Nothing Special   »   [go: up one dir, main page]

WO2023120568A1 - 交流電動機の切替装置 - Google Patents

交流電動機の切替装置 Download PDF

Info

Publication number
WO2023120568A1
WO2023120568A1 PCT/JP2022/047066 JP2022047066W WO2023120568A1 WO 2023120568 A1 WO2023120568 A1 WO 2023120568A1 JP 2022047066 W JP2022047066 W JP 2022047066W WO 2023120568 A1 WO2023120568 A1 WO 2023120568A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
winding
short
phase
switching
Prior art date
Application number
PCT/JP2022/047066
Other languages
English (en)
French (fr)
Inventor
幹三 石原
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN202280080645.3A priority Critical patent/CN118318389A/zh
Publication of WO2023120568A1 publication Critical patent/WO2023120568A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays

Definitions

  • the present disclosure relates to a switching device for AC motors.
  • each phase winding consists of a plurality of windings, and a connecting terminal connecting the plurality of windings and both terminals of each phase winding are provided outside the motor.
  • the winding switching device includes winding switching means for appropriately switching the connection terminals, and a variable frequency power supply for supplying a variable frequency voltage to the AC motor.
  • each phase winding of an AC motor is divided into a plurality of regions. It is possible to switch to a use state in which other areas are also used.
  • One object of the present disclosure is to provide a technology that facilitates increasing the operation patterns of AC motors.
  • a switching device for an AC motor which is one of the present disclosure, A switching device for switching a connection state of the windings of an AC motor having a plurality of phase windings, each phase winding having a first winding and a second winding, Having a switching unit for switching the connection state of the windings of the plurality of phases,
  • the switching unit has a first state in which energization control of each of the first windings of the windings of each phase is allowed and energization control of each of the second windings is interrupted, and a second state in which energization control for each of the second windings is permitted and energization control for each of the first windings is interrupted; and a third state that allows energization control to the line.
  • the technology according to the present disclosure can increase the operation patterns of AC motors.
  • FIG. 1 is a circuit diagram schematically illustrating an in-vehicle system including an AC motor switching device according to a first embodiment.
  • FIG. 2 is an explanatory diagram for explaining the correspondence relationship between the state of each switching unit and the windings to be energized in the AC motor switching device according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating a first state of the switching device for the AC motor shown in FIG.
  • FIG. 4 is an explanatory diagram illustrating a second state of the AC motor switching device shown in FIG.
  • FIG. 5 is an explanatory diagram illustrating a third state of the AC motor switching device shown in FIG. FIG.
  • FIG. 6 is a graph showing the relationship between the number of revolutions and the torque in each state with respect to the AC motor used in the in-vehicle system of FIG.
  • FIG. 7 is a circuit diagram schematically illustrating an in-vehicle system including an AC motor switching device according to another embodiment.
  • the switching unit has a first state in which energization control of each of the first windings of the windings of each phase is allowed and energization control of each of the second windings is interrupted, and a second state in which energization control for each of the second windings is permitted and energization control for each of the first windings is interrupted;
  • a switching device for an AC motor that switches to a third state that allows energization control to the line.
  • the first state is an operation pattern in which the first windings of the windings of each phase are selectively used and the second windings are selectively not used. Since the state is an operation pattern in which each second winding of each phase winding is selectively used and each first winding is not selectively used, this switching device suppresses the influence of the second winding. Therefore, it is possible to generate an operation pattern using the first winding and an operation pattern using the second winding while suppressing the influence of the first winding. Furthermore, since this switching device can generate operation patterns that use both the first windings and the second windings, the number of operation patterns of the AC motor can be increased.
  • the multi-phase winding comprises a first phase winding, a second phase winding and a third phase winding
  • the switching section includes a first switching section that switches between a first short circuit state and a first released state, a second switching section that switches between a second short circuit state and a second released state, and a third short circuit state and a third released state. and a third switching unit that switches to In the first short-circuit state, a first end, which is one end of the first winding of the first-phase winding, and a first conductive path are short-circuited, and the first winding of the second-phase winding is short-circuited.
  • the second end, which is one end of the line, and the second conductive path are short-circuited
  • the third end which is one end of the first winding in the winding of the third phase, and the third conductive path are short-circuited.
  • the third short-circuit state is the other end of the first winding of the first phase winding, the other end of the first winding of the second phase winding, and the third short circuit of the third phase winding.
  • the third released state is a state in which mutual short-circuiting of the other end group is released
  • the control section sets the first switching section to the first short-circuit state, the second switching section to the second released state, and the third switching section to the third short-circuit state, thereby switching the switching section to the third short-circuit state.
  • the first switching section is in the first released state
  • the second switching section is in the second short-circuit state
  • the third switching section is in the third released state, thereby switching the switching section to the second switching section.
  • setting the first switching section to the first short-circuited state setting the second switching section to the second released state, and setting the third switching section to the third released state to set the switching section to the third state
  • the AC motor switching device according to [1].
  • the switching device of [2] above is intended for a three-phase AC motor, and by a simple method of changing the combination of the short-circuit state and the released state of each switching section, at least three states (first state, second state) , third state).
  • the first winding of the first phase winding has a larger number of turns than the second winding of the first phase winding;
  • the first winding of the second phase winding has a larger number of turns than the second winding of the second phase winding,
  • the switching device of [3] above can selectively use each of the first windings having a relatively large number of turns in the first state, so that the impedance can be increased and a greater torque can be generated. easy to occur.
  • each second winding having a relatively small number of turns can be selectively used, so that the impedance can be suppressed and the suitability for high-speed operation can be easily improved.
  • the third state not only each of the first windings having a relatively large number of turns but also each of the second windings can be used, which makes it easier to increase the torque.
  • the control unit places the switching unit in the third state when the rotation speed of the AC motor switching device and the vehicle on which the AC motor is mounted is within a first rotation speed range.
  • a second rotation speed range which is a range in which the rotation speed is higher than the first rotation speed range
  • the switching unit is set to the first state, and the rotation speed of the vehicle is set to the above-mentioned range.
  • the switching device for an AC motor according to [3], wherein the switching unit is set to the first state when the rotation speed is within a third rotation speed range, which is a range in which the rotation speed is higher than the second rotation speed range.
  • the above switching device [4] can switch to the first state, which is easily applied to high-speed running, when the number of rotations of the vehicle is within the third rotation number range, which is relatively high.
  • the numerical range it is possible to switch to the third state in which the torque is likely to increase.
  • the switching device can switch to the second state in which torque and high-speed running are easily balanced.
  • the in-vehicle system 1 includes an AC motor 4 and a motor drive device 2 .
  • the AC motor 4 is a three-phase AC motor.
  • the AC motor 4 is, for example, a three-phase driving motor that generates driving force for rotationally driving the wheels provided in the vehicle on which the in-vehicle system 1 is mounted.
  • the AC motor 4 incorporates multi-phase (specifically, three-phase) windings 71 , 72 , 73 .
  • the multi-phase windings 71, 72, 73 function as stator windings provided in the stator.
  • Winding 71 is also referred to as U-phase winding 71 .
  • the winding 72 is also referred to as the V-phase winding 72 .
  • the winding 73 is also called the W-phase winding 73 .
  • the U phase corresponds to an example of the first phase.
  • the V phase corresponds to an example of the second phase.
  • the W phase corresponds to an example of the third phase.
  • the AC motor 4 is a so-called Y-connected three-phase motor.
  • the U-phase (first phase) winding 71, the V-phase (second phase) winding 72, and the W-phase (third phase) winding 73 are connected to the third switching section 23, which can be a neutral point, or the neutral point. It can be wired at any of the shorts 90 that can be points.
  • the multi-phase windings 71, 72, and 73 constituting the AC motor 4 each have a first winding and a second winding, and each phase has a first winding and a second winding. are connected in series.
  • the U-phase (first phase) winding 71 includes a first winding 71A and a second winding 71B, and the first winding 71A and the second winding 71B are connected in series.
  • the V-phase (second phase) winding 72 includes a first winding 72A and a second winding 72B, and the first winding 72A and the second winding 72B are connected in series.
  • the W-phase (third-phase) winding 73 includes a first winding 73A and a second winding 73B, and the first winding 73A and the second winding 73B are connected in series.
  • the end portion 81A corresponds to an example of a first end portion.
  • the end portion 81A is one end of the first winding 71A.
  • the end portion 81A is electrically connected to the conductive path 61B of the U-phase conductive paths 61 and is short-circuited to the conductive path 61B.
  • the end portion 82A corresponds to an example of a second end portion.
  • the end portion 82A is one end of the first winding 72A.
  • the end portion 82A is electrically connected to the conductive path 62B of the V-phase conductive paths 62 and is short-circuited to the conductive path 62B.
  • the end portion 83A is an example of a third end portion.
  • the end portion 83A is one end of the first winding 73A.
  • the end portion 83A is electrically connected to the conductive path 63B of the W-phase conductive paths 63 and is short-circuited to the conductive path 63B.
  • the end portion 81B is the other end of the first winding 71A.
  • the end portion 81B is electrically connected to the end portion 81C, which is one end of the second winding 71B, and is short-circuited to the end portion 81C.
  • the end portion 82B is the other end of the first winding 72A.
  • the end portion 82B is electrically connected to the end portion 82C, which is one end of the second winding 72B, and is short-circuited to the end portion 82C.
  • the end portion 83B is the other end of the first winding 73A.
  • the end portion 83B is electrically connected to the end portion 83C, which is one end of the second winding 73B, and is short-circuited to the end portion 83C.
  • the end portion 81D is the other end of the second winding 71B.
  • the end portion 82D is the other end of the second winding 72B.
  • the end portion 83D is the other end of the second winding 73B.
  • the end portion 81D, the end portion 82D, and the end portion 83D are electrically connected to the short-circuit portion 90 and short-circuited to each other via the short-circuit portion 90 .
  • a pair of power paths 81 and 82 are conductive paths through which DC power based on power from a battery (for example, a high-voltage battery) (not shown) is transmitted.
  • the power path 81 is a power path on the high potential side.
  • the power path 82 is the power path on the low potential side. For example, a constant DC voltage may be applied between the pair of power paths 81 and 82 .
  • the electric motor driving device 2 is a device that drives the AC motor 4 based on the electric power supplied from the pair of electric power paths 81 and 82 .
  • the motor drive device 2 is also a device that controls the operation of the AC motor 4 .
  • the motor drive device 2 has an inverter 6 , three conducting paths (a U-phase conducting path 61 , a V-phase conducting path 62 , and a W-phase conducting path 63 ), and a switching device 10 .
  • the inverter 6 is an inverter circuit that outputs U-phase, V-phase, and W-phase three-phase AC power.
  • the three-phase AC power output from the inverter 6 is supplied to the AC motor 4 through three conducting paths (a U-phase conducting path 61, a V-phase conducting path 62, and a W-phase conducting path 63). 4 is used for rotational driving.
  • the inverter 6 includes switching elements 6A, 6C, 6E functioning as upper arm elements and switching elements 6B, 6D, 6F functioning as lower arm elements.
  • Each of the switching elements 6A, 6B, 6C, 6D, 6E, 6F is composed of, for example, an insulated gate bipolar transistor (IGBT) and a freewheeling diode.
  • IGBT insulated gate bipolar transistor
  • the switching elements 6A, 6B, 6C, 6D, 6E, and 6F receive on/off signals (for example, PWM (pulse width modulation) signals) to repeat on and off operations, thereby generating three-phase AC power. generate.
  • On/off control of the switching elements 6A, 6B, 6C, 6D, 6E, and 6F is performed, for example, by an electronic control unit (eg, an in-vehicle ECU (Electronic Control Unit), etc.) not shown.
  • the method by which the electronic control unit controls the inverter 6 is, for example, a three-phase modulation method using a PWM signal.
  • the electronic control unit controls the inverter 6 as long as it can drive the AC motor 4. For example, various methods such as known V/f control and known vector control can be adopted. .
  • the U-phase switch pair is composed of a switching element 6A that is an upper arm element and a switching element 6B that is a lower arm element.
  • the V-phase switch pair is composed of a switching element 6C as an upper arm element and a switching element 6D as a lower arm element.
  • the W-phase switch pair is composed of a switching element 6E as an upper arm element and a switching element 6F as a lower arm element.
  • the U-phase conductive path 61 is a conductive path between the switching elements 6A and 6B and the U-phase winding 71 .
  • the U-phase conductive path 61 includes a conductive path 61A and a conductive path 61B.
  • Conductive path 61A corresponds to an example of a first conductive path.
  • Conductive path 61A is a conductive path between switching elements 6A and 6B and switch 21A.
  • One end of the conductive path 61A is electrically connected to the conductive path between the switching elements 6A and 6B.
  • the other end of the conductive path 61A is electrically connected to one end of the switch 21A.
  • Conductive path 61B is electrically connected to the other end of switch 21A and one end of U-phase winding 71 .
  • the V-phase conductive path 62 is a conductive path between the switching elements 6C, 6D and the V-phase winding 72.
  • the V-phase conductive path 62 includes a conductive path 62A and a conductive path 62B.
  • Conductive path 62A corresponds to an example of a second conductive path.
  • Conductive path 62A is a conductive path between switching elements 6C and 6D and switch 21B.
  • One end of the conductive path 62A is electrically connected to the conductive path between the switching elements 6C and 6D.
  • the other end of the conductive path 62A is electrically connected to one end of the switch 21B.
  • Conductive path 62B is electrically connected to the other end of switch 21B and one end of V-phase winding 72 .
  • the W-phase conductive path 63 is a conductive path between the switching elements 6E and 6F and the W-phase winding 73.
  • the W-phase conductive path 63 includes a conductive path 63A and a conductive path 63B.
  • Conductive path 63A corresponds to an example of a third conductive path.
  • Conductive path 63A is a conductive path between switching elements 6E and 6F and switch 21C.
  • One end of the conductive path 63A is electrically connected to the conductive path between the switching elements 6E and 6F.
  • the other end of the conductive path 63A is electrically connected to one end of the switch 21C.
  • Conductive path 63B is electrically connected to the other end of switch 21C and one end of W-phase winding 73 .
  • the switching device 10 is a device that switches the state of the windings of the AC motor 4 .
  • the switching device 10 includes a switching section 20 and a control section 30 .
  • the control unit 30 is a device that controls the switching unit 20 .
  • the control unit 30 may be, for example, an electronic control device such as an in-vehicle ECU, or an information processing device having an MPU (Micro-Processing Unit) or the like.
  • the control unit 30 controls on/off of each switch that configures the switching unit 20 .
  • the control unit 30 can output an ON signal and an OFF signal to each of the switches 21A, 21B, 21C, 22A, 22B, 22C, 23A, 23B, 23C.
  • the switching unit 20 is a device that switches the connection state of the windings 71, 72, 73 of multiple phases.
  • the switching section 20 has a first switching section 21 , a second switching section 22 and a third switching section 23 .
  • the first switching unit 21 switches between a first short-circuited state and a first released state.
  • the second switching unit 22 switches between a second short circuit state and a second release state.
  • the third switching unit 23 switches between a third short circuit state and a third release state.
  • the first switching unit 21 includes switches 21A, 21B, and 21C.
  • Each of the switches 21A, 21B, 21C may be composed of one or more semiconductor switch elements (for example, FET (Field Effect Transistor), IGBT, etc.), or may be composed of one or more mechanical relays. .
  • the first short-circuit state is a state in which the switches 21A, 21B, and 21C are all turned on.
  • switch 21A When the switch 21A is on, current can flow bi-directionally through the switch 21A.
  • switch 21B When switch 21B is on, current can flow bidirectionally through switch 21B.
  • switch 21C When the switch 21C is on, current can flow bidirectionally through the switch 21C. That is, in the first short-circuit state, the end portion 81A, which is one end of the U-phase first winding 71A, and the conductive path 61A (first conductive path) are short-circuited, and one end of the V-phase first winding 72A is short-circuited.
  • the end portion 82A and the conductive path 62A are short-circuited, and the end portion 83A, which is one end of the W-phase first winding 73A, and the conductive path 63A (third conductive path) are short-circuited. .
  • the first release state is a state in which the switches 21A, 21B, and 21C are all turned off.
  • the switch 21A When the switch 21A is in the OFF state, the switch 21A cuts off bidirectional energization.
  • the switch 21B When the switch 21B is in the OFF state, the switch 21B cuts off bidirectional energization.
  • the switch 21C When the switch 21C is in the OFF state, the switch 21C cuts off bidirectional energization. That is, in the first release state, the short circuit between the end portion 81A (first end) and the conductive path 61A (first conductive path) is released, and the end portion 82A (second end) and the conductive path 62A (second conductive path) are disconnected.
  • the second switching section 22 includes switches 22A, 22B, and 22C.
  • Each of the switches 22A, 22B, 22C may be composed of one or more semiconductor switch elements (for example, FET, IGBT, etc.), or may be composed of one or more mechanical relays.
  • a second short-circuit state is a state in which the switches 22A, 22B, and 22C are all turned on.
  • switch 22A When switch 22A is in the ON state, current can flow bi-directionally through switch 22A.
  • switch 22B When switch 22B is in the ON state, current can flow bi-directionally through switch 22B.
  • switch 22C When switch 22C is in the ON state, current can flow bi-directionally through switch 22C. That is, in the second short-circuit state, the end portion 81C (fourth end) and the conductive path 61A (first conductive path) are short-circuited, and the end portion 82C (fifth end) and the conductive path 62A (second conductive path) are short-circuited. ) are short-circuited, and the end 83C (sixth end) and the conductive path 63A (third conductive path) are short-circuited.
  • the second release state is a state in which the switches 22A, 22B, and 22C are all turned off.
  • the switch 22A cuts off bidirectional energization.
  • the switch 22B cuts off bidirectional energization.
  • the switch 22C cuts off bidirectional energization. That is, in the second released state, the short circuit between the end portion 81C (fourth end) and the conductive path 61A (first conductive path) is released, and the end portion 82C (fifth end) and the conductive path 62A (second conductive path) are disconnected. path) is released, and the short circuit between the end portion 83C (sixth end) and the conductive path 63A (third conductive path) is released.
  • the third short-circuit state is a state in which the switches 23A, 23B, and 23C are all turned on.
  • the switches 23A, 23B, 23C are all on, the other ends of the first windings 71A, 72A, 73A are short-circuited.
  • the switch 23A is in the ON state, current can flow bi-directionally through the switch 23A.
  • switch 23B is on, current can flow bi-directionally through switch 23B.
  • the switch 23C is on, current can flow bi-directionally through the switch 23C.
  • an end portion 81B that is the other end of the U-phase first winding 71A, an end portion 82B that is the other end of the V-phase first winding 72A, and a W-phase first winding 73A are connected. are short-circuited to each other and have the same potential.
  • a plurality of ends formed by the ends 81B, 82B, and 83B constitute the other end group, and the third short-circuit state is a state in which the other end groups are short-circuited to have the same potential.
  • the third release state is a state in which the switches 23A, 23B, and 23C are all turned off.
  • the switch 23A When the switch 23A is in the OFF state, the switch 23A cuts off bidirectional energization.
  • the switch 23B When the switch 23B is in the OFF state, the switch 23B cuts off bidirectional energization.
  • the switch 23C When the switch 23C is in the OFF state, the switch 23C cuts off bidirectional energization.
  • the third released state is a state in which the mutual short-circuiting of the other end group is released. No current flows through switches 23A, 23B, and 23C anywhere between 81B and end 83B.
  • the first winding 71A of the U-phase (first phase) winding 71 has a larger number of turns than the second winding 71B.
  • the first winding 72A of the V-phase (second phase) winding 72 has a larger number of turns than the second winding 72B.
  • the first winding 73A of the W-phase (third phase) winding 73 has a larger number of turns than the second winding 73B. That is, in any phase, the number of turns of the first winding is greater than the number of turns of the second winding.
  • the switching unit 20 switches among the first state, the second state, the third state, and the fourth state.
  • the control unit 30 controls the switching unit 20 so as to switch the switching unit 20 between the first state, the second state, the third state, and the fourth state.
  • the first switching section 21 in the first state, is in a short-circuited state (first short-circuited state), the second switching section 22 is in a released state (second released state), and the third switching section 23 is in a short-circuited state ( third short circuit state).
  • the windings to be energized are the first windings 71A, 72A, and 73A. That is, the first state permits energization control of the first windings 71A, 72A, 73A among the windings 71, 72, 73 of the plurality of phases, and cuts off energization control of the second windings 71B, 72B, 73B. state.
  • each of the switches 21A, 21B, and 21C is turned on, each of the switches 22A, 22B, and 22C is turned off, each of the switches 23A, 23B, and 23C is turned on,
  • the third switching section 23 becomes the neutral point. Therefore, a driving current flows through each of the first windings 71A, 72A and 73A, and no driving current flows through each of the second windings 71B, 72B and 73B.
  • the first switching section 21 is in the released state (first released state)
  • the second switching section 22 is in the short-circuited state (second short-circuited state)
  • the third switching section 23 is in the released state ( (third release state).
  • the windings to be energized are the second windings 71B, 72B, and 73B. That is, the second state permits the energization control of the second windings 71B, 72B, 73B among the windings 71, 72, 73 of the plurality of phases, and cuts off the energization control of the first windings 71A, 72A, 73A. state.
  • each of the switches 22A, 22B, and 22C in the second state, each of the switches 22A, 22B, and 22C is turned on, each of the switches 21A, 21B, and 21C is turned off, each of the switches 23A, 23B, and 23C is turned off,
  • the short-circuit portion 90 becomes the neutral point. Therefore, a driving current flows through each of the second windings 71B, 72B and 73B, and no driving current flows through each of the first windings 71A, 72A and 73A.
  • the first switching unit 21 is in the short-circuited state (first short-circuited state)
  • the second switching unit 22 is in the released state (second released state)
  • the third switching unit 23 is in the released state ( (third release state).
  • the windings to be energized are the first windings 71A, 72A, 73A and the second windings 71B, 72B, 73B. That is, the third state is a state in which energization control is allowed for all of the first windings 71A, 72A, 73A and the second windings 71B, 72B, 73B in the windings 71, 72, 73 of the multiple phases. be. As shown in FIG.
  • each of the switches 21A, 21B, and 21C is turned on, each of the switches 22A, 22B, and 22C is turned off, each of the switches 23A, 23B, and 23C is turned off,
  • the short-circuit portion 90 becomes the neutral point. Therefore, the series-connected first winding 71A and second winding 71B as a whole function as U-phase windings, and a driving current flows through them.
  • the entire second winding 72B functions as a V-phase winding and a driving current flows through them. drive current flows through them.
  • the first switching unit 21 is in the released state (first released state)
  • the second switching unit 22 is in the released state (second released state)
  • the third switching unit 23 is in the released state ( (third release state).
  • no drive current flows through any of the first windings 71A, 72A, 73A and the second windings 71B, 72B, 73B.
  • the control unit 30 controls the switching unit 20 to switch to one of the above states.
  • the control unit 30 sets the first switching unit 21 to the first short-circuit state, sets the second switching unit 22 to the second released state, and sets the third switching unit 23 to the third short-circuit state.
  • 20 is the first state.
  • the in-vehicle system 1 can be used to selectively supply power only to the first winding having a relatively large number of turns in each phase.
  • the control unit 30 sets the first switching unit 21 to the first released state, the second switching unit 22 to the second short-circuit state, and the third switching unit 23 to the third released state.
  • the switching unit 20 is set to the second state.
  • the in-vehicle system 1 can be used to selectively supply power only to the second winding with a relatively small number of turns in each phase.
  • the control unit 30 sets the first switching unit 21 to the first short-circuit state, sets the second switching unit 22 to the second released state, and sets the third switching unit 23 is set to the third release state, the switching unit 20 is set to the third state.
  • the in-vehicle system 1 can be used by supplying power to both the first winding and the second winding in each phase.
  • the control unit 30 sets the first switching unit 21 to the first released state and the second switching unit 22 to the second released state when a fourth condition different from the first, second, and third conditions is established. is set to the third release state, the switching unit 20 is set to the fourth state.
  • the in-vehicle system 1 can stop power supply to the first winding and the second winding in each phase.
  • the first condition, the second condition, the third condition, and the fourth condition may be different conditions.
  • the first state selectively uses the first windings 71A, 72A, and 73A of the multi-phase windings 71, 72, and 73, and the second windings 71B, 72B. , 73B are selectively not used.
  • the second state is an operation pattern in which the second windings 71B, 72B, 73B of the multiple phase windings are selectively used and the first windings 71A, 72A, 73A are not selectively used.
  • the switching device 10 suppresses the influence of the second windings 71B, 72B, and 73B, and the operation pattern using the first windings 71A, 72A, and 73A and the first windings 71A, 72A, An operation pattern using the second windings 71B, 72B, 73B can be generated while suppressing the influence of 73A. Furthermore, the switching device 10 can also generate an operation pattern that uses both the first winding and the second winding in each phase by switching to the third state, so that the operation pattern of the AC motor 4 can be further controlled. can be increased.
  • the switching device 10 can switch between at least three states (first state, second state, third state).
  • the switching device 10 can selectively use the first windings 71A, 72A, and 73A having a relatively large number of turns in the first state, the impedance can be increased, and a greater torque can be generated.
  • the second windings 71B, 72B, and 73B having a relatively small number of turns can be selectively used, so the impedance can be suppressed and the suitability for high-speed operation can be easily improved.
  • the second windings 71B, 72B, and 73B can be used in addition to the first windings 71A, 72A, and 73A having a relatively large number of turns, making it easier to increase the torque. .
  • the first condition may be defined as "the rotation speed of the vehicle in which the in-vehicle system 1 is mounted is within the second rotation speed range”.
  • the second condition may be “that the rotation speed of the vehicle in which the in-vehicle system 1 is mounted is within the third rotation speed range”.
  • the third condition may be "that the number of revolutions of the vehicle in which the in-vehicle system 1 is mounted is within the first range of number of revolutions”.
  • the first rotation speed range corresponding to the third condition may be a range in which the rotation speed of the vehicle is less than X1
  • the second rotation speed range corresponding to the first condition may be the rotation speed range of the vehicle.
  • the rotation speed can be in the range of X1 or more and less than X2, and the third rotation speed range corresponding to the second condition can be the rotation speed of the vehicle in the range of X2 or more.
  • the second range of revolutions is a range of revolutions higher than the first range of revolutions
  • the third range of revolutions is a range of revolutions greater than the second range of revolutions. be.
  • the relationship between the number of revolutions and the torque in each of the first state, second state, and third state is, for example, as shown in FIG.
  • the torque in the third state is the largest in the first rotation speed range in which the rotation speed of the vehicle on which the in-vehicle system 1 is mounted is less than X1.
  • the torque in the first state is the largest in the second rotation speed range in which the rotation speed of the vehicle is X1 or more and less than X2
  • the torque in the first state is the largest.
  • the torque in the second state is the largest.
  • control unit 30 controls the switching unit 20 to switch to the third state when the rotation speed of the vehicle is within the first rotation speed range, which is relatively small, the vehicle can be driven when starting or climbing a slope. , which is advantageous in situations where high torque is required at low rotational speeds. Further, if the control unit 30 operates to switch the switching unit 20 to the second state when the rotation speed of the vehicle is within the third rotation speed range, which is relatively large, the frequency of acceleration and deceleration such as when traveling on a highway is reduced. It is advantageous in a scene where there is little but the high speed is maintained.
  • control unit 30 operates to switch the switching unit 20 to the first state when the rotation speed of the vehicle is within the middle second rotation speed range, acceleration/deceleration in a medium speed range such as driving in an urban area is performed. It is advantageous in situations where there is a change of course.
  • the switching device 10 has the control unit 30 in the above embodiment, the switching device does not have to have the control unit 30 .
  • the switching device is configured only by the switching unit 20 described above, and this switching device (specifically, the switching unit 20) receives an instruction from an external device (for example, a device having the same function as the control unit 30 described above). It may be configured to receive and perform the switching operation.
  • each phase winding is divided into two, but each phase winding may be divided into three or more.
  • FIG. 7 shows an in-vehicle system 101 employing an electric motor drive device 202 in place of the electric motor drive device 2 of FIG.
  • an AC motor 104 is used in place of the AC motor 4 of FIG.
  • Alternating current motor 104 has a configuration in which each of second windings 71B, 72B, and 73B is short-circuited with the other end of each of second windings 71B, 72B, and 73B as shown in FIG.
  • third windings 71C, 72C, and 73C are respectively provided between the other ends of the AC motors 4 and the short-circuiting portion 190.
  • Other configurations are the same as those of the AC motor 4 in FIG.
  • Third windings 71C, 72C, 73C may be provided. In this example, as shown in FIG.
  • a fourth switching unit 122 that switches switches 122A, 122B, and 122C between the ON state and the OFF state and a fifth switching unit that switches the switches 123A, 123B, and 123C between the ON state and the OFF state.
  • 123 is provided.
  • all the switches 122A, 122B, 122C, 123A, 123B, and 123C are turned off in addition to the first state control in the first embodiment.
  • the switches 122A, 122B and 122C are all turned off and the switches 123A, 123B and 123C are all turned on.
  • the switches 122A, 122B, and 122C are all turned off, and the switches 123A, 123B, and 123C are all turned on.
  • all of the switches 122A, 122B, 122C, 123A, 123B, and 123C should be turned off.
  • the switching units 21, 22, 23 and 123 are turned off and the switching unit 122 is turned on, the third windings 71C and 72C can be switched without using the first windings and the second windings.
  • Switching device switching device for AC motor
  • Switching section 21 First switching section 22: Second switching section 23: Third switching section 30: Control section 61: First conducting path 62: Second conducting path 63: Third conducting path 71: U-phase winding Line 72: V-phase winding 73: W-phase windings 71A, 72A, 73A: first windings 71B, 72B, 73B: second winding 81A: first end 81B: other end 81C: fourth end Part 82A: Second End 82B: Other End 82C: Fifth End 83A: Third End 83B: Other End 83C: Sixth End

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

交流電動機の切替装置(10)は、交流電動機(4)の切り替えを制御する装置であり、複数相の巻線(71,72,73)の接続状態を切り替える切替部(20)を有する。切替部(20)は、第1状態と第2状態と第3状態とに切り替わる。第1状態は、各相の第1巻線(71A,72A,73A)の各々に対する通電制御を許容し第2巻線(71B,72B,73B)の各々に対する通電制御を遮断する状態である。第2状態は、各相の第2巻線(71B,72B,73B)の各々に対する通電制御を許容し第1巻線(71A,72A,73A)の各々に対する通電制御を遮断する状態である。第3状態は、第1巻線(71A,72A,73A)及び第2巻線(71B,72B,73B)に対する通電制御を許容する状態である。

Description

交流電動機の切替装置
 本開示は、交流電動機の切替装置に関する。
 特許文献1に開示される交流電動機は、各相巻線が複数の巻線からなり、複数の巻線を互いに連結した連結端子と各相巻線の両端子とがモータ外部に設けられる。そして、巻線切替装置は、連結端子を適宜切り替える巻線切替手段と、交流電動機に可変周波の可変電圧を供給する可変周波数電源とを備える。
特開2003-111492号公報
 特許文献1の技術では、交流電動機の各相の巻線が複数の領域に分割されており、各相の巻線の各々の一部領域のみを使用する使用状態と、各々の一部領域とともに他の領域も使用する使用状態とに切り替え可能とされている。しかし、特許文献1に開示される技術は、各相の巻線の接続状態を切り替える上で、各相の上記一部領域を使用することが必須であるため、この点で、動作パターンが制限されてしまう。
 本開示は、交流電動機の動作パターンを増やしやすい技術を提供することを一つの目的とする。
 本開示の一つである交流電動機の切替装置は、
 複数相の巻線を有し各相の巻線がそれぞれ第1巻線と第2巻線とを有する交流電動機の前記巻線の接続状態を切り替える切替装置であって、
 前記複数相の巻線の接続状態を切り替える切替部を有し、
 前記切替部は、前記各相の巻線の各々の前記第1巻線に対する通電制御を許容し各々の前記第2巻線に対する通電制御を遮断する第1状態と、前記各相の巻線の各々の前記第2巻線に対する通電制御を許容し各々の前記第1巻線に対する通電制御を遮断する第2状態と、前記各相の巻線の各々の前記第1巻線及び前記第2巻線に対する通電制御を許容する第3状態と、に切り替わる。
 本開示に係る技術は、交流電動機の動作パターンを増やすことができる。
図1は、第1実施形態に係る交流電動機の切替装置を含む車載システムを概略的に例示する回路図である。 図2は、第1実施形態に係る交流電動機の切替装置における各切替部の状態と通電対象巻線との対応関係等を説明する説明図である。 図3は、図1に示される交流電動機の切替装置の第1状態を説明する説明図である。 図4は、図1に示される交流電動機の切替装置の第2状態を説明する説明図である。 図5は、図1に示される交流電動機の切替装置の第3状態を説明する説明図である。 図6は、図1の車載システムに用いられる交流電動機に関して、各状態での回転数とトルクの関係を示すグラフである。 図7は、他の実施形態に係る交流電動機の切替装置を含む車載システムを概略的に例示する回路図である。
 以下では、本開示の実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔4〕の特徴は、矛盾しない範囲でどのように組み合わされてもよい。
 〔1〕複数相の巻線を有し各相の巻線がそれぞれ第1巻線と第2巻線とを有する交流電動機の前記巻線の接続状態を切り替える切替装置であって、
 前記複数相の巻線の接続状態を切り替える切替部を有し、
 前記切替部は、前記各相の巻線の各々の前記第1巻線に対する通電制御を許容し各々の前記第2巻線に対する通電制御を遮断する第1状態と、前記各相の巻線の各々の前記第2巻線に対する通電制御を許容し各々の前記第1巻線に対する通電制御を遮断する第2状態と、前記各相の巻線の各々の前記第1巻線及び前記第2巻線に対する通電制御を許容する第3状態と、に切り替わる
 交流電動機の切替装置。
 上記の〔1〕の切替装置において、第1状態は、各相の巻線の各第1巻線を選択的に使用し各第2巻線を選択的に使用しない動作パターンであり、第2状態は、各相の巻線の各第2巻線を選択的に使用し各第1巻線を選択的に使用しない動作パターンであるため、この切替装置は、第2巻線の影響を抑えて第1巻線を使用する動作パターンと第1巻線の影響を抑えて第2巻線を使用する動作パターンを生じさせることができる。更に、この切替装置は、各第1巻線及び各第2巻線をいずれも使用する動作パターンも生じさせることができるため、交流電動機の動作パターンをより増やすことができる。
 〔2〕前記切替部を制御する制御部を有し、
 前記複数相の巻線は、第一相の巻線と第二相の巻線と第三相の巻線とを備え、
 前記切替部は、第1短絡状態と第1解除状態とに切り替わる第1切替部と、第2短絡状態と第2解除状態とに切り替わる第2切替部と、第3短絡状態と第3解除状態とに切り替わる第3切替部と、を備え、
 前記第1短絡状態は、前記第一相の巻線における前記第1巻線の一端である第1端部と第1導電路とを短絡させ、前記第二相の巻線における前記第1巻線の一端である第2端部と第2導電路とを短絡させ、前記第三相の巻線における前記第1巻線の一端である第3端部と第3導電路とを短絡させた状態であり、
 前記第1解除状態は、前記第1端部と前記第1導電路の短絡を解除し、前記第2端部と前記第2導電路の短絡を解除し、前記第3端部と前記第3導電路の短絡を解除した状態であり、
 前記第2短絡状態は、前記第一相の巻線における前記第2巻線の一端である第4端部と前記第1導電路とを短絡させ、前記第二相の巻線における前記第2巻線の一端である第5端部と前記第2導電路とを短絡させ、前記第三相の巻線における前記第2巻線の一端である第6端部と前記第3導電路とを短絡させた状態であり、
 前記第2解除状態は、前記第4端部と前記第1導電路の短絡を解除し、前記第5端部と前記第2導電路の短絡を解除し、前記第6端部と前記第3導電路の短絡を解除した状態であり、
 前記第3短絡状態は、前記第一相の巻線の前記第1巻線の他端と前記第二相の巻線の前記第1巻線の他端と前記第三相の巻線の前記第1巻線の他端とを含む他端群を互いに短絡させる状態であり、
 前記第3解除状態は、前記他端群の互いの短絡を解除した状態であり、
 前記制御部は、前記第1切替部を前記第1短絡状態とし前記第2切替部を前記第2解除状態とし前記第3切替部を前記第3短絡状態とすることで前記切替部を前記第1状態とし、前記第1切替部を前記第1解除状態とし前記第2切替部を前記第2短絡状態とし前記第3切替部を前記第3解除状態とすることで前記切替部を前記第2状態とし、前記第1切替部を前記第1短絡状態とし前記第2切替部を前記第2解除状態とし前記第3切替部を前記第3解除状態とすることで前記切替部を前記第3状態とする
 〔1〕に記載の交流電動機の切替装置。
 上記の〔2〕の切替装置は、三相交流電動機を対象とし、各切替部の短絡状態と解除状態の組み合わせを変更するという簡易な方法で、少なくとも3つの状態(第1状態、第2状態、第3状態)に切り替えることができる。
 〔3〕前記第一相の巻線の前記第1巻線は、前記第一相の巻線の前記第2巻線よりも巻き数が大きく、
 前記第二相の巻線の前記第1巻線は、前記第二相の巻線の前記第2巻線よりも巻き数が大きく、
 前記第三相の巻線の前記第1巻線は、前記第三相の巻線の前記第2巻線よりも巻き数が大きい
 〔2〕に記載の交流電動機の切替装置。
 上記の〔3〕の切替装置は、第1状態のときには巻き数が相対的に大きい各第1巻線を選択的に使用することができるため、インピーダンスを高くすることができ、より大きなトルクを発生させやすい。一方、第2状態のときには巻き数が相対的に小さい各第2巻線を選択的に使用することができるため、インピーダンスを抑えることができ、高速運転に対する適性を高めやすい。第3状態のときには、巻き数が相対的に大きい各第1巻線だけでなく、各第2巻線も使用することができるため、より一層トルクを増大させやすい。
 〔4〕前記制御部は、前記交流電動機の切替装置及び前記交流電動機が搭載された車両の回転数が第1の回転数範囲内である場合に、前記切替部を前記第3状態とし、前記車両の回転数が前記第1の回転数範囲よりも回転数が大きい範囲である第2の回転数範囲内である場合に、前記切替部を前記第1状態とし、前記車両の回転数が前記第2の回転数範囲よりも回転数が大きい範囲である第3の回転数範囲内である場合に、前記切替部を前記第1状態とする
 〔3〕に記載の交流電動機の切替装置。
 上記の〔4〕の切替装置は、車両の回転数が相対的に大きい第3回転数範囲内のときには、高速走行に適用させやすい第1状態に切り替えることができ、相対的に小さい第1回転数範囲内のときには、トルクを増大させやすい第3状態に切り替えることができる。そして、この切替装置は、車両の回転数が中程度の第2回転数範囲内のときには、トルクと高速走行のバランスをとりやすい第2状態に切り替えることができる。
 <第1実施形態>
 1.車載システムの概要
 図1に示される車載システム1は、車両に搭載される交流電動機4に適用されるシステムであり、交流電動機4を駆動及び制御し得る電動機システムである。車載システム1は、交流電動機4と電動機駆動装置2とを備える。
 交流電動機4は、三相交流電動機である。交流電動機4は、例えば、車載システム1が搭載される車両に設けられた車輪を回転駆動するための駆動力を発生させる駆動用三相モータである。交流電動機4は、複数相(具体的には三相)の巻線71,72,73を内蔵している。複数相の巻線71,72,73は、ステータに設けられるステータ巻線として機能する。巻線71は、U相の巻線71とも称される。巻線72は、V相の巻線72とも称される。巻線73は、W相の巻線73とも称される。U相は、第一相の一例に相当する。V相は、第二相の一例に相当する。W相は、第三相の一例に相当する。交流電動機4は、いわゆるY結線の三相モータである。U相(第一相)の巻線71、V相(第二相)の巻線72及びW相(第三相)の巻線73は、中性点となりうる第3切替部23又は中性点となり得る短絡部90のいずれかにて結線され得る。
 交流電動機4を構成する複数相の巻線71,72,73は、各相の巻線がそれぞれ第1巻線及び第2巻線を有し、各相において第1巻線と第2巻線とが直列に接続される。U相(第一相)の巻線71は、第1巻線71Aと第2巻線71Bとを備え、第1巻線71Aと第2巻線71Bとが直列に接続される。V相(第二相)の巻線72は、第1巻線72Aと第2巻線72Bとを備え、第1巻線72Aと第2巻線72Bとが直列に接続される。W相(第三相)の巻線73は、第1巻線73Aと第2巻線73Bとを備え、第1巻線73Aと第2巻線73Bとが直列に接続される。
 端部81Aは、第1端部の一例に相当する。端部81Aは、第1巻線71Aの一端である。端部81Aは、U相の導電路61のうちの導電路61Bに電気的に接続され、導電路61Bに短絡している。端部82Aは、第2端部の一例に相当する。端部82Aは、第1巻線72Aの一端である。端部82Aは、V相の導電路62のうちの導電路62Bに電気的に接続され、導電路62Bに短絡している。端部83Aは、第3端部の一例である。端部83Aは、第1巻線73Aの一端である。端部83Aは、W相の導電路63のうちの導電路63Bに電気的に接続され、導電路63Bに短絡している。
 端部81Bは、第1巻線71Aの他端である。端部81Bは、第2巻線71Bの一端である端部81Cに電気的に接続され、端部81Cに短絡している。端部82Bは、第1巻線72Aの他端である。端部82Bは、第2巻線72Bの一端である端部82Cに電気的に接続され、端部82Cに短絡している。端部83Bは、第1巻線73Aの他端である。端部83Bは、第2巻線73Bの一端である端部83Cに電気的に接続され、端部83Cに短絡している。端部81Dは、第2巻線71Bの他端である。端部82Dは、第2巻線72Bの他端である。端部83Dは、第2巻線73Bの他端である。端部81Dと端部82Dと端部83Dは短絡部90に電気的に接続され、短絡部90を介して互いに短絡している。
 一対の電力路81,82は、図示しないバッテリ(例えば、高圧バッテリ)からの電力に基づく直流電力が伝送される導電路である。電力路81は、高電位側の電力路である。電力路82は、低電位側の電力路である。例えば、一対の電力路81,82の間には、一定電圧の直流電圧が印加され得る。
 2.電動機駆動装置の概要
 電動機駆動装置2は、一対の電力路81,82から供給される電力に基づいて交流電動機4を駆動する装置である。電動機駆動装置2は、交流電動機4の動作を制御する装置でもある。電動機駆動装置2は、インバータ6と、3つの導電路(U相の導電路61、V相の導電路62、W相の導電路63)と、切替装置10とを有する。
 インバータ6は、U相、V相、W相の三相交流電力を出力するインバータ回路である。インバータ6から出力される三相交流電力は、3つの導電路(U相の導電路61、V相の導電路62、W相の導電路63)を介して交流電動機4に供給され、交流電動機4の回転駆動に用いられる。インバータ6は、上アーム素子として機能するスイッチング素子6A,6C,6Eと下アーム素子として機能するスイッチング素子6B,6D,6Fとを備える。スイッチング素子6A,6B,6C,6D,6E,6Fの各々は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)及び還流ダイオードにより構成されている。
 インバータ6では、例えば、スイッチング素子6A,6B,6C,6D,6E,6Fがオンオフ信号(例えば、PWM(パルス幅変調)信号)を受けることによってオン動作及びオフ動作を繰り返し、三相交流電力を発生させる。スイッチング素子6A,6B,6C,6D,6E,6Fのオンオフ制御は、例えば、図示されていない電子制御装置(例えば、車載ECU(Electronic Control Unit)等)によって行われる。電子制御装置がインバータ6を制御する方式は、例えば、PWM信号を用いた三相変調方式である。なお、上記電子制御装置がインバータ6を制御する方式は、交流電動機4を駆動可能な方式であればよく、例えば、公知のV/f制御や公知のベクトル制御などの様々な方式が採用され得る。
 インバータ6において、U相のスイッチ対は、上アーム素子であるスイッチング素子6Aと下アーム素子であるスイッチング素子6Bとによって構成される。V相のスイッチ対は、上アーム素子であるスイッチング素子6Cと下アーム素子であるスイッチング素子6Dとによって構成される。W相のスイッチ対は、上アーム素子であるスイッチング素子6Eと下アーム素子であるスイッチング素子6Fとによって構成される。
 U相の導電路61は、スイッチング素子6A,6BとU相の巻線71との間の導電路である。U相の導電路61は、導電路61Aと導電路61Bとを備える。導電路61Aは、第1導電路の一例に相当する。導電路61Aは、スイッチング素子6A,6Bとスイッチ21Aとの間の導電路である。導電路61Aの一端は、スイッチング素子6A,6Bの両素子間の導電路に電気的に接続される。導電路61Aの他端は、スイッチ21Aの一端に電気的に接続される。導電路61Bは、スイッチ21Aの他端とU相の巻線71の一端とに電気的に接続される。スイッチ21Aがオン状態のときにスイッチング素子6A,6Bの両素子間とU相の巻線71とが短絡して導通し得る。
 V相の導電路62は、スイッチング素子6C,6DとV相の巻線72との間の導電路である。V相の導電路62は、導電路62Aと導電路62Bとを備える。導電路62Aは、第2導電路の一例に相当する。導電路62Aは、スイッチング素子6C,6Dとスイッチ21Bとの間の導電路である。導電路62Aの一端は、スイッチング素子6C,6Dの両素子間の導電路に電気的に接続される。導電路62Aの他端は、スイッチ21Bの一端に電気的に接続される。導電路62Bは、スイッチ21Bの他端とV相の巻線72の一端とに電気的に接続される。スイッチ21Bがオン状態のときにスイッチング素子6C,6Dの両素子間とV相の巻線72とが短絡して導通し得る。
 W相の導電路63は、スイッチング素子6E,6FとW相の巻線73との間の導電路である。W相の導電路63は、導電路63Aと導電路63Bとを備える。導電路63Aは、第3導電路の一例に相当する。導電路63Aは、スイッチング素子6E,6Fとスイッチ21Cとの間の導電路である。導電路63Aの一端は、スイッチング素子6E,6Fの両素子間の導電路に電気的に接続される。導電路63Aの他端は、スイッチ21Cの一端に電気的に接続される。導電路63Bは、スイッチ21Cの他端とW相の巻線73の一端とに電気的に接続される。スイッチ21Cがオン状態のときにスイッチング素子6E,6Fの両素子間とW相の巻線73とが短絡して導通し得る。
 3.切替装置の構成
 切替装置10は、交流電動機4の巻線の状態を切り替える装置である。切替装置10は、切替部20と制御部30とを備える。
 制御部30は、切替部20を制御する装置である。制御部30は、例えば、車載ECUなどの電子制御装置であってもよく、MPU(Micro-Processing Unit)などを有する情報処理装置であってもよい。制御部30は、切替部20を構成する各スイッチのオンオフを制御する。具体的には、制御部30は、スイッチ21A,21B,21C,22A,22B,22C,23A,23B,23Cの各々に対してオン信号及びオフ信号を出力し得る。
 切替部20は、複数相の巻線71,72,73の接続状態を切り替える装置である。切替部20は、第1切替部21と第2切替部22と第3切替部23とを有する。第1切替部21は、第1短絡状態と第1解除状態とに切り替わる。第2切替部22は、第2短絡状態と第2解除状態とに切り替わる。第3切替部23は、第3短絡状態と第3解除状態とに切り替わる。
 第1切替部21は、スイッチ21A,21B,21Cを備える。スイッチ21A,21B,21Cの各々は、1以上の半導体スイッチ素子(例えば、FET(Field Effect Transistor)やIGBTなど)によって構成されていてもよく、1以上の機械式リレーによって構成されていてもよい。
 第1短絡状態は、スイッチ21A,21B,21Cをいずれもオンにした状態である。スイッチ21Aがオン状態のときには、スイッチ21Aを通って双方向に電流が流れ得る。スイッチ21Bがオン状態のときには、スイッチ21Bを通って双方向に電流が流れ得る。スイッチ21Cがオン状態のときには、スイッチ21Cを通って双方向に電流が流れ得る。つまり、第1短絡状態は、U相の第1巻線71Aの一端である端部81Aと導電路61A(第1導電路)とを短絡させ、V相の第1巻線72Aの一端である端部82Aと導電路62A(第2導電路)とを短絡させ、W相の第1巻線73Aの一端である端部83Aと導電路63A(第3導電路)とを短絡させる状態である。
 第1解除状態は、スイッチ21A,21B,21Cをいずれもオフにした状態である。スイッチ21Aがオフ状態のときには、スイッチ21Aにおいて双方向の通電が遮断される。スイッチ21Bがオフ状態のときには、スイッチ21Bにおいて双方向の通電が遮断される。スイッチ21Cがオフ状態のときには、スイッチ21Cにおいて双方向の通電が遮断される。つまり、第1解除状態は、端部81A(第1端部)と導電路61A(第1導電路)の短絡を解除し、端部82A(第2端部)と導電路62A(第2導電路)の短絡を解除し、端部83A(第3端部)と導電路63A(第3導電路)の短絡を解除した状態である。第1解除状態のときには、導電路61Aと導電路61Bの間で電流が流れず、導電路62Aと導電路62Bの間で電流が流れず、導電路63Aと導電路63Bの間で電流が流れない。第1解除状態では、第1巻線71A,72A,73Aに駆動のための電流が供給されない。
 第2切替部22は、スイッチ22A,22B,22Cを備える。スイッチ22A,22B,22Cの各々は、1以上の半導体スイッチ素子(例えば、FETやIGBTなど)によって構成されていてもよく、1以上の機械式リレーによって構成されていてもよい。
 第2短絡状態は、スイッチ22A,22B,22Cをいずれもオンにした状態である。スイッチ22Aがオン状態のときには、スイッチ22Aを通って双方向に電流が流れ得る。スイッチ22Bがオン状態のときには、スイッチ22Bを通って双方向に電流が流れ得る。スイッチ22Cがオン状態のときには、スイッチ22Cを通って双方向に電流が流れ得る。つまり、第2短絡状態は、端部81C(第4端部)と導電路61A(第1導電路)とを短絡させ、端部82C(第5端部)と導電路62A(第2導電路)とを短絡させ、端部83C(第6端部)と導電路63A(第3導電路)とを短絡させる状態である。
 第2解除状態は、スイッチ22A,22B,22Cをいずれもオフにした状態である。スイッチ22Aがオフ状態のときには、スイッチ22Aにおいて双方向の通電が遮断される。スイッチ22Bがオフ状態のときには、スイッチ22Bにおいて双方向の通電が遮断される。スイッチ22Cがオフ状態のときには、スイッチ22Cにおいて双方向の通電が遮断される。つまり、第2解除状態は、端部81C(第4端部)と導電路61A(第1導電路)の短絡を解除し、端部82C(第5端部)と導電路62A(第2導電路)の短絡を解除し、端部83C(第6端部)と導電路63A(第3導電路)の短絡を解除した状態である。
 第3短絡状態は、スイッチ23A,23B,23Cをいずれもオンにした状態である。スイッチ23A,23B,23Cがいずれもオン状態のときには、第1巻線71A,72A,73Aの各他端が互いに短絡する。スイッチ23Aがオン状態のときには、スイッチ23Aを通って双方向に電流が流れ得る。スイッチ23Bがオン状態のときには、スイッチ23Bを通って双方向に電流が流れ得る。スイッチ23Cがオン状態のときには、スイッチ23Cを通って双方向に電流が流れ得る。第3短絡状態は、U相の第1巻線71Aの他端である端部81Bと、V相の第1巻線72Aの他端である端部82Bと、W相の第1巻線73Aの他端である端部83Bが互いに短絡し、同電位になる状態である。端部81B,82B,83Bによって構成される複数の端部が他端群であり、第3短絡状態は、この他端群が互いに短絡して同電位になる状態である。
 第3解除状態は、スイッチ23A,23B,23Cをいずれもオフにした状態である。スイッチ23Aがオフ状態のときには、スイッチ23Aにおいて双方向の通電が遮断される。スイッチ23Bがオフ状態のときには、スイッチ23Bにおいて双方向の通電が遮断される。スイッチ23Cがオフ状態のときには、スイッチ23Cにおいて双方向の通電が遮断される。第3解除状態は、上記他端群の互いの短絡を解除した状態であり、具体的には、端部81Bと端部82Bとの間、端部82Bと端部83Bとの間、端部81Bと端部83Bとの間のいずれでも、スイッチ23A,23B,23Cを介して電流が流れない状態である。
 4.切替装置の動作
 以下で説明される本実施形態の代表例では、U相(第一相)の巻線71の第1巻線71Aは第2巻線71Bよりも巻き数が大きい。V相(第二相)の巻線72の第1巻線72Aは、第2巻線72Bよりも巻き数が大きい。W相(第三相)の巻線73の第1巻線73Aは第2巻線73Bよりも巻き数が大きい。つまり、いずれの相でも、第1巻線の巻き数が第2巻線の巻き数よりも大きい。
 切替部20は、第1状態と第2状態と第3状態と第4状態とに切り替わる。制御部30は、切替部20を第1状態、第2状態、第3状態、第4状態のいずれかに切り替えるように切替部20を制御する。
 図2のように、第1状態は、第1切替部21を短絡状態(第1短絡状態)とし第2切替部22を解除状態(第2解除状態)とし第3切替部23を短絡状態(第3短絡状態)とする状態である。第1状態では、通電対象の巻線は第1巻線71A,72A,73Aである。つまり、第1状態は、複数相の巻線71,72,73のうちの第1巻線71A,72A,73Aに対する通電制御を許容し第2巻線71B,72B,73Bに対する通電制御を遮断する状態である。図3のように、第1状態では、スイッチ21A,21B,21Cの各々がオン状態となり、スイッチ22A,22B,22Cの各々がオフ状態となり、スイッチ23A,23B,23Cの各々がオン状態となり、第3切替部23が中性点となる。従って、第1巻線71A,72A,73Aの各々に駆動用の電流が流れ、第2巻線71B,72B,73Bの各々には駆動用の電流が流れない。
 図2のように、第2状態は、第1切替部21を解除状態(第1解除状態)とし第2切替部22を短絡状態(第2短絡状態)とし第3切替部23を解除状態(第3解除状態)とする状態である。第2状態では、通電対象の巻線は第2巻線71B,72B,73Bである。つまり、第2状態は、複数相の巻線71,72,73のうちの第2巻線71B,72B,73Bに対する通電制御を許容し第1巻線71A,72A,73Aに対する通電制御を遮断する状態である。図4のように、第2状態では、スイッチ22A,22B,22Cの各々がオン状態となり、スイッチ21A,21B,21Cの各々がオフ状態となり、スイッチ23A,23B,23Cの各々がオフ状態となり、短絡部90が中性点となる。従って、第2巻線71B,72B,73Bの各々には駆動用の電流が流れ、第1巻線71A,72A,73Aの各々には駆動用の電流が流れない。
 図2のように、第3状態は、第1切替部21を短絡状態(第1短絡状態)とし第2切替部22を解除状態(第2解除状態)とし第3切替部23を解除状態(第3解除状態)とする状態である。第3状態では、通電対象の巻線は第1巻線71A,72A,73A及び第2巻線71B,72B,73Bである。つまり、第3状態は、複数相の巻線71,72,73において第1巻線71A,72A,73A及び第2巻線71B,72B,73Bのいずれに対しても通電制御を許容する状態である。図5のように、第3状態では、スイッチ21A,21B,21Cの各々がオン状態となり、スイッチ22A,22B,22Cの各々がオフ状態となり、スイッチ23A,23B,23Cの各々がオフ状態となり、短絡部90が中性点となる。従って、直列に接続された第1巻線71A及び第2巻線71Bの全体がU相の巻線として機能しこれら全体に駆動用の電流が流れ、直列に接続された第1巻線72A及び第2巻線72Bの全体がV相の巻線として機能しこれら全体に駆動用の電流が流れ、直列に接続された第1巻線73A及び第2巻線73Bの全体がW相の巻線として機能しこれら全体に駆動用の電流が流れる。
 図2のように、第4状態は、第1切替部21を解除状態(第1解除状態)とし第2切替部22を解除状態(第2解除状態)とし第3切替部23を解除状態(第3解除状態)とする状態である。第4状態のときには、第1巻線71A,72A,73A及び第2巻線71B,72B,73Bのいずれにも駆動用の電流は流れない。
 制御部30は、切替部20を上記いずれかの状態に切り替えるように制御する。制御部30は、第1条件の成立時に、第1切替部21を第1短絡状態とし第2切替部22を第2解除状態とし第3切替部23を第3短絡状態とすることで切替部20を第1状態とする。この場合、車載システム1は、各相において相対的に巻き数が大きい第1巻線のみに選択的に電力を供給するように使用することができる。一方、制御部30は、第1条件と異なる第2条件の成立時に、第1切替部21を第1解除状態とし第2切替部22を第2短絡状態とし第3切替部23を第3解除状態とすることで切替部20を第2状態とする。この場合、車載システム1は、各相において相対的に巻き数が小さい第2巻線のみに選択的に電力を供給するように使用することができる。また、制御部30は、第1条件及び第2条件とは異なる第3条件の成立時に第1切替部21を第1短絡状態とし第2切替部22を第2解除状態とし第3切替部23を第3解除状態とすることで切替部20を第3状態とする。この場合、車載システム1は、各相において第1巻線及び第2巻線の両方に電力を供給して使用することができる。制御部30は、第1、第2、第3条件とは異なる第4条件の成立時に第1切替部21を第1解除状態とし第2切替部22を第2解除状態とし第3切替部23を第3解除状態とすることで切替部20を第4状態とする。この場合、車載システム1は、各相において第1巻線及び第2巻線への電力供給を停止することができる。第1条件、第2条件、第3条件、第4条件は、互いに異なる条件であればよい。
 5.効果の例
 切替装置10おいて、第1状態は、複数相の巻線71,72,73のうちの第1巻線71A,72A,73Aを選択的に使用し、第2巻線71B,72B,73Bを選択的に使用しない動作パターンである。第2状態は、複数相の巻線のうちの第2巻線71B,72B,73Bを選択的に使用し第1巻線71A,72A,73Aを選択的に使用しない動作パターンである。切替装置10は、このように状態が切り替わるため、第2巻線71B,72B,73Bの影響を抑えて第1巻線71A,72A,73Aを使用する動作パターンと第1巻線71A,72A,73Aの影響を抑えて第2巻線71B,72B,73Bを使用する動作パターンとを生じさせることができる。更に、切替装置10は、第3状態への切り替えにより、各相において第1巻線及び第2巻線をいずれも使用する動作パターンも生じさせることができるため、交流電動機4の動作パターンをより増やすことができる。
 切替装置10は、第1切替部21、第2切替部22、第3切替部23の短絡状態と解除状態の組み合わせを変更するという簡易な方法で、少なくとも3つの状態(第1状態、第2状態、第3状態)に切り替えることができる。
 切替装置10は、第1状態のときには巻き数が相対的に大きい第1巻線71A,72A,73Aを選択的に使用することができるため、インピーダンスを高くすることができ、より大きなトルクを発生させやすい。一方、第2状態のときには巻き数が相対的に小さい第2巻線71B,72B,73Bを選択的に使用することができるため、インピーダンスを抑えることができ、高速運転に対する適性を高めやすい。第3状態のときには、巻き数が相対的に大きい第1巻線71A,72A,73Aに加えて、第2巻線71B,72B,73Bも使用することができるため、より一層トルクを増大させやすい。
 本明細書において、上記第1条件を「車載システム1が搭載された車両の回転数が第2の回転数範囲内であること」としてもよい。そして、上記第2条件を「車載システム1が搭載された車両の回転数が第3の回転数範囲内であること」としてもよい。更に、上記第3条件を「車載システム1が搭載された車両の回転数が第1の回転数範囲内であること」としてもよい。この場合、第3条件に対応する第1の回転数範囲は、上記車両の回転数がX1未満の範囲とすることができ、第1条件に対応する第2の回転数範囲は、上記車両の回転数がX1以上且つX2未満の範囲とすることができ、第2条件に対応する第3の回転数範囲は、上記車両の回転数がX2以上の範囲とすることができる。この例では、第2の回転数範囲は、第1の回転数範囲よりも回転数が大きい範囲であり、第3の回転数範囲は、第2の回転数範囲よりも回転数が大きい範囲である。
 交流電動機4において、第1状態、第2状態、第3状態の各々のときの回転数とトルクとの関係は、例えば図6のようになっている。図6の例では、車載システム1が搭載された車両の回転数がX1未満の第1の回転数範囲では、第3状態のときのトルクが最も大きい。また、上記車両の回転数がX1以上且つX2未満の第2の回転数範囲では、第1状態のときのトルクが最も大きい。更に、上記車両の回転数がX2以上の第3の回転数範囲では、第2状態のときのトルクが最も大きい。このような例では、上記車両の回転数が相対的に小さい第1回転数範囲内のときに制御部30が切替部20を第3状態に切り替えるように制御すれば、発進時や登坂時など、回転数が小さい状況で高トルクが要求される場面で有利である。また、上記車両の回転数が相対的に大きい第3回転数範囲内のときに制御部30が切替部20を第2状態に切り替えるように動作すれば、高速道路走行時など、加減速の頻度が少ないが高速を維持するような場面で有利である。また、上記車両の回転数が中程度の第2回転数範囲内のときに制御部30が切替部20を第1状態に切り替えるように動作すれば、市街地走行時など、中速域で加減速や進路変更がある場面において有利である。
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
 上述の実施形態では、切替装置10が制御部30を有していたが、切替装置が制御部30を有していなくてもよい。例えば、切替装置が、上述の切替部20のみによって構成され、この切替装置(具体的には切替部20)が外部装置(例えば、上述の制御部30と同様の機能を有する装置)から指示を受けて切替動作を行うような構成であってもよい。
 上述された実施形態では、各相の巻線がそれぞれ2つに分けられたが、各相の巻線がそれぞれ3つ以上に分けられてもよい。図7には、図1の電動機駆動装置2に代えて電動機駆動装置202が採用された車載システム101が示される。図7の電動機駆動装置202では、図1の交流電動機4に代えて交流電動機104が用いられる。交流電動機104は、図1のように第2巻線71B,72B,73Bの各々の他端と短絡部90とが短絡している構成に代えて、第2巻線71B,72B,73Bの各々の他端と短絡部190との間に第3巻線71C,72C,73Cがそれぞれ設けられた点が図1と異なり、その他の構成は図1の交流電動機4と同様である。図7の交流電動機104におけるU相の巻線171、V相の巻線172、W相の巻線173のように、第2巻線71B,72B,73Bの各々と短絡部190との間に第3巻線71C,72C,73Cが設けられていてもよい。この例では、図7のように、スイッチ122A,122B,122Cをオン状態とオフ状態とに切り替える第4切替部122とスイッチ123A,123B,123Cをオン状態とオフ状態とに切り替える第5切替部123とが設けられていればよい。図7の例では、上述の第1状態にするには、第1実施形態での第1状態の制御に加え、スイッチ122A,122B,122C,123A,123B,123Cを全てオフ状態とすればよく、第2状態とするには第1実施形態での第2状態の制御に加え、スイッチ122A,122B,122Cを全てオフ状態とし、スイッチ123A,123B,123Cを全てオン状態とすればよく、第3状態とするには第1実施形態での第3状態の制御に加え、スイッチ122A,122B,122Cを全てオフ状態とし、スイッチ123A,123B,123Cを全てオン状態とすればよく、第4状態とするには第1実施形態での第4状態の制御に加え、スイッチ122A,122B,122C,123A,123B,123Cを全てオフ状態とすればよい。更に、切替部21,22,23,123を全てオフ状態とし、切替部122をオン状態とすれば、各第1巻線及び各第2巻線を用いずに、第3巻線71C,72C,73Cを選択的に用いるような第4状態が可能であり、切替部22,23,122,123を全てオフ状態とし、切替部21をオン状態とすれば、各第1巻線、各第2巻線、各第3巻線を全て用いるような第5状態が可能である。更に、これら以外の状態も生じさせることができる。この電動機駆動装置2では、各相の巻線がそれぞれ3つ以上に分けられた構成において、各相の巻線のうちのいずれか1種類(図7の構成では、第1巻線、第2巻線、第3巻線のうちの1種類)のみを選択する使用が可能であり、いずれか2種類のみを選択する使用も可能であり、全種類を選択する使用も可能である。
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
1,101 :車載システム
4,104 :交流電動機
10:切替装置(交流電動機の切替装置)
20:切替部
21:第1切替部
22:第2切替部
23:第3切替部
30:制御部
61:第1導電路
62:第2導電路
63:第3導電路
71:U相の巻線
72:V相の巻線
73:W相の巻線
71A,72A,73A:第1巻線
71B,72B,73B:第2巻線
81A:第1端部
81B:他端
81C:第4端部
82A:第2端部
82B:他端
82C:第5端部
83A:第3端部
83B:他端
83C:第6端部

Claims (3)

  1.  複数相の巻線を有し各相の巻線がそれぞれ第1巻線と第2巻線とを有する交流電動機の前記巻線の接続状態を切り替える切替装置であって、
     前記複数相の巻線の接続状態を切り替える切替部を有し、
     前記切替部は、前記各相の巻線の各々の前記第1巻線に対する通電制御を許容し各々の前記第2巻線に対する通電制御を遮断する第1状態と、前記各相の巻線の各々の前記第2巻線に対する通電制御を許容し各々の前記第1巻線に対する通電制御を遮断する第2状態と、前記各相の巻線の各々の前記第1巻線及び前記第2巻線に対する通電制御を許容する第3状態と、に切り替わる
     交流電動機の切替装置。
  2.  前記切替部を制御する制御部を有し、
     前記複数相の巻線は、第一相の巻線と第二相の巻線と第三相の巻線とを備え、
     前記切替部は、第1短絡状態と第1解除状態とに切り替わる第1切替部と、第2短絡状態と第2解除状態とに切り替わる第2切替部と、第3短絡状態と第3解除状態とに切り替わる第3切替部と、を備え、
     前記第1短絡状態は、前記第一相の巻線における前記第1巻線の一端である第1端部と第1導電路とを短絡させ、前記第二相の巻線における前記第1巻線の一端である第2端部と第2導電路とを短絡させ、前記第三相の巻線における前記第1巻線の一端である第3端部と第3導電路とを短絡させた状態であり、
     前記第1解除状態は、前記第1端部と前記第1導電路の短絡を解除し、前記第2端部と前記第2導電路の短絡を解除し、前記第3端部と前記第3導電路の短絡を解除した状態であり、
     前記第2短絡状態は、前記第一相の巻線における前記第2巻線の一端である第4端部と前記第1導電路とを短絡させ、前記第二相の巻線における前記第2巻線の一端である第5端部と前記第2導電路とを短絡させ、前記第三相の巻線における前記第2巻線の一端である第6端部と前記第3導電路とを短絡させた状態であり、
     前記第2解除状態は、前記第4端部と前記第1導電路の短絡を解除し、前記第5端部と前記第2導電路の短絡を解除し、前記第6端部と前記第3導電路の短絡を解除した状態であり、
     前記第3短絡状態は、前記第一相の巻線の前記第1巻線の他端と前記第二相の巻線の前記第1巻線の他端と前記第三相の巻線の前記第1巻線の他端とを含む他端群を互いに短絡させる状態であり、
     前記第3解除状態は、前記他端群の互いの短絡を解除した状態であり、
     前記制御部は、前記第1切替部を前記第1短絡状態とし前記第2切替部を前記第2解除状態とし前記第3切替部を前記第3短絡状態とすることで前記切替部を前記第1状態とし、前記第1切替部を前記第1解除状態とし前記第2切替部を前記第2短絡状態とし前記第3切替部を前記第3解除状態とすることで前記切替部を前記第2状態とし、前記第1切替部を前記第1短絡状態とし前記第2切替部を前記第2解除状態とし前記第3切替部を前記第3解除状態とすることで前記切替部を前記第3状態とする
     請求項1に記載の交流電動機の切替装置。
  3.  前記第一相の巻線の前記第1巻線は、前記第一相の巻線の前記第2巻線よりも巻き数が大きく、
     前記第二相の巻線の前記第1巻線は、前記第二相の巻線の前記第2巻線よりも巻き数が大きく、
     前記第三相の巻線の前記第1巻線は、前記第三相の巻線の前記第2巻線よりも巻き数が大きい
     請求項2に記載の交流電動機の切替装置。
PCT/JP2022/047066 2021-12-22 2022-12-21 交流電動機の切替装置 WO2023120568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280080645.3A CN118318389A (zh) 2021-12-22 2022-12-21 交流电动机的切换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-208011 2021-12-22
JP2021208011A JP2023092793A (ja) 2021-12-22 2021-12-22 交流電動機の切替装置

Publications (1)

Publication Number Publication Date
WO2023120568A1 true WO2023120568A1 (ja) 2023-06-29

Family

ID=86902626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047066 WO2023120568A1 (ja) 2021-12-22 2022-12-21 交流電動機の切替装置

Country Status (3)

Country Link
JP (1) JP2023092793A (ja)
CN (1) CN118318389A (ja)
WO (1) WO2023120568A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227980A (ja) * 2011-04-14 2012-11-15 Yaskawa Electric Corp 交流電動機の巻線切替装置及び交流電動機駆動システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227980A (ja) * 2011-04-14 2012-11-15 Yaskawa Electric Corp 交流電動機の巻線切替装置及び交流電動機駆動システム

Also Published As

Publication number Publication date
JP2023092793A (ja) 2023-07-04
CN118318389A (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
JP5325483B2 (ja) モータ駆動装置
US7612509B2 (en) Motor controller
US7057361B2 (en) Inverter control device and electric vehicle thereof
US8928264B2 (en) Control device for rotating electrical machine
JP2019134590A (ja) インバータ制御装置
JP2017200284A (ja) 動力出力装置
US10903772B2 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
WO2020095802A1 (ja) 駆動システム
JP6009834B2 (ja) 駆動装置及び電動機の巻線切り換え方法
CN102934352A (zh) 用于运行三相无刷直流电动机的方法和控制装置
JP2008160920A (ja) 結線パターン切換装置
JP5733259B2 (ja) 回転機の制御装置
WO2023120568A1 (ja) 交流電動機の切替装置
US6906481B1 (en) Power sharing high frequency motor drive modular system
WO2020116226A1 (ja) 電力変換装置
JP6456529B1 (ja) 回転電機装置
JP2006129668A (ja) モータ制御装置
JP3783639B2 (ja) 車両用交流発電電動装置
US20210265937A1 (en) Drive system
JP5017529B2 (ja) 磁石式同期モータ用電力変換装置
JP2003018886A (ja) 電動機駆動制御装置
CN111684709B (zh) 旋转电机的驱动装置
KR100384171B1 (ko) 전기 자동차의 고장 발생시 모터 구동 장치 및 그 방법
JP2018011492A (ja) 回転電機装置
WO2024127951A1 (ja) 巻線切替装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280080645.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE