cells. For example, as shown in FIG. 22, an assembled battery 450 may be formed by stacking and connecting a plurality of battery cells 420 .
このような組電池450を形成する場合には、複数の電池セル420を直列接続することにより、最上段の電池セル420の正極側電流取出層416に接続された導電部408と最下段の電池セル420の負極側電流供給層410に接続された導電部407を介して電流を供給自在に構成するようにしてもよい。かかる場合には、互いに接続する電池セル20の負極側電流供給層410の下面と正極側電流取出層416の上面が隣接するように積層されている。更にこのような組電池450を形成する場合には、複数の電池セル420を並列接続するようにしてもよいし、直列接続と並列接続とを組み合わせてもよい。このような組電池450を構成することにより、高容量、高出力と得ることができる。これ以外には、個々の電池セル420の負極側電流供給層410及び正極側電流取出層416にそれぞれ接続された導電部407,408から独立に電流を供給自在に構成するようにしてもよい。
When forming such an assembled battery 450, by connecting a plurality of battery cells 420 in series, the conductive portion 408 connected to the positive electrode side current extraction layer 416 of the battery cell 420 at the top and the battery at the bottom are connected. A current may be freely supplied through the conductive portion 407 connected to the negative current supply layer 410 of the cell 420 . In such a case, the battery cells 20 that are connected to each other are stacked such that the lower surface of the negative electrode current supply layer 410 and the upper surface of the positive electrode current extraction layer 416 are adjacent to each other. Furthermore, when forming such an assembled battery 450, a plurality of battery cells 420 may be connected in parallel, or series connection and parallel connection may be combined. A high capacity and high output can be obtained by configuring the assembled battery 450 in this way. Alternatively, the conductive portions 407 and 408 connected to the negative current supply layer 410 and the positive current extraction layer 416 of each battery cell 420 may be configured to independently supply current.
本発明態様を適用した組電池450について、更に上述した第1の発明態様を適用してもよい。例えば、第1の発明態様における図1の組電池11や、図14A、図14C、16Bの組電池51等を本発明態様の組電池450に置き換えて、第1の発明態様に係る電池モジュールとすることが考えられる。
The above-described first aspect of the invention may be applied to the assembled battery 450 to which the aspect of the invention is applied. For example, the assembled battery 11 of FIG. 1, the assembled battery 51 of FIGS. 14A, 14C, and 16B, etc. in the first aspect of the invention are replaced with the assembled battery 450 of the aspect of the invention, and the battery module according to the first aspect of the invention is obtained. can be considered.
次に、本発明を適用した二次電池モジュール401の動作について説明をする。
Next, the operation of the secondary battery module 401 to which the present invention is applied will be described.
放電時において、二次電池モジュールの図示しない外部の負荷を正極403と負極402との間に接続した場合には、負極活物質層412から負極集電体411へと到達した電子は、この負極集電体411に接触する負極側電流供給層410上を伝搬する。そして、電子は、外部の負荷を通過して正極403における正極側電流取出層416上を伝搬することとなる。
When an external load (not shown) of the secondary battery module is connected between the positive electrode 403 and the negative electrode 402 during discharge, electrons reaching the negative electrode current collector 411 from the negative electrode active material layer 412 are transferred to the negative electrode. It propagates on the negative electrode side current supply layer 410 in contact with the current collector 411 . Then, the electrons pass through the external load and propagate on the positive electrode side current extraction layer 416 of the positive electrode 403 .
これに加えて、放電時には、負極活物質441内に吸蔵されたリチウムイオンが正極活物質442へ向けて移動することになる。
In addition, during discharge, the lithium ions occluded in the negative electrode active material 441 move toward the positive electrode active material 442 .
上述した構成からなる本発明によれば、正極集電体415と正極側電流取出層416との間、及び負極側電流供給層410と負極集電体411との間において減圧下で気泡が除去されて密着性が向上することとなる。その結果、本発明態様によれば、負極側電流供給層410、正極側電流取出層416上に局所的な抵抗分布を発生させることなく、電流を均一に流すことができる。このため、電流が局所的に多く流れる部位が生じることが無くなり、当該部位において局所的に温度が上昇することも無くなり、局所的な抵抗の低下が生じることなく、局所的に大きな電流が流れやすくなる悪循環に陥るのを抑えることができる。このように、負極側電流供給層410、正極側電流取出層416上において局所的に大きな電流が流れることなく、電流分布の均一化を図ることができることから、電池セル420自体の劣化を抑えることができ、ひいては電池セル420の高寿命化を実現できる。
According to the present invention configured as described above, air bubbles are removed under reduced pressure between the positive current collector 415 and the positive current extraction layer 416 and between the negative current supply layer 410 and the negative current collector 411. and the adhesion is improved. As a result, according to the aspect of the present invention, a current can flow uniformly without generating a local resistance distribution on the negative current supply layer 410 and the positive current extraction layer 416 . As a result, there are no areas where a large amount of current flows locally, the temperature does not rise locally in those areas, and a large current easily flows locally without a local decrease in resistance. You can avoid falling into a vicious circle. In this way, a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform, thereby suppressing deterioration of the battery cell 420 itself. can be achieved, and by extension the life of the battery cell 420 can be increased.
本実施形態では、負極側電流供給層410及び正極側電流取出層416の少なくとも一方について、上下に貫通する小孔が形成されている。図23Aに、正極側電流取出層416に上下に貫通する複数の小孔496が形成されている場合を例示する。この場合、以下に説明する効果を奏することとなる。製造時において、正極集電体415と正極側電流取出層416との間に気泡481が形成される場合には、図23Bに示すように、減圧環境下におくことで気泡481の空気が小孔496を通過し、外部に放出されることで、気泡481を除去することが可能となる。
In this embodiment, at least one of the negative current supply layer 410 and the positive current extraction layer 416 is formed with small holes penetrating vertically. FIG. 23A illustrates a case where a plurality of small holes 496 are formed vertically through the positive current extraction layer 416 . In this case, the following effects are obtained. When air bubbles 481 are formed between the positive electrode current collector 415 and the positive electrode-side current extraction layer 416 during manufacturing, the air in the air bubbles 481 can be reduced by placing them in a reduced pressure environment as shown in FIG. 23B. The bubbles 481 can be removed by passing through the holes 496 and being released to the outside.
このようにして気泡481が除去されることで、正極集電体415と正極側電流取出層416との間で密着性が向上することとなる。負極側電流取出層410に上下に貫通する小孔496を形成してもよい。負極集電体411と負極側電流取出層410との間に形成された気泡481を上記と同様に除去することで、負極集電体411と負極側電流取出層410との間で密着性を向上させることが可能となる。また、負極側電流供給層410及び正極側電流取出層416の双方に小孔496を形成しておくことにより、負極集電体411と負極側電流取出層410との間の密着性及び正極集電体415と正極側電流取出層416との間の密着性の両方を確実に向上させることができる。
By removing the air bubbles 481 in this manner, the adhesion between the positive electrode current collector 415 and the positive electrode current extraction layer 416 is improved. A small hole 496 penetrating vertically may be formed in the negative current extraction layer 410 . By removing air bubbles 481 formed between the negative electrode current collector 411 and the negative electrode current extraction layer 410 in the same manner as described above, adhesion between the negative electrode current collector 411 and the negative electrode current extraction layer 410 is improved. can be improved. In addition, by forming small holes 496 in both the negative electrode current supply layer 410 and the positive electrode current extraction layer 416, adhesion between the negative electrode current collector 411 and the negative electrode current extraction layer 410 and positive electrode collection can be improved. Both the adhesion between the conductor 415 and the positive current extraction layer 416 can be reliably improved.
負極側電流供給層410、正極側電流取出層416に適用される、小孔496が形成される材料としては、カーボンファイバー等からなる不織布を適用する場合を例にとり説明をしたが、これに限定されるものでは無く、導電性を有し小孔496が形成されるいかなる材料で構成されていてもよい。
As the material in which the small holes 496 are formed and which is applied to the negative current supply layer 410 and the positive current extraction layer 416, a non-woven fabric made of carbon fiber or the like has been described as an example, but the present invention is limited to this. It may be constructed of any material that is electrically conductive and in which the perforations 496 are formed.
負極側電流供給層410及び/又は正極側電流取出層416に形成される小孔496は、例えば、平面視で円形状、楕円形状、又は、スリット状、のいずれかである。小孔496を楕円形状に形成する場合には、当該楕円形状の短軸の寸法を0.2mm~2mmとすることが好ましい。小孔496を円形状に形成する場合には、当該円形状の半径の寸法を0.2mm~2mmとすることが好ましい。
The small hole 496 formed in the negative current supply layer 410 and/or the positive current extraction layer 416 has, for example, a circular shape, an elliptical shape, or a slit shape in plan view. When the small hole 496 is formed in an elliptical shape, the dimension of the minor axis of the elliptical shape is preferably 0.2 mm to 2 mm. When the small holes 496 are formed in a circular shape, the radius of the circular shape is preferably 0.2 mm to 2 mm.
小孔496の楕円形状の短軸の寸法又は円形状の半径の寸法が0.2mm未満であると、負極集電体411と負極側電流取出層410との間、及び/又は正極集電体415と正極側電流取出層416との間に生じた気泡481の空気が抜けきらず、気泡481を十分に除去することができない可能性がある。また、小孔496の楕円形状の短軸の寸法又は円形状の半径の寸法が2mm超であると、負極側電流取出層410及び/又は正極側電流取出層416の面内で電流が流れ難い部位が生じる可能性がある。小孔496の楕円形状の短軸の寸法又は円形状の半径の寸法を0.2mm~2mmとすることにより、負極側電流取出層410及び/又は正極側電流取出層416の全面に亘って電流を均一に流すことができると共に、負極集電体411と負極側電流取出層410との間、及び/又は正極集電体415と正極側電流取出層416との間に生じた気泡481を確実に除去することが可能となる。
If the dimension of the minor axis of the elliptical shape of the small hole 496 or the dimension of the radius of the circular shape is less than 0.2 mm, the gap between the negative electrode current collector 411 and the negative electrode current extraction layer 410 and/or the positive electrode current collector Air bubbles 481 generated between 415 and positive electrode-side current extraction layer 416 may not be completely removed, and air bubbles 481 may not be sufficiently removed. Further, if the dimension of the minor axis of the elliptical shape of the small hole 496 or the dimension of the radius of the circular shape exceeds 2 mm, it is difficult for the current to flow in the plane of the negative electrode current extraction layer 410 and/or the positive electrode current extraction layer 416. parts may occur. By setting the dimension of the minor axis of the elliptical shape of the small hole 496 or the dimension of the radius of the circular shape to 0.2 mm to 2 mm, the entire surface of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416 can be discharged. can flow uniformly, and air bubbles 481 generated between the negative electrode current collector 411 and the negative electrode current extraction layer 410 and/or between the positive electrode current collector 415 and the positive electrode current extraction layer 416 are reliably eliminated. can be removed as soon as possible.
また、小孔496をスリット状に形成する場合には、負極集電体411と負極側電流取出層410との間、及び/又は正極集電体415と正極側電流取出層416との間に生じた気泡481を確実に除去できる程度に、スリットを比較的長く形成することが好ましい。
In addition, when the small holes 496 are formed in a slit shape, a It is preferable to form the slit relatively long enough to reliably remove the generated air bubble 481 .
また、複数の小孔496は、負極側電流取出層410及び/又は正極側電流取出層416の面内における周縁部よりも中央部に相対的に多く形成されることが好ましい。複数の小孔496は、負極側電流取出層410及び/又は正極側電流取出層416の面内に規則的に均一に配置形成するようにしてもよい。しかしながら、当該面内では特に中央部について気泡481の除去が困難である傾向があるため、面内における周縁部よりも中央部に相対的に多く小孔496を形成することにより、面内全域に亘ってより確実に気泡481を除去することができる。なお、上記の傾向は、負極側電流取出層410及び正極側電流取出層416の材料として、カーボンファイバー等からなる不織布を適用した場合に顕著となることから、この場合には小孔496を面内における周縁部よりも中央部に相対的に多く形成することが特に望ましい。
Also, it is preferable that the plurality of small holes 496 are formed relatively more in the central portion than in the peripheral portion of the plane of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416 . The plurality of small holes 496 may be arranged evenly and regularly within the plane of the negative current extraction layer 410 and/or the positive current extraction layer 416 . However, since it tends to be difficult to remove the air bubbles 481 particularly in the central portion within the plane, by forming relatively more small holes 496 in the central portion than in the peripheral portion in the plane, the entire in-plane Air bubbles 481 can be more reliably removed over the entire time. Note that the above tendency becomes remarkable when a non-woven fabric made of carbon fiber or the like is used as the material for the negative current extraction layer 410 and the positive current extraction layer 416. It is particularly desirable to have relatively more at the central portion than at the inner peripheral portion.
上述のように、二次電池モジュールでは、所期の減圧下で製造しても、負極側電流取出層及び/又は正極側電流取出層の面内において気泡の除去が困難となる。例えば上述のように、面内における周縁部よりも中央部において気泡の除去が難しい。このような傾向は電池セルのサイズが大きくなるほど認められ、特に電池セルのサイズが20cm×20cm以上である場合や平面状で短軸の長さが20cm以上である場合に顕著となる。本実施形態では、当該サイズの電池セル420に本発明を適用し、負極側電流取出層410及び/又は正極側電流取出層416の面内に小孔496を形成し、更には上述のように孔496の形状や配置状態を工夫することにより、製造時に大きなサイズの負極側電流取出層410及び/又は正極側電流取出層416の面内に気泡81が生じた場合にも、面内の全域に亘って確実に気泡481を除去することができる。
As described above, in the secondary battery module, even if it is manufactured under the desired reduced pressure, it is difficult to remove air bubbles in the plane of the negative electrode side current extraction layer and/or the positive electrode side current extraction layer. For example, as described above, it is more difficult to remove air bubbles in the central portion of the plane than in the peripheral portion. Such a tendency is recognized as the size of the battery cell increases, and is particularly noticeable when the size of the battery cell is 20 cm×20 cm or more, or when the battery cell is flat and has a short axis length of 20 cm or more. In this embodiment, the present invention is applied to the battery cell 420 of this size, the small hole 496 is formed in the surface of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416, and furthermore, as described above. By devising the shape and arrangement of the holes 496, even if a large-sized air bubble 81 is generated in the plane of the negative electrode side current extraction layer 410 and/or the positive side current extraction layer 416 during manufacturing, the entire area of the plane can be prevented. Air bubbles 481 can be reliably removed over a period of time.
なお、上述した実施の形態においては、放電時において負極側電流供給層410及び正極側電流取出層416における抵抗を均一化することで局所的な電流の集中を抑制できる点について説明をしたが、充電時においても同様である。充電時には、電流の向きが全て逆になるだけであり、負極側電流供給層410及び正極側電流取出層416における抵抗を均一化するメカニズムは放電時と同様である。このため本発明は、放電時のみならず充電時においても、局所的な電流の集中を抑制でき、電池の寿命を更に伸ばすことが可能となる。
In the above-described embodiment, it has been described that local concentration of current can be suppressed by equalizing the resistances of the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 during discharge. The same is true during charging. During charging, the directions of the currents are all reversed, and the mechanism for equalizing the resistances of the negative current supply layer 410 and the positive current extraction layer 416 is the same as during discharging. Therefore, according to the present invention, local current concentration can be suppressed not only during discharging but also during charging, and the life of the battery can be further extended.
図24は、複数の電池セル20間で負極側電流供給層410及び正極側電流取出層416を共用する例を示している。この例では、一枚の負極側電流供給層410及び正極側電流取出層416の間に複数の電池セル420が配置されている。各電池セル420において負極側電流供給層410及び正極側電流取出層416は共通の一枚のものを利用する。この図24の例においても同様のメカニズムに基づき、各電池セル420において局所的な電流の集中を抑えることができる。
FIG. 24 shows an example in which a plurality of battery cells 20 share the negative current supply layer 410 and the positive current extraction layer 416 . In this example, a plurality of battery cells 420 are arranged between one negative current supply layer 410 and one positive current extraction layer 416 . In each battery cell 420, the negative electrode side current supply layer 410 and the positive electrode side current extraction layer 416 are commonly used. In the example of FIG. 24 as well, local current concentration can be suppressed in each battery cell 420 based on a similar mechanism.
なお、図22に示すような組電池450を構成する場合も同様に負極側電流供給層410及び正極側電流取出層416における抵抗を均一化することで局所的な電流の集中を抑制できる。
It should be noted that in the case of configuring the assembled battery 450 as shown in FIG. 22, local concentration of current can be similarly suppressed by equalizing the resistances of the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 .
なお、正極集電体415と正極側電流取出層416との間、及び/又は負極集電体411と負極側電流供給層410との間には、図示しないPTC(Positive Temperature Coefficient)サーミスタが介装されていてもよい。このPTCサーミスタは、有機ポリマーに導電粉を分散させた材料等で構成してもよい。
A positive temperature coefficient (PTC) thermistor (not shown) is interposed between the positive current collector 415 and the positive current extraction layer 416 and/or between the negative current collector 411 and the negative current supply layer 410. may be installed. This PTC thermistor may be made of a material such as an organic polymer in which conductive powder is dispersed.
PTCサーミスタは、抵抗値が室温からキュリー温度までは通常ほぼ一定であるが、キュリー温度を超えると急激に増大する。本実施形態では、この特性を利用し、温度上昇に伴いPTCサーミスタの抵抗を急激に増大させることで、負極側電流供給層410、正極側電流取出層416の抵抗の均一化を図り、局所的な電流の集中を抑制できる。
The resistance of PTC thermistors is usually almost constant from room temperature to the Curie temperature, but increases sharply when the Curie temperature is exceeded. In this embodiment, by utilizing this characteristic, the resistance of the PTC thermistor is rapidly increased as the temperature rises, thereby equalizing the resistances of the negative current supply layer 410 and the positive current extraction layer 416, and locally current concentration can be suppressed.
また、負極側電流供給層410及び正極側電流取出層416について、電流が集中しやすい部分、或いは電流が分散しやすい部分が既知であれば、その部分についていわゆる傾斜機能材料(FGM:Functionally Graded Material)を適用するようにしてもよい。この傾斜機能材料を通じて材料内において抵抗値を連続的に又は段階的に変化させる。この傾斜機能材料を通じて材料設計を行うことで、電流が集中しやすい部分について電流がより分散するように、また電流が分散しやすい部分には電流をより集中させる機能を、負極側電流供給層410及び正極側電流取出層416内において持たせることができる。
In addition, if the portion where the current tends to concentrate or the portion where the current tends to disperse is known for the negative electrode-side current supply layer 410 and the positive electrode-side current extraction layer 416, a so-called functionally graded material (FGM: Functionally Graded Material) can be used for that portion. ) may be applied. Through this functionally graded material, the resistance value is changed continuously or stepwise within the material. By designing the material through this functionally gradient material, the negative electrode side current supply layer 410 has the function of dispersing the current more in the portion where the current tends to concentrate, and the function of concentrating the current in the portion where the current more easily disperses. and in the positive current extraction layer 416 .
[第2の実施形態]
本発明態様では、上述した第1の実施形態の構成に加え、以下に説明する第2の実施形態の構成が盛り込まれていてもよい。以下、第2の実施形態について説明をする。この第2の実施形態において、上述した第1の実施形態と同一の構成要素、部材に関しては、同一の符号を付すことにより以下での説明を省略する。 [Second embodiment]
In addition to the configuration of the first embodiment described above, the aspect of the present invention may include the configuration of the second embodiment described below. The second embodiment will be described below. In the second embodiment, the same components and members as those in the first embodiment described above are given the same reference numerals, and the description thereof will be omitted.
本発明態様では、上述した第1の実施形態の構成に加え、以下に説明する第2の実施形態の構成が盛り込まれていてもよい。以下、第2の実施形態について説明をする。この第2の実施形態において、上述した第1の実施形態と同一の構成要素、部材に関しては、同一の符号を付すことにより以下での説明を省略する。 [Second embodiment]
In addition to the configuration of the first embodiment described above, the aspect of the present invention may include the configuration of the second embodiment described below. The second embodiment will be described below. In the second embodiment, the same components and members as those in the first embodiment described above are given the same reference numerals, and the description thereof will be omitted.
本発明を適用した二次電池モジュール401について、負極側電流供給層410には、図25及び図26に示すように、電流が供給される負極整流部5が幅手方向yに延設されている。二次電池モジュール401の電池セル420の部分を点線で表示した図27に示すように、この負極整流部405は、棒状で構成されており、その棒状の延長方向がほぼ幅手方向yとなるように延設されている。この棒状の負極整流部5が設けられることで、負極集電体411の下方において負極側電流供給層410の下面から下側に向けて負極整流部5が凸状に形成されている形態となる。負極整流部405は、幅手方向yに対して垂直な長手方向xのいずれか一方の端部に設けられていることが前提となるが、これに限定されるものではない。また、負極整流部405は、幅手方向yの一端側から他端側に至るまで延設されているが、これに限定されるものではなく、幅手方向yの一端側及び/又は他端側に到達しない形態とされていてもよいことは勿論である。なお、負極整流部405には、放電時において、電気回路上から電流が供給される、換言すれば、放電時において電子を送るための導電体層からなる導電部407が接続される。
In the secondary battery module 401 to which the present invention is applied, as shown in FIGS. there is As shown in FIG. 27, in which the battery cell 420 portion of the secondary battery module 401 is indicated by a dotted line, the negative electrode rectifying section 405 is formed in a rod shape, and the extending direction of the rod shape is substantially the lateral direction y. It is extended like this. By providing the rod-shaped negative electrode rectifying portion 5 , the negative electrode rectifying portion 5 is formed in a convex shape downward from the lower surface of the negative electrode current supply layer 410 below the negative electrode current collector 411 . . It is assumed that the negative rectifying section 405 is provided at one end in the longitudinal direction x perpendicular to the width direction y, but it is not limited to this. Further, the negative rectifying section 405 extends from one end side to the other end side in the width direction y, but is not limited to this, and extends from one end side and/or the other end side in the width direction y. It goes without saying that it may be configured such that it does not reach the side. The negative electrode rectifying section 405 is connected to a conductive section 407 made of a conductive layer for supplying current from an electric circuit during discharging, in other words, for sending electrons during discharging.
正極側電流取出層416には、電流が供給される正極整流部406が幅手方向y(図19中紙面奥行方向)に延設されている。図27に示すように、この正極整流部406は、棒状で構成されており、その棒状の延長方向がほぼ幅手方向yとなるように延設されている。この棒状の正極整流部406が設けられることで、正極集電体415の上方において正極側電流取出層416の上面から上側に向けて正極整流部406が凸状に形成されている形態となる。正極整流部406は、幅手方向yに対して垂直な長手方向xのいずれか一方の端部に設けられていることが前提となるが、これに限定されるものではない。また、正極整流部406は、幅手方向yの一端側から他端側に至るまで延設されているが、これに限定されるものではなく、幅手方向yの一端側及び/又は他端側に到達しない形態とされていてもよいことは勿論である。なお、正極整流部406には、放電時において電気回路上へ電流を供給するための導電体層からなる導電部408が接続される。
A positive electrode rectifying section 406 to which current is supplied extends in the width direction y (the depth direction in FIG. 19) in the positive electrode side current extraction layer 416 . As shown in FIG. 27, the positive electrode rectifying section 406 is formed in a bar shape and extends so that the extending direction of the bar shape is substantially the lateral direction y. By providing the rod-shaped positive rectifying section 406 , the positive rectifying section 406 is formed in a convex shape upward from the upper surface of the positive current extraction layer 416 above the positive current collector 415 . It is assumed that the positive rectifying section 406 is provided at one end in the longitudinal direction x perpendicular to the width direction y, but it is not limited to this. Also, the positive rectifying section 406 extends from one end side to the other end side in the width direction y, but it is not limited to this, and the one end side and/or the other end in the width direction y is extended. It goes without saying that it may be configured such that it does not reach the side. A conductive portion 408 made of a conductive layer is connected to the positive rectifying portion 406 to supply current to the electric circuit during discharge.
なお、上述した実施の形態においては、正極整流部406は、長手方向xの一端側に設けられ、負極整流部405は、その反対側である長手方向xの他端側に設けられている場合を例示したものである。即ち、図26に示すような断面視で、正極整流部406と負極整流部405とが対角状に配置されている場合を例示したものであるが、これに限定されるものではない。また負極整流部405、正極整流部406は、必ずしも双方が実装されている場合に限定されるものではなく、負極整流部405、正極整流部406の何れか一方が配設されるものであればよい。
In the above-described embodiment, the positive rectifying section 406 is provided at one end in the longitudinal direction x, and the negative rectifying section 405 is provided at the other end in the longitudinal direction x, which is the opposite side. is exemplified. That is, the cross-sectional view as shown in FIG. 26 exemplifies the case where the positive rectifying section 406 and the negative rectifying section 405 are arranged diagonally, but it is not limited to this. Moreover, the negative rectification unit 405 and the positive rectification unit 406 are not necessarily limited to the case where both are mounted. good.
負極整流部405及び正極整流部406を構成する材料は、負極集電体411及び正極集電体415と同様に銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。このとき、負極整流部405及び正極整流部406は、導電性高分子材料からなる樹脂集電体で構成されるものであってもよく、樹脂集電体を構成する導電性高分子材料としては、例えば、導電性高分子や、マトリックス樹脂に対して必要に応じて導電性フィラーからなる導電剤を添加したものを用いるようにしてもよい。
Materials constituting the negative electrode rectifying portion 405 and the positive electrode rectifying portion 406 are metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, similarly to the negative electrode current collector 411 and the positive electrode current collector 415, and Examples include calcined carbon, conductive polymer materials, and conductive glass. At this time, the negative rectifying section 405 and the positive rectifying section 406 may be composed of a resin current collector made of a conductive polymer material. For example, a conductive polymer or a matrix resin to which a conductive filler made of a conductive filler is added may be used.
このとき、負極整流部405は、負極側電流供給層410よりも低抵抗となるように構成され、また正極整流部406は、正極側電流取出層416よりも低抵抗となるように構成されている。負極整流部405における負極側電流供給層410に対する相対的な抵抗の調整、及び正極整流部406における正極側電流取出層416に対する相対的な抵抗の調整は、最適な材料の選択を通じて実現するようにしてもよい。
At this time, the negative rectifying section 405 is configured to have a lower resistance than the negative current supply layer 410 , and the positive rectifying section 406 is configured to have a lower resistance than the positive current extraction layer 416 . there is The adjustment of the resistance of the negative electrode rectifying section 405 relative to the negative electrode current supply layer 410 and the adjustment of the resistance of the positive electrode rectifying section 406 relative to the positive electrode current extraction layer 416 are realized through the selection of optimum materials. may
例えば負極側電流供給層410に使用される材料が金属材料である場合には、負極整流部405を構成する材料は、その負極側電流供給層410に使用される金属材料の抵抗値よりも低い物性からなる材料を選択するようにしてもよい。同様に正極側電流取出層416に使用される材料が金属材料である場合には、正極整流部406を構成する材料は、その正極側電流取出層416に使用される金属材料の抵抗値よりも低い物性からなる材料を選択するようにしてもよい。
For example, when the material used for the negative current supply layer 410 is a metal material, the material forming the negative electrode rectifying section 405 has a lower resistance value than the metal material used for the negative current supply layer 410. A material having physical properties may be selected. Similarly, when the material used for the positive electrode current extraction layer 416 is a metal material, the material constituting the positive electrode rectifying section 406 has a higher resistance value than the metal material used for the positive electrode current extraction layer 416 . A material with low physical properties may be selected.
また負極整流部405及び負極側電流供給層410に使用される材料が導電性高分子材料からなる樹脂集電体である場合には、負極整流部405を構成する材料は、その負極側電流供給層410よりも低抵抗となるように、樹脂集電体に添加される導電性フィラーの材料が選択され、或いは導電性フィラーの添加量が調整されてなるものであってもよい。同様に正極整流部406及び正極側電流取出層416に使用される材料が導電性高分子材料からなる樹脂集電体である場合には、正極整流部6を構成する材料は、その正極側電流取出層416よりも低抵抗となるように、樹脂集電体に添加される導電性フィラーの材料が選択され、或いは導電性フィラーの添加量が調整されてなるものであってもよい。
Further, when the material used for the negative rectifying section 405 and the negative current supply layer 410 is a resin current collector made of a conductive polymer material, the material constituting the negative rectifying section 405 is the negative current supply layer. The material of the conductive filler added to the resin current collector may be selected or the amount of the conductive filler added may be adjusted so that the resistance is lower than that of the layer 410 . Similarly, when the material used for the positive rectifying section 406 and the positive current extraction layer 416 is a resin current collector made of a conductive polymer material, the material forming the positive rectifying section 6 is The material of the conductive filler added to the resin current collector may be selected or the amount of the conductive filler added may be adjusted so that the resistance is lower than that of the extraction layer 416 .
なお、負極整流部405及び正極整流部406の抵抗の調整は、上述した材料の選択による方法以外に、断面積や長さなど、抵抗値に影響を及ぼす形状を予め調整することにより実現するようにしてもよい。例えば、図26に示す正極整流部406は、正極側電流取出層416よりもその断面積がより大きくなるように形成しておくことにより、抵抗値が正極側電流取出層416よりも相対的に低くなるように調整している。
The adjustment of the resistances of the negative electrode rectification unit 405 and the positive electrode rectification unit 406 can be realized by previously adjusting the shape that affects the resistance value, such as the cross-sectional area and length, in addition to the above-described method of selecting materials. can be For example, the positive rectifying section 406 shown in FIG. adjusted to be lower.
次に、本発明態様を適用した二次電池モジュール401の動作について説明をする。図28は、二次電池モジュール401を単電池で構成した場合における電流P~Sの流れる経路を示すものであり、換言すれば電子が移動する経路を示すものである。
Next, the operation of the secondary battery module 401 to which the aspect of the present invention is applied will be explained. FIG. 28 shows the paths through which the currents P to S flow when the secondary battery module 401 is composed of single cells, in other words, the paths along which electrons move.
放電時において二次電池モジュール図示しない外部の負荷を正極403と負極402との間に接続した場合には、負極活物質層412から負極集電体411へと到達した電子は、この負極集電体411に接触する負極側電流供給層410上を負極整流部405に向けて伝搬する。そして、電子は、外部の負荷を通過して正極403における正極整流部406へと到達し、そこから正極側電流取出層416上を伝搬することとなる。このとき、負極側電流供給層410上を負極整流部405に向けて伝搬しようとする電子は、極力最短距離で移動しようとすることは自明であることから、負極側電流供給層410上における電子の伝搬経路は、長手方向xと平行方向で、かつ直線状の移動経路を取るのが自然である。同様に、正極整流部406から正極側電流取出層416上を伝搬しようとする電子は、極力最短距離で移動しようとすることは自明であることから、正極側電流取出層416上における電子の伝搬経路は、長手方向xと平行方向で、かつ直線状の移動経路を取るのが自然である。換言すれば、この電子の伝搬経路は、電流の流れる経路と考えることができる。そして、この電流の流れる経路は、正極側電流取出層416上において、長手方向xと平行方向で、かつ直線状となり、負極側電流供給層410上においても同様に長手方向xと平行方向で、かつ直線状となるのが自然となる。
When an external load (not shown) of the secondary battery module is connected between the positive electrode 403 and the negative electrode 402 during discharge, electrons reaching the negative electrode current collector 411 from the negative electrode active material layer 412 are transferred to the negative electrode current collector. It propagates toward the negative electrode rectifying section 405 on the negative electrode side current supply layer 410 in contact with the body 411 . Then, the electrons pass through an external load, reach the positive electrode rectifying section 406 in the positive electrode 403 , and propagate on the positive electrode side current extraction layer 416 from there. At this time, it is self-evident that electrons trying to propagate on the negative electrode current supply layer 410 toward the negative electrode rectifying section 405 try to move in the shortest possible distance. It is natural for the propagation path of to take a linear movement path parallel to the longitudinal direction x. Similarly, it is self-evident that electrons trying to propagate from the positive electrode rectifying section 406 on the positive current extraction layer 416 try to move in the shortest possible distance. Naturally, the path is parallel to the longitudinal direction x and linear. In other words, this electron propagation path can be considered as a current flow path. The path through which this current flows is parallel to the longitudinal direction x and linear on the positive electrode-side current extraction layer 416, and is also parallel to the longitudinal direction x on the negative electrode-side current supply layer 410. And it becomes natural that it becomes linear.
これに加えて、放電時には、負極活物質441内に吸蔵されたリチウムイオンが正極活物質442へ向けて移動することになる。このリチウムイオンは、正極活物質442に向けて極力最短距離で移動しようとすることは自明であることから、その移動経路は長手方向xに対して垂直方向となる、厚み方向zと平行方向で、かつ直線状となる。
In addition, during discharge, the lithium ions occluded in the negative electrode active material 441 move toward the positive electrode active material 442 . Since it is obvious that the lithium ions try to move toward the positive electrode active material 442 in the shortest possible distance, the movement path is perpendicular to the longitudinal direction x and parallel to the thickness direction z. , and linear.
このような電流の流れとリチウムイオンの移動経路の前提の下で、正極側電流取出層416には、正極整流部406が幅手方向yに延設されている。これにより、図28に示すように負極整流部405における様々な電流P~Sが流れてくるが、これらは何れも正極側電流取出層416を長手方向xと平行方向で、かつ直線状に直進することで、正極整流部406により取り込まれることになる。正極整流部406が幅手方向yに向けて延長されていない場合には、全ての電流P~Sの正極側電流取出層416上の流れる経路が直線状にならず、斜め方向になる結果、電流の伝搬経路が長くなってしまう。これに対して、本発明態様によれば幅手方向yに向けて延長された正極整流部406が長手方向の一端側に配設されていることから、幅手方向yにおける各箇所から流れてくる電流P~Sは、そのまま長手方向xに向けて自然に直進することで正極整流部406に到達することとなる。その結果、電流P~Sは、正極側電流取出層416上を流れる経路が斜め方向になることはなく、長手方向xに向けて直進することで、最短経路で正極整流部406に取り出されることとなる。特に正極整流部406を、正極側電流取出層416よりも低抵抗に構成しておくことにより、正極側電流取出層416上を流れる電流は正極整流部6に向けてスムーズに流れることとなる。
Under the premise of such current flow and lithium ion movement path, the positive electrode rectifying section 406 extends in the width direction y in the positive electrode side current extraction layer 416 . As a result, as shown in FIG. 28, various currents P to S flow in the negative electrode rectifying section 405. All of these flow straight through the positive electrode side current extraction layer 416 in a direction parallel to the longitudinal direction x. By doing so, it is taken in by the positive electrode rectifying section 406 . When the positive rectifying section 406 is not extended in the width direction y, the paths through which all the currents P to S flow on the positive electrode side current extraction layer 416 are not straight, but oblique. The current propagation path becomes longer. On the other hand, according to the aspect of the present invention, since the positive electrode rectifying section 406 extending in the width direction y is disposed on one end side in the longitudinal direction, the flow from each location in the width direction y The incoming currents P to S reach the positive rectifying section 406 by naturally traveling straight in the longitudinal direction x. As a result, the currents P to S do not take oblique paths on the positive electrode-side current extraction layer 416, but go straight in the longitudinal direction x, and are extracted to the positive electrode rectifying section 406 along the shortest route. becomes. In particular, by configuring the positive electrode rectifying section 406 to have a resistance lower than that of the positive electrode side current extraction layer 416 , the current flowing on the positive electrode side current extraction layer 416 flows smoothly toward the positive electrode rectifying section 6 .
その結果、図28に示すように、全ての電流P~Sの流れる経路とリチウムイオンの動きは、負極整流部405から負極側電流供給層410内を長手方向xと平行方向で、かつ直線状に電流P~Sが流れ、そこからリチウムイオンが負極402から正極403に向けて厚み方向zと平行方向で、かつ直線状に移動し、更に正極側電流取出層416内を正極整流部6へ向けて長手方向xと平行方向で、かつ直線状に電流P~Sが流れることとなる。そして、負極側電流供給層410内における電流P~Sの流れる経路とリチウムイオンの移動方向、及びリチウムイオンの移動方向と正極側電流取出層416内における電流P~Sの流れる経路は互いに略垂直となる。
As a result, as shown in FIG. 28, the flow path of all the currents P to S and the movement of lithium ions from the negative electrode rectifying section 405 in the negative electrode side current supply layer 410 are parallel to the longitudinal direction x and linear. From there, lithium ions move from the negative electrode 402 toward the positive electrode 403 in a direction parallel to the thickness direction z and in a straight line, and further inside the positive electrode side current extraction layer 416 to the positive electrode rectifying section 6. Currents P to S flow linearly in a direction parallel to the longitudinal direction x. The flow path of the currents P to S in the negative electrode current supply layer 410 and the direction of movement of the lithium ions, and the direction of movement of the lithium ions and the flow path of the currents P to S in the positive electrode current extraction layer 416 are substantially perpendicular to each other. becomes.
即ち、本発明態様によれば、正極整流部406が幅手方向yに向けて延設されていることにより、全ての電流P~Sの流れる負極整流部405から正極整流部406までの経路が最短距離となる。その結果、負極側電流供給層410、正極側電流取出層416における電流P~Sの流れる経路が短くなることで抵抗を下げることができる。これに加えて、負極側電流供給層410、正極側電流取出層416を流れる電流P~Sの経路が何れも長手方向xに対して平行であり、伝搬距離が等しくなることから、負極側電流供給層410、正極側電流取出層416内における抵抗の均一化を図ることができる。その結果、本発明態様によれば、負極側電流供給層410、正極側電流取出層416上に局所的な抵抗分布を発生させることなく、電流を均一に流すことができる。このため、電流が局所的に多く流れる部位が生じることが無くなり、当該部位において局所的に温度が上昇することも無くなり、局所的な抵抗の低下が生じることなく、局所的に大きな電流が流れやすくなる悪循環に陥るのを抑えることができる。このように、負極側電流供給層410、正極側電流取出層416上において局所的に大きな電流が流れることなく、電流分布の均一化を図ることができることから、電池セル420自体の劣化を抑えることができ、ひいては電池セル420の高寿命化を実現できる。
That is, according to the aspect of the present invention, since the positive rectifying section 406 extends in the width direction y, the path from the negative rectifying section 405 to the positive rectifying section 406 through which all the currents P to S flow is shortest distance. As a result, the paths through which the currents P to S flow in the negative current supply layer 410 and the positive current extraction layer 416 are shortened, so that the resistance can be reduced. In addition to this, the paths of the currents P to S flowing through the negative current supply layer 410 and the positive current extraction layer 416 are all parallel to the longitudinal direction x, and the propagation distances are equal. The uniformity of the resistance in the supply layer 410 and the positive current extraction layer 416 can be achieved. As a result, according to the aspect of the present invention, a current can flow uniformly without generating a local resistance distribution on the negative current supply layer 410 and the positive current extraction layer 416 . As a result, there are no areas where a large amount of current flows locally, the temperature does not rise locally in those areas, and a large current easily flows locally without a local decrease in resistance. You can avoid falling into a vicious circle. In this way, a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform, thereby suppressing deterioration of the battery cell 420 itself. can be achieved, and by extension the life of the battery cell 420 can be increased.
負極整流部405は、本発明において必須の構成要素ではないが、幅手方向yに向けて延設されていることにより、電流を幅手方向yに分散させた上で負極側電流供給層410上を伝搬させることができる。このため、幅手方向yに向けて延設させた正極整流部406を有する本発明において、この負極整流部405も幅手方向yに向けて延設させることで、各電流の経路を長手方向xに対して平行に流すことができ、電流分布の均一化を図る上でより好適となる。
Although the negative electrode rectifying portion 405 is not an essential component in the present invention, it is extended in the width direction y so that the current is dispersed in the width direction y before the negative electrode side current supply layer 410 . can be propagated upwards. Therefore, in the present invention having the positive rectifying section 406 extending in the width direction y, by extending the negative rectifying section 405 also in the width direction y, the paths of the respective currents are arranged in the longitudinal direction. The current can flow parallel to x, which is more suitable for uniform current distribution.
このとき、正極整流部406、負極整流部405ともに幅手方向yの一端側から他端側に至るまでそれぞれ延設されていてもよい。これにより、負極整流部405側において電流を幅手方向yの全長に亘り分散させることができ、この分散させた電流を長手方向xに対して平行に直進させて、これらを全て正極整流部406において取り出すことが可能となる。その結果、電流をより分散させることで抵抗値を下げることで、局所的な電流の集中をより抑えることができる。なお、正極整流部406、負極整流部405ともに幅手方向yの一端側から他端側に至るまでそれぞれ延設させることは必須ではなく、正極整流部406、負極整流部405の何れか一方が幅手方向yの一端側から他端側に至るまで延設されるものであってもよい。また正極整流部406、負極整流部405の双方が幅手方向yの一端側及び他端側に至らないものであってもよいことは勿論である。
At this time, both the positive rectifying section 406 and the negative rectifying section 405 may extend from one end side to the other end side in the width direction y. As a result, the current can be dispersed over the entire length in the width direction y on the side of the negative rectification section 405 , and the dispersed current is allowed to travel straight in parallel to the longitudinal direction x, so that all of these are transferred to the positive rectification section 406 . It becomes possible to take out at As a result, by dispersing the current more and lowering the resistance value, local concentration of the current can be further suppressed. Note that it is not essential that both the positive rectifying section 406 and the negative rectifying section 405 extend from one end side to the other end side in the width direction y, and either the positive rectifying section 406 or the negative rectifying section 405 It may extend from one end side to the other end side in the width direction y. It goes without saying that both the positive rectifying section 406 and the negative rectifying section 405 may not reach the one end side and the other end side in the width direction y.
また正極整流部406は、長手方向xの一端側に設けられ、負極整流部405は、長手方向xの他端側に設けられていることで、平板状の電池セル420のすべての領域における正極403、負極402を有効に活用し、放電を行うことが可能となる。
The positive electrode rectifying section 406 is provided on one end side in the longitudinal direction x, and the negative electrode rectifying section 405 is provided on the other end side in the longitudinal direction x. 403 and the negative electrode 402 can be effectively used for discharging.
図29は、本発明態様を適用した他の実施形態に係る二次電池モジュール401´を示している。二次電池モジュール401´において、上述した二次電池モジュール401と同一の構成要素、部材については、同一の符号を付すことにより、以下での説明を省略する。
FIG. 29 shows a secondary battery module 401' according to another embodiment to which aspects of the present invention are applied. In the secondary battery module 401', the same constituent elements and members as those of the above-described secondary battery module 401 are denoted by the same reference numerals, and descriptions thereof are omitted below.
二次電池モジュール401´は、上述した電池セル420を有する点は、二次電池モジュール401と同様である。但し、この二次電池モジュール401´では、正極整流部406、負極整流部405が長手方向xに延設されている。正極整流部406には、電気回路上へ電流を供給するための導電部408が接続され、負極整流部405には、導電部407が接続される。
The secondary battery module 401' is similar to the secondary battery module 401 in that it has the battery cells 420 described above. However, in this secondary battery module 401', the positive rectifying section 406 and the negative rectifying section 405 extend in the longitudinal direction x. A conductive portion 408 for supplying current to the electric circuit is connected to the positive rectifying portion 406 , and a conductive portion 407 is connected to the negative rectifying portion 405 .
このような二次電池モジュール401´では、放電時において二次電池モジュール図示しない外部の負荷を正極403と負極402との間に接続した場合には、電流の流れる経路は、正極側電流取出層416上において、幅手方向yと平行方向で、かつ直線状となり、負極側電流供給層410上においても同様に幅手方向yと平行方向で、かつ直線状となるのが自然となる。また負極活物質441内に吸蔵されたリチウムイオンが正極活物質442へ向けて移動することになる。このリチウムイオンは、正極活物質442に向けて極力最短距離で移動しようとすることは自明であることから、厚み方向zと平行方向で、かつ直線状となる。
In such a secondary battery module 401', when an external load (not shown in the secondary battery module) is connected between the positive electrode 403 and the negative electrode 402 during discharging, the path through which the current flows is the positive electrode side current extraction layer. 416 , it is parallel to the width direction y and linear, and similarly on the negative electrode side current supply layer 410 , it is natural to be parallel to the width direction y and linear. Also, the lithium ions occluded in the negative electrode active material 441 move toward the positive electrode active material 442 . Since it is obvious that the lithium ions try to move toward the positive electrode active material 442 in the shortest possible distance, they are linear and parallel to the thickness direction z.
このような電流の流れとリチウムイオンの移動経路の前提の下で、正極側電流取出層416には、正極整流部406が長手方向xに延設されている。これにより、図29に示すように負極整流部405における様々な電流T~Vが流れてくるが、これらは何れも正極側電流取出層416を幅手方向yと平行方向で、かつ直線状に直進することで、正極整流部406により取り込まれることになる。即ち、長手方向xにおける各箇所から流れてくる電流T~Vは、そのまま幅手方向yに向けて自然に直進することで正極整流部406に到達することとなる。その結果、電流T~Vは、正極側電流取出層416上を流れる経路が斜め方向になることはなく、幅手方向yに向けて直進することで、最短経路で正極整流部406に取り出されることとなる。
Under the premise of such current flow and lithium ion movement path, the positive electrode rectifying section 406 extends in the longitudinal direction x in the positive electrode side current extraction layer 416 . As a result, as shown in FIG. 29, various currents T to V flow in the negative electrode rectifying section 405. All of these flow through the positive electrode side current extraction layer 416 in a direction parallel to the width direction y and in a straight line. By going straight, it is taken in by the positive electrode rectifying section 406 . That is, the currents T to V flowing from each location in the longitudinal direction x naturally travel straight in the width direction y and reach the positive rectifying section 406 . As a result, the currents T to V do not take oblique paths on the positive electrode-side current extraction layer 416, but go straight in the width direction y, and are extracted to the positive electrode rectifying section 406 along the shortest route. It will happen.
即ち、本発明態様によれば、正極整流部406が長手方向xに向けて延設されていることにより、全ての電流T~Vの流れる負極整流部405から正極整流部406までの経路が最短距離となる。その結果、負極側電流供給層410、正極側電流取出層416における電流T~Vの流れる経路が短くなり、しかも伝搬距離が等しくなることで、抵抗を下げつつその均一化を図ることができる。これにより、負極側電流供給層410、正極側電流取出層416上に局所的な抵抗分布を発生させることなく、電流を均一に流すことができ、局所的に温度が上昇することも無くなり、局所的な抵抗の低下が生じることなく、局所的に大きな電流が流れやすくなる悪循環に陥るのを抑えることができる。
That is, according to the aspect of the present invention, since the positive rectifying section 406 extends in the longitudinal direction x, the path from the negative rectifying section 405 to the positive rectifying section 406, through which all the currents T to V flow, is the shortest. be the distance. As a result, the paths through which the currents T to V flow in the negative current supply layer 410 and the positive current extraction layer 416 are shortened, and the propagation distances are made equal, so that the resistance can be reduced and uniformed. As a result, a current can flow uniformly without generating a local resistance distribution on the negative electrode current supply layer 410 and the positive electrode current extraction layer 416, and the temperature does not rise locally. It is possible to prevent a vicious circle in which a large current tends to flow locally without causing a dramatic decrease in resistance.
更にこの二次電池モジュール401´によれば、正極整流部406、負極整流部405が長手方向xに延設されていることで、電流の流れる方向は、幅手方向yとなる。この幅手方向yは、長手方向xと比較して短いことから、電流の流れる距離を短くすることができる。電流の流れる距離が短くなるにつれて抵抗が低くなることから、抵抗を下げつつその均一化を図る効果をより大きくすることが可能となる。このため、この二次電池モジュール401´によれば、電池セル420自体の劣化をより抑えることができ、ひいては電池セル420の高寿命化をより好適に実現することができる。
Furthermore, according to the secondary battery module 401', the positive rectifying section 406 and the negative rectifying section 405 are extended in the longitudinal direction x, so that the current flows in the width direction y. Since the lateral direction y is shorter than the longitudinal direction x, the distance through which the current flows can be shortened. Since the resistance decreases as the distance through which the current flows becomes shorter, it is possible to increase the effect of lowering the resistance and making it uniform. Therefore, according to the secondary battery module 401', the deterioration of the battery cells 420 themselves can be further suppressed, and the life of the battery cells 420 can be extended more preferably.
二次電池モジュール401´においても同様に正極整流部406、負極整流部405のいずれか一方又は双方が長手方向yの一端側から他端側に至るまでそれぞれ延設されていてもよい。これにより、負極整流部405側において電流を長手方向xの全長に亘り分散させることができ、この分散させた電流を幅手方向yに対して平行に直進させて、これらを全て正極整流部406において取り出すことが可能となる。その結果、電流をより分散させることで抵抗値を下げることで、局所的な電流の集中をより抑えることができる。また正極整流部406は、幅手方向yの一端側に設けられ、負極整流部405は、幅手方向yの他端側に設けられていることで、平板状の電池セル420のすべての領域における正極403、負極402を有効に活用し、放電を行うことが可能となる。
Similarly, in the secondary battery module 401', either one or both of the positive rectifying section 406 and the negative rectifying section 405 may extend from one end side to the other end side in the longitudinal direction y. As a result, the current can be dispersed over the entire length in the longitudinal direction x on the side of the negative rectifying section 405 , and the dispersed current is allowed to travel straight in parallel to the lateral direction y, so that all of these are transferred to the positive rectifying section 406 . It becomes possible to take out at As a result, by dispersing the current more and lowering the resistance value, local concentration of the current can be further suppressed. In addition, the positive rectification section 406 is provided on one end side in the width direction y, and the negative rectification section 405 is provided on the other end side in the width direction y. It is possible to effectively utilize the positive electrode 403 and the negative electrode 402 in the discharge.
なお、上述した実施の形態においては、放電時において負極側電流供給層410及び正極側電流取出層416における抵抗を均一化することで局所的な電流の集中を抑制できる点について説明をしたが、充電時においても同様である。充電時には、電流の向きが全て逆になるだけであり、負極側電流供給層410及び正極側電流取出層416における抵抗を均一化するメカニズムは放電時と同様である。このため本発明態様は、放電時のみならず充電時においても、局所的な電流の集中を抑制でき、電池の寿命を更に伸ばすことが可能となる。
In the above-described embodiment, it has been described that local concentration of current can be suppressed by equalizing the resistances of the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 during discharge. The same is true during charging. During charging, the directions of the currents are all reversed, and the mechanism for equalizing the resistances of the negative current supply layer 410 and the positive current extraction layer 416 is the same as during discharging. Therefore, according to the aspect of the present invention, local concentration of current can be suppressed not only during discharging but also during charging, and the life of the battery can be further extended.
このようにして、第1の実施形態の構成に加え、第2の実施形態の構成が付加されることにより、上述した奏し得る効果が大きくなることは勿論である。具体例として、本実施形態において、第1の実施形態と同様に、負極側電流取出層410及び/又は正極側電流取出層416に小孔496を形成するようにしてもよい。これにより、放電時及び充電時において局所的な電流の集中を抑制でき、電池の寿命を更に伸ばすことが可能となると共に、製造時において、正極集電体415と正極側電流取出層416との間に気泡481が形成される場合には、減圧環境下におくことで気泡481の空気が小孔496を通過し、外部に放出されることで、気泡481を除去することが可能となる。
By adding the configuration of the second embodiment to the configuration of the first embodiment in this way, it is a matter of course that the above-described effects can be enhanced. As a specific example, in the present embodiment, small holes 496 may be formed in the negative current extraction layer 410 and/or the positive current extraction layer 416 as in the first embodiment. As a result, local concentration of current can be suppressed during discharging and charging, and the life of the battery can be further extended. When air bubbles 481 are formed between them, the air in the air bubbles 481 passes through the small holes 496 and is released to the outside by putting in a reduced pressure environment, so that the air bubbles 481 can be removed.
[第3の実施形態]
本発明態様では、上述した第1の実施形態の構成に加え、以下に説明する第3の実施形態の構成が盛り込まれていてもよい。第3の実施形態において、上述した第1の実施形態、第2の実施形態と同一の構成要素、部材に関しては、同一の符号を付すことにより、以下での説明を省略する。 [Third embodiment]
In the aspect of the present invention, in addition to the configuration of the first embodiment described above, the configuration of the third embodiment described below may be included. In the third embodiment, the same components and members as those in the above-described first and second embodiments are denoted by the same reference numerals, and descriptions thereof are omitted below.
本発明態様では、上述した第1の実施形態の構成に加え、以下に説明する第3の実施形態の構成が盛り込まれていてもよい。第3の実施形態において、上述した第1の実施形態、第2の実施形態と同一の構成要素、部材に関しては、同一の符号を付すことにより、以下での説明を省略する。 [Third embodiment]
In the aspect of the present invention, in addition to the configuration of the first embodiment described above, the configuration of the third embodiment described below may be included. In the third embodiment, the same components and members as those in the above-described first and second embodiments are denoted by the same reference numerals, and descriptions thereof are omitted below.
第3の実施形態では、図30に示すように、正極側電流取出層416中において、換言すれば正極集電体415の上面において、導電体としての複数の電流取出部436、正極導電線422、正極合流部426が実装されている。
In the third embodiment, as shown in FIG. 30, in the positive electrode side current extraction layer 416, in other words, on the upper surface of the positive electrode current collector 415, a plurality of current extraction portions 436 as conductors and a positive electrode conductive wire 422 are provided. , a positive junction 426 is mounted.
図31は、この正極側電流取出層416を上面から視認した平面図である。正極側電流取出層416中には、換言すれば正極集電体415の上面には導電体としての複数の電流取出部436a~436dが接続されている。電流取出部436a~436dは、正極集電体415に電気的に接続されている。また正極側電流取出層416は、各電流取出部436a~436dから正極合流部426までを電気的に接続するための複数本の正極導電線422a~422dを備えている。正極導電線422a~422dにおける電流取出部436a~436dから正極合流部426に至るまでの長さは、互いに略同一である。ここでいう略同一とは、完全に長さが同一である場合に限定されるものではなく、全長で約20%程度の差があってもよい。正極側電流取出層416は、その上面が互いに略均等な複数の領域432a~432dに分割されている。ここでいう略均等とは、領域432a~432dの形状が完全に対称で、かつ同一面積で構成されている場合を例に採り説明をするが、これに限定されるものでは無く、領域432a~432dの形状が完全な対象からややずれており、しかも領域432a~432d間の面積において誤差が生じていてもよい。
FIG. 31 is a plan view of the positive electrode side current extraction layer 416 viewed from above. In the positive electrode side current extraction layer 416, in other words, a plurality of current extraction portions 436a to 436d are connected to the upper surface of the positive electrode current collector 415 as conductors. The current extracting portions 436a to 436d are electrically connected to the positive electrode current collector 415. As shown in FIG. The positive current extraction layer 416 also includes a plurality of positive conductive wires 422 a to 422 d for electrically connecting the current extraction portions 436 a to 436 d to the positive junction 426 . The lengths from the current extraction portions 436a to 436d of the positive electrode conductors 422a to 422d to the positive electrode junction portion 426 are substantially the same. The term “substantially the same” as used herein is not limited to the case where the lengths are completely the same, and the total length may have a difference of about 20%. The positive current extraction layer 416 is divided into a plurality of regions 432a to 432d whose top surfaces are substantially uniform. The term "substantially uniform" as used herein refers to the case where the regions 432a to 432d are completely symmetrical in shape and have the same area. The shape of 432d may deviate slightly from perfect symmetry, and an error may occur in the area between regions 432a-432d.
この領域432a~432dは、物理的に明確に区切られた領域で構成されている必要はなく、物理的な区切りの無い、見かけ以上区切られた領域であってもよい。ここでいう見かけ上の区切りとは、設計上割り当てた単なる区切り、即ち設計図面上では領域として区切られたものであるものの、実際には全体として何ら区切りの無い一つの正極側電流取出層416として構成されているものであってもよい。また、この領域432a~432dは、物理的に明確に区切られた領域で構成されていてもよい。かかる場合には、正極側電流取出層416は、互いに独立した領域432a~432dとなるように絶縁体等により隔てられて構成されている。正極側電流取出層416を複数の領域432a~432dに物理的に分割する場合、正極側電流取出層416のみならず、電池セル420を構成する負極集電体411、負極活物質層412、セパレータ413、正極活物質層414も同様に絶縁体等を介して隔てられるものであってもよい。
These areas 432a to 432d do not need to consist of areas that are clearly physically separated, and may be areas that are not physically separated and are separated beyond what they appear to be. The term "apparent division" as used herein means a division allocated in design, that is, although it is divided as a region on the design drawing, it is actually a single positive electrode side current extraction layer 416 that has no division as a whole. It may be configured. Also, the regions 432a to 432d may be composed of physically distinct regions. In such a case, the positive current extraction layer 416 is separated by an insulator or the like so as to form mutually independent regions 432a to 432d. When the positive electrode-side current extraction layer 416 is physically divided into a plurality of regions 432a to 432d, not only the positive electrode-side current extraction layer 416 but also the negative electrode current collector 411, the negative electrode active material layer 412, and the separator that constitute the battery cell 420. 413 and the positive electrode active material layer 414 may be similarly separated via an insulator or the like.
図31の例において領域432a~432dは、平面視で正方形状の正極側電流取出層416を均等に4分割した形状で構成されており、ちょうど平面視で正方形状となる。但し、この領域432a~432dは、このような形状で構成されている場合に限定されるものではなく、仮に正極側電流取出層416が平面視で長方形状とされているのであれば、これを4分割した長方形状で構成されていてもよい。
In the example of FIG. 31, the regions 432a to 432d are formed by equally dividing the positive electrode side current extraction layer 416, which is square in plan view, into four parts, and are exactly square in plan view. However, the regions 432a to 432d are not limited to having such a shape, and if the positive electrode side current extraction layer 416 is rectangular in plan view, it can be It may be configured in a rectangular shape divided into four.
また図31の例では、正極側電流取出層416を領域432a~432dへと4分割する場合を例に挙げて説明をしたが、これに限定されるものではなく、複数であればいかなる数に分割されて構成されるものであってもよい。かかる場合においても、各領域432は、互いに均等となるように構成されていることが前提となるが、ここでいう均等とは、形状の面における均等を意味するものに加え、面積が均等であると解されるものであってもよい。また各領域は完全なる均等の関係である場合に限定されるものではなく、ほぼ均等(略均等)であればよい。
In the example of FIG. 31, the case where the positive electrode side current extraction layer 416 is divided into four regions 432a to 432d has been described as an example, but the present invention is not limited to this, and any number of regions can be used as long as there is a plurality of regions. It may be configured by being divided. Even in such a case, it is assumed that the regions 432 are configured to be equal to each other. It may be understood that there is. Also, the respective regions are not limited to a completely equal relationship, and may be approximately equal (substantially equal).
電流取出部436a~436dは、上述した領域432a~432dの略中心に設けられている。また、正極合流部426は、各領域432a~432dからなる正極集電体415の中心にあり、各領域432a~432dの境界が互いに一点で交差する合流点に設けられている。図31の例では、領域432a~432dの略中心に設けられた電流取出部436a~436dからこの正極合流部426に向けて正極導電線422a~422dが直線状に伸びている。即ち、正極導電線422a~422dは、互いに均等に設けられている領域432a~432dの略中心に設けられた電流取出部436a~436dから正極合流部426に向けて直線状に延長されていることから、幾何的に長さが互いに同一になることは自明である。このようにして、正極導電線422a~422dの長さは互いに同一となるように設計されるが、必ずしも完全に同一である必要はなく、正極導電線422a~422d間において多少の長さのずれがあっても許容される。正極合流部426からは、放電時において電気回路上へ電流を供給するための導電体層からなる導電部408が接続される。
The current extraction portions 436a-436d are provided substantially at the center of the above-described regions 432a-432d. Moreover, the positive electrode junction part 426 is located at the center of the positive electrode current collector 415 composed of the regions 432a to 432d, and is provided at a junction where the boundaries of the regions 432a to 432d intersect each other at one point. In the example of FIG. 31, positive electrode conductive wires 422a to 422d extend linearly from current extraction portions 436a to 436d provided substantially at the center of regions 432a to 432d toward this positive electrode junction portion 426. In the example of FIG. That is, the positive electrode conductors 422a to 422d are linearly extended from the current extraction portions 436a to 436d provided substantially at the center of the regions 432a to 432d provided evenly to each other toward the positive electrode junction portion 426. , it is obvious that the lengths are geometrically the same. In this way, the lengths of the positive electrode conductors 422a-422d are designed to be the same as each other, but they are not necessarily exactly the same, and there may be some length deviation between the positive electrode conductors 422a-422d. is acceptable. A conductive portion 408 made of a conductive layer for supplying current to the electric circuit during discharge is connected from the positive junction portion 426 .
なお、正極合流部426は、各領域432a~432dからなる正極集電体415の中心に形成される点は、必須ではなく、例えば図32に示すように正極集電体415の中心以外に形成されるものであってもよい。かかる場合においても、各正極導電線322a~322dは、電流取出部436a~436dから正極合流部426までの長さが互いに略同一となるように、図32に示すように長さ調整がなされることとなる。
It should be noted that it is not essential that the positive electrode junction 426 be formed at the center of the positive electrode current collector 415 composed of the regions 432a to 432d. For example, as shown in FIG. It may be Even in such a case, the lengths of the positive electrode conductors 322a to 322d are adjusted as shown in FIG. 32 so that the lengths from the current extraction portions 436a to 436d to the positive electrode junction portion 426 are substantially the same. It will happen.
なお、本発明態様においては、電流取出部436a~436d、正極導電線322a~322d、正極合流部426からなる配線は必須ではなく、少なくとも電流取出部436が設けられた配線で構成されていればよい。このとき、この電流取出部436は、正極側電流取出層416を上端から下端に至るまで貫通する構成とすることにより、正極側電流取出層416の上部に別の回路を接続する場合において利便性を高くすることが可能となる。
In the present embodiment, the wiring composed of the current extraction portions 436a to 436d, the positive electrode conductors 322a to 322d, and the positive electrode junction portion 426 is not essential, and at least the wiring provided with the current extraction portion 436 may be used. good. At this time, the current extraction part 436 is configured to pass through the positive electrode current extraction layer 416 from the upper end to the lower end, which is convenient when another circuit is connected to the upper part of the positive electrode current extraction layer 416. can be increased.
負極側電流供給層410は、図33に示すように負極集電体411の下面に形成されてなり、絶縁体で構成されている。負極側電流供給層410中には、換言すれば負極集電体411の下面には導電体としての複数の電流供給部435a~435dが接続されている。電流供給部435a~435dは、負極集電体411に対して電気的に接続されている。
The negative electrode-side current supply layer 410 is formed on the lower surface of the negative electrode current collector 411 as shown in FIG. 33, and is composed of an insulator. In the negative current supply layer 410, in other words, a plurality of current supply parts 435a to 435d as conductors are connected to the lower surface of the negative current collector 411. FIG. The current supply parts 435 a to 435 d are electrically connected to the negative electrode current collector 411 .
負極側電流供給層410は、各電流供給部435a~435dから負極合流部425までを電気的に接続するための複数本の負極導電線421a~321dを備えている。負極導電線421a~321dにおける電流供給部435a~435dから負極合流部425に至るまでの長さは、互いに略同一である。負極側電流供給層410も正極側電流取出層416と同様にその下面が互いに略均等な複数の領域431a~431dに分割されている。この領域431a~431dの詳細は、上述した領域432a~432dと同様である。
The negative electrode-side current supply layer 410 includes a plurality of negative electrode conductive lines 421a to 321d for electrically connecting the current supply portions 435a to 435d to the negative electrode junction portion 425. The lengths from the current supply portions 435a to 435d of the negative electrode conductive lines 421a to 321d to the negative electrode junction portion 425 are substantially the same. Similarly to the positive electrode current extraction layer 416, the negative electrode current supply layer 410 also has a lower surface divided into a plurality of regions 431a to 431d that are substantially equal to each other. Details of the regions 431a to 431d are the same as those of the regions 432a to 432d described above.
電流供給部435a~435dは、上述した領域431a~431dの略中心に設けられている。また、負極合流部425は、各領域431a~431dからなる負極側電流供給層410の中心にあり、各領域431a~431dの境界が互いに一点で交差する合流点に設けられている。即ち、負極導電線421a~421dは、互いに均等に設けられている領域431a~431dの略中心に設けられた電流供給部435a~435dから負極合流部425に向けて直線状に延長されていることから、幾何的に長さが互いに同一になることは自明である。このようにして、負極導電線421a~421dの長さは互いに同一となるように設計されるが、必ずしも完全に同一である必要はなく、負極導電線421a~421d間において多少の長さのずれがあっても許容される。負極合流部425には、放電時において電気回路上から電流が供給される導電体層からなる導電部7が接続される。
The current supply parts 435a to 435d are provided substantially in the center of the above-described regions 431a to 431d. The negative junction 425 is located at the center of the negative current supply layer 410 consisting of the regions 431a to 431d, and is provided at a junction where the boundaries of the regions 431a to 431d intersect at one point. That is, the negative electrode conductive lines 421a to 421d are linearly extended from the current supply portions 435a to 435d provided approximately at the center of the regions 431a to 431d which are evenly provided to each other toward the negative electrode junction portion 425. , it is obvious that the lengths are geometrically the same. In this way, the lengths of the negative electrode conductors 421a to 421d are designed to be the same as each other, but they do not necessarily have to be exactly the same. is acceptable. A conductive portion 7 made of a conductive layer to which current is supplied from an electric circuit during discharge is connected to the negative electrode junction portion 425 .
なお、負極合流部425は、各領域431a~431dからなる負極側電流供給層410の中心に形成される点は、必須ではなく、負極側電流供給層410の中心以外に形成されるものであってもよい。かかる場合においても、各負極導電線421a~421dは、電流供給部435a~435dから負極合流部25までの長さが互いに略同一となるように調整される必要がある点は勿論である。
It should be noted that it is not essential that the negative electrode junction 425 is formed at the center of the negative electrode current supply layer 410 composed of the regions 431a to 431d, and is formed at a location other than the center of the negative electrode current supply layer 410. may Even in such a case, the negative electrode conductive lines 421a to 421d need to be adjusted so that the lengths from the current supply portions 435a to 435d to the negative electrode junction portion 25 are substantially the same.
なお、本発明態様においては、電流供給部435a~435d、負極導電線421a~421d、負極合流部425からなる配線は必須ではなく、少なくとも電流供給部435が設けられた配線で構成されていればよい。このとき、この電流供給部435は、負極側電流供給層410を上端から下端に至るまで貫通する構成とすることにより、負極側電流供給層410の下部に別の回路を接続する場合において利便性を高くすることが可能となる。
In the present embodiment, the wiring consisting of the current supply portions 435a to 435d, the negative electrode conductive wires 421a to 421d, and the negative electrode junction portion 425 is not essential, and at least the wiring provided with the current supply portion 435 may be used. good. At this time, the current supply portion 435 is configured to penetrate the negative electrode current supply layer 410 from the upper end to the lower end, which is convenient when another circuit is connected to the lower portion of the negative electrode current supply layer 410. can be increased.
次に、第3の実施形態の動作について説明をする。
Next, the operation of the third embodiment will be explained.
放電時において二次電池モジュール401を図示しない外部の負荷を正極403と負極402との間に接続した場合には、正極側電流取出層416における各領域432a~432dにおける電流は、それぞれの領域432の中心に設けられた電流取出部436により取り出される。即ち、各領域432a~432d毎に電流が分散して電流取出部436に取り出され、取り出された電流は分散して正極導電線422を流れて正極合流部426へと送られる。同様に負極合流部425へ流れ込んだ電流は分散して各負極導電線421へ分岐し、電流供給部435に到達する。
When an external load (not shown) of the secondary battery module 401 is connected between the positive electrode 403 and the negative electrode 402 during discharge, the current in each of the regions 432a to 432d in the positive electrode current extraction layer 416 is is taken out by a current take-out portion 436 provided at the center. That is, the currents are dispersed in each of the regions 432 a to 432 d and extracted to the current extracting portion 436 , and the extracted currents are dispersed and flow through the positive electrode conductors 422 to be sent to the positive electrode junction portion 426 . Similarly, the current flowing into the negative electrode junction portion 425 is dispersed and branched to each negative electrode conductive line 421 to reach the current supply portion 435 .
負極においても同様に、外部回路からの電流は、負極合流部425へ流れ込み、ここから各負極導電線421において分散されて電流供給部435に到達する。電流供給部435は、領域431a~431d毎に設けられていることから当該領域431a~431dに電流を流すことができる。その結果、負極集電体411を流れる電流が一極集中することなく、分散させることができる。
Similarly, in the negative electrode, the current from the external circuit flows into the negative electrode confluence portion 425 and is dispersed in each negative electrode conductive line 421 from here to reach the current supply portion 435 . Since the current supply unit 435 is provided for each of the regions 431a to 431d, the current can be supplied to the regions 431a to 431d. As a result, the current flowing through the negative electrode current collector 411 can be distributed without being concentrated in one pole.
その結果、負極集電体411へ供給する電流、正極集電体415から取り出す電流が負極側電流供給層410及び正極側電流取出層416において一極集中することなく、分散させることができる。その結果、各負極導電線421、各正極導電線422を流れる電流を下げることができ、抵抗を下げることができる。これに加えて、各負極導電線421、各正極導電線422を介して負極側電流供給層410、正極側電流取出層416を流れる電流の経路が何れも伝搬距離が等しくなることから、負極側電流供給層410、正極側電流取出層416内における抵抗の均一化を図ることができる。その結果、本発明によれば、負極側電流供給層410、正極側電流取出層416上に局所的な抵抗分布を発生させることなく、電流を均一に流すことができる。このため、電流が局所的に多く流れる部位が生じることが無くなり、当該部位において局所的に温度が上昇することも無くなり、局所的な抵抗の低下が生じることなく、局所的に大きな電流が流れやすくなる悪循環に陥るのを抑えることができる。このように、負極側電流供給層410、正極側電流取出層416上において局所的に大きな電流が流れることなく、電流分布の均一化を図ることができることから、電池セル420自体の劣化を抑えることができ、ひいては電池セル420の高寿命化を実現できる。
As a result, the current supplied to the negative electrode current collector 411 and the current taken out from the positive electrode current collector 415 can be distributed without being concentrated in the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 . As a result, the current flowing through each negative electrode conductive line 421 and each positive electrode conductive line 422 can be decreased, and the resistance can be decreased. In addition to this, the paths of the currents flowing through the negative electrode current supply layer 410 and the positive electrode current extraction layer 416 via the negative electrode conductive wires 421 and the positive electrode conductive wires 422 have the same propagation distance. Uniform resistance can be achieved in the current supply layer 410 and the positive current extraction layer 416 . As a result, according to the present invention, a current can flow uniformly without generating a local resistance distribution on the negative current supply layer 410 and the positive current extraction layer 416 . As a result, there are no areas where a large amount of current flows locally, the temperature does not rise locally in those areas, and a large current easily flows locally without a local decrease in resistance. You can avoid falling into a vicious circle. In this way, a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform, thereby suppressing deterioration of the battery cell 420 itself. can be achieved, and by extension the life of the battery cell 420 can be increased.
このように、本発明態様は、正極側において、各電流取出部436から正極合流部426までを電気的に接続するための複数本の正極導電線422を備えており、その正極導電線422の長さは、互いに略同一とされている。特に、正極側電流取出層416において互いに略均等となる位置に電流取出部436が設けられている。これにより、正極側電流取出層416において取り出されるべき電流を、複数の電流取出部436間でより均等に取り出すことができ、これを複数本の正極導電線422に分散させて流すことができ、電流が局所的に多く流れる部位が生じることが無くなる。このとき、正極側電流取出層416が互いに略均等な複数の領域432に分割され、各電流取出部436は、各領域432の略中心に設けられていることで、正極側電流取出層416において取り出されるべき電流を、複数の電流取出部436間で更に均等に取り出すことが可能となる。
As described above, the aspect of the present invention includes, on the positive electrode side, a plurality of positive electrode conductor wires 422 for electrically connecting from each current extraction portion 436 to the positive electrode junction portion 426, and the positive electrode conductor wires 422 are The lengths are substantially the same as each other. In particular, the current extraction portions 436 are provided at approximately equal positions in the positive electrode side current extraction layer 416 . As a result, the current to be taken out from the positive electrode side current extraction layer 416 can be taken out more evenly between the plurality of current extraction portions 436, and the current can be distributed and distributed to the plurality of positive electrode conductive wires 422. This eliminates the occurrence of a portion where a large amount of current locally flows. At this time, the positive current extraction layer 416 is divided into a plurality of regions 432 that are substantially equal to each other, and each current extraction part 436 is provided substantially at the center of each region 432, so that the positive current extraction layer 416 It becomes possible to more evenly extract the current to be extracted among the plurality of current extracting portions 436 .
同様に、負極側において、各電流供給部35から負極合流部425までを電気的に接続するための複数本の負極導電線421を備えており、その負極導電線421の長さは、互いに略同一とされている。特に、負極側電流供給層410において互いに略均等となる位置に電流供給部435が設けられている。これにより、負極集電体411に対して供給されるべき電流を、複数の電流供給部435間でより均等に供給することができ、この電流供給部435に対しては複数本の負極導電線421に分散させて流すことができ、電流が局所的に多く流れる部位が生じることが無くなる。このとき、負極側電流供給層410が互いに略均等な複数の領域431に分割され、各電流供給部435は、各領域431の略中心に設けられていることで、負極集電体411に対して供給されるべき電流を、複数の電流供給部435間で更に均等に供給することが可能となる。
Similarly, on the negative electrode side, a plurality of negative electrode conductive wires 421 are provided for electrically connecting each current supply portion 35 to a negative electrode junction portion 425, and the lengths of the negative electrode conductive wires 421 are substantially equal to each other. assumed to be the same. In particular, the current supply portions 435 are provided at substantially equal positions on the negative electrode side current supply layer 410 . As a result, the current to be supplied to the negative electrode current collector 411 can be more uniformly supplied among the plurality of current supply portions 435, and the current supply portion 435 is provided with a plurality of negative electrode conductive wires. 421 can be dispersively flowed, and there is no occurrence of a portion where a large amount of current flows locally. At this time, the negative electrode-side current supply layer 410 is divided into a plurality of regions 431 that are substantially equal to each other, and each current supply portion 435 is provided substantially at the center of each region 431, so that the negative electrode current collector 411 is It becomes possible to more evenly supply the current to be supplied between the plurality of current supply units 435 .
正極側電流取出層416と、この正極側電流取出層416に含まれる電流取出部406、正極導電線422、正極合流部426とは、いわゆるプリント基板のように機能が分類されていてもよい。つまり、正極側電流取出層416は、プリント基板における絶縁体で構成され、電流取出部406、正極導電線422、正極合流部426は、プリント基板における配線として構成されるものであってもよい。
The positive current extraction layer 416 and the current extraction part 406, the positive conductive wire 422, and the positive junction part 426 included in the positive current extraction layer 416 may be classified in function like a so-called printed circuit board. That is, the positive current extraction layer 416 may be made of an insulator on the printed circuit board, and the current extraction part 406, the positive conductive wire 422, and the positive junction part 426 may be configured as wiring on the printed circuit board.
負極側電流供給層410と、この負極側電流供給層410に含まれる電流供給部405、負極導電線421、負極合流部425とは、いわゆるプリント基板のように機能が分類されていてもよい。つまり、負極側電流供給層410は、プリント基板における絶縁体で構成され、電流供給部405、負極導電線421、負極合流部425は、プリント基板における配線として構成されるものであってもよい。
The functions of the negative current supply layer 410 and the current supply section 405, the negative conductive line 421, and the negative junction 425 included in the negative current supply layer 410 may be classified like a so-called printed circuit board. That is, the negative current supply layer 410 may be made of an insulator on the printed circuit board, and the current supply part 405, the negative conductive line 421, and the negative junction 425 may be made of wiring on the printed circuit board.
正極側電流取出層416及び負極側電流供給層410は、プリント基板における絶縁体で構成する場合、その材質としては、紙基材にフェノール樹脂を含侵させた材料、紙基材にエポキシ樹脂を含侵させた材料、ガラス布(ガラス繊維)を布状に編んだガラス織布)にエポキシ樹脂を含侵させた材料、紙基材にポリイミド樹脂を含侵させた材料、ガラス布基材にフッ素樹脂を含浸させた材料、ガラス布基材にPPO(Poly Phenylene Oxide)樹脂を含浸させた材料で構成してもよいし、アルミニウムのような金属をベースにした基板、或いはガラスセラミックをベースにした基板で構成してもよい。
When the positive electrode side current extraction layer 416 and the negative electrode side current supply layer 410 are composed of an insulator on a printed circuit board, the material thereof may be a paper substrate impregnated with phenol resin, or a paper substrate impregnated with epoxy resin. impregnated material, glass fabric (woven glass fiber) impregnated with epoxy resin, paper base material impregnated with polyimide resin, glass cloth base material It may be composed of materials impregnated with fluororesin, glass cloth substrate impregnated with PPO (Poly Phenylene Oxide) resin, metal-based substrates such as aluminum, or glass-ceramic based substrates. It may be configured with a substrate that has
このようなプリント基板のような機能分類がなされていることにより、他の図示しない回路やプリント基板に対して直接接続する場合において、その接触抵抗低減を図ることが可能となる。また、実際に硬質のプリント基板で正極側電流取出層416及び負極側電流供給層410を構成することにより、電流供給部405、負極導電線421、負極合流部425や電流供給部405、負極導電線421、負極合流部425からなる配線を施す上でその作業の容易性を向上させることができる。その結果、上述した配線を施す上で利便性を高くすることができる。
By classifying the functions like the printed circuit board, it is possible to reduce the contact resistance when connecting directly to other circuits or printed circuit boards (not shown). In addition, by actually forming the positive electrode current extraction layer 416 and the negative electrode current supply layer 410 with a hard printed circuit board, the current supply portion 405, the negative electrode conductive wire 421, the negative junction portion 425, the current supply portion 405, and the negative electrode conductive layer are formed. The easiness of the work can be improved in providing the wiring consisting of the line 421 and the negative electrode confluence portion 425 . As a result, it is possible to enhance the convenience in providing the wiring described above.
このようにして、第1の実施形態の構成に加え、第3の実施形態の構成が付加されることにより、上述した奏し得る効果が大きくなることは勿論である。具体例として、本実施形態において、第1の実施形態と同様に、負極側電流取出層410及び/又は正極側電流取出層416に小孔496を形成するようにしてもよい。この場合、各小孔496は、負極側電流取出層410及び/又は正極側電流取出層416の面内における電流取出部436、正極導電線422、及び正極合流部426の非形成部位に形成されることになる、これにより、負極側電流供給層410、正極側電流取出層416上において局所的に大きな電流が流れることなく、電流分布の均一化を図ることができることから、電池セル420自体の劣化を抑えることができ、ひいては電池セル420の高寿命化を実現できると共に、製造時において、正極集電体415と正極側電流取出層416との間に気泡481が形成される場合には、減圧環境下におくことで気泡481の空気が小孔496を通過し、外部に放出されることで、気泡481を除去することが可能となる。
In this way, by adding the configuration of the third embodiment to the configuration of the first embodiment, it is a matter of course that the above-described effects can be enhanced. As a specific example, in the present embodiment, small holes 496 may be formed in the negative current extraction layer 410 and/or the positive current extraction layer 416 as in the first embodiment. In this case, each small hole 496 is formed in a portion where the current extraction portion 436, the positive electrode conductive wire 422, and the positive electrode junction portion 426 are not formed in the plane of the negative electrode side current extraction layer 410 and/or the positive electrode side current extraction layer 416. As a result, a large current does not flow locally on the negative current supply layer 410 and the positive current extraction layer 416, and the current distribution can be made uniform. Deterioration can be suppressed, and eventually the life of the battery cell 420 can be extended. The air in the air bubbles 481 passes through the small holes 496 and is discharged to the outside by placing in a reduced pressure environment, so that the air bubbles 481 can be removed.
本発明の一実施形態に係る二次電池モジュールは、負極集電体、負極活物質層、セパレータ又は固体電解質、正極活物質層及び正極集電体を有する蓄電要素を複数積層されてなる積層電池を備えた二次電池モジュールであって、前記積層電池における最外層の少なくとも一面には、電流取出層が接しており、前記電流取出層には、上下に貫通する小孔が形成されている。
A secondary battery module according to an embodiment of the present invention is a laminated battery obtained by laminating a plurality of storage elements each having a negative electrode current collector, a negative electrode active material layer, a separator or a solid electrolyte, a positive electrode active material layer, and a positive electrode current collector. A current extraction layer is in contact with at least one surface of the outermost layer in the laminated battery, and a small hole penetrating vertically is formed in the current extraction layer.
上記一実施形態では、前記小孔は、平面視で、円形状、楕円形状、又は、スリット状、のいずれかである。
In the above one embodiment, the small holes are circular, elliptical, or slit-shaped in plan view.
上記一実施形態では、前記小孔が楕円形状の場合は、当該楕円形状の短軸の寸法が0.2mm~2mmであり、前記小孔が円形状の場合は、当該円形状の半径の寸法が0.2mm~2mmである。
In the above embodiment, when the small hole is elliptical, the dimension of the minor axis of the elliptical shape is 0.2 mm to 2 mm, and when the small hole is circular, the radius of the circular shape is 0.2 mm to 2 mm.
上記一実施形態では、前記小孔は、前記電流取出層に複数形成され、前記電流取出層の周縁部よりも前記電流取出層の中央部に相対的に多く形成されている。
In the above embodiment, a plurality of small holes are formed in the current extraction layer, and relatively more small holes are formed in the central portion of the current extraction layer than in the peripheral portion of the current extraction layer.
上記一実施形態では、記電流取出層は、正極側電流取出層及び負極側電流供給層を備え、前記正極側電流取出層及び前記負極側電流供給層は、弾性変形可能な弾性材で構成されている。
In the above embodiment, the current extraction layer includes a positive electrode current extraction layer and a negative electrode current supply layer, and the positive electrode current extraction layer and the negative electrode current supply layer are made of elastically deformable elastic material. ing.
上記一実施形態では、前記電流取出層は、不織布で構成されている。
In the above embodiment, the current extraction layer is made of nonwoven fabric.
上記一実施形態では、前記正極集電体と正極側電流取出層との間には、PTCサーミスタが介装されている。
In the above embodiment, a PTC thermistor is interposed between the positive current collector and the positive current extraction layer.
上記一実施形態では、上記負極集電体と負極側電流供給層との間には、PTCサーミスタが介装されている。
In the above embodiment, a PTC thermistor is interposed between the negative electrode current collector and the negative electrode current supply layer.
上記一実施形態では、前記正極側電流取出層は、複数の電流取出部と、前記各電流取出部から正極合流部までを電気的に接続するための複数本の正極導電線とを備え、前記各正極導電線の長さは、互いに略同一である。
In the above embodiment, the positive electrode-side current extraction layer includes a plurality of current extraction portions and a plurality of positive electrode conductive wires for electrically connecting the current extraction portions to the positive electrode merging portion. The length of each positive electrode conductive wire is substantially the same as each other.
上記一実施形態では、上記正極集電体の上方には、放電時に電流を送出する正極整流部が幅手方向に延設されている。
In the above embodiment, above the positive electrode current collector, the positive electrode rectifying section that delivers current during discharge extends in the width direction.
以上説明した発明態様によれば、内部構成が簡素化されつつ外装体による組電池の封止が実現でき、容易に組み立てが可能な電池モジュールが実現する。
According to the aspects of the invention described above, it is possible to realize a battery module that can be easily assembled by simplifying the internal configuration and sealing the assembled battery with the exterior body.
According to the aspects of the invention described above, it is possible to realize a battery module that can be easily assembled by simplifying the internal configuration and sealing the assembled battery with the exterior body.
Claims (21)
- 樹脂集電体層を含む正極集電体及び前記正極集電体上に形成された正極活物質を含む正極活物質層を有する正極と、樹脂集電体層を含む負極集電体及び前記負極集電体上に形成された負極活物質を含む負極活物質層を有する負極と、前記正極活物質層と前記負極活物質層との間に配置されるセパレータと、を備える単電池が複数積層されてなる組電池と、
前記単電池ごとに設けられ、当該単電池の状態に基づき光信号を送信する複数の発光部と、
前記組電池を覆うガスバリアフィルムと、
を有しており、
前記ガスバリアフィルムは、全体として前記光信号に対して透明である、電池モジュール。 A positive electrode current collector including a resin current collector layer; a positive electrode having a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector; a negative electrode current collector including a resin current collector layer; A plurality of unit cells are stacked each including a negative electrode having a negative electrode active material layer containing a negative electrode active material formed on a current collector, and a separator disposed between the positive electrode active material layer and the negative electrode active material layer. an assembled battery,
a plurality of light emitting units provided for each of the cells and transmitting optical signals based on the state of the cells;
a gas barrier film covering the assembled battery;
and
The battery module, wherein the gas barrier film as a whole is transparent to the optical signal. - 前記発光部は、前記ガスバリアフィルムを介して前記光信号を外部に送信する、請求項1に記載の電池モジュール。 The battery module according to claim 1, wherein the light emitting section transmits the optical signal to the outside through the gas barrier film.
- 前記ガスバリアフィルムの外部に、複数の前記発光部を前記ガスバリアフィルムを介して覆う導光管が設けられている、請求項1又は2に記載の電池モジュール。 3. The battery module according to claim 1, wherein a light guide tube is provided outside the gas barrier film to cover the plurality of light-emitting portions via the gas barrier film.
- 前記ガスバリアフィルムの外部に、前記導光管の内部を伝搬する複数の前記光信号を受信する受光部が設けられている、請求項3に記載の電池モジュール。 4. The battery module according to claim 3, wherein a light-receiving section for receiving a plurality of said optical signals propagating inside said light guide tube is provided outside said gas barrier film.
- 前記ガスバリアフィルムの外部に、前記発光部から前記ガスバリアフィルムを介して送信された前記光信号を直接的に受信する受光部が設けられている、請求項1又は2に記載の電池モジュール。 3. The battery module according to claim 1 or 2, wherein a light-receiving section that directly receives the optical signal transmitted from the light-emitting section via the gas barrier film is provided outside the gas barrier film.
- 前記ガスバリアフィルムは、表面の一部に前記光信号を遮光する遮光層が設けられており、表面の前記発光部に対応する位置には前記遮光層が設けられていない、請求項1乃至5のいずれか1項に記載の電池モジュール。 6. The gas barrier film according to any one of claims 1 to 5, wherein a light shielding layer for shielding the optical signal is provided on a part of the surface of the gas barrier film, and the light shielding layer is not provided on a position corresponding to the light emitting portion on the surface. The battery module according to any one of items 1 and 2.
- 前記ガスバリアフィルムの表面は、複数の前記発光部を含む領域に位置整合する部分を除き、前記遮光層で覆われている、請求項6に記載の電池モジュール。 7. The battery module according to claim 6, wherein the surface of said gas barrier film is covered with said light shielding layer except for a portion aligned with the region containing said plurality of light emitting portions.
- 前記ガスバリアフィルムの表面は、前記発光部ごとに位置整合する部分を除き、前記遮光層で覆われている、請求項6に記載の電池モジュール。 7. The battery module according to claim 6, wherein the surface of the gas barrier film is covered with the light shielding layer except for the portions aligned with the light emitting portions.
- 請求項1乃至8のいずれか1項に記載の電池モジュールの製造方法であって、
全体として前記光信号に対して透明である前記ガスバリアフィルムとなる帯状の第1ガスバリアフィルムの表面に、加熱成形により複数の凹部を順次形成する工程と、
前記組電池と、前記単電池ごとに設けられた複数の発光部と、を備えた構造体を、前記凹部内に順次嵌入させる工程と、
帯状の第2ガスバリアフィルムを前記第1ガスバリアフィルムに重ね合わせて複数の前記構造体を順次封止する工程と、
前記構造体ごとに前記第1ガスバリアフィルム及び前記第2ガスバリアフィルムを切り分ける工程と、
を有する、電池モジュールの製造方法。 A method for manufacturing the battery module according to any one of claims 1 to 8,
a step of sequentially forming a plurality of concave portions by thermoforming on the surface of a strip-shaped first gas barrier film that becomes the gas barrier film that is transparent to the optical signal as a whole;
a step of sequentially fitting a structure including the assembled battery and a plurality of light-emitting portions provided for each of the cells into the recess;
laminating a strip-shaped second gas barrier film on the first gas barrier film to sequentially seal a plurality of the structures;
a step of cutting the first gas barrier film and the second gas barrier film for each structure;
A method for manufacturing a battery module, comprising: - 前記凹部を形成する工程に供される帯状の前記第1ガスバリアフィルムは、複数の前記発光部を含む領域に位置整合する部分を除き、前記遮光層で覆われており、
帯状の前記第1ガスバリアフィルムに前記凹部を形成した際に、前記凹部の側面に前記部分が位置する、請求項9に記載の電池モジュールの製造方法。 The strip-shaped first gas barrier film provided for the step of forming the recesses is covered with the light shielding layer except for a portion aligned with the region including the plurality of light emitting portions,
10. The method of manufacturing a battery module according to claim 9, wherein when the concave portion is formed in the strip-shaped first gas barrier film, the portion is positioned on a side surface of the concave portion. - 前記凹部を形成する工程に供される帯状の前記第1ガスバリアフィルムは、前記発光部ごとに位置整合する部分を除き、前記遮光層で覆われており、
帯状の前記第1ガスバリアフィルムに前記凹部を形成した際に、前記凹部の側面に前記部分が位置する、請求項9に記載の電池モジュールの製造方法。 The strip-shaped first gas barrier film used in the step of forming the recesses is covered with the light shielding layer except for a portion aligned with each light emitting portion,
10. The method of manufacturing a battery module according to claim 9, wherein when the concave portion is formed in the strip-shaped first gas barrier film, the portion is positioned on a side surface of the concave portion. - 前記単電池における最外層の少なくとも一面には、電流取出層が接しており、
前記電流取出層には、上下に貫通する小孔が形成されている、
請求項1乃至8のいずれか1項に記載の電池モジュール。 A current extraction layer is in contact with at least one surface of the outermost layer of the cell,
A small hole penetrating vertically is formed in the current extraction layer,
The battery module according to any one of claims 1 to 8. - 前記小孔は、平面視で、円形状、楕円形状、又は、スリット状、のいずれかである、
請求項12に記載の電池モジュール。 The small holes are either circular, elliptical, or slit-shaped in plan view,
The battery module according to claim 12. - 前記小孔が楕円形状の場合は、当該楕円形状の短軸の寸法が0.2mm~2mmであり、
前記小孔が円形状の場合は、当該円形状の半径の寸法が0.2mm~2mmである、
請求項12又は13に記載の電池モジュール。 When the small hole has an elliptical shape, the dimension of the minor axis of the elliptical shape is 0.2 mm to 2 mm,
When the small hole is circular, the radius of the circular shape is 0.2 mm to 2 mm.
The battery module according to claim 12 or 13. - 前記小孔は、前記電流取出層に複数形成され、前記電流取出層の周縁部よりも前記電流取出層の中央部に相対的に多く形成されている、
請求項12乃至14のいずれか1項に記載の電池モジュール。 A plurality of the small holes are formed in the current extraction layer, and relatively more small holes are formed in the central portion of the current extraction layer than in the peripheral portion of the current extraction layer.
The battery module according to any one of claims 12 to 14. - 前記電流取出層は、正極側電流取出層及び負極側電流供給層を備え、
前記正極側電流取出層及び前記負極側電流供給層は、弾性変形可能な弾性材で構成されている、
請求項12乃至15のいずれか1項に記載の電池モジュール。 The current extraction layer includes a positive current extraction layer and a negative current supply layer,
The positive electrode-side current extraction layer and the negative electrode-side current supply layer are made of an elastic material that is elastically deformable,
The battery module according to any one of claims 12-15. - 前記電流取出層は、不織布で構成されている、
請求項12乃至16のいずれか1項に記載の電池モジュール。 wherein the current extraction layer is made of a non-woven fabric,
The battery module according to any one of claims 12-16. - 前記正極集電体と正極側電流取出層との間には、PTCサーミスタが介装されている、
請求項12乃至17のいずれか1項に記載の電池モジュール。 A PTC thermistor is interposed between the positive current collector and the positive current extraction layer.
The battery module according to any one of claims 12-17. - 上記負極集電体と負極側電流供給層との間には、PTCサーミスタが介装されている、
請求項12乃至18のいずれか1項に記載の電池モジュール。 A PTC thermistor is interposed between the negative electrode current collector and the negative electrode current supply layer.
The battery module according to any one of claims 12-18. - 前記正極側電流取出層は、複数の電流取出部と、前記各電流取出部から正極合流部までを電気的に接続するための複数本の正極導電線とを備え、前記各正極導電線の長さは、互いに略同一である、
請求項18又は19に記載の電池モジュール。 The positive electrode-side current extraction layer includes a plurality of current extraction portions and a plurality of positive electrode conductive wires for electrically connecting each of the current extraction portions to the positive electrode confluence portion. are substantially identical to each other,
The battery module according to claim 18 or 19. - 上記正極集電体の上方には、放電時に電流を送出する正極整流部が幅手方向に延設されている、
請求項12乃至20のいずれか1項に記載の電池モジュール。
Above the positive electrode current collector, a positive electrode rectifying section that delivers current during discharge extends in the width direction.
The battery module according to any one of claims 12-20.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021214705A JP2023098138A (en) | 2021-12-28 | 2021-12-28 | Battery module and manufacturing method of them |
JP2021-214705 | 2021-12-28 | ||
JP2021214864A JP7275247B1 (en) | 2021-12-28 | 2021-12-28 | Secondary battery module |
JP2021-214864 | 2021-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127964A1 true WO2023127964A1 (en) | 2023-07-06 |
Family
ID=86999252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/048658 WO2023127964A1 (en) | 2021-12-28 | 2022-12-28 | Battery module and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023127964A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050404A (en) * | 2000-08-04 | 2002-02-15 | Mitsubishi Cable Ind Ltd | Structure of sheet-shaped lithium cell and manufacturing method of the same |
JP2013101769A (en) * | 2011-11-07 | 2013-05-23 | Honda Motor Co Ltd | Air cell |
JP2015099711A (en) * | 2013-11-20 | 2015-05-28 | 株式会社日立製作所 | Sensor light circuit and lithium ion secondary battery |
JP2016081882A (en) * | 2014-10-22 | 2016-05-16 | トヨタ自動車株式会社 | All-solid battery system |
JP2016519399A (en) * | 2013-05-03 | 2016-06-30 | ジェナックス インコーポレイテッド | Nonwoven fabric current collector, battery manufacturing method and system using the same |
JP2017004884A (en) * | 2015-06-15 | 2017-01-05 | 日本電気株式会社 | Lithium ion secondary battery, battery pack, deterioration detection device for lithium ion secondary battery, and deterioration detection method |
WO2021045222A1 (en) * | 2019-09-06 | 2021-03-11 | 三洋化成工業株式会社 | Secondary battery module |
JP2021044230A (en) * | 2019-03-20 | 2021-03-18 | 三洋化成工業株式会社 | Lithium ion battery, and method for making judgement about the degradation of lithium ion battery |
-
2022
- 2022-12-28 WO PCT/JP2022/048658 patent/WO2023127964A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002050404A (en) * | 2000-08-04 | 2002-02-15 | Mitsubishi Cable Ind Ltd | Structure of sheet-shaped lithium cell and manufacturing method of the same |
JP2013101769A (en) * | 2011-11-07 | 2013-05-23 | Honda Motor Co Ltd | Air cell |
JP2016519399A (en) * | 2013-05-03 | 2016-06-30 | ジェナックス インコーポレイテッド | Nonwoven fabric current collector, battery manufacturing method and system using the same |
JP2015099711A (en) * | 2013-11-20 | 2015-05-28 | 株式会社日立製作所 | Sensor light circuit and lithium ion secondary battery |
JP2016081882A (en) * | 2014-10-22 | 2016-05-16 | トヨタ自動車株式会社 | All-solid battery system |
JP2017004884A (en) * | 2015-06-15 | 2017-01-05 | 日本電気株式会社 | Lithium ion secondary battery, battery pack, deterioration detection device for lithium ion secondary battery, and deterioration detection method |
JP2021044230A (en) * | 2019-03-20 | 2021-03-18 | 三洋化成工業株式会社 | Lithium ion battery, and method for making judgement about the degradation of lithium ion battery |
WO2021045222A1 (en) * | 2019-09-06 | 2021-03-11 | 三洋化成工業株式会社 | Secondary battery module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9972860B2 (en) | Bipolar electrode and bipolar lithium-ion secondary battery using same | |
WO2015030405A1 (en) | Module housing for manufacturing unit module with heat-radiating structure and battery module comprising same | |
KR101763055B1 (en) | Non-aqueous electrolytic secondary battery | |
US11355794B2 (en) | Secondary battery module | |
KR101643593B1 (en) | Stack and Folding-Typed Electrode Assembly Having Improved Electrolyte Wetting Property and Method of Preparation of the Same | |
JP7475825B2 (en) | Lithium-ion battery module and battery pack | |
KR102248104B1 (en) | Battery Cell Comprising Sealing Tape for Accelerating Heat Conduction | |
KR20150050075A (en) | Electrode for a secondary battery, preparation method thereof and secondary battery including the same | |
KR102046000B1 (en) | Battery Pack with Improved Temperature Sensing Ability | |
KR102265233B1 (en) | Static Eliminator with Purge and Transfer Device | |
KR101519372B1 (en) | Manufacture Device of Battery Cell | |
KR20130118268A (en) | Multilayer-structured electrode and lithium secondary battery comprising the same | |
JP2021082391A (en) | Lithium-ion battery module and battery pack | |
KR102025564B1 (en) | Electrode Assembly Comprising Unit Cell Sandwiched between Battery Elements | |
JP2011249046A (en) | Method of manufacturing lithium ion secondary battery | |
KR102070907B1 (en) | Battery Cell Comprising Non-coating Portion Accommodating Gas Generated During Charge and Discharge | |
WO2023127964A1 (en) | Battery module and method for manufacturing same | |
JP2023098138A (en) | Battery module and manufacturing method of them | |
CN114207930A (en) | Lithium ion battery module and battery pack | |
JP2018067508A (en) | Method for manufacturing lithium ion battery | |
WO2021241637A1 (en) | Single cell unit | |
WO2013157852A1 (en) | Lithium secondary battery exhibiting excellent performance | |
JP2022123498A (en) | Method and apparatus for manufacturing lithium-ion battery members | |
JP7510749B2 (en) | How lithium-ion batteries are manufactured | |
JP7275247B1 (en) | Secondary battery module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22916186 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |